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Cnidarian jellyfish are ubiquitous predators of pelagic communities, but little is known 

about their phenology and how food availability affects their nutritional status. Starved medusae 

tend to decrease somatic growth to allocate resources towards gonad development, thus a ratio of 

gonad to bell size might help determine the nutritional state of hydromedusae. We hypothesized 

that when food is scarce, C. gregaria and E. indicans will have larger gonads relative to their 

body size. I conducted starvation experiments to directly test how bell diameter and gonad area 

vary with food availability. The same two species of hydromedusae were also collected in a 

period of low primary productivity (winter) and high primary productivity (summer) along the 

North California Current System. ImageJ was used to analyze photos of the formalin-preserved 

specimens to obtain morphological measurements and create a gonadal index (gonad area/bell 

area). As the preservation method caused a loss in biomass of the collected medusae, we made a 

correction factor to convert the measurements of the preserved organisms to live ones. The 

medusae showcased slightly higher gonadal index in the medusae during winter than summer 

indicating an increased effort towards reproduction when resources are depleted. Understanding 

the links between oceanographic conditions and population dynamics of gelatinous predators 

will allow us to better predict their effects on zooplankton community dynamics.  
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Introduction 

Hydrozoans are a class within the phylum Cnidaria. These medusae are known for their 

small size and transparency (Purcell et al, 2013; Madin & Harbison, 2001), and as carnivorous 

predators that prey on a variety of gelatinous animals, crustaceans and larval forms of fish 

(Madin & Harbison, 2001). Despite their wide distribution, very little is known about their 

phenology and how food availability affects their nutritional status and development. What is 

well known about hydrozoans is their role as predators of zooplankton communities in various 

marine ecosystems like the well-studied Northern California Current (Larson, 1986).  

In the Pacific Northwest, wind-driven upwelling during the summer months along the 

coast enhances primary production and causes the neritic and ocean zooplankton communities to 

vary significantly (Smith, 1974; Peterson and Miller, 1976). This causes seasonal blooms of 

phytoplankton during the months of April and May that continue into the summer months of 

June and July (Peterson and Miller, 1976). While in the winter, a process called downwelling 

occurs due to storms pushing oceanic water onto the neritic zone causing oceanic plankton to 

come along with it (Morgan et al., 2003). These seasonal differences in plankton between 

seasons can indirectly affect the nutritional state of organisms within the intermediate levels of 

the pelagic food web that prey on the plankton such as hydrozoans.  

When food becomes limiting, cnidarian jellyfish will increase reproductive efforts while 

reducing somatic growth to increase survivorship of offspring, whereas when food is abundant 

the jellyfish will increase somatic growth to increase future offspring output (Lucas, 2001; Olive, 

1985). This pattern has been observed in various species of jellyfish where growth is slow during 

the winter and early spring but increases exponentially starting in mid-spring (Lucas & Williams, 

1994). The slow growth during the winter causes the medusae to reach sexual maturity at a 
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smaller size during the winter months compared to the summer months. It has even been found 

in Aurelia aurita that the number of sexually mature individuals decrease with increased food 

abundance despite the overall larger size of the organism (Lucas, 1996). There has also been an 

observed shrinkage period between the summer and autumn season due to the release of gametes 

(Lucas, 2001). Scyphomedusan jellyfish have also been found to be capable of shrinking and 

reabsorbing gonadal tissue when food is scare to allow survival during periods of starvation. 

Once food availability increases, the medusae return to their original size with without a decrease 

in their fitness (Lucas, 2001). For instance, starving A. aurita can go through a process of 

degrowth that regresses the entire animal until it resembles minute adult. Even the gonads of 

fully sexually mature jellyfish can regress into an immature state in as little as 5 days (Hamner 

and Jenssen, 1974). 

While the adaptations of strategic food usage and growth have been well studied in 

Scyphomedusae, few studies have been conducted around this topic for hydromedusae. Growth 

of hydromedusae has been shown to be correlated with temperature (Matsakis, 1993; Lucas et 

al., 1995) with the maturing and spawning cycle being regulated by light (Lucas et al., 1995). 

The medusae grow quickest during their immature phase months with growth decreasing as they 

enter the mature phase (Chiaverano, 2004). Most medusae are mature by early summer, 

however, some continue to grow throughout the autumn and winter and mature the following 

summer season (Lucas et al., 1995). Food supply has also been found to be important in 

regulating fecundity with the gonads of medusae being largest when food is abundant (Larson, 

1986). However, more still needs to be discovered about the relationships between the somatic 

growth and gonad growth in hydromedusae as this knowledge remains thin (Chiaverano, 2004). 



 5 

Therefore, in this study, we compared the gonad to bell ratio of two abundant 

hydrozoans, Clytia gregaria and Eutonina indicans, between the seasons of winter and summer 

along the Newport Hydrographic line (NH) and the Trinidad Head line (TR) within the Northern 

California Current, USA to infer if these jellyfish have the ability to strategically allocate their 

consumption. Morphological analysis of these jellies provides insight into the effect of 

surrounding nutritional availability on nutritional status. Though modern molecular tools allow 

us to accurately determine nutritional state and metabolic rates of organisms at any given time 

(Chícharo and Chícharo, 2008), these tools are not widely available. In contrast, the collection of 

zooplankton and preserving samples in formalin is a widely used and accessible method to 

generate ecological data (Jankowski and Anokhin, 2019). Therefore, we used this simpler 

method in our analysis of the hydromedusan jellyfish. But as formalin has been known to cause 

changes in the size and volume of organisms over time (Ahlstrom and Trailkill, 1963), we 

corrected for these changes by measuring the effects of formalin on samples over time.  

Additionally, we conducted starvation experiments where we fed groups of medusae 

varying levels of plankton to observe changes in their morphology across different food 

availabilities. We hypothesized that hydromedusae present during the winter will have larger 

gonads in relation to their bell size due to prioritization of gonadal growth during seasons of low 

food availability. For summer, we hypothesized smaller gonads in relation to bell size due to 

focus on stomatic growth during times of high food availability. Therefore, for our starvation 

experiments we predict larger gonads in comparison to bell size in the medusae that are starved 

compared to those that are well-fed.  

By comparing the two species of C. gregaria and E. indicans we can further discover (1) 

if the effects of starvation in morphology are universal across all medusae or if they vary 
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between species and (2) if the seasonal variation in plankton assemblages drive changes in 

morphology of these medusae. In doing so, we can begin to infer the potential impact that 

upwelling has on the nutrition state of hydrozoans and the impact that these medusae will have 

on the zooplankton communities. Furthermore, using morphometry in preserved samples to 

approximate the nutritional state of medusae could yield valuable comparative datasets when 

more expensive tools are not available and provide a population-level estimate of the 

physiological state of jellyfishes.  

Methods 

1.Starvation Experiments  

To observe real time changes of food availability on gonadal development, individual 

medusa were collected in Coos Bay, Oregon on August 28, 2020 using dip netting. The medusae 

were kept in 1000ml jars with sea water and kept in a sea table at a temperature of 12° C. They 

were observed for a period of 1 week, which was chosen as adequate time to observe change as 

hydromedusae are known to have a life span of no more than three months (Roosen-Runge, 

1970; Lucas et al., 1995). The medusae were separated into 3 treatment groups with 7 individuals 

in each group: fed twice a day, fed once a day, and unfed. The food was a solution of plankton in 

sea water with 10 ml given at each feeding. The prey was obtained from the same location as the 

medusae using a 100 μm plankton tows. Prey were kept in 2-liter plastic beakers with seawater 

with a constant rotation of 2 rpm (Corrales-Ugalde and Sutherland, 2020). New plankton was 

captured on day four of the experiment to provide new and live prey to the medusae. Before each 

feeding, debris was removed from the bottom of the jar to prevent nitrogen build-up. Jars were 

cleaned and given fresh sea water on day four. 
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To capture the photos of the preserved medusae, a Sony handycam HDR'CX560 was 

attached to the trinocular port of a stereo microscope (Fig. 1). Each individual preserved medusa 

was laid out, mouth-side facing up, on a petri dish arranged in a manner that allowed for bell 

diameter and gonads to be easily measured. Immediately following the photo of the medusae, a 

photograph of a clear ruler was taken at the same zoom for future morphological measurements. 

The gonad and bell area measurements were obtained using image analysis in ImageJ (version 

2.0.0-rc-69/1.52pc; Fig. 2). The areas for each gonad for each specimen were added together to 

obtain the total gonad area. The bell area was calculated using the formula A=3.14*r2. The 

gonadal index was calculated by taking the total gonad area divided by the bell area. On day 0, 

initial photos were taken of each individual, and then once again at the end of the week on day 7. 

Two individuals from each group were photographed on days 1, 3, and 5. The average and 

standard deviation of the bell diameter, gonad area, and gonadal index of each group in day 0 

and day 7 was found using Microsoft Excel (Version 16.42) with the functions “Average” and 

“STDEV.”  
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Fig. 1: Diagram of camera set up with Sony handycam HDR'CX560 attached to stereo 
microscope via a PVC pipe and duct tape.   
 

 
Figure 3: Diagram showing how the gonad area (blue) and bell diameter (pink) were obtained in 
ImageJ. 
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2.Correction Factors for Biomass Loss of Preserved Organisms  

To account for the biomass losses due to formalin (Ahlstrom and Trailkill, 1963; 

LaFontaine and Leggett, 1989), we observed the changes in the bell and gonad weights, bell 

diameter, and gonad area of preserved C. gregaria and E. indicans over time. The medusae were 

captured by dip netting from the docks in Coos Bay, Oregon near the Oregon Institute of Marine 

Biology. The specimens were separated into 2 groups of dissected and un-dissected. For the 

dissected organisms, gonads were surgically removed from the bell under a microscope using a 

scalpel and dissecting scissors. The dissected gonads and bells were each kept in their own 

separate container to prevent cross-contamination. The un-dissected organisms were preserved 

whole with each individual also being kept in their own container.  

Photos of the organisms were taken prior to being weighted. To obtain bell diameter and 

gonad area, the same methods described in the starvation experiments were utilized (Fig. 1 and 

Fig. 2) with initial photos being labeled as day 1. To capture weight measurements, organisms 

were placed on a petri dish and dabbed with a Kim wipe until there was no longer a visible ring 

of water around the organism. Afterwards, they were weighed on an analytical balance to get an 

initial measurement, which was labeled as day 1. Immediately after initial measurements all 

specimens were placed in jars with the preservation liquid of a solution of formalin in seawater 

(~4% v/v).  

Both the undissected and dissected C. gregaria and E. indicans were weighed and 

photographed periodically over a timeframe of either 81 days or 52 days to find the correction 

factors for the amount of loss in weight, bell diameter, and gonad area. Keeping track of the time 

of preservation is important to make adequate estimates of the original size and volume of the 

organism before preservation as the rate of change varies depending on the preservation time 
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(Mills et al., 1982; LaFontaine and Leggett, 1989). We then fitted logarithmic functions with the 

y-variable as the percent of weigh or area loss with days of preservation as the x-variable 

(lm(weight or area/diameter) ~ log(day)) using R Studio Version 1.3.1093 (RStudio Team, 2020) 

with packages tidyverse (Wickham et al., 2019), reshape2 (Wickham, 2007), Rmisc (Hope,  

2013), fitdistrplus (Delignette-Muller and Dutang, 2015), ggpmisc (Aphalo, 2020). and gglot2 

(Wickham, 2016).  

3. Morphological Measurements  

Selected individuals of Clytia gregaria and Eutonina indicans were collected during 

winter of 2019 (March 2-14, 2019) and summers of 2018 and 2019 (July 3-12, 2018 and July 14-

27, 2019) from five stations along both the Newport Hydrographic line (NH) and Trinidad Head 

Line (TR) within the North California Current (Fig. 3). Due to the narrower and more 

pronounced shelf slope of the TR transect, stations were put much closer to one another. The 

samples were collected at fixed locations during the day using a coupled multiple opening-

closing net and environmental sensing system with different openings and mesh sizes 

(MOCNESS; MOC 1= 1 m2  aperture, 333 µm mesh, MOC 2= 4 m2 aperture, 1-mm mesh; 

Guigand et al., 2005). After the nets were recovered, a subsample was placed in a cold petri dish 

to select hydromedusae. The selected C. gregaria and E. indicans were rapidly fixed in a 

solution of formalin in seawater (~4% v/v).  

The same methods for photographing the medusae in the starvation experiments was used 

to obtain the morphological measurements of these samples (Fig. 1 and Fig. 2). To compare the 

size of the gonads in relation to the size of the bell, we utilized a gonadal index (gonad area/bell 

area). This gonadal index provides a better estimate of whether medusae during the winter 

prioritize the growth of their gonads when food is scare compared looking at the raw 
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measurements of the bell diameter and gonad area. Medusae that were observed to have 

damaged or incomplete gonads (<4 gonads), as well as those with damaged bells that 

compromised the bell diameter, were excluded from the final gonadal index data set. All the data 

for the bell diameters and gonad area, including those that were considered “damaged,” was used 

to calculate mean bell diameters and mean gonad area separately.  

Time since preservation was estimated to the closest month (1 month = 30 days) by 

comparing the approximate time of collection from the Newport Hydrographic line (NH) and the 

Trinidad Headline (TR) to the time of photo capture. The calculated days since fixation for each 

individual was used to estimate the biomass loss of each individual collected from the 2018 and 

2019 samples. This calculated date was then inputted into the formulas created from the biomass 

loss experiments to find the percentage of decrease since fixation to back-calculate estimated live 

measurements. A student t-test was performed in Microsoft Excel (Version 16.42) to test for the 

significance in the gonadal index between winter and summer.   
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Fig. 3: Sampling stations along the Newport Line and Trinidad Line within the Northern 
California Current where hydromedusae were collected in the summers of 2018 and 2019 and 
winter of 2019. 
 
Results 

1.Starvation Experiments  

Bell diameter and gonad area of C. gregaria decreased across all medusae in every 

treatment group between day 0 and day 7 (Fig. 4). The level of decrease of the bell diameter was 

similar amongst all groups with an average decrease of approximately 2 mm between day 0 and 

day 7 for all feeding groups. The gonad area decrease was most significant in the unfed group 

with an almost a four-fold decrease between day 0 and day 7. The gonad area of the medusae fed 

once a day had a two-fold decrease while those fed twice a day had an almost three-fold decrease 

(Table 1). This intense decrease of the gonads in the unfed individuals can also be seen in the 
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decrease of the gonadal index where the unfed individuals decreased by an average of around 

80% compared to the 55% decrease of those fed once a day and the 45% decrease of those fed 

twice a day (Fig. 5).  

 
Fig. 4. Comparison of the average (a) bell diameter and (b) gonad area between day 0 and day 7 
of C. gregaria who were either fed 10 ml of plankton solution once a day, fed 10 ml of plankton 
solution twice a day, and those that were unfed.  
 
Table 1. Average and standard deviation of the bell diameter and gonad area from all feeding 
groups on day 0 and day 7.  
Type Day Feeding Group Average Standard 

Deviation 
Bell Diameter 0 Fed 10 ml twice a day 20.98 mm ± 1.84 mm 
Bell Diameter 0 Fed 10 ml once a day 19.67 mm ± 2.73 mm 
Bell Diameter 0 Unfed 18.85 mm ± 1.60 mm 
Bell Diameter 7 Fed 10 ml twice a day 17.94 mm ± 1.56 mm 
Bell Diameter 7 Fed 10 ml once a day 17.45 mm ± 2.69 mm 
Bell Diameter 7 Unfed 16.20 mm ± 1.77 mm 
Gonad Area 0 Fed 10 ml twice a day 19.52 mm2 ± 7.86 mm2 
Gonad Area 0 Fed 10 ml once a day 17.50 mm2 ± 3.56 mm2 
Gonad Area 0 Unfed 20.26 mm2 ± 5.55 mm2 
Gonad Area 7 Fed 10 ml twice a day 7.37 mm2 ± 2.83 mm2 
Gonad Area 7 Fed 10 ml once a day 8.50 mm2 ± 1.86 mm2 
Gonad Area 7 Unfed 5.32 mm2 ± 2.22 mm2 

 

(a) (b)
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Fig. 5. Percent decrease of the gonadal index (gonad area/bell diameter) between day 0 and day 7 
of medusae that were fed 10 ml of plankton solution once a day (average = 0.5513±0.0670, N = 
7), medusae fed 10 ml of plankton solution twice a day (average = 0.4453±0.1195,  N= 6) and 
those unfed (average = 0.7012±0.0609, N = 7).  
 
2.Correction Factors for Biomass Loss of Preserved Organisms 

 While all formulas were found to be significant (p<0.05), the levels of error varied 

between the species and between bell diameter, gonad area, and weight (Table 2, Figure 6). 

Overall, the bell weight and bell diameter formulas were more significant than the formulas for 

the gonad weight and gonad area. E. indicans showcased higher levels of variation in bell 

diameter, gonad area, and gonad weight in comparisons to the C. gregaria. C. gregaria has about 

twice the amount of decrease in both bell diameter and gonad area than E. indicans. Gonad area 

and gonad weight both garnered low R2 despite the significance of their p-values. The gonad 

weight had the highest amount of deviation and was the only one of the groups to be observed 

for only 52 days compared to the 81 days of the other groups. Both species started showing 

stabilization in the bell diameter around days 60-80. Stabilization of the gonad area came quickly 

for E. indicans at around days 10-20, but gonad area of C. gregaria didn’t stabilize until around 

days 60-80. The wet weights of both the bell and the gonad didn’t show signs of stabilizing 

within the 82 days of observation but the amount of decrease did lessen over time. 
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Fig. 6. Change in the bell size (whole medusae) and gonad size over the course of 81 or 52 days 
of preservation for C. gregaria and E. indicans (a) Change in bell diameter (b) Change in the 
gonad area (c) Change in the bell weight (d) Change in the gonad weight  
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Table 2. Logarithmic regression fits of bell diameter, gonad area, bell wight, and gonad weight over time. 
Species Y X Formula F p-value R2 N 

C. gregaria Proportion of Original Bell 
Diameter  

Days since fixation -0.110*log(day)+ 1.002 125 <2.2e-16 0.51 23 

E. indicans Proportion of Original Bell 
Diameter 

Days since fixation -0.050*log(day)+ 0.958 56.84 4.486e-11 0.39 8 
 

C. gregaria Proportion of Original Gonad 
Area 

Days since fixation -0.075*log(day)+ 0.967 327.2 <2.2e-16 0.56 10 

E. indicans Proportion of Original Gonad 
Area 

Days since fixation -0.039*log(day)+ 0.920 8.122 0.0065 0.13 4 
 

C. gregaria Proportion of Original Bell 
Weight 

Days since fixation -0.194*log(day)+ 0.837 652.2 <2.2e-16 0.83 13 

E. indicans Proportion of Original Bell 
Weight 

Days since fixation -0.184*log(day)+ 0.922 520.3 <2.2e-16 0.93 4 
 

C. gregaria Proportion of Original Gonad 
Weight 

Days since fixation -0.147*log(day)+ 0.975 59.53 7.198e-11 0.46 10 

E. indicans Proportion of Original Gonad 
Weight 

Days since fixation -0.098*log(day)+ 1.002 14.43 0.0008 0.33 4 
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3.Morphological Measurements  

We analyzed a total of 157 medusae with 82 being C. gregaria and 75 being E. indicans. 

When the bell diameter and gonad area were corrected using the formulas from Table 2, the 

gonadal index decreased considerably with the uncorrected data being between 35 and 80-fold 

larger than the corrected data. Both C. gregaria and E. indicans had a higher gonadal index 

(gonad area/bell area) in winter compared to summer, however, the difference was not 

significant in both the corrected and uncorrected data (Fig 7, Table 3). But there was a significant 

difference between gonad area and the bell diameter between summer and winter (Fig. 8, Table 

4).   

 
Fig. 7. (a) Comparison of the gonadal index (gonad area/bell area) during a time of high food 
availability (summer) and low food availability (winter) of preserved C. and E. indicans 
preserved and collected from the North California Current in summer of 2018 and 2019, and 
winter of 2019 (a) before corrections and (b) after bell diameter and gonad area were corrected 
using correction factors from Table 2. 
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Table 3. Average gonadal index (gonad area/bell area) of both the uncorrected and corrected 
values from the C. gregaria and E. indicans from summer and winter. P-values are the p-wise 
comparisons of the indices between winter and summer.  
Uncorrected/ 
Correct 

Species Season Average 
Index 

Std. 
Deviation 

p-value between 
winter and 

summer 

N 

Uncorrected C. gregaria Summer 0.5374 ± 0.1489 
0.0639 

34 
Uncorrected C. gregaria Winter 0.5770 ± 0.2510 48 
Uncorrected E. indicans Summer 0.6051 ± 0.1683 

0.4263 
33 

Uncorrected E. indicans Winter 0.6205 ± 0.2192 42 
Corrected C. gregaria Summer 0.0067 ± 0.0045 

0.0830 
34 

Corrected C. gregaria Winter 0.0136 ± 0.0073 48 
Corrected E. indicans Summer 0.0120 ± 0.0069 

0.1035 
33 

Corrected E. indicans Winter 0.0161 ± 0.0069 42 
 

 
Fig. 8. Comparison of the uncorrected bell diameter of (a) C. gregaria and (b) E. indicans and 
gonad area of (c) C. gregaria and (d) E. indicans during a time of high food availability 
(summer,) and low food availability (winter) preserved and collected from the North California 
Current in summer of 2018 and 2019, and winter of 2019.  
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Table 4. Average and standard deviations of the raw morphological measurements of the bell 
diameter and gonad area of C. gregaria and E. indicans from both winter and summer. P-values 
are the p-wise comparisons of the bell diameter or gonad area between winter and summer.  
Species Season Bell 

Diameter or 
Gonad Area 

Average 
 

Std. Deviation 
 

p-value  N 

C. gregaria Summer Bell Diameter 18.9274 mm ± 5.6458 mm 
5.1142 x10-5 

42 

C. gregaria Winter Bell Diameter 11.6988 mm  ± 4.3846 mm 63 
C. gregaria Summer Gonad Area 5.1608 mm2 ± 3.2995 mm2 

0.0427 
42 

C. gregaria Winter Gonad Area 4.0136 mm2 ± 2.4256 mm2 63 
E. indicans Summer Bell Diameter 18.4813 mm  ± 5.8077 mm 

8.6804 x10-5 
43 

E. indicans Winter Bell Diameter 11.8179 mm ± 4.4111 mm 45 
E. indicans Summer Gonad Area 12.7336 mm2 ± 13.39946 mm2 

0.0005 
43 

E. indicans Winter Gonad Area 6.2029 mm2 ± 6.1143 mm2 45 

 
Discussion 

1.Starvation Experiments  

The starvation experiments showcased that the growth/development of the bell and 

gonads of C. gregaria vary with food availability. Unlike predicted, the gonad and bell diameter 

of all observed medusae decreased, however, those that were unfed decreased most drastically. 

This could be due to the lack of food that was provided to the different groups that even those 

fed 10 ml twice a day was still insufficient compared to the amount they would ingest in the 

natural environment. Past experiments with hydromedusae in laboratory environments have 

found that the amounts of food provided are often insufficient to stimulate feeding (Roosen-

Runge, 1970). Therefore, all the groups could have been starved leading to a decrease in size, 

which does match up with past studies which observed a decrease in bell diameter in jellyfish 

when starved (Ishii and Båmstedt, 1998).  

Another issue in the feeding was that the plankton was not caught daily, which could 

have led to feeding inactive or dead plankton. As C. gregaria do not actively pursue their prey 

(Mills, 1981), providing live prey is essential in ensuring that they encounter and capture their 
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prey as they prefer prey that is actively moving (Corrales-Ugalde and Sutherland, 2020). This is 

especially important when food concentrations are low, as they were in our experiments, as the 

ingestion rate of C. gregaria depends primarily on their encounter rate with their prey (Matsakis 

and Nival, 1989). Water circulation also plays a role (Matsakis, 1993; Roosen-Runge, 1970; 

Lucas et al., 1995) as continuous water flow has been found to be essential in maintaining the 

medusae (Lechable et al., 2020), as well as increasing the likelihood they encounter their prey 

due to their passive feeding nature (Adamík, 2006; Lucas et al., 1995: Mills, 1981). Another 

factor influencing growth could have also been temperature as there is a positive correlation 

between the growth rates of Clytia spp. and temperature up to 25 degrees Celsius (Matsakis, 

1993; Lucas et al., 1995).  

Nevertheless, we did still find that there were variations in the change in bell diameter 

and gonad area between the different feeding groups. This was most prevalent in the gonads 

where the gonad area of those fed once a day decrease less than those fed twice a day, while 

those that were unfed decreased the most (Table 1). Scarcity of food has shown to decrease the 

growth rate of Scyphomedusae into the negatives (Ishii and Båmstedt, 1998), and this 

experiment showcases that hydromedusae can do the same. We might have seen the medusae 

going through a process of degrowth, which has been shown to occur even in sexually mature 

adults during starvation (Hamner and Jenssen, 1974). The line between starved and complete 

starvation is unknown, which makes it harder to infer when we would see the prioritization 

towards gonadal growth due to starvation compared to a complete negative growth. 

2.Correction Factors for Biomass Loss of Preserved Organisms 

 The hope with the preservation experiments was to create a formula to estimate live 

measurements from our preserved ones. In addition, we discovered how differently the gonads 
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and the bell react to preservation. The change in bell weight and gonads weight formulas were 

not utilized, as weights were not obtained from the samples taken from the Newport 

Hydrographic line and Trinidad Head Line. However, the observation of the changes in weight 

over time gave us an insight into the declines of the samples that were not observed in the change 

in bell diameter and gonad area observations. The weights showed how the bell changes more 

dramatically than the gonads in formalin, which is likely due to the chemical composition of the 

tissue in the bell having a much higher water content than the gonads (Larson, 1986). 

Despite that wet weights were used which could cause overestimation of weight, 

estimates using wet weight are still fairly precise (Ahlstrom and Thrailkill, 1963). Declines of all 

samples were most prevalent during the first few days which correlates with past studies where 

the most rapid rate of shrinkage occurred during the first 24 hours and then slowed down 

(Ahlstrom, 1963; LaFontaine and Leggett, 1989). The rate of reduction in both the bell diameter 

and wet weight of C. gregaria and E. indicans in formalin matched that of previously recorded 

changes of other jellyfish species in formalin with similar trends in stabilization (Fig. 1; 

LaFontaine and Leggett, 1989). 

The lack of stabilization and the high variation in the gonad data might indicate the 

amount of loss from the gonads in the formalin. Due to the fragility of the gonads, especially 

those of the C. gregaria, the gonads slowly broke apart both from the formalin and from being 

moved by the forceps. As gonads broke apart over time, it would lead to an increase in area due 

to the newly made edge, as well as a higher decrease in weight due to tissue loss. This physical 

break-up of the samples could have also stemmed from blotting using Kim wipes (Ahlstrom and 

Thrailkill, 1963). While preservation in formalin does have its caveats, it is one of the most 
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feasible ways to measure the size and weight of marine plankton as it is often not possible to do 

with fresh specimens (LaFontaine and Leggett, 1989). 

3.Morphological Measurements  

The gonadal index varied between season with medusae collected in winter having a 

slightly higher gonadal index compared to medusae collected in summer. This is comparable to 

the higher gonad to bell ratio of A. aurita in low food availability than in high food availability 

(Fig. 4; Lucas 1996). Despite that the difference in the gonadal index was not significant, there 

was a significant difference between the raw data of the gonad area and bell diameter between 

summer and winter (student t-test, p<0.05). The difference between seasons was most prevalent 

in the gonads, which has been shown in past studies where growth rate of the gonads was always 

significantly higher than the bell (Chiaverano et al., 2004). This means that while we rejected our 

hypothesis that the medusae would have a larger gonadal index during the winter compared to 

summer, we found that there was still a force driving differences in the bell diameter and gonad 

area between the two seasons.  

As the data on the plankton abundance along the North California Current in the years of 

2018 and 2019 is rather thin, it is difficult to truly know the difference in plankton abundance 

between the summer and winter of 2018 and 2019. What has been reported is the difference in 

the copepod assemblages along the Newport Hydrographic Line between summer and winter. 

The more fatty acid rich “northern copepods” are dominant during the summer, while the 

“southern copepod,” that has lower nutritional quality and fat content, is more prevalent during 

the winter (Harvey et al., 2019). In general, the copepods present during the summer have a 

higher per capita bioenergetic content than those in the winter (Hoof and Peterson, 2006). As 

hydromedusae are known to be prevalent predators of copepods, especially C. gregaria (Daan, 
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1989), this difference in the nutritional value of the copepods present between the two seasons 

might indicate that the medusae are similarly well fed during both seasons, but obtain less 

nutritional value during winter.  

Additionally, it has been found that C. gregaria tend to ingest in excess of their 

maintenance needs during the spring season (Larson, 1987), which also might explain the larger 

sizes present during the summer. There has also been evidence that hydrozoans can increase their 

growth with a small increase in carbon investment (Larson, 1986), therefore any increase in the 

nutritional content of their food could cause a drastic change in growth. This might explain why 

we did not find a significant difference between the gonadal index between the two seasons, 

while the gonad area and bell diameter were significantly higher during summer than winter for 

both C. gregaria and E. indicans.  

Whether this difference is driven solely by seasonal production isn’t clear. Another factor 

observed to affect the size of medusae in any given season is the population density (Lucas and 

Williams, 1994). In years of high medusae abundance, the medusae tend to be smaller in size 

compared to years of low abundance. This leads to a density dependent mechanism of regulating 

adult medusae size due to increased competition for food resources (Schneider and Behrends, 

1994). Therefore, small size at maturity with a high population abundance is usually indicative of 

food scarcity (LaFontaine and Leggett, 1989). While there is evidence of this in Scyphomedusae, 

specifically Aurelia aurita, it is also likely that there is a population density dependent 

mechanism regulating the size of hydromedusae.  

Conclusion 

This study shows that there is some variation between the growth and reproduction of 

hydromedusae during a season of high production and a season of low production. Additionally, 
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differences in food availability and/or the nutritional value of food affect the nutritional state of 

hydromedusae. With the correction factors created based on formalin-preserved samples, we can 

begin to infer more about hydromedusae morphology while utilizing preserved samples.    

Recent increases in eutrophication may lead to increases of jellyfish populations in some 

areas (Mills, 2001). Various species of jellyfish, including hydromedusae, have been associated 

with fish killing events in marine-farmed fish due to their predation on plankton populations 

including fish larvae and pelagic eggs (Purcell et al., 2013; Purcell and Arai, 2001). 

Hydromedusae also compete with juvenile fish as they have the shared prey of euphausiid eggs 

and other larvae (Larson, 1987). It is vital that we garner more knowledge of the seasonal 

dynamics of hydromedusae to aid in our understanding of how these population increases will 

affect plankton populations and commercial fisheries.  
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