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DISSERTATION ABSTRACT 
 
Abagael Marie Lasseigne 
 
Doctor of Philosophy 
 
Department of Biology 
 
June 2021 
 
Title: ZO-1 Directs Electrical Synapse Formation In The CNS Of Developing Zebrafish. 
 
 
Electrical synapses are specialized cellular adhesions that allow for the direct flow of 

information between neurons. They are required for proper neural circuit development 

and make up an estimated 20% of synapses in adult nervous systems. Despite this, we 

know very little about their molecular structure. We often consider them to simply be 

aggregates of Connexin protein channels, and, up until now, it has been unclear whether 

electrical synapses require other support proteins for them to form and function. In this 

thesis, I show that not only do electrical synapses require the support of another 

molecule, but their formation is actually dictated by it. A comparison of electrical 

synapses to other cellular adhesions led me to hypothesize that they would require an 

intracellular scaffolding molecule to instruct their formation. Using forward and reverse 

genetics, the scaffolding protein Zonula occludens-1 (ZO1) was identified as being 

critical for Connexin protein localization to the electrical synapse. Further, I showed that 

its organizational role at the synapse is mediated by a direct interaction with the 

postsynaptic Connexin. The presence and requirement of ZO1 at the electrical synapse 

forces us to update our simple model and shows that electrical synapses are complex 

structures that require molecular organization beyond the channel-forming Connexin 

proteins. This dissertation contains previously published and co-authored material. 
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CHAPTER I 

INTRODUCTION 

Think for a moment about picking up a cup. To pick up this cup, you need to see 

the cup. Light information from your surroundings must be detected by your retina and 

then interpreted by your brain. Next, your brain needs to tell the muscles of your arm and 

hand to reach out to the location of the cup, grasp it, and then lift it with the appropriate 

amount of force. While this action is occurring, your body needs to recognize your 

position in space and adjust as your weight shifts and as you feel the weight of the cup. 

Simultaneously, you may be thinking about why you are picking the cup up in the first 

place. Are you thirsty? Did someone ask you to pick up the cup? Do you recognize the 

cup? This simultaneous processing of sensory information, control over muscles, decision 

making, and recall of memory is occurring in your brain almost instantaneously, in 

addition to the constant general functioning required to keep you alive.  

The human brain integrates and processes massive amounts of information, all 

encoded by electrical impulses passed between specialized cells called neurons. Humans 

have an estimated 86 billion neurons (Azevedo et al., 2009), all containing identical 

biological instructions (i.e., DNA) but resulting in a diverse population of cells. Each of 

these neurons then makes thousands of connections, called synapses, to other neurons 

creating a biological processing network. Synapses are critical to the nervous systems 

ability to move and process information, and malfunctions in synapse function contribute 

to a wide variety of neurological disorders in humans (Grant, 2019). The field of 

neuroscience, therefore, aims to determine how the biological instructions contained 

within a neuron can lead to cellular and synaptic changes that ultimately impact behavior.  

To this end, one synaptic subtype, the chemical synapse, has been the focus of 

neurobiological research for decades. At chemical synapses, electrical signals in one 

neuron trigger the release of chemical neurotransmitters across a physical gap that then 

interact with receptors on the receiving cell. Over the years, we have learned that these 

structures require expansive, asymmetric networks of molecular machinery (Ackermann 

et al., 2015; Grant, 2019; Siddiqui and Craig, 2011). However, the field’s focus on the 
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chemical synapse has led it to largely neglect the second synaptic subtype: the electrical 

synapse.  

Electrical synapses are unique from their chemical counterparts in that they 

physically link the cytoplasm of adjacent neurons via Connexin (Cx) protein channels. 

This allows the electrical signal itself to directly move from one cell to another producing 

a faster, more energy efficient, and often bidirectional mode of communication (Nagy et 

al., 2018). Electrical synapses are best known for their role in developing circuits, where 

they can act as transient precursors for permanent chemical synapses and are critical for 

proper circuit formation in many cases (Zolnik & Connors, 2016; Maher et al., 2009). 

Recently, it has also been shown that electrical synapses are prevalent in adult circuits. 

Work in the rodent retina and C. elegans have estimated that 20% of the synapses in 

mature circuits might be electrical (White et al., 1986; Anderson et al., 2011; Jarrell et al., 

2012; Cook et al., 2019). Despite their functions in both developing and mature circuits, 

little is understood about how these structures actually develop. Electrical synapses are 

often viewed as simplistic aggregates of Connexin channels, but their structural diversity 

and functional regulation alone contradict such a simple model (Nagy et al., 2018; 

Pereda, 2016; O’Brien, 2017). Furthermore, their unique functional properties impact 

neuronal circuits in ways that chemical synapses cannot (Hormuzdi et al., 2004; Connors, 

2017). Therefore, for us to have a complete understanding of the nervous system, it is 

critical that we investigate the molecular mechanisms underlying electrical synapse 

formation and function.  

Electrical synapses are gap junctions found between neurons. Each channel is 

composed of two Connexin hexamer hemichannels: one presented from each of the 

adjoining cells. Therefore, each individual channel is made up of 12 Connexin proteins, 

and each electrical synapse is made up of tens to thousands of these channels 

(Goodenough and Paul, 2009). But how do the Connexins get to the synapse? How do 

they know where to go? How are these structures maintained over time? The mechanisms 

required for Connexin localization and function are not understood. However, there is 

growing evidence of molecular complexity at the electrical synapse that could have a role 

in building these structures. First, electron microscopy images depict an electron dense 

region surrounding the Connexin plaques, indicating a concentration of proteins beyond 
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the gap junction channels (Llinas et al. 1974). Second, electrical synapses are diverse 

structures found in stereotyped arrangements (Nagy et al., 2018; Connors, 2017). This 

requires a level of organization that must be robust enough to recruit in necessary 

materials between precise partners but also flexible enough to allow diversity. And third, 

electrical synapses are highly dynamic. Neuronal Connexin proteins themselves are 

turned over about every three hours, requiring: the constant trafficking of new Connexins, 

exocytosis machinery to embed them in the membrane, and endocytosis machinery to 

clear old channels (Lauf et al., 2002; Flores et al., 2012; Wang et al., 2015). Additionally, 

electrical synapses are highly regulated, and their strength can be modified by changes in 

cell electrical state, channel abundance, or the number of channels that are open 

(O’Brien, 2017; Pereda, 2016). These properties of electrical synapses suggest that there 

must be underlying molecular support beyond the Connexin channels.  

In this thesis, I identify and characterize one of these necessary proteins. In 

Chapter II, to investigate the molecular support network that might underly electrical 

synapse function, I review the literature on cellular adhesions comparing electrical 

synapses to chemical synapses, tight junctions, adherens junctions, and non-neuronal gap 

junctions. I use these comparisons to generate hypotheses as to how electrical synapses 

might be established, how neuronal connexins might be recruited and trafficked to 

synapses, and what proteins or types of proteins are most likely necessary at electrical 

synapses. Ultimately, this review leads me to hypothesize that an intracellular scaffolding 

molecule will be required for synapse formation and function. In Chapter III, I use the 

zebrafish central nervous system as a model to identify and characterize the role of a 

required scaffolding protein, Zonula occludens-1b, at electrical synapses. In chapter IV, I 

investigate the cell biology of this scaffold and conclude that it functions exclusively in 

the postsynaptic compartment of the neuron via a direct interaction with the channel 

forming Connexins. Altogether, this work identifies and defines the functional role of a 

protein that dictates the structure and function of electrical synapses. This dissertation 

contains previously published and co- authored material. 
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CHAPTER II 

UNDERSTANDING THE MOLECULAR AND CELL BIOLOGICAL 
MECHANISMS OF ELECTRICAL SYNAPSE FORMATION 

 

Martin EA*, Lasseigne AM* and Miller AC (2020). Front. Neuroanat. 14:12.  

Copyright 2020. 

*denotes equal contribution 

Author Contributions 

EM, AL, and AM discussed and wrote the review. All authors contributed to manuscript 

revision, read and approved the submitted version.  

Introduction 

Electrical synapses are specialized connections between neurons that facilitate direct 

ionic and small metabolite communication (Fig. 1). They are composed of tens to 

thousands of gap junction channels clustered together into plaques that are present 

throughout developing and adult brains. Electrical synapses contribute towards initial 

neural circuit function including driving the earliest animal behaviors (Rekling et al., 

2000; Saint-Amant and Drapeau, 2000; Marin-Burgin et al., 2006; Su et al., 2017) and 

continue to function broadly throughout life in neural circuits controlling sensory 

processing (Li et al., 2009; Huang et al., 2010; Yaksi and Wilson, 2010; Pouille et al., 

2017), rhythmic behavior in central pattern generators and motor systems (Eisen and 

Marder, 1982; Song et al., 2016; Traub et al., 2020), and cortical processing in mammals 

(Galarreta and Hestrin, 2001, 2002; Connors and Long, 2004; Gibson et al., 2005; Hestrin 

and Galarreta, 2005; Mancilla et al., 2007). Despite these well-documented and diverse 

circuit functions (reviewed in Nagy et al., 2018), the electrical synapse is commonly 

thought of as a necessary, but simple and temporary, precursor in development to the 

later-forming chemical synapse. However, emerging evidence supports an alternative 

view, namely that electrical and chemical synapses are essential life-long collaborators in  
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both invertebrate and vertebrate neural circuits where they work synergistically to 

 
 
Figure 1. (A) Electrical synapses visualized by light microscopy on the larval zebrafish 
Mauthner neuron. Mauthner, labeled with tetramethylrhodamine-dextran (TRho, red), 
makes electrical synapses, labeled by Connexin35 (Cx35, green), on its soma and lateral 
dendrite. The so-called club ending synapses represent uniquely identifiable electrical 
connections with auditory afferents. The Mauthner neuron has served as a key model for 
electrical synapse formation and function and the principles learned have applied to both 
invertebrate and vertebrate systems (Nagy et al., 2018). Image modified from Yao et al. 
(2014), reproduced with permission. (B) Electron microscopy showing gap junctions at 
the club endings between the postsynaptic Mauthner neuron and the presynaptic auditory 
afferents in adult goldfish. The electron density between the neurons and the 
characteristic intermembrane spacing are hallmarks of gap junctions. X 285,000. 
Republished with permission of Rockefeller University Press, from Brightman and Reese 
(1969); permission conveyed through Copyright Clearance Center, Inc. (C) Illustration of 
an unpaired gap junction hemichannel inserted into the plasma membrane, composed of a 
hexamer of Connexin proteins. (D) A single Connexin protein is illustrated to show 
protein topology. 
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dynamically shape brain function (reviewed extensively in Pereda, 2014). Indeed, the 

best-studied electron-microscope reconstructed connectomes, of C. elegans and the rabbit 

retina, reveal that electrical synapses make up about 20% of connections in these mature 

circuits (White et al., 1986; Anderson et al., 2011; Jarrell et al., 2012; Cook et al., 2019).  

Also, electrical synapses have emerged as complex biochemical structures, with 

their proteomic diversity supporting sophisticated neuronal functions including activity-

dependent plasticity (reviewed in Miller and Pereda, 2017). These findings lead to 

exciting new ideas about the role of electrical synapses in brain development, function, 

and disease. However, while abundant literature has explored the mechanisms that build 

both non-neuronal gap junction and chemical synapse formation, the field still has only 

furtive glances into the cell biological mechanisms that control electrical synapse 

formation and function. Given that electrical synapses are formed within the elaborate 

architecture of neurons and that they are optimized for fast transmission and plasticity, 

we expect that complex cell biological rules regulate the formation and homeostasis of 

these gap junction channels. Here we focus on emerging evidence that provides the first 

glimpse of electrical synapse cell biology in vivo. We apologize for the many excellent 

articles we were unable to cite in this review due to space constraints, but the explosion 

of renewed interest in these structures has generated many recent reviews that provide 

excellent resources to examine the many aspects of electrical synapse structure and 

function (Dong et al., 2018; Harris, 2018; Jabeen and Thirumalai, 2018; O’Brien and 

Bloomfield, 2018; Traub et al., 2018; Alcamí and Pereda, 2019; Totland et al., 2020). We 

expect that complex cell biological rules regulate the formation and homeostasis of these 

gap junction channels. Here we focus on emerging evidence that provides the first 

glimpse of electrical synapse cell biology in vivo. We apologize for the many excellent 

articles we were unable to cite in this review due to space constraints, but the explosion 

of renewed interest in these structures has generated many recent reviews that provide 

excellent resources to examine the many aspects of electrical synapse structure and 

function (Dong et al., 2018; Harris, 2018; Jabeen and Thirumalai, 2018; O’Brien and 

Bloomfield, 2018; Traub et al., 2018; Alcamí and Pereda, 2019; Totland et al., 2020).  
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The Formation of Intercellular Junctions  

While the mechanisms that build an electrical synapse are not well understood, 

critical clues to how the process might work are likely to be found in the known 

mechanisms that build other junction types such as adherens junctions, tight junctions, 

non-neuronal gap junctions, and chemical synapses. This process of junction formation 

requires: (1) selecting the junction site; (2) adhering to the cellular membranes in close 

apposition; (3) anchoring to the cytoskeleton; and (4) coordinating protein recruitment 

between the two cells to form a functional junction. Every junction type must create 

molecular solutions to these problems, and while each junction has its unique features, 

they share a common foundation (Fig. 2).  

 

 

Figure 2 (next page). (A) Adherens junctions are the simplest junctions consisting of 
cell adhesion molecules (CAMs, blue) such as cadherins and nectins, and scaffolding 
proteins like Afadin (pink) combined with linker proteins (brown) such as catenins that 
connect cellular membranes to the actin cytoskeleton (purple). IC, Intracellular; EC, 
Extracellular. (B) Tight junctions use different CAMs (blue) including claudins and 
occludins to bring the neighboring cell membranes tightly together. These CAMs 
connect to the actin cytoskeleton (purple) via several scaffolding molecules (pink) 
including ZO proteins. (C) Non-neuronal gap junctions use Connexin proteins arranged 
in hexameric hemichannels (green) to intercellularly connect cells. Connexins also use 
scaffolding proteins (pink) including ZO proteins to link to other signaling molecules 
and the actin cytoskeleton (purple). (D) Chemical synapses, such as the glutamatergic 
excitatory chemical synapse represented here, have a vast assortment of proteins 
composing their structure including a variety of CAMs (blue), scaffolding molecules 
such as PSD95 (pink), neurotransmitters and synaptic vesicles (SV) and associated 
proteins (yellow and orange), neurotransmitter receptors and calcium channels (green), 
cytoskeletal adaptor proteins and other signaling molecules (brown), etc. PRE, 
Presynapse; POST, Postsynapse. (E) Electrical synapses are neuronal gap junction 
channels and use Connexins (green) to directly interconnect two neurons. Electrical 
synapses are often thought of as molecularly symmetric, but they can have asymmetric 
protein localization, as depicted here. At asymmetric electrical synapses, two 
postsynaptic proteins, ZO1 (pink) and Ca2+/calmodulin-dependent protein kinase II 
(CAMKII, brown) are observed to directly interact with Connexin C-terminal tails in 
the postsynapse to provide scaffolding and kinase activity. Due to the cell-biological 
specificity of electrical synapse formation within the complexity of neuronal 
morphology, and given their sophisticated functions in fast interneuronal 
communication, we expect that a large assortment of unknown proteins (gray) exists to 
manage electrical synapse formation and function. See the text for details. Republished 
with permission of Rockefeller University Press, from Brightman and Reese (1969); 
permission conveyed through Copyright Clearance Center, Inc. 
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In both neuronal and non-neuronal tissues, adherens, tight, and gap junctions 

exist to link cells to one another. Adherens junctions essentially take on the role of 

molecular glue between cells (Fig. 2A). These structures mediate cell-cell adhesion via 

the extracellular binding of cell adhesion molecules (CAMs), which include 

transmembrane cadherins and nectins (Troyanovsky, 2014). Intracellularly, CAMs 

anchor the cell membrane to actin via cytoskeleton-interacting linkers and scaffolding 

proteins such as catenins and afadin (Indra et al., 2013). By contrast, tight junctions 

bind cells to one another to create a seal that generates a mesh-like barrier with small 

pores between tissues. These junctions largely use the claudin CAM family as their 

transcellular connector and link to intracellular scaffolding proteins such as ZO proteins 
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(Figure 2B; Zihni et al., 2016). Unlike adherens and tight junctions, gap junctions create 

a physical intercellular channel connecting the two cell cytoplasms and making a direct 

passage for ions and other small molecules to pass from cell to cell. Gap junctions are 

created by coupled hemichannels contributed by each cell, with each hemichannel, in 

vertebrates, being comprised of a hexamer of Connexin proteins (Fig. 1C, 2C). 

Invertebrates accomplish the same task by using an evolutionarily distinct class of 

proteins called Innexins to form gap junctions (reviewed in Phelan, 2005; Güiza et al., 

2018). Much like the CAMs at adherens and tight junctions, Connexins are 

intracellularly connected to scaffolding and cytoskeletal linkage proteins including ZO 

proteins and EB1 (Li et al., 2004; Epifantseva and Shaw, 2018). Thus, while there is 

some molecular overlap, each junction’s unique morphology and function requires 

specialized membrane proteins, and fundamentally each must have a form of CAM, a 

scaffold, and an anchor to the cytoskeleton. How does this change within a neuronal 

environment?  

Neurons use their special intercellular junctions to support the fast 

communication needs of neural network function. Moreover, the cell biological demands 

of their complex and diverse morphology (far-reaching axons and dendrites) require a 

carefully orchestrated protein delivery and control system (Tahirovic and Bradke, 2009). 

In particular, neuronal cells have two specialized junctions to manage fast information 

flow: chemical and electrical synapses. Chemical synapses (Fig. 2D) are fundamentally 

asymmetric structures, with the presynaptic side, the so-called active zone, specialized 

for fast synaptic vesicle release in response to neuronal action potentials (Südhof, 2012). 

Synaptic vesicle exocytosis at the active zone releases neurotransmitters into the synaptic 

cleft between the neurons to activate receptors on the postsynaptic cell. The postsynapse 

also termed the postsynaptic density, is specialized to manage the localization, 

organization, and function of neurotransmitter receptors to control communication (Frank 

and Grant, 2017). As with their non-neuronal junction counterparts, common mechanistic 

themes control the formation of all chemical synapses. Synaptic CAMs are thought to 

initiate synaptogenesis and offer trans-synaptic structural support; intracellular synaptic 

scaffolding molecules organize and stabilize both the pre and postsynaptic 

compartments; and adaptor proteins link to the cytoskeleton to manage trafficking, 
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anchoring, and later plasticity. Proteomic work on pre- and postsynaptic chemical 

synapses have revealed hundreds and thousands of proteins, respectively, in each 

compartment (Collins et al., 2006; Bayés and Grant, 2009; Ryan and Grant, 2009; 

Dieterich and Kreutz, 2016). While there is great protein diversity in these connections, 

each of the molecular aspects of building a chemical synapse relates to the fundamental 

themes of adhesion, scaffolding, and cytoskeletal anchoring, and these are critical to the 

structure, function, and plasticity of these connections.  

While we know relatively little about the molecular mechanisms that regulate 

electrical synapses (Figure 2E), their observed functional diversity and plasticity suggests 

complex cell biological rules must control their formation and function, presumably 

using similar mechanisms as the other junction types. The notion of electrical synapse 

complexity is supported by several observations. First, we know that these neuronal gap 

junctions appear throughout the nervous system, from sensory neurons to central 

processing circuits to motor outputs (Galarreta and Hestrin, 2001; Connors and Long, 

2004; Nagy et al., 2018). Besides, circuits build these connections in development and 

then refine them to form the final set of electrical synapses used in adulthood (Rash et al., 

2000; Galarreta and Hestrin, 2002; Pereda, 2014). Thus, there must exist critical gene 

regulatory networks controlling when and where electrical synapse genes are expressed. 

Second, electron microscopy shows that the cell biological construction of electrical 

synapses is varied, and these structures can form between all neuronal compartments: 

there are axo-dendritic, somato-somatic, axo-axonic, and dendro-dendritic electrical 

synapses (Kosaka and Hama, 1985; Hamzei-Sichani et al., 2007; Nagy et al., 2018). 

These varied configurations suggest molecular specificity mechanisms to ensure 

electrical synapses are made in the right places and at the right times. Finally, electrical 

synapses are found in multiple morphological arrangements, such as in dense plaques, 

lacey plaques, wide ribbons, and thin strings (Nagy et al., 2018), suggesting that 

individual synapses are differentially regulated to achieve their unique functional needs. 

Here, we will explore the cell biological and molecular mechanisms which likely exist to 

manage each of these processes, beginning with gene expression control, then how gap 

junction proteins arrive at the synapse, followed by an analysis of electrical synapse 

organization, then by addressing how an electrical synapse site may be specified, and 
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finally by exploring how electrical synapses may contribute to disease. Our goal is to 

highlight critical areas of unexplored biology with the hope that this spurs efforts to 

identify the molecules and mechanisms that build, maintain, and allow for the 

modification of the electrical synapse.  

Expression and Localization of Gap Junction Forming Genes  

To make electrical synapses, neurons must express genes that support gap 

junction formation. In chordates, gap junctions are created by Connexins while in non-

chordate animals Innexins make the channels (Slivko-Koltchik et al., 2019). While 

chordates retain Innexin genes, called Pannexins in these genomes, these proteins only 

make hemichannels and do not form intercellular junctions (Abascal and Zardoya, 

2013). Despite evolution devising two molecular solutions to forming gap junctions, 

Connexin and Innexin structure and function are strikingly conserved (Goodenough and 

Paul, 2009; Pereda and Macagno, 2017). All animal genomes contain large numbers of 

gap junction forming genes, each expressed in cell-type-specific patterns and encoding 

proteins that facilitate unique functions. Therefore, to understand the electrical synapses 

of the nervous system, it is critical to examine the molecular complexities of the gap 

junctions. In C. elegans, 17 of the 25 Innexin genes are neuronally expressed, and they 

display highly complex and overlapping patterns that suggest incredible electrical 

synapse molecular complexity (Bhattacharya et al., 2019). Analogously, vertebrate 

genomes encode many Connexins; for example, zebrafish contain ∼40 unique genes 

(Watanabe, 2017). Most Connexin genes are not expressed within neurons, such as the 

gene gap junction a1 (gja1) encoding the Connexin43 (Cx43) protein, which is 

expressed in non-neuronal tissue including epithelia and glia (Janssen-Bienhold et al., 

1998; Güldenagel et al., 2000; Misu et al., 2016). A subset of Connexins are expressed 

in neurons, though each gene has a unique expression profile within the nervous system 

(Li et al., 2009; Rash et al., 2013; Klaassen et al., 2016; Song et al., 2016; Miller et al., 

2017). For example, the gjd2/Cx36 family of genes are the most broadly expressed 

neuronal Connexins, found in neurons from the forebrain to the spinal cord within 

zebrafish and mouse brains (Condorelli et al., 1998; Connors and Long, 2004; Li et al., 

2009; Söhl et al., 2010; Miller et al., 2017). By contrast, the mammalian gja10/Cx57 
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gene and its homologs in zebrafish are expressed exclusively in retinal horizontal cells 

(Söhl et al., 2010; Klaassen et al., 2016; Greb et al., 2018). Thus, while a complete 

accounting of vertebrate Connexin expression in the nervous system has not yet been 

achieved, it is clear that regulated expression contributes to the specificity of the 

electrical connectome.  

In addition to gene regulatory mechanisms contributing to electrical synapse 

specificity, there are complexities as to whether two different Connexins can form a gap 

junction. For example, Cx43 expressed within glia cannot form gap junctions with 

neuronally expressed Cx36 (Rash et al., 2001; Koval et al., 2014). By contrast, many 

Connexin types can interact with one another, either within a hemichannel or between 

apposed cells. Given that many neurons express multiple Connexin proteins, there is the 

potential for a variety of Connexin arrangements within neuronal gap junctions 

(O’Brien et al., 2004; Rash et al., 2013; Palacios-Prado et al., 2014; Miller et al., 2017). 

These rules of engagement are certainly important for creating specific connectivity, yet 

we still lack the complete set of compatibility guidelines between the large family of 

Connexins. The spatial and temporal control of Connexin expression, coupled with the 

rules of Connexin engagement, provide both specificity and opportunities for 

complexity in the formation of electrical synapses. Future work is required to elucidate 

the complete molecular map of electrical synapse gene expression and protein usage in 

a complex vertebrate brain such as zebrafish.  

While Connexin incompatibilities and expression are important for specificity, it 

is also clear that neurons are selective in where they form electrical synapses. An 

intriguing example of this is found within the mouse retina where the rod and cone 

photoreceptors express Cx36 and make electrical synapses with one another (Deans et 

al., 2002; Li et al., 2014; Asteriti et al., 2017). The photoreceptors also make chemical 

synapses with bipolar neurons, which themselves are coupled to other retinal neurons by 

Cx36-mediated electrical synapses (Deans et al., 2002; Trenholm and Awatramani, 

2019). However, the photoreceptors do not make electrical synapses with bipolar 

neurons, despite their ability to form chemical synapses with one another and their 

mutual expression of Cx36. How can this be? The answer must arise from cell biological 

mechanisms that specify where the Connexins travel within the cell to form gap 
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junctions. Yet we know little about the trafficking mechanisms of Connexins within 

neurons.  

Trafficking of Connexins within Neuronal Compartments  

Most of our understanding of Connexin trafficking comes from studies of Cx43-

based gap junctions (reviewed in Epifantseva and Shaw, 2018). In essence, Cx43 

hemichannels are packaged into vesicles, travel along microtubules to an adherens 

junction situated near an established gap junction plaque, and are deposited into the 

membrane where they then migrate to and are incorporated into the plaque. However, in 

considering how electrical synapses are built, neurons offer additional trafficking 

challenges given their distinct cellular compartments. In most vertebrate neurons, axons 

are far-reaching processes that control information transmission at the presynapse, while 

dendrites are highly branched processes that typically stay relatively near the cell soma 

and manage information reception at the postsynapse. Axons and dendrites use 

analogous yet distinct processes to manage specific protein trafficking to their pre- and 

postsynaptic contact points. While chemical synapse contacts are necessarily 

asymmetric, electrical synapses can be either symmetric or asymmetric, and the flow of 

information at the electrical synapse can be bi-directional or biased (rectified; Phelan et 

al., 2008; Rash et al., 2013; Miller et al., 2017; Bhattacharya et al., 2019). In this review 

article, we will often refer to presynaptic (axonal) and postsynaptic (dendritic) 

electrical synapse components, and we do so only concerning the polarized neuronal 

compartments in which each side of the synapse resides. Given that electrical synapses 

occur on dendrites, cell bodies, and axons, and that axons and dendrites use different 

methods to traffic proteins, the trafficking of Connexins and other electrical synapse 

components within neurons must be controlled to build the appropriate electrical 

connections.  

A striking example of the molecular organization of Connexins within distinct 

neuronal compartments was recently revealed using the power of zebrafish genetics. In 

zebrafish Mauthner neurons, two Connexins, Cx34.1 and Cx35.5, both homologous to 

mammalian Cx36, are necessary for electrical synapse formation (Miller et al., 2017). 

Surprisingly, Cx34.1 is specifically required in the postsynapse while Cx35.5 is 
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exclusively required in the presynapse, but the mechanisms guiding compartment-

specific Connexin localization are unknown. This asymmetric compartmentalization of 

Connexins suggests that molecular rules must exist to guide specific Connexin types to 

particular sub-neuronal regions. Connexin proteins are four-pass transmembrane 

domain proteins with N and C-termini located intracellularly (Fig. 1D). Postsynaptic 

Cx34.1 and presynaptic Cx35.5 are ∼90% amino acid identical, yet they have 

tantalizing differences in their intracellular loops and C-terminal tails which must, in 

some as yet undiscovered way, support their separate requirement in dendrites and 

axons. If we look to the chemical synapse for clues, we find that the trafficking and 

stabilization of postsynaptic AMPA neurotransmitter receptor subtypes are regulated 

through interactions between its C-terminal domain and intracellular scaffolding 

proteins, which connects them to the cytoskeleton and other signaling molecules 

(reviewed in Anggono and Huganir, 2012). But how do neurons target Connexins to 

these different neuronal compartments?  

To traffic along axons and dendrites, Connexins first need to be packaged into 

vesicles which sort them into neuronal compartments according to the proteins on the 

vesicle surface. Identifying the types of vesicles in which Connexins transit would help 

us to understand their trafficking pathway, but these vesicles are yet to be identified. 

The vesicles must next engage with the intrinsic neuronal polarity mechanisms that 

define dendrites and axons, particularly the motor proteins that direct traffic along 

microtubules to these specific regions. These compartmental motors are distinctly 

organized: guidance to the presynapse along the axon requires kinesin motor proteins, 

and guidance to the postsynapse along the dendrite requires tethering to both kinesins 

and dyneins, with short-range, synaptic delivery in each compartment guided by actin-

trafficked myosin motor proteins (for a detailed analysis of axon and dendrite polarity 

differences see Rolls and Jegla, 2015). Both tubulin (Brown et al., 2019) and actin 

(Wang, 2015) are required for proper trafficking of Cx36 to the membrane. Yet we still 

do not know the types of motor proteins Connexins or other electrical synapse 

components use to direct electrical synapse protein trafficking. However, recently some 

clues have started to point the field in the right direction.  
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Connexins likely rely on adaptor proteins to regulate their transport to the 

synapse. In a forward genetic screen using zebrafish, the epilepsy- and autism-

associated gene Neurobeachin was identified as necessary for both electrical and 

chemical synapse formation (Iossifov et al., 2014; Miller et al., 2015; Mulhern et al., 

2018). Neurobeachin is localized on vesicles which are found at the trans side of the 

Golgi, along dendrites, and also at chemical postsynapses (Wang et al., 2000; Miller et 

al., 2015). Its localization at electrical synapses is currently unknown. Past studies show 

Neurobeachin regulates membrane protein trafficking of chemical synapse scaffolds 

including PSD95 and SAP102 which in turn control the trafficking of neurotransmitter 

receptors (Medrihan et al., 2009; Niesmann et al., 2011; Nair et al., 2013; Farzana et al., 

2016; Gromova et al., 2018). In zebrafish Mauthner neurons, Neurobeachin loss results 

in the failure of Connexin and electrical synapse scaffold ZO1 localization. 

Intriguingly, Neurobeachin is both necessary and sufficient postsynaptically for 

electrical synapse formation in this circuit (Miller et al., 2015). This supports a model 

wherein Neurobeachin controls the polarized trafficking of electrical components 

within the postsynaptic dendrite, although the molecular mechanism remains unknown. 

It is attractive to speculate that perhaps Neurobeachin acts to define dendritically 

targeted vesicles carrying electrical synapse cargo and that it may bridge them to the 

motor proteins required for postsynaptic delivery. Future experiments are required to 

identify how Neurobeachin functions in the dendrite to control synapse formation. The 

coordination of electrical and chemical synapses through a master synapse regulator 

such as Neurobeachin has critical implications for understanding the etiology of 

neurodevelopmental disorders (further discussed at the end of this review).  

Once arriving at the synapse, Connexin vesicles must undergo exocytosis to 

become inserted into the membrane, allowing them to find their partner hemichannels in 

the neighboring neuron. Chemical synapses use v-SNAREs, present on pre and 

postsynaptic vesicles, to bind t-SNAREs on the neuronal membrane and fuse the vesicles 

at the synapse. Work in goldfish Mauthner neurons examined the effect of SNAP-25 

peptides, which block the formation of SNARE-complexes, on the mixed electrical-

chemical synapses of the Mauthner club endings (Flores et al., 2012). Mixed electrical-

chemical synapses at single synaptic termini represent another fascinating synaptic 
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organization, and each component appears to be separately organized (Pereda, 2014; 

Nagy et al., 2019). Intra-dendritic application of these SNAP-25 peptides reduced both 

the electrical and the glutamatergic component of synaptic transmission suggesting the 

SNARE complex may function in Connexin insertion at the membrane (Flores et al., 

2012). If the SNARE complex functions to fuse Connexin vesicles, there must be v-

SNARE proteins within Connexin vesicles. But again, the composition of Connexin-

containing vesicles and its protein constituents remain unknown. Insight into the 

molecular control of Connexin vesicle trafficking and membrane insertion in neurons 

will be critical to understanding electrical synapse formation and plasticity.  

Further insights into the cell biological framework of electrical synapses will 

require an identification of the type of vesicles that contain Connexins; the motor, 

adaptor, and vesicle fusion proteins required for their transport and membrane fusion; 

and to determine if these features change between electrical synapse formation and 

plasticity. The elucidation of the cell biological pathways regulating electrical synapse 

protein trafficking will reveal whether they are the same or distinct from those of 

chemical synapses. The fact that electrical and chemical synapses have known distinct 

protein constituents suggests that at least some components will be unique, but the 

involvement of both Neurobeachin and SNAP-25 suggests some molecular overlap is 

also present. Besides, several trafficking conundrums remain. If Neurobeachin manages 

the postsynaptic trafficking of Connexins, what guides Connexin to the axon and the 

presynapse? And, in mammals, given that Cx36 is used within both the axon and the 

dendrite, how does a neuron resolve specific trafficking to these compartments? One 

possibility is that Connexin trafficking depends upon posttranslational modifications to 

the protein, such as phosphorylation (Li et al., 2009, 2013), to direct its localization. Or 

instead, Neurobeachin and other adaptor proteins may bind a scaffold protein which 

traffics with Connexin, as is observed with chemical synapse components (Tao-Cheng, 

2007; Vukoja et al., 2018). Thus, cell type-specific expression of these scaffolds and 

adaptors could result in different trafficking patterns and thus different cell biological 

construction of electrical synapses. This leads us to our next question: how do electrical 

synapse scaffolds control electrical synapse development?  
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Organizing the Growing Electrical Synapse 

To fully appreciate electrical synapse cell biology, we must understand that each 

electrical synapse is composed of plaques of tens to thousands of gap junction channels 

(Flores et al., 2012; Rash et al., 2012, 2013, 2015; Yao et al., 2014). These plaques of 

gap junction channels can take on many different conformations such as wide or thin 

ribbons and large circular regions of channels, either densely collected or with lace-like 

holes (Nagy et al., 2018). Connexins arrive at the synapse as hemichannels that are 

inserted at the boundaries of existing gap junction plaques where they then find a 

partner hemichannel in the adjoining neuron. Over time, the channels migrate towards 

the center of the plaque where they are endocytosed and sent to the lysosome for 

degradation (Lauf et al., 2002; Flores et al., 2012; Wang et al., 2015). The half-life of 

Cx36 is estimated to be between 1 and 3 h in vivo, so to maintain the electrical synapse, 

Cx36 must continuously be made and trafficked to the correct location (Flores et al., 

2012; Wang et al., 2015). The known organizational principles of the plaque, and the 

turnover demand of Connexins, requires complex and ongoing molecular machinery to 

ensure appropriate development and homeostasis. But what ensures that the 

components of the electrical synapse, including Connexins, unite at the same place over 

time?  

The gene tjp1 encodes the ZO1 protein, a membrane associated guanylate kinase 

(MAGUK) historically known for its necessity at tight junctions (Umeda et al., 2006) 

and epithelial gap junctions (Singh et al., 2005; Bao et al., 2019), and first identified at 

electrical synapses in the mouse brain (Li et al., 2004; Penes et al., 2005). Recent work 

in zebrafish shows that ZO1 is required for electrical synapse formation (Marsh et al., 

2017) as larval fish mutant for the ZO1 homolog tjp1b lack Connexin localization 

resulting in functional deficits at electrical synapses. This suggests Tjp1b/ZO1 is 

required to either recruit, traffic, or stabilize Connexins at electrical synapses. 

Strikingly, the broad class of MAGUK scaffold proteins are well-known for their ability 

to aggregate protein components at other well-studied cell-cell junctions (see Fig. 2B–

E, MAGUKs shown in pink). For example, PSD95, SAP102, and PSD93 are all 

postsynaptic MAGUK proteins that localize at glutamatergic chemical synapses, make 

up a majority of proteins in the postsynaptic density, and interact either directly or 
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indirectly with glutamatergic neurotransmitter receptors. Simultaneous knock-down of 

these three scaffolds results in smaller postsynaptic densities and a substantial reduction 

in chemical synapse transmission (Chen et al., 2015). These findings support 

MAGUKs, including ZO1, as master organizers of intercellular junctions. The unique 

features that facilitate their shared function at different cell-cell adhesions are 

exhaustively reviewed elsewhere (e.g., Zhu et al., 2016; Ye et al., 2018), but we will 

highlight several key characteristics that inform our understanding of ZO1 at the 

electrical synapse.  

First, MAGUK proteins contain one or more PDZ (PSD95, Dlg1, and ZO1) 

domains. These domains interact with short ligand sequences, called PDZ binding motifs 

(PBMs), usually found at the C-terminus of the interacting protein. At cell-cell junctions, 

MAGUK PDZ domains bring together the C-termini of transmembrane (or auxiliary) 

proteins to create a carefully organized hub of molecular interactions (reviewed in Lee 

and Zheng, 2010). Although all PDZs share a canonical structure, amino acid differences 

in the binding surface of the PDZ and PBM confer interaction specificity (Giallourakis et 

al., 2006; Liu et al., 2019). Additionally, these specific interactions can be regulated by 

posttranslational modifications to either the PDZ or the ligand motif. At the electrical 

synapse, Cx36 and its teleost homologs all contain a C-terminal SAYV motif that 

interacts directly with the first PDZ domain of ZO1 (Li et al., 2004; Flores et al., 2008). 

It has, therefore, been proposed that electrical synapse formation and function requires a 

ZO1-PDZ1/Cx36- PBM interaction, but this has yet to be explicitly shown in vivo.  

Second, in addition to transmembrane proteins, MAGUKs also interact with other 

scaffolds, regulatory proteins, signaling proteins, the cytoskeleton, and even in some 

cases the plasma membrane. This array of interactions allows MAGUKs to aggregate the 

pieces necessary to create, maintain, and regulate a functional junction. ZO1 is found in 

complex with numerous proteins found at the electrical synapse including neuronal 

Connexins (Li et al., 2004; Flores et al., 2008), CAMKII, which is responsible for some 

forms of electrical synapse plasticity (Alev et al., 2008; Flores et al., 2010; Li et al., 

2012), and actin (Fanning et al., 2012). Thus, ZO1 appears poised to act as the central 

hub for electrical synapse protein organization and to act as a direct link to the 
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cytoskeleton, yet the details of how it achieves this molecular coordination remain 

unknown.  

Finally, recent studies have shown that many MAGUK proteins are capable of 

phase separating, creating dynamic and selective non-membrane bound organelles. All 

MAGUKs include a PDZ-SH3-GUK (PSG) tandem set of domains that function in 

regulated oligomerization (Pan et al., 2011; Rademacher et al., 2019), thus creating 

highly concentrated nanodomains that can aggregate various proteins to a specific site 

within a cell. At chemical synapses, phase separation within the presynaptic active zone 

clusters synaptic vesicle fusion proteins while at the postsynaptic density phase 

separation concentrates neurotransmitter receptors (reviewed in Chen et al., 2020). 

Recent work has found that ZO1 is capable of phase separation facilitated by its PSG 

tandem, and loss of ZO1’s phase separating capabilities in mammalian cell culture and 

the larval fish results in a loss of aggregation near the epithelial membrane and 

impairments in tight junction integrity (Beutel et al., 2019; Schwayer et al., 2019). Thus, 

it is attractive to propose a model of electrical synapse formation led by ZO1 phase 

separation which provides a local, specialized domain to capture Connexins and other 

molecular machinery through both direct and indirect interactions. This presents an 

exciting new avenue for future exploration.  

Our knowledge of ZO1 and other MAGUKs at cell-cell junctions suggests a 

model in which ZO1 is oligomerized into nanodomains at the cell membrane destined 

to become Connexin plaques. As Connexins are rapidly turned over throughout the life 

of the electrical synapse, ZO1 stabilizes them, aggregates necessary regulatory proteins 

such as kinases, and links the structure to the cytoskeleton. Intriguingly, ZO1 has been 

shown to interact with numerous neuronally expressed Connexins, in addition to Cx36, 

suggesting that this mechanism may be common across all electrical synapses 

(reviewed in Hervé et al., 2012). The emerging evidence suggests ZO1 acts as a master 

organizer of electrical synapses once it is recruited to the site of the future electrical 

synapse. This, however, leads us to the question: what tells ZO1 where the electrical 

synapse should be?  
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Specifying When and Where Electrical Synapses are Created 

Although it is possible that site specification initially occurs via extracellularly 

secreted signals, we know that synaptic initiation and maintenance requires cell 

adhesion molecules (CAMs). These membrane-spanning proteins have extracellular 

domains allowing for intercellular interactions with CAMs on an opposing cell. 

Additionally, they have intracellular domains that interact with the cytoskeleton, 

scaffolds, and other proteins that can trigger signaling cascades and the recruitment of 

other molecules. Thus, it is highly likely that neurons use CAMs to choose the right 

place and the right time to create an electrical synapse.  

Could the Connexin proteins act as the CAM for electrical synaptogenesis? 

Connexins are indeed CAMs, and, in certain circumstances such as radial migration of 

neurons in the mouse cortex, the adhesive properties appear to be more important than 

the channel itself (Elias et al., 2007). So it is tempting to question if Connexins 

coordinate the recruitment of ZO1 and other required proteins to the electrical synapse. 

The gap junction channel as director of synapse formation appears to be the case in the 

leech, where the diversity of gap junction forming Innexin proteins drives the site-

specific formation of electrical synapses (Baker and Macagno, 2014). However, in 

vertebrates, which use Connexins for their gap junctions, this may not be the case. In 

Cx36 mutant mice that lack many neuronal gap junctions, electron microscopic analysis 

of the stereotyped dendro-dendritic electrical connections between olivary neurons 

found recognizable intercellular junctions still formed, but they lacked the classic 

electron-dense, gap junction morphology (De Zeeuw et al., 2003). A similar conclusion 

was found using immunohistochemistry at the MesV nucleus in Cx36 null mice, where 

the stereotyped electrical synapse lacked neuronal Connexin staining, yet ZO1 was still 

localized to the putative electrical synaptic sites (Nagy and Lynn, 2018). Taken 

together, these results suggest that electrical synapses are specified by mechanisms 

other than Connexins, yet the nature of the signal remains unknown.  

So what are the CAMs that specify electrical synapse sites? Vertebrate genomes 

contain thousands of genes that encode CAMs (Zhong et al., 2015), making it no small 

feat to identify the correct molecules that initiate electrical synapse site specification. Yet 

particular CAMs, such as the Nectins, may be the key as they play a critical role in 
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establishing initial cell-cell adhesions and are known for their instructive role in adherens 

junction and tight junction formation in epithelia. At these locations, they precede the 

cadherin-based or claudin-based adhesions that are recruited later to these sites. Nectins 

build up a macromolecular complex by interacting with Afadin, an intracellular scaffold 

that directly interfaces with the actin cytoskeleton and other important scaffolds, such as 

alpha-catenin and ZO1, required for adherens junction and tight junction formation 

respectively (Yamada et al., 2006; Ooshio et al., 2010). In neurons, the loss of Nectins 

results in altered axon targeting whereas loss of Afadin results in greatly decreased 

neuronal N-cadherin and β- and αN-catenin puncta along with extensive reductions in 

excitatory synapse density (Honda et al., 2006; Beaudoin et al., 2012). The effects on 

electrical synapses have not been assessed. The relationship between Nectins and 

Afadins is likely cell type-specific, but these results support that, much like at tight 

junctions, these complexes form initial adhesions that lay a foundation for cadherin 

recruitment to the synaptic site.  

But are Nectins responsible for specifying the locations of electrical synapses? 

Cx36, ZO1, and Afadin, but not Nectin, colocalize at electrical synapses in the rat/mouse 

brain. Moreover, Cx36 co-immunoprecipitates with Afadin in both whole-brain and 

retinal homogenates (Li et al., 2012), most likely through direct interaction with ZO1. 

Adjacent to electrical synapses, Afadin is also present at adherens junctions where it 

colocalizes with Nectin and N-cadherin (Li et al., 2012; Nagy and Lynn, 2018). This 

suggests a potential model where initial Nectin/Afadin adherens junctions form between 

neurons before electrical, or chemical, synapse formation and they recruit in cadherins to 

maintain the synapse, however, this has not been explicitly tested. How specification 

proceeds to differentiate between these future structures to guide specific molecular 

complex formation or whether these are causally required for formation remains unclear.  

Alternatively, electrical synapses may use different complements of CAMs in 

their formation and maintenance, and to potentiate their functional plasticity. Chemical 

synapses use a multitude of synaptic CAMs not only to specify separate synaptic types 

(e.g., excitatory and inhibitory) but also to solidify and modulate synapse connections 

between neurons over time (Jang et al., 2017; Rawson et al., 2017). Other CAMs, such as 

claudins, occludins, and N-cadherin, all are found to interact with Connexins in epithelia 
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alluding to their potential roles at the electrical synapse (reviewed in Hervé et al., 2012). 

However, attempting to elucidate the requirement of these CAMs in vivo is difficult due 

to the pleiotropic nature of these proteins and their use at many cellular junctions. So 

how can the electrical synapse CAMs be identified and studied? Zebrafish offer some 

advantages, particularly given the new methods in CRISPR-based reverse genetic 

screening (Shah et al., 2015), which provides a fast method for knocking out a large 

battery of potential CAMs to identify those that regulate electrical synapses. For the 

field, identifying the CAMs that specify the temporal and spatial electrical synapse 

dynamics is an essential hurdle that needs to be overcome to move forward in 

understanding the cell biology of the electrical synapse.  

Discussion and Conclusions  

Here we have explored several critical open questions surrounding the cell 

biology of the electrical synapse. Filling these gaps in knowledge will greatly impact 

our understanding of the development and homeostasis of electrical synapses and will 

provide new frontiers in regard to the etiology of neurological disorders.  

Numerous human disorders are characterized by the loss of gap junction 

channels, and they span tissues including the skin, heart, joints, teeth, and immune 

system, to name just a few (Jongsma and Wilders, 2000; van Steensel, 2004; Kleopa 

and Scherer, 2006; Laird, 2006, 2010; Wong et al., 2017; Donahue et al., 2018). Indeed, 

the leading cause of deafness is due to the loss of Connexins expressed in the ear, which 

is currently, and extremely controversially, earmarked for a possible human CRISPR 

trial (Batissoco et al., 2018; Cyranoski, 2019). These pathologies seemingly emerge 

from the disruption of wide-ranging gap junction roles within cell proliferation and 

differentiation, morphogenesis, cell migration, growth control, and many other cell 

biological processes (McGonnell et al., 2001; Vinken et al., 2006; Kardami et al., 2007; 

Marins et al., 2009). If we turn our gaze to the nervous system, we find that in Cx36 

knockout mice there are brain-wide electrical synapse defects such as within the 

cerebellum where motor function is impaired, in the hippocampus where perturbed 

long-term potentiation and network oscillations impact learning and memory, in the 

cortex where cortical interneurons become desynchronized, and in both visual and 
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olfactory systems which are dysfunctional (Güldenagel et al., 2001; Frisch et al., 2005; 

Bissiere et al., 2011; Wang and Belousov, 2011; Zolnik and Connors, 2016; Pouille et 

al., 2017). Similar disruptions are mirrored in zebrafish, where elimination of Cx36 

homologs results in delayed responses to threatening stimuli and motor coordination 

defects (Miller et al., 2017). These behavioral defects in animal models lacking a broad 

class of electrical synapses are exactly what the field of neurodevelopment would 

expect for genes linked to disease phenotypes (Mas et al., 2004; Hempelmann et al., 

2006; Solouki et al., 2010; Li et al., 2015; Kunceviciene et al., 2018). Namely, that 

many disorders of neurodevelopment result not in large effects with gross dysfunction, 

but instead are comprised of subtle molecular differences that slightly shift the 

functional outcomes. Indeed, many so-called synaptopathies are thought to affect 

synapse formation and perturb excitatory/inhibitory balances (Grant, 2012). We suggest 

that the perspective should be broadened to the electrical/excitatory/inhibitory balance, 

as disruptions to any of these components lead to subsequent abnormal circuit function 

which develops to have larger behavioral ramifications over time. Indeed, electrical 

synapse disruptions are proposed to contribute to the etiology of disorders such as 

autism (Welsh et al., 2005) and epilepsy (Cunningham et al., 2012). However, 

Connexin loss is not yet a well-appreciated contributor to such disorders. We think it is 

likely that the growing awareness and attention electrical synapses are receiving in 

neural circuit formation, function, and behavior will bring to light their links to a large 

set of neurodevelopmental disorders.  

In this review, we have made the case that Connexins are not the full story in 

considering the form and function of the electrical synapse. Indeed, our work on 

Neurobeachin, which itself is linked with both autism and epilepsy in human patients, 

suggests that as we begin to understand the totality of electrical synapse formation, how 

these structures are related to disorders of neural function will become ever more 

apparent. Therefore, we fundamentally need to expand our understanding of the cell 

biological mechanisms that develop, maintain, and regulate electrical synapses. And we 

need to improve our knowledge of the mechanistic relationship between electrical and 

chemical synapse formation to clarify the contributions of each synapse type to 

development and adult neural circuit function. In conclusion, we predict that the 
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continuing studies of electrical synapse structure and function will provide a new 

framework for understanding fundamental mechanisms of brain structure and function as 

well as the etiology of the disease.  
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CHAPTER III 

ZO1B IS REQUIRED FOR ELECTRICAL SYNAPSE FORMATION IN THE 
ZEBRAFISH HINDBRAIN 

All figures and experiments in this chapter were performed, overseen, and/or analyzed by 

me. I performed the majority of the genetics, histology, and imaging with assistance from 

Audrey Marsh (Fig. 2, 4), Anne Martin (Fig. 6), and Elisa Trujillo (Fig. 6). I performed 

all software development and data analysis. I cloned the Connexin tails (Fig. 7), purified 

all interaction domains, and performed the binding assay with guidance from Jen Michel. 

Adam Miller identified and mapped dis2 (Fig. 2, 3). Adam Miller and I conceived of the 

project and designed experiments. I created the figures and wrote the chapter.  

 

Select data and methods are included in:  

Lasseigne AM*, Echeverry F*, Ijaz S*, Michel JC*, Martin EA, Marsh AJ, Trujillo E, 

Marsden KC, Pereda AE, Miller AC (2021). Electrical synaptic transmission requires a 

postsynaptic scaffolding protein. eLife, 10:e66898 DOI: 10.7554/eLife.668. 

* denotes co-first author   

 

Introduction 

 

Electrical and chemical synapses are specialized cellular adhesions that allow neurons to 

pass signals throughout a circuit. Uncovering the process by which cells correctly 

localize critical synaptic machinery has been at the forefront of neuroscience research for 

decades. In the case of chemical synapses, where presynaptic vesicles release 

neurotransmitters to influence postsynaptic receptors, we understand much about how 

these structures are organized and regulated. By contrast, the mechanisms by which 

electrical synapses, where gap junction channels physically connect the cytoplasm of two 

neurons, are formed remains largely unknown.  

Electrical synapses are dynamic plaques of gap junction channels, with each 

channel being composed of two hexameric Connexin (Cx) hemichannels contributed by 

each adjoining cell (Goodenough & Paul, 2009). We know that these synapses come in 

many structural variants, occur between stereotyped synaptic partners, and are highly 
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dynamic (see Chapter II). Thus, they must require a level of organization that is robust 

enough to recruit and maintain Connexin plaques between precise partners but also 

flexible enough to allow for structural diversity and regulation. These properties of 

electrical synapses suggest that there must be underlying molecular support beyond the 

Connexin channels.  

We know that chemical synapses are supported by a network of associated 

proteins that are largely organized by postsynaptic scaffolding molecules (Ye et al., 2018; 

Chen et al., 2015; Ackermann et al., 2015; Grant, 2019; Ye et al., 2018; Siddiqui and 

Craig, 2011). Scaffolds are specialized molecules containing multiple protein-protein 

binding domains to facilitate interactions between membrane-bound and intracellular 

proteins. All known cellular junctions require scaffolding proteins in some capacity to 

anchor membrane proteins to the molecules necessary for regulation and structural 

integrity (see Chapter II). Thus, we hypothesized that electrical synapses must also 

require a molecular scaffold.  

To identify scaffolding proteins necessary for electrical synapse formation, we 

used the Club Ending synapses (CE) found on the lateral dendrites of zebrafish Mauthner 

cells (Bartelmez, 1933; Kimmel, 1982). The available genetic tools in zebrafish allow us 

to easily perturb the system and monitor changes in electrical synapse formation. 

Zebrafish have two Mauthner cells, one on each side of the body with dendrites and soma 

located in the hindbrain and an axon descending contralaterally down the length of the 

spinal cord. CE electrical synapses are formed from auditory afferent neurons contacting 

the Mauthner lateral dendrite in the zebrafish hindbrain. At 5 days post-fertilization (dpf), 

there are ~6-9 CEs per Mauthner cell, each around 2µm in diameter. The large, highly 

stereotyped nature of CEs provide a readout of electrical synapse formation and make 

them an ideal model to determine which molecules are necessary.  

Here, we use forward and reverse genetics to identify Zonula occludens-1b 

(ZO1b; encoded by tjp1b), a MAGUK scaffolding protein, to be required for robust 

Connexin localization to CEs. We also show that ZO1b localizes to CEs even in the 

absence of the neuronal Connexins but at much lower levels. This suggests a genetic 

hierarchy at CEs where ZO1b is necessary to recruit and stabilize Connexins at the 

synapses but where Connexins may also be stabilizing ZO1b. Furthermore, we show that 
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ZO1b is capable of a direct interaction with the neuronal Connexins and hypothesize that 

this biochemical interaction may be responsible for the hierarchical genetic relationship 

we identified between the channel proteins and the scaffold.  

 

Results 

 

The dis2 mutation disrupts tjp1b and electrical synapse formation 

To identify scaffolding molecules required at the electrical synapse, we used Club 

Ending (CE) synapses in the larval zebrafish hindbrain as a model (Bartelmez, 1933; 

Kimmel, 1982). Zebrafish have two Mauthner cells, one on each side of the body with 

dendrites and soma located in the hindbrain and an axon descending contralaterally down 

the length of the spinal cord (Fig.1A). In the hindbrain, auditory afferents synapse onto 

the lateral dendrites of Mauthner where each creates an individual CE synapse (Fig. 1B). 

We examined electrical synapses in zebrafish at 5 days post-fertilization (dpf), when 

there are ~6-9 CEs per Mauthner cell. Each CE contains plaques of Connexin channels 

composed of asymmetric hemichannels. The presynaptic compartment within the 

auditory afferent uses Cx35.5 while the postsynaptic compartment within Mauthner uses 

Cx34.1 (Fig. 1C). These asymmetric Connexin hemichannels are interdependent i.e., loss 

of either Connexin inhibits the other from properly localizing to the synapse (Miller et al., 

2017).  

These robust, highly stereotyped synapses can be identified as large (~2µm wide 

at 5dpf) discs or crescents located around the lateral dendritic bifurcation of Mauthner. 

Both Cx35.5 and Cx34.1 are homologs of mammalian Cx36 and thus both are identified 

by anti-human-cx36 antibodies (Fig. 2A). To identify genes required for electrical 

synapse formation, we used N-ethyl- N-nitrosourea (ENU) to generate random genomic 

mutations and stained larval zebrafish with anti-human-Cx36 to screen for disruptions in 

electrical synapse formation. This forward genetic approach identified the disconnect2 

(dis2) mutation. Animals heterozygous for this mutation showed decreased levels of 

Cx36 staining at CEs (Fig. 2B), and those homozygous for dis2 showed an almost 

complete loss of Cx36 staining (Fig. 2C). This suggested that at least one of the  
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mutations present in the dis2 animals is within a gene required for electrical synapse 

formation. 

Before we could characterize the effects of dis2 on Connexin localization, we 

needed to develop a method that allowed us to quantify the amount of staining seen at CE 

synapses. The image data gathered at CEs is in the form of multi-channel, three-

dimensional stacks centered around the lateral dendritic bifurcation of the Mauthner cells 

(Fig. 2D). One channel contained information about the zf206Et transgene (labeling 

Mauthner; referred to as Mauthner:GFP or M/CoLo:GFP) with additional experimental 

channels containing the staining information we want to quantify (e.g. Cx36). Using 

Python, I developed an automated pipeline that took these stacks, isolated only CE 

staining, and calculated the integrated density of fluorescence for each experimental 

channel (Fig. 2E). To isolate synaptic staining, raw images were passed through a 33 

median filter to reduce noise, thresholded (consistent within each experiment) to reduce 

non-synaptic staining, and Mauthner:GFP transgene labeling was used to remove any 

staining outside of the dendrite. I then calculated the integrated density for each Mauthner 

 
Figure 1. Simplified diagram of the Mauthner Club Ending (CE) electrical 
synaptic contacts 
(A) Dorsal view of 5dpf zebrafish larvae (anterior to the left) with Mauthner cells 
depicted in green. (B) Diagram represents a dorsal view with anterior on the top. 
Boxed region indicates area of stereotypical CE synaptic contacts used for analysis. 
Presynaptic auditory afferents contact the postsynaptic Mauthner cell lateral dendrite 
in the hindbrain forming electrical synapses. (C) Model depicts asymmetric Connexin 
(Cx) organization of CE synapses. Electrical synapses are denoted as rectangles (B) or 
channels (C) depicting the two Connexin hemichannels (presynaptic Cx35.5 (cyan) 
and postsynaptic Cx34.1 (yellow)) that form the neuronal gap junction channels. 
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cell, averaged within the animal, and normalized to wildtype. When we passed wildtype, 

dis2 heterozygotes, and dis2 homozygotes through this pipeline, our quantification 

supported our qualitative assessment that a mutation in dis2 mutant animals disrupts 

electrical synapse formation as determined by Cx36 staining (Fig. 2F).  

 
 
Figure 2. dis2 disrupts electrical synapse formation at CEs 
(A-C) Confocal images of Mauthner lateral dendrite and stereotypical CE electrical 
synaptic contacts in 5-day-post-fertilization, zf206Et zebrafish larvae from wildtype (A), 
dis2 heterozygotes (B), and dis2 homozygotes (C). Animals are stained with anti-GFP 
(green, white dotted outline) and anti-human-Cx36 (grey). Scale bar = 5 µm in all 
images. (D-E) To quantify the effect of dis2 on Connexin staining, we developed a high-
throughput, automated pipeline to process and quantify fluorescence staining at CEs. 
(F) Quantitation of Cx36 fluorescence at CEs in wildtype (n=6), dis2 heterozygotes 
(n=5), and dis2 homozygotes (n=5). The height of the bar represents the mean of the 
sampled data normalized to the wildtype average for a given experiment and circles 
represent the normalized value of each individual animal. Error bars are ± SEM. 
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Next, we needed to find the causative mutation in the dis2 animals that resulted in 

electrical synapse loss. We used an RNA sequencing (RNA-seq)-based approach that 

identifies shared regions of genomic homozygosity in a pool of mutant animals (Miller et 

al., 2013). The sequences were aligned to the genome and single nucleotide 

polymorphisms (SNPs) were identified in the wildtype pool to serve as mapping markers. 

The SNP frequency was assessed in the mutant pool, identifying a region of 

 
Figure 3. dis2 is a mutation in the gene tjp1b 
(A) Genome wide RNA-seq-based mapping data. The average frequency of mutant 
markers (black marks) is plotted against genomic position. A single region on 
chromosome 25 (chr25) emerges with an allele frequency near 1.0 indicating linkage to 
the dis2 mutation (red arrow). Each chromosome is separated by vertical lines and 
labeled at the bottom. (B) Mutant reads from the RNA-seq mapping data within the 
tjp1b gene (encoding ZO1b) are shown aligned to the reference genome identifying a 
single base pair change causing the inclusion of intronic sequence. Wildtype reference 
(ref) genome nucleotides and encoded amino acids (aa) are noted. Aligned mutant 
(MUT) reads are shown as grey boxes; colored letters highlight differences from 
reference. (C-E) Electrical synapses are lost in trans-heterozygous animals carrying dis2 
and a 16bp deletion in tjp1b (Welch’s t-test, p<.05). Images are of Mauthner lateral 
dendrites from wildtype (C) and tjp1b dis2/∆16bp (D) animals stained with anti-GFP, 
anti-zebrafish-Cx35.5, anti-zebrafish-Cx34.1, and anti-mouse-ZO1. Adjacent panels 
show individual channels. Images were passed through a median filter. (I) Quantitation 
of Cx35.5 (cyan), Cx34.1 (yellow), and ZO1 (magenta) at CEs in specified genotypes 
(wildtype n= 4, dis2/∆16bp n=4). The height of the bar represents the mean of the 
sampled data normalized to the wildtype average for a given experiment, and circles 
represent the normalized value of each individual animal. Error bars are ± SEM. 
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homozygosity on chromosome 25 in dis2 mutants (Fig. 3A). Within this region, we used 

the RNA-seq data to look for potentially deleterious mutations and found a single base 

pair change in the intronic region of tjp1b that resulted in the inclusion of intronic 

sequence in RNA reads (Fig. 3B). tjp1b encodes the protein ZO1b, a homolog of 

mammalian ZO1. To definitively determine whether the tjp1b mutation was causative to 

the phenotype, we used CRISPR mutagenesis to create a 16bp deletion in tjp1b resulting 

in a frame-shift mutation early in the coding sequence. I performed a complementation 

test, creating trans-heterozygous animals for dis2 and tjp1b∆16bp. These alleles did not 

complement, and both Cx34.1 and Cx35.5 were lost at CEs in trans-heterozygotes (Fig. 

3D-E). Therefore, we concluded that mutations in tjp1b disrupt electrical synapse 

formation. We also wanted to determine where the ZO1b protein was acting. When we 

stained wildtype animals with an antibody against mammalian ZO1, we saw 

colocalization of ZO1 with Cx34.1 and Cx35.5 at CEs (Fig. 3C). In trans-heterozygotes, 

however, ZO1 staining was lost at the electrical synapses suggesting that what we 

observed at the synapse was the gene product of tjp1b (Fig 3D-E).  

 

ZO1b localizes to CEs and is required for robust Connexin localization 

Now that we had identified tjp1b as being required for electrical synapse 

formation, I wanted to characterize the deletion mutant in more detail. In tjp1b∆16bp/∆16bp 

animals, I saw a loss of the neuronal Connexins at the CEs, phenocopying what was 

observed in dis2 mutants (Fig. 4C, D). We also saw a loss of ZO1 staining at CEs in 

mutant animals, as we saw in the trans-heterozygotic animals, further supporting that the 

protein detected at CEs is ZO1b, the gene product of tjp1b. Interestingly, when I looked 

at tjp1b+/∆16bp animals, we saw a significant decrease in the levels of Cx34.1 staining at 

CEs but not in Cx35.5 (Fig. 4C, D). I also saw a corresponding decrease in ZO1 staining 

at the synapse. We also created a deletion mutation in tjp1a, the paralog of tjp1b, to see 

whether it played a similar role in synapse formation (Fig.4E). In homozygous tjp1a 

mutant animals, however, Cx34.1, Cx35.5, and ZO1 staining appeared normal at CEs 

(Fig. 4F). Taken together, the results show that ZO1b localizes to electrical synapses and 

is required for electrical synapse formation.  
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Figure 4. ZO1b localizes to CEs and is required for electrical synapses formation 
(A-C) Confocal images of Mauthner lateral dendrite and stereotypical CE electrical 
synaptic contacts in 5-day-post-fertilization, zf206Et zebrafish larvae from wildtype (A), 
tjp1b +/∆16bp (B), and tjp1b ∆16bp/∆16bp (C) animals stained with anti-GFP, anti-zebrafish-
Cx35.5, anti-zebrafish-Cx34.1, and anti-mouse-ZO1. Adjacent panels show individual 
channels. Scale bar = 2 µm in all images. (D, F) Quantitation of Cx35.5 (cyan), Cx34.1 
(yellow), and ZO1 (magenta) at CEs in specified genotypes. (D) Connexin and ZO1 
staining are lost in tjp1b homozygous mutants, and Cx34.1 and ZO1 staining is reduced 
in heterozygous animals (wt n=7, tjp1b+/- n=14, tjp1b-/- n=12; ANOVA with multiple 
comparisons, p<.05). (E) tjp1a and tjp1b are homologs of mammalian tjp1. (F) 
Connexin and ZO1 staining are not impacted by the loss of tjp1a (wt n=3, tjp1a-/- n=3). 
The height of the bar represents the mean of the sampled data normalized to the 
wildtype average for a given experiment, and circles represent the normalized value of 
each individual animal. Error bars are ± SEM.  
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One possibility for the loss of staining at the CEs is that the auditory afferents are 

no longer present or contacting the Mauthner dendrite. To test this, we stained 

tjp1b∆16bp/∆16bp animals with a neurofilament marker to label the auditory afferents in 

addition to GFP and the neuronal Connexins. Mauthner was co-labeled by both GFP and 

the neurofilament marker, while auditory afferents were only labeled by the 

neurofilament marker. When I zoomed in on a single CE in a wildtype animal, I could see 

the auditory afferent meeting the Mauthner dendrite at the site of the Cx34.1 and Cx35.5 

staining (Fig. 5A,C). In tjp1b∆16bp/∆16bp animals, I could also see the auditory afferents 

coming into contact with Mauthner even though Connexin staining was lost (Fig. 5B,D). 

Thus, neuronal morphology is maintained in animals lacking tjp1b, but Connexin 

localization to contact sites is lost.  

 

ZO1b localizes to the electrical synapse independent of Connexins 

Given that Connexin localization was dependent on ZO1b, we sought to 

determine if the converse was true – did ZO1 localization require Connexins? Using 

previously generated null mutations in cx35.5 (5bp deletion) and cx34.1 (8bp deletion; 

Miller et al., 2017), we examined the localization of Connexin and ZO1 proteins in 

 
 
Figure 5. ZO1b is required for Connexin channel localization to CE synapses 
Auditory afferent contacts onto Mauthner are maintained in tjp1b mutant animals. 
Confocal images of wildtype (A,C) and tjp1b ∆16bp/∆16bp (B,D) animals stained with anti-
GFP, anti-zebrafish-Cx35 (not shown in merge), anti-zebrafish-Cx34, and anti-RMO44 
(labeling neurofilament). (C,D) Panels show individual channels. Green dotted line 
depicts Mauthner cell (labeled by GFP) and orange dotted line indicates auditory 
afferents (labeled by neurofilament marker). Scale bar = 2 µm. 
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mutants (Fig. 6). First, we found that cx35.5∆5bp/∆5bp and cx34.1∆8bp/∆8bp mutant animals 

revealed a complete loss of detectable staining for the mutated protein. In addition, there 

was a failure of the non-mutated Connexin protein to robustly localize to the electrical 

synapse although low levels of staining were present. This supports an interdependence 

between the two neuronal Connexins as was shown in Miller et al., 2017. By contrast, 

ZO1 staining in the single Connexin mutants was robust at the synaptic contact sites with 

the stereotyped CE appearance, distribution, and position. By comparing the relative ZO1 

fluorescence between wildtype and Connexin mutant animals, we found that ZO1 was 

present at synaptic contacts at approximately half the normal level (Fig. 6B,C,E). When 

we examined double mutants, we still found that around 10% of ZO1 staining remained 

(Fig. 6D, E). These results reveal that ZO1b can localize to putative electrical synaptic 

sites independent of neuronal Connexin proteins. However, loss of the Connexins does 

impact the amount of ZO1b staining found at CEs suggesting that the Connexins may be 

stabilizing ZO1b to some extent at the synaptic site once it localizes. Based on these 

results, I concluded that ZO1 does not require the presence of channel-forming proteins 

to localize to electrical synapses during synaptogenesis, yet ZO1 is absolutely essential 

for proper Connexin localization.  

 

ZO1b PDZ1 can directly interact with neuronal Connexins  

Since I had observed both colocalization and a hierarchical genetic relationship between 

ZO1b and the neuronal Connexins, I wanted to investigate the underlying mechanism. 

Connexin hemichannels are formed by six transmembrane Connexin protein subunits that 

interact with other proteins via their extra- and intracellular domains (Fig. 7A). ZO1b is 

an intracellular membrane-associated guanylate kinase (MAGUK) scaffold protein and 

contains three PSD95/Dlg/ZO1 (PDZ) protein-protein interaction domains that bind to 

PDZ binding motifs (PBMs) (Zhu et al., 2016). Previous work demonstrated that the C-

terminal four amino acids of mouse Cx36 and perch Cx35 compose PBMs that are 

essential for interacting with the first PDZ domain (PDZ1) of mammalian ZO1 (Flores et 

al., 2008; Li et al., 2004). Given that the PBM sequence is conserved in zebrafish Cx35.5 

and Cx34.1 proteins (Fig. 7B) and the PDZ1 binding pocket is conserved in ZO1b (Fig.  
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Figure 6. ZO1 localizes at reduced levels to CE synapses in the absence of neuronal 
Connexins 
(A-D) Confocal images of Mauthner lateral dendrite and stereotypical CE electrical 
synaptic contacts in 5-day-post-fertilization, zf206Et zebrafish larvae from wildtype (A; 
combined across three experiments), cx35.5 ∆5bp/∆5bp (B), cx34.1 ∆8bp/∆8bp (C), and double 
mutant (D) animals stained with anti-GFP, anti-zebrafish-Cx35.5, anti-zebrafish-Cx34.1, 
and anti-mouse-ZO1. Adjacent panels show individual channels. (E) Quantitation of 
Cx35.5 (cyan), Cx34.1 (yellow), and ZO1 (magenta) at CEs in specified genotypes. 
Mutants are significantly different than their respective wildtype controls in all 
comparisons (Welch’s t-tests, p<.05). In Connexin single mutants, where low levels of 
the other neuronal Connexin remain, about 50% of ZO1 staining remains at CEs. In the 
Connexin double mutant, only about 10% of ZO1 staining remains at the synapse. The 
height of the bar represents the mean of the sampled data normalized to the wildtype 
average for a given experiment, and circles represent the normalized value of each 
individual animal (wt, mut paired experiments: wt n=3, cx35.5-/- n=3 | wt n=4, cx34.1-/- 
n=5 | wt n=4, cx35.5-/-; cx34.1-/- n=4). Error bars are ± SEM. 
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Figure. 7. Direct ZO1b-Connexin interaction may mediate hierarchical 
organization at CEs 
(A) Connexin hemichannels are composed of six Connexin protein subunits that 
span the membrane. (B-C) Schematic, linear diagrams of Cx36 (B) and ZO1 (C) 
homologs. Domains are depicted as gray shapes; TM = transmembrane, PDZ, SH3, 
GUK, and ZU5 = protein-protein interaction modules; hs=Homo sapiens, dr=Danio 
rerio. Amino acid alignments are shown for the indicated expanded regions. Black 
bars represent conserved amino acids; non-conserved amino acids are indicated. 
Maroon boxed amino acids represent the conserved PDZ-binding motif (PBM) of 
Cx36-family proteins (B) or the predicted PDZ1 residues of the conserved ligand-
binding cleft of ZO1-family proteins (C). (D) Bacterially purified GST (lane 1), 
GST-Cx35.5-tail (lane 2), GST-Cx35.5-tail-∆PBM (lane 3), GST-Cx34.1-tail (lane 
4), or GST-Cx34.1-tail-∆PBM (lane 5) was immobilized on glutathione beads and 
incubated with purified ZO1b PDZ1 domain. The tail regions used are depicted in 
the expanded regions in (B). Bound proteins were analyzed by immunoblot for the 
presence of ZO1b PDZ1 using anti-TEV cleavage site antibody (top). Equal loading 
of GST proteins is indicated by protein stain (bottom). (E) Model of molecular 
hierarchy at the electrical synapse.  
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7C), we hypothesized that there might be a direct interaction between ZO1b and the 

neuronal Connexins. I isolated the minimal domains of each zebrafish protein, produced 

them in bacteria, and performed an in vitro binding assay. I found that purified ZO1b 

PDZ1 could be pulled down with a GST-Cx34.1 or a GST-Cx35.5 C-terminal 

intracellular-tail (Figure 7D, lanes 2,4), but not with control GST protein (Fig. 7D, lane 

1). Additionally, I found that, as expected, the last four amino acids of the Connexin tails 

were required for interaction to occur (Fig. 6D, lanes 3,5). This shows that the Connexin 

C-terminal tails are both capable of directly interacting with ZO1b. Therefore, the genetic 

relationship seen between ZO1b and the neuronal Connexins that it colocalizes with may 

be due to direct interactions (Fig. 7E).  

 

Discussion 
 
We used forward and reverse genetics to identify ZO1 as a required scaffold at the 

electrical synapse. In zebrafish, ZO1b, but not ZO1a, was found to be required for CE 

electrical synapse formation. We showed that this scaffold localized to synaptic sites and 

was required for robust localization of neuronal Connexins. Furthermore, we showed that 

ZO1 was able to localize in the absence of Connexin channels suggesting that it may 

arrive at the synapse first and then promote Connexin localization. Finally, an in vitro 

binding assay revealed that ZO1b can directly interact with both of the neuronal 

Connexins, thus we hypothesize that ZO1 is promoting Connexin localization through 

these direct interactions.  

 These findings force us to update the simplistic model of the electrical synapse in 

several ways. First, a molecular scaffold is required for electrical synapse formation. 

Work in mammals and fish previously identified ZO1, in addition to several other 

scaffolds, as localizing to sites of electrical synapse formation (Flores et al., 2008; Li et 

al., 2004; Li et al., 2012). However, it was never conclusively shown whether these 

scaffolds were necessary for formation. Our results, in contrast, show that ZO1b is 

required for Connexin channels to robustly localize. Furthermore, this result replicates 

what was previously identified by our lab at spinal cord electrical synapses (Marsh et al., 

2017) supporting that this is a rule, not an exception.  Second, the finding that ZO1b is 

localizing to electrical synaptic sites in the absence of Connexins suggest that there must 
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be a molecule upstream, coordinating with the adjacent cell, and telling ZO1b where to 

make a synapse. We speculate that, as has been shown at chemical synapses, there is a 

transmembrane cell-adhesion molecule bringing the membranes of the pre- and 

postsynaptic cells close together, and coordinating recruitment of pre- and postsynaptic 

machinery, including the scaffold and Connexin channels.  

 Now that we have shown a scaffold to be required, what might this protein be 

doing at the synapse? ZO1 is a MAGUK scaffolding protein capable of interacting with 

cytoskeletal (Fanning et al., 2012) and membrane bound proteins, including Connexin 

channels (Li et al., 2004; Flores et al., 2008). It has also been found in complexes with 

CAMKII, a kinase responsible for some forms of electrical synapse plasticity (Alev et al., 

2008; Flores et al., 2010; Li et al., 2012). We hypothesize that, given its array of 

interaction capabilities, it may act as the central organizer at the electrical synapse. 

Intriguingly, it was recently shown that ZO1 phase separation is necessary for tight 

junction formation (Beutel et al., 2019; Schwayer et al., 2019). ZO1 oligomerization 

creates non-membrane bound regions necessary to bring together tight junction 

machinery. Therefore, it is possible that ZO1 is acting in a similar manner at the electrical 

synapse.  

In the next chapter, I will begin to investigate the mechanisms underlying ZO1s 

requirement at the electrical synapse. Specifically, I will look in vivo to explore the cell 

biological characteristics of ZO1 and test the requirement of the ZO1-Connexin direct 

interaction for electrical synapse formation. 

 
Methods 
 
Zebrafish 

Fish were maintained in the University of Oregon’s fish facility with approval from the 

Institutional Animal Care and Use Committee. Zebrafish, Danio rerio, were bred and 

maintained at 28˚C on a 14h on and 10h off light cycle. Animals were housed in groups, 

generally of 25 animals per tank. Development time points were assigned via standard 

developmental staging (Kimmel et al., 1995). All fish used for this project were 

maintained in the ABC background developed at the University of Oregon. Most fish had 

the enhancer trap transgene zf206Et (referred to as Mauthner:GFP or M/CoLo:GFP) in 
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the background (Satou et al., 2009), unless otherwise noted. Mutant lines were genotyped 

for all experiments. All experiments were performed at 5 days post fertilization (dpf). At 

this stage of development, zebrafish sex is not yet determined (Wilson et al., 2014).  

 
RNA-seq based mutant mapping 

As previously described in Miller et al., 2013 and 2017. Briefly, larvae in the F3 

generation were collected at 3 dpf from crosses of dis2 heterozygotes. The posterior 

portions were fixed for phenotypic identification, and the anterior portions were used for 

bulk RNA extraction after phenotyping. After creation of cDNA libraries, mapping was 

performed by identifying high quality ‘mapping’ single nucleotide polymorphisms 

(SNPs) in the wildtype pool and assessing these positions in the mutant pool for their 

frequency. The area of highest average frequency in the mutant pool indicates the region 

of DNA linked to the phenotype and thus the causative mutation. Within the linked 

region, candidate mutations causing nonsense or missense changes, or those affecting 

gene expression levels, were identified as previously described (Miller et al., 2013). 

 

Immunohistochemistry 

Anesthetized, 5 dpf larvae were fixed for 3h in 2% trichloroacetic acid in PBS. Fixed 

tissue was washed in PBS + 0.5% Triton X-100, followed by standard blocking and 

antibody incubations. Primary antibody mixes included combinations of the following: 

rabbit anti-human-Cx36 (Invitrogen, 36–4600, 1:200), rabbit anti-Cx35.5 (Fred Hutch 

Antibody Technology Facility, clone 12H5, 1:800), mouse IgG2A anti-Cx34.1 (Fred 

Hutch Antibody Technology Facility, clone 5C10A, 1:350), mouse IgG1 anti-ZO1 

(Invitrogen, 33-9100, 1:350), mouse anti-RMO44 (Life Technologies, 13–0500, 1:100), 

and chicken anti-GFP (abcam, ab13970, 1:350- 1:500). All secondary antibodies were 

raised in goat (Invitrogen, conjugated with Alexa-405, −488, −555, or −633 fluorophores, 

1:500). Tissue was then cleared stepwise in a 25%, 50%, 75% glycerol series, dissected, 

and mounted in ProLong Gold antifade reagent (ThermoFisher, P36930) or 75% glycerol 

(consistent within experiments).  
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Imaging 

Images were acquired on a Leica SP8 Confocal using a 405- diode laser and a white light 

laser set to 499, 553/554/557 (consistent within experiments), and 631 nm, depending on 

the fluorescent dye imaged. Each laser line’s data was collected sequentially using 

custom detection filters based on the dye. Quantitative images of the Club Endings (CEs) 

were collected using a 63x, 1.40 numerical aperture (NA), oil immersion lens. For each 

set of images, the optimal optical section thickness was used as calculated by the Leica 

software based on the pinhole, emission wavelengths, and NA of the lens. Within each 

experiment where fluorescence intensity was to be quantified, all animals (including 2-5 

wildtype controls) were stained together with the same antibody mix, processed at the 

same time, and all confocal settings (laser power, scan speed, gain, offset, objective, and 

zoom) were identical. Multiple animals per genotype were analyzed to account for 

biological variation. To account for technical variation, fluorescence intensity values for 

each animal were an average across the two Mauthner cells. 

 

Fluorescence quantitation 

For the quantitation of staining at the club endings, confocal z-stacks of the 

Mauthner soma and lateral dendrite were cropped in Fiji (Schindelin et al., 2012) to 

36.08μm x 36.08μm centered around the lateral dendritic bifurcation. Using the SciPy 

(Virtanen et al., 2020) and scikit-image (Van Der Walt et al., 2014) computing packages, 

the cropped stack was then cleared outside of the Mauthner cell, a 33 median filter was 

applied to reduce noise, and a standard threshold was set within each experiment to 

remove background staining. The integrated density of each stain within the Mauthner 

cell was then extracted and normalized to the wildtype values for the experiment. 

Means and errors were computed using Prism (GraphPad) or Excel (Microsoft) 

software. Figure images were created using FiJi and Illustrator (Adobe). Statistical 

analyses were performed using Prism (GraphPad) and either an unpaired t-test with 

Welch’s correction or a one-way analysis of variance with Bonferrroni’s multiple 

comparison test was performed. For all experiments, values were normalized to wildtype 

control animals, and n represented the number of fish used. Fish were excluded from 
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analysis if Mauthner morphology/GFP staining was abnormal or if values were greater 

than two standard deviations away from the mean.     

 

Bacterial expression and purification of proteins 

The Cx34.1-tail (aa256-299), Cx34.1-tail ∆PBM (aa256-295), Cx35.5-tail (aa267-309), 

and Cx35.5-tail ∆PBM (aa267-305) were cloned into the pGEX expression vector 

allowing for an NH2-terminal GST tag. ZO1b-PDZ1 (aa105-207) was cloned into a 

modified pET expression vector (pBH) to allow for an NH2-terminal 6xHis tag followed 

by a TEV cleavage site (vectors kindly provided by Ken Prehoda). Plasmids were 

transformed in E. coli BL21(DE3) cells and plated on selective LB plates. Single colonies 

were picked to inoculate 2ml starter cultures and grown overnight. Overnight cultures 

were inoculated into 250ml selective LB and grown for ~3h at 37°C with shaking until 

OD600 reached 0.8-1 followed by 4h induction with 0.4mM IPTG. Cell pellets were 

collected by centrifugation at 6000 RPM for 5min at 4°C and frozen at -20°C until test 

samples confirmed expression. Pellets were resuspended in sonication buffer (50mM 

NaPO4 [pH7.4], 300mM NaCl, and 1mM PMSF). After adding a dash of lysozyme, the 

mixture was incubated on ice for 30min. Resuspended bacteria were sonicated on ice at 

50% amplitude, 1sec/1sec pulse on/off, four times for 20sec. Debris was cleared by 

centrifugation at 16,000 x g for 30min at 4°C. For GST fusions, supernatant was added to 

200ul pre-washed glutathione agarose resin and incubated overnight with rocking at 4°C. 

Beads were washed three times with sonication buffer and stored at 4°C. Purity and 

amount loaded onto resin was determined by SDS-PAGE followed by Coomassie stain. 

For 6xHIS fusions, supernatant was brought to a final concentration of 20mM imidazole 

and incubated with pre-washed His60 resin overnight with rocking at 4°C. Resin was 

washed with sonication buffer containing 20mM imidazole. Protein was eluted from the 

resin with sonication buffer containing 250mM imidazole. The protein was concentrated 

and exchanged into imidazole-free buffer using an Amicon centrifugal filter unit (10K 

MWCO) and stored at 4°C on ice. Protein concentration was estimated by A205 

(https://spin.niddk.nih.gov/clore/)(Anthis and Clore, 2013), and purity was determined by 

SDS-PAGE followed by Coomassie stain. 
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In vitro binding assay 

Equal amounts of GST fusions (10ul bed of resin) were aliquoted, and the storage buffer 

was removed. To each sample 15ul of 6xHIS-ZO1b-PDZ1 (7mg/ml) was added, gently 

mixed and incubated at room temperature for 15min. Resin was washed three times with 

cold wash buffer (50mM NaPO4 [pH7.4], 300mM NaCl). After the last wash, all buffer 

was removed, and resin was resuspended in 10ul LDS-PAGE dye with 200mM DTT. 

Samples were boiled for 3min and resolved by SDS-PAGE using a 4-20% gradient gel. 

Samples were analyzed by Western blot using rabbit anti-TEV cleavage site primary 

antibody (ThermoFisher, PA1-119) and visualized with a compatible near-infrared 

secondary antibody. GST input was visualized by Coomassie to demonstrate equal 

loading. 
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CHAPTER IV 

ZO1B FACILITATES ELECTRICAL SYNAPSE FORMATION VIA DIRECT 
INTERACTION WITH THE POSTSYNAPTIC CONNEXIN 

All experiments in this chapter were performed, overseen, and/or analyzed by me. I 

performed the genetics, histology, and imaging with assistance from Jen Michel (Fig. 2). 

I performed software development and data analysis. I performed the transplant 

experiments with the help of Adam Miller and Audrey Marsh. Audrey Marsh created the 

V5-tjp1b transgenic zebrafish line. Elisa Trujillo and Jordan Lexa assisted with screening 

genome-engineered fish. Adam Miller and I conceived of the project and designed 

experiments. I created the figures and wrote the chapter.  

 

Select data and methods are included in:  

Lasseigne AM*, Echeverry F*, Ijaz S*, Michel JC*, Martin EA, Marsh AJ, Trujillo E, 

Marsden KC, Pereda AE, Miller AC (2021). Electrical synaptic transmission requires a 

postsynaptic scaffolding protein. eLife, 10:e66898 DOI: 10.7554/eLife.668. 

* denotes co-first author   

 

Introduction 

 

Electrical synapses are composed of dynamic plaques of Connexin channels that 

allow direct passage of ions and small metabolites between coupled cells. Each Connexin 

channel is composed of two hexameric hemichannels contributed by each of the 

adjoining cells (Goodenough & Paul, 2009).  In addition to precise initial localization 

during synaptogenesis, Connexin proteins turn over roughly every three hours (Flores et 

al., 2012; Wang et al., 2015) thus requiring complex and ongoing molecular machinery to 

maintain synaptic integrity and function. One protein known to be involved in this 

process is the MAGUK scaffolding protein, Zonula occludens-1 (ZO1; Flores et al., 

2008; Marsh et al., 2017). Scaffolding proteins function to localize proteins within close 

proximity with one another to facilitate necessary protein-protein interactions. They often 

interact with membrane proteins, anchoring them to the cytoskeleton and localizing 

upstream or downstream molecules. MAGUK proteins, in particular, are a class of 
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scaffolds whose domain structures allow them to function as master organizers at cellular 

junctions (Ye et al., 2018). In Chapter III, I showed that ZO1 is necessary for Connexins 

to localize to sites of electrical synapse formation, but the Connexins are not necessary 

for ZO1 to localize. This suggests that ZO1 is acting upstream to recruit or stabilize these 

channel-forming proteins, but the mechanism by which ZO1 facilitates this Connexin 

localization remains unknown.  

At chemical synapses, unique scaffolding proteins are required on either side of 

these asymmetric structures to organize presynaptic neurotransmitter release and 

postsynaptic receptor localization (Ackerman et al, 2015; Ye et al., 2018). The 

asymmetric structure of the chemical synapse combined with the polarized nature of 

neurons requires that certain scaffolding molecules must be trafficked to and utilized in 

distinct cell biological compartments. Electrical synapses have classically been assumed 

to be symmetric, although they too are formed between polarized neurons. Thus, in order 

for us to understand molecular mechanisms underlying the requirement of ZO1 at the 

electrical synapse, we must first understand where this scaffold is acting.  

To investigate the cell biology of ZO1, we again used the Mauthner cells in larval 

zebrafish. Zebrafish have two Mauthner cells, one on each side of the body with dendrites 

and soma located in the hindbrain and an axon descending contralaterally down the 

length of the spinal cord (Bartelmez, 1933; Kimmel, 1982; Satou et al., 2009). In the 

hindbrain, auditory afferents make Club Ending (CE) synapses onto the lateral dendrites 

of Mauthner. In the spinal cord, the Mauthner axon makes segmentally repeating 

electrical synapses onto Commissural Local Interneurons (CoLos; M/CoLo synapses). 

Mauthner, therefore, forms electrical synapses in two separate neuronal compartments 

(i.e., dendrite vs. axon). Although gap junction channels often function homotypically 

(i.e., the same Connexin hemichannel contributed from each cell), at Mauthner electrical 

synapses, the Connexins are asymmetric (Miller et al., 2017). Cx35.5 acts 

presynaptically, while Cx34.1 functions postsynaptically. This provides evidence that 

electrical synapse formation requires different, compartmentalized mechanisms to make 

specialized pre- and postsynaptic structures and also serves as an ideal model system to 

determine whether the asymmetry seen at the level of the Connexins extends to the 

molecular scaffold.   
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Here, we utilize the Mauthner morphology to show that ZO1b is localizing and 

functioning in the postsynaptic compartment. We see evidence of this at both CE and 

M/CoLo synapses. We then test whether a direct interaction between ZO1b and the 

postsynaptic Cx34.1 is necessary for electrical synapse formation. We find that their 

interaction is indeed required in vivo for robust Cx34.1 localization to CE, but not 

M/CoLo, synapses. Electrical synapse components, including the critical scaffold, appear 

to be compartmentalized, suggesting that cells must have multiple mechanisms to build 

electrical synapses.  

 

Results 

 

Previous work in zebrafish identified ZO1b, a homolog of mammalian ZO1, to be 

colocalized with neuronal Connexins at electrical synapses. Cx34.1 and Cx35.5 are 

channel-forming proteins that require ZO1b for robust synaptic localization and are 

capable of directly interacting with ZO1b in vitro (see Chapter III). In contrast, ZO1b 

localizes to electrical synapses in the absence of the Connexins, although at lower levels. 

The genetic and biochemical evidence of the relationship between the Connexins and 

ZO1b (Fig. 1A, Chapter III) led me to wonder what was happening cell biologically at 

the synapse. To further investigate the role of the scaffolding protein ZO1b at the 

electrical synapse, we utilized the electrical synaptic contacts made by Mauthner cells in 

larval zebrafish. 

These synapses contain plaques of Connexin channels composed of asymmetric, 

interdependent hemichannels. Presynaptic cells use Cx35.5, while postsynaptic cells use 

Cx34.1 (Fig. 1B; Miller et al., 2017). Zebrafish have two Mauthner cells, one on each 

side of the body with dendrites and soma located in the hindbrain and an axon descending 

contralaterally down the length of the spinal cord (Fig. 1C). In the hindbrain, auditory 

afferents make contacts onto the lateral dendrite of Mauthner, each creating an individual 

Club Ending (CE) synapse with Mauthner acting as the postsynaptic cell. In the spinal 

cord, the Mauthner axon makes segmentally repeating contacts with Commissural Local 

(CoLo) interneurons. At these synapses, which we identify as M/CoLo synapses, 

Mauthner is acting as the presynaptic cell (Fig. 1D). I examined electrical synapses in 
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zebrafish at 5 days post-fertilization (dpf), when there are ~6-9 CEs and ~30 M/CoLos 

per Mauthner cell.  

 
ZO1b localizes to and acts within the postsynaptic compartment of electrical synapses 

Within Mauthner, we know that Cx35.5 is being used in the axon within the 

presynaptic compartment, while Cx34.1 is being used in the dendrite within the 

postsynaptic compartment. Therefore, I wondered whether ZO1b, the gene product of 

tjp1b, was also being used in a distinct neuronal compartment. First, I investigated where 

ZO1b was localizing within the Mauthner circuit. To do this, we developed a V5-tagged  

 
Figure 1. Model of electrical synapses made by Mauthner neurons in zebrafish 
Genetic hierarchy (A) and molecular organization of Connexins (B; Cx) at zebrafish 
electrical synapses. (C) Dorsal view of 5dpf zebrafish larvae (anterior to the left) with 
Mauthner cells depicted in light green and CoLo interneurons in dark green. (D) 
Simplified diagram of the Mauthner cell circuit illustrating the electrical synapses of 
interest. The image represents a dorsal view with anterior on the top. Boxed regions 
indicate regions of stereotypical synaptic contacts used for analysis. Presynaptic auditory 
afferents contact the postsynaptic Mauthner cell lateral dendrite in the hindbrain forming 
Club Ending (CE) synapses. In the spinal cord, the presynaptic Mauthner axons form en 
passant electrical synapses with the postsynaptic CoLo interneurons (M/CoLo synapses) 
in each spinal cord hemisegment (2 of 30 repeating spinal segments are depicted). 
Electrical synapses are denoted as channels (B) or rectangles (D) depicting the two 
Connexin hemichannels (presynaptic Cx35.5 (cyan) and postsynaptic Cx34.1 (yellow)) 
that form the neuronal gap junction channels of this circuit.  
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tjp1b allele (Fig. 2A). The epitope tag was inserted, in-frame, after the start site using 

directed CRISPR genome editing. In both tjp1b-V5 heterozygous (Fig. 2B, C) and 

homozygous animals (Fig. 2D, E), Connexin localization to Mauthner electrical synapses 

was indistinguishable from wildtype animals. Additionally, V5 colocalized with 

Connexins at both CE (Fig. 2B, D) and M/CoLo (Fig. 2C, E) synapses, suggesting that 

the tagged tjp1b behaves in a manner comparable to the untagged allele.  

We still could not distinguish whether ZO1b was localizing to the presynaptic or 

postsynaptic compartment, because, at a single synapse, these compartments cannot be 

resolved by confocal light microscopy. Therefore, we needed to limit V5-tjp1b expression 

to a single cell and then look at where in that cell V5 (and thus ZO1b) localized. I did this 

by transplanting GFP-positive, V5-tjp1b-expressing cells into GFP-negative, wildtype 

animals at the blastula stage of development (Fig. 3A). Within these chimeric animals, 

cells that were GFP-positive expressed V5-tjp1b, while the rest of the cells in the animal 

were wildtype.  

Figure 2. V5-tagged ZO1b 
localizes to electrical synapses 
(A) Schematic of V5 epitope tag 
insertion into the N-terminus of 
the endogenous tjp1b locus. (B-E) 
Confocal images of Mauthner 
circuit neurons and stereotypical 
electrical synaptic sites of 
formation in 5-day-post-
fertilization (dpf), V5-tjp1b 
heterozygous (B,C) and V5-tjp1b 
homozygous (D,E). Animals in all 
images are stained with anti-GFP 
(green), anti-zebrafish-Cx35.5 
(cyan), anti-zebrafish-Cx34.1 
(yellow), and anti-V5 (magenta). 
Scale bar = 2 µm in all images. 
Images of CEs (B, D) are 
maximum-intensity projections of 
~5 µm. Images of M/CoLo 
synapses (C,E) are single Z-slices 
and have been passed through a 
median filter to remove 
background noise. 
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Figure 3. ZO1b localizes within the postsynaptic compartment at Mauthner 
electrical synapses 
(A) Diagram of experiment in which GFP-expressing donor cells are transplanted into a 
non-transgenic host to create chimeric embryos. GFP-expressing cells are either 
heterozygous or homozygous for V5-tjp1b while the rest of the cells in the chimeric 
embryo are derived from wildtype. The circuit model depicts the transplanted cells in 
panels B and C. (B-E) Confocal images of CE and M/CoLo sites of contact in 5dpf 
chimeric animals. In each set of images, GFP-expressing cells (Mauthner (B, C), CoLo 
(D), or both Mauthner and CoLo (E)) are derived from a V5-tjp1b+/-; zf206Et donor. 
Animals in all images are stained with anti-GFP (green), anti-zebrafish-Cx35.5 (cyan), 
anti-zebrafish-Cx34.1 (yellow), and anti-V5 (magenta). Scale bar = 2 µm in all images. 
Images of CEs (B) are maximum-intensity projections of ~5 µm. Images of M/CoLo 
synapses (C-E) are single Z-slices and have been passed through median filter to remove 
background. 
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In animals where Mauthner was the only cell expressing V5-tjp1b, V5 could be 

seen at CEs colocalizing with Cx34.1 and Cx35.5. This means that ZO1b is localizing 

within the Mauthner dendrite and into the postsynaptic compartment of the electrical 

synapse (Fig. 3B). When I looked at the M/CoLo synapses, however, I saw that V5 was 

not localizing to electrical synapses, although the neuronal Connexins were present at 

normal levels. Thus, ZO1b was not localizing within the Mauthner axon nor 

presynaptically at the electrical synapse (Fig. 3C). Fortuitously, our transplants also 

created animals in which the only cell expressing V5-tjp1b was a CoLo. In such cases, V5 

was present at the M/CoLo synapse, again supporting ZO1b’s localization within the 

postsynaptic compartment (Fig. 3D). V5 was also seen at M/CoLo synapses when both 

Mauthner and CoLo expressed V5-tjp1b (Fig. 3E). Taken together, I concluded that ZO1b 

localizes to the postsynaptic compartment of Mauthner electrical synapses.  

I next addressed whether ZO1b functions postsynaptically to facilitate Connexin 

localization at the electrical synapse. To test for asymmetric requirement, we again 

utilized chimeric animals and took advantage of Mauthner cell morphology (Fig. 4A, B). 

However, in these experiments we transplanted GFP-expressing cells from tjp1b∆16bp/∆16bp 

or wildtype donors into tjp1b∆16bp/∆16bp mutant or wildtype hosts, producing animals in 

which ZO1b was specifically removed from the pre- or postsynapse (Fig. 4C-J). At CE 

synapses, where Mauthner is postsynaptic, removal of tjp1b from Mauthner resulted in a 

loss of Connexin and ZO1 staining (Fig. 4E). In a reciprocal experiment, when Mauthner 

is the only cell expressing tjp1b (i.e., the presynaptic auditory afferents do not produce 

ZO1b), CE electrical synapses are maintained (Fig. 4G). This suggests that tjp1b is 

required and sufficient in the postsynapse at CEs for cell-autonomous localization of 

Cx34.1 and cell-non-autonomous localization of Cx35.5. Furthermore, when we looked 

at M/CoLo synapses in chimeric animals, the same pattern emerged. When ZO1b was 

removed from the presynaptic Mauthner cell, the M/CoLo staining was maintained (Fig. 

4F). However, when only the Mauthner cell contained ZO1b (ie. the postsynaptic CoLos 

did not), ZO1 and Connexin staining was lost (Fig. 4H). Taken together, these results 

support that ZO1b is functioning exclusively in the postsynaptic cell where it is localizing 

(Fig.4K). Interestingly, it appears to be required cell-autonomously for Cx34.1 

localization as well as cell-non-autonomously for Cx35.5 localization. 
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ZO1b-Cx34.1 direct interaction is required for normal electrical synapse formation 

 My in vitro experiments in Chapter III revealed that ZO1b can directly interact 

with both Cx34.1 and Cx35.5.  However, my transplant experiments support a model in 

which ZO1b is only localizing and acting in the postsynaptic compartment with Cx34.1. 

Therefore, I hypothesized that the ZO1b-Cx34.1 interaction might be required for 

electrical synapse formation. ZO1b contains three PSD95/Dlg/ZO1 (PDZ) protein-protein 

interaction domains that bind to C-terminal PDZ binding motifs (PBMs) (Fig. 5A; Zhu et 

al., 2016). Each Cx34.1 hemichannel is composed of six Connexin protein subunits, each 

embedded in the membrane with an intracellular C-terminal tail containing a PBM (Fig. 

5B). I have previously shown that the Cx34.1 C-terminal tail can directly interact with 

PDZ1 of ZO1b in a manner that requires the last 4 amino acids of the tail, SAYV (see 

Chapter III).  

Figure 4 (next page). ZO1b is required and sufficient in the postsynaptic 
compartment for electrical synapse formation 
(A) Diagram of experiment in which GFP-expressing donor cells are transplanted into a 
non-transgenic host to create chimeric embryos. GFP-expressing cells are of genotype1 
while the rest of the cells in the chimeric embryo are derived from genotype2.     
(B) Schematic of the Mauthner circuit in chimeric animals where one Mauthner cell is 
derived from the GFP-expressing donor (green), while other neurons derive from the 
non-transgenic host (gray). The image represents a dorsal view with anterior to the top. 
Boxed regions indicate regions imaged for analysis. (C-H) Confocal images of Mauthner 
circuit neurons and stereotypical electrical synaptic contacts in 5 dpf chimeric zebrafish 
larvae in the postsynaptic compartment of Mauthner electrical synapses. Animals are 
stained with anti-GFP, anti-zebrafish-Cx35.5, anti-zebrafish-Cx34.1, and anti-mouse-
ZO1. The genotype of the donor cell (green, genotype1) and host (genotype2) varies and 
is noted above each set of images (genotype1 > genotype2). Images of CEs (C, E, G) are 
maximum-intensity projections of ~5 µm. Images of M/CoLo synapses (D, F, H) are 
single Z-slices passed through a median filter. Neighboring panels show individual 
channels. Scale bar = 2 µm in all images. (I-J) Quantification of the number of 
stereotypical electrical synaptic structures labeled with both anti-Cx34.1 and anti-Cx35.5 
in chimeric animals of the indicated genotypes with a GFP-positive Mauthner cell. The 
height of the bar represents the mean of the sampled data normalized to the wt>wt 
average, and circles represent the normalized value of each individual animal (CE 
synapses: wt>wt n=8, tjp1b/ZO1b-/->wt n=16, wt>tjp1b/ZO1b-/- n=9; M/CoLo 
synapses: wt>wt n=11, tjp1b/ZO1b-/->wt n=18, wt>tjp1b/ZO1b-/- n=9). Error bars are ± 
SEM. (K) Schematic summarizing the results of Fig. 3 and Fig.4. ZO1b localizes, is 
required, and is sufficient exclusively in the postsynaptic compartment of Mauthner 
electrical synapses.  
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To investigate whether this interaction is required for electrical synapse formation 

in vivo, I used CRISPR cas9 to disrupt the Cx34.1 PBM sequence. I created two different 

mutations that would disrupt the ability of the Cx34.1 tail to interact with the ZO1b PDZ1 

binding pocket (Fig. 5C). The first mutation, cx34.1∆YV, removes the final two amino 
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acids of the tail, while the second, cx34.1+LGA, adds three new amino acids. Neither 

mutated tail was predicted to interact with ZO1 PDZ1 or any other PDZ domain (Hui et 

al., 2010, 2013). Therefore, I have likely disrupted the ability of ZO1b to interact with the 

Cx34.1 C-terminal tail in these two mutants.  

 We tested our mutant alleles in animals heterozygous for the cx34.1∆8bp null 

allele (indicated as -). The C-terminal mutations also disrupted the 3’UTR sequence, so 

we first ensured that this did not impact electrical synapse formation. cx34.1 3’UTR 

mutants have a 14bp deletion following the stop codon. In animals that are cx34.1+/- or 

cx34.13’UTR/-, localization of Cx34.1, Cx35.5, and ZO1 to CEs is comparable to wildtype 

(Fig. 5D, G-I). However, in animals where the Cx34.1 protein lacks YV or is extended by 

LGA, Cx34.1 fails to localize to CE synapses (Fig. 5E, F, H) supporting that the Cx34.1- 

Figure 5 (next page). ZO1b-Cx34.1 interaction is required for Cx34.1 localization at 
CEs 
(A) Schematic, linear diagram of ZO1b (A). Domains are depicted as magenta shapes. 
PDZ, SH3, GUK, and ZU5 = protein-protein interaction modules. The PDZ1 domain 
(thick black outline) interacts in vitro with Cx34.1. (B) Cx34.1 hemichannels are 
composed of six Connexin protein subunits that span the membrane and contain a C-
terminal PDZ binding motif (indicated in red) known to interact with ZO1 PDZ1. (C) 
Mutations in the Cx34.1 c-terminal tail were created to test the requirement of the PDZ1-
PBM interaction in vivo. Schematic, linear diagram of Cx34.1 with domains are depicted 
as yellow shapes. TM = transmembrane. Amino acid alignments are shown for the 
indicated expanded regions Cx34.1∆YV allele removes the last two amino acids of the 
protein and thus disrupts the PBM. Cx34.1+LGA allele adds three amino acids after the 
PBM which is hypothesized to disrupt the ability of the PBM to interact with the PDZ 
binding pocket. (D-F) Confocal images of Mauthner lateral dendrite and stereotypical 
electrical synaptic contacts in 5-day-post-fertilization, zf206Et zebrafish larvae from 
cx34.1+/- (D), cx34.1∆YV/- (E), and cx34.1+LGA/- (F). In all cases, animals are heterozygous 
for the cx34.1∆8bp null allele (indicated as -). The second allele is either wildtype (D), 
cx34.1∆YV (E), or cx34.1+LGA (F) with the predicted PDZ1 interaction modeled above. 
When the Cx34.1 PBM is disrupted, Cx34.1 staining at the CEs is lost and Cx35.5 
staining is reduced (ANOVA with multiple comparisons, p<.05). Animals are stained 
with anti-GFP (green), anti-zebrafish-Cx35.5 (cyan), anti-zebrafish-Cx34.1 (yellow), and 
anti-mouse-ZO1. Neighboring panels show individual channels. Scale bar = 2 µm in all 
images. (G-I) Quantitation of Cx35.5 (G), Cx34.1 (H), and ZO1 (I) at CEs in specified 
genotypes. The c-terminal mutations also impact the 3’UTR sequence, so we also 
included cx34.13’UTR/- in our quantitation as a control. cx34.13’UTR has a 14bp deletion 
following the stop codon. The height of the bar represents the mean of the sampled data 
normalized to the wildtype average for a given experiment and circles represent the 
normalized value of each individual animal (wt n=6, cx34.1+/- n=7, cx34.13’UTR/- n=4, 
cx34.1∆YV/- n=4, cx34.1+LGA/-, n=4). Error bars are ± SEM. 
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ZO1b interaction is required for Cx34.1 localization. Additionally, ZO1 levels in 

cx34.1+LGA/- animals were decreased by ~50% which is similar to what we see in Cx34.1 

null animals (see Chapter III; ANOVA with multiple comparisons, p<.05). This suggests 

that the dependence of ZO1 on the Connexins is also mediated through this direct 

interaction. Interestingly, although Cx35.5 localization to the synapse was decreased 

when ZO1b-Cx34.1 binding was abolished in cx34.1+LGA/- animals, it was not lost to the 
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level that we observe in ZO1b or Cx34.1 null mutant animals (Fig. 5G; see Chapter III; 

ANOVA with multiple comparisons, p<.05).   

 We also looked at M/CoLo synapses. Again, in animals that are cx34.1+/- or 

cx34.13’UTR/-, localization of Cx34.1, Cx35.5, and ZO1 to M/CoLos is comparable to  

Figure 6. ZO1b-Cx34.1 interaction is not required for robust Cx34.1 localization to 
M/CoLo synapses 
(A-C) Confocal images of Mauthner axon and stereotypical M/CoLo electrical synaptic 
contacts in 5 dpt, zf206Et zebrafish larvae from cx34.1+/- (A), cx34.1∆YV/- (B), and 
cx34.1+LGA/- (C). In all cases, animals are heterozygous for the cx34.1∆8bp null allele 
(indicated as -). The second allele is either wildtype (A), cx34.1∆YV (B), or cx34.1+LGA 
(D) with the predicted PDZ1 interaction modeled above. When the Cx34.1 PBM is 
disrupted, Cx34.1, Cx35.5, and ZO1 staining remain at M/CoLos. Images of M/CoLo 
synapses are single Z-slices passed through a median filter. Animals are stained with 
anti-GFP (green), anti-zebrafish-Cx35.5 (cyan), anti-zebrafish-Cx34.1 (yellow), and anti-
mouse-ZO1. Neighboring panels show individual channels. Scale bar = 2 µm in all 
images. (D-F) Quantitation of Cx35.5 (D), Cx34.1 (E), and ZO1 (F) at M/CoLos in 
specified genotypes. The height of the bar represents the mean of the sampled data 
normalized to the wildtype average for a given experiment and circles represent the 
normalized value of each individual animal (wt n=6, cx34.1+/- n=5, cx34.13’UTR/- n=3, 
cx34.1∆YV/- n=3, cx34.1+LGA/-, n=3). Error bars are ± SEM. 
 
 

Figure 6: Tjp1b-Cx34.1 interaction is not required for Cx localization at M/Colo synapses
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wildtype (Fig. 6A, D-F). Surprisingly, Cx34.1 was still able to localize to electrical 

synapses in both cx34.1∆YV/- and cx34.1+LGA/- animals (Fig. 6B-C, E). The loss of the 

interaction did reduce the amount of Cx34.1 present at the synapse by ~50% (ANOVA 

with multiple comparisons, p<.05) suggesting that, although the ZO1b-Cx34.1 interaction 

is not required at M/CoLo synapses for Cx34.1 localization, it does impact the amount 

the Cx. This discrepancy between the CE and M/CoLo synapses was unexpected, and it 

suggests that there are alternative methods used by cells to build electrical synapses. It is 

also interesting to note that in ZO1b mutants, Connexin staining at M/CoLo synapses is 

almost entirely lost. This means that the requirement for ZO1b at these synapses is not 

mediated entirely through its interaction with Cx34.1.  

 

Discussion 

 

Overall, our findings add to the growing evidence that electrical synapses are far 

more complex than simple, symmetric plaques of Connexin channels. First, we found that 

the MAGUK scaffolding protein, ZO1b, localizes to and functions within the 

postsynaptic compartment of the electrical synapse. Second, we showed that, at CE 

synapses, ZO1b seems to be directly interacting with the postsynaptic Cx34.1, and this 

interaction is necessary for the Connexin to localize (modeled in Fig. 7). This supports 

the idea that electrical synapses can have distinct pre- and postsynaptic specializations, 

Figure 7. Model of interactions 
mediating electrical synapse 
hierarchy at CEs 
Presynaptic Cx35.5 and postsynaptic 
Cx34.1 are genetically interdependent. 
The scaffold, ZO1b, localizes with 
Cx34.1 in the postsynapse, is sensitive 
to the loss of Cx34.1, and is 
genetically required for both the pre- 
and postsynaptic Connexins to 
robustly localize. This is mediated, in 
part, through a direct ZO1b-Cx34.1 
interaction. Arrow thickness indicates 
strength of genetic relationship. 
 

Cx34.1

Cx35.5

ZO1b

Figure 6: Model- Direct interactions maintain electrical synapse structure
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comparable to the chemical synapse. If this is the case, then cells must have distinct 

mechanisms in place to build each type of specialization. 

Interestingly, when we disrupted the ZO1b-Cx34.1 interaction, the presynaptic 

Cx35.5 still robustly localized. We previously showed that ZO1b is necessary for the 

robust localization of the presynaptic Cx35.5, and null mutations in either cx34.1 or tjp1b 

cause a loss of Cx35.5 at the synapse (see Chapter III). Based on this, we hypothesized 

that the requirement of ZO1b for Cx35.5 was likely mediated via Cx34.1. However, this 

does not appear to be the case. One possible explanation is that ZO1b also plays a larger 

role at the synapse beyond its interaction with the Cx. Indeed, MAGUK proteins often act 

as master regulators at cellular junctions, and, recently, the ability of MAGUK proteins, 

to phase separate has been shown to be necessary for tight junction and chemical synapse 

formation (Ye et al., 2018; Beutel et al., 2019; Schwayer et al., 2019; Chen et al., 2020). 

However, ZO1b is still postsynaptic, begging the question: how is it coordinating with 

the presynapse if not through the postsynaptic Connexin?   

At the M/CoLo synapse, we were surprised to find that the ZO1b-Cx34.1 

interaction was not required for electrical synapse formation. Connexin and ZO1 staining 

levels appeared lower than in wildtype, but robust staining remained for all proteins. This 

is one of the first times that we have seen a genetic manipulation that affects the CE and 

M/CoLo synapses differently.  This result suggests that there are multiple, possibly 

redundant, mechanisms for building an electrical synapse.  

Overall, our findings emphasize the molecular complexity of electrical synapses. 

We previously thought of them at simple aggregates of channels. However, we now 

know that they asymmetrically require a MAGUK scaffolding protein. We also know that 

this scaffold is necessary for Connexin localization via a direct interaction with PDZ1. 

However, this interaction alone does not explain ZO1’s entire role at the synapse. We 

sought to understand the mechanism underlying ZO1’s requirement at the synapse, and 

we successfully uncovered one piece of the puzzle. Future work will assess ZO1’s other 

functions at the synapse, answering questions such as: How is the scaffold localized? 

What other direct interactions is the scaffold making? Are there other scaffolds acting at 

and organizing electrical synapses? How is the scaffold coordinating organization of the 

presynapse? 
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Methods 
 
Zebrafish 

Fish were maintained in the University of Oregon’s fish facility with approval from the 

Institutional Animal Care and Use Committee. Zebrafish, Danio rerio, were bred and 

maintained at 28˚C on a 14h on and 10h off light cycle. Animals were housed in groups, 

generally of 25 animals per tank. Development time points were assigned via standard 

developmental staging (Kimmel et al., 1995). All fish used for this project were 

maintained in the ABC background developed at the University of Oregon. Most fish had 

the enhancer trap transgene zf206Et (referred to as Mauthner:GFP or M/CoLo:GFP) in 

the background (Satou et al., 2009), unless otherwise noted. Mutant lines were genotyped 

for all experiments. All experiments were performed at 5 days post fertilization (dpf). At 

this stage of development, zebrafish sex is not yet determined (Wilson et al., 2014). 

Newly generated lines were created using CRISPR cas9 technology as reported in Shah 

et al., 2016 with guides designed using the CRISPRscan algorithm (Moreno-Mateos et 

al., 2015). Mutant animals were Sanger sequenced to verify genomic changes. 

 

Immunohistochemistry 

Anesthetized, 5 days post fertilization (dpf) larvae were fixed for 3h in 2% trichloroacetic 

acid in PBS. Fixed tissue was washed in PBS + 0.5% Triton X-100, followed by standard 

blocking and antibody incubations. Primary antibody mixes included combinations of the 

following: rabbit anti-Cx35.5 (Fred Hutch Antibody Technology Facility, clone 12H5, 

1:800), mouse IgG1 anti- Cx35.5 (Fred Hutch Antibody Technology Facility, clone 

4B12, 1:250), rabbit anti-Cx34.1 (Fred Hutch Antibody Technology Facility, clone 3A4, 

1:250), mouse IgG2A anti-Cx34.1 (Fred Hutch Antibody Technology Facility, clone 

5C10A, 1:350), mouse IgG1 anti-ZO1 (Invitrogen, 33-9100, 1:350), mouse IgG2a anti-

V5 peptide (Invitrogen, R960-25, 1:50), and chicken anti-GFP (abcam, ab13970, 1:350- 

1:500). All secondary antibodies were raised in goat (Invitrogen, conjugated with Alexa-

405, −488, −555, or −633 fluorophores, 1:500). Tissue was then cleared stepwise in a 

25%, 50%, 75% glycerol series, dissected, and mounted in ProLong Gold antifade 

reagent (ThermoFisher, P36930) or 75% glycerol. 
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Imaging 

Images were acquired on a Leica SP8 Confocal using a 405- diode laser and a white light 

laser set to 499, 553/554/557 (consistent within experiments), and 631 nm, depending on 

the fluorescent dye imaged. Each laser line’s data was collected sequentially using 

custom detection filters based on the dye. Quantitative images of the Club Endings (CEs) 

were collected using a 63x, 1.40 numerical aperture (NA), oil immersion lens, and 

images of M/CoLo synapses were collected using a 40x, 1.20 NA, water immersion lens. 

For each set of images, the optimal optical section thickness was used as calculated by 

the Leica software based on the pinhole, emission wavelengths, and NA of the lens. 

Within each experiment where fluorescence intensity was to be quantified, all animals 

(including 3-5 wildtype controls) were stained together with the same antibody mix, 

processed at the same time, and all confocal settings (laser power, scan speed, gain, 

offset, objective, and zoom) were identical. Multiple animals per genotype were analyzed 

to account for biological variation. To account for technical variation, fluorescence 

intensity values of each animal were an average across multiple regions.  

 

Blastula cell transplantation 

Cell transplantation was performed at the high stage approximately 3.3 hr into zebrafish 

development using standard techniques (Kemp et al., 2009). Embryos were chemically 

dechorionated with protease (Sigma Aldrich, 9036-06-0) prior to transplantation. Cells 

were transplanted using a 50 mm wide glass capillary needle attached to an oil hydraulic. 

For ‘V5-tjp1b into wildtype’ transplants, cells from animals heterozygous or homozygous 

for V5-tjp1b in the M/CoLo:GFP background were transplanted into non-transgenic 

wildtype hosts. For ‘tjp1b-/- into wildtype’ transplants, genotyped animals homozygous 

for the tjp1bΔ16bp mutation in the M/CoLo:GFP background were crossed and progeny 

were transplanted into non-transgenic wildtype hosts. For 'wildtype into tjp1b-/-' 

transplants, transgenic M/CoLo:GFP wildtype animals were crossed to use as donors, and 

non-transgenic, homozygous tjp1bΔ16bp/∆16bp animals were crossed to produce hosts. 

Approximately 20 cells were deposited ∼10–15 cell diameters away from the margin, 

with a single donor embryo supplying cells to 3–5 hosts. At 5 dpf, larvae were fixed in 

TCA and processed for immunohistochemistry. 
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Fluorescence quantitation 

For the quantification of staining at the CEs, confocal z-stacks of the Mauthner 

soma and lateral dendrite were cropped in Fiji (Schindelin et al., 2012) to 36.08μm x 

36.08μm centered around the lateral dendritic bifurcation. Using the SciPy (Virtanen et 

al., 2020) and scikit-image (Van Der Walt et al., 2014) computing packages, the cropped 

stack was then cleared outside of the Mauthner cell, a 33 median filter was applied to 

reduce noise, and a standard threshold was set within each experiment to remove 

background staining. The integrated density of each stain within the Mauthner cell was 

then extracted and normalized to the wildtype values for the experiment. For 

quantification of staining at M/CoLo synapses, X and Y coordinates of synaptic sites 

were manually specified as 9x9 pixel squares. The z-position was determined as the five 

consecutive slices where the average fluorescence for Cx35.5 was the highest. Within this 

volume, the average pixel intensity for each channel was quantified and this was 

averaged across 14-21 synapses per animal. Values per animal were normalized to 

wildtype values for a given experiment. 
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CHAPTER V 

CONCLUSIONS 

Electrical synapses are specialized cellular adhesions between neurons that allow 

ions and small molecules to directly move from one cell to another. Historically, these 

synapses have been largely neglected in our efforts to understand the brain and are often 

considered to be simple aggregates of channels. But, in this thesis, I have shown that we 

need to look beyond the channels. In Chapter II, I considered the biological steps 

necessary to build an electrical synapse based on what we know about other cellular 

junctions. Although the channels are the final piece that result in a functional synapse, 

many steps must occur for those channels to make it to the right place at the right time. 

Moreover, we know that electrical synapses are dynamic. Connexins are constantly being 

turned over, and the hemichannels that are at the plaque at any given time are subject to 

multiple regulatory mechanisms (Nagy et al., 2018; Pereda, 2016; O’Brien, 2017; Lauf et 

al., 2002; Flores et al., 2012; Wang et al., 2015). Our review of the literature illuminated 

the many unknowns that still remain in our understanding of the electrical synapse. 

However, it also led me to hypothesize that a membrane-associated guanylate kinase 

(MAGUK) scaffold was likely to be necessary at electrical synapses to organize this 

intercellular structure.  

In Chapter III, we used forward and reverse genetics in larval zebrafish to identify 

the MAGUK scaffolding protein, Zonula occludens-1b (ZO1b), a homolog of 

mammalian ZO1, as being necessary for electrical synapse formation. This protein 

localized to electrical synapses and was necessary for robust Connexin channel 

localization to synaptic sites. In contrast, ZO1b remained at the synapse in the absence of 

Connexins suggesting a hierarchical organization where ZO1b is localizing first and then 

recruiting or stabilizing the channel-forming proteins. I also showed that ZO1b can 

directly interact in vitro with the neuronal Connexins through conserved interaction 

domains. This result, coupled with previous findings of ZO1-Connexin interactions in 

mammals (Li et al., 2004), led us to hypothesize that ZO1 may be organizing the 

electrical synapse through this direct interaction with the Connexin channels.  

In Chapter IV, we investigated this hypothesis, again, using the larval zebrafish. 

An examination of the cell biology of the scaffold revealed that it localizes and functions 
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exclusively in the postsynaptic compartment within our model system. This finding is 

supported by co-immunoprecipitation experiments showing an asymmetric binding 

preference between ZO1b and the postsynaptic Connexin (Lasseigne et al., 2021). 

Therefore, to investigate whether the direct ZO1b-Connexin interaction was the 

mechanism underlying ZO1’s requirement for electrical synapse formation, I used 

CRISPR cas9 technology to disrupt the region of the Connexin tail responsible for the 

direct interaction. To our surprise, the mutation of the Connexin tail did not completely 

abolish electrical synapse formation. In the hindbrain of the zebrafish, we saw a loss of 

the postsynaptic Connexin suggesting that the interaction is required for its localization. 

However, the presynaptic Connexin remained, albeit at lower levels. In addition, at 

synapses in the spinal cord, both Connexins remained at synaptic sites suggesting that, at 

these synapses, the interaction with ZO1 is not required. These unexpected results 

suggested that a) ZO1 has multiple functions at the electrical synapse and b) cells use 

multiple mechanism to form electrical synapses.  

I set out to identify mechanisms of electrical synapse formation. Ultimately, I 

found a molecule that is critical for synapse formation and function which answered 

some questions but led to many more. Although my work has focused on electrical 

synapses in zebrafish, it contributes to a growing body of knowledge on a poorly 

understood synaptic subtype. These structures have diverse functions throughout the 

mature and developing nervous systems. And, although their impact on disease etiology 

remains to be thoroughly studied, their unique electrical properties have been shown to 

influence circuit development, connectivity, and overall function (Nagy et al., 2018; 

Pereda, 2016; O’Brien, 2017). Therefore, it is imperative that we continue to explore the 

molecular mechanisms underlying electrical synapses in order for us to truly understand 

the brain.  
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