
ACCELERATING SCIENCE WITH DIRECTIVE-BASED PROGRAMMING ON

HETEROGENEOUS MACHINES AND FUTURE TECHNOLOGIES

by

JACOB B. LAMBERT

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2021

DISSERTATION APPROVAL PAGE

Student: Jacob B. Lambert

Title: Accelerating Science with Directive-Based Programming on Heterogeneous
Machines and Future Technologies

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Allen Malony Chair
Boyana R. Norris Core Member
Hank R. Childs Core Member
Seyong Lee Core Member
Josef Dufek Institutional Representative

and

Andy Karduna Interim Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded September 2021

ii

© 2021 Jacob B. Lambert
This work, including text and images of this document but not including

supplemental files (for example, not including software code and data), is licensed
under a Creative Commons

Attribution-ShareAlike 4.0 International License.

iii

https://creativecommons.org/licenses/by-sa/4.0/

DISSERTATION ABSTRACT

Jacob B. Lambert

Doctor of Philosophy

Department of Computer and Information Science

September 2021

Title: Accelerating Science with Directive-Based Programming on Heterogeneous
Machines and Future Technologies

Accelerator-based heterogeneous computing has become the de facto

standard in contemporary high-performance machines, including upcoming

exascale machines. These heterogeneous platforms have been instrumental to the

development of computation-based science over the past several years. However,

this specialization of hardware has also led to a specialization of associated

heterogeneous programming models that are often intimidating to scientific

programmers and that may not be portable or transferable between different

platforms. Directive-based programming offers one high-level alternative to

specialized code, but also introduces its own set of challenges. Many accelerators,

like FPGAs, may not support a directive-based approach, and others like GPUs

and CPUs may selectively support standards. In this dissertation we perform

the necessary research required to further enable directive-based computing to

consistently accelerate science on heterogeneous platforms. This research takes the

form of three major projects: (1) an OpenACC-to-FPGA framework developed to

bring FPGAs under the umbrella of directive-based computing, (2) an OpenACC

and OpenMP interoperable framework designed to improve the portability and

performance of directive-based standards across different platforms, and (3) an

iv

exploration of exascale-intended platforms with directive-based applications. This

dissertation includes previously published and co-authored material, as well as

unpublished co-authored material.

v

CURRICULUM VITAE

NAME OF AUTHOR: Jacob B. Lambert

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
University of Tennessee, Knoxville, TN, USA
Technical University of Denmark, Kongens Lyngby, Denmark

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2021, University
of Oregon

Bachelor of Arts, Computer Science, 2015, University of Tennessee

AREAS OF SPECIAL INTEREST:

High Performance Computing
Heterogeneous Programming Models
Computational Science

PROFESSIONAL EXPERIENCE:

Research Collaborator/Affiliate, Oak Ridge National Laboratory Future
Technologies Group, 2016-present, Advisor: Seyong Lee, Jeffrey Vetter

Graduate Teaching Assistant, University of Oregon, Advisor: Allen Malony,
2015, 2016

Research Assistant, Oak Ridge National Lab Electrical and Electronics
Systems Research Division, Advisor: Mark Buckner, 2013

Student Researcher, Eco-Informatics Summer Institute (EISI), 2013

Student Researcher, National Institute for Mathematical Biological
Synthesis (NIMBioS), 2013

vi

GRANTS, AWARDS AND HONORS:

Research Collaboration Grant, Oak Ridge National Laboratory, 2019

vii

PUBLICATIONS:

Lambert, J., Lee, S., Vetter, J. S., and Malony, A. D. (2021). Optimization
with the OpenACC-to-FPGA Framework on the Arria 10 and Stratix 10
FPGAs. Journal of Parallel Computing (PARCO)

Cabrera, A., Young, A., and Lambert, J. (2021). Towards Evaluating High-
Level Synthesis Portability and Performance Between Intel and Xilinx
FPGAs. International Workshop on OpenCL and SYCL (IWOCL)

Lambert, J., Lee, S., Vetter, J. S., and Malony, A. D. (2020). CCAMP: An
Integrated Translation and Optimization Framework for OpenACC and
OpenMP. International Conference on Supercomputing (SC).

Lambert, J., Lee, S., Vetter, J. S., and Malony, A. (2020). In-depth
optimization with the OpenACC-to-FPGA framework on an Arria 10
FPGA. International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (pp. 460-470). IEEE.

Lambert, J., Lee, S., Vetter, J. S., and Malony, A. D. (2019). CCAMP:
OpenMP and OpenACC Interoperable Framework. European Conference
on Parallel Processing (EuroPAR)

Lambert, J., Lee, S., Kim, J., Vetter, J. S., and Malony, A. D. (2018).
Directive-Based, High-Level Programming and Optimizations for High-
Performance Computing with FPGAs. International Conference on
Supercomputing (ICS) (pp. 160-171). ACM.

Lee, S., Lambert, J., Kim, J., Vetter, J. S., and Malony, A. D. (2018).
OpenACC to FPGA: A Directive-Based High-Level Programming
Framework for High-Performance Reconfigurable Computing. The
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC) (Poster)

viii

ACKNOWLEDGEMENTS

I want to thank Allen Malony for his unwavering support, for inspiring me

to pursue high-performance computing, and for guiding me through this process of

learning. I also want to thank Hank Childs and Boyana Norris for serving not only

on my dissertation committee, but also for advising all of my graduate milestones.

For their support throughout my graduate studies, I want to thank the ORNL

Future Technologies Group, including Jeffrey Vetter, Joel Denny, and especially

Seyong Lee. As the mastermind of OpenARC, Dr. Lee laid out the groundwork

that made the research in this dissertation possible, and I value everything I have

learned from him over the past five years. The research in this dissertation would

have been impossible without Philip Roth, Steve Moulton, and Erik Keever’s

relentless support in maintaining the software and hardware environments I

worked with. I also want to thank the program coordinators and administrative

assistants that contributed to my success as a student and intern: Cheri Smith,

Liz Herbert, Donna Wilkerson, Tara Hall, and Charlotte Wise, and Vickie Braga.

Finally I want to thank my graduate student peers, including Jonathan Brophy,

Mohammad Monil, Sam Pollard, Chad Wood, and so many others, whose support

and companionship have made this graduate experience even more rewarding.

ix

To my father, who taught me the value of integrity and commitment; my mother,

who sparked my love for science; and my partner, for all of the love and support

during this adventure

x

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION, BACKGROUND, AND MOTIVATION 1

1.1. History of Heterogeneous Computing 7

1.1.1. Distributed Heterogeneous Systems 8

1.1.2. Multicore, Manycore, and Accelerator-based
Heterogeneous Systems 15

1.2. Heterogeneous Programming Models 18

1.2.1. CUDA . 18

1.2.2. OpenCL . 20

1.2.3. HIP . 22

1.2.4. OpenACC . 23

1.2.5. OpenMP . 24

1.2.6. Other Modern Programming Models 26

1.2.6.1. Kokkos . 27

1.2.6.2. Raja . 27

1.2.6.3. SYCL, DPC++, and OneAPI 28

1.2.6.4. Legion . 29

1.2.6.5. HPX . 30

1.2.6.6. C++ . 30

1.2.6.7. Domain Specific Languages 31

1.3. Heterogeneous Compiler Frameworks 34

1.3.1. Vendor-supported Compilers 34

1.3.1.1. NVCC . 35

1.3.1.2. PGI . 35

xi

Chapter Page

1.3.1.3. AMD . 36

1.3.1.4. Intel . 37

1.3.2. Open-source Compilers 37

1.3.2.1. LLVM, Clang, and MLIR 39

1.3.2.2. GNU C/C++ 41

1.3.3. Academic, Research, and Custom Compilers 41

1.3.3.1. ROSE . 42

1.3.3.2. OpenUH . 42

1.3.3.3. Omni . 42

1.3.3.4. OmpSs . 43

1.3.3.5. OpenARC 44

1.3.3.6. HPVM . 45

1.4. Heterogeneous Benchmark Suites 46

1.4.1. Rodinia . 46

1.4.2. SPEC Accel . 46

1.4.3. Other Heterogeneous Benchmark Suites 47

II. DIRECTIVE-BASED PROGRAMMING AND
OPTIMIZATIONS FOR HIGH-PERFORMANCE
COMPUTING WITH FPGAS . 51

2.1. Background on FPGAs as Heterogeneous Accelerators 52

2.1.1. FPGA Hardware . 53

2.1.2. Traditional FPGA Programming Approaches 53

2.1.3. Contemporary FPGA Programming Models 54

2.1.3.1. OpenCL . 54

2.1.3.2. OpenACC 56

2.2. The OpenACC-to-FPGA Framework 57

xii

Chapter Page

2.2.1. Implementation in OpenARC 59

2.2.2. Automatic Optimizations 60

2.2.2.1. Dynamic Memory Transfer Alignment 60

2.2.2.2. Boundary Check Elimination 61

2.2.2.3. Branch-Variant Code Motion Optimization 62

2.2.3. Re-purposed Directives 65

2.2.3.1. Single Work-Item Optimization 65

2.2.3.2. Collapse Optimization 67

2.2.3.3. Reduction Optimization 69

2.2.4. Directive Extensions 74

2.2.4.1. Kernel Vectorization Directive 74

2.2.4.2. Compute Unit Replication Directive 75

2.2.4.3. Channels Directive 75

2.2.4.4. Sliding Window Directive 76

2.3. Experimental Setup for FPGA Platforms 84

2.3.1. Benchmarks . 84

2.3.1.1. Sobel . 86

2.3.1.2. FD3D . 86

2.3.1.3. HotSpot . 87

2.3.1.4. SRAD . 87

2.3.1.5. NW . 87

2.3.1.6. Pathfinder 87

2.3.1.7. CFD . 88

2.3.1.8. Jacobi . 88

2.3.1.9. Matmul . 88

xiii

Chapter Page

2.3.1.10. LULESH 88

2.3.2. FPGA Hardware Platforms 88

2.3.3. FPGA Software Platforms 90

2.3.4. GPU and CPU Comparison Platforms 91

2.4. Intel Stratix V Evaluations 91

2.4.1. Single Work-Item Evaluation 92

2.4.2. Collapse Evaluation 92

2.4.3. Reduction Evaluation 93

2.4.4. Sliding Window Evaluation 96

2.4.4.1. Basic Sliding Window 96

2.4.4.2. Sliding Window with Loop Unrolling 98

2.4.5. Branch-Variant Code Motion Evaluation 100

2.4.6. OpenACC and OpenCL Performance Comparison 101

2.4.7. Performance and Power Comparisons of FPGAs,
GPUs, and CPUs . 103

2.5. Intel Arria 10 and Stratix 10 Evaluations 103

2.5.1. Sobel Holistic Evaluation 105

2.5.1.1. HotSpot . 107

2.5.2. SRAD Holistic Evaluation 109

2.5.3. MatMul Holistic Evaluation 111

2.5.4. Jacobi Holistic Evaluation 114

2.5.5. Resource Usage Evaluation 115

2.5.5.1. SRAD Resource Evaluation 116

2.5.5.2. Jacobi Resource Evaluation 117

2.5.6. Compilation Times 119

2.5.7. Performance Portability 121

xiv

Chapter Page

2.5.8. LULESH Initial Evaluation 121

2.6. Intel and Xilinx OpenCL Portability Study 124

2.6.1. Porting Intel Applications to Xilinx Hardware 126

2.6.1.1. Loop Unrolling 127

2.6.1.2. Shift Registers 128

2.6.2. Minimum Modification Porting Evaluation 129

2.6.2.1. Pathfinder Porting and Evaluation 129

2.6.2.2. CFD Porting and Evaluation 131

2.6.2.3. SRAD Porting and Evaluation 132

2.6.2.4. HotSpot Porting and Evaluation 134

2.7. Directive-based FPGA Programming: Related Works 135

2.8. Directive-based FPGA Programming: Conclusions 136

III.AN INTEGRATED TRANSLATION AND OPTIMIZATION
FRAMEWORK FOR OPENMP AND OPENACC 140

3.1. OpenMP and OpenACC Interoperable Framework: Introduction . . 140

3.2. CCAMP: Background . 143

3.2.1. OpenACC and OpenMP 143

3.2.2. OpenARC . 144

3.3. CCAMP: Automated Translation between OpenMP and OpenACC . 145

3.3.1. OpenMP 4+ to OpenACC 146

3.3.2. OpenACC to OpenMP 4+ 148

3.4. CCAMP: Automated Optimization of OpenMP and OpenACC . . . 149

3.4.1. Extracting Parallelism 150

3.4.2. OpenMP Mapping on CPUs 153

3.4.3. OpenMP Mapping on GPUs 153

3.4.4. OpenACC Mapping 154

xv

Chapter Page

3.4.5. Optimization Code Examples 156

3.5. Evaluation of CCAMP Framework 159

3.5.1. Experimental Setup of Intel, IBM, and Nvidia Platforms . . . 159

3.5.1.1. Devices . 159

3.5.1.2. Compilers 159

3.5.1.3. Benchmarks 161

3.5.2. Evaluation of CCAMP Translation 163

3.5.3. Evaluation of CCAMP Optimization 165

3.5.3.1. OpenMP 4+ Optimization with Clang 165

3.5.3.2. OpenMP 4+ Optimization with PGI 167

3.5.3.3. OpenMP 4+ Optimization with XLC 167

3.5.3.4. OpenACC Optimization with PGI 168

3.5.3.5. Putting it Together: CCAMP
Translation and Optimization 169

3.5.4. Additional CCAMP Evaluations 171

3.5.4.1. GCC: Initial Evaluation 171

3.5.4.2. LULESH 2.0 172

3.5.4.3. Performance Variability 173

3.6. OpenMP and OpenACC Interoperable Framework:
Related Work . 177

3.7. OpenMP and OpenACC Interoperable Framework: Conclusions . . . 178

IV.EXPLORING HETEROGENEOUS PROGRAMMING FOR
FUTURE DIVERSE EXASCALE PLATFORMS 181

4.1. Exploration of Exascale Platforms: Introduction 181

4.2. Exascale Platforms and Programming Models 182

4.2.1. Exascale Programming Models 184

xvi

Chapter Page

4.2.1.1. OpenMP 184

4.2.1.2. OpenACC 185

4.2.1.3. CUDA . 185

4.2.1.4. OpenCL . 186

4.2.1.5. HIP/ROCm 186

4.2.1.6. Other Notable Models 187

4.3. Exploration of Exascale Platforms: Experimental Setup 189

4.3.1. AMD Platform . 189

4.3.2. Nvidia Platform . 190

4.3.3. Intel Platform . 191

4.3.4. Benchmarks . 192

4.4. Evaluation of Heterogeneous Platforms with OpenACC,
OpenARC, and CCAMP . 193

4.4.1. Relative Performance of Each Programming
Model Across Devices 193

4.4.2. Absolute Performance of Programming Models
on Each Device . 198

4.4.3. OpenMP Mappings 202

4.4.4. Intel icpx and Intermediate Representations for OpenMP . . 204

4.4.5. LLVM and Nvidia Implementation Comparison
for OpenCL and OpenMP 205

4.5. Exploration of Exascale Platforms: Related Work 207

4.6. Exploration of Exascale Platforms: Conclusions 209

V. CONCLUSION . 212

REFERENCES CITED . 215

xvii

LIST OF FIGURES

Figure Page

1. Summary of the state of heterogeneous programming and computing. . . 6

2. Re-evaluation of the state heterogeneous programming and computing. . 6

3. Re-creation of conceptual model of heterogeneous computing 12

4. Overview of OpenARC compiler framework 45

5. FPGA hardware components available through Intel
OpenCL SDK for FPGAs . 54

6. OpenACC-to-FPGA multi-threaded and pipeline-parallel
approaches (Stratix V). 93

7. Initialization interval (II), circuit frequency, runtime,
resource usage, and shift-register depth relationships
(Stratix V) . 95

8. Comparison of a single work-item and a single work-item
with shift-register sliding window approach (Stratix V) 97

9. Sliding window optimization with different unroll factors
applied (Stratix V) . 99

10. OpenACC and OpenCL with FPGA-specific optimizations
(Stratix V). 102

11. Comparison of OpenMP CPU (Xeon x32) executions,
OpenACC GPU (K40c) executions, and OpenACC FPGA
(Stratix V). 104

12. Runtime performance of Sobel with different FPGA-specific
optimizations applied (Arria 10 and Stratix 10). 106

13. Runtime performance of HotSpot with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). 108

14. Runtime performance of SRAD with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). 110

xviii

Figure Page

15. Runtime performance of MatMul with different FPGA-
specific optimizations applied. (Arria 10 and Stratix 10) 112

16. Runtime performance of Jacobi with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). 113

17. SRAD Runtime performance compared to compilation time
(Stratix 10) . 120

18. Performance portability evaluation (Stratix 10 and Arria 10). 122

19. The average percentage of peak performance achieved when
executing program versions optimized for each device across
the two different devices. 122

20. Runtime performance of LULESH with different FPGA-
specific optimizations (Stratix 10 and Arria 10). 124

21. Performance comparison of baseline and optimized kernels (U250) . . . 130

22. Performance comparison of manually coded applications and
CCAMP-translated applications 164

23. Clang + OpenMP. Run time comparison of SPEC hand-
optimized and CCAMP automated optimization 166

24. PGI + OpenMP. Run time comparison of SPEC hand-
optimized and CCAMP automated optimization. 167

25. XLC + OpenMP. Run time comparison of SPEC hand-
optimized and CCAMP automated optimization. 168

26. PGI + OpenACC. Run time comparison of SPEC hand-
optimized and CCAMP automated optimization. 170

27. GCC performance of OpenACC manual and CCAMP
optimized (P100) . 172

28. Performance of OpenACC manual and CCAMP optimized,
and performance of OpenMP translated and OpenMP
translated + optimized . 174

29. Comparison of performance variability with different sets of
directives between OpenMP and OpenACC 175

30. Relative runtime comparison of programming models across devices. . . 194

xix

Figure Page

31. Absolute runtime performance comparison of different
programming models. 199

32. Runtime performance comparison of different CCAMP
OpenMP mappings across different architectures. 203

33. Runtime performance comparison of two OpenCL
implementations and two OpenMP implementations (A100). 206

xx

LIST OF TABLES

Table Page

1. Summary of heterogeneous computing challenges addressed
in each chapter. 3

2. Comparison of CUDA and OpenCL GPGPU abstractions 22

3. OpenACC and OpenCL benchmarks evaluated using FPGAs 84

4. Intel and Xilinx Hardware Resource Features 89

5. FPGA-specific collapse clause performance comparison
(Stratix V) . 93

6. SRAD FPGA reduction performance comparison (Stratix V). 96

7. HotSpot code motion performance evaluation (Stratix V) 101

8. SRAD benchmark resource usage data (Arria 10) 115

9. SRAD benchmark resource usage data (Stratix 10) 116

10. Jacobi benchmark resource usage data (Arria 10) 117

11. Jacobi benchmark resource usage data (Stratix 10) 118

12. LULESH benchmark resource usage data (Stratix 10) 123

13. List of kernels ported from Intel OpenCL to Xilinx OpenCL 126

14. Examples of straightforward directive translations
implemented in CCAMP. 147

15. SPEC Accel Benchmark Attributes 163

16. Naive Jacobi and Matmul OpenMP 4+ Run Times
Optimized with CCAMP. 171

17. Exascale Programming Models and Implementations Explored 188

18. Runtime performance comparison of Level0 and OpenCL backends . . . 205

xxi

LIST OF SOURCE CODE LISTINGS

Listing Page

1.1. Example CUDA C Application 19

1.2. Example OpenCL C Application 49

1.3. Example OpenACC C Application 50

1.4. Example OpenMP C Application 50

2.1. Code Motion: Input conditional 64

2.2. Code Motion: Modified conditional 64

2.3. Code Motion: After code motion 64

2.4. OpenACC Single work-item directives 67

2.5. OpenACC nested loops with collapse clause 68

2.6. OpenACC loop after collapse transformation 68

2.7. OpenACC sum reduction . 71

2.8. OpenCL generated from OpenARC’s FPGA-specific
reduction transformation . 73

2.9. OpenACC with window directive 78

2.10. Transformed OpenCL sliding window code 81

2.11. Transformed OpenCL sliding window code with loop unrolling . . . 83

2.12. Inferring a shift register using the Intel and Xilinx platforms. 129

3.1. Naive OpenMP Jacobi CCAMP Optimization 157

3.2. Naive OpenACC Matmul Optimization 158

xxii

CHAPTER I

INTRODUCTION, BACKGROUND, AND MOTIVATION

Heterogeneous computing has undoubtedly become a permanent resident in

the high-performance computing (HPC) landscape. The idea of using a diversity

of hardware devices or systems together to solve a single problem is already a

reality in today’s leading supercomputer systems [1, 2]. The upcoming exascale

systems, the largest and most powerful computing machines ever built, all depend

innately on heterogeneous design [3, 4, 5]. As we approach the physical limitations

of CPU-based fabrics, advancement in computational system design will require

specialization not just in terms of processors and accelerators, but also memory

hierarchies, storage, and more. While this era of extreme heterogeneity [6] will

certainly give rise to interesting and powerful machines, it will also give rise

to significant challenges. Below, we lay out the most significant and universal

challenges in today’s and tomorrow’s heterogeneous programming and computing

landscape, and describe how this dissertation’s contributions move us one step

closer to a solution.

A - Diversity of Hardware: In this dissertation, we discuss projects

involving both GPU and FPGA accelerators. However, for upcoming and future

systems, other types of accelerators besides GPUs and FPGAs are being explored

as hardware accelerators. More exotic, customized, and specialized hardware

accelerators are being explored as viable options in heterogeneous systems. Machine

learning accelerators, neuromorphic chips, and quantum accelerators promise to

bring incredible performance to science, but also incredible challenges. As we see

in this dissertation, the introduction of GPU and FPGA accelerators has already

created hurdles for efficient heterogeneous computing.

1

B - Diversity of Programming Models: The diversity of heterogeneous

hardware has already led to a diversity of high-performance programming

models. This will undoubtedly be exacerbated as we transition toward extreme

heterogeneity. While this diversity of models may appear necessary to support

the wide range of devices, it leaves classes of devices inaccessible to classes of

application developers.

C - Abstraction Level for Scientific Computing: Another point

of contention in contemporary heterogeneous programming is the appropriate

abstraction level for programming models. While computer scientists and

professional programmers may prefer lower-level models that provide opportunities

to fine-tune applications to specific devices, domain scientists may prefer a higher-

level model that allows for portability between ecosystems. This can again lead to

divergent programming models. DSLs like Tensorflow [7] may provide an optimal

high-level approach, and these DSLs can be built using generalized low-level

approaches. However, this has stranded the programmer looking for a high-level

heterogeneous programming approach for an application outside the popular DSL

frameworks.

D - Balance Between Open-Source and Proprietary: Another

significant trade-off is the balance between open-source and proprietary

frameworks. Nvidia’s CUDA Toolkit [8] has been extremely successful as a frontier

of GPU-CPU heterogeneous computing. Because of the toolkit’s proprietary

nature, Nvidia has been financially motivated to maintain, update, document, and

market its tools, which has led to widespread adoption and longevity. However,

the successes of a proprietary framework are less likely to extend to an extremely

heterogeneous environment. An alternative could be open source solutions and

2

Table 1. Summary of heterogeneous computing challenges addressed in each
chapter.
A - Diversity of Hardware,
B - Diversity of Programming Models,
C - Abstraction Level for Scientific Computing,
D - Balance Between Open-Source and Proprietary

Chapter I Introduction
Chapter II A, C
Chapter III A, B
Chapter IV A, B, C, D
Chapter V Conclusion

standards like OpenMP, but these solutions may experience less streamlined

development. For example, the OpenMP offloading standard was first released in

2013, but the first fully functional implementations were very recently released.

Working Toward Solutions - This Dissertation: In this dissertation,

we push directive-based programming forward as one solution to the challenges

above. In Table 1, we list the specific challenges addressed in each chapter of

this dissertation. Our main research question is as follows: Can an open-

source, high-level, directive-based programming approach deliver

specialized performance on the diversity of contemporary heterogeneous

accelerators and exascale hardware?

This question is directly related to each of the challenges mentioned above.

(A) Because of its high-level nature, a directive-based solution can more easily

incorporate new heterogeneous device families without significant restructuring

of a language or standard. In contrast, a lower-level approach may need to

be significantly extended or specialized to support a new device. (B) A single

directive-based approach with implementations across systems can circumvent

the issue of branching programming models designed for specific devices. (C) The

3

abstraction level of directive-based models can be more palatable for scientists from

different domains compared to lower-level languages. And finally, (D) an open-

source directive-based standard allows for wide adoption across ecosystems, even if

implementations on specific platforms internally rely on proprietary backends.

We now present an outline of this dissertation. In Chapter I, we introduce

the history of heterogeneous computing, and the contemporary programming

models and compiler frameworks most commonly featured in heterogeneous

computing-related research and science. We also discuss the available benchmark

suites designed to evaluate heterogeneous platforms. The material in this chapter

is unpublished with no co-authorship, although revision suggestions were given by

Seyong Lee and the dissertation committee (Allen Malony, Hank Childs, Boyana

Norris) as part of an Area Exam submission.

In Chapter II, we address the diversity of hardware by presenting an

OpenACC-to-FGPA framework that encapsulates FPGAs under the umbrella of

directive-based acceleration. Using this framework, a single application written

using OpenACC can be run on a CPU, GPU, and FPGA. Within the framework,

device-specific compiler optimizations produce low-level code specific to the

targeted hardware. This framework is also one solution to the abstraction level for

scientific computing, as it provides a palatable programming abstraction level for

a very specialized device. Chapter II contains previously published material with

co-authors from ICS 2018 [9], AsHES 2020 [10], PARCO 2021 [11], and IWOCL

2021 [12].

In Chapter III, we introduce an OpenACC and OpenMP interoperable

framework that addresses the diversity of programming models between the two

most widely used directive-based standards. This framework also addresses the

4

diversity of hardware by allowing a single application written in one standard to

execute on any device supporting either standard. Chapter III contains previously

published material with co-authors from HeteroPar 2019 [13] and SC 2020 [14].

In Chapter IV we present an exploration of exascale-intended platforms

using applications written in a single programming model, OpenACC. Each

OpenACC application is then source-to-source translated and compiled to several

different platforms. This addresses all four problems above: (A and B - diversity

of hardware and programming models) we target multiple different hardware

accelerators using not only a single programming model, but a single source code

without modification, (C - abstraction level for scientific computing) we assess a

single high-level directive-based abstraction model for several specialized platforms,

and (D - balance between open-source and proprietary) our evaluated applications

are written using a single open-source standard, and source-to-source translated

using an open-source compiler into several proprietary low-level programming

models, allowing us to take advantage of both ownership approaches. Chapter IV

contains unpublished material with co-authors.

Finally, in Chapter V we make a high-level assessment of contemporary

heterogeneous computing, summarize the research in this dissertation, and discuss

avenues for future research. Chapter IV contains unpublished material.

In Figure 1, we see a summary, albeit simplified, of the current state of

heterogeneous computing. We see directive-based programming models, low-level

models, and accelerators. The solid lines here means a mainstream implementation

supports compilation of a model on an accelerator or device, while a dotted line

indicates supports with extra steps. While there is some overlap between models

on many platforms, even in these cases, the code written in the same standard

5

CUDA

Intel Xe (GPU)

Intel HLS OpenCL

Intel Stratix/Arria (FPGA)

Nvidia Tesla (GPU) AMD Instinct (GPU)

Intel Xeon (CPU)

OpenACC OpenMP

IBM Power (CPU)

HIP OpenCL

Directive-Based Model

Low-level Model

Accelerator

Figure 1. Summary of the state of heterogeneous programming and computing.

may not be directly portable between the platforms. Furthermore, for devices with

support for multiple programming models, the associated implementations may be

significantly more mature for a single model or subset of the technically supported

models. Figure 1 succinctly exposes the challenges mentioned above.

Intel Stratix/Arria 10

OpenACC OpenMP

Intel HLS OpenCL

Chapter II
OpenACC-to-FPGA

Chapter III
OpenACC and
OpenMP
Interoperable
Framework

Intel XeonIBM Power 9

Nvidia P100/V100

Chapter IV
Exascale Platform
Evaluation

CUDA

Nvidia A100

HIP

Intel Xe Max

OpenCL

AMD MI50

Directive-Based Model

Low-level Model

Accelerator

Figure 2. Re-evaluation of the state heterogeneous programming and computing
after including this dissertation’s contributions.

6

In Figure 2, we see a re-imagined landscape for heterogeneous computing

as a result of the research in this dissertation. Because of the contributions

in Chapter III, we can now encapsulate OpenACC and OpenMP as an

interchangeable, high-level, front-end programming model. The contributions of

Chapter II allow us to include Intel FPGAs into this encapsulation, instead of

relying on Intel-specific OpenCL. Finally, due to the contributions of Chapter IV,

we see the diversity of low-level models and devices that can be evaluated using

a single directive-based frontend and a sufficiently optimized source-to-source

compiler. Throughout the rest of this dissertation, we take an extended dive into

these three projects, and examine how the performed research motivates Figure 2.

This dissertation includes prose, figures, and tables from previously

published conference, workshop, and journal proceedings.

1.1 History of Heterogeneous Computing

Heterogeneous computing is paramount to today’s high-performance

systems. The top and next generation of supercomputers all employ heterogeneity,

and even desktop workstations can be configured to utilize heterogeneous execution.

The explosion of activity and interest in heterogeneous computing, as well as the

exploration and development of heterogeneous programming approaches, may

seem like a recent trend. However, heterogeneous programming has been a topic

of research and discussion for nearly four decades. Many of the issues faced by

contemporary heterogeneous programming approach designers have long histories,

and have many connections with now antiquated projects, ideas, and technologies.

In this section, we explore the evolution and history of heterogeneous

computing, with a focus on the development of heterogeneous programming

approaches. In Section 1.1.1, we do a deep dive into the field of distributed

7

heterogeneous programming, the first major application of hardware heterogeneity

in computing. We also briefly explore the phasing-out of distributed heterogeneous

systems and approaches, and discuss the transitional period for the field of

heterogeneous computing. In Section 1.1.2, we provide an exploration into

contemporary accelerator-based heterogeneous computing, specifically analyzing

the different programming approaches developed and employed across different

accelerator architectures.

1.1.1 Distributed Heterogeneous Systems. Even 40 years ago,

computer scientists realized heterogeneity was needed due to diminishing returns

in the homogeneous systems. In the literature, the first references to the term

“heterogeneous computing” referenced the distinction between single instruction,

multiple data (SIMD) and multiple instruction, multiple data (MIMD) machines in

a distributed computing environment.

Several machines dating back to the 1980s were created and advertised as

heterogeneous computers. Although these machines were conceptually different

than today’s heterogeneous machines, they still were created to address the same

challenges: using optimized hardware to execute specific algorithmic patterns.

The Partitionable SIMD/MIMD (PASM) [15] machine developed at Purdue

University in 1981 was initially developed for image processing and pattern

recognition applications. PASM was unique in that it could be dynamically

reconfigured into either a SIMD or MIMD machine, or a combination thereof. The

goal was to create a machine that could be optimized for different image processing

and pattern recognition tasks, configuring either more SIMD or MIMD capabilities

depending on the requirements of the application.

8

However, like many early heterogeneous computing systems,

programmability was not the primary concern. The programming environment for

PASM required the design of a new procedure-based structured language similar to

TRANQUIL [16], the development of a custom compiler, and even the development

of a custom operating system.

Another early heterogeneous system was TRAC, the Texas Reconfigurable

Array Computer [17], built in 1980. Like PASM, TRAC could weave between SIMD

and MIMD execution modes. But also like PASM, programmability was not a

primary or common concern with the TRAC machine, as it relied on now-arcane

Job Control Languages and APL source code [18].

The lack of focus on programming approaches for early heterogeneous

systems is evident in some ways by the difficulty in finding information on how the

machines were typically programmed. However, as the availability of heterogeneous

computing environments increased throughout the 1990s, so did the research and

development of programming environments.

Although the first heterogeneous machines consisted of mixed-mode

machines like PASM and TRAC, mixed-machine heterogeneous systems became

the more popular and accessible option throughout the 1990s. Instead of a single

machine with the ability to switch between a synchronous SIMD mode and an

asynchronous MIMD mode, mixed-machine systems contained a variety of different

processing machines connected by a high-speed interconnect. Throughout the

80s and early 90s, this environment expanded to include vector processors, scalar

processors, graphics machines, etc.

Examples of machines used in mixed-machine systems include graphics and

rendering-specific machines like the Pixel Planes 5, Silicon Graphics 340 VGX,

9

SIMD and vector machines like the MasPar MP-series and the CM 200/2000, and

coarse-grained MIMD machines like the CM-5, Vista, and Sequent machines.

It was well understood that different classes of machines (SIMD, MIMD,

vector, graphics, sequential) excelled at different tasks (parallel computation,

statistical analysis, rendering, display), and that these machines could be networked

together in a single system. However, coordinating these distributed systems to

execute a single application presented significant challenges.

The 1988 work by Ercegovac [19], Heterogeneity in Supercomputer

Architectures, represents one of the first published works specifically surveying the

state of high performance heterogeneous computing. They define heterogeneity as

the combination of different architectures and system design styles into one system

or machine, and their motivation for heterogeneous systems is summed up well by

the following direct quote:

Heterogeneity in the design (of supercomputers) needs to be considered

when a point of diminishing returns in a homogeneous architecture is

reached.

As we see throughout this work, this drive for specialization to counter

diminishing returns from existing hardware repeatedly resurfaces, and this

motivation for heterogeneous systems is very much relevant today.

At the time of Ercegovac’s work, there existed three primary homogeneous

processing approaches in high-performance computing: (1) vector pipeline and

array processors, (2) multiprocessors and multi-computers following the MIMD

model, and (3) attached SIMD processors. These approaches were ubiquitous

across all the early surveyed works related to distributed heterogeneous computing,

10

and they heavily influenced the construction of heterogeneous systems and the

development of heterogeneous software and programming approaches.

A later survey was published in 1995: Goals of and Open Problems in

High-Performance Heterogeneous Computing by Siegel et al. [20]. Siegel was

very involved in the early development of distributed heterogeneous computing,

including the outline of the PASM system mentioned above. The authors presented

the following goal for heterogeneous computing:

To support computationally intensive applications with diverse

computing requirements. Ideally presented to the user in an invisible

way.

Looking to the future, this survey by Siegel et al. introduced a conceptual

model for an end-to-end heterogeneous programming and computing approach,

recreated for this dissertation in Figure 3. Although the model is conceptual, as

no complete implementation existed at the time, the model and derivations of

it appear frequently in the subsequent heterogeneous computing literature. The

concepts of 1) automated machine and algorithm classification, 2) automated

task profiling and analytical benchmarking, and 3) automated scheduling and

assignment of sub-tasks to heterogeneous components were open questions at the

time, and largely remain open questions today.

While most parallel computing research at the time focused on

computational models, algorithms, or machine architectures, the PVM project [21],

started at Oak Ridge National Laboratory, was an early attempt to provide a

unified programming model for both homogeneous and heterogeneous distributed

environments. The overarching goal of PVM was to allow a diverse and scalable

set of heterogeneous computer systems to be programmed as a single parallel

11

Heterogeneous Computing: Conceptual Model

generation of parameters that are represented
as general characteristics of computational
requirements and general characteristics of

machine capabilities

matching and scheduling of subtasks to
machines based on cost metric

execution of the given application on the
heterogeneous suite of machines

task profiling

for a given application

analytical benchmarking for the
machines in the heterogeneous

suite

applications machines in the
heterogeneous suite

general characteristics of

computational requirements

general characteristics of

machine requirements

current loading/status of
machines and network

specific
characteristics of machines and
inter-machine communication

overhead

specific characteristics of each
subtask of the application

assignment of subtasks to
machines in the heterogeneous suite

Stage 1

Stage 2 Stage 2

Stage 3

Stage 4

information

action

Figure 3. Re-creation of conceptual model of heterogeneous computing by Siegel et
al. [20]

12

virtual machine. Essentially, PVM was designed as a programming environment for

interacting but independent components. Other early heterogeneous programming

languages included HeNCE [22, 23, 24], an extension to PVM, the p4 project [25]

from Argonne National Laboratory, and the Mentat Language [26, 27], developed as

extensions to C++.

Thirty years later, many of the visions of the developers of early

distributed heterogeneous systems are still just that—visions. As we see in the

later chapters and sections of this dissertation, most modern heterogeneous

programming approaches still require some manual management of data transfers,

communication, and synchronization, although typically with more user-friendly

programming approaches than those of early systems like Mentat. Much of the

research and discussion today in heterogeneous computing revolves around finding

the appropriate abstraction level, as previously mentioned.

The diversity of processors in these early heterogeneous distributed systems

seems small relative to today’s array of co-processors (GPUs, FPGAs, TPUs, etc.).

These early processors would all typically fall into the “traditional CPU” in today’s

categorization.

However, the diversity in supporting hardware and software was far greater

in early heterogeneous ecosystems than today’s typical cluster and supercomputer

environments. Because the sub-components were typically completely separate

machines, they experienced heterogeneity in the network architecture, the

connection latencies, and the different communication bandwidths for different

machines. On the software side, different machines had different operating systems,

different process support and inter-process communications, varied compiler

and language support, and multiple file systems. Unlike today’s cluster and

13

supercomputing environments with mostly homogeneous software environments,

early distributed heterogeneous system approaches required masking these

network and software diversities. However, as we transition into an era of extreme

heterogeneity, many of these early considerations are likely to resurface.

Around the turn of the century, the keywords and terminology surrounding

heterogeneous distributed systems research began to shift. The next realization

of heterogeneous computing systems began to be referred to as Metasystems, or

referenced in the context of Metacomputing, and Grid Computing. This shift

in perspective reflected a more universal or global outlook on heterogeneous

computing. Distributed heterogeneous computing, coincident with the rapid

and impressive growth of the internet and web-based computing, expanded into

Metacomputing, Grid Computing, and eventually set up the backbone for the

monolith that is today’s cloud-based computing.

The goals of Meta and Grid computing were to create infinitely scaling

systems by harnessing the power of remotely connected heterogeneous systems.

While some projects tackled this, these ideas were ultimately re-purposed for

commercial success under the umbrella of cloud computing. Additionally, with

respect to scientific endeavors, the construction of large-scale homogeneous

clusters and supercomputers beckoned a shift from distributed heterogeneous

machines. At the same time, the growth of MPI, without a major focus on

heterogeneous interoperability, overshadowed projects like PVM and p4 that

targeted heterogeneous systems.

Finally, the very things that made early machines heterogeneous began to

be integrated into single homogeneous processors. Unlike mixed-mode machines like

PASM with distinct SIMD and MIMD processing, many new multi-core vectorizing

14

processors seamlessly integrate both SIMD and MIMD capabilities, which forgoes

the need for a heterogeneous programming environment. Similarly, as we previously

discussed, early distributed heterogeneous systems contained separate processors

for visualization, statistics, and data processing. However, with the expansion of

x86 and inclusion of specialized and vector instructions on general purpose CPU

processors, the problems these early heterogeneous systems tackled could now be

solved by homogeneous systems.

The shift into cloud computing, the ubiquity of MPI, and the continuous

consolidation into x86 CPUs in many ways signaled the end of heterogeneous

computing as it was originally imagined. However, as we see in the next section

(Section 1.1.2), the rebirth of heterogeneous computing, and reinvention of many

of the ideas previously mentioned, was sparked by the introduction of accelerator-

based heterogeneous systems.

1.1.2 Multicore, Manycore, and Accelerator-based

Heterogeneous Systems. Hardware processing chips evolved from a single core,

to multi-core and manycore chips, which then developed into hardware accelerators.

These developments revolutionized the architectures of nearly all high-performance

machines, and effectively re-birthed the field of heterogeneous computing.

The construction of large homogeneous machines marked the end of the

2000s decade and the end of heterogeneous distributed systems like we saw in the

1980s and 1990s. Jaguar [28], built around 2009 at Oak Ridge National Laboratory,

was a Cray XT5 system, consisting of 224,256 x86-based AMD CPU cores, and

was listed as the world’s fastest machine in 2009 and 2010. Kraken [29], another

Cray Xt5 system built in 2009, was listed as the world’s fastest academic machine

at the time. These homogeneous machines dominated the domain of HPC for

15

several years. Likewise, HPC software support, programming approaches, and

compiler infrastructure developed during this time was also largely homogeneous.

However, at the same time, scientific programmers began experimenting with

programming using Graphics Processing Units, or GPUs, a trend that would

eventually revolutionize the HPC field.

In 2000, Toshiba, Sony, and IBM collaborated on the Cell Project [30]. This

project culminated in the release of the Cell Processor in 2006. While not strictly

a GPU, the Cell Processor was one of the first architectures to apply accelerator-

based heterogeneity to multi-media and general purpose applications. The Cell

Processor’s first major commercial application was inside the Sony PlayStation

3 gaming console. In 2008, IBM and Los Alamos National Laboratory (LANL)

released the Roadrunner supercomputer, which consisted of a hybrid design with

12,960 IBM PowerXCell and 6,480 AMD Opteron dual-core processors [31]. The

IBM PowerXCell processors absorbed the original Cell processor design.

While the Cell processor generated excitement and a new interest in

a different type of heterogeneous computing, it was only efficient for certain

computations, and the overhead of manually transferring memory to and from

the device was a performance bottleneck due to the small memory size of the Cell

architecture. Although GPUs and other heterogeneous accelerators suffer from

these same issues, they evolved and developed to meet the demand of scientific

computing.

The scientific community began evaluating GPUs for general purpose

processing well before their use became mainstream. In 2001, researchers evaluated

general purpose matrix multiplication, and in 2005 LU decomposition on a GPU

was shown to outperform a CPU implementation [32]. Interest in utilizing GPUs

16

in scientific computing continued to grow, but was inhibited by the complex

programming approaches for GPUs, which typically required a low-level graphics

interface and dealing with shaders and graphics-related APIs data structures.

However, with the release and development of programming models and frameworks

mentioned in subsequent sections, GPU programming, and the whole field of

scientific heterogeneous programming including other types of accelerators, became

the norm in high-performance computing. Throughout the rest of this dissertation,

references to “heterogeneous computing” typically imply the contemporary

accelerator-based flavor.

Since the initial release of CUDA in 2006, GPGPUs have been the dominant

driving force for accelerator-based heterogeneous computing. The concept of

offloading computationally intense regions of code to a heterogeneous hardware

accelerator has become commonplace in scientific computing, and for the past

decade, heterogeneous computing has almost exclusively referred to GPGPU

offloading. However, FPGAs have recently emerged as a potential competitor to

GPU accelerators, both in terms of computing power and power efficiency.

Field Programmable Gate Arrays (FPGAs) have been designed and

developed for nearly 40 years. Altera, a major FPGA manufacturer, was founded in

1983, and released the first FPGA in 1984. Xilinx, the main competitor to Altera

for several decades, was founded in 1984 and released their first FPGA in 1985.

These devices have been promoted as potential architectures for high performance

computing for decades, but until very recently, have not seen much adoption. The

real revolution for FPGAs, and their adoption as a heterogeneous accelerator, has

stemmed from the introduction of new FPGA programming approaches. Creating

17

a high-level programming approach for high-performance FPGA accelerators is the

main motivation for Chapter II.

1.2 Heterogeneous Programming Models

In this section, we first discuss the accelerator-based heterogeneous

programming models most heavily featured in this dissertation’s research results.

We then discuss several other relevant contemporary heterogeneous programming

models.

1.2.1 CUDA. Nvidia was formed in 1993, but first gained major

recognition by winning the contract to develop the graphics hardware for the

Microsoft Xbox gaming console in 2000. Nvidia continued to grow and increase its

claim in the GPU market with the release of the GeForce line, in direct competition

with AMD’s Radeon line. However, these devices were still targeted toward

graphics processing.

As the interest in scientific computing using GPUs continued to grow,

Nvidia first recognized the potential financial advantages of supporting this

community. In 2007, Nvidia launched the Tesla GPU, aimed at supporting general

purpose computing, and the CUDA (Compute Unified Device Architecture) API

and programming platform [8].

The CUDA programming platform abstracted programming GPU hardware

into an API that was more consumable by scientific programmers and other

programmers without extensive graphics programming experience. The CUDA

programming model essentially presents a hierarchical multi-threading layout,

where threads are executed as a 32- or 64-thread warp, warps are mapped onto

thread-blocks, and thread-blocks are mapped onto a grid and grid blocks. These

abstractions fit quite naturally with the nested loop structure of most scientific

18

Listing 1.1 Example CUDA C Application
1 #include <stdio.h>
2
3 global
4 void saxpy(int n, float a, float ∗x, float ∗y)
5 {
6 int i = blockIdx.x∗blockDim.x + threadIdx.x;
7 if (i < n) y[i] = a∗x[i] + y[i];
8 }
9

10 int main(void)
11 {
12 int N = 1<<20;
13 float ∗x, ∗y, ∗d x, ∗d y;
14 x = (float∗)malloc(N∗sizeof(float));
15 y = (float∗)malloc(N∗sizeof(float));
16
17 cudaMalloc(&d x, N∗sizeof(float));
18 cudaMalloc(&d y, N∗sizeof(float));
19
20 for (int i = 0; i < N; i++) {
21 x[i] = 1.0f;
22 y[i] = 2.0f;
23 }
24
25 cudaMemcpy(d x, x, N∗sizeof(float), cudaMemcpyHostToDevice);
26 cudaMemcpy(d y, y, N∗sizeof(float), cudaMemcpyHostToDevice);
27
28 // Perform SAXPY on 1M elements
29 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d x, d y);
30
31 cudaMemcpy(y, d y, N∗sizeof(float), cudaMemcpyDeviceToHost);
32
33 cudaFree(d x);
34 cudaFree(d y);
35 free(x);
36 free(y);
37 }

software. Listing 1.1 shows an example CUDA application, sourced from Nvidia’s

website [33].

As the popularity of CUDA and GPGPU programming grew, several large

supercomputers began including both host CPUs and GPU accelerators. In 2010,

China’s Tianhe-1A machine launched, containing 14,336 Xeon X5670 processors

and 7,168 Nvidia Tesla M2050 general purpose GPUs [34]. This heterogeneous

machine overtook the previously mentioned Jaguar machine from Oak Ridge

National Laboratory (ORNL) as the “world’s fastest supercomputer”. ORNL’s

Titan supercomputer, a successor Jaguar, launched in 2013 and consisted of 18,688

19

AMD Opteron CPUs, each with an attached Nvidia Tesla (K20x) GPU [35]. This

machine also secured the top spot as the world’s fastest machine.

More recently, Nvidia GPUs and CUDA programming were employed in

ORNL’s Summit Supercomputer [1], another machine that briefly held the title

as the world’s fastest. Summit was launched in 2018 and contains 4,608 nodes

each with 6 Nvidia Tesla V100 GPUs. Similarly, Lawrence Livermore National

Laboratory (LLNL) launched the Sierra Supercomputer [2] in 2018, containing

4,320 nodes each with 4 Nvidia Tesla V100 GPUs.

Much of CUDA’s success in scientific programming can be attributed to

Nvidia’s continued investment in and focus on CUDA training. Online and in-

person training workshops, and a surplus of available training materials, made

Nvidia and CUDA an attractive GPGPU option compared to other vendors.

This focus on training and CUDA’s success should provide a model for future

heterogeneous programming approaches. Some newer approaches like OpenACC

(also supported by Nvidia, and discussed in detail in Section 1.2.4) have also

adopted this strategy, frequently hosting learning-focused hackathons and

generating significant training materials [36].

In this dissertation, CUDA is employed as a backend programming model in

Chapter IV.

1.2.2 OpenCL. CUDA’s dependence on Nvidia devices spawned

efforts to create an open-source alternative. OpenCL was developed as one

alternative[37]. As we see in the remainder of this dissertation, OpenCL has

become a staple of accelerator-based heterogeneous programming approaches, both

as a stand-alone approach and as an intermediate representation or backend for

higher-level approaches.

20

OpenCL (Open Computing Language) was originally developed by Apple

as a GPGPU option under the OSX umbrella. In early 2008, Apple submitted

a proposal to the Khronos Group for creation and management of an OpenCL

standard [37]. On November 18, 2008 the OpenCL 1.0 technical specification was

released. By the end of 2008, AMD, Nvidia, and IBM had all incorporated OpenCL

support into their vendor toolchains.

Like CUDA, the OpenCL programming approach separates an application

into host code and device code. The abstraction level for the OpenCL device

code is very similar to CUDA, but the host code abstractions are arguably more

verbose. Like CUDA, GPU cores are abstracted into a tiered parallelism. In

OpenCL, work-items are executed as part of a work-group, and work-groups are

organized inside an ND range (Table 2). Listing 1.2 demonstrates and example

vector addition application in OpenCL. From the line count alone, we can see that

OpenCL requires a significant amount of low-level and boilerplate code, although

this functionality is typically encapsulated in routines and libraries by frequent

OpenCL programmers. However, each programmer creating a personalized set of

routines to abstract OpenCL API calls creates issues with code portability and

interpretability.

Although OpenCL does provide an open-source alternative to CUDA that is

supported across several different device vendors (Nvidia, Intel, IBM, AMD), it has

not become the de facto standard for heterogeneous GPGPU computing. First, the

widespread success of CUDA and Nvidia’s dominance in the GPGPU market has

allowed scientific programmers to safely choose a non-portable option. Second, the

abstraction level, especially the verbosity of the host code, has led many GPGPU

developers to seek higher-level abstractions, as we see in the following section.

21

Table 2. Comparison of CUDA and OpenCL GPGPU abstractions

CUDA OpenCL

Grid NDRange
Thread Block Work group

Thread Work item
Thread ID Global ID
Block index Block ID

Thread index Local ID

However, as we discuss later, although OpenCL has not seen widespread adoption

as a programming approach, many frameworks and compilers target OpenCL as a

backend API (OneAPI [38], OpenARC [39], TVM [40], etc.)

The OpenCL programming model is a critical component of this

dissertation, and is featured as a backend programming target in Chapters II and

IV.

1.2.3 HIP. Nvidia’s main competitor in the GPU market,

traditionally in the consumer market but more recently also in the high-

performance and scientific community, is AMD. Unlike Nvidia, AMD has

not developed a proprietary programming approach and vendor compiler for

heterogeneous computing. Instead, to support its GPU architectures AMD has

developed the open-source ROCm (Radeon Open Compute) suite [41]. ROCm is

a collection of APIs, drivers, and development tools that support heterogeneous

execution on both AMD GPUs, but also other architectures like Nvidia GPUs.

The actual programming model developed as part of ROCm is HIP, another

low-level approach with a similar abstraction level to CUDA and OpenCL.

However, the ROCm toolkit and associated compilers also support OpenMP and

OpenCL applications. The compilers, libraries, and debuggers for ROCm are

available from the open-source github [42]. Although the current generation of top

22

supercomputers like Sierra and Summit employ Nvidia GPUs, future systems like

ORNL’s Frontier [3], expected to launch in 2021, will employ AMD GPUs. This

transition could herald a shift away from CUDA, and increase the use of ROCm

and HIP across all of scientific computing.

In this dissertation, HIP is employed as a backend programming model in

Chapter IV.

1.2.4 OpenACC. OpenACC (originally short for Open Accelerators)

is one of this first high-level (as opposed to low-level approaches like HIP, OpenCL,

and CUDA) GPGPU programming approaches that still supports a significant user

base today (as of 2021). OpenACC was first released in 2012 as a collaboration

between Cray, NVIDIA, and the Portland Group in order to support the users of

ORNL’s Titan, one of the first large heterogeneous supercomputers. As previously

mentioned, Titan was a Cray machine with Nvidia devices. The Portland Group

was involved because OpenACC was inspired by the high-level directive approach

used in in the PGI-Accelerator model, and the first OpenACC compiler provided by

PGI was developed as an extension to the PGI-Accelerator compiler [43, 44].

The dream of OpenACC was to create an open, directive-based standard

for GPU-computing as an analog and counterpart to the then de facto standard

for parallel processing on multi-core CPUs, OpenMP. In the same way that a small

number of OpenMP pragmas can be used to parallelize an existing application,

OpenACC intended to provide a minimal set of directives that application

developers could apply to accelerate an existing CPU-based scientific application

on a GPU. This contrasted with the existing lower-level programming approaches

like CUDA and OpenCL, which required a significant amount of code restructuring

and rewriting for GPU acceleration.

23

The ideology of OpenACC is to allow users to expose and identify

parallelism in an application using descriptive directives, and to leave the more

complicated task of mapping parallelism to GPU devices in the hands of the

OpenACC compiler. This deviates from the OpenMP model, which traditionally

employed a very moderated and prescriptive application of directives.

This high burden of effort tasked to OpenACC compilers in some ways

has prevented OpenACC from reaching the popularity and monopoly status of

its OpenMP analog. Although OpenACC is intended for general-purpose GPU

computing across different vendors, for most of its history, the PGI OpenACC

compiler has been the only available production-level option, and was restricted

to Nvidia devices. Now, nearly a decade later, other implementations have more

fully adopted the OpenACC standard and implemented more functional support.

We discuss these compilers in more detail in Section 1.3.

An OpenACC annotated application typically contains a combination of

data and compute directives centered around a computationally intense region

of code or loop nest. In Listing 1.3, we see a small C program annotated with

two OpenACC directives, a data directive (line 16) and a compute directive (line

19). Replicating this high-level programming approach in a low-level approach like

CUDA or OpenCL would require significantly more code, several source files, and

multiple compilations.

OpenACC is featured heavily in this dissertation’s research results, most

often as the primary source code language for evaluations in Chapters II, III,

and IV.

1.2.5 OpenMP. OpenMP reigned as the de facto standard for

directive-based homogeneous multi-core CPU computing throughout the early

24

2000s, at least in the scientific computing domain. As the demand for high-level

programming approaches for GPGPU computing increased in the early 2010s, there

was a push for OpenMP to support accelerator-based heterogeneous computing

in addition to the homogeneous multi-core computing. Although the previously-

mentioned OpenACC was developed to address this demand, motivation for

OpenMP prevailed for several reasons:

1. OpenACC and OpenACC compilers have been too-tightly bundled to Nvidia

devices, especially since PGI (the primary OpenACC compiler) was acquired

by Nvidia in 2013.

2. Most high-performance-oriented scientific programmers were already familiar

with basic OpenMP directives and OpenMP programming styles.

3. Many scientific applications already employed OpenMP for homogeneous

CPU-based computing, lightening the burden of developing a new accelerator-

based implementation.

As a result, in 2013, a year after the launch of OpenACC, the OpenMP

standards committee released OpenMP 4.0, which included new directives for

offloading to GPU accelerators. In 2018, the standards committee released

OpenMP 5.0, which expanded support for accelerators and included additional

directives for tasking and auto-parallelism. Even before the official inclusion of

offloading directives in OpenMP, several research-oriented compilers had been

prototyping support for GPU offloading for OpenMP [45, 46].

Initially in their development, OpenACC and OpenMP differed in their

programming approach philosophy. As mentioned, OpenACC employed a more

descriptive approach, where users expose parallelism and compilers map that

25

parallelism to devices. In OpenMP, the directives supplied by users are taken more

literally and prescriptively, in that the user directly controls how the parallelism

is mapped to a device. However, the two standards have recently become more

aligned due to the loop directive introduced in OpenMP 5.0, which mimics

the behavior of the descriptive OpenACC directives. The relationship between

OpenMP and OpenACC has been somewhat contentious at times. However,

both standards are still currently being maintained as a high-level programming

approach for heterogeneous computing.

Although OpenACC has been limited due to its ties to Nvidia devices, the

availability of the production-level PGI OpenACC compiler throughout its history

has certainly been an advantage. In contrast, although OpenMP 4.0 originally

was approved in 2013, compilers fully supporting the standard have been slow

in coming. Only very recently have mature compilers successfully supported the

entire standard, and many mainstream compilers are still under development for

the OpenMP 4.0 standard and especially the OpenMP 5.0 updates. We discuss this

further in Section 1.3.

In Listing 1.4, we show the same application as the previous listing,

now annotated with OpenMP directives. Although this short example trivially

highlights the use of OpenMP, the example still demonstrates how OpenMP greatly

simplifies heterogeneous computing compared to CUDA and OpenCL.

1.2.6 Other Modern Programming Models. Although the

previous sections describe the programming models targeted in the research results

of this dissertation, for the sake of completeness we briefly describe several other

contemporary heterogeneous programming models.

26

1.2.6.1 Kokkos. In 2012, around the same time as the release of

OpenACC and OpenMP 4.0, H.C. Edwards and a team at Sandia National

Laboratory developed the Kokkos portability layer [47, 48, 49].

Kokkos is implemented as a performance portability layer. Unlike OpenACC

and OpenMP that rely on directives, Kokkos is implemented as a C++ template

library on top of OpenMP, CUDA, HPX [50] (discussed below), or Pthreads [51].

Essentially, the goal is to allow programmers to implement the Kokkos abstraction

layer once in their application, which can then be executed across a diversity of

hardware architectures. The C++ templating abstraction is an attractive model

for heterogeneous programming, as it allows the same API calls to have multiple

backend implementations.

Kokkos has been a popular option within the scientific community, and

is supported by several national labs, including Sandia and Argonne National

Laboratories. Compared to OpenMP and OpenACC, the Kokkos abstractions do

require more in-depth knowledge of C++ including concepts like templates and

functors, compared to the directive-based approaches. However, the integration

with C++ also provides a powerful programming abstraction compared to the

directive-based approaches that require kernels to use minimal C++ features.

1.2.6.2 Raja. Like Kokkos, Raja is a C++-based GPGPU

programming approached developed by a major US national laboratory, Lawrence

Livermore National Lab (LLNL) [52, 53]. Raja was first released in 2014, shortly

after Kokkos, OpenACC, and OpenMP 4.0. Raja is essentially another collection

of C++ abstractions intended to provide architecture portability for HPC systems,

specifically those with GPGPU architectures.

27

A 2015 Supercomputing poster compared Raja and Kokkos using

the TeaLeaf application [54]. While Kokkos relied on the C++ template

metaprogramming approach, Raja instead relies on the C++11 lambda features.

They also found that porting an application to Raja was relatively intuitive, on a

similar level to an OpenMP port. Conversely, porting the application to Kokkos

required extensive architectural changes. Like Kokkos, Raja relies on OpenMP and

CUDA internally to target CPUs and GPUs, respectively.

1.2.6.3 SYCL, DPC++, and OneAPI. The SYCL standard

is yet another C++-based heterogeneous programming approach [55]. First

released in 2014, SYCL originally aimed to be a programmer-productivity oriented

abstraction layer on top of OpenCL. However, later implementations targeted other

intermediate representations, like AMD HIP and CUDA. We discuss this further in

Section 1.3. Although SYCL is several years old, it has seen limited uptake in the

scientific community, until its recent involvement with DPC++ and Intel’s OneAPI

initiative.

DPC++ [56], launched in 2019, is a SYCL implementation developed

and managed by Intel, that integrates the SYCL and OpenCL standards with

additional extensions. These extensions are often championed for inclusion in

the SYCL standard itself, analogous to how several of the heterogeneous and

parallelism features of SYCL are then pushed for inclusion into the C++ standard.

Examples of features in SYCL that originated in DPC++ include unified shared

memory, group algorithms, and sub-groups.

Intel’s OneAPI Library [38, 57] attempts to encapsulate several of the

technologies and programming approaches discussed in the section under a single

28

umbrella. OneAPI consists of several APIs based on DPC++, SYCL, C++ Parallel

STL, and Boost.Compute, including:

– oneAPI DPC++ Library

– oneAPI Math Kernel Library

– oneAPI Data Analytics Library

– oneAPI Threading Building Blocks

– oneAPI Video Processing Library

– Collective Communications Library

– oneAPI DNN Library

– Integrated Performance Primitives

1.2.6.4 Legion. The Legion Project [58, 59, 60] originates from

Stanford University, and was first published in 2012. Legion, a portmanteau

of logical regions, is unique from many of the other high-level approaches in

this section in that it aims to support both distributed and accelerator-based

heterogeneous computing.

Like many of the other frameworks, a main goal of Legion is to abstract or

decouple the algorithm design from the mapping or execution on heterogeneous

architectures. For Legion, this concept extends to distributed heterogeneous

machines. Legion specifically focuses on data movement and management

abstractions, primarily by introducing the abstraction of logical regions. By

partitioning data into logical regions and sub-regions, programmers can indicate

29

data locality and independence, which can be used by the underlying framework

components to facilitate communication and parallelism.

Legion remains relevant today, and regular software releases address bugs,

performance issues, features and extensions, and additional system support.

Furthermore, the Legion project is supported and funded by the DOE Exascale

Computing project [61].

1.2.6.5 HPX. HPX, short for High Performance ParalleX, is another

distributed computing focused framework, developed by Louisiana State University

and first published in 2014 [50, 62, 63]. Like Legion, HPX aims to provide a unified

programming approach, allowing both single-node and distributed parallelism

from a single API. HPX is strongly connected to C++, and depends heavily on

the Boost C++ libraries. Although HPX has traditionally focused on CPU-based

distributed and single-node parallelization, more recently, efforts have been made

to support heterogeneous computation with HPX, either through integration with

OpenCL (HPXCL [64]), development of a SYCL backend [65], or other approaches.

1.2.6.6 C++. While Raja and Kokkos are two of the most popular

C++-based high-level GPGPU programming approaches, especially in scientific

computing, several other C++ libraries and extensions have been developed

to support heterogeneous computation. AMP [66], Boost.Compute [67, 68],

Thrust [69], Bolt [70], and VexCL [71] are all either extensions to C++ or C++-

based libraries that aim to enable heterogeneous computing.

All of the other programming approaches in this section refer to libraries

and extensions not incorporated in the C++ standard. However, newer versions

of C++ have begun to incorporate different types of CPU parallelism directly

into the standard. For example, C++17 has increased SIMD support for parallel

30

loops. Furthermore, there is a push with the C++ community to add support

for heterogeneous computing in future releases. The major drawback is the slow

timeline for C++ releases and the significant burden of defending inclusions into

the already massive C++ standard.

1.2.6.7 Domain Specific Languages. Both the high-level and low-

level general-purpose GPU programming approaches allow developers to create

heterogeneous applications for a huge diversity of application domains. However,

many domain and computational scientists spend the entirety of their programming

efforts within a very specific field or area. To combat the issues with the general

purpose approaches, such as the complexity of the low-level approaches and

inconsistency and performance issues with the high-level approaches, a multitude

of domain-specific GPU programming approaches have been developed. More

specifically, libraries or domain-specific languages (DSLs) targeting a single

application space or area were developed to meet the very specific needs of a

smaller user-base.

Linear Algebra: Linear and matrix algebra algorithms have consistently

been some of the most important but also most computationally demanding

components of scientific computing. It is no surprise then, that several

heterogeneous libraries and frameworks have been developed specifically for this

domain. Several linear algebra libraries have been developed by Nvidia as part

of the CUDA Toolkit, including cuBLAS [72], cuSparse [73], and cuFFT [74].

Some open-source counterparts have also been built, including clBLAS [75],

MAGMA [76, 77], Eigen [78], Odient [79, 80], and SPIRAL [81, 82]. Interestingly,

Odient has been used as recently as 2020 to model the spread of the Covid-19

virus [83, 84, 85].

31

Graph Processing: The Halide programming language was developed in

2013 as a collaboration between MIT’s CSAIL laboratory and Adobe [86, 87, 88].

Halide is a DSL targeted for image processing and graph algorithms. Like many of

the other programming approaches in this section, Halide is embedded in C++,

with a dedicated Halide C++ API. More recently, Halide has also developed

python bindings. Halide supports a wide array of architectures, including x86,

ARM, PowerPC, and other CPU architectures and CUDA, OpenCL, OpenGL,

and DirectX enabled GPUs. Halide is used internally in Adobe Photoshop, and in

projects related to Google’s Tensorflow.

Machine Learning: The explosion of machine learning, undoubtedly the

fastest-growing field in computer science, has led to the development of several

heterogeneous programming approaches targeted specifically toward the machine

learning domain. Nvidia has contributed to the machine learning domain with

the development of their cuDNN library [89]. Although the cuDNN (CUDA Deep

Neural Network) library can be programmed directly, similarly to cuBLAS, more

typically cuDNN is used as a backend to one of the widely used deep learning front

end frameworks, including MxNet [90], Tensorflow [7], Keras [91], Pytorch [92],

Chainer [93], and Caffe [94]. AMD has also developed an OpenCL-based analog to

cuDNN, named MIOpen [95, 96]. Recently released in 2019, MIOpen is provided as

part of the ROCm suite, and based on a software stack including both OpenCL

and HIP. Although MIOpen is currently not as popular as cuDNN, and lacks

integration into the major front-end frameworks and tools, it could become popular

in the near future with new AMD systems like ORNL’s Frontier supercomputer [3],

projected release in 2021 with four AMD GPUs on each node.

32

Scientific Visualization: A very natural domain for heterogeneous

programming is scientific visualization. Visualization applications typically already

heavily rely on GPU architectures for image and video rendering and display,

typically through low-level APIs like OpenGL or OpenCV. Development of domain-

specific heterogeneous programming approaches for scientific computing is a natural

extension. One approach involves in-situ visualization, where the computation and

visualization are tightly coupled, without requiring offloading to the host device.

VTK-m [97] is an example of a heterogeneous scientific visualization approach. Like

many other approaches, VTK-m relies on C++ template metaprogramming. The

VTK-m programming abstraction is based on “data-parallel primitives”, high-level

algorithmic API calls that are then executed on the accelerator device. Another

example is the Alpine framework [98], which builds on the VTK-m framework and

ideas. Alpine is focused on supporting modern supercomputing architectures, a

flyweight infrastructure, and interoperability with software like R and VTK-m.

Alpine was designed to accelerate scientific visualization codes using Nvidia GPUs

and Intel Xeon Phis.

Climate and Weather: Due to the high number of computational

resources required to model climate and weather at scale, climate and

weather simulations represent a large fraction of most HPC system workloads.

Unsurprisingly, DSLs have also been created to ease the creation of climate-

based HPC applications. One example, the CLAW project [99, 100] developed in

2018 at ETH Zurich, is a FOTRAN-based DSL that aims to provide performance

portability for column- and point-wise weather and climate computations.

33

1.3 Heterogeneous Compiler Frameworks

Development of new heterogeneous programming approaches, APIs, libraries,

and frameworks is important for advancing the field of heterogeneous computing.

However, even the world’s best-designed programming approach is rendered useless

without an effective implementation, typically in the form of a compiler. Much

of the success of different programming approaches hinges on the availability and

usability of compilers for said approaches. In this section, we discuss different tiers

of compilers, from vendor supported production-level to academic, each of which

plays a crucial role in the life cycle of heterogeneous programming approaches.

1.3.1 Vendor-supported Compilers. We first discuss vendor

compilers. These typically refer to a language implementation, in the form of a

compiler, developed by a major accelerator manufacturer, such as Nvidia, AMD,

IBM, Intel, etc. We briefly highlight some major advantages and disadvantages of

the vendor compiler model for heterogeneous programming approaches, and then

discuss several vendor compilers in detail.

Advantages: Compilers developed and maintained by hardware accelerator

vendors are typically very consistent and reliable for a small set of supported

devices. The documentation and user guides are often detailed, thorough, and

updated. These companies are financially motivated for success with their

devices, which results in many of the advantages listed. These compilers also have

somewhat of a guarantee of longevity, at least compared to the independent and

open-source projects.

Disadvantages: Vendor compilers, for obvious reasons, are limited to

only compile code for devices produced by the vendor. This leads to replication

of efforts for each different manufacturer. Furthermore, vendor compilers often

34

introduce extensions to otherwise portable programming approaches that optimize

the performance for their specific devices. These extensions break the original

language intentions, and result in code that is no longer portable across an array

of different accelerators. The vendor compilers also typically have a slower release

cycle, are slower to incorporate updates to programming approaches, and are more

conservative for the implementation of new language features and the release of

updated language versions.

1.3.1.1 NVCC. Arguably the most popular, and dominant,

vendor compiler in all of heterogeneous computing is nvcc, Nvidia’s core CUDA

compiler [101]. Released in 2006 along with Nvidia’s CUDA toolkit, nvcc is based

on the LLVM compiler toolchain [102], which is discussed later in this section. The

nvcc compiler is implemented as a compiler driver; nvcc invokes the needed tools to

perform a given compilation. Typically in a C CUDA application, the host code is

compiled with gcc, and the device code is compiled using cudacc. In this case, nvcc

would invoke gcc and cudacc, generating a C-code host binary and PTX device

code respectively. PTX, or NVPTX, is a low-level instruction set architecture used

by CUDA-enabled GPUs.

The nvcc compiler is used in every subsequent chapter in this dissertation:

in Chapter II to compare FPGA and GPU performance, in Chapter III as part of

OpenARC’s OpenACC compilation, and in IV as a backend programming model.

1.3.1.2 PGI. The PGI OpenACC compilers, pgcc and pgft, have

been the de facto standard for OpenACC compilation since its inception in

2012 [44, 44]. The PGI (Portland Group Inc.) company was founded in 1989,

and originally developed parallel computing compilers for x86 architectures. PGI

especially specialized in high-performance FORTRAN compilers. Because of this

35

specialization, in 2009 PGI was contracted by Nvidia for the development of the

first FORTRAN-based CUDA compiler.

PGI also worked with Nvidia to develop the PGI-Accelerator programming

model, which we briefly mentioned in Section 1.2.4. As mentioned, the PGI-

Accelerator compiler was eventually extended to develop the first OpenACC

compiler. In 2013 PGI was acquired by Nvidia, redefining it as a “vendor

compiler”, at least for the purposes of this dissertation. Interestingly, in 2013 PGI

also developed an OpenCL compiler for ARM cores [103], but this was removed

after the Nvidia acquisition.

Since then, PGI has continued to develop compilers for Nvidia devices

for OpenACC C and OpenACC FORTRAN, and has been very involved in the

promotion and development of OpenACC itself. Although PGI compilers have

existed independently from the CUDA toolkit in the past, as of August 2020 pgcc

and pgft have now been fully absorbed into Nvidia, and are now re-branded as part

of the Nvidia HPC SDK (NVHPC) [104, 105].

The PGI compiler and its predecessor, NVHPC, are featured in Chapters III

and IV.

1.3.1.3 AMD. The other major GPU manufacturer after Nvidia,

at least in the context of scientific computing, is AMD. Unlike Nvidia, AMD

has not developed a proprietary programming approach and vendor compiler

for heterogeneous computing. AMD has developed a C/C++ optimizing vendor

compiler, aocc, for its CPU Ryzen devices [106], but for their Radeon GPU devices,

AMD has opted for an open-source solution.

In order to support its GPU architectures, AMD has developed the open-

source ROCm (Radeon Open Compute) suite [41]. ROCm is a collection of APIs,

36

drivers, and development tools that support heterogeneous execution on both AMD

GPUs, but also other architectures like CUDA GPUs. ROCm supports the AMD

HIP representation, but can also process OpenMP and OpenCL applications. The

compilers, libraries, and debuggers for ROCm are available from the open-source

GitHub [42].

AMD’s compilers are featured and discussed in more detail in Chapter IV.

1.3.1.4 Intel. Intel has long been at the frontier of high-performance

compilers for their optimizing and parallelizing CPU compilers, enabling SIMD and

multi-threaded parallelism for their homogeneous Intel Xeon CPU devices. Intel’s

first foray into heterogeneous compilation came in 2010 with the introduction of the

Intel Xeon Phi coprocessor chip [107]. These chips followed a similar offload model

and architecture as the contemporary GPU models.

Intel’s acquisition of the FPGA-manufacturer Altera has also resulted in

the release of a vendor-specific Intel-based OpenCL compiler for FPGAs [108].

However, this compiler framework suffers from many of the vendor-specific

extensions and optimizations mentioned in the above “disadvantages” discussion,

rendering the resulting OpenCL not portable to other devices. We discuss this

further in Chapter II.

Finally, with the release of the Xe GPGPU, Intel has also released an

Intel-based GPU-specific vendor compiler [57]. This compiler currently supports

OpenMP, OpenCL, SYCL, and DPC++ for GPU compilation, and is discussed in

more detail in Chapter IV.

1.3.2 Open-source Compilers. The main alternative to

heterogeneous proprietary vendor compilers are production-level open-source

heterogeneous compilers. These compilers and compiler toolchains are typically

37

maintained by steering committees, which can consist of representatives from

accelerator vendors, scientific institutions, and independent companies. We discuss

the advantages, disadvantages, and some examples of open-source heterogeneous

compilers.

Advantages Unlike the vendor compilers, open-source compilers are

often more community driven. That is, the direction and implementation of the

compiler is not completely motivated and driven by device manufactures, although

device manufactures are often involved. Also, most of the open-source compiler

frameworks support a variety of accelerators and architectures. More generally,

open-source compilers benefit from all of the same advantages of open-source

software as a whole, including transparency, flexibility, and independence. Specific

to heterogeneous programming approaches, open-source compilers can more quickly

adapt new standards and features and the rapidly evolving array of architectures.

Also, because the same compiler can be used across several architectures, the input

programming approach used is inherently more portable. Most open-source projects

are managed through git or subversion, and hosted on a popular git repository

hosting site like GitHub.

Disadvantages open-source compiler projects, especially the smaller ones,

may not have the financial security of the vendor compilers. They also may not

have the secured longevity. For example, if the main contributors to an open-source

compiler projects change positions or careers, continued maintenance on the project

may terminate. Also, the open-source compilers may not have access to low-level

architecture details that the vendor compilers use to get increased performance on

their specific devices. However, the large open-source compiler projects, like LLVM

38

and GCC, typically have no issues with longevity and closely tail vendor compilers

in terms of performance.

1.3.2.1 LLVM, Clang, and MLIR. LLVM, originally an

abbreviation for Low-Level Virtual Machine, has become one of the most

important compiler toolchains, not just in heterogeneous compilation, but in

all of computing [102, 109, 110]. As previously mentioned, the LLVM backend

intermediate representation and compilation tools form the backbone of many of

the other compilers, including the vendor compilers like nvcc.

First developed in 2000 by Chris Lattner at the University of Illinois at

Urbana Champaign, LLVM has grow significantly from its initial role as a virtual

machine processor. Originally designed for C/C++, LLVM now provides an

internal representation and compile time, runtime, and idle time optimization for

a multitude other languages. In 2005, Apple began to manage and maintain LLVM

for use in their internal projects, but LLVM was later re-licensed under Apache.

LLVM exists as a main project, LLVM-core, and a number of sub-projects,

including three specifically relevant to heterogeneous programming approaches,

Clang, OpenMP, and MLIR.

First released in 2008, clang is LLVM’s own front end compiler for C and

C++ [109, 111]. The clang compiler processes C and C++ code and generates

LLVM IR, which is then optimized and processed by LLVM. LLVM’s OpenMP sub-

project implements OpenMP functionality into the LLVM clang compiler. Through

the clang and OpenMP sub-projects, LLVM supports heterogeneous computing by

compiling C and C++ applications with OpenMP offloading directives.

Though not yet an official LLVM sub-project, OpenACC support is also

being developed for LLVM as part of the Clacc (Clang OpenACC) project [112].

39

Clacc builds on the LLVM OpenMP infrastructure. Clacc accepts C-based

OpenACC as input, internally translates to OpenMP, and then generates LLVM

intermediate representation using the existing LLVM OpenMP infrastructure.

MLIR (multi-level intermediate representation) is another LLVM project

with significant implications for heterogeneous programming [113, 114]. The MLIR

project adopts a layered compilation and optimization model, with different MLIR

layers, or dialects, that have distinct abstraction levels and areas of focused. These

layers can be combined and lowered, from higher abstraction dialects to lower

abstraction dialects. Essentially, MLIR offers a reusable abstraction toolbox. A

main goal of MLIR is to prevent software fragmentation and improve support

for heterogeneous hardware, as the concept of dialects maps well to the ideas of

different accelerators. MLIR also aims to provide support for the development of

domain-specific programming approaches, which has a straightforward mapping to

MLIR dialects and the progressive conversion and lowering structure of MLIR. The

previously discussed Tensorflow framework relies on MLIR, and has been a major

motivation for the development of the project [115]. Additionally, the Flang project

(a FORTRAN-based front-end for LLVM) and Flang’s OpenACC support rely on

MLIR [116].

LLVM and the clang compiler are featured heavily in this project’s research

results. In Chapter II, we indirectly rely on LLVM, as the Intel OpenCL SDK for

FPGAs uses LLVM internally. In Chapter III, we use clang directly to compile

OpenMP applications for several different GPU targets. Finally, in Chapter IV,

clang is used to evaluate both OpenMP and OpenCL backends across several

exascale-intended platforms, and LLVM is used indirectly during the evaluation

of the Intel and AMD OpenMP compilers.

40

1.3.2.2 GNU C/C++. The GNU Compiler Collection, commonly

referred to as just GCC, is undoubtedly the longest-living and most widespread

open-source compiler framework [117] (although Perl is a close second on

longevity). It is no surprise then that GCC also plays a role in heterogeneous

compilation.

GCC was first released in 1987 as the GNU C Compiler, but has since

expanded to incorporate other languages such as C++ and FORTRAN. More

recently GCC has worked to develop support for OpenACC [118] and OpenMP

offloading models [119]. However, GCC’s implementations are not as mature as

PGI’s OpenACC implementation and LLVM’s OpenMP implementation.

1.3.3 Academic, Research, and Custom Compilers. The last

category of heterogeneous compilers we cover are academic project compilers.

These projects are typically source-to-source translation compilers, or pre-

compilers, that build on or extend existing production-level compiler projects.

However, they play a crucial role in the development cycle of heterogeneous

programming approaches. We briefly discuss the advantages and disadvantages

of research-based compilers, and list a few notable examples.

Advantages Academic compilers are great for prototyping and

experimentation of new language features. A production level compiler, either

vendor or open source, may take months to push through new features and require

several stages of approval. Conversely, an academic compiler is usually owned by a

small group of researchers, and new features can be implemented and launched in

a few days. Often, new language features are first evaluated in academic compiler

settings, and only later re-implemented, or trickled down, into more production-

41

setting compilers. Most academic compilers also host open-source code on major

code repositories.

Disadvantages Academic compilers often struggle with adoption and

longevity. Because the projects are owned by a small number of people, small

shifts in personnel can have disastrous effects on maintenance of a framework.

Also, the compiler frameworks are typically funded by larger projects and grants,

and therefore may be dependent on renewal of funding. Finally, because these

compilers may be targeting a specific problem area for the research group, they

often implement only a subset of the target programming language or approach.

1.3.3.1 ROSE. The ROSE compiler framework is an open-source,

research-based, source-to-source transformation compiler developed at LNLL [120,

121]. First published in 1999, ROSE has not suffered from longevity issues, and

is still cited frequently in 2020. In 2013, ROSE was used in one of the first initial

implementations and evaluations of the OpenMP offloading model, OpenMP

specification 4.0 [122].

1.3.3.2 OpenUH. The OpenUH project was managed by the

HPCTools group at the University of Houston [123, 124]. OpenUH was based on

the Open64 compiler framework [125], and was originally developed as an OpenMP

and FORTRAN Coarray compiler. OpenUH did begin support for OpenMP

offloading directives for heterogeneous programming, and experimental support

for OpenACC on Nvidia and AMD GPUs, but as of 2020 the compiler framework

does not seem to be under active development.

1.3.3.3 Omni. The Omni compiler project is maintained and

developed by researches at the University of Tsukuba and the RIKEN Center for

Computational Science, both in Japan [126, 127]. First released in 1999, the Omni

42

OpenMP compiler represented one of the first research-oriented implementations

of the OpenMP standard. Over time, Omni has shifted to focus on cluster-based

OpenMP computing. In 2010, an extension to the Omni project, XacalabeMP [45]

integrated a PGAS-model distributed memory approach to OpenMP compilation.

Also in 2010, the OMPCUDA project extended the Omni compiler to support

compilation of OpenMP code for CUDA GPUs. Later in 2013, initial OpenACC

support was added, shortly after the release of the OpenACC standard [128]. The

next year, 2014, the XaclableMP and OpenACC extensions were combined to

create the XalableACC extension [129], a PGAS-based heterogeneous distributed

framework based on OpenACC.

The Omni compiler and its extensions are still under active development. In

2019 and 2020, extensions were made to include FPGA support [130, 131], although

this support is still a work in progress.

Although we do not use the Omni compiler in this dissertation, the

extensions to support FPGAs are very closely related to the work presented in

Chapter II.

1.3.3.4 OmpSs. The OmpSs project, first published in 2011, aimed to

support CUDA- and OpenCL-enabled GPUs with OpenMP input[46, 132]. OmpSs

is developed and maintained by the Barcelona Supercomputing Center, BCS.

Because OmpSs pre-dated the OpenMP offloading directives, the developers

created custom extensions to OpenMP for handling data, based on the StarSs

framework [133]. OmpSs was evaluated and extended by a multitude of other

works and projects [134, 135, 136], including one comparing OmpSs, OpenMPC,

OpenACC, and OpenMP. OmpSs has also been explored for FPGA-based

heterogeneous computing [137, 138, 139].

43

As is obvious from the numerous publications, OmpSs is still undergoing

active development and still being used as part of the toolchain for a number of

other projects.

1.3.3.5 OpenARC. The OpenARC compiler framework, first

published in 2014, is maintained and developed by Oak Ridge National

Laboratory [39]. OpenARC is an extension of the OpenMPC framework [140],

and like OpenMPC, is built on the Cetus compiler toolchain [141]. OpenARC was

originally designed to be the first open-source option for OpenACC compilation,

acting as an source-to-source translator that consumes OpenACC C input and

generates C and CUDA output. More recently, OpenARC has evolved to accept

OpenMP offloading directives as additional inputs, and can generate OpenCL and

AMD HIP as output sources, in addition to CUDA.

OpenARC also acts as the core framework for other heterogeneous

programming projects. The Compass framework [142] relies on OpenARC to

generate ASPEN performance models [143] of heterogeneous applications driven

by user annotations and directives. The Iris runtime library, also integrated into

OpenARC, is a work in progress that aims to allow multiple accelerators, even with

different architectures, to collaborate together to execute a single application.

Figure 4 highlights the various components of the OpenARC compiler.

OpenARC is a core component of every subsequent chapter in this

dissertation. In Chapter II, we discuss how OpenARC was extended to support

OpenACC-to-FPGA compilation [144, 9, 10]. In Chapter III, we discuss the

OpenARC extension CCAMP, developed to provide an interoperable optimization

environment for OpenMP and OpenACC compilation. Finally, in Chapter IV

44

OpenARC Overview

Input C
OpenACC
Program

C Parser OpenACC
Parser

OpenACC
Preprocessor

General
Optimizer

Device-specific
Optimizer

A2D
Translator

Device Kernel
Code

Tuning
FrameworkHost CPU Code

Backend
Compiler

Output
Executable

HeteroIR, a
Common

Runtime API

CUDA Driver API

OpenCL Runtime
API

Other device-
specific runtime

APIs

Either JIT compiled
or precompiled by
backend compiler

OpenARC
Compiler

OpenARC
Runtime

Figure 4. Overview of OpenARC compiler framework

we discuss how OpenARC was used to perform an exploration and evaluation of

exascale-intended hardware and software platforms.

1.3.3.6 HPVM. HPVM (Heterogeneous Parallel Virtual

Machine) [145, 146, 146] is a research project first published in 2018 originating

from the University of Illinois at Urbana-Champaign. On the surface, HPVM is an

extension to LLVM with direct support for heterogeneous computation, simplifying

the intermediate representation that many of the LLVM-dependent heterogeneous

programming approaches rely on.

The HPVM project aims to develop a uniform representation that can

capture an array of different heterogeneous architectures, including GPUs, multi-

core CPUs, FPGAs, and more. The main components of HPVM include: (1) a

dataflow graph-based parallel program representation to capture task and data

45

parallelism, (2) a heterogeneous compiler intermediate representation that supports

optimizations commonly employed on GPU devices, like tiling and loop fusion,

and (3) a heterogeneous virtual ISA supporting GPUs, SIMD vectorization, and

multicore CPUs.

HPVM is implemented on top of the LLVM project, and aims to provide a

valuable new asset, a heterogeneity-focused extension, to the LLVM community.

1.4 Heterogeneous Benchmark Suites

When evaluating heterogeneous programming approaches, typically

performance is king. However, measurements of performance are relative, and

difficult to compare across different projects, frameworks, or standards. The one

control that makes performance comparisons possible are standard benchmarks. In

this section, we review several different benchmark suites designed specifically for

heterogeneous programming approaches.

1.4.1 Rodinia. First released in 2009, the Rodinia benchmark

suite [147] is the oldest among the benchmark sets discussed in this section.

Rodinia first released with CUDA and OpenMP versions of computational kernels

from several different scientific domains. OpenCL kernels were added next, and

after the release of the OpenACC standard, OpenACC versions of several of the

kernels were included. The OpenMP kernels were updated to use some of the

offloading directives, although they only annotated using directives specific to the

Intel Xeon Phi devices, not general GPUs.

The Rodinia benchmarks form the basis of the evaluations in Chapter II.

1.4.2 SPEC Accel. The SPEC Accel [148] benchmark suite was

released in 2014. SPEC (Standard Performance Evaluation Corporation) is

a non-profit specifically focused on developing and maintaining high-quality

46

benchmarks. As a result, the SPEC Accel benchmarks are very well organized

and documented, and have a robust set of scripts for executing and recording

application information. However, the SPEC benchmarks are not open source, and

require either a paid commercial license or a free academic licence.

The SPEC Accel benchmark suite is prominently featured in this

dissertation’s research results, specifically in Chapters III and IV.

1.4.3 Other Heterogeneous Benchmark Suites. In 2010, ORNL

released the SHOC (Salable Heterogeneous Computing) benchmark suite [149].

The SHOC benchmarks released with both CUDA and OpenCL versions of several

kernels. Unlike Rodinia, SHOC was designed to test applications at scale, not just

on a single node.

The Parboil benchmarks [150] were developed by the University of Illinois at

Urbana-Champaign and released in 2012. Like the other benchmark suites, Pairboil

contains both CUDA and OpenCL code versions. One unique aspect with Parboil

is that several different versions of each application are provided with different

levels of optimizations. These versions can be used to measure the effectiveness

of an automated optimizing compiler.

Also released in 2012, the OpenCL 13 Dwarfs benchmark suite [151] is a

realization of Berkely’s 13 computational dwarfs in OpenCL [152], where a dwarf is

essentially a core computational or communication method or action.

In 2013, EPCC, the Edinburgh Parallel Computing Center, a

supercomputing center associated with the University of Edinburgh, released a

suite of OpenACC benchmarks [153, 154]. The suite contains low-level operations

intended to test and measure the performance of hardware and compilers. The

suite also contains a set of software kernels intended to replicate operations most

47

commonly seen in scientific applications. Although the EPCC Benchmarks also

contain OpenMP implementations, these versions are based on non-offloading

OpenMP standards, 3.0 and earlier.

Interestingly, the oldest benchmark suite, Rodinia, seems to be the most

popular, with nearly an order of magnitude more citations than any of the

other benchmark suites. This could be just an artifact of being released first, or

from the Rodinia kernels more closely resembling desired scientific applications.

However, the Rodinia benchmarks themselves are infrequently updated and fail

to capture many of the new language features. This often requires each research

project using Rodinia to develop their own updates to the benchmarks. The

other benchmark suites face a similar challenge. Several newer benchmark suites

have been presented, but all have faced issues with adoption. Moving forward,

development, adoption, and maintenance of high-quality benchmark suites could

significantly improve the productivity of developers.

48

Listing 1.2 Example OpenCL C Application
1 #include <stdlib.h>
2 #include <CL/cl.h>
3
4 const char∗ programSource =
5 "__kernel \n"

6 "void vecadd(__global int *A, __global int *B, __global int *C) \n"

7 "{ \n"

8 " int idx = get_global_id(0); \n"

9 " C[idx] = A[idx] + B[idx]; \n"

10 "} \n"

11 ;
12
13 int main() {
14 int ∗A = NULL; int ∗B = NULL; int ∗C = NULL;
15
16 const int elements = 2048;
17 size t datasize = sizeof(int)∗elements;
18 A = (int∗)malloc(datasize); B = (int∗)malloc(datasize); C = (int∗)malloc(datasize);
19 B = (int∗)malloc(datasize);
20 C = (int∗)malloc(datasize);
21 for(int i = 0; i < elements; i++) {
22 A[i] = i; B[i] = i;
23 }
24
25 cl uint numPlatforms = 0;
26 cl int status = clGetPlatformIDs(0, NULL, &numPlatforms);
27 cl platform id ∗platforms =
28 (cl platform id∗)malloc(numPlatforms∗sizeof(cl platform id));
29 status = clGetPlatformIDs(numPlatforms, platforms, NULL);
30
31 cl uint numDevices = 0;
32 cl device id ∗devices = NULL;
33 status = clGetDeviceIDs(platforms[0], CL DEVICE TYPE ALL, 0, NULL, &numDevices);
34 devices = (cl device id∗)malloc(numDevices∗sizeof(cl device id));
35 status = clGetDeviceIDs(platforms[0], CL DEVICE TYPE ALL, numDevices, devices, NULL);
36
37 cl context context = clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);
38 cl command queue cmdQueue = clCreateCommandQueue(context, devices[0], 0, &status);
39
40 cl mem bufferA = clCreateBuffer(context, CL MEM READ ONLY, datasize, NULL, &status);
41 cl mem bufferB = clCreateBuffer(context, CL MEM READ ONLY, datasize, NULL, &status);
42 cl mem bufferC = clCreateBuffer(context, CL MEM WRITE ONLY, datasize, NULL, &status);
43 status = clEnqueueWriteBuffer(cmdQueue, bufferA, CL FALSE, 0, datasize, A, 0, NULL, NULL);
44 status = clEnqueueWriteBuffer(cmdQueue, bufferB, CL FALSE, 0, datasize, B, 0, NULL, NULL);
45
46 cl program program = clCreateProgramWithSource(context, 1, (const char∗∗)&programSource, NULL, &status);
47 status = clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
48 cl kernel kernel = NULL;
49 status = clSetKernelArg(kernel, 0, sizeof(cl mem), &bufferA);
50 status |= clSetKernelArg(kernel, 1, sizeof(cl mem), &bufferB);
51 status |= clSetKernelArg(kernel, 2, sizeof(cl mem), &bufferC);
52
53 size t globalWorkSize[1];
54 globalWorkSize[0] = elements;
55 status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL, NULL);
56 clEnqueueReadBuffer(cmdQueue, bufferC, CL TRUE, 0, datasize, C, 0, NULL, NULL);
57
58 clReleaseKernel(kernel);
59 clReleaseProgram(program);
60 clReleaseCommandQueue(cmdQueue);
61 clReleaseMemObject(bufferA);
62 clReleaseMemObject(bufferB);
63 clReleaseMemObject(bufferC);
64 clReleaseContext(context);
65
66 free(A); free(B); free(C); free(platforms);free(devices);
67 }

49

Listing 1.3 Example OpenACC C Application
1 int main() {
2
3 int SIZE = 1024;
4
5 float ∗a, ∗b;
6 a = malloc(sizeof(float) ∗ SIZE);
7 b = malloc(sizeof(float) ∗ SIZE);
8
9 for (int i = 0; i = < SIZE; ++i) {

10 a[i] = 0;
11 b[i] = // some initial value
12 }
13
14 // Data Directives
15 #pragma acc data copyin(b[0:SIZE]) copyout(a[0:SIZE])
16
17 // Compute Directive
18 #pragma acc parallel loop collapse(2)
19 for (int i = 1; i <= SIZE; i++)
20 for (int j = 1; j <= SIZE; j++)
21 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
22 }

Listing 1.4 Example OpenMP C Application
1
2 int main() {
3
4 int SIZE = 1024;
5
6 float ∗a, ∗b;
7 a = malloc(sizeof(float) ∗ SIZE);
8 b = malloc(sizeof(float) ∗ SIZE);
9

10 for (int i = 0; i = < SIZE; ++i) {
11 a[i] = 0;
12 b[i] = // some initial value
13 }
14
15 // Data Directives
16 #pragma omp target data map(to:b[0:SIZE], from:a[0:SIZE])
17
18 // Compute Directive
19 #pragma omp teams parallel for collapse(2)
20 for (int i = 1; i <= SIZE; i++)
21 for (int j = 1; j <= SIZE; j++)
22 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
23 }

50

CHAPTER II

DIRECTIVE-BASED PROGRAMMING AND OPTIMIZATIONS FOR

HIGH-PERFORMANCE COMPUTING WITH FPGAS

This chapter contains previously published material with co-authorship. All

of the presented research in this chapter was conducted as a collaboration between

the University of Oregon and Oak Ridge National Laboratory. Sections 2.1- 2.5

describe work related to the OpenACC-to-FPGA framework that was presented

at ICS 2018 [9], AsHES 2020 [10], and in PARCO 2021 [11]. The material from

these publications was reorganized in this dissertation for a more fluid presentation.

For all three publications, Seyong Lee was instrumental in the conceptualization of

the projects and provided continued support, suggestions, and advice throughout

the projects with weekly meetings. Dr. Lee also assisted with revisions to the

documents, and sometimes portions of the writing, typically in the introductions

and conclusions. Allen Malony and Jeffrey Vetter both provided high-level guidance

and advice during all three projects. They both also assisted with revisions, and

contributed information for the introduction and conclusions sections. Jungwon

Kim assisted with the related works section in the ICS 2018 [9] publication.

I researched, designed, and implemented the optimizations for the ICS 2018

submission. I also collected all data, performed all experiments, and did the bulk

of writing for all three publications.

Section 2.5 describes an FPGA portability study presented at IWOCL

2021 [12]. I was a secondary author on this publication. Anthony Cabrera led this

project and organized several meetings with all co-authors. Dr. Cabrera was also

responsible for writing the first draft of most of the publication, although Aaron

Young was responsible for writing materials related to the CFD benchmark. I was

51

responsible for evaluating the SRAD and Hotspot benchmarks, and writing the

corresponding sections in the document. I also proofread the entire document, and

contributed to the related works sections. The material in Section 2.5 has been

reduced from the original IWOCL publication to primarily focus on the areas of

the project where I directly contributed and sections that I either wrote or heavily

revised.

2.1 Background on FPGAs as Heterogeneous Accelerators

As discussed in Chapter I, accelerator-based heterogeneous computing,

which typically employs devices such as GPUs and many-core processors, has

become a mainstream approach in high-performance computing (HPC) to solve

performance, power efficiency, reliability, and cost issues caused by increasing power

densities in conventional von-Neumann architectures. More recently, reconfigurable

computing that uses FPGAs and coarse-grained reconfigurable devices has received

renewed interest due to the unique combination of performance and energy

efficiency through flexible hardware customizations. FPGAs’ reconfigurable

nature allows these architectures to be customized to match the needs of a

given application and achieve much higher energy efficiency and/or performance

gains compared with conventional CPUs and GPUs. As a result, FPGAs have

been deployed in various application domains, such as finance [155], database

systems [156], machine learning [157], image processing [158], graph analysis

algorithms [159], and others. Moreover, recent trends in FPGA technologies—such

as supporting hardened floating-point data signal processing blocks and integrating

CPUs, GPUs, and FPGAs as a new system-on-chip devices—make FPGA-based

high-performance reconfigurable computing more attractive for serious exploration

in scientific simulation and data analytics.

52

2.1.1 FPGA Hardware. FPGAs are composed of digital signal

processing (DSP) blocks, registers, adaptive look-up tables (ALUTs), and other

specialized hardware components. At runtime, the FPGA is configured to use a

subset of these hardware components using programmable interconnects. This

runtime-configuration property provides several advantages for FPGAs compared

to other accelerators. First, specific resources can be allocated to meet the needs of

specific applications, leading to performance improvements. Additionally, because

only crucial components are configured, FPGAs can maintain a low-power state.

However, configuring the FPGA for specific applications has traditionally required

programming in HDLs at the register-transfer level (RTL).

Figure 5 shows an example layout. While this layout is actually an

abstraction layer pre-programmed to the device as part of the Intel OpenCL SDK

for OpenCL (discussed in Section 2.1.3.1 below), it does highlight the hardware

features accessible when using an FPGA in the context of this dissertation.

2.1.2 Traditional FPGA Programming Approaches. Despite

a huge potential to achieve high performance and flexibility with limited power

consumption, FPGAs have not been widely used in HPC [160]. The most

significant obstacle to realizing their potential is the lack of high-level programming

models that hide implementation details. Programming FPGAs normally requires

substantial knowledge about the underlying hardware design and use of low-level

hardware description languages (HDLs) such as VHDL and Verilog.

RTL FPGA programming in VHDL or Verilog is inaccessible to most

application programmers because it requires in-depth knowledge of the FPGA,

such as cycle-by-cycle descriptions of hardware, and hardware-clock timing

considerations. It also requires scientific application developers who may have

53

FPGA Overview

External DDR Memory External DDR Memory

H
ost Processor

External Memory

Controller and PHY

External Memory

Controller and PHY

Global Memory Interconnect

PCle

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect Memory

Memory

Memory

Memory

Memory

Memory

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline

FPGA

Figure 5. FPGA hardware components available through Intel OpenCL SDK for
FPGAs

limited expertise on hardware architectures to design algorithms at the register

transfer level (RTL) by describing them using state machines, data paths, clock

management, device-specific interfaces to external memory, buffering, and so on.

2.1.3 Contemporary FPGA Programming Models. In this

section we provide an overview to two high-level programming approaches for

scientific computing with FPGAs: OpenCL, and as a result of the framework

described in this chapter, OpenACC.

2.1.3.1 OpenCL. To alleviate the programmability concern in FPGA

computing, several high-level synthesis (HLS) programming models have been

proposed [161, 162, 163, 164, 165, 166]. OpenCL (Open Computing Language),

introduced in Chapter I Section 1.2.2, is the first standard programming model

that is functionally portable across diverse heterogeneous architectures and has

been adopted by major FPGA vendors [37]. Two leading FPGA manufacturers,

54

Intel/Altera [108] and Xilinx [167], have provided an OpenCL-based SDK for

their FPGA devices. The source-level portability of OpenCL in theory allows

programmers to write applications once and run them on any OpenCL-compliant

hardware accelerators, such as CPUs, GPUs, Xeon Phis, DSPs, and FPGAs.

Despite its potential to offer better programmability and portability than

other HLS approaches, programming and optimizing FPGAs with OpenCL is still

considered to be very complex and difficult due to the semantic gap between the

OpenCL abstraction and the low-level hardware design. For example, the current

OpenCL abstraction does not provide a straightforward method for programmers

to express specific hardware features, such as shift registers, hardware channels,

and pipeline delays. Instead, the underlying OpenCL compiler implicitly derives

and synthesizes all hardware logic from an input program, and there are many

practical limits in compilation for finding optimal hardware designs. Consequently,

existing FPGA OpenCL compilers can be very sensitive to specific code patterns.

One way to solve this problem is to lower the programming abstraction level offered

by OpenCL to expose the low-level hardware design to the programmers. However,

lowering the programming abstraction would sacrifice the portability benefits of

OpenCL and negatively affect its programmability. In summary, OpenCL is too

high-level for ideal performance, while at the same time being too low-level for ideal

scientific programming.

As an aside, compilation times using the Intel SDK are significantly longer

than traditional CPU or GPU compilation times, often taking several hours.

This is generally true of all HLS tools. However, the Intel SDK does provide a

significant amount of information about the application and how it will be mapped

to hardware before attempting a full compilation. The estimated resource usages

55

and design layout, which are neatly presented in HTML format, were very useful

for guiding optimizations, even when working at the OpenACC level.

2.1.3.2 OpenACC. OpenACC [168, 169] addresses these challenges

faced by OpenCL FPGA SDKs. OpenACC (discussed in Chapter I, Section 1.2.4)

is a directive-based, portable, parallel programming model for a wide variety

of hardware accelerators. The model outsources device-specific implementation

details to the compiler to reduce the required programming effort and increase

performance portability. The OpenACC API—which consists of compiler directives,

library routines, and environment variables—allows programmers to augment

applications with information, exposing available parallelism within an application.

A core OpenACC facility is to offload the burden of mapping parallelism directly to

devices from the user to the underlying compiler. Because of its simplistic API,

maintainability, usability, and portability, OpenACC is often considered as an

alternative to lower level accelerator programming models.

An example of the OpenACC API in practice is shown in Chapter I,

Section 1.2.4. Typically, a compute directive such as #pragma acc parallel

annotates a for loop or other kernel region intended to be offloaded to a device.

Additional clauses can be appended to this directive to apply specific types of

parallelism or optimizations. Other common OpenACC directives include #pragma

acc data for specifying data that should be transferred to and from a device.

To address the problems caused by the aforementioned semantic gap, a

directive-based, high-level programming and optimization framework for efficient

FPGA computing is presented in this chapter. This framework takes a standard,

portable OpenACC program as input and generates an output OpenCL code,

which the underlying OpenCL compiler further compiles into an FPGA hardware

56

configuration file. The proposed framework solves the semantic-gap issue using

directive-based, high-level FPGA-specific optimizations in which programmers

provide important characteristics of the input program via a set of directives.

The framework then generates specific OpenCL code patterns in such a way that

the underlying back-end OpenCL compiler can infer known FPGA programming

paradigms, including shift registers, hardware pipelines, and sliding windows. The

proposed OpenACC-to-FPGA translation framework offers enough abstraction

over low-level hardware designs and complex OpenCL programming syntax and

also provides high-level control over various FPGA-specific optimizations. As a

result, the programmer can specify FPGA optimizations with user-friendly, high-

level OpenACC directives and keywords and will leave the lower-level error-prone

OpenCL FPGA-specific syntax generation to the compiler. The implementation

details of the OpenACC-to-FPGA framework are presented in the following section

(Chapter II, Section 2.2).

2.2 The OpenACC-to-FPGA Framework

OpenACC-to-FPGA is a directive-based, high-level FPGA-specific

optimization framework, which consists of directive extensions and corresponding

compiler optimizations to generate more efficient FPGA hardware configuration

files from a high-level OpenACC input code. The proposed directives are designed

for programmers either to provide key information necessary for the compiler

to automatically generate output OpenCL code that enables FPGA-specific

optimizations, or to control important tuning parameters of those optimizations.

We want to clarify how we use the term optimization. There is a distinction

between manually-written OpenCL optimizations (like the shift-register reduction

pattern and the sliding window pattern) and compiler optimizations implemented

57

in OpenARC (like the reduction transformation and window transformation). In

the Intel FPGA SDK for OpenCL [108], programmers can use FPGA-specific

features like shift registers and sliding windows by programming in OpenCL

using very specific patterns. These programming patterns are non-intuitive for

most OpenCL programmers and can be error-prone. Currently, the OpenCL

compiler does not offer a directive- or compiler-based approach to generate these

programming patterns. A primary goal of the research presented in this chapter

is to create transformations in OpenARC that automatically generate these non-

intuitive programming patterns from OpenACC directives. Doing so greatly

simplifies the implementation of FPGA-specific features, and allows programmers

without knowledge of shift registers and sliding windows to create more efficient

FPGA designs.

The following optimizations were inspired by the Intel OpenCL SDK

documentation [108]. We primarily chose to implement in OpenARC optimizations

that potentially apply to a wide range of applications; for example, loop collapsing,

scalar reduction, and branch-variant code motion optimizations are generally

beneficial when they are applicable, whereas the sliding window optimization can

benefit applications with stencil patterns.

This section provides a high-level overview and categorical classification of

the different optimizations developed by Lee et al. [144] and by Lambert et. al [9].

The optimizations are divided into three primary categories: (1) automatically

applied optimizations requiring no user intervention, (2) re-purposed directives

in which existing OpenACC directives are re-implemented in an FPGA-specific

way, and (3) directive extensions in which FPGA-specific directives are developed

outside the established OpenACC standard.

58

We do note that all of the FPGA-specific optimizations are applied in

the context of compute directives, and that the OpenACC data directives for a

standard OpenACC applications are typically sufficient for an FPGA execution.

The one exception is the pipe clause used as part of the channels optimization

described below, which could be considered a data directive and would replace the

analogous OpenACC copyin and copyout clauses.

Before discussing the OpenACC-to-FPGA framework’s optimizations, we

first briefly discuss the implementation of the framework itself.

2.2.1 Implementation in OpenARC. The OpenACC-to-FPGA

translation framework discussed in this work is built inside the OpenARC

compiler framework [39]. As discussed in Chapter I, Section 1.3.3.5, OpenARC is

a research-oriented OpenACC compiler that specializes in rapidly prototyping new

optimizations, API features, and device-support for emerging technologies. This

makes OpenARC an ideal platform for the initial implementation of OpenACC-to-

FPGA translation, which was first introduced by Lee et al. [144].

OpenARC takes an input C program that is annotated with OpenACC

directives, performs several optimization and translation passes, and generates

an optimized output host and kernel code in CUDA or OpenCL. The CUDA or

OpenCL output is then further compiled using a low-level device compiler, such

as NVCC or Intel’s OpenCL compiler. In the context of the OpenACC-to-FPGA

framework covered in this chapter, OpenARC is used to generate OpenCL specific

to Intel FPGAs and to apply FPGA-specific optimizations.

The original baseline translation for the OpenACC-to-FPGA framework

is not part of this dissertation’s research, as it was developed independently by

the primary OpenARC developer Seyong Lee, in the work by Lee et al. [144].

59

Furthermore, some of the optimizations presented in the following sections were

also developed independently from this dissertation’s research, and they are cited

appropriately (again Lee et al. [144]) in the corresponding sections. However, the

bulk of optimizations present in the OpenACC-to-FPGA framework were developed

as part of this dissertation, and are cited respectively as Lambert et al. [9].

2.2.2 Automatic Optimizations. The first class of optimizations

in the OpenACC-to-FPGA framework represents optimizations for which no user

intervention is required. These optimizations can be safely applied any time the

compiler encounters specific constructs and are applied independently from any

user-supplied directives.

2.2.2.1 Dynamic Memory Transfer Alignment. In a typical

FPGA-based heterogeneous system, an FPGA is attached to the host CPU via

PCIe bus as a discrete device with a separate memory. Therefore, for a device

kernel to access the host data and vice versa, data should be explicitly transferred

between the host and device memory. Existing FPGA OpenCL runtimes, such as

Intel OpenCL runtime, use direct memory access (DMA) for higher throughput

and lower latency. To exploit DMA, the host-side buffer and device-side buffer

should be aligned. Although device buffers are automatically allocated in an

aligned way, host buffers should be allocated with special memory allocators (e.g.,

posix memalign() in Linux). Even if both host and device buffers are allocated in

an aligned way, the transfer of partial arrays might not exploit DMA if at least one

of the start addresses is not aligned. The OpenACC-to-FPGA framework runtime

dynamically analyzes memory alignment and employs temporary buffers to satisfy

alignments without user interference, as described in Lee et al. [144].

60

The dynamic memory transfer alignment optimization was designed

and implemented by Lee et al. [144]. However, the optimization is used in this

dissertation’s research to evaluate the OpenACC-to-FPGA framework on different

FPGA architectures, specifically in Lambert et al. [9] and Lambert et al. [11].

2.2.2.2 Boundary Check Elimination. When an OpenACC

compute region is translated into a device kernel, each iteration in a work-sharing

loop will be mapped to a device thread (work-item in OpenCL) according to the

OpenACC execution model. If the total number of device threads is not the same

as the number of corresponding loop iterations, then the device kernel should be

executed so that only device threads with valid mapping execute the loop body,

which is usually implemented using control statements. Generally, control flow

divergence by control statements is less of an issue in FPGA computing than in

GPU computing because the reconfigurability in FPGA can completely eliminate

the diverging control paths of thread executions by using hardware predicates

if the conditional structure is simple enough. However, if the device kernel has

complex control structures such as thread-dependent backward branching, then

the underlying OpenCL compiler cannot flatten the control structures, which

can significant degrade performance by disallowing various advanced compiler

optimizations, such as kernel vectorization. To alleviate the burden for the

underlying OpenCL compiler to flatten the control structure, a compiler pass

was developed that uses built-in symbolic analysis tools to check and eliminate

unnecessary loop-boundary check code at compile time.

The boundary check elimination optimization was designed and implemented

by Lee et al. [144]. However, the optimization is used in this dissertation’s research

61

to evaluate the OpenACC-to-FPGA framework on different FPGA architectures,

specifically in Lambert et al. [9] and Lambert et al. [11].

2.2.2.3 Branch-Variant Code Motion Optimization. Among

devices used as hardware accelerators, the concept of directly managing hardware

logic generation at the programming level is unique to FPGAs. Because

programming logic is mapped directly to FPGA hardware, programming patterns

and coding styles that may only affect source code length on devices like GPUs or

CPUs can make concrete differences in FPGA resource usage.

Loop-invariant code motion is a common computation-reduction

optimization applied across all hardware devices. In the same fashion, we can

apply branch-invariant code motion. This optimization normally would not lead

to a performance benefit for more traditional devices like CPUs and GPUs because

the number of operations executed remains unchanged. However, when compiling

for FPGAs, logic from both branches is required to be implemented in hardware,

leading to increased resource usage from the redundant code. Therefore, factoring

out branch-invariant code can reduce the overall resources required to implement

the hardware logic, and thus the Intel OpenCL compiler supports the branch-

invariant code motion optimization.

To reduce the resource usage further, we propose a branch-variant code

motion optimization, which transforms branch-variant codes and factors out codes

with the same computation patterns. Listing 2.1, Listing 2.2, and Listing 2.3

illustrate how the proposed optimization works: Listing 2.1 shows an input code

that contains branch-variant codes, so the traditional branch-invariant code motion

optimization cannot be applied. However, if we transform the code into a form

in Listing 2.2, codes with common computation patterns can be hoisted out of

62

the conditional, as shown in Listing 2.3. The key part of this optimization is

identifiying a common computation pattern, which is an expression that exists in

all branch bodies and performs the same sequence of computations with branch-

variant operands. For example, in assignment expressions, a common computation

pattern could be statements whose lvalues (i.e., an object that appears on the left

side of the expression) is branch-invariant, whereas the right side of the expression

is branch-variant. To identify these patterns, the compiler can transform the input

conditional code into a form where non-constant operands in expressions within

branch bodies, except for the left sides of the assignment expressions, which are

replaced with temporary variables, even though variable assignments should be

done in a specific order (Listing 2.2). Then, common computation patterns existing

in all branch bodies are factored out of the conditional (Listing 2.3). If the left-

hand side of an assignment statement is used as an input to a subsequent statement

within the branch bodies, the assignment statement and subsequent statement

can be factored out only if both statements are common computation patterns.

Otherwise, the conditional should split into multiple conditionals. If the conditional

itself is dependant on the common statement, the code motion optimization does

not apply. We can see that the number of addition and multiplication operations

that require hardware implementation is halved in Listing 2.3, compared to

Listing 2.1, resulting in lower FPGA resource usage.

63

Listing 2.1 Code

Motion: Input

conditional

if (condition) {

output += A[i] ∗ B[i];

} else {

output += A[i−1] ∗ B[i−1];

}

Listing 2.2 Code

Motion: Modified

conditional

if (condition) {

t1 = A[i]; t2 = B[i];

output += t1 ∗ t2;

} else {

t1 = A[i−1]; t2 = B[i−1];

output += t1 ∗ t2;

}

Listing 2.3 Code

Motion: After code

motion

if (condition) {

t1 = A[i]; t2 = B[i];

} else {

t1 = A[i−1]; t2 = B[i−1];

}

output += t1 ∗ t2;

FPGA resource usage can indirectly impact runtime performance in several

ways. High resource usage can cause the hardware design to suffer from routing

congestion, negatively affecting performance. Also, applications with higher base

resource usage benefit less from loop unrolling techniques because they quickly

exhaust FPGA resources even with small unroll factors. Section 2.4.5 presents an

example of this behavior.

The Intel OpenCL SDK compiler automatically performs simple branch-

invariant code optimizations like the one in the listing above. However, in

more complicated code like the HotSpot application, the optimization is not

automatically applied by the OpenCL compiler. In these more complicated

examples, OpenARC’s high-level IR allows us to perform these kinds of

optimizations automatically. OpenARC can apply branch-invariant whenever the

compiler can guarantee invariance, as long as the motion takes place within an

enclosing compute region.

The branch-variant code motion optimization was designed as part of this

dissertation’s research, referenced in Lambert et al. [9]. However, this optimization

was never fully implemented in OpenARC. Although this optimization led to

64

significant performance improvements for HotSpot (as we see later in this chapter),

other evaluated applications did not benefit directly from this optimization, making

it a low priority for actual implementation.

2.2.3 Re-purposed Directives. The second class of optimizations

in the OpenACC-to-FPGA framework represents optimizations that users can

optionally apply using existing OpenACC directives and clauses. Many clauses are

typically implemented by compilers in a specific way to optimize GPU performance.

In the OpenACC-to-FPGA framework, these clauses were re-implemented to

optimize FPGA performance without changing their syntax or context from a

programming perspective.

2.2.3.1 Single Work-Item Optimization. A common approach

in general CPU- and GPU-based computing is to develop massively parallel

applications that can be partitioned across multiple computation units. Although

this approach can be effective when targeting FPGAs, FPGAs alternatively

offer a single-threaded approach, which is generally preferred for efficient FPGA

computing. Because FPGAs can leverage deeply pipelined execution, single-

threaded pipeline-parallel implementations can outperform their multi-threaded

counterparts in many situations. This contrasts with GPU execution, which

explicitly relies on multi-threaded execution. Because OpenACC was primarily

developed with a focus on GPU execution, the default execution model assumes

multi-threaded parallelism using multiple gangs, workers, and/or vectors, which can

be configured using OpenACC directive clauses.

In OpenCL terminology, the massively parallel or multiple work-item

approach is known as an NDRange kernel, and the single-threaded approach

is referred to as a single work-item kernel [108]. Although OpenACC currently

65

supports directives for sequential execution, it does not currently have a specific

directive for single work-item execution. However, by using existing OpenACC

directives created for controlling the number of threads, we can allow a user

to indicate that a region should execute in a single work-item fashion without

introducing an additional directive.

We can see two examples of these directives in Listing 2.4, one using the

parallel annotation (lines 1-2), and another with the kernels annotation (5-6). We

have modified OpenARC to ensure that the presence of these directives leads to

single work-item executions. To execute an OpenACC compute region in a single

work-item fashion, the numbers of gangs, workers, and vectors should be explicitly

set to 1, respectively. The latest OpenACC standard (V2.6) [169] introduces a

new serial construct, which indicates a code region should be executed in a single-

threaded manner. Although the pipeline-parallel execution of FPGA single work-

item kernels is not strictly single-threaded, we have extended the OpenACC-to-

FPGA framework to also accept the serial clause (lines 3-4, 7-8 in Listing 2.4)

to indicate a single work-item kernel. By setting the num gangs, num workers,

and vector length clauses of an OpenACC parallel directive to 1, or by using the

OpenACC serial directive, OpenARC can generate the appropriate OpenCL code

for the underlying back-end compiler to correctly infer a pipeline parallel execution.

Some applications, like embarrassingly parallel algorithms, are well-suited

to NDRange execution. For other algorithms with data dependency or data

reuse across work-items, the simple single work-item optimization alone may

increase performance when executing on an FPGA. In addition to the stand-

alone benefits, this optimization is notable because it is a prerequisite for the

following optimizations (also discussed in this section): the collapse optimization

66

(Section 2.2.3.2), reduction optimization (Section 2.2.3.3), and sliding window

optimization (Section 2.2.4.4).

The single work-item optimization was designed and implemented as part of

this dissertation’s research, first referenced in Lambert et al. [9] and later updated

in Lambert et al. [11].

Listing 2.4 OpenACC Single work-item directives
1 #pragma acc parallel num gangs(1) num workers(1) vector length(1)
2 { ... }
3 #pragma acc parallel serial
4 { ... }
5 #pragma acc kernels loop gang(1) worker(1) vector(1)
6 { ... }
7 #pragma acc kernels loop serial
8 { ... }

2.2.3.2 Collapse Optimization. In a massively parallel computing

approach, a loop collapse optimization is commonly used either to increase the

amount of computations to be parallelized or to change the mapping of iterations

to processing units. Loop collapsing is a common optimization used across

several directive-based languages, including OpenMP [170] and OpenACC. In

this optimization a compiler combines two tightly nested loops into a single loop,

which typically requires the original iteration variables to be recalculated at each

iteration. In a multi-threaded context, this recalculation can be done using division

and modulus operations, deriving the old iteration index values from the collapsed

iteration index value.

Loop collapsing is already a part of the OpenACC standard, and OpenARC

supports the collapse clause. In Listing 2.5, we see a pair of perfectly nested loops

with a collapse clause and single work-item directives. In the standard OpenARC

implementation (V0.11), collapsing of perfectly nested loops is achieved by

creating a new loop expression with a newly defined iteration variable. OpenARC

67

Listing 2.5 OpenACC nested loops with collapse clause
1 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1) collapse(2)
2 for (i = 0; i < M; i++)
3 for (j = 0; j < N; j++) { ... }

Listing 2.6 OpenACC loop after collapse transformation
1 // Traditional transformation
2 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1)
3 for (iter = 0; iter < M∗N; iter++)
4 { i = iter / N; j = iter % N;
5 ...
6 }
7
8 // FPGA−specific transformation
9 i = 0; j = 0;

10 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1) firstprivate(i,j)
11 for (iter = 0; iter < M∗N; iter++)
12 { ...
13 j++; if (j == N) { j = 0; i++; }
14 }

recalculates the values of the original iteration variables at each iteration using

division and modulus operators.

In an FPGA context, these division and modulus operations are relatively

expensive in terms of execution time and resource usage. However, in a single work-

item context, recalculating at each iteration is unnecessary. If the given kernel

is executed in the single work-item context, the OpenACC-to-FPGA framework

extensions to OpenARC generate a row and column counter approach when

encountering collapse clauses instead of using the costly division and modulus

approach. These row and column counters are implemented as integers, one

representing each loop that was collapsed, and incremented each iteration using

relatively inexpensive integer additions. We can see the resulting OpenACC code

after applying the OpenACC-to-FPGA collapse optimization in Listing 2.6.

The FPGA-specific collapse optimization can be automatically applied

any time loop collapsing occurs within a single work-item execution context.

Because the row and column counters create dependencies within the loop, in

68

multi-threaded contexts we revert to the traditional collapse transformation. We

support application of the collapse optimization in conjunction with our reduction

(Section 2.2.3.3) and sliding window (Section 2.2.4.4) optimizations. Integrating

these optimizations allows application of the reduction (Section 2.2.3.3) and sliding

window (Section 2.2.4.4) optimizations to a wider variety of benchmarks containing

nested loops, without the performance penalty from OpenARC’s traditional

collapse transformation.

The collapse optimization was designed and implemented as part of this

dissertation’s research, referenced in Lambert et al. [9].

2.2.3.3 Reduction Optimization. Scalar reductions are common

patterns used in many algorithms, such as Rodinia’s SRAD [147], to compute

averages, find maximum values, and so on. Because of their popularity in

applications, scalar reductions represent an operation commonly optimized by

compilers. For implementations that target multi-threaded CPUs or GPUs, this

optimization is typically a tree-based approach. The leaves represent the array

of values, and the roots represent the combination of those values by some scalar

operation. This tree-based implementation can also be used in an FPGA context

and may outperform a straightforward serialized approach.

However, because a pipeline-parallel approach is often more efficient than

a massively parallel approach when executing on an FPGA, an alternate FPGA-

specific strategy to the scalar reduction is required. In this approach, partial

sums are accumulated in a shift register, and then a final value is computed by

doing a traditional reduction over the partial sums. We next describe the code

transformations to realize shift-register-based reductions in the OpenACC-to-FPGA

framework.

69

Our reduction optimization compiler technique allows users to utilize single

work-item kernels and shift registers in OpenACC using only previously existing

directives. When using OpenACC to target an FPGA device, the user must first

indicate a single work-item execution (Section 2.2.3.1). Within a single work-

item compute region, the user can then annotate any loop with the OpenACC

reduction directive and a supported reduction operation. Finally, to increase

the performance the user can also append an optional unroll annotation, at the

cost of additional FPGA resources. Under these circumstances, we can safely

and efficiently apply our reduction optimization to implement the FPGA-specific

shift-register based reduction. We can see an application of the OpenACC FPGA-

specific sum reduction in Listing 2.7, with N referring to the desired level of

replication. OpenARC currently supports addition, multiplication, and maximum

and minimum value operations for FPGA-specific reductions.

For FPGA execution, scalar reductions are an example of programming

patterns where the single work-item optimization (Section 2.2.3.1) alone does

not increase performance relative to the traditional NDRange implementation.

Because most floating point operations on an FPGA require multiple clock cycles,

traditionally programmed scalar reductions perform poorly in the pipeline parallel

model or single work-item approach (Section 2.2.3.1). This results from the pipeline

stalling each iteration until the dependency on the reduction variable is resolved.

These pipeline stalls during loop execution are formalized in the Intel FPGA

SDK documentation by the term initiation interval, or II [108]. The initiation

interval specifically refers to the number of FPGA clock cycles that a pipeline is

stalled to launch each successive iteration of a loop execution. A loop with several

loop-carried dependencies, like scalar reduction, may have a high II, while a loop

70

Listing 2.7 OpenACC sum reduction
1 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1) reduction(+:sum)
2 #pragma unroll N
3 for (int i = 0; i < SIZE; ++i)
4 { sum += input[i]; }

without dependencies may have a lower II. When executing in a loop-pipeplined

single work-item approach, an II of 1 leads to optimal performance, indicating that

successive iterations are launched every clock cycle.

The stand-alone single work-item approach does not outperform the

multi-threaded tree-based method for scalar reductions on an FPGA. However,

a sufficiently sized shift register in addition to this approach can significantly

improve performance. In the shift-register approach to scalar reductions, we use

the shift register to accumulate partial results as we iterate over the input array.

This is followed by a standard reduction over the much smaller shift-register array.

This approach increases the reduction variable dependence distance, relaxing the

loop-carried dependency on the reduction variable. As a result, the reduction loop

attains the desired II of 1. The exact shift-register size or depth required depends

on the data type, reduction operation, and unrolling or replication factor.

Fortunately, the underlying Intel OpenCL compiler provides information

about loop initiation intervals at compile time that can be used to determine an

appropriate shift-register depth. With this information, we performed a number of

tests with different reduction configurations, and made some general observations

about the relationships between the data type, reduction operation, unrolling

factor, and their effects on the shift register depth required to attain the desired II

of 1. For example, on the Stratix V FPGA, we observe that without shift registers

or loop unrolling, scalar reduction using single precision floating point addition

leads to an II of 8 cycles, while using double-precision floating point multiplication

71

leads to an II of 16 cycles. We also observe that loop unrolling acts as a multiplier

to the initiation interval. For example, an unroll factor of 4 in the previous example

leads to an II of 32 and 64 cycles, respectively. From these observations, we expect

the following to be valid:

register depth ≈ (operator latency) ∗ (unroll factor) (2.1)

In the equation above, register depth refers to the expected size of the

shift registers required to attain an II of 1, and operator latency refers to the

device-specific cost of the data type and operation used. This equation along with

pre-calculated operator costs are used in the reduction optimization to calculate

efficient shift register depths. However, after compiling reduction codes with

different configurations, we find that the following unexpected equation holds true:

register depth ≈ (operator latency) ∗ (unroll factor)

2
(2.2)

That is, by halving the expected minimum register depth required for an II

of 1, we still attain an II of 1.

Because of the significant performance advantages of launching successive

iterations every cycle and attaining an II of 1, under certain situations the

underlying compiler can force an II of 1 by intentionally throttling or reducing

the maximum FPGA circuit frequency for the entire offloaded kernel [108].

That is, to reduce the number of cycles stalled each iteration, the compiler can

increase the amount of time per cycle. Although the ability to successfully launch

iterations every cycle may benefit a specific loop, reducing the maximum circuit

frequency can negatively affect performance in other regions of the offloaded kernel.

Therefore, by default in the Reduction Optimization, we use the original equation

without halving (Equation 2.1) to calculate the register depth. We currently

72

Listing 2.8 OpenCL generated from OpenARC’s FPGA-specific reduction
transformation

1 #define REGISTER DEPTH (8 ∗ N) // OpenARC calculated shift−register depth
2
3 float shift reg[REGISTER DEPTH + 1] = {0}; //Create and initialize shift registers.
4
5 #pragma unroll N
6 for (int i = 0; i < SIZE; ++i) {
7 shift reg[REGISTER DEPTH] = shift reg[0] + input[i]; //Perform partial reduction.
8
9 for (int j = 0; j < REGISTER DEPTH; ++j)

10 { shift reg[j] = shift reg[j + 1]; } //Shift values in shift registers.
11 }
12
13 #pragma unroll
14 for (int i = 0; i < REGISTER DEPTH; ++i)
15 { sum += shift reg[i]; } //Perform final reduction on shift registers.

hard-code operator latencies specific to the Stratix V, but these can easily be

reconfigured for other devices. In Listing 2.8, we see the OpenCL code generated

by applying the reduction optimization to the OpenACC scalar reduction code

from Listing 2.7, targeting a Stratix V FPGA. We see the OpenARC-calculated

shift register depth is appropriately set to 8 ∗ N for floating point addition and

an unroll factor of N (line 1). We next declare and initialize the shift registers,

used for storing the accumulated partial sums (line 3). In the main loop, we now

add each successive value to the oldest partial sum present in the shift registers

(line 7), followed by a shift of the entire shift register array (lines 9–10). In this

execution pattern, an assigned partial result is not accessed until it has been shifted

through the entire register array, which relaxes the loop-carried dependency. After

accumulating partial results over the entire array, we perform a final sequential

reduction over the partial results in the shift registers (lines 13–15).

The OpenCL programming patterns generated by OpenARC (Listing 2.8)

direct the underlying Intel OpenCL compiler to implement scalar reduction using

single work-item execution and shift registers. With the FPGA-specific reduction

optimization compiler transformation, we allow users to use existing OpenACC

73

directives to generate these non-intuitive code patterns without specialized

knowledge of shift registers, initiation intervals, and operator latencies.

The reduction optimization was developed an implemented as part of this

dissertation’s research and originally published by Lambert et al. [9].

2.2.4 Directive Extensions. While many FPGA-specific

optimizations in the OpenACC-to-FPGA framework can be either automatically

applied or applied through an alternative implementation of existing OpenACC

directives, for some FPGA-specific optimizations, automatic application by the

compiler is difficult. Also, there might not be a straightforward mapping to existing

directives that programmers could use to optionally apply the optimizations since

these optimizations might not be relevant in GPU or multi-threaded CPU contexts.

In these cases, novel directive extensions are developed that can be

recognized by the OpenARC compiler framework. The goal of these extensions is

to allow programmers with limited FPGA knowledge to leverage FPGA-specific

optimizations that could largely affect performance.

2.2.4.1 Kernel Vectorization Directive. In the Intel FPGA

OpenCL programming, kernel vectorization allows multiple work items (device

threads) in an OpenCL work group to execute in a single instruction multiple

data (SIMD) fashion, which is implemented by replicating the kernel data paths

while sharing control logic across each SIMD vector lane. Kernel vectorization

is usually beneficial, but its additional resource requirement could contend with

other optimizations. Although the OpenACC vector clause has similar effects, the

vectorization behavior in the OpenACC execution model is not the same as that

of the Intel OpenCL kernel vectorization. In OpenACC, vector lanes execute only

in a SIMD manner if a kernel is in vector-partitioned mode and might not execute

74

in a lockstep manner. In contrast, OpenCL kernel vectorization exercises a strict

lockstep vectorization.

The kernel vectorization optimization was designed and implemented by

Lee et al. [144]. However, the optimization is used in this dissertation’s research

to evaluate the OpenACC-to-FPGA framework on different FPGA architectures,

specifically in Lambert et al. [9] and Lambert et al. [11].

2.2.4.2 Compute Unit Replication Directive. The reconfigurable

nature of FPGAs allows multiple compute units to be generated for each kernel

so that the hardware controller in FPGA can distribute work groups to available

compute units in addition to running multiple work groups in a pipeline of

a compute unit. Increasing the number of compute units can achieve higher

throughput, but it also increases bandwidth pressure to the global memory and

requires more hardware resources, whose optimal number should be carefully tuned.

The compute unit replication optimization was designed and implemented

by Lee et al. [144]. However, the optimization is used in this dissertation’s research

to evaluate the OpenACC-to-FPGA framework on different FPGA architectures,

specifically in Lambert et al. [9] and Lambert et al. [11].

2.2.4.3 Channels Directive. In the current OpenACC execution

model, there is no mechanism to allow fine-grained synchronization between

actively running device kernels, and the device kernels can communicate with

each other only through the device global memory. Therefore, both kernels

require reading from and writing to the global memory to communicate, and

the communication is serialized due to kernel communication. Moreover, the

limited bandwidth and long latency of the global memory could become another

performance-limiting factor. To address these issues, the underlying Intel OpenCL

75

provides a hardware mechanism called channel, which two concurrently running

kernels can use to communicate with each other in a fine-grained manner without

using the expensive global memory. If two or more OpenACC kernels execute

in a sequential order and communicate with each other using temporary device

buffers, then these kernels might be able use the channel mechanism when running

on an FPGA. However, for the kernels to use this mechanism without breaking

the original execution semantics, these kernels should communicate in specific

patterns, which are not easy for the compiler to detect automatically. Furthermore,

the channel mechanism can only be safely applied to applications where the

dependencies between kernels are iteration-specific (i.e., iteration x of a kernel

only depends on the results of iteration x of a previous kernel). To enable the

channel mechanism in OpenACC, a set of new backward-compatible OpenACC

data clauses were proposed with the existing OpenACC data clauses that will

preserve functional portability across FPGAs and non-FPGA devices.

The channels directive was designed and implemented by Lee et al. [144].

However, the optimization is used in this dissertation’s research to evaluate the

OpenACC-to-FPGA framework on different FPGA architectures, specifically in

Lambert et al. [9] and Lambert et al. [11].

2.2.4.4 Sliding Window Directive. Applications relying on stencil

computations are common in scientific computing. Many algorithms operating

on a grid or matrix apply a stencil pattern at each input location, relying on

neighboring locations. These patterns and operations can result in redundant,

expensive memory operations on devices such as GPUs and FPGAs.

However, in an FPGA single work-item context, redundant memory accesses

across iterations can be mitigated by using a shift-register based sliding window

76

approach. In the sliding window approach, we maintain the required neighborhood

of relevant data in shift registers, shifting a new value in and an old value out

each time an iteration begins. This approach allows us to efficiently forward data

across iterations, allowing for data reuse. This also significantly reduces the number

of memory operations required each iteration because we are able to access the

neighboring values stored in the sliding window without pipeline delays.

Basic Sliding Window Optimization

In this section we propose an OpenARC directive extension implementing

the sliding window approach to address this performance issue. The window

directive can be applied to loops within an OpenACC compute region, specifically

where the loop reads from an input array, performs computations, and writes to

an output array. However, only certain types of loops can benefit from application

of the window directive, such as loops where each iteration contains several non-

contiguous input array accesses, and loops where the same memory locations are

redundantly accessed across different loop iterations. These programming patterns

are common in stencil-based scientific codes.

The window directive imposes several restrictions for safe and efficient

application. The optimization requires the neighborhood of cells accessed each

iteration to be a fixed size. This fixed size is used to determine the size of the

sliding window. The optimization also requires that the neighbor cells (array

elements) accessed each iteration have constant offsets relative to the current

iteration. For example, a loop that accesses a random assortment of neighbors each

iteration would not be appropriate. Finally, in the current version of the sliding

window optimization, the loop iteration variable must increase monotonically and

have a step size of 1. These requirements ensure that the underlying OpenCL

77

Listing 2.9 OpenACC with window directive
1 #define ROWS ...
2 #define COLS ...
3
4 #pragma acc parallel loop serial
5 #pragma openarc transform window (input, output)
6 for (int index = 0; index < ROWS∗COLS; ++index) {
7 float N = input[index − COLS];
8 float S = input[index + COLS];
9 float E = input[index + 1];

10 float W = input[index − 1];
11 output[index] = input[index] + N + S + E + W;
12 }

compiler can successfully and effectively infer and implement a sliding window

approach using shift registers. OpenARC enforces these requirements by analyzing

the loop control statement and requiring the index expressions of the input array to

be affine, where the coefficient of the index variable is either 1 or -1. Violations of

these requirements cause OpenARC to issue errors or warnings, depending on the

offense.

In Listing 2.9, we show an example of a simple OpenACC stencil code with

the window directive applied, where each iteration in a loop contains multiple

non-contiguous input array accesses. Also, each element in the input array is

accessed several times over multiple iterations. Because this example code meets

the requirements mentioned above, it is safe to apply the window directive.

Using only the code provided in Listing 2.9, OpenARC can analyze the

input array index expressions to calculate the following values needed to implement

the sliding window transformation: neighborhood size (NBD SIZE), window offset

(SW OFFSET), and reading offset (READ OFFSET). The neighborhood size

refers to the smallest number of contiguous array elements needed to encapsulate

the neighbors required to compute one iteration. The window offset refers to the

difference between the current value of the iteration variable and the minimum

index value of neighbor cells for a given iteration. This offset is used when replacing

78

input array accesses with accesses to the sliding window. Finally, the reading offset

refers to difference between the maximum index of the current neighbors and the

current index. This offset determines the index used to read from the input array

each iteration and to calculate the number of initialization iterations required.

These offsets are calculated internally using the following equations, where index

refers to the index of a given iteration, and max index and min index refer to the

largest and smallest values used to access the input array for that same iteration.

NBD SIZE = max index−min index+ 1 (2.3)

SW OFFSET = index−min index (2.4)

READ OFFSET = max index− index (2.5)

In the proposed sliding window optimization, calculating the above three

equations is key; for this, we exploit the built-in symbolic analysis tools in

OpenARC. If the target loop body does not contain inner loops, the compiler

symbolically calculates the differences between any two index expressions used for

the input array accesses and derives the min index and max index expressions by

symbolically comparing those differences. If the target loop body contains inner

loops, the OpenARC compiler applies a symbolic range analysis, which computes

integer variables’ value ranges at each program point to find the symbolic ranges

of index variables of the inner loops. The calculated symbolic ranges are used to

calculate the symbolic differences between two index expressions for the input array

accesses.

Once the above three values (neighborhood size, window offset, and

reading offset) are calculated and determined to be constant, the remaining step

is to transform the target loop into a specific programming pattern so that the

79

underlying OpenCL compiler is able to generate the hardware logic required for

efficient sliding window execution.

In Listing 2.10, we show the resulting OpenCL code after the proposed

sliding window optimization has been applied. We first see the results of

OpenARC’s calculations using the above equations (lines 5–7), followed by a

declaration for the sliding window array (line 9). The initial value of the loop

iteration variable is offset by the read offset (line 11). This allows for additional

iterations to properly initialize the sliding window array, ensuring that the

necessary neighborhood of values is present in the sliding window for the first

non-initialization iteration. Within the loop, we first shift the sliding window each

iteration (lines 12–13). Although this programming pattern is inefficient on non-

FPGA platforms, it is required by the underlying OpenCL compiler to infer a shift

register implementation of the intended sliding window array. We next read one

value from the designated input array into the sliding window array, using the pre-

calculated read offset (lines 16–17). Finally, for every non-initialization iteration,

we perform the calculations from the original loop (lines 20–24). We see that each

read from the original input array has been replaced with one read from the sliding

window array, and in the sliding window array index expressions, the iteration

variable has been replaced with the window offset.

By using OpenARC to generate these specific programming patterns, as

outlined in the Intel OpenCL SDK Best Practices documentation, the back-end

compiler is able to generate the hardware logic required for efficient sliding window

execution. Although Listing 2.9 provides an ideal case for the window directive, the

sliding window compiler transformation is robust enough to handle more complex

indexing expressions, including expressions within nested loops containing multiple

80

Listing 2.10 Transformed OpenCL sliding window code
1 #define ROWS ...
2 #define COLS ...
3
4 // OpenARC calculated values
5 #define NBD SIZE (2∗COLS + 1) // Neighborhood size
6 #define SW OFFSET (COLS) // Window offset
7 #define READ OFFSET (COLS) // Read offset
8
9 float sw[NBD SIZE]; //Create a sliding window array.

10
11 for (int index = −(READ OFFSET); index < ROWS∗COLS; ++index) {
12 for (int i = 0; i < NBD SIZE − 1; ++i)
13 { sw[i] = sw[i + 1]; } //Shift values in the sliding window array.
14
15 //Load an input array element into the sliding window array.
16 if (index + READ OFFSET < ROWS∗COLS)
17 { sw[NBD SIZE − 1] = input[index + READ OFFSET]; }
18
19 if (index >= 0) { //Main computation body which uses sliding window
20 float N = sw[SW OFFSET − COLS];
21 float S = sw[SW OFFSET + COLS];
22 float E = sw[SW OFFSET + 1];
23 float W = sw[SW OFFSET − 1];
24 output[index] = sw[SW OFFSET] + N + S + E + W;
25 }
26 }

iteration variables. Also, algorithms without a separate output array that write

computation results back to the original input array, like the Rodinia Benchmark

NW [147], are handled by the compiler transformation using special-case code.

The OpenARC window directive exemplifies the need for high-level programming

constructs to enable widespread adoption of FPGA programming for HPC. This

OpenACC directive extension enables programmers to use the performance-critical

sliding window pattern on an FPGA without specific knowledge of shift registers,

neighborhood sizes, and non-intuitive OpenCL programming patterns.

Sliding Window Optimization with Loop Unrolling Like the

reduction optimization (Section 2.2.3.3), we can increase the performance of the

shift-register–based sliding window optimization by applying loop unrolling. This

unrolling can effectively increase the pipeline depth, allowing for a higher degree

of pipeline parallelism and reducing the number of iterations required. This can

81

decrease overall runtime but at the cost of increased FPGA resource usage. For

applications with a low base resource usage, loop unrolling can be used to utilize

unused resources while improving performance.

To enable loop unrolling in conjunction with the sliding window approach,

users can add an additional #pragma unroll UNROLL FACTOR annotation to

any loop annotated with a window directive. Here UNROLL FACTOR refers to

the degree of unrolling and the number of times the sliding window logic should

be replicated. We have integrated the sliding window approach with loop unrolling

by creating an extension to the sliding window compiler transformation. Although

we could simply lower the unroll directive to the underlying OpenCL compiler, we

can further optimize this approach by separating the shift register and memory

operations from the primary computation operations. This separation allows us to

reduce the number of sliding window shifts and perform coalesced memory reads

and writes, while only replicating code used in the primary computation. This

models the approach used in the Intel OpenCL SKD FD3D design example [108].

We see the resulting OpenCL code generated from applying an optional

loop unroll pragma along with the window directive in Listing 2.11. In this

transformation, the size of the sliding window is dictated by a new compile-

time constant SW SIZE (line 8). The increased size of the sliding window is

needed to accommodate the additional operations from loop unrolling. Because

we now process multiple values each iteration, the loop step size is increased to

UNROLL FACTOR (line 12). Instead of shifting the sliding window one position

each iteration, we now shift UNROLL FACTOR positions (lines 13–14), thus

reducing the overall number of shifts required. We then perform a coalesced read

of UNROLL FACTOR values from the input array (lines 16–19). We declare a

82

Listing 2.11 Transformed OpenCL sliding window code with loop unrolling
1 #define ROWS ...
2 #define COLS ...
3
4 // OpenARC calculated values
5 #define NBD SIZE (2∗COLS + 1) // Neighborhood size
6 #define SW OFFSET (COLS) // Window offset
7 #define READ OFFSET (COLS) // Read offset
8 #define SW SIZE (NBD SIZE + UNROLL FACTOR − 1)
9

10 float sw[SW SIZE]; //Create a sliding window array.
11
12 for (int index = −(READ OFFSET); index < ROWS∗COLS; index += UNROLL FACTOR) {
13 for (int i = 0; i < NBD SIZE − 1; ++i)
14 { sw[i] = sw[i + UNROLL FACTOR]; } //Shift UNROLL FACTOR positions.
15 //Load UNROLL FACTOR values to the sliding window.
16 for (int ss = 0; ss < UNROLL FACTOR; ++ss) {
17 if (index + READ OFFSET + ss < ROWS∗COLS)
18 { sw[NBD SIZE − 1 + ss] = input[index + READ OFFSET + ss]; }
19 }
20
21 float value[UNROLL FACTOR]; //Temporary array storing outputs.
22 //Main body replicated by UNROLL FACTOR
23 #pragma unroll
24 for (int ss = 0; ss < UNROLL FACTOR; ++ss) {
25 if (index + ss >= 0) {
26 float N = sw[SW OFFSET+ss − COLS];
27 float S = sw[SW OFFSET+ss + COLS];
28 float E = sw[SW OFFSET+ss + 1];
29 float W = sw[SW OFFSET+ss − 1];
30 output[index] = sw[SW OFFSET+ss] + N + S + E + W;
31 value[ss] = sw[SW OFFSET+ss] + N + S + E + W;
32 }
33 }
34 //Store temporary outputs to the output array.
35 for (int ss = 0; ss < UNROLL FACTOR; ++ss) {
36 if (index + ss >= 0)
37 { output[index + ss] = value[ss]; }
38 }
39 }

statically sized array to temporarily store output values (line 21). The primary

computation is then replicated by the enclosing fully unrolled loop (lines 23–33),

with each access to the sliding window offset by the unrolled loop iteration index.

Finally, we perform a coalesced write from the temporary array to the output array

(lines 35–38).

The loop unrolling pragma can be applied to any loop optimized with the

window directive as long as the unroll factor evenly divides the iteration space of

the original main loop. For example, in Listing 2.11, the user-provided unroll factor

83

must divide ROWS ∗ COLS. Violation of this restriction results in an OpenARC

compiler error.

The window directive was designed and implemented as part of this

dissertation’s research, referenced in Lambert et al. [9].

2.3 Experimental Setup for FPGA Platforms

In this section we discuss the benchmarks, hardware, and software

platforms used in this dissertation’s research to evaluate the OpenACC-to-FPGA

framework and developed optimizations discussed in Section 2.2, and in the study

exploring the performance portability of OpenCL between Intel and Xilinx devices

(Section 2.6).

2.3.1 Benchmarks. We use multiple benchmarks to test the viability,

correctness, and performance of our FPGA-specific optimizations. Table 3 provides

a summary of the benchmarks and their properties.

Table 3. OpenACC and OpenCL benchmarks evaluated using FPGAs

Application Source Description Input Size Data Type

Sobel Intel Image edge detection algorithm 1,920 × 1,080 integer

FD3D Intel 3D finite difference computation 64 × 64 × 64 floating-point

HotSpot Rodinia Compact thermal modeling 1,024 × 1,024 floating-point

SRAD Rodinia Speckle reducing diffusion 4,096 × 4,096 floating-point

NW Rodinia Needleman–Wunsch algorithm 4,096 × 4,096 integer

Pathfinder Rodinia Dynamic programming search. 1,000,000 × 1,000 integer

CFD Rodinia Computational Fluid Dynamics 1,024 × 1,024 floating-point

Jacobi OpenARC Jacobi kernel 8192 × 8192 floating-point

Matmul OpenARC Matrix mulitplication kernel 2048 × 2048 floating-point

LULESH LLNL Lagrangian explicit hydrodynamics 45 × 45 × 45 floating-point

The Sobel and FD3D benchmarks are taken from the Intel High-

Performance Computing Platform Examples [108], and the HotSpot, SRAD, and

NW benchmarks originate from the Rodinia Benchmark Suite 3.1 [147]. NW can

be classified as a dynamic programming algorithm, but the rest can be classified

84

as structured grid algorithms. We use the same input sizes and input parameters

as the original Intel or Rodinia source codes, with the exception of FD3D. The

original FD3D OpenCL code from Intel supports an input size of 504 × 504 × 504

points by dividing the input into 64 × 64 × 504 blocks. This blocking is necessary

to meet FPGA resource usage requirements. However, because OpenARC does not

currently support this type of custom blocking with OpenACC directives, we use an

input size of 64 × 64 × 64 single-precision floating-point values.

Base OpenACC versions of the Intel OpenCL SDK design examples

were created directly from the OpenCL code by replacing the low-level OpenCL

constructs with their high-level OpenACC counterparts and removing any FPGA-

specific optimizations. A primary goal of this chapter in the dissertation is to

reintroduce these optimizations using directives. Base OpenACC versions of

the Rodinia benchmarks were sourced from the OpenARC repository. These

benchmarks were adapted from the Rodinia 1.0 OpenMP benchmarks [39],

although in this study we update them with any changes in Rodinia 3.1.

The OpenCL benchmarks evaluated in Section 2.4.6 are sourced directly

from [108] and [160] without modification. The OpenCL benchmarks evaluated in

Section 2.6 are modified from the original versions developed in [160] in order to

execute in the Xilinx environment.

The OpenMP benchmarks evaluated in Section 2.4.7 come from the Rodinia

repository [147].

For the sake of generality, while conducting research for this dissertation in

Lambert et al. [10] and Lambert et al. [11] the OpenACC-to-FPGA framework is

evaluated using two core algorithms, Jacobi and Matmul, and the real-world proxy

application LULESH [171].

85

The holistic evaluation of the numerous optimizations in the OpenACC-

to-FPGA framework required many executions with different combinations of

threading models, optimizations, kernel vectorization and compute unit replication

factors, unrolling factors, and more. This process was manually guided, but it was

also restricted by the applicability of optimizations to each algorithm and device

resource limitations. The optimization process for each benchmark was greatly

simplified by the directive-based approach because code changes between versions

were very minimal. However, the large optimization search space also exposed the

dire need for a more automated optimization process.

We now briefly summarize each benchmark used in this dissertation’s

evaluation of the OpenACC-to-FPGA framework.

2.3.1.1 Sobel. The Sobel filter, or Sobel operator, is a popular image

processing method used for edge detection in image data. The method uniformly

applies gradient calculations across the input image, a structured grid. Each

calculation depends on a 3x3 neighborhood of cells. We use a 1920x1080 8-bit

image as input, and compute one iteration.

2.3.1.2 FD3D. The 3-Dimensional Finite Difference Computation

is a numerical method used in solving differential equations. FD3D iterates over

a structured 3D grid and computes a difference calculation using RADIUS * 6

neighboring cells. We use a RADIUS of 3, resulting in a 19-point 3D stencil. The

original OpenCL code from Intel supports an input size of 504x504x504 points by

dividing the input into 64x64x504 blocks. This blocking is necessary to meet FPGA

resource usage requirements. However, because OpenARC does not currently

support this type of custom blocking with OpenACC directives, we use an input

size of 64x64x64 single-precision floating-point values in all experiments.

86

2.3.1.3 HotSpot. The HotSpot application is used to simulate

the thermal properties of a processor, given information about the processor’s

architecture and power measurements. The application takes a 2D grid of initial

values and power measurements and outputs simulated thermal values after a

specified number of iterations. Each iteration, all values in the 2D grid are updated

based on 4 neighboring cells: north, east, south, and west. We use a 1024x1024

sized 2D grid of single-precision floating-point values as input in our experiments,

and perform 10,000 iterations.

2.3.1.4 SRAD. Speckle Reducing Anisotropic Diffusion is an iterative

image processing algorithm, used in applications such as medical and ultrasonic

imaging. Like HotSpot, SRAD operates over a 2D structured grid. SRAD first

performs a scalar reduction over the input array each iteration. Subsequently,

SRAD performs a 5-point stencil computation similar to HotSpot. We use a

4096x4096 image as input, where each pixel is cast to a single-precision floating-

point value, and compute 100 iterations.

2.3.1.5 NW. Needleman–Wunch is a dynamic programming

optimization algorithm used to perform DNA sequence alignment. The input to

NW is a 2D matrix, and the computation begins at the top-left corner, finishing

at the bottom right corner. Each value is updated using three neighboring cells:

north, northwest, and west. We use a 4096x4096 integer array as input, and

compute one iteration.

2.3.1.6 Pathfinder. The goal of the Pathfinder application is to find

the value of a minimum-weight path from the top row of a 2D grid to the bottom

row. This computation uses a dynamic programming approach. Each element in

the 2D grid is populated with a nonnegative integer weight. The path to a given

87

element, elt, is determined by the taking the minimum value from the northwest,

north, or northeast element relative to elt. The program terminates when the last

row of the 2D grid has been visited.

2.3.1.7 CFD. The Computational Fluid Dynamics (CFD) application

is an unstructured grid benchmark that solves 3D Euler equations for compressible

flow. This application comprises three kernels: compute step factor, compute

flux, and time steps. The kernels are highly compute-intensive with many single-

precision floating point operations, including addition, multiplication, division, and

square root. The most expensive computation is in the compute flux kernel, which

calculates the artificial viscosity and accumulates flux contributions across each

face.

2.3.1.8 Jacobi. The Jacobi method is an iterative solver commonly

used for solving systems of linear equations in many scientific domains.

2.3.1.9 Matmul. Matrix multiplication, the cornerstone of linear

algebra, is a fundamental core kernel used in applications in nearly every domain.

2.3.1.10 LULESH. The Livermore Unstructured Lagrangian Explicit

Shock Hydrodynamics is widely studied proxy application and co-design effort in

high-performance and exascale computing. To evaluate the OpenACC-to-FPGA

framework, we target the LULESH 2.0 OpenACC implementation. Because the

original application is written using C++, we target a C-based OpenACC port

available in the OpenARC repository. However, because LULESH 2.0 contains few

C++-specific constructs, the C and C++ versions are comparable.

2.3.2 FPGA Hardware Platforms. We use three different

generations of Intel FPGAs in this dissertation: a Stratix V, an Arria 10, and a

Stratix 10. The Stratix V was originally designed and released by Altera, while the

88

other two FPGAs were formally released by Intel (with an apparant disdain for

Roman numerals), after Intel’s acquisition of Altera. Details about the hardware

resources available in each FPGA is presented in Table 4. We can see that each

new FPGA release comes with increased availability of hardware resources. The

benefits of this increased size are shown in Section 2.5 of this chapter, as we are

able to apply more aggressive optimizations and replication.

On the Intel FPGAs, power usage estimations using the Quartus Power

Analyzer [108] on fully compiled and routed applications. For a fair comparison

with GPU and CPU power calculations, we add 2.34 W to the power estimations

to account for the FPGA memory modules, as in [160]. We calculate energy (J)

as runtime (s) × power (watts). Resource usage percentages are provided by the

backend Intel OpenCL compiler.

For the Xilinx-based evaluations in Section 2.6, we used a Xilinx Alveo

U250 Data Center accelerator card, which includes an XCU250 FPGA of the Xilinx

UltraScale+ architecture, a Gen3 x16 PCIe interface, and 64 GB of DDR4, off-chip

memory.

Although multi-core CPUs were used as host processors, all of the host code

in the evaluations was executed using a single core.

Table 4. Intel and Xilinx Hardware Resource Features

FPGA name Board model ALMs DSP blocks RAM blocks Host CPU
Stratix V nallatech 385 172k 1,590 2,014 Intel Xeon E5520
Arria 10 p510t sch ax115 427K 1,518 2,713 Intel Xeon E5-2683 v4

Stratix 10 p520 max sg280h 933K 5,760 11,721 Intel Xeon E5-2660 v4
Alveo U250 XCU250 1,341K 11,508 12,240* Intel Xeon E5-2683 v4
*The Alveo board contains 2,000 “36 Kb Block RAMs” and 1,280 “288 kb Ultra Block RAMs”,

which is roughly analogous to 12,240 RAM blocks (when comparing to Intel devices).

89

2.3.3 FPGA Software Platforms. On all platforms, input

OpenACC code is compiled using OpenARC V0.11 as the front end, although the

specific git commit used changed frequently, especially as we continually updated

OpenARC’s OpenACC-to-FPGA support.

For evaluations on the Stratix V, we use the Intel FPGA SDK for OpenCL

Offline Compiler V16.1.0 as the primary compiler and the back end runtime for

OpenCL code.

For evaluations on the Arria 10, The back-end OpenCL code is compiled

using the Intel FPGA SDK for OpenCL v17.1.0 (aocl). The software stack is built

on CentOS Linux 7 (Core).

For the Stratix 10 devices, the back-end OpenCL code is compiled using the

Intel FPGA SDK for OpenCL v19.4.0 (aocl). The software stack is built on Red

Hat Enterprise Linux 7.

For all three devices, runtime measurements are recorded using C API calls,

specifically clock gettime(). Several Python scripts were also built to automate

batch build, compilation, and execution processes for the FPGA. These scripts

also extract resource usage and other compilation information reported by the aocl

compiler and notify users via text message/email upon compilation completion.

Runtimes reported are the average of five executions (Stratix V) or three

executions (Arria 10, Stratix 10). For the Stratix V executions, the runtime

variance was below 1.5% of the mean runtime for all applications, with most

variances falling below 0.1%. Similar variances were observed on the Arria 10 and

Stratix 10 devices.

For our Xilinx-based experiments in Section 2.6, we used the 2020.1 version

of the Vitis Core Development Kit, and the associated compiler v++.

90

Both Intel and Xilinx hardware compilers generate interactive reports

that can be used to provide insight into kernel performance and opportunities

for optimization. Information provided in these reports includes FPGA resource

utilization and the analysis of loops within a kernel. Intel generates this report by

constructing an .html file that can be opened in a browser, and Xilinx generates

summaries that can be navigated by using the vitis analyzer graphical user

interface (GUI) application.

2.3.4 GPU and CPU Comparison Platforms. For the GPU

comparisons in Section 2.4.7, we use an NVIDIA Tesla K40c GPU. The OpenACC

code relies on the NVIDIA CUDA compiler V8.0 as the back end (the OpenACC

input code is translated into CUDA by the OpenARC compiler). We calculate

energy consumption using NVIDIA NVML to sample power usage every 10 ms.

For the CPU comparisons in Section 2.4.7, we use a 16-core Intel(R)

Xeon(R) E5-2683 v4 CPU with 2-way hardware multi-threading. We compile the

OpenMP benchmarks using GCC 4.8.5 with the -O2 flag, and execute them using

32 OpenMP threads. We collect CPU energy usage information using the Intel

Running Average Power Limit (RAPL) interface.

2.4 Intel Stratix V Evaluations

In Section 2.2, we discussed various FPGA-specific optimizations, many of

which were developed as part of this dissertation’s research in Lambert et. al [9].

In the following three sections, we discuss the rigorous evaluations performed

across three different FPGA platforms in order to asses the performance of

the OpenACC-to-FPGA framework. These evaluations span three separate

publications (all included as part of this dissertation) and roughly three categories:

(1) an evaluation of each developed optimization in isolation [9], (2) a holistic

91

evaluation of combinations of developed optimizations on new platforms [10, 11],

(3) evaluations of FPGA-specific considerations and behaviors in the context of

the OpenACC-to-FPGA framework [9, 11]. In this section, we discuss evaluations

performed using the Stratix V platform that were originally published in Lambert

et al. [9].

2.4.1 Single Work-Item Evaluation. By using directives to dictate

a single work-item execution context, we can transform a traditional multi-threaded

approach into an FPGA-specific pipeline-parallel single-work item approach. We

evaluate the effectiveness of the single-work item approach by comparing it to the

multi-threaded approach. Both approaches were programmed using OpenACC and

executed on the Stratix V FPGA. Figure 6 shows the FPGA performance of the

two approaches across each benchmark. In this figure, the multi-threaded approach

(NDRange) is used as a baseline, and the single work-item approach is compared

in terms of speedup. We can see that for two applications (Sobel and HotSpot),

applying the single work-item alone improves runtime performance. For the other

applications (FD3D, SRAD, and NW) this optimization can actually degrade

performance. However, in both cases the single work-item optimization enables us

to apply the more advanced collapse, reduction, and sliding window optimizations,

ultimately leading to higher performance than the multi-threaded approach for all

benchmarks on the Stratix V platform.

2.4.2 Collapse Evaluation. The FD3D, HotSpot, SRAD, and NW

benchmarks all contain nested loops inside their main computation kernels. As

a result of restrictions from the underlying OpenCL compiler (the Intel OpenCL

SDK for FPGAs), to apply the sliding window and unrolling optimizations, we

first need to apply loop collapsing to remove the nested loops. Traditional loop

92

Single Work-Item Performance

Sobel FD3D HotSpot SRAD NW
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

1.0 1.0 1.0 1.0 1.0

1.3

0.6

1.1

1.0

0.2

ND Range
Single Work-Item

Figure 6. OpenACC-to-FPGA multi-threaded and pipeline-parallel approaches
(Stratix V).

collapsing techniques can be used to remove the nested loops; however, because

the sliding window and other optimizations require a single work-item context, we

can apply the single work-item FPGA-specific loop collapse optimization, replacing

the division and modulus operations with more efficient addition operations along

with row and column counters. Table 5 demonstrates the modest performance and

resource usage improvements realized when applying the FPGA-specific collapse

optimization in single work-item executions.

Table 5. FPGA-specific collapse clause performance comparison (Stratix V)

Application Collapse Type Runtime Resource Usage (%)

FD3D Standard 190.935 (ms) 39
FD3D FPGA-specific 180.149 (ms) 36

HotSpot Standard 47.882 (s) 32
HotSpot FPGA-specific 47.371 (s) 30

2.4.3 Reduction Evaluation. We use the SRAD benchmark to

experimentally verify the observations in Section 2.2.3.3. First, we evaluate the

93

relationships between different programmable parameters in the FPGA-specific

single-work item scalar reduction. We isolate the reduction in SRAD, removing

other computations in the benchmark. This results in a single-precision floating-

point sum reduction over an input array of size 4096 × 4096. Removing the non-

reduction code allows us to better observe the relationships between shift register

depth, initiation interval, resource usage, and runtime. In the initial experiment,

we use a constant unroll factor of 8 and manually vary the shift register depth.

In Figure 7, we see that increasing the shift register depth reduces the initiation

interval, at the cost of increased resource usage. This reinforces observations about

relationship between shift register depth and initiation interval introduced by

Equation 2.1. As we increase the shift register depth, for certain depth values

we observe an unexpected decrease in circuit frequency and a corresponding

unexpected decrease in the initiation interval. These specific values indicate

instances where the compiler has intentionally sacrificed or throttled the circuit

frequency to attain a lower initiation interval. For example, in Figure 7, at register

depths 16 and 32 we notice a decrease in II and a corresponding significant drop

in circuit frequency. As the shift register depth continues to increase, the circuit

frequency re-stabilizes, steadily increasing while the initiation interval remains

unchanged.

In the second experiment, we evaluate the performance improvements by

applying the single work-item FPGA-specific reduction optimization, compared

to traditional approaches to scalar reduction. For this experiment we use the

entire SRAD benchmark, as changes in the reduction implementation can also

affect execution in other code regions. We compare three different approaches to

94

FPGA Variable Relationships

0 20 40 60
0

5

10

15

20

25

30

II

0 20 40 60
0.00

0.05

0.10

0.15

0.20

R
un

tim
e

(s
)

0 20 40 60
Register depth

200

220

240

260

280

300

C
ir

cu
it

fr
eq

ue
nc

y

0 20 40 60
Register depth

26

28

30

32

34

36

R
es

ou
rc

e
us

ag
e

(\%
)

Figure 7. Initialization interval (II), circuit frequency, runtime, resource usage, and
shift-register depth relationships. SRAD reduction kernel (Stratix V).

95

scalar reduction: (1) a tree-based reduction, (2) a basic single work-item reduction,

(3) and the FPGA-specific shift register reduction.

In Table 6, we see the basic single-threaded approach performs poorly

compared to the hardware-agnostic multi-threaded tree-based reduction.

Consequently, scalar reduction represents a code pattern where the single work-

item optimization alone does not lead to improvements in performance. However,

by combining the single work-item approach with the FPGA-specific shift-register

based optimization, we can significantly outperform the other approaches to scalar

reduction, but this performance comes at the cost of increased resource usage.

Table 6. SRAD FPGA reduction performance comparison (Stratix V).

Reduction Type Runtime (s) Resource Usage (%)
Multi-threaded Tree-based 31.053 45

Single Work-item 78.307 38
Single Work-item Shift Register 23.239 50

2.4.4 Sliding Window Evaluation. In this section, we first evaluate

the baseline sliding window optimization, and then evaluate the sliding window

optimization with replication incorporated via customized loop unrolling.

2.4.4.1 Basic Sliding Window. The sliding window optimization

(Section 2.2.4.4) can safely be applied to non-nested loops in a single work-item

execution context. Therefore, by first applying the single work-item optimization

(Section 2.2.3.1) and, when appropriate, the collapse optimization (Section 2.2.3.2),

we can then apply the sliding window optimization to all five benchmarks.

We evaluate the effectiveness of the sliding window optimization for each

benchmark by comparing a massively parallel multi-threaded approach, a basic

pipeline-parallel single work-item approach, and a pipeline-parallel single work-item

approach using a sliding window. We see significant performance improvements

96

across all benchmarks when applying the sliding window optimization. The results

of the sliding window evaluation are presented in Figure 8. The runtime for the

OpenACC implementation with only the single work-item optimization applied is

used as a baseline, and the performance of the same OpenACC implementation

with both the single work-item and sliding window optimizations applied is

compared in terms of speedup.

Sliding Window Performance

Sobel FD3D HotSpot SRAD NW

100

101

Sp
ee

du
p

1.0 1.0 1.0 1.0 1.0

3.1

22.6

1.4
1.2

37.6Single Work-Item
Sliding Window

Figure 8. Comparison of a single work-item and a single work-item with shift-
register sliding window approach (Stratix V)

We see that the performance of the NW benchmark improves exceptionally

after applying the sliding window optimization. Unlike the other applications,

NW reads from and writes to the same array, instead of writing to a separate

output array. When executing in a single work-item context, this creates a memory

dependency on the load and store operations to and from this array. This memory

dependency causes successive iterations to be launched only once every 328 cycles,

97

severely degrading performance, as we see in NW’s basic single work-item approach.

Applying the sliding window optimization to the single work-item implementation

of NW shifts the memory dependency to a local data dependency. The sliding

window allows successive iterations to be launched every cycle, significantly

improving performance. Additionally, the expensive load operations for neighboring

array elements are replaced with sliding window, or shift register, accesses.

We can also conjecture that the degree of speedup when applying the sliding

window optimization is proportional to the size of the stencil computation. For

example, the Sobel (9-point stencil) and FD3D (19-point stencil) realize a greater

speedup than HotSpot and SRAD (4-point stencils).

2.4.4.2 Sliding Window with Loop Unrolling. We evaluate

the effectiveness of using loop unrolling in conjunction with the sliding window

optimization (Section 2.2.4.4) in each benchmark by comparing the performance of

the single work-item sliding window approach with various degrees of loop unrolling

applied.

The results of this evaluation are presented Figure 9. For each benchmark,

the runtime of the application with the sliding window optimization without

unrolling (Section 2.2.4.4) is used as a baseline. These times are annotated with

a 1 above the bar. We compare each baseline to the same benchmark with different

unrolling factors applied, visible over each bar. In general, we see that we can

utilize previously unused FPGA resources to increase runtime performance. We

can also see that performance improvements diminish with high unroll factors, as

resources become scarce.

We see in Figure 9 that the Sobel benchmark is an ideal candidate for loop

unrolling. Because of the benchmark’s low base resource usage, we can apply a

98

Sliding Window Unrolling Performance

Sobel FD3D HotSpot SRAD NW
0

2

4

6

Sp
ee

du
p

Unroll Factor
1
2
4
8
16

Sobel FD3D HotSpot SRAD NW
0

10

20

30

40

50

60

R
es

ou
rc

e
U

sa
ge

 (%
)

Figure 9. Sliding window optimization with different unroll factors applied (Stratix
V)

99

high unrolling factor without exhausting FPGA resources. In contrast, applying

loop unrolling to the NW benchmark actually degrades performance. As previously

mentioned, the NW benchmark is unique in that the same array is used for both

input and output values. This creates a dependency between loop iterations. We

see performance benefits by using the sliding window optimization because of

the replacement of expensive memory operations with shift register operations.

However, we cannot increase the level of pipeline parallelism by unrolling the inner

loop because the operations are serialized due to the loop dependency.

2.4.5 Branch-Variant Code Motion Evaluation. We use the

HotSpot benchmark to measure the performance and resource usage effects of

the branch-variant code motion optimization. In this benchmark, a nine-way

conditional is used to determine if the current index is an edge, corner, or neither.

Several common operations occur within each branch of this conditional, including

several multiplication and addition operations, and an expensive load operation.

These common operations result in a relatively high base resource usage for the

application. By applying branch-variant code motion, we can factor or hoist the

common computation code from each branch, significantly reducing the number of

multiplications, additions, and loads required to be mapped to the hardware logic.

This results in a lower base resource usage.

Table 7 shows the results of executing HotSpot with the sliding window

applied and different loop unroll factors with and without branch-variant code

motion. We see that applying the resource usage reduction optimization does

not directly or significantly affect runtime. However, as we unroll the inner

loop, the version with the common operations in each branch of the conditional

quickly encounters performance degradation due to resource exhaustion, while

100

the optimized version with the hoisted code continues to see performance

improvements.

Table 7. HotSpot code motion performance evaluation (Stratix V)

Base Hoisted

Unroll Factor
Resource

Usage (%)
Runtime (s)

Resource
Usage (%)

Runtime (s)

1 28 36.842 26 35.622
2 31 24.656 28 25.796
4 39 16.625 32 12.106
8 54 29.442 40 8.770
16 84 50.702 56 7.953

2.4.6 OpenACC and OpenCL Performance Comparison.

To explore the viability of using a high-level language like OpenACC for

FPGA programming, we compare the performance of all five benchmarks to

the performance of those same benchmarks implemented directly in OpenCL.

The OpenCL versions manually implement several of the same optimizations

generated by the OpenARC compiler, but they also contain other FPGA-specific

optimizations not currently supported by OpenARC, such as blocking and halo

regions with sliding window arrays.

We can see the comparison between the best-performing OpenACC

implementation and the manual OpenCL implementations in Figure 10. In this

figure, the OpenACC runtimes are used as baselines, and the OpenCL runtimes are

compared in terms of speedup. We can see that the OpenACC applications FD3D,

HotSpot, and SRAD perform comparably to the manual OpenCL versions, with

performances varying by less than a factor of 2.

The OpenACC version of the NW benchmark is roughly 10 times slower

than the OpenCL version. This is because Rodinia’s OpenCL version of NW,

101

OpenACC and OpenCL Compared

Sobel FD3D HotSpot SRAD NW
10−3

10−2

10−1

100

101

R
un

tim
e

(s
pe

ed
up

)

1.0 1.0 1.0 1.0 1.0

0.2

1.1 1.6 1.6

9.9

OpenCL
OpenACC

Sobel FD3D HotSpot SRAD NW
0

20

40

60

80

100

R
es

ou
rc

es
 U

se
d

(%
)

23

82

71

87

56

29

61
56

81

24

Figure 10. OpenACC and OpenCL with FPGA-specific optimizations (Stratix V).

102

on which the FPGA-specific OpenCL version in is based, employs a significantly

different programming pattern than the straightforward serial version of NW used

to develop our OpenACC version. These patterns are not currently reproducible

using our OpenACC directives for FPGA-specific optimizations, so NW represents

a class of applications where our current FPGA-specific optimizations fail to realize

the performance of manually tuned OpenCL. In contrast, the OpenACC version

of the Sobel Filter actually outperforms the OpenCL version from the Intel SDK

design examples. Although the manual code also uses a sliding window approach, it

does not perform loop unrolling, resulting in the performance differences observed.

2.4.7 Performance and Power Comparisons of FPGAs, GPUs,

and CPUs. To evaluate the viability of OpenACC FPGA programming, we

compare OpenMP programs executed on a CPU and OpenACC programs executed

on a GPU (Section 2.3.4) against OpenACC programs executed on an FPGA

(Section 2.3.2). The results of this evaluation are shown in Figure 11. In this figure

we compare runtimes, measured in terms of speedup from the CPU baseline, and

energy consumption, measured in Joules and normalized to a CPU baseline of 1.

The NW benchmark performs relatively poorly both in terms of runtime

and power usage on the FPGA. This stems from the same algorithmic differences

mentioned in Section 2.4.6. However, for every other benchmark, the FPGA

outperforms at least one of the other newer devices in either runtime or power

usage when programmed using high-level frameworks.

2.5 Intel Arria 10 and Stratix 10 Evaluations

In Section 2.4, we evaluated each optimization individually. In this section,

we evaluate each application individually on two new FPGA platforms and one

new benchmark, holistically applying optimizations from both Lambert et al. [9]

103

CPU, GPU, and FPGA Comparison

Sobel FD3D HotSpot SRAD NW

10−1

100

101

Sp
ee

du
p

1.0 1.0 1.0 1.0 1.0

4.3

0.7
0.5

0.7 0.8

6.3

1.4

0.2

0.6

0.1

E5-2683
K40c
Stratix V

Sobel FD3D HotSpot SRAD NW
benchmark

100

101

Po
w

er
 E

ff
ic

ie
nc

y

1.0 1.0 1.0 1.0 1.0

4.6

1.2

2.9

1.1
1.4

42.3

8.8

2.2
2.9

0.6

Figure 11. Comparison of OpenMP CPU (Xeon x32) executions, OpenACC GPU
(K40c) executions, and OpenACC FPGA (Stratix V).

104

and Lee et al. [144]. We then discuss evaluations exploring FPGA resource usages,

compilation times, and performance portability. The evaluations in this section

were originally performed in Lambert et al. [10] and Lambert et al. [11].

To evaluate each individual benchmark, first only the multi-threaded

and single work-item implementations of each kernel were evaluated. Then,

optimization directives and clauses were incrementally applied to each version

where possible. Finally, different replication factors were tested when possible

by varying the number of compute units and SIMD parallelism in the multi-

threaded kernels and by varying the reduction and sliding window unrolling factors

in the single work-item kernels. In Subsections 2.5.1-2.5.4, we explore the Sobel,

SRAD, Jacobi, and Matmul benchmarks, while LULESH is explored separately

in Subsection 2.5.8. In Figures 12–16, the version name is a concatenation of the

applied optimizations:

– nd: multi-threaded kernel

– numcX: number of compute units (X: replication factor)

– simdX: vectorization (X: replication factor)

– elim: kernel boundary elimination optimization

– coll collapse optimization

– swi: single work-item kernel

– redX: reduction optimization (X: unroll factor)

– swX: sliding window optimization (X: unroll factor)

– hoist: code motion optimization

– flat: 2D arrays manually flattened to 1D array.

2.5.1 Sobel Holistic Evaluation. The Sobel benchmark iterates

over a 1D image array and performs a stencil operation. Sobel is unique among

105

Sobel Performance

0 5 10 15 20 25

nd
nd_numc4
nd_numc8

nd_numc16
nd_simd4
nd_simd8

nd_simd16
swi

swi_sw
swi_sw4
swi_sw8

swi_sw16

34.67
78.71

Arria 10

0 5 10 15 20 25
Runtime (ms)

nd
nd_numc8

nd_numc16
nd_simd16

nd_numc32
nd_simd32

swi
swi_sw

swi_sw8
swi_sw16

Stratix 10

Figure 12. Runtime performance (in seconds) of Sobel with different FPGA-specific
optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the multi-
threaded approach, and purple bars indicate the single work-item approach (smaller
is better).

106

the evaluated benchmarks because it relies on integer operations, which can

be implemented very efficiently in FPGA logic. In Figure 12, on the Arria 10

the baseline nd implementation outperforms the baseline swi implementation.

However, if the replication factors are scaled using simd and numc in the multi-

threaded version, then the performance degrades significantly. This is most likely

due to the high cost of the memory operations for the 9-point stencil, relative

to the cheap cost of integer and bit arithmetic. On the Stratix 10, some multi-

threaded replication improves performance, but again excessive replication degrades

performance (nd simd32).

Conversely, applying additional optimizations and replication to the single

work item significantly improves performance on both devices. Applying the sliding

window pattern effectively reduces the ratio of memory operations to computation,

and applying loop unrolling significantly increases the parallelism.

On the Arria 10, Sobel represents a unique but critical example in which

the multi-threaded kernel initially outperforms the single work-item kernel until

applying sufficient optimization results in a performance reversal. This example

exposes a pitfall of manual intuition-guided optimization and further motivates an

automated analytical optimization solution.

One major difference between the Arria 10 and Stratix 10 implementations

is the effectiveness of simd replication. This could be a result of the newer compiler

version (v17.1 compared to v19.4) used on the Stratix 10 and its abilities to apply

simd replication successfully.

2.5.1.1 HotSpot. Like Sobel, HotSpot also consists of a stencil

operation, although HotSpot relies on a 5-point stencil instead of a 9-point stencil

and uses floating-point values instead of integer values.

107

HotSpot Performance

0 20 40 60 80 100

nd
nd_coll

nd_coll_simd4
nd_coll_simd8

nd_coll_numc4
swi_coll
swi_sw

swi_sw4
swi_hoist

swi_sw_hoist
swi_sw4_hoist
swi_sw8_hoist

578.36

223.19

Arria 10

0 20 40 60 80 100
Runtime (s)

nd
nd_coll

nd_coll_numc4
nd_coll_numc8
nd_coll_simd4

swi_coll
swi_hoist

swi_sw_hoist
swi_sw4_hoist
swi_sw8_hoist

swi_sw16_hoist

452.42

Stratix 10

Figure 13. Runtime performance (in seconds) of HotSpot with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the
multi-threaded approach, and purple bars indicate the single work-item approach
(smaller is better).

108

As shown in Fig. 13, HotSpot experiences a significant performance

imporvment if the collapse optimization is applied on both the Arria 10 and

Stratix 10. This result contradicts previous results on the Stratix V [9] in which the

collapse optimization achieved only modest performance. This could be attributed

to the difference in FPGAs, but it is more likely an artifact of the different compiler

versions and how v17.1 and v19.4 of the SDK interpret the nested loops.

In the multi-threaded kernels on the Arria 10, HotSpot does not respond

well to kernel vectorization, likely due to the high degree of branching and

numerous conditionals. However, HotSpot does experience modest performance

improvement from compute unit replication (41.49 s vs. 29.97 s).

However on the Stratix 10, like the Sobel application, we see much better

performance improvements from multi-threaded replication, especially simd.

If only the collapse optimization is applied, the single work-item kernels

perform very similarly to the multi-threaded kernels. Only with significantly more

optimization (collapse, code motion, sliding window, and unrolling) does the single

work-item approach achieve a lower runtime (18.87 s vs. 29.97 s on Arria 10).

As with the Stratix V device evaluations in Lambert et al. [9], no performance

improvements were seen from the window optimization with replication unless the

common operation hoisting optimization (code motion) was also applied.

2.5.2 SRAD Holistic Evaluation. The SRAD algorithm consists

of three separate kernels: one large reduction, and two 5-point stencil loops. In

Figure 14, the device and host keywords for the multi-threaded kernels indicate

whether the reduction is performed on the FPGA device or on the host (and are

updated via a #pragma acc update directive). For the single work-item kernels, the

reduction is always performed on the FPGA device. The distinct sliding window

109

SRAD Performance

0 10 20 30 40 50 60

nd_device
nd_device_numc4
nd_device_simd4

nd_host
nd_host_numc4
nd_host_numc8
nd_host_simd4
nd_host_simd8

swi_sw
swi_sw4x4
swi_sw4x8
swi_sw8x4
swi_sw8x8
swi_r4_sw

swi_r4_sw4x4
swi_r4_sw4x8
swi_r4_sw8x4
swi_r4_sw8x8

swi_r4_sw16x16

Arria 10

0 10 20 30 40 50 60
Runtime (s)

nd_device
nd_device_numc4
nd_device_numc8
nd_device_simd4
nd_device_simd8

nd_host
nd_host_numc4
nd_host_numc8
nd_host_simd4
nd_host_simd8

swi_sw
swi_sw4x4
swi_sw4x8
swi_sw8x4

swi_8x8
swi_r4_sw

swi_r4_sw4x4
swi_r4_sw4x8
swi_r4_sw8x4
swi_r4_sw8x8

swi_r4_sw16x16

Stratix 10

Figure 14. Runtime performance (in seconds) of SRAD with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the
multi-threaded approach, and purple bars indicate the single work-item approach
(smaller is better).

110

unrolling factors for the first and second stencil loops are separated by the x.

For example, in the nd host simd8 version, the reduction is performed on the

host CPU and the results that are copied to the device, and the two stencil loops

are vectorized with a simd factor of 8. In the swi r4 sw 8x4, the first kernel is

optimized using the reduction optimization with an unroll factor of 4, and the

second and third kernels are optimized using the sliding window approach with

unroll factors of 8 and 4, respectively.

Unlike HotSpot and Sobel, SRAD multi-threaded kernels respond well to

compute unit replication and kernel vectorization. Also, the performance patterns

are very similar for both the Arria 10 and Stratix 10.

The vectorized multi-threaded kernels outperform many single-threaded

kernels, even after applying the sliding window and unrolling optimizations to

the second two loops. However, after applying a combination of sliding window

and reduction optimizations, the single-threaded kernel performance significantly

surpassed the multi-threaded counterpart. Again, we see a trend where sufficiently

optimized single-threaded kernels outperform multi-threaded kernels.

2.5.3 MatMul Holistic Evaluation. Compared to the other

evaluated benchmarks, MatMul is the simplest and has no conditionals, limited

arithmetic, and few memory operations.

As shown in Figure 15, there is little opportunity for optimization in the

single-threaded approach because only the collapse optimization can be applied

with no significant difference in performance.

As a result of the simplicity, MatMul responds very well to kernel

vectorization and compute unit replication. MatMul is the only example in

which the multi-threaded kernels significantly outperform the single work-item

111

MatMul Performance

0.0 0.2 0.4 0.6 0.8

nd
nd_numc4

nd_elim
nd_elim_coll

nd_elim_coll_numc4
nd_elim_coll_numc16

nd_elim_coll_simd4
nd_elim_coll_simd16

swi
swi_coll

Arria 10

0.0 0.2 0.4 0.6 0.8
Runtime (s)

nd

nd_elim_coll_numc16

nd_elim_coll_simd16

nd_elim_coll_numc16_simd16

swi

swi_coll

Stratix 10

Figure 15. Runtime performance (in seconds) of MatMul with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the
multi-threaded approach, and purple bars indicate the single work-item approach
(smaller is better) .

112

counterparts. We evaluated fewer versions on the Stratix 10, focusing only on the

versions with more aggressive replication.

Matmul could be an example in which the OpenACC-to-FPGA contains

insufficient single work-item optimizations. Including more advanced optimizations

that are not yet supported by the framework (e.g., blocking, tiling, local memory

buffering) could improve performance.

Jacobi Performance

0 2 4 6

nd
nd_coll

nd_coll_elim
nd_coll_elim_numc4

nd_coll_elim_numc16
swi_x_swi

swi_coll_x_swi_coll
swi_sw_x_swi_flat_coll

swi_sw16_x_swi_flat_coll
swi_sw16_x_nd_numc4

swi_sw16_x_nd_numc16
swi_sw16_x_nd_numc32
swi_sw16_x_nd_simd16

16.32
16.07

Arria 10

0 2 4 6
Runtime (s)

nd
nd_coll

nd_coll_elim_numc4
nd_coll_elim_numc16
nd_coll_elim_numc24

nd_coll_elim_simd4
nd_coll_elim_simd16

swi_x_swi
swi_coll_x_swi_coll

swi_sw_x_swi_flat_coll
swi_sw16_x_swi_flat_coll

swi_sw16_x_nd_numc4
swi_sw16_x_nd_numc16

14.34

Stratix 10

Figure 16. Runtime performance (in seconds) of Jacobi with different FPGA-
specific optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the
multi-threaded approach, purple bars indicate the single work-item approach, and
green bars indicate a hybrid multi-threaded+single work-item approach (smaller is
better).

113

2.5.4 Jacobi Holistic Evaluation. Jacobi consists of two kernels:

one 5-point stencil operation with very little arithmetic (floating point), and an

array-copy kernel.

In Figure 16, there are three different groupings of performance

measurements. The top grouping represents versions in which a multi-threaded

approach was used for both kernels by applying the same optimizations to each

kernel.

The second grouping conversely represents versions in which the single-

threaded or single work-item approach was used for both kernels. The x separates

the optimizations applied to the first and second kernels. This distinction was

made because the window optimization applies only to the first stencil-based loop.

The flat keyword represents versions in which the original 2D array is replaced

with a 1D array, and the indices are adjusted accordingly. Currently, the window

optimization supports only 1D arrays, so this manual code modification was needed

even though manually modifying code is generally avoided and only directives are

applied.

The third grouping represents a novel hybrid approach in which a single

work-item approach is used for the first kernel and a multi-threaded approach is

used for the second kernel. Although the flat keyword is omitted, these versions

also revert to a 1D array to apply the window optimization.

As shown in Figure 16, the best-performing hybrid approach (0.72 s Arria

10, 0.53 s Stratix 10) outperforms the best-performing multi-threaded kernel

approach (2.8 s Arria 10, 0.58 s Stratix 10) and the best-performing single work-

item kernel approach (3.55 s Arria 10, 2.65 s Stratix 10). These results further

complicate the manual optimization process because different threading models can

114

lead to optimal performance, even within a single application. Fortunately, using

the high-level directives in the OpenACC-to-FPGA framework to switch between

threading models requires modifying only two clauses in the enclosing OpenACC

directive, as compared with OpenCL, which requires modifying the host and device

code.

In the above benchmark optimization sections, we evaluated the runtime

performance of the five applications after applying different FPGA-specific

optimizations. We show that both the Arria 10 and Stratix 10 executions benefit

from these optimizations, with the Stratix 10 device allowing for higher replication

factors and generally achieving lower runtimes. We also see that both multi-

threaded and single-threaded kernels can perform well, but that if applicable,

single-threaded optimizations generally result in the best performance.

2.5.5 Resource Usage Evaluation. This section evaluates the

relationship between the reported resource usages and kernel frequency (fmax) and

runtime performance using the two benchmarks with the highest variety of code

versions, SRAD and Jacobi.

Table 8. SRAD benchmark resource usage data (Arria 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd reduce 88 594 247 61.13
multi nd reduce simd4 271 1025 229 24.7
multi nd update 58 537 258 27.09
multi nd update simd4 193 898 227 20.76
multi nd update simd8 373 1441 214 30.73

swi swi sw 59 545 257 39.44
swi swi r4 sw 129 516 252 15.2
swi swi r4 sw4x4 264 601 285 6.94
swi swi r4 sw4x8 284 643 257 7.83
swi swi r4 sw8x4 424 695 287 6.67
swi swi r4 sw8x8 444 737 270 7.51
swi swi r4 sw16x16 804 1064 245 7.98

115

Table 9. SRAD benchmark resource usage data (Stratix 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd device 68 1151 264 55.81
multi nd device numc4 272 2147 205 25.24
multi nd device numc8 544 3475 172 16.21
multi nd device simd4 217 1565 221 16.42
multi nd device simd8 415 1923 216 9.58
multi nd host 46 1062 256 22.28
multi nd host numc4 184 1791 234 17.11
multi nd host numc8 368 2763 183 13.26
multi nd host simd4 153 1310 250 9.73
multi nd host simd8 295 1469 234 8.27

swi swi sw 51 984 282 42.67
swi swi sw4x4 158 1200 258 37.41
swi swi sw4x8 178 1196 240 39.11
swi swi sw8x4 284 1404 224 44.29
swi swi 8x8 304 1400 227 42.79
swi swi r4 sw 121 1110 256 15.56
swi swi r4 sw4x4 228 1426 231 6.56
swi swi r4 sw4x8 248 1429 237 5.58
swi swi r4 sw8x4 354 1689 255 6.35
swi swi r4 sw8x8 374 1692 241 5.64
swi swi r4 sw16x16 666 2244 222 7.83

2.5.5.1 SRAD Resource Evaluation. In the SRAD multi-threaded

kernels, increasing the replication factors scaled the resources used. Conventional

logic suggests that using more of the FPGA resources would result in higher

performance, and this is often the case. However, scaling the replication factors—

and thus the degree of parallelism—also lowers the operating fmax, which typically

degrades performance. Therefore, there is often a trade-off between resource

usage and operating frequencies, and the goal is often to achieve a balance

between increasing parallelism and maintaining a high fmax. The effects of this

relationship are shown in Tables 8 and 9. On the Arria 10, the lowest runtime

multi-threaded version employed a sufficient degree of 4-way simd parallelism

116

while still maintaining a high fmax relative to the other versions at 226.8 MHz.

On the larger Stratix 10, 8-way SIMD parallelism performed well with an fmax of

216.91 MHz.

In the single work-item kernels, a similar behavior was observed. Although

replication generally increases performance, with higher degrees of unrolling

the trade-offs between parallelism and fmax are relevant. On the Arria 10, the

best-performing kernel achieved a balance between a high degree of parallelism

(replication factors of 4, 8, and 4) and a high fmax (286.69 MHz). On the larger

Stratix 10 slightly higher replication factors (4, 8, 8) performed optimally.

Table 10. Jacobi benchmark resource usage data (Arria 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd 3 416 290 16.32
multi nd coll 3 409 279 16.07
multi nd coll elim 3 403 285 4.85
multi nd coll elim numc4 12 634 262 1.58
multi nd coll elim numc16 48 1558 210 1.44

swi swi x swi 3 544 267 5.17
swi swi coll x swi coll 3 407 311 4.48
swi swi sw x swi flat coll 3 421 287 5.02
swi swi sw16 x swi flat coll 768 852 208 3.55

hybrid swi sw16 x nd numc4 768 914 217 1.49
hybrid swi sw16 x nd numc16 768 1154 212 0.77
hybrid swi sw16 x nd numc32 768 1474 196 0.72
hybrid swi sw16 x nd simd16 768 854 220 4.07

2.5.5.2 Jacobi Resource Evaluation. By using the multi-threaded

kernel approach in the Jacobi kernel (Tables 10 and 11), applying the collapse

and kernel boundary elimination optimizations significantly improved performance

without significantly changing resource use. On both the Arria 10 and Stratix 10,

as we apply multi-threaded replication, the resource usage increases, and the fmax

decreases. In this case, the trade off does result in lower overall runtimes.

117

Table 11. Jacobi benchmark resource usage data (Stratix 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd 3 754 298 14.34
multi nd coll 3 790 297 4.60
multi nd coll 3 789 285 4.79
multi nd coll elim numc4 12 1323 271 1.32
multi nd coll elim numc16 48 2835 211 0.65
multi nd coll elim numc24 72 3843 226 0.58
multi nd coll elim simd4 12 1276 257 1.50
multi nd coll elim simd16 48 2834 213 1.02

swi swi x swi 3 790 299 4.61
swi swi coll x swi coll 3 788 309 4.44
swi swi sw x swi flat coll 3 645 329 4.18
swi swi sw16 x swi flat coll 768 1479 278 2.65

hybrid swi sw16 x nd numc4 768 1218 269 0.98
hybrid swi sw16 x nd numc16 768 1638 231 0.54

In the single work-item approach, on the Arria 10 the window optimization

and aggressive unrolling significantly decreased the fmax. However, as with the

multi-threaded case, the large increase in parallelism more than offsets the decrease

in fmax, which resulted in a lower overall runtime. Also, applying the window

and unrolling optimizations significantly increased the DSP usage, which is a

powerful resource in the Arria 10 and Stratix 10 FPGAs that generally improves

performance when used fully [172].

In the hybrid-threading approach, on both the Arria 10 and Stratix 10

devices, the window optimization still uses a significant number of DSPs. However,

the multi-threaded nature of the array copy kernel also consumes a significant

portion of RAM blocks. Using these resources resulted in the lowest overall

runtime, even with a lower fmax.

In this section we explored the relationships between FPGA resources and

performance for two of the studied benchmarks. In general, we see that both a high

118

resource utilization and a high operating frequency are desirable for performance,

but that these two quantities are inversely correlated. The best-performing version

for both benchmarks strikes a balance between these two metrics.

2.5.6 Compilation Times. In this section, we briefly investigate the

effect of different performance optimizations on the compilation time, and trade-offs

between performance and higher compilation costs.

In Figure 17 we highlight a specific application, SRAD compiled on the

Stratix 10 device, to explore the effects of compilation time. Generally, we see that

as more advanced optimizations and loop unrolling are applied, the compilation

time increases. As a result, there is generally an inverse relationship between

runtime performance and compilation time. This is not unexpected, as the

replication optimizations utilize more FPGA resources, which increases the placing

and routing demands, a main factor contributing to the compilation times.

Not every optimization equally contributes to increases in compilation time.

With the first three bars of Figure 17, we see that increasing the compute unit

replication (numc4, numc8) improves the performance, but significantly increases the

compilation time as well. Alternatively, we see that applying simd parallelization

also increases performance, but has a much smaller effect on compilation time.

As a result, simd parallelization may be a more attractive optimization option if

compilation time is a concern.

The figure also shows that many of the single work-item optimizations do

not significantly contribute to the compilation time until aggressive sliding window

replication is applied (see the final set of bars in Figure 17). This provides another

motivation for application developers to target single work-item instead of multi

work-item kernels for a lower time-investment option.

119

SRAD Stratix 10 Compilation Times

0 20 40
Runtime (seconds)

nd_device
nd_device_numc4
nd_device_numc8
nd_device_simd4
nd_device_simd8

nd_host
nd_host_numc4
nd_host_numc8
nd_host_simd4
nd_host_simd8

swi_sw
swi_sw4x4
swi_sw4x8
swi_sw8x4

swi_8x8
swi_r4_sw

swi_r4_sw4x4
swi_r4_sw4x8
swi_r4_sw8x4
swi_r4_sw8x8

swi_r4_sw16x16

0 2 4 6 8
Compile time (hours)

Figure 17. SRAD Runtime performance (in seconds) compared to compilation time
(in hours) (Stratix 10)

120

2.5.7 Performance Portability. In this section we briefly investigate

the performance portability between the Arria 10 and Stratix 10 devices.

In Figure 18, on the left we compare the best-performing Arria kernel with

the best-performing Stratix kernel, all executed on the Arria 10 device. Essentially

we evaluate how well the Stratix 10 codes port to the Arria 10. We see the converse

evaluation on the right of Figure 18, evaluating how well the Arria 10 codes port to

the Stratix 10.

The hotspot multi and jacobi multi Stratix 10 kernels failed to compile for

the Arria 10 device, primarily due to the differences in resource availability across

the two devices. As expected, the best-performing Stratix 10 kernels generally

utilize more hardware resources than the best-performing Arria 10 kernels.

In Figure 19, we quantify the performance portability as an averaged

fraction of peak performance across the two devices. The Arria 10 kernels typically

perform well on the Stratix 10 device (averaging 89%), as they just slightly under-

utilize the larger device. The Stratix 10 kernels, when successfully built, achieve

lower performance on the Arria 10 device (averaging 70%), as they typically

challenge the resource limitations.

2.5.8 LULESH Initial Evaluation. In this section, we explore an

initial evaluation of the LULESH 2.0 proxy application [171] on the Stratix 10

FPGA. During the evaluation, we first targeted the entire LULESH application

for offloading to the Stratix 10 device. However, due to the significant number

of kernels (95) in the application, the FPGA resources were quickly exhausted

(see row 1 of Table 12). Executing the entire application on a single FPGA would

require re-flashing the device mid execution. This behavior is currently not possible

121

Stratix 10 and Arria 10 Performance Portability

matm
ul

mult
i

matm
ul

sw
i

so
be

l m
ult

i

so
be

l s
wi

ho
tsp

ot
mult

i

ho
tsp

ot
sw

i

jac
ob

i m
ult

i

jac
ob

i s
wi

jac
ob

i h
yb

rid

sra
d m

ult
i

sra
d s

wi
0

2

4

6

R
un

tim
e

(n
or

m
al

iz
ed

)

20
.4

3
15

8.
13

Arria 10

matm
ul

mult
i

matm
ul

sw
i

so
be

l m
ult

i

so
be

l s
wi

ho
tsp

ot
mult

i

ho
tsp

ot
sw

i

jac
ob

i m
ult

i

jac
ob

i s
wi

sra
d m

ult
i

sra
d s

wi
0

2

4

6

R
un

tim
e

(n
or

m
al

iz
ed

)

Stratix 10

Optimal Arria 10 Version
Optimal Stratix 10 Version

Figure 18. A performance portability evaluation of the best-performing Stratix 10
and Arria 10 versions run on the Arria 10 (left), and the best-performing Stratix 10
and Arria 10 versions run on the Stratix 10 (right). Runtimes are normalized such
that the best-performing version across both devices is represented as 1.

Average Percentage of Peak Performance
	 	

100 89

70 100

Arria 10 Stratix 10

Arria 10

Stratix 10

Executed on

Be
st

 p
ro

gr
am

 v
er

sio
n

of

Figure 19. The average percentage of peak performance achieved when executing
program versions optimized for each device across the two different devices.

122

with the OpenACC-to-FPGA framework, but is an interesting direction for future

works targeting real-world applications.

We next focused on a single routine in the LULESH application,

EvalEOSForElems. This same kernel was targeted by Jin et al. [173] in their

evaluation of the LULESH OpenCL version for FPGAs, as it is representative

of the range of kernels found in LULESH and does not immediately exhaust the

FPGA resources. As we see in Table 12, this single function successfully compiles

on the Stratix 10 device if the replication factors (simd for multi-threaded kernels

and standard loop unrolling for the single-threaded kernels), are small.

Table 12. LULESH benchmark resource usage data (Stratix 10)

Version Total Logic DSPs RAMs Compiled
LULESH 650% 91% 415% No
EvalEOS nd 47% 4% 27% Yes
EvalEOS nd simd2 64% 9% 35% Yes
EvalEOS nd simd4 96% 36% 79% No
EvalEOS swi 48% 4% 27% Yes
EvalEOS swi fused 46% 4% 25% Yes
EvalEOS swi fused2 63% 9% 32% Yes
EvalEOS swi fused4 94% 36% 86% No

In Table 12 and Figure 20 we refer to several different versions of the

EvalEOSForElems kernel (abbreviated as EvalEOS). Like the previous applications,

the nd keyword refers to multi-threaded kernels and the simdX keyword refers to

simd replication with a replication factor of X. The swi keyword refers to single-

work-item executions. The fusedX keyword is specific to LULESH. In these code

versions, instead of using separate OpenACC parallel regions for each loop in the

EvalEOS function, we combine all loops into a single parallel region. This avoids

multiple kernel launches by the underling Intel FPGA SDK for OpenCL. Finally,

123

the X in fusedX refers to the degree of unrolling applied to each loop (via #pragma

unroll X).

LULESH Initial Results

0.0 0.5 1.0 1.5 2.0
Runtime (ms)

nd

nd_simd4

swi

swi_fused

swi_fused2

Stratix 10

Figure 20. Runtime performance (in ms) of LULESH proxy application with
different FPGA-specific optimizations applied (Stratix 10 and Arria 10). Blue bars
indicate the multi-threaded approach, and purple bars indicate the single work-item
approach (smaller is better).

Figure 20 shows the runtime performance of the different kernels using

an input size of 453. Like many of the other applications evaluated, the baseline

multi-threaded and single-threaded EvalEOS executions perform similarly. We see

modest performance improvements when using simd replication, and significant

performance improvements when using the fused kernel. This is most likely due

to reducing the overhead of launching several smaller kernels. Surprisingly, we do

not see a performance improvement when applying loop unrolling to the single-

work item kernel, which warrants further investigation. Because EvalEOSForElems

contains no nested loops, reduction variables, or stencil patterns, the more

advanced single work-item optimizations could not be applied.

2.6 Intel and Xilinx OpenCL Portability Study

Since Intel’s acquisition of Altera in 2013, Intel and Xilinx have been the

two most dominant FPGA device manufacturers. In this Section, we discuss a

124

study exploring the performance portability of applications executing on Xilinx

FPGA architectures that were originally written for Intel FPGA architectures.

Although both vendors support the OpenCL standard and incorporate FPGA-

specific programming patterns like shift registers, it is unclear how similar

these OpenCL implementations are, as each implementation contains vendor-

specific extensions. Although this study does not directly involve directive-based

programming, it has major implications for the incorporation of Xilinx FPGAs into

the OpenCL-based OpenACC-to-FPGA framework evaluated previously in this

dissertation.

Because of OpenCL’s portability, an OpenCL kernel that is authored for

an Intel FPGA should, in theory, be synthesizable for a Xilinx FPGA and vice

versa. However, in practice, although many HLS-based application kernels exist for

Xilinx and Intel hardware, little has been reported about the actual portability of

HLS kernels between these two device families. Even if one kernel can be compiled

to run correctly on both platforms, performance portability between platforms is

far from guaranteed. Therefore, understanding the commonalities between Intel

and Xilinx HLS tools and the quirks peculiar to each is a worthwhile topic for

investigation. If performance portability between these FPGA families can be

achieved, then it would enable application designers to confidently author their

kernels once in OpenCL C and achieve high performance with each family by using

its respective HLS tools.

This section presents an initial evaluation of portability and performance

of OpenCL C kernels that were originally written for an Intel FPGA and then

reconfigured for a Xilinx FPGA. We use the Intel FPGA implementations from

Zohouri et al. [160] of the Rodinia benchmark suite [147] as a baseline and

125

investigate the process and impact of porting these implementations to a Xilinx

FPGA. The research in this section was performed as a co-authored collaboration,

Cabrera et al [12].

2.6.1 Porting Intel Applications to Xilinx Hardware. Table 13

lists the particular kernel versions of each benchmark that we used and ported in

our evaluation. The version numbering follows that of Zohouri et al. [160] in which

odd-numbered kernels use the single work-item execution model.

Table 13. List of kernels ported from Intel OpenCL to Xilinx OpenCL

Application Baseline Best

Pathfinder v1 v5
CFD v1 v5
SRAD v1 v5
HotSpot v1 v5

For each application examined, we ported the both baseline and the best

performing kernels (Baseline and Best, respectively, in Table 13). The baseline

versions are single work-item kernels in which there are no FPGA optimizations

supplied as hints to the hardware compiler aside from use of the single work-item

model itself. The best performing kernels are the versions that were reported to

give the best performance among all kernel versions for each tested application in

the original work by Zohouri et al. (i.e., the best evaluated kernel when targeting

Intel-based Stratix V and Arria 10 FPGAs).

We evaluated the portability and performance of these kernels by performing

the minimum modifications required to port the annotated hardware optimizations

for each kernel from the Intel specification to the Xilinx specification. Although

using OpenCL C gives us a foundation for porting kernels between the two

platforms, the way in which optimizations are specified between the Xilinx and

126

Intel platforms is different. Intel uses a combination of specific programming

patterns, #pragmas and attributes , to provide guidance to the hardware

compiler, whereas Xilinx uses only attributes . Additionally, although there

is sometimes a one-to-one mapping of kernel optimizations between platforms,

this is not always the case. The following sections detail the loop unrolling and

shift register FPGA optimizations at the OpenCL level, how they are expressed

for an Intel platform, and the changes we made to express that same construct on

a Xilinx platform. We note that both of these optimizations at the OpenCL level

are exactly those abstracted by the OpenACC-to-FPGA framework discussed in

Section 2.2.

2.6.1.1 Loop Unrolling. As previously discussed in Section 2.2, loop

unrolling is a common optimization in FPGA programming. In both the Intel and

Xilinx tools, loop unrolling hints allow the hardware compiler to use additional

resources to replicate the loop body. In a single-work item execution context,

this allows for more deeply nested pipelines, higher FPGA resource utilization,

and typically better overall performance. Intel and Xilinx support unrolling loops

through compiler hints. For Intel OpenCL kernels, a loop is preceded with

#pragma unroll N.

For Xilinx, the previous pragma is replaced with

attribute ((opencl unroll hint(N))).

In both cases, N is the loop unrolling factor. Therefore, the mapping between loop

unrolling for Intel and Xilinx OpenCL is straightforward. The hardware compiler

will determine whether it is possible to unroll the loop given available resources of

the target FPGA. Also, the Intel and Xilinx compilers will both attempt to analyze

127

and automatically unroll non-annotated loops, but in our experience, manually

applying the directives and attributes results in more consistent compilations and

performance.

2.6.1.2 Shift Registers. Also discussed in Section 2.2, shift registers

are an FPGA construct that aid in efficient pipelining of loop iterations by storing

data to satisfy inter-loop dependencies and avoiding redundant loads from global

FPGA memory. How these shift registers are constructed in OpenCL depends

on the vendor. Both vendors support using registers within the FPGA fabric.

Depending on the size, the Intel hardware compiler might try to synthesize a shift

register from user-supplied programming patterns by using on-chip memories.

Xilinx supplies a header file that allows the shift register to be synthesized by

configuring lookup tables in the FPGA fabric to act as a RAM-based shift register.

Unlike the case for loop unrolling, there is not a one-to-one mapping for inferring

shift registers between vendors.

We show a minimal example of how to infer a shift register for Intel and

Xilinx in Listings2.12. For Intel, a private buffer is declared (line 1), and the size of

this buffer is a compile-time constant. Shift register shifting is orchestrated in the

inner loop (line 5). For the hardware compiler to infer a shift operation, the inner

loop must be unrolled by prepending a pragma, as described above. The Xilinx

code example is similar. Again, a private buffer must be declared, but an additional

attribute (line 2) must be appended to this buffer. This attribute is a hint to the

hardware compiler that the kernel designer wants to completely decompose the

buffer into a collection of registers. The complete keyword indicates that the buffer

must be completely decomposed into a collection of registers, and the 0 argument

implies that we are performing this decomposition among all dimensions of the

128

buffer. The inner loop that orchestrates the shifting (line 6) is then unrolled, as

described above, by appending an attribute (line 5).

Listing 2.12 Inferring a shift register using the Intel and Xilinx platforms.

// Intel OpenCL SDK for FPGAs example

int shift reg[SR SIZE]; // where SR SIZE is a compile time constant

for (int n = 0; n < N; n++) {

shift reg[SR SIZE − 1] = input arr[n];

#pragma unroll SR SIZE − 1

for(int i = 0; i < SR SIZE − 1; i++)

shift reg[i] = shift reg[i + 1];

}

// Xilinx Vitis example

int shift reg[SR SIZE]

attribute ((xcl array partition(complete,0)));

for (int n = 0; n < N; n++) {

shift reg[SR SIZE − 1] = input arr[n];

attribute ((opencl unroll hint(SR SIZE − 1))

for(int i = 0; i < SR SIZE − 1; i++)

shift reg[i] = shift reg[i + 1];

}

2.6.2 Minimum Modification Porting Evaluation. Figure 21

shows the results of porting the baseline best performing (on the original Intel

hardware) kernel versions, as detailed in Section 2.6.1. The following sections detail

the process of porting each kernel to the Xilinx platform. In this section, we only

evaluate a minimally modified kernel ported from Intel OpenCL to Xilinx OpenCL.

Cabrera et al. [12] also present a more in-depth evaluation using the Pathfinder

application, but that evaluation was done independently from this dissertation’s

research, and is not included in this document.

2.6.2.1 Pathfinder Porting and Evaluation. The pathfinder

kernel version v1 was straightforward to port because there were no vendor-specific

129

Xilinx Baseline and Minimum Modification Performance

Pathfinder CFD SRAD HotSpot

10−1

100

Sp
ee
du

p

1.00 1.00 1.00 1.00

0.02

1.00
1.36

0.25

Minimal
Baseline

Figure 21. Each application’s performance on the Xilinx platform for the port of
their respective baseline kernel and the port with minimum modification of the best
performing kernel when targeting the Intel platform. The performance is reported
as speedup relative to the Xilinx baseline result.

compiler optimizations to port. For pathfinder kernel version v5, we set two

marcos at compile time when building the kernel: BSIZE and SSIZE. We describe

these two macros below.

Because the pathfinder kernel performs a stencil operation, an FPGA-

specific shift register or sliding window can be used to reduce redundant memory

accesses, as mentioned in Section 2.6.1.2. The minimum size of the shift register

is constrained by the smallest number of contiguous array elements required

to encapsulate a single iteration of the stencil operation. In the pathfinder

application, this equates to one complete row of the input array plus one additional

element. For large input data sizes, even one row of the input dataset can be too

large for implementation in a single shift register. The BSIZE macro controls this

column size and thus indirectly controls the resulting shift register size.

Although one output array element is assigned each iteration by default, the

second macro SSIZE allows multiple stencil operations per iteration. By allowing

multiple operations per iteration, we can reduce the total number of iterations

and increase the FPGA utilization. Increasing SSIZE can significantly improve

130

performance if the FPGA has enough resources to support the hardware needed

to perform multiple stencil operations and the hardware compiler does not have

to increase the loop initiation interval or decrease the compute unit operating

frequency.

In our initial port, we used the best performing macro values listed from

Zohouri et al. [160], which sets BSIZE = 32, 768 and SSIZE = 32. However, we

found that the kernel using this parameterization is not synthesizable immediately

when building on Xilinx; the hardware compiler only allows a buffer to be

partitioned 1,024 times. Therefore, it is not possible for us to infer a shift register

by using the original parameterization. To use the given parameters, then, we do

not partition the array. We next replace the Intel loop unrolling construct with the

Xilinx one, as detailed in Section 2.6.1.1. At this point, the kernel was successfully

built and executed on the Xilinx FPGA.

The best performing Pathfinder kernel on Intel is 43 times slower than the

baseline version when both kernels are ported to the Xilinx FPGA. Performance

was expected to decrease because, with the given information, the Xilinx compiler

was not able to infer a shift register. Also, the output logs generated by the Xilinx

hardware compiler reported that the main loop of computation in this kernel was

not successfully pipelined.

2.6.2.2 CFD Porting and Evaluation. The version v1 kernel of

CFD is a straightforward single work-item port of the kernel used in the GPU

OpenCL kernel available in the original Rodinia [147] benchmark suite. Because

the v1 version did not have any Intel-specific pragmas in the kernel, no changes

were made to the v1 kernel to target the Xilinx FPGA. The version v5 CFD kernel

was the best performing on the Intel Stratix V FPGA, according to Zohouri et al.

131

This kernel had various optimizations, including adding the restrict qualifier to

the input arrays and using a shift register-based reduction to accumulate the flux

contribution (both optimizations that were automated by the OpenACC-to-FPGA

framework in Section 2.2). The v5 version also had an unroll pragma, which was

re-written using the Xilinx unroll hint attribute.

The generated compiler information for version v1 reported that the Xilinx

compiler was unable to flatten the main computation loop because the outer loop

was not a perfectly nested loop. It also reported that there was a data dependency

in the loop, which greatly reduced the loop iteration interval. The build reports

generated by the Xilinx compiler for version v5 showed a lower loop initiation

interval than the v1 kernel. However, the main iteration loop was still unable to be

flattened because the the outer loop had nontrivial logic in the loop latch. Despite

the reported lower initiation interval, the two kernels took essentially about the

same amount of time to execute; the v5 kernel executed slightly faster with a 0.23%

reduction in kernel execution time.

Overall, the performance of directly porting CFD kernels from Intel to

Xilinx FPGAs was quite poor, with a 70× increase in kernel execution time

compared with Zohouri et al.’s work [160]. The performance degradation is not

surprising when looking at the large loop latencies and initiation intervals reported

in the Xilinx build reports, which indicates further Xilinx specific optimizations and

compiler hints are needed.

2.6.2.3 SRAD Porting and Evaluation. Because the SRAD

application also implements an iterative stencil algorithm, it shares many of the

same FPGA-specific optimizations and tuning parameters with the Pathfinder

application. The SRAD v1 kernel implements a straightforward approach that

132

extends the source Rodinia OpenCL kernel with restrict keywords on input array

variables and creates single work-item kernels. The highest performing kernel on

the Intel platform version v5 combines the five separate kernels into a single kernel

and implements a shift register-based reduction and shift register-based sliding

window.

We make several changes for the minimally modified Xilinx analog kernel

of the Intel-based v5. We replaced an Intel-specific attribute applied to the entire

kernel,

attribute ((max global work dim(0)))),

with an analogous one recognized by the Xilinx platform,

attribute ((reqd work group size(1, 1, 1))).

We also replaced instances of #pragma unroll with the previously

mentioned Xilinx-specific attribute and annotated the shift register with the

following Xilinx-specific attribute:

attribute ((xcl array partition(complete, 0)))

For this application, we were able to completely partition the array used for

the shift register operation and were not required to do a block or cyclic partition.

The Xilinx platform’s restrictions on the size of the shift register array are not

necessarily a limitation. Although the Intel platform successfully compiles with

larger shift register sizes, the larger arrays can significantly degrade performance,

which is why the manual partitioning via the BSIZE variable and logic is present,

even in the Intel-optimized code. Finally, we left the SSIZE replication factor at it’s

default value of 2.

133

As shown in Figure 21, the SRAD v5 kernel represents the only example in

which directly porting an Intel-optimized kernel to use analogous Xilinx constructs

improves performance over a more platform-agnostic baseline. This application

demonstrates that directly translating constructs can improve performance over a

baseline in some cases, although we do note that the absolute performance of the

baseline and v5 SRAD underperform their Intel counterparts. That is, there is still

a significant amount of room for Xilinx-specific improvement in these kernels.

2.6.2.4 HotSpot Porting and Evaluation. Like Pathfinder and

SRAD, the HotSpot application implements an iterative stencil. Again, the v1

version of the kernel is directly adapted from the original OpenCL, only adding

restrict keywords and switching to a single work-item kernel. In the v5 version,

we again replaced the Intel-specific loop unrolling, kernel dimension attributes,

and directives with Xilinx-specific attributes. Like Pathfinder, the default BSIZE

value results in a shift register that is slightly too large for complete partitioning

by the Xilinx compiler with a size of 1,032 elements against the restriction of

1,024. However, instead of defaulting to a blocking or cyclic partition scheme—

which typically leads to poor performance, as shown in the following section—for

the results presented in Figure 21, we instead reduced the value of BSIZE, which

allowed full compilation with complete partitioning on the shift register array. Like

SRAD, we again maintain the default SSIZE replication factor, which is 16 for the

HotSpot application.

Figure 21 shows that, as with the Pathfinder application, directly translating

the Intel-specific optimizations to their Xilinx counterparts in the v5 version

degrades performance compared with a more agnostic, less-optimized baseline.

134

HotSpot represents another example in which one-to-one kernel optimization ports

do not lead to portable performance.

2.7 Directive-based FPGA Programming: Related Works

Watanabe et al. [131] presented preliminary results on a very closely related

project and targeted OpenACC using the OmpSs compiler [174, 46], which,

like OpenARC, can generate output OpenCL. However, instead of developing

optimizations inside the OpenACC to OpenCL translation, they generate SPD

code for SPGen (Stream Processing Generator) alongside OpenCL. The separation

program designator (SPD) code bypasses the OpenCL abstraction layer, translating

directly into HDL. This seems to be a promising project to complement the

OpenACC-to-FPGA framework, as it performs a similar function but uses a very

different software stack not reliant on the Intel FPGA SDK for OpenCL, which has

both advantages and disadvantages.

Sommer et al. [175] presented a fully functional implementation of the

OpenMP device offloading for Xilinx FPGAs. The work integrated a custom

compiler toolflow into the LLVM/Clang OpenMP offloading infrastructure. The

input program contains one or more OpenMP target directives. The compiler

generates a complete FPGA design, including a ThreadPoolComposer device

software executable, Vivado HLS input file, and kernel description. In the

prototype, the FPGA offloaded versions show slower performance than one 4-core

CPU.

The Scalable Parallel Computing Laboratory (SPCL) at ETH Zurich is also

developing several tools for high-level FPGA programming, although their approach

is very different from the OpenACC-to-FPGA framework. One work done by de

Fine Licht and Hoefler incorporates software engineering design principles into HLS

135

development [176]. These works are somewhat similar to our work in that they

try to account for differences when targeting an Intel or Xilinx FPGA through

a C++ library they developed called hlslib. In contrast, our work focused on

using OpenCL C for Intel and Xilinx FPGA kernels to evaluate the portability

and performance of starting from a kernel optimized for an Intel platform and then

porting that specification to a Xilinx platform.

Another work from SPCL, the DataCentric (DaCe) project [177] recently

integrated FPGA support. DaCe relied on Python and a graphical user interface-

based dataflow diagram to map computations to hardware. Although this

abstraction level is significantly different from that of traditional HPC applications,

it could map well to dataflow architecture of FPGAs for certain applications.

DaCe might be an interesting option for new FPGA-centric applications, but it

would require significant code restructuring and algorithm modifications to existing

applications.

2.8 Directive-based FPGA Programming: Conclusions

This chapter presents a directive-based, high-level FPGA-specific

optimization framework, consisting of a set of user directives and corresponding

compiler optimizations, for more efficient FPGA computing. The proposed

framework enables directive-based interactive programming by allowing users to

provide important information to the compiler using directives. These directives

instruct the compiler to automate FPGA-specific optimizations and allow control

of important tuning options at a high level. We have developed several FPGA-

specific optimizations in the OpenARC compiler framework, such as a reduction

optimization to exploit shift registers, sliding window optimizations to enable more

136

efficient pipelining, and branch-variant code motion optimization to reduce overall

resource usage.

We first evaluate the proposed framework by porting five OpenACC

benchmarks and comparing them against manually optimized OpenCL versions

on an Intel Stratix V FPGA. The results show that the directive-based, semi-

automatic optimizations can successfully realize performance comparable to the

hand-written, low-level codes in many cases, and that OpenACC FPGA programs

can have performance benefits over OpenACC GPU programs and OpenMP CPU

programs in terms of runtime and power usage.

Next, these optimizations were holistically evaluated against a set of

representative benchmarks using Arria 10 and Stratix 10 FPGAs. The experimental

results show that multi-threaded and single-threaded kernels can perform well

on FPGAs, depending on which optimizations can be applied to a specific

application. For example, most applications that allow for advanced single-

threaded optimizations outperform their multi-threaded counterparts. In contrast,

applications in which these single-threaded optimizations do not apply might

perform best using multi-threaded compute unit or SIMD replication.

The relationship between resource usage and runtime performance was

also explored. In general, higher resource usage indicates better utilization that

typically results from replication, which leads to better performance. However,

there are also several exceptions to this trend. In some cases, if two benchmark

versions employ the same degree of parallelism, then higher resource usage can

indicate less-efficient routing and could hurt performance. In other cases, if

additional logic is implemented that results in higher resource usage and sacrifices

the kernel fmax, then performance can suffer. Finally, even if more logic were

137

implemented without sacrificing the fmax, lower performance is still observed if

the initiation interval is increased.

The impact of optimizations on compilation time is mostly straightforward;

as more aggressive optimizations are applied, compilation times increase. However,

some optimizations have a smaller impact on compilation times, such as SIMD

replication for multi work-item kernels and non-replicating optimizations for single

work-item kernels. When investigating performance portability between the two

devices, we see that the Arria 10-optimized kernels typically perform well on the

newer devices, but the Stratix 10-optimized kernels may not be portable to the

older device, or may perform poorly.

Additionally, an initial evaluation on the LULESH 2.0 proxy application was

discussed. We showed that, while the entire application cannot be mapped to the

Stratix 10 FPGA, we could map and execute a representative kernel, and apply

OpenACC-based optimizations to improve performance.

A study comparing the performance portability of Intel-FPGA-specific and

Xilinx-FPGA-specific OpenCL was discussed. We saw that even though OpenCL

is a portable standard, applications typically could not be ported between the two

devices without minimal modifications, and that these minimal modifications are

far from sufficient for portable performance. These evaluations further motivate the

need for a higher-level abstraction for general scientific FPGA programming, for

example the OpenACC-to-FPGA framework.

We plan to aggressively extend the OpenACC-to-FPGA framework

in the future. An immediate target is to integrate the Aspen performance

modeling tool [143, 142] into the OpenACC-to-FPGA translation to automate the

138

optimization process, including threading-model selection and lower level tuning of

replication and unrolling factors.

We also aim to support Xilinx devices in the near future. Developing

hlslib [176] and other cross-platform tools at the OpenCL level can greatly simplify

multidevice support in the OpenACC-to-FPGA framework. Also, the work

presented in Section 2.6.1 is a major step toward supporting Xilinx hardware.

Although the presented directive-based framework has exclusively relied

on OpenACC as the front-end programming model, we envision supporting

OpenACC and OpenMP within this framework due to the introduction and

increased popularity of the OpenMP offloading model. By employing tools such

as CCAMP [13, 14] (the main subject of Chapter III) for OpenMP to OpenACC

translation and developing an analogous FPGA-specific API for OpenMP, the

OpenACC-to-FPGA framework can be extended to support OpenMP offloading

models.

Finally, with the introduction of the OneAPI framework, Intel’s FPGA

support is projected to shift from OpenCL to OneAPI’s SYCL/DPC++

implementation. Likewise, our long-term goal is to migrate the OpenACC-to-FPGA

framework to use these newer intermediate representations.

139

CHAPTER III

AN INTEGRATED TRANSLATION AND OPTIMIZATION FRAMEWORK

FOR OPENMP AND OPENACC

This chapter contains previously published material with co-authorship. All

of the presented research in this chapter was conducted as a collaboration between

the University of Oregon and Oak Ridge National Laboratory. The original

translation passes (Sections 3.3, 3.5.2) and evaluation were presented at HeteroPar

2019 [13]. The rest of the work in this chapter was presented at SC 2020 [14]. For

both publications, Seyong Lee was instrumental in the conceptualization of the

projects, and provided continued support, suggestions, and advice throughout

the projects with weekly meetings. Dr. Lee was also responsible for writing the

original OpenARC translation pass for the OpenMP to OpenACC direction,

and for translating several algorithms and pseudocode into concrete OpenARC

compiler passes for the device-specific optimizations. Finally, Dr. Lee assisted with

revisions to the documents, and sometimes portions of the writing, typically in

the introductions and conclusions. Allen Malony and Jeffrey Vetter both provided

high-level guidance and advice during all three projects. They both also assisted

with revisions, and contributed information for the introduction and conclusions

sections. I researched, designed, and, with help from Dr. Lee as mentioned above,

implemented the compiler passes for works published at HeteroPar 2019 and SC

2020. I also collected all data, performed all experiments, and did the bulk of

writing for both publications.

3.1 OpenMP and OpenACC Interoperable Framework: Introduction

Recent trends toward the end of Dennard scaling and Moore’s law indicate

that future computing systems will become more specialized and comprise more

140

complex architectures in terms of processors, accelerators, memory hierarchies,

on-chip interconnection networks, storage, and so on; this trend has been broadly

labeled as extreme heterogeneity [6]. Heterogeneous systems that contain more

than one type of device (e.g., multicore CPUs, GPUs, field-programmable gate

arrays [FPGAs], digital signal processors) have already been observed as the new

norm in high-performance computing (HPC), machine learning, and embedded

computing communities [178, 179]. Heterogeneous computing allows programmers

from different application domains to accelerate their applications by mapping

computations to workload-specific devices. However, exploiting these devices often

requires low-level, heterogeneous programming models such as CUDA and OpenCL,

which often require expertise in the underlying hardware and force programmers to

adapt their applications specifically to unique devices, incurring programmability

and performance portability issues [180].

Directive-based, high-level programming models, such as OpenMP [170]

and OpenACC [168], have evolved to alleviate these programming challenges in

heterogeneous computing. These directive-based approaches allow programmers to

provide the compilers with important application characteristics (e.g., parallelism

and data sharing) via a set of directives to transfer much of the low-level

programming and optimization burdens to the compilers. However, as shown

in the following sections, device-specific implementations and varying levels of

language support and maturity across compilers make it difficult for the existing

directive solutions to achieve the ideal performance and portability promised by

these standards.

To address these issues, in this chapter we propose CCAMP, an integrated

translation and optimization framework for OpenACC and OpenMP. CCAMP is

141

built on top of OpenARC [39], and performs: (1) automatic translations between

the two directive models to enable better performance portability by letting

programmers choose more mature programming solutions preferred by the target

device and (2) automatic optimizations to better map computations to the target

device in a way preferred by the back-end compilers on the given device.

OpenARC uses a high-level intermediate representation and is equipped

with various built-in compiler analysis and transformation passes, including

OpenMP directive parsing capabilities. The proposed CCAMP framework is

built on top of the existing OpenARC and leverages OpenARC’s OpenMP and

OpenACC parsers, initial lexical analysis, and abstract syntax tree generation.

However, the CCAMP translation and optimization layers are novel contributions

in this project, as well as modifications of the OpenARC parsers to accommodate

directive extensions.

The main contributions of this chapter include:

– the design and implementation of CCAMP Translation, an automatic

framework that transforms OpenMP 4+ to OpenACC and vice versa;

– the design and implementation of CCAMP Optimization, a general

optimization strategy to map computations to devices in a way preferred by

the back-end compilers;

– an evaluation of the proposed framework across an array of devices (e.g., Intel

Xeon CPU, IBM Power 9, Nvidia P100, V100) and compilers (e.g., clang,

PGI, XLC, GCC) by using the SPEC Accel Benchmark Suite, two kernel

benchmarks, and LULESH 2.0; and

142

– the comparison and evaluation of OpenMP 4+ and OpenACC performance

variability.

3.2 CCAMP: Background

3.2.1 OpenACC and OpenMP. As discussed in Chapter I,

Section 1.2, OpenACC and OpenMP are two popular programming models for

directive-based high-level heterogeneous computing. Although OpenACC was

originally developed as a high-level alternative to CUDA for GPU programming,

because OpenACC was designed with accelerator-based heterogeneous computing in

mind, it has been adopted for various accelerators, such as FPGAs (Chapter II),

Xeon Phis [181], and custom CPUs, such as those in the Sunway TaihuLight

supercomputer [182, 183].

In contrast, OpenMP has been used for decades as an essential tool

for thread-based parallel programming on shared memory systems, such as

multicore CPUs. However, from version 4 onward, OpenMP has adopted offloading

constructs [184]. OpenMP 4+ and OpenACC share the common goal of providing

programmers with a high-level approach to heterogeneous programming. However,

there are several important issues and setbacks to using these standards.

One primary issue is that existing directive solutions might not provide

portability across diverse architectures. Although OpenACC and OpenMP seek

to offer a portable, high-performance, cross-platform solution, they are often at

the mercy of vendor-specific compiler implementations. Many devices achieve high

performance when using the vendor compiler tied to the device, which often only

supports either OpenACC or OpenMP, but not both.

However, even among compilers that prefer specific directive standards,

the level of language support, implementation quality, and strategies for the same

143

standard can vary greatly. This discrepancy is partially caused by the fact that

the level of parallelisms that OpenACC and OpenMP offer might be different from

those in the target devices. For example, although OpenACC and OpenMP offer

three levels of parallelism—gangs, workers, and vectors in OpenACC and teams,

threads, and vectors in OpenMP—typical GPUs and CPUs offer only two levels

of parallelism: threadblocks and threads in Nvidia GPUs and threads and single

instruction, multiple data (SIMD) in Intel CPUs. Therefore, different compilers can

choose different mapping strategies.

As a result of these issues, existing OpenACC and OpenMP 4+

implementations do not achieve the goal of being portable for heterogeneous

systems. A primary goal of the CCAMP framework is to allow programmers

to fully use the existing OpenMP and OpenACC implementations to achieve

performance portability across heterogeneous devices.

3.2.2 OpenARC. As described in Chapter I, Section 1.3,

OpenARC [39] is an open-source OpenACC compiler built on top of the Cetus

compiler framework [141], which performs source-to-source translations of an input

OpenACC program into an output CUDA/OpenCL program, depending on target

devices (e.g., Nvidia/AMD GPUs, Intel Xeon Phis, Intel FPGAs). OpenARC

uses a high-level intermediate representation and is equipped with various built-

in compiler analysis and transformation passes, including OpenMP directive parsing

capabilities.

The proposed CCAMP framework is built on top of the existing OpenARC

and leverages OpenARC’s OpenMP and OpenACC parsers, initial lexical analysis,

and abstract syntax tree generation. However, the CCAMP translation and

144

optimization layers are novel contributions in this chapter, as well as modifications

of the OpenARC parsers to accommodate directive extensions.

3.3 CCAMP: Automated Translation between OpenMP and OpenACC

As mentioned previously, CCAMP consists of two primary functions: (1)

automated translation between OpenMP 4+ and OpenACC and (2) automated

optimization within OpenMP 4+ and OpenACC. This section discusses the

rationale and implementation details for the translation function.

Because we preserve the semantics of the original application and host

code, features such as MPI support, CUDA memory management, other low-

level optimizations of legacy OpenACC applications, and asynchronous and

concurrent kernels are fully supported and unaffected by CCAMP’s optimization

and translation passes.

CCAMP’s Translation facilities includes two primary translation passes:

– OpenMP 4+ to OpenACC and

– OpenACC to OpenMP 4+.

CCAMP translation can be leveraged to migrate codes to systems with

different software support or target devices—for example, those supporting only

either OpenACC or OpenMP, which is common among current accelerators and

compilers. The translation pass can be used alone or in combination with the

CCAMP Optimization passes, as shown in Section 3.4.

Generally, the translations were developed by analyzing how relative

parallelism is expressed in the two different standards and by carefully reviewing

the intentions and restrictions of the individual directives in the OpenMP 4+ and

OpenACC standards’ documentations. Although CCAMP does not support the

145

entire OpenACC and OpenMP standards, many unsupported constructs are also

not supported by underlying back-end compilers, especially when offloading to

accelerator devices. By omitting these constructs and focusing on the directives

and clauses most commonly used by programmers and implemented by back-end

compiler writers, optimized and translated codes can be more confidently generated

across different ecosystems. Even with these unsupported constructs, CCAMP still

generates functionally correct output programs by serializing or ignoring them,

similar to current back-end compilers.

A significant portion of the OpenMP 4+ and OpenACC standards are

interchangeable and can be directly substituted by using a pattern-matching

approach or simple sed script. Table 14 gives an example of many of these

analogous directives, clauses, and API calls. However, there are several situations

and constructs that require more than direct substitution.

3.3.1 OpenMP 4+ to OpenACC. Of the two primary translations,

OpenMP 4+ to OpenACC is the more straightforward direction. In a traditional

view, OpenMP is a prescriptive set of directives in which users explicitly define the

intended parallelism, variable scoping, and so on. Thus, most of the information

necessary for translating to OpenACC is user-provided and requires no additional

analysis. However, the prescriptive nature of OpenMP is shifting with the

introduction of new OpenMP 5 features, as discussed in Chapter I, Section 1.2.

A key exception is the OpenMP critical region. By design, OpenACC does

not contain an analogous directive for creating critical regions or regions to be

executed in a mutually exclusive manner. Because OpenACC’s initial intended use

and primary current use involve offloading code to GPU accelerators, the standard

designers intentionally omitted a directive for creating mutually exclusive code

146

Table 14. Examples of straightforward directive translations implemented in
CCAMP.

OpenACC OpenMP 4+

Data
#pragma acc data #pragma omp target data

directives
#pragma acc data enter #pragma omp target enter data
#pragma acc data exit #pragma omp target exit data

Data

create alloc

clauses

copyin to
copyout from

copy tofrom
present assert(omp target is present())

Parallel #pragma acc parallel loop
#pragma omp target teams

directives #pragma acc kernels loop

Parallel

gang
distribute

clauses

distribute parallel for
worker parallel for

vector
simd

parallel for simd
Parallel num gangs num teams

size num workers num threads
clauses vector length simdlen

Other

collapse collapse

clauses

if if
private private

reduction reduction

API

acc set device num omp set default device

calls

acc get device num omp get default device
acc on device !omp is initial device

acc malloc omp target alloc
acc free omp target free

147

regions since these types of approaches typically perform very poorly on GPUs.

Instead, the designers encouraged algorithm writers to rethink their designs.

However, one special case of OpenMP critical regions can be appropriately

translated by CCAMP. Critical regions in OpenMP are commonly used to express

array reductions. By using OpenARC’s auto-reduction analysis, CCAMP can

determine whether a critical region is used for an array reduction and instead

generate appropriate OpenACC reduction statements. For other non-reduction

instances of OpenMP critical regions, CCAMP cannot translate the code and

reports this to the user.

Another incompatibility when translating OpenMP 4+ involves the

recently introduced OpenMP tasking directives. CCAMP currently serializes these

directives, which is semantically correct but inefficient. The authors aim to address

this in future works.

3.3.2 OpenACC to OpenMP 4+. Translating OpenACC into

OpenMP 4+ represents a greater challenge than the converse direction. Unlike

OpenMP, OpenACC at its core is a descriptive set of directives. OpenACC

programmers can often elect to shift the burden of mapping parallelism to

hardware to the underlying compiler. As a result, perfectly valid OpenACC

programs might omit a significant amount of information that would typically be

required in an analogous OpenMP program. Translation between the two standards

requires an analysis of loop constructs, available parallelism, vectorization

considerations, variable scoping and memory access, and other information typically

omitted in OpenACC to generate the necessary information.

For example, in Table 14, OpenACC “gang” and “worker” are equated

with OpenMP 4+ “teams distribute” and “parallel for,” respectively. However,

148

OpenACC programmers can omit these directives, often without consequence.

Omission in OpenMP would result in a serial execution. Therefore, before

translating, CCAMP attempts to supply any missing parallelization clauses (e.g.,

gang, worker, and vector) by using a combination of the provided OpenACC

directives and OpenARC’s auto-parallelization pass [141]. Analyzed loops are

marked as independent or sequential and then annotated with an appropriate

parallelization clause before being translated into OpenMP 4+. This is very similar

to the process performed in the initial stage of the CCAMP Optimization pass, as

described in Section 3.4.

Besides generating necessary clauses, other issues resulting from OpenACC’s

descriptive nature must be addressed. In OpenACC, reduction statements for

shared variables in a nested loop can be placed on the nested loop or the outermost

loop. However, OpenMP requires the reduction clause to be placed with the teams

directive. Therefore, CCAMP migrates any reduction clauses before the final

translation. Similarly, clauses in OpenACC specifying thread counts and work

group sizes (num gangs, num workers, vector length) are typically placed with the

initial parallel directive, whereas the OpenMP analogs (num teams, num threads,

simdlen) are required to reside with the nested parallelism directives. Again,

the CCAMP translation pass automatically migrates these clauses before direct

translation.

3.4 CCAMP: Automated Optimization of OpenMP and OpenACC

Section 3.3 focuses on the legality of translation and adhering to the

standard. However, generating translated code that satisfies the corresponding

standard does not guarantee performance portability. Different compilers have

varying levels of language support and implementation maturity, and the popular

149

compilers differ in their preferred mapping strategies between parallelism defined by

the standard and parallelism available in target devices.

As a result, no single translation strategy achieves the best available

performance in all device + compiler combinations. To address this, this section

discusses a generalized optimization strategy, which was implemented as a compiler

pass within the CCAMP framework. These optimizations can be applied in

conjunction with CCAMP Translation or independently for applications that

do not require translation. CCAMP’s optimization strategy first employs a

generalized parallelism identification pass, followed by a language- and device-

specific optimization pass. Although psuedocode algorithms are provided for the

optimization passes, several details and corner cases are omitted for brevity and

readability.

3.4.1 Extracting Parallelism. Algorithm 1, which is implemented

in the CCAMP framework, is applied regardless of the input language and

target device. The CCAMP Optimization pass first identifies user-defined loop

independence, parallelism, and vector status via OpenMP or OpenACC loop-

related clauses, and then it appropriately marks loops by using internal notation.

This internal notation is used in additional passes to reapply parallelism directives

for specific target devices. Although the OpenMP and OpenACC standards do

not strictly require loops annotated with parallelization clauses to be independent,

this is typically the intention of programmers; thus, CCAMP provides an option to

assume that these loops are sequentially independent. However, for programmers

that require a more strict adherence to the standards, CCAMP also provides an

alternative option that performs OpenARC analysis, even on loops annotated

150

by users with parallelism directives, and emits any inconsistencies as compiler

warnings.

After marking user-annotated loops with internal annotation, CCAMP

performs a second sweep to automatically categorize any unmarked loops not

explicitly annotated by the user. Loop independence and viability for parallelism

are analyzed by using OpenARC’s auto-parallelization analysis pass. Viability

for vectorization can also be automatically determined in many cases. However,

because many underlying compilers are very conservative when applying

vectorization and often ignore user-supplied vectorization clauses, CCAMP also

conservatively marks loops for vectorization by using a vector-friendly analysis with

the following criteria. The loop: (1) is either parallelizable or vectorizable from

a strictly theoretical sense without breaking program semantics, (2) has compile-

time constant loop bounds, and (3) does not have control flow divergence, irregular

array accesses, function calls, or inner loops, which might not disqualify a loop from

being strictly parallelizable or vectorizable but could have significant performance

disadvantages. Although most compilers ignore superfluous vectorization directives,

these directives can inhibit opportunities for aggressive loop collapsing. CCAMP

reports loops marked by compiler analysis to the user, providing the user with an

opportunity to overwrite the compiler’s behavior by manually applying additional

directives.

The final loop in Algorithm 1 performs a loop nesting analysis,

automatically determining which loops are tightly nested and suitable for loop

collapsing. For a pair of collapsible loops, only the inner loop is marked with the

internal notation, which allows the collapse clause to percolate up through parent

loops as the internal notation is consumed.

151

Algorithm 1 Extract Parallelism and Tightly-Nested Loops

function arc analysis(Loop L)
Perform loop auto-parallelization analysis and mark L
with arc loop para if parallelizable

Perform loop vector-friendly analysis and mark L
with arc loop vectfrd if vector-friendly

for loops L in OpenMP regions
if L annotated with teams distribute or parallel for

Mark L with arc loop para

if L annotated with simd
Mark L with arc loop vect

for loops L in OpenACC regions
if L annotated with loop independent, gang, or worker

Mark L with arc loop para

if L annotated with loop vector
Mark L with arc loop vect

for loops L in OpenMP/OpenACC regions
Call arc analysis(L)
if L tightly nested in enclosing loop

Mark L with arc loop tnest

152

3.4.2 OpenMP Mapping on CPUs. Because of the large disparity

in thread count and clock speeds between CPUs and GPUs, OpenMP directives

must be configured differently for the two devices to optimize performance.

CCAMP’s CPU-specific OpenMP Optimization, outlined in Algorithm 2, first

focuses on applying SIMD parallelism. CPU compilers have mature vector

parallelization facilities, and exploiting SIMD parallelism significantly affects CPU

performance.

Specifically, CCAMP annotates the innermost loop marked as vector-friendly

(by OpenARC vector-friendly analysis or by the user) with an OpenMP SIMD

directive. CCAMP then prioritizes loop collapsing, which is generally beneficial

in the evaluated benchmarks. Finally, CCAMP applies a single parallelization

directive, #pragma openmp teams distribute parallel for, to the outermost loop

marked as parallelizable. Although this single directive could be separated and

applied to the loops in a nested fashion, because of the coarse granularity and lower

core count of CPUs, the performance on evaluated applications was typically higher

with the conjoined directive.

3.4.3 OpenMP Mapping on GPUs. Instead of prioritizing SIMD

use, CCAMP’s OpenMP GPU Optimization focuses on maximizing thread counts

through loop collapsing and nested parallelism. In the evaluated applications,

LLVM clang and IBM XLC, two OpenMP compilers with offloading support,

largely ignored SIMD clauses when targeting GPUs. Therefore, in Algorithm 3,

CCAMP first collapses all tightly nested loops based on the analysis in the

parallelism extraction phase. CCAMP then applies parallelism directives at the

two outermost tightly nested parellelizable loops: #pragma omp teams distribute

at the outermost nested loops and #pragma omp parallel for at the second

153

Algorithm 2 CCAMP OpenMP CPU Optimization

for each OpenMP loop nest N
for each loop L (innermost to outermost)

if L marked with arc loop vectfrd

Annotate L with #pragma omp simd
Remove arc loop tnest mark
Break

for each loop L (outermost to innermost)
if L marked with arc loop para

Let n be the nesting level of tightly-nested
parallel loops with arc loop para

starting from L
Annotate L with #pragma omp teams

distribute parallel for
Annotate L with collapse(n) if n > 1
Break

outermost nested loops. Unlike the CPU case in which these clauses were applied

in a single conjoined directive, when targeting GPUs, the additional parallelism

from the nested approach leads to higher GPU utilization and performance. As

shown in Section 3.5.4.1, unlike clang and XLC, GCC SIMD clauses are critical

when targeting the GPU. In future iterations of CCAMP, this behavior must be

incorporated or compiler-specific variants must be created.

3.4.4 OpenACC Mapping. Although the OpenMP optimizations

required separate mappings for GPUs and CPUs, the same mapping is employed for

both devices with OpenACC. A single set of generalized directives seem to perform

well across devices with the same source code.

In contrast to the OpenMP SIMD clause, the OpenACC vector clause

is recognized by the PGI compiler on GPU and CPU devices. However, due to

looser restrictions in OpenACC, it might not map threads directly to vector units.

Because of this, CCAMP’s OpenACC Optimization, outlined in Algorithm 4,

first applies a vector directive to the innermost vector-friendly loop, if present.

154

Algorithm 3 CCAMP OpenMP GPU Optimization

for each OpenMP loop nest N
for each loop L (outermost to innermost)

if L marked with arc loop para

Let n be the nesting level of tightly-nested
parallel loops with arc loop para

starting from L
Annotate L with collapse(n) if n > 1
Break

for each tightly-nested loops M with arc loop para

if M is the outermost nested loop
Annotate M with #pragma omp teams distribute
if M has immediate inner nested parallel loops

with arc loop para, K
Annotate K with #pragma omp parallel for

else Annotate M with #pragma omp parallel for

CCAMP then collapses all nested parallelizable loops. Finally, all loops marked

as parallel are annotated with a #pragma acc loop independent directive. Although

additional clauses (i.e., gang, worker) could be appended for specificity, this did not

significantly affect performance with PGI in the evaluated benchmarks.

Algorithm 4 CCAMP OpenACC CPU and GPU Optimization

for each OpenACC loop nest N
for each loop L (innermost to outermost)

if L marked with arc loop vectfrd

Annotate L with #pragma acc loop vector
Remove arc loop tnest mark
Break

for each loop L (outermost to innermost)
if L marked with arc loop para

Annotate L with #pragma acc loop independent
Let n be the nesting level of tightly-nested parallel loops with

arc loop para starting from L
Annotate L with collapse(n) if n > 1
Break

155

3.4.5 Optimization Code Examples. Listing 3.1 demonstrates

CCAMP’s optimization algorithms executed on a simple example application.

This application, along with a similarly coded Matmul application, is the basis

of the fundamental kernel used in the evaluation described in Section 3.5.1.3,

although many details are omitted, such as data movement directives and variable

initialization.

Listing 3.1 contains four versions of the OpenMP Jacobi application: (1)

unmodified input program, (2) code with internal annotations after applying

parallelism extraction, (3) CPU-optimized code after applying Algorithm 2, and

(4) GPU-optimized code after applying Algorithm 3.

Lines 14–29 of Listing 3.1 show how CCAMP’s parallelism extraction

internally annotates loops by using user-supplied directives, auto-parallelizaion and

vector-friendliness analyses, and loop-nesting analysis. For the CPU optimization

(lines 31–42), CCAMP prioritizes SIMD parallelism, and for the GPU optimization

(lines 44–53), CCAMP prioritizes loop collapsing.

Listing 3.2 contains three versions of the OpenACC Matmul application:

unmodified input, code with internal annotations, and optimized code after

applying Algorithm 4.

Lines 12-24 show the resulting internal annotations after CCAMP extracts

parallelism and tightly nested loops. Lines 26-36 show the resulting parallelism

mapping after optimizing with Algorithm 4. The loop lines 6-7 fails to meet the

criteria for CCAMP’s vector-friendly analysis, and so is annotated with a sequential

clause. When targeting the CPU with the PGI compiler, inclusion or exclusion

of a vectorization directive for this loop does not affect performance. However,

annotating the loop with an OpenACC vector directive when targeting GPU

156

Listing 3.1 Naive OpenMP Jacobi CCAMP Optimization
1 // Naive OpenMP Jacobi
2 #pragma omp target teams distribute
3 for (i = 1; i <= SIZE; i++)
4 #pragma omp parallel for
5 for (j = 1; j <= SIZE; j++)
6 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
7
8 #pragma omp target teams distribute
9 for (i = 1; i <= SIZE; i++)

10 #pragma omp parallel for
11 for (j = 1; j <= SIZE; j++)
12 b[i][j] = a[i][j];
13
14 // CCAMP Parallelism Extraction and Loop Nesting
15 #pragma arc loop para
16 for (i = 1; i <= SIZE; i++)
17 #pragma arc loop para
18 #pragma arc loop vectfrd
19 #pragma arc loop tnest
20 for (j = 1; j <= SIZE; j++)
21 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
22
23 #pragma arc loop para
24 for (i = 1; i <= SIZE; i++)
25 #pragma arc loop para
26 #pragma arc loop vectfrd
27 #pragma arc loop tnest
28 for (j = 1; j <= SIZE; j++)
29 b[i][j] = a[i][j];
30
31 // CCAMP CPU Optimization
32 #pragma omp teams distribute parallel for
33 for (i = 1; i <= SIZE; i++)
34 #pragma omp simd
35 for (j = 1; j <= SIZE; j++)
36 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
37
38 #pragma omp teams distribute parallel for
39 for (i = 1; i <= SIZE; i++)
40 #pragma omp simd
41 for (j = 1; j <= SIZE; j++)
42 b[i][j] = a[i][j];
43
44 // CCAMP GPU Optimization
45 #pragma omp teams distribute parallel for collapse(2)
46 for (i = 1; i <= SIZE; i++)
47 for (j = 1; j <= SIZE; j++)
48 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
49
50 #pragma omp teams distribute parallel for collapse(2)
51 for (i = 1; i <= SIZE; i++)
52 for (j = 1; j <= SIZE; j++)
53 b[i][j] = a[i][j];

devices significantly degrades performance. Essentially, the PGI compiler maps the

vectorization clause to thread-level parallelism. Omitting the vector clause in this

157

Listing 3.2 Naive OpenACC Matmul Optimization
1 // Naive OpenACC Matmul
2 #pragma acc parallel loop
3 for (i=0; i<M; i++) {
4 for (j=0; j<N; j++) {
5 float sum = 0.0F;
6 for (k=0; k<P; k++)
7 sum += b[i∗P+k]∗c[k∗N+j];
8 a[i∗N+j] = sum ;
9 }

10 }
11
12 // CCAMP Parallelism Extraction and Loop Nesting
13 #pragma arc loop para
14 for (i=0; i<M; i++) {
15 #pragma arc loop para
16 #pragma arc loop tnest
17 for (j=0; j<N; j++) {
18 float sum = 0.0F;
19 #pragma arc loop vect
20 for (k=0; k<P; k++)
21 sum += b[i∗P+k]∗c[k∗N+j];
22 a[i∗N+j] = sum ;
23 }
24 }
25
26 // CCAMP Optimization
27 #pragma acc loop collapse(2)
28 for (i=0; i<M; i++) {
29 for (j=0; j<N; j++) {
30 float sum = 0.0F;
31 #pragma acc loop seq
32 for (k=0; k<P; k++)
33 sum += b[i∗P+k]∗c[k∗N+j];
34 a[i∗N+j] = sum ;
35 }
36 }

instance allows the compiler to map thread-level parallelism to the parent collapsed

loops, leading to higher overall utilization.

These code examples represent simple applications in which these

optimizations can be easily applied manually. However, large code bases

(e.g., several of the applications evaluated in this work) can contain hundreds

of directives and far more complicated loop interactions and relationships,

making manual optimization application tedious and error-prone. This project

addresses this issue with automatic applications of the aforementioned algorithms

implemented in the CCAMP framework.

158

3.5 Evaluation of CCAMP Framework

3.5.1 Experimental Setup of Intel, IBM, and Nvidia Platforms.

3.5.1.1 Devices. CCAMP was evaluated by using four multithreaded

devices: two multicore CPUs and two manycore GPUs. These four devices are

contained within two separate nodes. The first is an Intel-based cluster node with

attached Nvidia GPUs (P100). The second is an IBM-based node with an attached

Nvidia GPU (V100), modeled after the nodes of the Summit supercomputer.

Intel Cluster:

– Xeon CPU: Intel(R) Xeon(R) CPU E5-2683 v4 @

– P100 GPU: Nvidia Tesla P100-PCIE-12GB (Pascal)

Summit Node:

– Power9: IBM POWER9, altivec supported, 176 CPUs, 4 threads per core, 22

cores per socket, 2 sockets

– V100: Nvidia Tesla V100 SXM2 16GB (Volta)

Each device is typically coupled with a vendor-supplied compiler that strongly

prefers either OpenACC or OpenMP 4+. This preference is one of the main

motivations for finding a fluid way to translate between the standards.

3.5.1.2 Compilers. Along with the devices mentioned, three compiler

frameworks were used in the evaluation: two specific to device vendors (i.e., PGI,

XLC) and one open-source solution (i.e., clang). The PGI compiler recognizes

both OpenACC and OpenMP 4+ directives, although it does not yet support

offloading for OpenMP 4+, only host execution. Currently, we use the latest-

released community edition of the compiler, PGI 19.4-0 (LLVM 64-bit for the Intel

159

node and Linuxpower target for the IBM node). Each compilation includes the

following flags: “-V19.4 -Mllvm -fast -acc -mp -Mnouniform.” A device-specific flag

for each target architecture was also included: “-ta=multicore” for the Xeon CPU

and Power9, “-ta=tesla:cc60” for the P100, and “-ta=tesla:cc70” for the V100.

The IBM XLC compiler only recognizes OpenMP 4+ directives, although

it does support offloading. This compiler is only available on the IBM node

(Power9/V100 devices), whereas the clang and PGI compilers are available on

both evaluated nodes. We specifically use IBM XL C/C++ for Linux, V16.1.1

(Community Edition), the most recently released version. The flags “-O3 -

qarch=pwr9 -qsmp=omp -qnooffload” are used on the Power9 and “-O3 -

qsmp=omp -qoffload” are used on the V100.

The LLVM project, including clang, is an open-source project that is not

tied to a specific vendor. As a result, clang is easily installed on both evaluated

nodes and supports all the evaluated devices. However, the current version of clang

still supports only the OpenMP 4+ directives, not OpenACC. LLVM version 9.0.0

(git tag llvmorg-9.0.0-rc6) is used. For each device, the “-fopenmp” flag is used,

and “-fopenmp-targets” is set to a device-triple flag specific to each architecture:

“x86 64-unknown-linux-gnu” for the Xeon CPU, “nvptx64-nvidia-cuda” for the

V100 and P100, and “ppc64le-unknown-linux-gnu” for the Power9. We also include

“–cuda-gpu-arch=sm 60” and “–cuda-gpu-arch=sm 70” for the P100 and V100,

respectively.

Finally, an initial evaluation is included by using the GNU GCC compiler,

version 10.1, installed via spack with nvptx-none support for OpenACC and

OpenMP. Details on specific compiler versions and optimization flags used across

different devices are found in the accompanying artifact description. Applications

160

are built with GCC using the “-foffload=-lm” flag, and “-fopenacc” and “-

fopenmp” for OpenACC and OpenMP, respectively.

3.5.1.3 Benchmarks. The SPEC Accel Benchmark suite, first

introdcued in Chapter I, Section 1.4 was used to evaluate CCAMP primarily

because SPEC Accel is one of the few benchmark suites with both OpenACC and

OpenMP 4+ versions of several benchmarks. This was required to directly evaluate

the performance of CCAMP-translated codes against hand-coded applications. The

authors evaluated the OpenMP and OpenACC SPEC Accel benchmarks written in

C because CCAMP does not support Fortran.

– X03 ostencil (303 for OpenACC and 503 for OpenMP), a thermodynamics

stencil kernel (also referred to as os).

– X14 omriq, a convolution-based Hessian multiplication.

– X52 ep, an embarrassingly parallel application.

– X54 cg, a conjugate gradient kernel.

– X57 csp, a scalar penta-diagonal solver.

– X70 bt, a block tridiagonal solver for 3D PDEs.

Within the 503.ostencil, 557.sp, and 570.bt benchmarks, two different sets of

OpenMP 4+ directives are included, distinguished by the SPEC INNER SIMD

macro. These are treated as separate benchmarks in the evaluations and are

denoted by an asterisk suffix (X03*, X57*, X70*).

CCAMP was also evaluated by using standard Jacobi and Matmul kernels

adopted from implementations available in the OpenARC repository[39]. The

161

Jacobi kernel was parallelized by using a “naive” OpenMP 4+ approach, and

the Matmul kernel was parallelized by using a “naive” OpenACC approach. The

goal was to recreate what a beginner OpenACC or OpenMP user might find

as a reasonable implementation after reviewing the standards and introductory

documentation.

For the naive Jacobi kernel shown in Listing 3.1, OpenMP 4+’s two levels of

parallelism were applied in a nested way because there was a pair of nested loops.

An even simpler approach was taken for the naive Matmul kernel in Listing 3.2;

only an OpenACC parallelism directive was applied to the outermost loop.

Although this seems overly naive, a “less is more” approach often results in good

performance for OpenACC applications due to the descriptive nature of OpenACC

and the maturity of the PGI OpenACC compiler.

Finally, with the goal of targeting a more realistic application, the authors

include an evaluation that uses the LULESH 2.0 proxy application [171]. LULESH

(Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) is a widely

studied application related to codesign efforts for exascale computing. Because

LULESH is written in C++, it must be ported to C for evaluation with CCAMP.

However, because LULESH 2.0 contained few C++ constructs, the port was

relatively straightforward.

To express the scope and size of the different SPEC benchmarks and

LULESH, Table 15 lists several different attributes of each SPEC benchmark.

Using grep, wc, and manual observations, the authors recorded the total number of

C-code lines (“Lines of C”), OpenACC (“ACC”) and OpenMP directives (“OMP”),

compute kernels or parallel regions (“Kernels”), compute kernels with nested loops

(“Nests”), and the number of vector-friendly clauses added for semi-automated

162

Table 15. SPEC Accel Benchmark Attributes

Lines of C ACC OMP Kernels Nests VF
X03 1,245 13 6 1 1 1
X14 1,179 4 4 2 1 0
X52 957 11 23 5 3 0
X54 1,457 34 43 24 2 1
X57 3,586 78 285 66 65 0
X70 7,773 61 126 43 43 0

LULESH 8,594 95 31 2 0

compilation (“VF”). Only kernels, nests, and vector-friendly clauses were recorded

once because their numbers are consistent between the OpenACC and OpenMP

versions.

3.5.2 Evaluation of CCAMP Translation. As mentioned

previously, the SPEC benchmark suite contains OpenMP 4+ and OpenACC

versions of the same applications, which were leveraged to develop and evaluate

CCAMP’s translation facility. After translating a SPEC OpenACC application to

OpenMP 4+, the new OpenMP code and run time performance can be directly

compared with the corresponding SPEC OpenMP 4+ application, provided that

input data, iteration count, and other application-specific inputs are carefully

accounted for. Similarly, the SPEC OpenACC applications can be used to evaluate

the OpenMP 4+ to OpenACC translation.

Figure 22 shows the results of an evaluation performed by using the clang

and PGI compilers on Intel Xeon and Nvidia P100 devices. First, manually coded

OpenMP 4+ applications unmodified from the SPEC benchmark suite were

compared with the code automatically generated by CCAMP Translation, which

originated from the corresponding SPEC OpenACC application. The performance

evaluation of the OpenACC to OpenMP 4+ translation is shown in the top row

of Fig. 22. The bottom row represents the performance evaluation of CCAMP’s

163

OpenMP 4+ to OpenACC translation and compares manually coded OpenACC

and automatically generated OpenACC.

CCAMP Translation

0

100

200

300

400

500

600

700

R
un

tim
e(

s)

46
27

.9
8

18
08

.9
1

acc2omp: Xeon CPU

78
9.

56
94

7.
02

acc2omp: Nvidia P100

X03 X14 X52 X54 X57 X70
0

100

200

300

400

500

600

700

R
un

tim
e(

s)

omp2acc: Xeon CPU

X03 X14 X52 X54 X57 X70

omp2acc: Nvidia P100

Figure 22. Run time performance comparison of manually coded applications
(blue) and CCAMP-translated applications (orange) using CCAMP’s OpenACC to
OpenMP 4+ (acc2omp) and OpenMP 4+ to OpenACC (omp2acc) translation.

As shown in Fig. 22, no single mapping or translation can consistently

provide high performance across different architectures, especially for the more

prescriptive OpenMP 4+ standard. This further motivates the need for the device-

specific optimization presented in this section.

However, there could be instances in which users want to apply CCAMP

Translation but not CCAMP Optimization. One current limitation of the CCAMP

Optimization passes is their omission of clauses that specify thread and work group

sizes: “num teams, num threads, simdlen” for OpenMP 4+ and “num gangs,

164

num workers, vector length” for OpenACC. If an application’s directives are

already optimized for a specific device in one standard, then translation alone

might be enough to generate optimized code in the counterpart standard. The

CCAMP Optimization passes generate code specific to a class of devices (i.e., GPU-

friendly or CPU-friendly) but do not generate code for a specific device model. As

mentioned in Section 3.7, one future goal of CCAMP is to improve device-specific

optimization by scraping system information on thread limits and core counts.

3.5.3 Evaluation of CCAMP Optimization. CCAMP’s

Optimization passes are independently evaluated for different device+compiler

combinations. The results from three experiments with OpenMP 4+ (i.e., Clang,

PGI, XLC) and one experiment with OpenACC (i.e., PGI), are shown using the

aforementioned SPEC benchmarks.

3.5.3.1 OpenMP 4+ Optimization with Clang. In Fig. 23,

there is a stark difference in performance for X03 on the CPU and for X03*

on the GPUs. The SPEC benchmark developers noticed these distinctions and

implemented two different parallelization strategies, likely intending users to

choose X03 on GPU-like devices and X03* on CPU-like devices. However, these

differences immediately illuminate the advantages of using a framework such as

CCAMP. CCAMP aims to optimize performance across all devices with the same

source code, whereas the manually coded SPEC benchmarks require two separate

source codes.

There are modest performance improvements for the X52 and X54

benchmarks on the GPU devices. The manually coded SEPC applications place

all the parallelism clauses on the outermost loops, whereas CCAMP Optimization

employs a nested parallelism approach when targeting GPUs.

165

CCAMP Optimization: Clang + OpenMP

0

100

200

300

400

500

600

700

R
un

tim
e(

s)
Xeon CPU

10
13

.3
8

12
93

.6
8

78
9.

56

84
7.

03

Nvidia P100

X03 X03* X52 X54 X57 X57* X70 X70* X14
0

100

200

300

400

500

600

700

R
un

tim
e(

s)

IBM Power9

X03 X03* X52 X54 X57 X57* X70 X70* X14
81

6.
18

Nvidia V100

Figure 23. Clang + OpenMP. Run time comparison of SPEC hand-optimized
(blue) and CCAMP automated optimization (orange). (Smaller is better.)

The large X57, X57*, X70, and X70* demonstrate modest performance

improvements on the CPU devices and significant improvements on the GPU

devices when comparing CCAMP-optimized versions with baseline unmodified

versions. These applications highlight the advantages of CCAMP since manually

modifying the hundreds of kernels across the applications would be extremely error

prone and time consuming.

Finally, X14 represents an outlier in which CCAMP Optimization either

fails to complete (CPUs) or actually leads to a slight performance degradation

(GPUs), indicating CCAMP still has room for improvement.

166

3.5.3.2 OpenMP 4+ Optimization with PGI. When evaluating

CCAMP’s Optimization with OpenMP 4+ and the PGI compiler, the evaluation

is restricted to CPU devices since PGI does not support OpenMP 4+ offloading.

As with clang, significant performance improvements are seen when optimizing

the X03 and X03* applications (Fig. 24). Compared with clang, PGI-compiled

binaries typically result in lower overall run times. This could indicate that clang’s

OpenMP 4+ development is focused on GPU optimization, whereas PGI is still

limited to CPU executions. This could also be an artifact of different optimization

levels between the compilers: “-fast” for PGI and “-O3” for clang.

CCAMP Optimization: PGI + OpenMP

X03 X03* X14 X52 X54 X57 X57* X70 X70*
0

100

200

300

400

500

R
un

tim
e(

s)

61
0.

21

Xeon CPU

X03 X03* X14 X52 X54 X57 X57* X70 X70*

IBM Power9

Figure 24. PGI + OpenMP. Run time comparison of SPEC hand-optimized (blue)
and CCAMP automated optimization (orange). (Smaller is better.)

3.5.3.3 OpenMP 4+ Optimization with XLC. When evaluating

OpenMP with the IBM compiler, efforts are restricted to the IBM node devices, the

Power9, and V100. Figure 25 shows a similar performance pattern with X03 on the

Power9 and X03* on the V100. On the V100, CCAMP Optimization significantly

outperforms the manual baselines for most applications.

167

XLC demonstrates more erratic behavior than the other compilers. For some

applications, XLC significantly outperforms clang and PGI on the Power9 (X52)

and the V100 (X03, X54) devices. This suggests that XLC could take advantage

of IBM-specific architecture features. For other applications, such as X54 on

the Power9, XLC experiences relatively catastrophic performance execution (run

time was extrapolated from three iterations). This most likely results from XLC’s

failure to vectorize OpenMP SIMD loops, even though the loops are identified as

vectorizable by OpenARC analysis and the other compiler frameworks. Generally,

across all compilers on CPU devices, recognizing and successfully vectorizing

OpenMP SIMD loops significantly affects performance.

CCAMP Optimization: XLC + OpenMP

X03 X03* X52 X54 X57 X57* X70 X70* X14
0

25

50

75

100

125

150

175

200

R
un

tim
e(

s)

22
00

0.
00

15
00

0.
00

IBM Power9

X03 X03* X52 X54 X57 X57* X70 X70* X14

39
8.

48

44
8.

80

Nvidia V100

Figure 25. XLC + OpenMP. Run time comparison of SPEC hand-optimized (blue)
and CCAMP automated optimization (orange). (Smaller is better.)

3.5.3.4 OpenACC Optimization with PGI. Because the authors

are still in the initial stages of GCC OpenACC evaluation, only the PGI compiler is

used to evaluate CCAMP’s OpenACC optimization on the SPEC Accel benchmarks

(Fig. 26). For most applications and devices, there was, at most, a modest

performance improvement over the manually coded applications. As shown in

Section 3.5.4.3, OpenACC performance is typically much less sensitive to the

168

specific directive configuration, leaving fewer opportunities and a smaller need for

optimization.

For most applications, the manual and CCAMP-optimized OpenACC

versions perform similarly to the CCAMP-optimized OpenMP 4+ version.

However, there are several exceptions. OpenMP 4+ X03 and X52 on Power9

+ XLC significantly outperform the OpenACC Power9 + PGI counterpart.

Conversely, the OpenACC X54 implementation on P100 + PGI significantly

outperforms the CCAMP-optimized OpenMP 4+ version compiled with clang. The

SPEC developers mention that the OpenMP 4+ and OpenACC versions cannot

always be directly compared for run time performance, which could result in the

differences observed previously, although the authors did verify that the same

input data and host code were used in both versions. Otherwise, this might be

a motivation to translate between standards not just for portability but also for

performance, especially if tools exist to automate the translation, such as CCAMP.

3.5.3.5 Putting it Together: CCAMP Translation and

Optimization. This section demonstrates how general programmers can use

CCAMP’s Translation and Optimization facilities in tandem to develop optimized

and portable OpenACC and OpenMP 4+ applications. Table 16 shows the

performance of the naive Jacobi OpenMP 4+ implementation, which is described

in Section 4.3, across different device + compiler combinations and the resulting

performance after applying CCAMP’s Optimization and Translation passes.

Using language translation enables two new device + compiler

combinations—PGI + P100 and PGI + V100—to be targeted by using OpenACC.

Significant performance improvements are also seen across the different CPU

devices since CCAMP avoids applying nested parallelism on CPU devices, which

169

CCAMP Optimization: PGI + OpenACC

0

50

100

150

200

250

300

R
un

tim
e(

s)

46
6.

38
43

8.
87

Xeon CPU Nvidia P100

X03 X14 X52 X54 X57 X70
0

50

100

150

200

250

300

R
un

tim
e(

s) 16
31

.1
4

14
39

.8
1

IBM Power9

X03 X14 X52 X54 X57 X70

Nvidia V100

Figure 26. PGI + OpenACC. Run time comparison of SPEC hand-optimized
(blue) and CCAMP automated optimization (orange). (Smaller is better.)

can lead to very poor performance. The naive OpenMP 4+ implementation could

have been designed to be more CPU-friendly instead of GPU-friendly, which would

have resulted in more significant CCAMP improvements for the GPU code instead

of the CPU code.

Modest improvements are seen on the GPU devices primarily because

the CCAMP Optimization applies loop collapsing. Table 16 also shows the

performance of the naive Matmul OpenACC implementation. Modest performance

improvements are seen for the device + PGI combinations, again primarily due

to CCAMP’s automated loop collapsing function. However, there is a significant

increase in code portability when using CCAMP’s translation mechanism, enabling

significantly more device + compiler combinations.

170

Table 16. Naive Jacobi and Matmul OpenMP 4+ Run Times Optimized with
CCAMP. Average of three executions. CCAMP Translation indicates OpenMP 4+
to OpenACC translation was applied.

Naive Jacobi Jacobi Tr. Jacobi Opt. Naive Matmul Matmul Tr. Matmul Opt.

pgi+xeon 13.523 - 3.707 26.22 - 24.979
pgi+P9 149.095 - 2.269 5.981 - 5.621

pgi+p100 - Yes 2.339 15.440 - 1.817
pgi+v100 - Yes 0.931 2.514 - 0.678

clang+xeon 13.558 - 4.210 - Yes 7.195
clang+P9 25.727 - 2.740 - Yes 25.169

clang+p100 1.646 - 1.448 - Yes 1.103
clang+v100 1.008 - 0.578 - Yes 0.406

xl+P9 2.178 - 2.186 - Yes 7.169
xl+v100 0.863 - 0.601 - Yes 0.463

The translated and optimized OpenMP 4+ versions compiled with clang

outperform the optimized OpenACC version on the V100 and P100 devices. This

could indicate that CCAMP’s OpenACC optimization needs further improvement,

or it could indicate that clang is better able to optimize this specific application

over the “more mature” PGI compiler, motivating the need for code to be portable

between compilers.

3.5.4 Additional CCAMP Evaluations.

3.5.4.1 GCC: Initial Evaluation. An initial performance evaluation

was performed by using the GNU GCC compiler. Although the support could be

immature relative to PGI and clang, GCC is unique in that it supports offloading

in both standards.

Figure 27 highlights performance comparisons between manual and

CCAMP-optimized SPEC applications, although X57 and X70 are excluded due

to compilation failures.

In OpenMP, reasonable performance is achieved for the manual versions and

modest speedups when applying CCAMP Optimization. Interestingly, unlike clang

171

and XLC, GCC recognizes and even depends on SIMD clauses when offloading

to GPUs. Because of this, CCAMP’s CPU-specific optimizations were applied to

achieve the reported performance numbers. This suggests that CCAMP might need

to implement compiler-specific optimizations or further generalize the existing GPU

and CPU-specific optimizations to incorporate GCC moving forward.

Besides X03, which performs well, the OpenACC evaluations performed

very poorly or failed to compile. This could be due to SPEC’s frequent use of and

GCC’s relative lack of support for the OpenACC kernels directive, although further

investigation is needed.

GCC P100 Performance

X03 X03* X52 X54 X14
0

100

200

300

400

500

600

R
un

tim
e(

s)

OpenMP 4+

X03 X03* X52 X54 X14

16
00

.0
0

34
00

0.
00

20
00

.0
0

41
00

0.
00

OpenACC

Figure 27. (Left) Performance of OpenACC manual (blue) and CCAMP optimized
(orange). (Right) Performance of OpenMP manual (blue) and CCAMP optimized
(orange).

3.5.4.2 LULESH 2.0. To assess CCAMP’s performance on a more

realistic application, an evaluation was performed by using the OpenACC LULESH

2.0 application on the Xeon CPU and Nvidia P100 GPU. For the OpenACC

evaluations, the authors evaluated with the manual unmodifed code (blue bars) and

after applying CCAMP’s OpenACC Optimization. For the OpenMP evaluations,

172

the CCAMP-translated code (blue bars) and CCAMP-translated and optimized

code (orange bars) were evaluated.

Figure 28 shows the results of the LULESH performance evaluations. The

extremely high run time was immediately noted when targeting the CPU with

PGI (extrapolated from one iteration), resulting from a vector clause placed on

the outermost loop of one kernel. It is assumed that the OpenACC LULESH

implementation was not intended to be run on the CPU. The CCAMP-optimized

version performs significantly better. Also, relatively strong performance was

achieved with the OpenMP translated versions, and clang-compiled versions

achieved a faster run time than their OpenACC + PGI counterparts on the CPU

and competitive performance on the GPU. Finally, poor performance was seen

across the board with GCC, which required small modifications to successfully

compile, as described in the artifact description. This could be a reflection of the

level of support in GCC and the need for more compatibility between CCAMP and

GCC.

3.5.4.3 Performance Variability. This experiment highlights

the performance variability for different directive configurations across the two

standards: OpenMP 4+ and OpenACC. This was quantified by using the SPEC

Accel X03 benchmark, which comprises a single kernel with a triply nested loop,

allowing for a large degree of variation in directive placement.

Figure 29 compares different versions of X03 OpenMP that were compiled

by using the clang compiler for the Xeon CPU (top left) and Nvidia P100 (top

right) with different versions of X03 OpenACC compiled by using the PGI compiler

targeting the Xeon CPU (bottom left) and Nvidia P100 (bottom right).

173

LULESH 2.0 Performance

0

50

100

150

R
un

tim
e(

s) 57
93

.6
0

OpenACC Xeon CPU

25
17

.4
0

15
17

.5
0

OpenACC Nvidia P100

pgi clang gcc
0

50

100

150

R
un

tim
e(

s)

OpenMP Xeon CPU

pgi clang gcc

22
48

.2
0

22
32

.4
0

OpenMP Nvidia P100

Figure 28. (Top) Performance of OpenACC manual (blue) and CCAMP optimized
(orange). (Bottom) Performance of OpenMP translated (blue) and OpenMP
translated + optimized (orange).

The OpenMP 4+ version numbers (VX) refer to directive placements as

follows, in which (outer) refers to the outermost loop, (middle) refers to the first

nested loop, and (inner) refers to the innermost nested loop. The abbreviated

“parfor” represents the OpenMP “parallel for” clause, and “coll” represents the

“collapse” clause.

– V0: (outer) teams distribute parfor coll(3) SIMD.

– V1: (outer) teams distribute parfor coll(2) (inner) SIMD.

– V2: (outer) teams distribute parfor coll(2) .

– V3: (outer) teams distribute (middle) parfor coll(2).

– V4: (outer) teams distribute (middle) parfor (inner) SIMD.

174

OpenACC and OpenMP 4+ Performance Variability

0

200

400

600

R
un

tim
e(

s)

OpenMP 4+ Xeon CPU

10
12

.8
5

OpenMP 4+ Nvidia P100

V0 V1 V2 V3 V4
0

200

400

600

R
un

tim
e(

s)

OpenACC Xeon CPU

V0 V1 V2 V3 V4

OpenACC Nvidia P100

Figure 29. Comparison of performance variability with different sets of directives
between OpenMP (top) and OpenACC (bottom) by using the SPEC X03 (ostencil)
Benchmark.

175

The OpenACC version numbers refer to the following directive placements:

– V0: (outer) parallel gang coll(2) (inner) vector.

– V1: (outer) parallel gang worker vector coll(3).

– V2: (outer) parallel gang (middle) worker vector coll(2).

– V3: (outer) parallel gang (middle) worker (inner) vector.

The OpenMP 4+ versions demonstrate a much higher performance variance

than the OpenACC versions: OpenMP 4+ and Xeon CPU σ = 52, 000, OpenMP

4+ and P100 σ = 14, 000, OpenACC and Xeon CPU σ = 1.4, and OpenACC and

P100 σ = 40.

These performance differences might not be direct artifacts of the standards

themselves but of the relative maturity of the underlying compilers. The PGI

OpenACC compiler actually predates the OpenACC standard since PGI adopted

its previous directive-based parallel compiler to handle OpenACC directives. By

comparison, clang’s OpenMP 4+ offload support is relatively new and is undergoing

active development.

However, these results also are not entirely surprising given the fundamental

differences in standard design; OpenACC is more descriptive, and OpenMP is more

prescriptive. The OpenACC compiler retains more liberty to optimize as it sees fit,

independent of exactly how a user specifies directives. Conversely, the OpenMP 4+

compiler is more strictly bound by the standard to adhere to the directives specified

by the user, even when ill-advised.

With the more novel features introduced in OpenMP 5, the standard has

shifted to also allow a more descriptive approach, similar to the abstraction level

of OpenACC. For example, the OpenMP loop directive is a highly descriptive

176

directive that outsources much of the management to the underlying compiler.

Additionally, the OpenMP metadirectives mirror some of the functionalities and

goals present in CCAMP, although in a less automated way because they require

programmers to manually provide alternative options for each device type per

compute region. As compilers work to implement these features, a shift in how

the results vary between the two standards might occur, and the mapping strategies

within CCAMP might need to be adjusted accordingly.

3.6 OpenMP and OpenACC Interoperable Framework: Related Work

Several previous works explore the performance and portability of directive-

based approaches across heterogeneous systems. Vergara et al. [185] evaluates

OpenMP applications on IBM Power8 and Nvidia Tesla devices by using IBM

and LLVM clang compilers. Lopez et al. [186] experiments with OpenACC

and OpenMP implementations of core computational kernels, including Daxpy,

Dgemv, Jacobi, and HACCmk. Lopez et al. evaluates the performance of these

implementations by using Cray, Intel, and PGI compilers on Nvidia GPU and Intel

Xeon Phi devices. Gayatri et al. [187] implements a material science kernel and

evaluates OpenMP 3.0, OpenMP 4.0, OpenACC, and CUDA implementations

on Xeon CPUs, Xeon Phis, Nvidia P100s, and Nvidia V100s. Gayatri et al. also

discusses experiences with different compilers—including PGI, Intel, IBM, and

GCC compilers—and the then-current status of the work’s directive-based language

support. These works all highlight the high performance variability of directive-

based approaches across different compiler and device combinations, which help

motivate the utility of frameworks such as CCAMP.

Several previous works researched the potential of an OpenACC and

OpenMP translation framework. Wolfe [188] explores this idea and discusses

177

some obvious and some subtler challenges that would arise if implementing such

a framework. Wolfe also discusses motivations and the significance of developing

such a framework, which are in line with the motivations presented here. Sultana

et al.[189] presents a prototype OpenACC to OpenMP translation scheme, which

consists of a combination of automated directive translation performed by using

the Eclipse user interface and manual user-performed code restructuring. This

work represents a promising first attempt to develop an automated translation

framework, although it evaluates only a single benchmark and supports only a

subset of the OpenACC standard. Pino et al. [190] describes a mapping between

the most common directives of OpenACC and OpenMP and compares the

performance between the two different sets of directives on several SHOC and

(The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite) NAS Parallel

(developed and maintained by the NASA Advanced Supercomputing (NAS)

Division) benchmarks. However, Pino et al. does not propose any automated

scheme or framework to perform the actual translation. Denny et al. [112] presents

an ongoing work to develop an OpenACC to OpenMP 4.5 translator (Clacc) within

the clang compiler to allow clang to support OpenACC. Clacc represents a rigorous

effort to develop a translation scheme that supports the full OpenACC standard,

which accomplishes the goal of the OpenACC to OpenMP 4.5 baseline translation.

However, Clacc is constrained by the clang compiler, preventing it from using the

maturity of device-specific back-end compilers.

3.7 OpenMP and OpenACC Interoperable Framework: Conclusions

As systems become more exotic and specialized, the HPC community has

experienced an increased demand for high-level portable programming solutions.

Although directive-based standards and approaches aim to provide a solution,

178

they fail to realize this goal due to competition between vendor compilers and

inconsistent levels of standard support.

This chapter presents the CCAMP framework, with the goal of allowing

programmers to seamlessly flow between different directive sets and eventually

select the directive set best-suited to a target device. Automatic translation and

optimization passes are introduced and shown to generate output code across

different directive contexts that perform competitively with hand-coded programs.

Although some OpenACC and most OpenMP 4+ compilers are still

somewhat immature, these tools are already being used to develop current and

future high-performance systems. Additionally, support for directive-based

offloading in the exisiting tools is constantly improving; for example, each

new clang release significantly improves offloading support. CCAMP can help

application developers port their applications with the OpenMP 4+/OpenACC

compilers by enhancing their performance with the CCAMP optimizer. Moving

forward, the authors hope that the CCAMP translation capabilities can be used to

help migrate large code bases to future systems; for example, CCAMP can be used

to help port large OpenACC applications developed for the current GPU-based

systems (e.g., Summit at Oak Ridge National Laboratory) to future OpenMP-only

systems (e.g., upcoming exascale systems, such as Aurora at Argonne National

Laboratory).

In the future, we plan to develop and extend CCAMP in several ways. One

primary goal is to develop more device-specific and algorithm-specific optimizations

that can produce not only generalized directive sets in different languages but

also directive sets specifically catered toward an indented target device. We

also plan to improve the presentation of CCAMP’s compilation output on loop

179

analysis and incorporate suggestions for performance to increase user-friendliness

for programmers interested in a more semi-automated optimization approach.

We plan to incorporate other compilers (e.g., Intel, Clacc) and other devices

(e.g., FPGAs). We want to expand CCAMP to cover more of the OpenMP and

OpenACC standards, especially the OpenMP 5-specific features, such as tasking,

the loop directive, and metadirectives. As support for these features improves

across compilers and applications begin to leverage them, it will be critical for

CCAMP to incorporate these features in the translation and optimization passes.

180

CHAPTER IV

EXPLORING HETEROGENEOUS PROGRAMMING FOR FUTURE DIVERSE

EXASCALE PLATFORMS

This chapter contains unpublished material with co-authorship. All of

the presented research in this chapter was conducted as a collaboration between

the University of Oregon and Oak Ridge National Laboratory. Seyong Lee was

instrumental in the conceptualization of the projects, and provided continued

support, suggestions, and advice throughout the projects with weekly meetings.

Allen Malony and Jeffrey Vetter both provided high-level guidance and advice

during this project. Allen Malony also wrote the introduction section. Sameer

Shende provided guidance and support related to the TAU performance system,

and Mohammad Alaul Haque Monil assisted with the other profiling tools and

evaluations related to profiling. I performed all of the non-profiling experiments,

collected all of the non-profiling data, and did the bulk of the writing besides the

introduction for this project.

4.1 Exploration of Exascale Platforms: Introduction

In the last 10 years, there has been a steady transition in high-performance

computing (HPC) from homogeneous systems, where node-level architectures

utilizes general purpose processors (i.e., CPUs), towards heterogeneous systems,

where different processor devices (e.g., CPU, GPU, FPGA) are used together. The

tremendous computing power of manycore devices, exemplified by GPU SIMT

architectures, could not be ignored in HPC platforms and heterogeneous systems

are now the status quo for high-end supercomputing.

However, the potential for heterogeneous machines can only be realized if

it is possible to program them. Herein lies the rub. Heterogeneous processors are

181

more complex to program because their architectures require different programming

models, and the interaction between processing devices is critical to achieving

performance. That interaction must be programmed as well. The standard

parallel programming methods for homogeneous computing are insufficient for

these purposes. The key challenge for heterogeneous programming integrating

the parallel execution capabilities found in the heterogeneous processors under a

unified programming umbrella. While research may be trending in this direction,

the reality is that there is a variety of programming techniques covering sparsely a

growing space of accelerator technologies. A productive near-term focus to address

programming and performance portability could concentrate on compiler-based

translation and coupling of parallel programming models.

In this chapter, we explore and evaluate the diversity of programming

models likely to be featured in upcoming exascale machines. This chapter makes

the following contributions.

– A survey of exascale platforms and discussion of experimental pre-exascale

systems,

– An evaluation of the aforementioned pre-exascale systems, using a single

source code and a source-to-source translator to efficiently target each

platform

4.2 Exascale Platforms and Programming Models

Before exploring the upcoming exascale programming models, we should

first quickly discuss the upcoming exascale machines themselves. By definition, an

exascale machine is a machine capable of executing 1018 floating point operations

per second. Although the 1 exaflop cutoff is somewhat arbitrary, the exascale

182

designation represents a class of next-generation machines that will have significant

impacts and contributions to science as a whole.

Three major exascale systems have been announced, with delivery dates

as early as late 2021. All three machines are currently being developed by the US

Department of Energy and US National Nuclear and Security Administration.

– ANL Aurora: Developed by Cray, Intel, and Argonne National Lab, the

ANL Auora machine [4] is slated to release in 2021. Aurora will contain

over 9000 nodes, each containing two Intel Xeon “Sapphire Rapids” CPUs

and six Intel Xe “Ponte Vecchio” GPUs (the HPC counterpart to the Intel

Xe Max evaluated in this work). The per-node performance is expected to

be 130 double-precision TFLOPs, which puts the performance of the entire

functioning machine at just over 1 exaflop.

– ORNL Frontier: Developed by Cray, AMD, and Oak Ridge National Lab,

the ORNL Frontier machine [3] is also slated to release in 2021. Each Frontier

Node will contain one HPC and AI oriented AMD EPYC CPU and four

“purpose-built” AMD Radeon Instinct GPUs, likely to be similar to the

Radeon Instinct GPUs evaluated in this project. The entire Frontier system is

expected to achieve over 1.5 exaflops.

– LLNL El Capitan: Also developed by Cray and AMD, Lawerence

Livermore National Lab’s El Capitan machine [5] is scheduled to deploy in

2023. This machine will likely feature similar hardware to Frontier, albeit

upgraded, and is expected to achieve over 2 double-precision exaflops.

183

Other exascale machines are certain to follow, likely candidates including

China’s Tianhe-3 machine, a machine developed by the European High-

Performance Computing Joint Undertaking, and many others.

4.2.1 Exascale Programming Models. Although the proposed

machines above are undeniably significant feats of human engineering, the

actual utility of these systems is dependent on the availability, performance,

maintainability, and robustness of associated programming models and software

stacks. In this section we survey several programming models likely to be

featured during the early days of exascale machines. These are also precisely the

languages used in this project’s evaluations. Although these models are discussed

in Chapter I, Section 1.2, we briefly reintroduce them here in the context of this

chapter.

4.2.1.1 OpenMP. The OpenMP programming standard [170]

unquestionably has the most illustrious past of models explored in this project.

Although OpenMP began as a multi-core shared-memory CPU programming

standard, with the introduction of offloading directives in versions 4.0 and later

OpenMP has evolved to encompass heterogeneous GPU-based computing. As a

directive-based standard, application programmers can annotate an existing C,

C++, or FORTRAN application with parallelization directives without major

changes to the underlying source code. Additionally, because of the prevalence

of OpenMP in HPC ecosystems, OpenMP support is present in nearly all

compilers evaluated in this project, although the degree of support varies between

implementations, especially in terms of performance. Nevertheless, OpenMP is

certain to be a primary target on all upcoming exascale systems.

184

4.2.1.2 OpenACC. Before the release of OpenMP offloading

directives, OpenACC stood alone as the sole directive-based standard for

heterogeneous computing. OpenACC was originally constructed as a high-level

alternative to lower level heterogeneous programming approaches like CUDA and

OpenCL (discussed in subsequent sections), and offered an approach palatable to

programmers accustomed to directive-based CPU parallelization approaches like

OpenMP. Although OpenMP offloading directives were introduced shortly after

the first installation of the OpenACC standard, OpenACC has remained relevant

in HPC largely due to the availability of the mature production-level compiler

developed and managed first by the Portland Group as the PGI compiler [43],

and now by Nvidia as part of the NVHPC Toolkit [105]. Furthermore, several

applications, including LULESH [171], the evaluated SPEC Accel benchmarks, and

several large DOE applications are written in OpenACC, and as a result OpenACC

is very likely to be featured on upcoming exascale systems alongside OpenMP.

4.2.1.3 CUDA. The Nvidia CUDA programming model [8] has

been immensely successful since its inception in 2007. CUDA can be considered

a low-level programming model, as it requires specific knowledge of GPU devices,

and significant rewriting of the most computationally intensive portions of an

application. Despite 1) CUDA’s low-level nature, which can be a significant barrier

for scientific application developers interested in heterogeneous computing, and

2) the development of numerous high-level alternatives including directive-based

standards like OpenMP and OpenACC, many programmers still choose to program

directly using CUDA. CUDA’s success can be partially attributed to the robustness

of the proprietary CUDA software stack, including compilers, debugging and

profiling tools, and professional training.

185

Although Nvidia GPUs and CUDA are currently absent in the ecosystems

of announced exascale machines, several of the current leading supercomputers,

including ORNL’s Summit [1] and LLNL’s Sierra [2] are built using these hardware

and software stacks. It is no stretch then to assume that future machines, including

future exascale machines, will likely feature the CUDA programming model.

4.2.1.4 OpenCL. While the proprietary, and well-funded, nature of

CUDA certainly attributed to its success, it also limited the CUDA’s heterogeneous

landscape to Nvidia-developed devices. Shortly after the release of CUDA, an open-

source alternative was introduced. OpenCL [37], first managed by Apple and now

by Khronos, shares a similar low-level nature with CUDA, but is intended to run

on any device with a sufficient OpenCL implementation. While OpenCL’s adoption

and uptake has not experienced the same degree of success as CUDA, the cross-

platform and portable potential of OpenCL has made it an attractive option for

upcoming exascale systems, both as a front-end programming model and as a

backend intermediate representation for higher level models like SYCL, as discussed

below.

4.2.1.5 HIP/ROCm. Nvidia’s main competitor in the GPU

market, traditionally in the consumer market but more recently also in the

high-performance and scientific community, is AMD. Unlike Nvidia, AMD has

not developed a proprietary programming approach and vendor compiler for

heterogeneous computing. Instead, to support its GPU architectures, AMD has

developed the open-source ROCm (Radeon Open Compute) suite [41]. ROCm is

a collection of APIs, drivers, and development tools that support heterogeneous

execution on AMD GPUs, but also other architectures like Nvidia GPUs. The

actual programming model developed as part of ROCm is HIP, another low-

186

level approach with a similar abstraction level to CUDA and OpenCL. However,

the ROCm toolkit and associated compilers also support OpenMP and OpenCL

applications. The compilers, libraries, and debuggers for ROCm are available from

the open source github [42].

Table 17 lists the programming models and associated implementations,

where available, used as part of this project.

4.2.1.6 Other Notable Models. Of course programming models

likely to be featured on future exascale systems are not limited to the above list.

Especially in the distant future, new or existing programming models are likely to

be adopted on exascale systems to meet the demands of new applications. In the

near-future, some programming models likely to be featured at exascale include

general languages like SYCL [55], Kokkos [47], and Raja [52] and domain specific

approaches (DSLs) like Tensorflow [7] and Keras [91]. SYCL, and by extension

DPC++, is already a staple of the Intel OneAPI [38] programming ecosystem,

and therefore intended to be a prominent approach on the Intel-based Aurora

machine. While SYCL was originally developed as an OpenCL abstraction layer,

more recently it has been promoted as stand-alone product that can target other

backends besides OpenCL. Kokkos and Raja are high-level alternative to the low-

level approaches like OpenCL and CUDA, and attractive options for scientific

programmers. Finally, with the ubiquity of deep learning, DSLs like Tensorflow

and Keras implementations and support will be necessary for exascale systems.

Although these models will certainly be relevant in Exascale systems, they are

omitted from this project to limit the scope of the study. However, we do suggest

exploration of some these models during Section 4.6’s discussion of future works.

187

Table 17. Exascale Programming Models and Implementations Explored

Nvidia A100
CUDA nvcc (CUDA Toolkit)

HIP nvcc detail header (ROCm) + nvcc (CUDA Toolkit)

OpenCL
nvcc (CUDA Toolkit)

clang (LLVM)

OpenMP
nvc (Nvidia HPC Toolkit)

clang (LLVM)

OpenACC nvc (Nvidia HPC Toolkit)

AMD Instinct
CUDA hipify-perl (ROCm) + hipcc (ROCm)

HIP hipcc (ROCm)

OpenCL hipcc (ROCm)

OpenMP hipcc (ROCm)

OpenACC NA2

Intel Xe
CUDA NA

HIP NA

OpenCL icpx (Intel OneAPI)

OpenMP icpx (Intel OneAPI)

OpenACC NA
1Partial support available through the ECP Clacc project, a fork of LLVM, but not evaluated in this project

188

4.3 Exploration of Exascale Platforms: Experimental Setup

In this section we detail the specific compilers, compiler versions, software

platforms, and hardware platforms targeted in this project. We also briefly discuss

the benchmarks used in the following evaluations.

4.3.1 AMD Platform. The specific AMD GPU evaluated in this

work is a Radeon Instinct MI50 Accelerator (gfx906). Officially released in

November 2018, the MI50 is based on the AMD Vega 20 architecture. This 7nm

device advertises a peak throughput of 13.3 single-precision TFLOPs (FP32) and

6.6 double-precision TFLOPs (FP64).

The host processor attached to this accelerator is an AMD EPYC 7402 24-

Core processor, although all host code in the evaluations is executed using a single

thread. The platform operating system is CentOS Linux 8.

As previously mentioned, OpenACC is used as the front-end programming

model in all of this project’s evaluations. At this time, no major compiler fully

supports OpenACC compilation for AMD GPUs, although partial support is being

developed as part of the ECP clacc project [112]. However, using OpenARC source-

to-source translation, the input OpenACC applications can be used to generate

code that is supported by major AMD GPU compilers, including OpenMP,

OpenCL, HIP, and CUDA.

For the backend compilation of these supported languages (after lowering

from OpenACC), we rely on a system-installed ROCm 3.9.0. For the OpenMP,

OpenCL, and HIP backends, we use hipcc (HIP version: 3.9.20412-6d111f85). The

ROCm hipcc utility is a compiler driver that internally invokes either AMD’s HCC

compiler or the AMD branch of the LLVM clang compiler, in this case built on top

of LLVM version 12.0.0. Relevant flags to hipcc for OpenMP compilation include

189

“-target x86 64-pc-linux-gpu -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa

-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906”.

For the CUDA backend, we first run hipify-perl (included in ROCm 3.9.0) to

translate the CUDA code into an analogous HIP code, and then run hipcc similar

to the other backends. Although ROCm also provides a more robust translation

tool, hipify-clang, the hipify-perl tool successfully translated all the applications

evaluated in this project, while the LLVM-based tool encountered several errors.

4.3.2 Nvidia Platform. In this project we evaluate the Nvidia

Ampere (A100-PCIE-40GB) GPU, code-named GA100, which was officially

released in September 2020. This 7nm micro-architecture claims a peak throughput

of 19.5 single-precision TFLOPs (FP32) and 9.7 double-precision TFLOPs (FP64).

The host processor attached to this accelerator is also an AMD EPYC processor,

identical to the one described in the AMD GPU Platform section above.

Unlike the AMD environment, Nvidia devices do have major compiler

support for OpenACC. Previously known as the PGI compiler, the re-branded

Nvidia High Performance Computing SDK (NVHPC) supports OpenACC

compilation through its associated compiler, nvc. When targeting OpenACC as

the backend programming model, for consistency when comparing with other

programming models we still run the input OpenACC application through

OpenARC source-to-source translation. Although both the input source and output

source are OpenACC, OpenARC does apply a series of compiler passes that can

result in small changes in the output code. For this project, we use NVHPC version

20.11, installed via spack [191] with package “nvhpc@20.11”. We also use this

specific NVHPC and associated nvc to evaluate NVHPC’s OpenMP support in

Section 4.4.5.

190

To compile OpenARC-generated CUDA and OpenCL for the A100 device,

we use the NVIDIA CUDA Toolkit directly, in this case version 11.0.194, also

installed via spack. This installation contains both CUDA and OpenCL headers

and runtime libraries. To execute HIP applications on the A100, we use hipcc

and the nvcc detail header files, included in ROCm 3.9.0. These header files

effectively redefine HIP API calls as thin wrappers over CUDA API calls, and

hipcc subsequently calls a present CUDA installation internally, in this case the

same version 11.0.194. When compiling CUDA, we include the “-03” and “-lcuda”

flags. When compiling OpenCL, notable flags include “-03”, “-lstdc++”, and “-

lOpenCL”.

We also compile OpenARC-generated OpenCL and OpenMP using LLVM

clang, directly built from source (llvmorg-11.1.0-rc2). In Section 4.4.5 we compare

the LLVM-based open-source implementations of OpenMP and OpenCL against

the Nvidia-owned NVHPC SDK and CUDA Toolkit implementations.

4.3.3 Intel Platform. Finally, we evaluate the Intel Iris Xe Max

GPU (0x4905), also known as a DG1 card, which launched in quarter four of 2020.

The Xe Max is built using 10nm semiconductor technology, and claims a peak

throughput of 2.46 single-precision TFLOPs. Unlike the AMD and Nvidia cards

evaluated, this Intel GPU is not HPC oriented, and instead is intended to ship with

smaller portable laptops. However, the programming models and other software

artifacts relevant to the Xe Max are very likely to also be relevant in upcoming

Intel GPU releases, including those likely to be featured in the upcoming Aurora

supercomputer [4]. The host processor on the Intel Platform is a 56-core Intel Xeon

CPU E5-2680 v4 @ 2.40GHz.

191

Because of the novelty of Intel GPUs as a whole, the programming model

and compiler availability is relatively limited when compared to options for AMD

and Nvidia devices. In this project, we evaluate only two OpenARC-generated

backend programming models for the Intel GPU Platform: OpenMP and OpenCL.

Both programming models are compiled using the proprietary Intel compiler icpx,

available as part of the Intel oneAPI Toolkit. Specifically we target a system-

installed Intel oneAPI DPC++ Compiler 2021.1.2 (2020.10.0.1214).

4.3.4 Benchmarks. The SPEC Accel Benchmarks are ideal

candidates for this project’s evaluation because they 1) contain C-based OpenACC

implementations of several applications, 2) represent applications from several

different scientific domains, and 3) are professionally maintained and updated by

The Standard Performance Evaluation Corporation (SPEC). In this project, we

specifically use SPEC Accel v1.3. From the selection of benchmarks available in

SPEC Accel, our evaluations in this chapter focused on the following benchmarks

(the same applications targeted in Chapter III):

– 303 ostencil, a thermodynamics stencil kernel (also referred to as os).

– 314 omriq, a convolution-based Hessian multiplication.

– 352 ep, an embarrassingly parallel application.

– 354 cg, a conjugate gradient kernel.

– 357 csp, a scalar penta-diagonal solver.

– 370 bt, a block tridiagonal solver for 3D PDEs.

192

4.4 Evaluation of Heterogeneous Platforms with OpenACC, OpenARC,

and CCAMP

As previously mentioned, OpenARC and the SPEC Accel benchmarks create

an ideal sandbox in which we can explore and evaluate a diversity of different

exascale-bound programming models. In each of the following evaluations, we have

used OpenARC source-to-source translation to translate a single set of OpenACC

SPEC applications in to a variety of different backends. We then evaluate these

backends, exploring different aspects of performance, and highlighting interesting

patterns and discrepancies.

4.4.1 Relative Performance of Each Programming Model

Across Devices. Given an application written using a specific programming

model, it is reasonable to ask which hardware platform would be most appropriate

to target. That is, which hardware platforms are more likely to approach peak

performance for a given model. Similarly, we may ask which hardware platforms

have mature implementations of a specific programming model. For vendor-

specific programming models like HIP and CUDA, the obvious choice would be

the corresponding hardware platform developed by the vendor. For other portable

models like OpenMP, OpenACC, and OpenCL, the situation is less clear.

In Figure 30, we compare the relative performance of programming models

(subplots) for each device (bar colors). Although we could directly compare the

absolute runtime of each application on each device, this comparison would be

inherently biased because the devices have different release dates, different semi-

conductor fabrics, and different peak performances. Directly comparing runtimes

may not accurately represent 1) the eventual suitability of programming models for

each device family and 2) the maturity of the compiler implementations.

193

Exascale Programming Model Comparison

0

1000

2000

3000

4000
CUDA HIP

0

1000

2000

3000

4000

93
45

.8
6

OpenCL

303.ost 314.omr 352.ep 354.cg 357.csp 370.bt

92
74

.3
6

OpenMP

303.ost 314.omr 352.ep 354.cg 357.csp 370.bt
0

1000

2000

3000

4000

R
un

tim
e(

s)
 x

 T
FL

O
PS

(s
in

gl
e-

pr
ec

is
io

n)

OpenACC

Instinct
A100
Xe

Figure 30. Relative runtime comparison (lower is better) of programming
models (generated from OpenACC source code via OpenARC) across devices
(distinguished by bar color). Relative runtime is estimated as absolute runtime
(s) multiplied by theoretical peak performance (FP32 TFLOPS) for each device.
Missing bars indicate an unsupported programming model or a failed compilation
or execution.

194

Therefore in Figure 30 the y-axis is an estimation of relative performance,

calculated by multiplying the runtime achieved for each specific benchmark on each

platform by the theoretical peak performance reported for that platform (lower

is better). As mentioned in the previous section, the reported peak performance

in single-precision TFLOPs is 13.3 for the Instinct device, 19.5 for the A100, and

2.46 for the Xe Max. For example, the Xe GPU (Xe Max 0x4905), used in this

evaluation is intended for low-power ecosystems and has limited double-precision

support, while the Xe GPUs intended for Aurora will have more advanced FP64

support and fewer power constraints. Below, we briefly break down each subplot in

Figure 30

CUDA Subplot: In Subplot 1, for the A100 device CUDA is compiled

using nvcc (CUDA Toolkit), and for the Instinct device compilation is done

using hipify-perl and hipcc. Unsurprisingly, the A100 achieves the best relative

performance for the CUDA programming model for 4 of 6 benchmarks, although

the AMD device achieves comparable performance for the remaining two

applications (354.ct and 357.csp). Because no CUDA implementation exists for

the Xe platform, those measurements are absent in this figure.

HIP Subplot: Interestingly, the A100 also achieves the best relative

performance for 4 of 6 benchmarks when targeting the HIP backend (generated

from OpenACC using OpenARC). Furthermore, the first two subplots (CUDA

and HIP) are nearly identical. This is a testament to the success and efficiency of

the nvcc detail header file used to execute HIP applications on Nvidia hardware

(orange bars in Subplot 2), and the hipify-perl tool used to execute the CUDA

applications on the AMD hardware (blue bars in Subplot 1). Both nvcc detail and

hipify-perl are maintained by AMD and released as part of ROCm. Although a

195

single portable programming model is the ideal solution to create an application

that can be run across several platforms, robust translation tools and compatibility

libraries like those for CUDA and HIP can provide an alternative solution.

However, the library and translation solutions for portability also have

downsides. Internal translation can make it more difficult for tools that have

expectations about the runtime execution of an application. For example, in

this project OpenARC had to be extended to support the nvcc detail execution

header because of the unexpected presence of CUDA constructs in a HIP execution

context. Also, it may be more difficult for profiling tools to provide relate runtime

information to the original source code.

OpenCL Subplot: In the third subplot, nvcc is used to compile OpenCL

for the A100, hipcc is used for the Instinct device, and icpx is used for the

Xe Max. The hipcc implementation targeting the Instinct device (blue bars)

performed comparably to the other OpenCL implementations for most benchmarks,

and actually achieved the lowest relative runtime for two applications, 357.csp

and 370.bt. However, the hipcc driver failed to successfully execute the 354.cg

benchmark, reporting a memory access fault.

The Intel implementation (green bars) also failed to successfully execute

one of the SPEC Accel applications, 357.cp, and experienced unusually poor

performance for the 352.ep application. However, for those applications that

executed successfully, the relative performance of the Intel implementation on the

Xe Max GPU was comparable to the AMD and Nvidia devices, and even achieved

the lowest relative runtime in the case of 354.cg.

Unlike the Intel and Nvidia implementations, the Nvidia implementation

(nvcc) successfully compiled and executed each OpenCL application for the A100

196

device. The relative runtime of the nvcc executions (orange bars) is comparable for

most applications, and lowest across the evaluated devices for 303.ost, 314.omr, and

352.ep.

We do note that, although OpenCL may not be the most popular

programming model, it does achieve the best coverage in terms of successful

executions across all devices, covering 15/18 of the potential device and compiler

combinations evaluated in for this figure.

OpenMP Subplot: In the fourth subplot, hipcc and icpx are again used

for the Instinct and Xe Max devices. However, for OpenMP, we use the LLVM

clang implementation when targeting the Nvidia 100. Although Nvidia also

supports an OpenMP implementation as part of the NVHPC SDK, the LLVM-

based implementation currently achieves more consistent performance (we explore

this further in Section 4.4.5). To generate OpenMP from the input OpenACC

codes, OpenARC’s CCAMP translation was applied, including the optimization

passes. The best performing mapping is evaluated in this figure. Performance

differences between OpenMP mappings is explored further in Section 4.4.3.

For the single application where icpx successfully compiles and executes for

the Xe Max, 303.ost, the relative runtime (blue bar) is very promising, significantly

outperforming the relative runtime of the hipcc implementation on Instinct and

performing comparably with the clang implementation on the A100. However,

for the other 5 of 6 benchmarks, the OpenMP experiences runtime execution

errors, most often segmentation faults, likely due to the relative immaturity of

the OpenMP offloading features of icpx, 2) the lack of double-precision support,

required for the 352.ep, 354.cg, 357.cp, and 370.bt benchmarks. In order to

successfully compile the benchmarks, double-precision emulation was required,

197

enabled via the OverrideDefaultFP64Settings and IGC EnableDPEmulation

environment variables. Future releases of icpx and next generation Xe GPUs are

likely to address these issues.

The hipcc implementation for the Instinct device (orange bars) performs

relatively poorly compared to the LLVM implementation for the A100, even though

when targeting OpenMP the hipcc compiler-driver internally relies on LLVM. This

likely indicates that the LLVM OpenMP implementation has previously focused

on offloading specifically to Nvidia devices, which not surprising given Nvidia’s

prevalence in contemporary systems, including the supercomputers Summit and

Sierra. However, with the transition to AMD devices in many of the upcoming

exascale machines, performance improvements in LLVM’s, and indirectly hipcc’s,

OpenMP implementations when targeting the AMD devices families will be

essential.

OpenACC Subplot: In the final subplot, instead of investigating other

programming models generated from OpenACC via OpenARC, we asses OpenACC

directly. The only evaluated implementation that supports OpenACC compilation

directly is nvc from the NVHPC SDK, and thus only bars for the A100 are visible.

However, the Clacc Project [112], currently under development as part of the ECP

project, promises to bring OpenACC support to LLVM, building off of LLVM’s

OpenMP implementation. Clacc will bring OpenACC support for AMD devices,

likely performing similarly to the LLVM-based OpenMP implementations from the

previous subplot.

4.4.2 Absolute Performance of Programming Models on Each

Device. Although the relative performance and runtime metrics used the

previous section are useful for directly comparing performance between devices

198

Exascale-similar Device Comparison

0

50

100

150

200

R
un

tim
e(
s)

69
7.
32

28
6.
80

Instinct

0

50

100

150

200

R
un

tim
e(
s)

A100

303.ost 314.omr 352.ep 354.cg 357.csp 370.bt
0

50

100

150

200

R
un

tim
e(
s)

53
3.
32

37
99

.1
3

32
7.
45

Xe

Backend
CUDA
HIP
OpenCL
OpenMP
OpenACC

Figure 31. Absolute runtime performance comparison of different programming
models (generated from OpenACC source code via OpenARC) on each
device. Missing bars indicate an unsupported programming model or a failed
compilation/execution.

199

and assessing relative maturity of implementations between devices, we are also

interested in exploring the absolute performance of available implementations on

a single device. That is, instead of starting with an application and choosing an

appropriate device, we want to explore the hypothetical of starting with a device

and choosing a programming model likely to perform optimally.

In Figure 31, we begin with the same data set used in the previous figure,

but present the data in a new way (without normalizing by peak FLOPs) in order

to explore different patterns and discrepancies. Again, absent bars represent

either unsupported backends by the evaluated implementations or compilation or

runtime failures that prevented collection of an accurate runtime. Runtimes that

are reported were verified over multiple executions.

Instinct Subplot: In the first subplot, we evaluate the performance of all

supported programming models on the AMD Instinct device. We first notice that

the OpenCL model, compiled via hipcc (green bars) performs either comparably

or significantly better than other programming models for all applications except

354.cg, where we experience a runtime error related to a memory access fault.

As previously mentioned, CUDA and HIP, compiled with hipcc and hipify-perl

perform similarly for each application. Although they lag slightly behind the

OpenCL in terms of performance for some applications, the hipcc CUDA and HIP

implementations are able to successfully compile and execute all applications.

The OpenMP model, again compiled by hipcc, also successfully compiles every

application. However, OpenMP’s runtime performance is significantly slower than

other the implementations for all applications except 370.bt, where it is surprisingly

faster than the HIP and CUDA implementation but still slower than the OpenCL

200

implementation. As previously mentioned, OpenACC as a backend is not evaluated

for the AMD device.

A100 Subplot: The first things we notice in the A100 subplot are the

consistently low runtimes for all applications and programming models compared

to the other subplots. Although the A100 is a newer device with a higher peak

throughput, this also evidence of the relative maturity of programming model

implementations when targeting Nvidia devices, a predictable outcome given

Nvidia’s dominance in high-performance heterogeneous computing over the last

decade.

Interestingly OpenCL, compiled with nvcc (green bars), has the longest

runtime of all programming models for 4 of 6 applications, contrasting significantly

from the OpenCL implementation on the AMD platform.

It is probably safe to assume that a sufficiently hand-optimized CUDA

implementation would likely outperform other programming models for all

applications on the A100 device. However, the OpenARC-generated CUDA (blue

bars), while still optimized via OpenARC compiler passes, results in the lowest

runtime for only 3 of 6 applications. OpenACC, compiled via nvc (pink bars)

claims that position for two other applications, and OpenMP compiled with

clang actually achieves the lowest runtime for the 357.csp application. In general,

clang-compiled OpenMP performance is consistent with the other programming

models on the A100 device. Again, HIP executions, compiled using hipcc and the

nvcc detail header file (orange bars), perform nearly identically to CUDA.

Xe Max Subplot: The first thing we notice about the Xe Max subplot

is that it is sparsely populated compared to the other subplots. Only the 303.ost

application was successfully executed with the OpenMP programming model, and

201

neither the generated OpenMP or generated OpenCL codes, both compiled with

icpx, successfully executed the 357.csp application. As previosuly mentioned, this

lack of success is likely due to the relative immaturity of GPU compilation from the

icpx implementation and the emulation of double-precision support. However, the

relative inexperience of the authors with this platform is also likely a contributing

factor. However, with the imminent release of Aurora, significant efforts are being

made to develop support for the Xe family of devices, including support for the

SYCL and DPC++ programming models not evaluated in this work.

4.4.3 OpenMP Mappings. In this section, we briefly explore the

performance of the different OpenMP codes generated from the input OpenACC

applications after applying OpenARC’s CCAMP translation and optimization. As

described in Section 1.3.3.5, the three different mappings of OpenMP directives

generated include 1) literal translation from OpenACC directives with the intent

to maintain the same level of parallelism and computation patterns as the original

application (“default” in Figure 32), 2) optimization of the generated OpenMP

directives specifically tailored for GPU devices (“gpu-friendly”) and 3) optimization

of the generated OpenMP directives tailored for CPU executions (“cpu-friendly”).

In Figure 32, we see the runtime performance results from executing each

mapping across each device and application. The Instinct executions (Subplot 1)

were compiled with hipcc, which as previously mentioned relies on LLVM internally.

The A100 executions were compiled with LLVM directly via clang. The Xe Max

executions were compiled using icpx.

For all benchmarks, applying device-specific optimizations led to either

comparable or improved performance over a more literal translation from

OpenACC. For 5 of 6 benchmarks, the “gpu-friendly” translation performed either

202

CCAMP OpenMP Mapping Performance

0

100

200

300

400

500

R
un

tim
e(
s)

15
75

.0
5

15
75

.2
4

69
7.
32

13
24

.0
1

83
0.
03

Instinct

0

100

200

300

400

500

R
un

tim
e(
s)

90
4.
91

A100

303.ost 314.omr 352.ep 354.cg 357.csp 370.bt
0

100

200

300

400

500

R
un

tim
e(
s)

Xe

default
gpu-friendly
cpu-friendly

Figure 32. Runtime performance comparison of different CCAMP OpenMP
mappings across different architectures.

203

similarly or much better than the other mappings, which is consistent with the

intent of the device-specific optimizations. The lone outlier, 314.omr, performs best

with the “cpu-friendly” mapping on both the Instinct and A100 device. This is

consistent with the results in the original CCAMP project [14] (Chapter III of this

dissertation). In 314.omr, a reduction and small loop trip count on an inner loop

of a computationally intensive kernel causes the nested parallelism of the “gpu-

friendly” approach to perform more poorly than the outer-loop parallelism focused

“cpu-friendly” approach.

Overall, this evaluation demonstrates that OpenMP directive configuration

still plays a huge role in OpenMP performance on these exascale-similar hardware

platforms, and further motivates the need for device-specific optimization,

preferably automated, as CCAMP’s distinct mappings can be configured using

a single command-line argument. However, improvements are needed to tools

like OpenARC’s CCAMP for more consistent performance across a wide array of

applications.

4.4.4 Intel icpx and Intermediate Representations for

OpenMP. In this section we briefly explore the two different intermediate

representations generated during Intel icpx compilation of OpenMP when targeting

the Xe Max GPU. During the compilation of an OpenMP application, the OpenMP

application is lowered by icpx to either Level0 or OpenCL.

Level0 is an intermediate representation developed as part of the Intel

oneAPI framework. The goal of Level0 is to provide a driver-level API in order

to interface between the different programming models supported under the oneAPI

umbrella and the different hardware devices developed by Intel, including Intel

GPUs, AI chips, and FPGAs. By default when compiling OpenMP the Level0 API

204

is targeted. However, this can be reconfigured at runtime to target OpenCL via the

“LIBOMPTARGET PLUGIN” environment variable. We initially experimented

with this variable in an attempt to successfully execute more OpenMP applications

on the Xe Max device, but even with “LIBOMPTARGET PLUGIN=OPENCL” we

only successfully executed the 303.ostencil application.

Table 18 shows the runtime performance of the 303.ostencil application, with

the three different OpenMP “mappings” generated by OpenARC and CCAMP

from the OpenACC source code. In the second column, the OpenMP codes

were lowered by icpx to the Level0 API, while in the third column the OpenCL

alternative internal API is targeted. We see that the performance is nearly identical

for two of the three “mappings”, but that for the “CPU-friendly” mapping we see a

nearly 25% difference in performance, with the Level0 backend being more efficient.

However, to adequately establish patterns in performance more evaluations need

to be performed with either an updated implementation of the Intel OpenMP

compiler, a next-generation Intel Xe GPU, or a different benchmark set with fewer

double-precision applications.

Table 18. Runtime performance comparison of Level0 and OpenCL backends for
icpx OpenMP compilations (303.ostencil)

Mapping Level0 OpenCL

Default 193.91 (s) 192.52 (s)

GPU-friendly 111.65 (s) 139.19 (s)

CPU-friendly 365.36 (s) 365.68 (s)

4.4.5 LLVM and Nvidia Implementation Comparison for

OpenCL and OpenMP. Few devices have multiple implementations available

for a single programming model. For example, CUDA, OpenACC, and HIP each

have one implementation on supported devices (ignoring the translation tools

205

OpenCL and OpenMP Implementations Compared

303.ost 314.omr 352.ep 354.cg 357.csp 370.bt
0

25

50

75

100

125

150

R
un

tim
e

(s
)

OpenCL

Compiler
clang
nvcc

303.ost 314.omr 352.ep 354.cg 357.csp 370.bt
0

25

50

75

100

125

150

R
un

tim
e

(s
) 40

7.
49

OpenMP

Compiler
clang
nvc

Figure 33. Runtime performance comparison of two OpenCL implementations and
two OpenMP implementations (A100).

206

nvcc detail, hipify, and OpenARC). Furthermore, on the Intel Xe GPU only a single

implementation is evaluated in this work for both supported programming models.

However, for the Nvidia A100 device we explored two implementations for

two different programming models; both the CUDA Toolkit’s nvc and LLVM’s

clang for OpenCL, and both the NVHPC SDK’s nvc and LLVM’s clang for

OpenMP. In this section we briefly compare and contrast these implementations.

Figure 33 shows the runtime performance differences between the two

evaluated implementations for OpenCL (Subplot 1) and OpenMP (Subplot 2). For

OpenCL, Nvidia’s nvcc outperforms LLVM clang for each applications, in some

cases significantly. Not only does clang perform more poorly than nvcc, but clang

also fails to successfully execute 354.cg due to a memory error. However, nearly the

exact converse is true for the OpenMP implementations. LLVM clang outperforms

NVHPC nvc for nearly every every application, significantly so for 352.ep. In order

to compile several of the applications with nvc, the linear() clause needed to be

manually removed, as the current version of nvc does not yet support this clause.

Even after removing unsupported clauses, nvc still failed to successfully compile the

354.cg and 357.csp applications due to internal compiler errors. However, OpenMP

support in NVHPC’s nvc is still relatively novel, being recently adapted from the

implementation of the Nvidia-acquired PGI OpenACC compiler.

4.5 Exploration of Exascale Platforms: Related Work

In 2012, shortly after the release of the Exascale Software Project

Roadmap [192], Lee et al. [193] performed an early evaluation of directive-based

GPU programming models for productive exascale computing. They surveyed the

then-current programming models, including OpenACC, HMPP, OpenMPC [140],

and Rstream, and compared performance with CUDA applications. These models

207

have developed significantly over the past decade (OpenACC), or in other cases

become deprecated (HMPP, OpenMPC), but the authors do identify several

considerations that are still relevant for today’s exascale programming models:

functionality, scalability, tunabilty, and debugability.

In a more recent work (2018), Gayatari et al. [187] explore the performance

of a single application (GPP) with OpenMP 4.5, OpenACC, and CUDA. They find

that OpenMP and OpenACC initially fail to match the performance of the CUDA

implementation, but after sufficient optimization the performances are similar.

They also find that the GPU-intended OpenMP implementation performs poorly

on the CPU device, an observation that we confirm and address with the CCAMP

OpenMP optimizations in our evaluations.

A recent work (2020) by Davis et al. [194] assesses the performance of

different OpenMP compilers on the Nvidia V100 device. The evaluate the Cray,

IBM, Nvidia, and LLVM clang OpenMP compilers on several different benchmarks,

and observe general programming patterns. Their results are consistent with the

OpenMP backend results we experience in this work, although they are limited to a

single OpenMP mapping without an automated mapping strategy like CCAMP.

Also in 2020, Usha et al. [195] compare the performance OpenACC and

OpenMP 4.5 for Nvidia GPUs, specifically P100 and V100 devices., on several

generic benchmarks, including matrix multiplication, Jacboi kernels, and Monte-

Carlo simulations. They experience more success with OpenACC on the Nvidia

devices, and have difficulties optimizing the OpenMP implementations.

Finally, in 2020 Bertoni et al. [196] perform a performance portability

evaluation of OpenCL benchmarks across Intel and Nvidia Platforms. Specifically,

they evaluate using an Intel Integrated (G9) GPU, an Intel SkyLake CPU, and an

208

Nvidia V100 GPU. Their project focuses on developing a metric for and measuring

the performance-portability of OpenCL applications between platforms, and

they conclude that a significant effort is needed to realistically achieve sufficient

performance portability with OpenCL. In the meantime, this motivates tools

like OpenARC that can generate several specialized output codes using a single

portable input programming model.

All of the works discussed in this section complement and confirm the

results of this project. However they all address either a single programming model,

experiment with a single or small number of benchmarks, evaluate specific limited

device families, or rely on now outdated hardware and software platforms. In

contrast, in this project we explore a wide diversity of programming models, several

different bleeding-edge hardware and software platforms, and an extensive set of

benchmark applications for a more comprehensive overview of the state of exascale

programming approaches.

4.6 Exploration of Exascale Platforms: Conclusions

The rapidly approaching horizon of exascale machines promise to deliver

incredible performance, but inevitably create incredible challenges, including the

availability, implementations, and performance of programming approaches. In this

work we explore several programming approaches guaranteed to occupy a spot in

the exascale landscape. We investigate both the individual performance of these

approaches on exascale-intended hardware, and the feasibility of generating these

specialized approaches using a single source code and source-to-source translation.

First, this work is only made possible by the availability of quality

OpenACC benchmarks from SPEC Accel and the source-to-source capabilities

of OpenARC. The idea of developing and maintaining separate OpenACC,

209

OpenMP, OpenCL, CUDA, and HIP implementations of an array of applications

is intimidating at best, if not impossible. Furthermore, different devices may prefer

different code versions even within a single backend programming model, as we see

with OpenMP. An automated compilation framework is critical to comprehensively

explore and evaluate this diversity of programming models across several different

platforms.

Our evaluations highlight several important considerations for exascale-

intended platforms. When comparing programming models across platforms,

we immediately see that the engineering of the Nvidia GPU and maturity of the

CUDA implementations outclass the other platforms and programming approaches.

The Nvidia-focused evaluations achieved consistently low performance on all

benchmarks, a testament to the focus the HPC and heterogeneous computing

communities have granted Nvidia over the past decade. Even the LLVM-based

OpenMP implementations are mature when targeting Nvidia devices, but lag

significantly behind for AMD and Intel GPUs. However, we also see significant

successes with the other platforms.

AMD, with ROCm and HIP, have developed a mature open-source

environment for compilation and execution on their platforms. They have also

developed high-quality tools and header files for interaction with Nvidia software

and platforms, effectively allowing them to leverage work done by Nvidia and

CUDA developers instead of re-inventing the wheel.

Furthermore, OpenCL, while not the most popular choice for developers,

was the most functionally portable programming model evaluated, followed by

OpenMP. OpenACC is still largely limited to Nvidia devices, but the Clacc [112]

framework may make OpenACC available on a wide variety of platforms that

210

support LLVM OpenMP implementations. On that note, we also observe that

LLVM is a core technology in nearly every evaluated programming approach, either

directly via clang, indirectly as part of a compiler-driver, or internally as a compiler

builder.

Finally, we observe that Intel’s Xe platform requires a significant amount of

effort to match the performance of the other platforms, at least with the evaluated

programming models. Failed compilations and executions, both with OpenMP

and OpenCL, and a lack of support for double-precision made evaluating the Xe

platform with the SPEC Accel benchmarks challenging. This is concerning with

the imminent release of Aurora. However, it is possible that the Xe platform

experiences more success with the OneAPI, SYCL, and DPC++ programming

approaches which were not evaluated in this work.

To that end, a relevant future work involves creating a SYCL backend

for OpenARC. We also hope to extend CCAMP to support device-specific

optimizations for other programming models (OpenCL, HIP, etc.). We also hope

to extend our evaluations of OpenACC by incorporating the Clacc framework.

211

CHAPTER V

CONCLUSION

Since their first conceptualization with the PASM and TRAC machines

in the early 80s, heterogeneous computing and heterogeneous programming

approaches have shifted in and out of vogue. In Chapter I, we recounted how

distributed heterogeneous computing rose with the promise of robust diverse and

distributed systems. We also saw how these systems were eventually eclipsed

by homogeneous supercomputers, homogeneous cloud servers, and CPU-chip

advancements. We explored the rebirth of heterogeneous computing through

accelerator-based computing, as well as the explosion of GPU-based computing.

Although the contexts are distinct, the challenges faced by distributed

heterogeneous systems and contemporary accelerator-based systems are not so

different. Many of the challenges early developers faced are being constantly

revived and re-imagined, especially in the face of the extreme heterogeneity of

next-generation systems. Many of the conceptual models, theoretical road maps,

programming approaches, technical requirements and restrictions, and strategies for

success from distributed heterogeneous research apply directly to accelerator-based

systems. The original Figure 3, first published in 1995, would look right at home in

a 2021 publication exploring extreme heterogeneity, albeit with improved graphics.

In Chapter I, we introduced several significant challenges related to current

and next-generation heterogeneous programming and computing: the diversity of

hardware and of programming models, finding the appropriate abstraction level

for different types of science, and the balance between different types of funding

for programming platform development. Although we present these concepts as

challenges, in reality, they are also indications of progress. Any claim to solve these

212

challenges in totality would be less a scientific achievement and more an indication

of stagnation in computational development.

However, working toward solutions is important and necessary. Creating

portable, automated, and optimized programming solutions for extremely

heterogeneous environments is crucial as we encounter increasingly diverse and

specialized accelerators. The research in this dissertation makes an adventurous

step closer to addressing the challenges of contemporary heterogeneous computing.

In Chapter II, we introduce a high-level directive-based framework designed

to bring FPGAs, previously an outcast, under the umbrella of high-performance

computing. We develop automated and compiler-based optimizations, empowering

scientific programmers to both write palatable applications and produce highly

specialized code, effectively bridging the semantic gap between hardware-level, low-

level, and high-level FPGA programming.

In Chapter III, we present an interoperable framework integrating the

two most common directive-based standards in high-performance computing. By

conceptually merging the two standards, we stretch the capabilities, contexts, and

ultimately the performance of applications written in either standard. Finally,

in Chapter IV we present an exploration and evaluation of exascale-intended

programming approaches. Exascale systems, the near-term pinnacle of the

heterogeneous timeline, are far from immune to the challenges outlined above, and

will feature a diverse set of hardware and programming models. In Chapter IV,

we leverage a single programming model to explore this diversity, again relying on

automated compiler optimizations and code generation.

Heterogeneity in computing is fated to an endless cycle of divergence and

specialization, encapsulation and integration. In the future, these intertwined

213

notions may result in more exotic hardware like quantum or neuromorphic

accelerators, and more evolved software concepts like AI-inspired compilation and

machine programming—and these advances will require the very same incremental

steps presented in this dissertation: the development of high-level, portable

programming approaches that can deliver specialized performance.

214

REFERENCES CITED

[1] Summit Supercomputer. Oak Ridge National Laboratory. [Online]. Available:
https://www.olcf.ornl.gov/summit/

[2] Sierra Supercomputer. Lawrence Livermore National Laboratory. [Online].
Available: https://computing.llnl.gov/computers/sierra

[3] Frontier Supercomputer. Oak Ridge National Laboratory. [Online]. Available:
https://www.olcf.ornl.gov/frontier/

[4] Aurora Supercomputer. Argonne National Laboratory. [Online]. Available:
https://alcf.anl.gov/aurora

[5] El Capitan Supercomputer. Lawrence Livermore National Laboratory. [Online].
Available: https://www.llnl.gov/news/
llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

[6] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf,
K. Antypas, D. Donofrio, T. Humble, C. Schuman, B. V. Essen, S. Yoo,
A. Aiken, D. Bernholdt, S. Byna, K. Cameron, F. Cappello, B. Chapman,
A. Chien, M. Hall, R. Hartman-Baker, Z. Lan, M. Lang, J. Leidel, S. Li,
R. Lucas, J. Mellor-Crummey, P. P. Jr, T. Peterka, M. Strout, and J. Wilke,
“Extreme Heterogeneity 2018 - Productive Computational Science in the Era
of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme
Heterogeneity,” USDOE Office of Science (SC) (United States), Tech. Rep.,
2018.

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and others, “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[8] D. Kirk and others, “NVIDIA CUDA software and GPU parallel computing
architecture,” in ISMM, vol. 7, 2007, pp. 103–104.

[9] J. Lambert, S. Lee, J. Kim, J. S. Vetter, and A. D. Malony, “Directive-Based,
High-Level Programming and Optimizations for High-Performance
Computing with FPGAs,” in ACM International Conference on
Supercomputing (ICS18), Jun. 2018.

[10] J. Lambert, S. Lee, J. S. Vetter, and A. Malony, “In-Depth Optimization with
the OpenACC-to-FPGA Framework on an Arria 10 FPGA,” in 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2020, pp. 460–470.

215

https://www.olcf.ornl.gov/summit/
https://computing.llnl.gov/computers/sierra
https://www.olcf.ornl.gov/frontier/
https://alcf.anl.gov/aurora
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

[11] J. Lambert, S. Lee, J. S. Vetter, and A. D. Malony, “Optimization with the
openacc-to-fpga framework on the arria 10 and stratix 10 fpgas,” Parallel
Computing, vol. 104-105, p. 102784, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819121000417

[12] A. M. Cabrera, A. R. Young, J. Lambert, Z. Xiao, A. An, S. Lee, Z. Jin, J. Kim,
J. Buhler, R. D. Chamberlain, and J. S. Vetter, “Toward evaluating
high-level synthesis portability and performance between intel and xilinx
fpgas,” in IWOCL’21: International Workshop on OpenCL, Munich
Germany, April, 2021, S. McIntosh-Smith, Ed. ACM, 2021, pp. 7:1–7:9.
[Online]. Available: https://doi.org/10.1145/3456669.3456699

[13] J. Lambert, S. Lee, A. D. Malony, and J. S. Vetter, “CCAMP: OpenMP and
OpenACC Interoperable Framework, Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms,” in Workshop on
Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar), in conjunction with Euro-Par19, Gottigen, Germany,
2019.

[14] J. Lambert, S. Lee, A. Malony, and J. S. Vetter, “CCAMP: An Integrated
Translation and Optimization Framework for OpenACC and OpenMP,” in
SuperComputing, 2020.

[15] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, H. E. Smalley, and
S. D. Smith, “PASM: A partitionable SIMD/MIMD system for image
processing and pattern recognition,” IEEE Transactions on computers, vol.
100, no. 12, pp. 934–947, 1981, publisher: IEEE.

[16] N. E. Abel, P. P. Budnik, D. J. Kuck, Y. Muraoka, R. S. Northcote, and R. B.
Wilhelmson, “TRANQUIL: a language for an array processing computer,” in
Proceedings of the May 14-16, 1969, spring joint computer conference.
ACM, 1969, pp. 57–73.

[17] M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. Charlu, and G. J.
Lipovski, “An overview of the Texas reconfigurable array computer,” in afips.
IEEE, 1980, p. 631.

[18] G. J. Lipovski, “SIMD and MIMD processing in the Texas Reconfigurable Array
Computer,” in Proceedings COMPSAC 88: The Twelfth Annual
International Computer Software & Applications Conference. IEEE, 1988,
pp. 268–269.

[19] M. Ercegovac, “Heterogeneity in supercomputer architectures,” Parallel
Computing, vol. 7, no. 3, pp. 367–372, 1988, publisher: Elsevier.

216

https://www.sciencedirect.com/science/article/pii/S0167819121000417
https://doi.org/10.1145/3456669.3456699

[20] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li, “Goals of and
open problems in high-performance heterogeneous computing,” in 23rd AIPR
Workshop: Image and Information Systems: Applications and Opportunities,
vol. 2368. International Society for Optics and Photonics, 1995, pp. 206–217.

[21] V. S. Sunderam, “PVM: A framework for parallel distributed computing,”
Concurrency: practice and experience, vol. 2, no. 4, pp. 315–339, 1990,
publisher: Wiley Online Library.

[22] A. Beguelin, J. Dongarra, A. Geist, and V. Sunderam, “Visualization and
debugging in a heterogeneous environment,” Computer, vol. 26, no. 6, pp.
88–95, 1993, publisher: IEEE.

[23] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam,
“PVM and HeNCE: Tools for heterogeneous network computing,” in
Software for Parallel Computation. Springer, 1993, pp. 91–99.

[24] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and K. Moore, “HeNCE:
A heterogeneous network computing environment,” Scientific Programming,
vol. 3, no. 1, pp. 49–60, 1994, publisher: IOS Press.

[25] R. M. Butler and E. L. Lusk, “Monitors, messages, and clusters: The p4 parallel
programming system,” Parallel Computing, vol. 20, no. 4, pp. 547–564, 1994,
publisher: Elsevier.

[26] A. S. Grimshaw, “Easy-to-use object-oriented parallel processing with Mentat,”
Computer, no. 5, pp. 39–51, 1993, publisher: IEEE.

[27] A. S. Grimshaw, J. B. Weissman, E. A. West, and E. C. Loyot, “Metasystems:
An approach combining parallel processing and heterogeneous distributed
computing systems,” Journal of Parallel and Distributed Computing, vol. 21,
no. 3, pp. 257–270, 1994, publisher: Elsevier.

[28] B. Bland, “Jaguar: Powering and cooling the beast,” Conference on High-Speed
Computing, 2009.

[29] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely,
D. K. Panda, A. Chourasia, and others, “Scalable earthquake simulation on
petascale supercomputers,” in SC’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2010, pp. 1–20.

[30] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in cell’s multicore architecture,” IEEE
micro, vol. 26, no. 2, pp. 10–24, 2006, publisher: IEEE.

217

[31] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J. C.
Sancho, “Entering the petaflop era: the architecture and performance of
Roadrunner,” in SC’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE, 2008, pp. 1–11.

[32] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From
CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming,” Parallel Computing, vol. 38, no. 8, pp.
391–407, 2012, publisher: Elsevier.

[33] NVIDIA Developer Blog. [Online]. Available:
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/

[34] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The
TianHe-1A supercomputer: its hardware and software,” Journal of computer
science and technology, vol. 26, no. 3, pp. 344–351, 2011, publisher: Springer.

[35] B. Bland, “Titan-early experience with the titan system at oak ridge national
laboratory,” in 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. IEEE, 2012, pp. 2189–2211.

[36] OpenACC Hackathon Online Reference. OpenACC. [Online]. Available:
https://www.openacc.org/hackathons

[37] Open Compute Language Online Portal. Khronos Group. [Online]. Available:
http://www.khronos.org/opencl/

[38] Intel OneAPI Online Portal. Intel. [Online]. Available: https://www.intel.com/
content/www/us/en/develop/tools/oneapi/components/dpc-library.html

[39] S. Lee and J. S. Vetter, “OpenARC: open accelerator research compiler for
directive-based, efficient heterogeneous computing,” in Proceedings of the
23rd international symposium on High-performance parallel and distributed
computing, 2014, pp. 115–120.

[40] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, and others, “TVM: An automated end-to-end optimizing
compiler for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 578–594.

[41] ROCm Documentation Online. AMD. [Online]. Available:
https://rocmdocs.amd.com/en/latest/

[42] AMD ROCm Online Repository. AMD. [Online]. Available:
https://github.com/RadeonOpenCompute/ROCm

218

https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://www.openacc.org/hackathons
http://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://rocmdocs.amd.com/en/latest/
https://github.com/RadeonOpenCompute/ROCm

[43] M. Wolfe and P. C. Engineer, “The PGI Accelerator Programming Model on
NVIDIA GPUs Part 1,” PGI Group, 2009.

[44] M. Wolfe, “Implementing the PGI accelerator model,” in Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units,
2010, pp. 43–50.

[45] J. Lee and M. Sato, “Implementation and performance evaluation of xcalablemp:
A parallel programming language for distributed memory systems,” in 2010
39th International Conference on Parallel Processing Workshops. IEEE,
2010, pp. 413–420.

[46] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “Ompss: a proposal for programming heterogeneous multi-core
architectures,” Parallel processing letters, vol. 21, no. 02, pp. 173–193, 2011,
publisher: World Scientific.

[47] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portability
across manycore architectures,” in 2013 Extreme Scaling Workshop (xsw
2013). IEEE, 2013, pp. 18–24.

[48] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish, “Manycore
performance-portability: Kokkos multidimensional array library,” Scientific
Programming, vol. 20, no. 2, pp. 89–114, 2012, publisher: IOS Press.

[49] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,”
Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp.
3202–3216, 2014, publisher: Elsevier.

[50] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx: A task
based programming model in a global address space,” in Proceedings of the
8th International Conference on Partitioned Global Address Space
Programming Models, 2014, pp. 1–11.

[51] F. Mueller, “Pthreads library interface,” Florida State University, 1993,
publisher: Citeseer.

[52] R. D. Hornung and J. A. Keasler, “The RAJA portability layer: overview and
status,” Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2014.

[53] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen,
O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland, “RAJA: Portable
performance for large-scale scientific applications,” in 2019 IEEE/ACM
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). IEEE, 2019, pp. 71–81.

219

[54] M. Martineau, S. McIntosh-Smith, M. Boulton, W. Gaudin, and D. Beckingsale,
“A performance evaluation of Kokkos & RAJA using the TeaLeaf mini-app,”
in The International Conference for High Performance Computing,
Networking, Storage and Analysis, SC15, 2015.

[55] R. Keryell, R. Reyes, and L. Howes, “Khronos SYCL for OpenCL: a tutorial,” in
Proceedings of the 3rd International Workshop on OpenCL, 2015, pp. 1–1.

[56] B. Ashbaugh, A. Bader, J. Brodman, J. Hammond, M. Kinsner, J. Pennycook,
R. Schulz, and J. Sewall, “Data Parallel C++ Enhancing SYCL Through
Extensions for Productivity and Performance,” in Proceedings of the
International Workshop on OpenCL, 2020, pp. 1–2.

[57] Intel OneAPI Press Release. Intel. [Online]. Available:
https://newsroom.intel.com/news-releases/
intel-unveils-new-gpu-architecture-optimized-for-hpc-ai-oneapi/

[58] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in SC’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 2012, pp. 1–11.

[59] The Legion Parallel Programming System. Stanford Legion. [Online]. Available:
https://legion.stanford.edu/

[60] The Legion Online Repository. Stanford Legion. [Online]. Available:
https://github.com/StanfordLegion/legion

[61] The Legion ECP Project. Stanford Legion. [Online]. Available: https:
//www.exascaleproject.org/research-group/programming-models-runtimes/

[62] HPX Online Repository. High Performance ParalleX. [Online]. Available:
https://github.com/STEllAR-GROUP/hpx

[63] HPX Online Portal. High Performance ParalleX. [Online]. Available:
http://stellar.cct.lsu.edu/projects/hpx/

[64] P. Diehl, M. Seshadri, T. Heller, and H. Kaiser, “Integration of CUDA
Processing within the C++ Library for Parallelism and Concurrency
(HPX),” in 2018 IEEE/ACM 4th International Workshop on Extreme Scale
Programming Models and Middleware (ESPM2). IEEE, 2018, pp. 19–28.

[65] M. Copik and H. Kaiser, “Using sycl as an implementation framework for hpx.
compute,” in Proceedings of the 5th International Workshop on OpenCL,
2017, pp. 1–7.

[66] K. Gregory and A. Miller, C++ AMP. Microsoft Press, 2012.

220

https://newsroom.intel.com/news-releases/intel-unveils-new-gpu-architecture-optimized-for-hpc-ai-oneapi/
https://newsroom.intel.com/news-releases/intel-unveils-new-gpu-architecture-optimized-for-hpc-ai-oneapi/
https://legion.stanford.edu/
https://github.com/StanfordLegion/legion
https://www.exascaleproject.org/research-group/programming-models-runtimes/
https://www.exascaleproject.org/research-group/programming-models-runtimes/
https://github.com/STEllAR-GROUP/hpx
http://stellar.cct.lsu.edu/projects/hpx/

[67] B. Schäling, The boost C++ libraries. Boris Schäling, 2011.

[68] J. Szuppe, “Boost. Compute: A parallel computing library for C++ based on
OpenCL,” in Proceedings of the 4th International Workshop on OpenCL,
2016, pp. 1–39.

[69] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for CUDA,”
in GPU computing gems Jade edition. Elsevier, 2012, pp. 359–371.

[70] Bolt template Library. C++ template library for heterogeneous computing.
AMD. [Online]. Available: https://hsa-libraries.github.io/Bolt/html/

[71] D. Demidov, “VexCL: Vector expression template library for OpenCL,” 2012.

[72] NVIDIA cuBLAS Library. NVIDIA. [Online]. Available:
https://developer.nvidia.com/cublas

[73] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse library,” in
GPU Technology Conference, 2010.

[74] Toolkit 4.1 CUFFT Library. NVIDIA CUDA. [Online]. Available:
https://developer.nvidia.com/cufft

[75] ROCm Blas Library. AMD. [Online]. Available:
https://rocmdocs.amd.com/en/latest/ROCm Tools/clBLA.html

[76] S. Tomov, J. Dongarra, V. Volkov, and J. Demmel, “Magma library,” Univ. of
Tennessee and Univ. of California, Knoxville, TN, and Berkeley, CA, 2009.

[77] S. Tomov, R. Nath, P. Du, and J. Dongarra, “MAGMA Users’ Guide,” ICL,
UTK (November 2009), 2011.

[78] Eigen C++ Library Online Reference. Eigen. [Online]. Available:
http://eigen.tuxfamily.org/index.php

[79] K. Ahnert and M. Mulansky, “Odeint–solving ordinary differential equations in
C++,” in AIP Conference Proceedings, vol. 1389. American Institute of
Physics, 2011, pp. 1586–1589, issue: 1.

[80] Odient Online Repository. Odient Library. [Online]. Available:
http://headmyshoulder.github.io/odeint-v2/

[81] Spiral Online Portal. Spiral. [Online]. Available: https://www.spiral.net/

[82] M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, and others, “SPIRAL: Code
generation for DSP transforms,” Proceedings of the IEEE, vol. 93, no. 2, pp.
232–275, 2005, publisher: IEEE.

221

https://hsa-libraries.github.io/Bolt/html/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cufft
https://rocmdocs.amd.com/en/latest/ROCm_Tools/clBLA.html
http://eigen.tuxfamily.org/index.php
http://headmyshoulder.github.io/odeint-v2/
https://www.spiral.net/

[83] F. B. Hamzah, C. Lau, H. Nazri, D. Ligot, G. Lee, C. Tan, and others,
“CoronaTracker: worldwide COVID-19 outbreak data analysis and
prediction,” Bull World Health Organ, vol. 1, p. 32, 2020.

[84] J. C. Machicao, “Covid-19 infection speed and acceleration as better tools for
monitoring with uncertain data in Peru.”

[85] D. J. Duffy, “Analysis of covid-19 mathematical and software models: Or how
not to set up a softward project,” Wilmott, vol. 2020, no. 110, pp. 66–71,
2020.

[86] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” Acm Sigplan Notices, 2013,
issue: 6 Pages: 519–530 Publisher: ACM New York, NY, USA Volume: 48.

[87] Halide Online Portal. Halide. [Online]. Available: https://halide-lang.org/

[88] Halide Online Repository. Halide. [Online]. Available:
https://github.com/halide/Halide

[89] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint
arXiv:1410.0759, 2014.

[90] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[91] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[92] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, and others, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in neural information
processing systems, 2019, pp. 8026–8037.

[93] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation open
source framework for deep learning,” in Proceedings of workshop on machine
learning systems (LearningSys) in the twenty-ninth annual conference on
neural information processing systems (NIPS), vol. 5, 2015, pp. 1–6.

[94] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

222

https://halide-lang.org/
https://github.com/halide/Halide

[95] MIOpen - AMD’s Machine Intelligence Library. AMD. [Online]. Available:
https://github.com/ROCmSoftwarePlatform/MIOpen

[96] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse,
M. Nandhimandalam, K. Nasyrov, I. Perminov, T. Shah, and others,
“MIOpen: An Open Source Library For Deep Learning Primitives,” arXiv
preprint arXiv:1910.00078, 2019.

[97] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire, J. Kress,
H. Schroots, K.-L. Ma, H. Childs, and others, “Vtk-m: Accelerating the
visualization toolkit for massively threaded architectures,” IEEE computer
graphics and applications, vol. 36, no. 3, pp. 48–58, 2016, publisher: IEEE.

[98] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and
C. Harrison, “The alpine in situ infrastructure: Ascending from the ashes of
strawman,” in Proceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization, 2017, pp. 42–46.

[99] V. Clement, S. Ferrachat, O. Fuhrer, X. Lapillonne, C. E. Osuna, R. Pincus,
J. Rood, and W. Sawyer, “The CLAW DSL: Abstractions for performance
portable weather and climate models,” in Proceedings of the Platform for
Advanced Scientific Computing Conference, 2018, pp. 1–10.

[100] CLAW Project Online Repository. ETH CLAW Project. [Online]. Available:
https://claw-project.github.io/

[101] NVIDIA. Nvcc cuda compiler online reference. [Online]. Available:
https://developer.nvidia.com/cuda-llvm-compiler

[102] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” International Symposium on Code Generation
and Optimization, 2004. CGO 2004., 2004, pages: 75–86 Publisher: IEEE.

[103] PGI OpenCL Press Release. The Portland Group. [Online]. Available:
https://www.khronos.org/news/permalink/pgi-opencl-compiler-for-arm

[104] PGI Compiler Web Reference. The Portland Group. [Online]. Available:
https://www.pgroup.com/index.htm

[105] Nvidia Math Libraries. NVIDIA. [Online]. Available:
https://developer.nvidia.com/hpc-sdk

[106] AMD ROCm AOCC Compiler. AMD. [Online]. Available:
https://developer.amd.com/amd-aocc

223

https://github.com/ROCmSoftwarePlatform/MIOpen
https://claw-project.github.io/
https://developer.nvidia.com/cuda-llvm-compiler
https://www.khronos.org/news/permalink/pgi-opencl-compiler-for-arm
https://www.pgroup.com/index.htm
https://developer.nvidia.com/hpc-sdk
https://developer.amd.com/amd-aocc

[107] C. J. Newburn, S. Dmitriev, R. Narayanaswamy, J. Wiegert, R. Murty,
F. Chinchilla, R. Deodhar, and R. McGuire, “Offload compiler runtime for
the Intel® Xeon Phi coprocessor,” in 2013 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum. IEEE,
2013, pp. 1213–1225.

[108] Intel FPGA SDK for OpenCL. Intel. [Online]. Available:
https://www.intel.com/content/www/us/en/software/programmable/
sdk-for-opencl/overview.html

[109] C. Lattner, “LLVM and Clang: Next generation compiler technology,” in The
BSD conference, vol. 5, 2008.

[110] LLVM Compiler Framework Online Portal. LLVM Project. [Online]. Available:
https://llvm.org/

[111] Clang Compiler Framework Online Portal. LLVM Project. [Online]. Available:
https://clang.llvm.org/

[112] J. E. Denny, S. Lee, and J. S. Vetter, “Clacc: Translating OpenACC to
OpenMP in Clang,” in 2018 IEEE/ACM 5th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC). IEEE, 2018, pp. 18–29.

[113] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: A Compiler
Infrastructure for the End of Moore’s Law,” arXiv:2002.11054 [cs], Feb.
2020. [Online]. Available: http://arxiv.org/abs/2002.11054

[114] Multi-Level IR Compiler Framework Online Portal. LLVM Project. [Online].
Available: https://mlir.llvm.org/

[115] Tensorflow MLIR Project Page. Tensorflow. [Online]. Available:
https://www.tensorflow.org/mlir

[116] Flang Compiler Online Repository. LLVM Project. [Online]. Available:
https://github.com/flang-compiler

[117] GCC Compiler. GNU Project. [Online]. Available: https://gcc.gnu.org/

[118] GNU OpenACC Status Wiki. GNU Project. [Online]. Available:
https://gcc.gnu.org/wiki/OpenACC

[119] GNU OpenMP Status Wiki. GNU Project. [Online]. Available:
https://gcc.gnu.org/wiki/openmp

[120] D. Quinlan, “ROSE: Compiler support for object-oriented frameworks,”
Parallel Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000, publisher:
World Scientific.

224

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://llvm.org/
https://clang.llvm.org/
http://arxiv.org/abs/2002.11054
https://mlir.llvm.org/
https://www.tensorflow.org/mlir
https://github.com/flang-compiler
https://gcc.gnu.org/
https://gcc.gnu.org/wiki/OpenACC
https://gcc.gnu.org/wiki/openmp

[121] Rose Compiler Online Repository. Lawrence Livermore National Laboratory.
[Online]. Available: https://github.com/rose-compiler/rose

[122] C. Liao, Y. Yan, B. R. De Supinski, D. J. Quinlan, and B. Chapman, “Early
experiences with the OpenMP accelerator model,” International Workshop
on OpenMP, 2013, pages: 84–98 Publisher: Springer.

[123] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng, “OpenUH: An
optimizing, portable OpenMP compiler,” Concurrency and Computation:
Practice and Experience, vol. 19, no. 18, pp. 2317–2332, 2007, publisher:
Wiley Online Library.

[124] OpenUH Compiler Online Repository. HPCTools at UH. [Online]. Available:
https://github.com/uhhpctools/openuh

[125] Open64 Compiler Online Repository. Open64. [Online]. Available:
https://github.com/open64-compiler/open64

[126] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka, “Design of OpenMP compiler
for an SMP cluster,” in Proc. of the 1st European Workshop on OpenMP,
1999, pp. 32–39.

[127] Omni Compiler Online Portal. Omni Compiler. [Online]. Available:
https://omni-compiler.org/

[128] A. Tabuchi, M. Nakao, and M. Sato, “A source-to-source OpenACC compiler
for CUDA,” in European Conference on Parallel Processing. Springer, 2013,
pp. 178–187.

[129] M. Nakao, H. Murai, T. Shimosaka, A. Tabuchi, T. Hanawa, Y. Kodama,
T. Boku, and M. Sato, “XcalableACC: Extension of XcalableMP PGAS
language using OpenACC for accelerator clusters,” in 2014 First Workshop
on Accelerator Programming using Directives. IEEE, 2014, pp. 27–36.

[130] T. Boku, T. Hanawa, H. Murai, M. Nakao, Y. Miki, H. Amano, and
M. Umemura, “GPU-accelerated language and communication support by
FPGA,” in Advanced Software Technologies for Post-Peta Scale Computing.
Springer, 2019, pp. 301–317.

[131] Y. Watanabe, J. Lee, K. Sano, T. Boku, and M. Sato, “Design and Preliminary
Evaluation of OpenACC Compiler for FPGA with OpenCL and Stream
Processing DSL,” in Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region Workshops, 2020, pp. 10–16.

225

https://github.com/rose-compiler/rose
https://github.com/uhhpctools/openuh
https://github.com/open64-compiler/open64
https://omni-compiler.org/

[132] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, “Self-adaptive OmpSs
tasks in heterogeneous environments,” in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. IEEE, 2013, pp.
138–149.

[133] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical task-based
programming with StarSs,” The International Journal of High Performance
Computing Applications, vol. 23, no. 3, pp. 284–299, 2009, publisher: SAGE
Publications Sage UK: London, England.

[134] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia,
E. Ayguade, and J. Labarta, “Productive cluster programming with OmpSs,”
in European Conference on Parallel Processing. Springer, 2011, pp. 555–566.

[135] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade, and
J. Labarta, “Productive programming of GPU clusters with OmpSs,” in 2012
IEEE 26th International Parallel and Distributed Processing Symposium.
IEEE, 2012, pp. 557–568.

[136] V. K. Elangovan, R. M. Badia, and E. A. Parra, “OmpSs-OpenCL
programming model for heterogeneous systems,” in International Workshop
on Languages and Compilers for Parallel Computing. Springer, 2012, pp.
96–111.

[137] M. Perelló Bacardit, “Porting Rodinia Applications to OmpSs@ FPGA,” B.S.
thesis, Universitat Politècnica de Catalunya, 2019.

[138] J. Bosch, A. Filgueras, M. Vidal, D. Jimenez-Gonzalez, C. Alvarez, and
X. Martorell, “Exploiting parallelism on GPUs and FPGAs with OmpSs,” in
Proceedings of ANDARE - the 1st Workshop on AutotuniNg and aDaptivity
AppRoaches for Energy efficient HPC Systems, 2017, pp. 1–5.

[139] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-González,
C. Álvarez, X. Martorell, E. Ayguadé, and J. Labarta, “Application
acceleration on fpgas with ompss@ fpga,” in 2018 International Conference
on Field-Programmable Technology (FPT). IEEE, 2018, pp. 70–77.

[140] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP programming and
tuning for GPUs,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, 2010, pp. 1–11.

[141] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Cetus: A
Source-to-Source Compiler Infrastructure for Multicores,” IEEE Computer,
vol. 42, no. 12, pp. 36–42, 2009, publisher: IEEE. [Online]. Available: http:
//www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf

226

http://www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf
http://www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf

[142] S. Lee, J. S. Meredith, and J. S. Vetter, “Compass: A framework for automated
performance modeling and prediction,” in Proceedings of the 29th ACM on
International Conference on Supercomputing, 2015, pp. 405–414.

[143] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language for
performance modeling,” in SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 2012, pp. 1–11.

[144] S. Lee, J. Kim, and J. S. Vetter, “OpenACC to FPGA: A Framework for
Directive-based High-Performance Reconfigurable Computing,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS), May
2016.

[145] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve, and
S. Adve, “Hpvm: Heterogeneous parallel virtual machine,” in Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2018, pp. 68–80.

[146] HPVM Online Portal. Heterogeneous Parallel Virtual Machine. [Online].
Available: https://publish.illinois.edu/hpvm-project/

[147] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-h. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Computing,”
in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2009.

[148] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu, and others,
“Spec accel: A standard application suite for measuring hardware accelerator
performance,” in International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems.
Springer, 2014, pp. 46–67.

[149] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing
(SHOC) benchmark suite,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units. ACM, 2010,
pp. 63–74.

[150] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” Center for Reliable and
High-Performance Computing, vol. 127, 2012.

227

https://publish.illinois.edu/hpvm-project/

[151] W. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13 dwarfs: a
work in progress,” in Proceedings of the 3rd acm/spec international
conference on performance engineering, 2012, pp. 291–294.

[152] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and others, “The
landscape of parallel computing research: A view from berkeley,” 2006,
publisher: eScholarship, University of California.

[153] EPCC OpenACC Benchmarks. EPCC. [Online]. Available:
https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/
epcc-openacc-benchmark-suite

[154] EPCC Online Repository. EPCC. [Online]. Available:
https://github.com/EPCCed/epcc-openacc-benchmarks

[155] Q. Tang, L. Jiang, M. Su, and Q. Dai, “A pipelined market data processing
architecture to overcome financial data dependency,” in 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC), Dec. 2016, pp. 1–8.

[156] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database Analytics Acceleration Using
FPGAs,” in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12. New York, NY,
USA: ACM, 2012, pp. 411–420. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370874

[157] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang, “FPGA-Accelerated
Dense Linear Machine Learning: A Precision-Convergence Trade-Off,” in
2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Apr. 2017, pp. 160–167.

[158] Y. Kim, S. Jadhav, and C. S. Gloster, “Dataflow to Hardware Synthesis
Framework on FPGAs,” in 2016 International Symposium on Computer
Architecture and High Performance Computing Workshops (SBAC-PADW),
Oct. 2016, pp. 91–96.

[159] B. Betkaoui, D. B. Thomas, W. Luk, and N. Przulj, “A framework for FPGA
acceleration of large graph problems: Graphlet counting case study,” in 2011
International Conference on Field-Programmable Technology, Dec. 2011, pp.
1–8.

228

https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://github.com/EPCCed/epcc-openacc-benchmarks
http://doi.acm.org/10.1145/2370816.2370874

[160] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka,
“Evaluating and Optimizing OpenCL Kernels for High Performance
Computing with FPGAs,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser. SC
’16, 2016, pp. 35:1–35:12.

[161] Mentor SDK Design Suite. Handle-C. [Online]. Available:
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/

[162] The Vitis software development platform. Xilinx. [Online]. Available:
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

[163] M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts, Handel-C language
reference guide, 1996.

[164] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level Synthesis for FPGA-based
Processor/Accelerator Systems,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser. FPGA
’11, 2011, pp. 33–36.

[165] P. R. Panda, “SystemC: A Modeling Platform Supporting Multiple Design
Abstractions,” in Proceedings of the 14th International Symposium on
Systems Synthesis, ser. ISSS ’01, 2001, pp. 75–80.

[166] M. C. Smith, J. S. Vetter, and X. Liang, “Accelerating Scientific Applications
with the SRC-6 Reconfigurable Computer: Methodologies and Analysis,” in
19th IEEE International Parallel and Distributed Processing Symposium, ser.
IPDPS ’05, 2005.

[167] The SDAccel software development platform. Xilinx. [Online]. Available:
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[168] OpenACC, “OpenACC: Directives for Accelerators,” 2011, published: [Online].
Available: http://www.openacc.org.

[169] OpenACC Online Portal. OpenACC. [Online]. Available:
https://www.openacc.org/

[170] “OpenMP Reference,” 1999, OpenMP Standards Organization.

[171] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and Changes,”
Livermore, CA, Tech. Rep. LLNL-TR-641973, Aug. 2013.

[172] B. Veenboer and J. W. Romein, “Radio-Astronomical Imaging: FPGAs vs
GPUs,” in European Conference on Parallel Processing. Springer, 2019, pp.
509–521.

229

https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.openacc.org/

[173] Z. Jin and H. Finkel, “Evaluating LULESH kernels on opencl FPGA,” in
International Symposium on Applied Reconfigurable Computing. Springer,
2019, pp. 199–213.

[174] The OmpSs Programming Model. [Online]. Available: https://pm.bsc.es/ompss

[175] L. Sommer, J. Korinth, and A. Koch, “OpenMP device offloading to FPGA
accelerators,” in 2017 IEEE 28th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), Jul.
2017, pp. 201–205.

[176] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for hardware
design,” arXiv preprint arXiv:1910.04436, 2019.

[177] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful Dataflow Multigraphs: A data-centric model for performance
portability on heterogeneous architectures,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–14.

[178] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley,
S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and G. Rodgers,
“Achieving exascale capabilities through heterogeneous computing,” Micro,
IEEE, vol. 35, no. 4, pp. 26–36, 2015.

[179] Y. LeCun, “Deep learning hardware: Past, present, and future,” in 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), 2019, pp. 12–19.

[180] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “Implications of a metric for
performance portability,” Future Generation Computer Systems, vol. 92, pp.
947–958, 2019.

[181] A. Sabne, P. Sakdhnagool, S. Lee, and J. S. Vetter, “Evaluating Performance
Portability of OpenACC,” in Languages and Compilers for Parallel
Computing, 2015, pp. 51–66.

[182] L. Cai, Y. Wang, W. Tang, B. Wang, S. Ethier, Z. Liu, and J. Lin, “OpenACC
vs the Native Programming on Sunway TaihuLight: A Case Study with
GTC-P,” in 2018 IEEE International Conference on Cluster Computing
(CLUSTER), 2018, pp. 88–97.

[183] J. Lin, Z. Xu, L. Cai, A. Nukada, and S. Matsuoka, “Evaluating the SW26010
Many-core Processor with a Micro-benchmark Suite for Performance
Optimizations,” Parallel Computing, vol. 77, pp. 128 – 143, 2018. [Online].
Available:
http://www.sciencedirect.com/science/article/pii/S0167819118301820

230

https://pm.bsc.es/ompss
http://www.sciencedirect.com/science/article/pii/S0167819118301820

[184] B. R. d. Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M. Bellido,
S. L. Olivier, C. Terboven, and T. G. Mattson, “The Ongoing Evolution of
OpenMP,” Proceedings of the IEEE, vol. 106, no. 11, pp. 2004–2019, 2018.

[185] V. V. Larrea, W. Joubert, M. G. Lopez, and O. Hernandez, “Early Experiences
Writing Performance Portable OpenMP 4 Codes,” in Proc. Cray User Group
Meeting, London, England, 2016.

[186] M. G. Lopez, V. V. Larrea, W. Joubert, O. Hernandez, A. Haidar, S. Tomov,
and J. Dongarra, “Towards Achieving Performance Portability Using
Directives for Accelerators,” in 2016 Third Workshop on Accelerator
Programming Using Directives (WACCPD). IEEE, 2016, pp. 13–24.

[187] R. Gayatri, C. Yang, T. Kurth, and J. Deslippe, “A Case Study for
Performance Portability Using OpenMP 4.5,” in International Workshop on
Accelerator Programming Using Directives. Springer, 2018, pp. 75–95.

[188] M. Wolfe, Compilers and More: OpenACC to OpenMP (and Back Again),
hpcwire.com, Ed., Jun. 2016.

[189] G. Arnold, A. Calvert, J. Overbey, and N. Sultana, “From OpenACC to
OpenMP 4: Toward Automatic Translation,” XCEDE16, Miami, FL, 2016.

[190] S. Pino, L. Pollock, and S. Chandrasekaran, “Exploring Translation of
OpenMP to OpenACC 2.5: Lessons Learned,” in 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2017, pp. 673–682.

[191] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The Spack Package Manager: Bringing Order to
HPC Software Chaos,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser. SC
’15. New York, NY, USA: Association for Computing Machinery, 2015,
event-place: Austin, Texas. [Online]. Available:
https://doi.org/10.1145/2807591.2807623

[192] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig et al., “The
international exascale software project roadmap,” The international journal
of high performance computing applications, vol. 25, no. 1, pp. 3–60, 2011.

[193] S. Lee and J. S. Vetter, “Early evaluation of directive-based GPU programming
models for productive exascale computing,” in SC’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 2012, pp. 1–11.

231

https://doi.org/10.1145/2807591.2807623

[194] J. H. Davis, C. Daley, S. Pophale, T. Huber, S. Chandrasekaran, and N. J.
Wright, “Performance Assessment of OpenMP Compilers Targeting NVIDIA
V100 GPUs,” arXiv preprint arXiv:2010.09454, 2020.

[195] R. Usha, P. Pandey, and N. Mangala, “A Comprehensive Comparison and
Analysis of OpenACC and OpenMP 4.5 for NVIDIA GPUs,” in 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 2020,
pp. 1–6.

[196] C. Bertoni, J. Kwack, T. Applencourt, Y. Ghadar, B. Homerding, C. Knight,
B. Videau, H. Zheng, V. Morozov, and S. Parker, “Performance Portability
Evaluation of OpenCL Benchmarks across Intel and NVIDIA Platforms,” in
2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2020, pp. 330–339.

232

	 Introduction, Background, and Motivation
	History of Heterogeneous Computing
	Distributed Heterogeneous Systems
	Multicore, Manycore, and Accelerator-based Heterogeneous Systems

	Heterogeneous Programming Models
	CUDA
	OpenCL
	HIP
	OpenACC
	OpenMP
	Other Modern Programming Models
	Kokkos
	Raja
	SYCL, DPC++, and OneAPI
	Legion
	HPX
	C++
	Domain Specific Languages

	Heterogeneous Compiler Frameworks
	Vendor-supported Compilers
	NVCC
	PGI
	AMD
	Intel

	Open-source Compilers
	LLVM, Clang, and MLIR
	GNU C/C++

	Academic, Research, and Custom Compilers
	ROSE
	OpenUH
	Omni
	OmpSs
	OpenARC
	HPVM

	Heterogeneous Benchmark Suites
	Rodinia
	SPEC Accel
	Other Heterogeneous Benchmark Suites

	 Directive-Based Programming and Optimizations for High-Performance Computing with FPGAs
	Background on FPGAs as Heterogeneous Accelerators
	FPGA Hardware
	Traditional FPGA Programming Approaches
	Contemporary FPGA Programming Models
	OpenCL
	OpenACC

	The OpenACC-to-FPGA Framework
	Implementation in OpenARC
	Automatic Optimizations
	Dynamic Memory Transfer Alignment
	Boundary Check Elimination
	Branch-Variant Code Motion Optimization

	Re-purposed Directives
	Single Work-Item Optimization
	Collapse Optimization
	Reduction Optimization

	Directive Extensions
	Kernel Vectorization Directive
	Compute Unit Replication Directive
	Channels Directive
	Sliding Window Directive

	Experimental Setup for FPGA Platforms
	Benchmarks
	Sobel
	FD3D
	HotSpot
	SRAD
	NW
	Pathfinder
	CFD
	Jacobi
	Matmul
	LULESH

	FPGA Hardware Platforms
	FPGA Software Platforms
	GPU and CPU Comparison Platforms

	Intel Stratix V Evaluations
	Single Work-Item Evaluation
	Collapse Evaluation
	Reduction Evaluation
	Sliding Window Evaluation
	Basic Sliding Window
	Sliding Window with Loop Unrolling

	Branch-Variant Code Motion Evaluation
	OpenACC and OpenCL Performance Comparison
	Performance and Power Comparisons of FPGAs, GPUs, and CPUs

	Intel Arria 10 and Stratix 10 Evaluations
	Sobel Holistic Evaluation
	HotSpot

	SRAD Holistic Evaluation
	MatMul Holistic Evaluation
	Jacobi Holistic Evaluation
	Resource Usage Evaluation
	SRAD Resource Evaluation
	Jacobi Resource Evaluation

	Compilation Times
	Performance Portability
	LULESH Initial Evaluation

	Intel and Xilinx OpenCL Portability Study
	Porting Intel Applications to Xilinx Hardware
	Loop Unrolling
	Shift Registers

	Minimum Modification Porting Evaluation
	Pathfinder Porting and Evaluation
	CFD Porting and Evaluation
	SRAD Porting and Evaluation
	HotSpot Porting and Evaluation

	Directive-based FPGA Programming: Related Works
	Directive-based FPGA Programming: Conclusions

	 An Integrated Translation and Optimization Framework for OpenMP and OpenACC
	OpenMP and OpenACC Interoperable Framework: Introduction
	CCAMP: Background
	OpenACC and OpenMP
	OpenARC

	CCAMP: Automated Translation between OpenMP and OpenACC
	OpenMP 4+ to OpenACC
	OpenACC to OpenMP 4+

	CCAMP: Automated Optimization of OpenMP and OpenACC
	Extracting Parallelism
	OpenMP Mapping on CPUs
	OpenMP Mapping on GPUs
	OpenACC Mapping
	Optimization Code Examples

	Evaluation of CCAMP Framework
	Experimental Setup of Intel, IBM, and Nvidia Platforms
	Devices
	Compilers
	Benchmarks

	Evaluation of CCAMP Translation
	Evaluation of CCAMP Optimization
	OpenMP 4+ Optimization with Clang
	OpenMP 4+ Optimization with PGI
	OpenMP 4+ Optimization with XLC
	OpenACC Optimization with PGI
	Putting it Together: CCAMP Translation and Optimization

	Additional CCAMP Evaluations
	GCC: Initial Evaluation
	LULESH 2.0
	Performance Variability

	OpenMP and OpenACC Interoperable Framework: Related Work
	OpenMP and OpenACC Interoperable Framework: Conclusions

	 Exploring Heterogeneous Programming for Future Diverse Exascale Platforms
	Exploration of Exascale Platforms: Introduction
	Exascale Platforms and Programming Models
	Exascale Programming Models
	OpenMP
	OpenACC
	CUDA
	OpenCL
	HIP/ROCm
	Other Notable Models

	Exploration of Exascale Platforms: Experimental Setup
	AMD Platform
	Nvidia Platform
	Intel Platform
	Benchmarks

	Evaluation of Heterogeneous Platforms with OpenACC, OpenARC, and CCAMP
	Relative Performance of Each Programming Model Across Devices
	Absolute Performance of Programming Models on Each Device
	OpenMP Mappings
	Intel icpx and Intermediate Representations for OpenMP
	LLVM and Nvidia Implementation Comparison for OpenCL and OpenMP

	Exploration of Exascale Platforms: Related Work
	Exploration of Exascale Platforms: Conclusions

	 Conclusion
	REFERENCES CITED

