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THESIS ABSTRACT

Mona Jabbari

Doctor of Philosophy

Department of Operations and Business Analytics

September 2021

Title: Patient-Centric Innovation in Service Modalities for End-Stage Renal Disease

The purpose of this study is to examine the feasibility of introducing innovative dialysis

delivery methods. In the first essay, advised by Prof. Nagesh Murthy and Dr. Eren Çil, we

study a new and non-traditional dialysis service modality, called a mobile dialysis clinic, that

can reduce the travel burden for ESRD patients, resulting in a reduction in hospitalization costs

undertaken by Medicare. To this end, we develop a framework to consider the strategic interaction

between Medicare and a dialysis service provider and examine the potential benefit to Medicare

for considering a “shared-savings payment policy.” Specifically, our proposed incentive payment

structure features “reward rate” as the percentage of hospitalization cost savings that the provider

receives as a bonus payment for o↵ering coverage using a mobile dialysis clinic. We first establish

that the provider undertakes the additional costs of a new modality only when the reward rate

o↵ered by Medicare exceeds a critical level. We, then, show that once o↵ering the new modality

becomes viable, the provider serves more patients with the new modality and consequently

decreases the hospitalization costs for Medicare as the reward rate increases. Despite the favorable

e↵ects of the new modality on the total hospitalization costs, Medicare faces a trade-o↵ between

lowering the hospitalization cost and the sharing cost savings with the provider. Hence, we find

that Medicare does not always optimally o↵er enough compensation to the provider to justify

o↵ering the new service modality. However, we also identify certain conditions under which

Medicare, interestingly, finds it optimal to increase the reward rate to incentivize the provider

to o↵er a mobile clinic even when this increased reward rate results in a drastic improvement in

provider’s profit with only a marginal reduction in Medicare’s cost.

We discuss the prospect of o↵ering assisted home dialysis in the second essay to overcome

the barriers to home dialysis. The second essay is advised by Prof. Nagesh Murthy and Dr.

Eren Çil. Assisted home dialysis can be provided in-home or via telemedicine by a nurse. We
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develop a mathematical model to examine the implications of an optimal integration of new

modalities, i.e., satellite clinics and nurse assisted home-dialysis into the existing dialysis network

on the provider’s profit and Medicare’s costs. We analyze these implications under a variety of

scenarios that reflect geographic dispersion of patients from the existing main clinic, patient

preferences, and hospitalization cost attributed to recurring distance traveled. Our findings can

help policymakers for Medicare design new policies that motivate providers to introduce new and

innovative ways of o↵ering dialysis to patients.
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CHAPTER I

INTRODUCTION

Every 30 minutes, the kidneys filter all blood and eliminate chemicals, waste, and excess

fluid. Kidneys help the body to maintain its good health by stimulating the production of red

blood cells and regulating blood chemicals. Chronic kidney disease (CKD) is a gradual loss of

kidney function. Based on the kidneys’ damage and their capability in filtering blood, CKD has

five di↵erent levels. More than 15% of adults are estimated to have CKD in the U.S. [1]. CKD has

no symptoms at early stages and should be diagnosed by blood test. 90% of patients with CKD

are not aware of their disease until it reaches a critical level. CKD usually worsens over time.

However, treatment can delay its progression. The last stage of CKD is called End-stage renal

disease (ESRD). In the last stage, kidneys lose their entire function of removing waste products

from the blood. Every day, more than 340 patients begin treatment for kidney failure [2]. The

world’s population ageing, extended life expectancy and the global diabetes mellitus epidemic are

causing a dramatic increase in the number of ESRD patients [3]. While no solid statistics exist, it

is estimated that 5.3 million of the global population had kidney failure in 2017 [4].

If ESRD is not treated, patients can survive a few weeks. Dialysis and kidney transplant

are the two treatment options for kidney failure. Since the organ donation is limited, most

patients rely on dialysis as the main treatment for ESRD.

Two principal types of dialysis are peritoneal dialysis (PD) and hemodialysis (HD). In

peritoneal dialysis, a cleaning fluid is injected into a part of the patients’ abdomen through a tube

(catheter). The peritoneum (abdominal lining) acts as a filter, eliminating waste materials from

the blood. After a certain amount of time, the fluid flows from the belly and is discarded with the

filtered waste materials. In 2018, about 7.5%of ESRD patients were on peritoneal dialysis [5].

In hemodialysis, the patient’s blood is pumped through the dialysis machine and special

filters clean it before being pumped back into the body. Hemodialysis can be performed at a clinic

or home. Most patients receive dialysis treatment at clinics that are managed by dialysis service

providers. A typical dialysis schedule for a patient is comprised of three sessions per week at a

clinic, on alternative days, with each session lasting for 3-5 hours. In contrast, home hemodialysis

(home HD) can o↵er ESRD patients the benefits of convenience, flexibility, and the associated

improved quality of life. Despite these advantages, many systematic barriers exist that impede
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the successful and e↵ective delivery of home HD in the U.S. [6]. In 2017, only 2% of hemodialysis

patients in the U.S. were treated by home hemodialysis.

Despite the fact that dialysis avoids death from kidney failure, life expectancy is often

short, hospitalizations are common, treatment burden is high, and health-related quality of

life is poor [5]. Recently, there has been another surge in the number of patients who need

dialysis due to COVID-19. Although the exact impact of COVID-19 on kidneys is not fully clear,

five studies performed in the United States show 19%-43% of hospitalized COVID-19 patients

developed Acute Kidney Injury (AKI). More than 50% of AKI patients required dialysis [7]. This

growing number of patients would inevitably contribute to a rise in dialysis, which presents major

economic problems for global healthcare systems. Statistics show that kidney disease is the ninth

leading cause of death in the United States [2]. Furthermore, dialysis is an expensive treatment,

with the cost of care rising rapidly. Each patient’s hemodialysis treatment costs approximately

$93,000 per year [8]. The Centers for Medicare & Medicaid Services (CMS) have suggested

adjustments to the Medicare End-Stage Renal Disease Prospective Payment System in order to

mitigate the cost increase [9].

The new framework would encourage nephrology teams to reduce costs and enhance

dialysis results by providing new treatment options for patients with renal disease. The agenda of

this new policy is currently being developed by federal government o�cials, with feedback from

specialists, but this plan o↵ers a platform and resources for breakthrough innovation in dialysis

treatment. The ESRD Treatment Options (ETC) payment model is another recent dialysis

payment reform introduced by Medicare. The ETC model, recognizing the underutilization of

home dialysis in the U.S., adapts payments to stimulate home dialysis [10].

The fundamental objective of this dissertation is to evaluate how Medicare’s incentive

strategies might be used to improve the dialysis network design through the introduction of

innovative modalities. To address this challenge, two models are developed and analyzed in order

to make recommendations to Medicare regarding potential approaches for strategic incentive

designs for dialysis providers. The dissertation is separated into two articles, each of which

examines a variety of critical questions that, when considered collectively, contribute to addressing

the dissertation’s overall question.
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In the first essay of this dissertation, we explore the possibility of introduction of a new

and non-traditional service modality that can reduce or eliminate the travel burden for ESRD

patients while resulting in a reduction in hospitalization costs that can more than o↵set the added

burden of supporting the operation of the infrastructure for the new dialysis modality.

This essay examines the economics and viability of introducing mobile clinics as a new

mode of dialysis service delivery. We explore specifically the e↵ect of Medicare’s payment policy

on the provider’s decision to introduce this new modality.

Our study demonstrates that there is a reimbursement system under which a provider

delivers a new modality that results in a net savings in overall hospitalization costs for Medicare,

even after the provider receives a portion of the savings. It is possible to use equilibrium analysis

to not only identify conditions under which a new modality is introduced, but also to determine

the range of distances from the main clinic over which the new modality is introduced.

We have concentrated on the potential barriers in US for home HD in the second article,

and to eliminate them, we propose that a professional caregiver (nurse) be present during the

home HD session to perform or assist patients with dialysis. The nurse’s engagement and support

during dialysis reduces dialysis problems and increases patients’ confidence in performing HD

at home, as medical assistance is accessible if necessary. The purpose of the second essay is to

determine the cost-e↵ectiveness and feasibility of giving home dialysis assistance to patients

who are currently undergoing dialysis. Nurses can assist patients in person or via telemedicine.

Along with the option of in-home treatment, we consider the availability of satellite clinics.

To investigate the cost-e↵ectiveness, we developed a mathematical model for this problem

and compared and evaluated the e↵ectiveness of Medicare’s incentive policy under a variety of

operating factors, using various criteria and performance metrics.

The remainder of this dissertation is organized as follows. In chapter two, we review

the existing literature related to dialysis delivery network and payment policies in healthcare

operations. In chapter three, we present the analytical model and results of essay one. In chapter

four, we present the mathematical model of essay two that is used to analyze the impact of home

assistance and satellite clinics on the dialysis delivery network. Finally, we provide the concluding

remarks in chapter five.
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CHAPTER II

LITERATURE REVIEW

In this section, we review research in four main streams of literature that are related to

this study. These streams are comprised of (1) studies at the interface of operation management

and health economics that focus on the design of Medicare’s reimbursement policies to elicit

e↵ective and e�cient performance outcomes from health services providers; (2) studies directly

focused on improving healthcare outcomes for ESRD patients; (3) research in ESRD care

literature that examines the adverse e↵ects of patients’ residences being distant from the health

service facilities; (4) OR/MS studies that focus on home healthcare delivery to patients. We

provide a brief review of these four categories and discuss the contribution of our research vis-

a-vis the literature.

The first stream of research is focused on the development of Medicare’s reimbursement

policies to incentivize health care service providers. Fuloria and Zenios [11] is one of the early

papers to study a reimbursement strategy in a healthcare delivery system termed as outcome-

adjusted payment (OAP) system. The authors employ a dynamic principal-agent model to

determine how the OAP system motivates treatment choices that maximize total social welfare.

The outcome-adjusted payment for a health provider consists of two parts: (1) a prospective

payment per patient at the beginning of each period; and (2) an adjustment to the payment at

the end of each period, according to the number of adverse events (e.g., hospitalizations, and

deaths) observed during that period. Patients’ health status evolves dynamically over time and

can be influenced but not entirely determined by the provider’s costly intervention e↵orts. Fuloria

and Zenios present a numerical application of their model using Medicare’s end-stage renal disease

(ESRD) program and show that their proposed scheme leads to significant improvement in patient

life expectancy. However, the implementation of the OAP system needs accurate information

about patient characteristics and treatment technology that may not be readily available.

Thus, they conclude that the implementation of a capitation system is more advisable than the

OAP system. Capitation is a robust solution that achieves the majority of the e�ciency gains

associated with OAP.

In recent years, several researchers have focused on issues related to incentives in

healthcare operations. Adiada et al. [12] analyze two main Medicare reimbursement strategies,
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namely, bundle payment (BP) and fee for services (FFS). They examine various reimbursement

models to determine whether providers have an incentive to reject patients based on the

anticipated cost of complications. The authors show that bundle payment strategy leads to

sub-optimal results with a high risk for the providers and suggest strategies to improve this

reimbursement scheme.

Andritsos and Tang [13] examine the e↵ect of three di↵erent reimbursement schemes on

readmission-reduction. They evaluate and compare fee for services (FFS), pay for performance

(P4P), and bundle payment (BP) schemes from the perspective of health funder to determine

the dominant scheme that can transfer the financial risk associated with re-hospitalization to the

healthcare provider, while explicitly accounting for the e↵ect of patient behavior. They develop

a novel model of patient readmission considering the fact that patient care is jointly produced

by the hospital and the patient’s e↵orts. Their analysis shows that transforming some of the

financial risks of readmission to the provider is more e↵ective in inducing readmission reduction

e↵orts. Based on their analysis, the FFS model is not an appropriate reimbursement mechanism

in readmission-reduction programs. However, BP and P4P induce readmission reduction e↵orts.

They show that when co-productive relation between provider and patient is weak, P4P tends to

induce considerably more e↵ort for readmission reduction than BP. However, BP is more e↵ective

once the strength of co-productive relation is above a threshold.

Guo et al.[14] characterize the e↵ect of bundle payment (BP) and fee for services (FFS)

schemes on performance measures, including revisit rate and waiting time for elective care services

in a public health system. They model the interaction of patients, a healthcare provider, and a

single funder in a three-stage Stackelberg game framework. The funder cares about the welfare

of patients as well as the burden on external systems caused by the overflow of patients. At the

same time, the healthcare provider maximizes her profit by choosing the service rate. Patients’

decision to join the elective care system is embedded in the game with a queuing model. They

consider two scenarios wherein patients are partially covered or fully covered. Their analysis shows

the condition under which BP scheme dominates FFS scheme in terms of social welfare and revisit

rate. Their results indicate that when the patient pool size is large, the bundled payment scheme

dominates the fee-for-service scheme in terms of higher social welfare and a lower revisit rate. In

contrast, the fee-for-service scheme prevails in terms of shorter waiting times. When the patient

5



pool is small, the bundle payment scheme dominates the fee-for-service scheme in all performance

measures.

The second stream of related literature is directly focused on improving healthcare

outcomes for ESRD patients. Lee and Zenios [15] study Medicare’s Quality Incentive Program

(QIP 2010) for dialysis patients. The proposed payment strategy adds intermediate outcomes

measurements to payment systems. They develop an evidence-based principal-agent framework

to model the interaction of Medicare and a single provider to compare the QIP payment strategy

with a new proposed payment strategy. They notice that the intermediate measures (dialysis

dosage adequacy and anemia control) identified by Medicare as the main criteria for QIP 2010 are

not comprehensive enough. Their proposed payment strategy, which is based on risk-adjusted

downstream outcomes, is more e↵ective and can increase patients’ life expectancy without

increasing Medicare’s expenditure.

Skandari et al. [16] develop a dynamic model to find the optimal type of vascular access

for dialysis patients that maximizes patients’ probability of survival and adjusted quality of life.

They study two types of vascular access, i.e., arteriovenous fistula (AVF) and central venous

catheter (CVC) and show that delaying AVF surgery decreases a patient’s life expectancy and

quality of life. However, there is a threshold depending on the number of past AVF failures after

which central venous catheter (CVC) is optimal.

Klein et al. [17] develop a model for network design of dialysis facilities to minimize

the travel distance for the patients in the presence of budget and capacity constraints. They

administer a patient preference survey to understand whether patient’s preference for dialysis

service at main or satellite clinics vis-a-vis at home is based on travel times, or is regardless of

travel times. They subsequently incorporate the results of the survey as parameters into their

mathematical model and show that with a given budget, it is possible to reduce the maximum and

mean of patients’ travel times.

Research in the third stream of related literature examines the adverse e↵ects of ESRD

patients’ residences being distant from the health service facilities. Studies in the United States

and other countries have found that longer driving times to dialysis clinics are associated with

decreased quality of life, lower treatment attendance, and higher mortality rate for patients.

Tonelli et al. [18] study a sample of 18,722 patients and find that the mortality associated
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with infectious causes is higher for hemodialysis patients who live farther from their attending

nephrologist, when compared with those who live closer.

Rocco et al. [19] study the reasons for patients’ absences from hemodialysis sessions and

find that transportation di�culties are one of the most important reasons for missed treatments.

Missed dialysis treatments are associated with increased risk for hospitalization that eventually

contributes to rising healthcare costs [20]. Maripuri et al. [21] examine the relationship between

distance from the dialysis unit and long-term mortality risk and observe increasing mortality

risk for patients that live farther from their dialysis unit. Thompson et al. [22] show that remote

residence is associated with increased mortality among patients initiating chronic hemodialysis

treatment in the United States. Chao et al. [23] focus their study on the impact of travel

distances to dialysis clinic and the development of health complications. They find that the risk

of anemia increases with every 1 km increase in travel distance. Moreover, some studies find

that shorter travel times to dialysis clinics increase patient satisfaction and quality of life. As

an example, Diamant et al. [24] study the association between travel time to dialysis clinic and

health-related quality of life (HRQOL) and find that travel cost and time are important factors to

HD patients. They notice that HQOL is significantly higher for patients with shorter travel time

to their dialysis clinic.

The fourth stream examines the growth and demand for home healthcare (HHC). To

begin, a brief overview of the nurse rostering research is conducted. Then, we will take a look at a

few articles that focus exclusively on ESRD. According to reports published by the Organization

for Economic Cooperation and Development, population aging will lead to considerable growth

in demand for health services. The growth of the world’s population is projected to accelerate

the industry’s growth and increase patient demand for value-based healthcare. The World Health

Organization (WHO) estimates 703 million people worldwide aged 65 years or older in 2019.

By 2050, the global population of older people is expected to double to 1.5 billion. The aging

population places a greater emphasis on patient-centered healthcare, which increases demand for

healthcare sta↵ and agencies and is expected to fuel business growth. Medicare is the biggest

payer of home healthcare facilities in the United States. About 40 percent of home health

expenditure accounts for Medicare expenses. Payments for medical assistance are divided into

three primary categories: the standard (mandatory), home and community-based waivers, and
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home health care benefits. The market for home healthcare was worth USD 281.8 billion in 2019

and is forecast to expand at a 7.9 percent compound annual growth rate (CAGR) between 2020

and 2027.

In the home healthcare domain, public health planners face complicated and daunting

optimization challenges at multiple decision-making stages, such as sta↵ assignment, sta↵ routing

decisions, and shift scheduling. In most cases, the assignment of nurses to patients is required.

Di↵erent criteria have to be taken into consideration to solve these issues, such as balancing

nurses’ abilities, patients’ requirements, taking patients’ interests into account, and various

rules must be followed, such as the necessity of addressing the continuity of care. Furthermore,

HHC services are very responsive to time. For example, care needs to be taken within a specific

timeframe, such as various types of dialysis that make operations more complicated. A nurse is

usually allocated to some patients who request several services over a specific period. Decisions

on how and when to visit customers are the main obstacles for the planners, directly a↵ecting

travel and working times. As discussed by Fikar and Hirsch [25], the majority of home healthcare

routing and scheduling papers are single-period problems. More specifically, a single working day

is presumed as the planning horizon. When comparing these research papers, we observed that

some papers establish planning protocols for the routing and coordination of nurses attending

sessions at di↵erent health care centers and patients’ homes. Patient requests are characterized

by weekly frequencies or patterns in Shao et al. [26] and Bard et al. [27]. As mentioned

earlier, working time regulations is another part of HHC’s challenges. Several articles, such as

Trautsamwieser and Hirsch [28], have studied a wide variety of compulsory breaks and work rules,

including lunch breaks and compulsory weekly rest periods. Some scholars have studied uncertain

environments, where not all information is known in advance. For example, Bennett and Erera

[29] have examined an environment in which requests are randomly sent from patients for a series

of weeks, and those requests must be visited by a predefined pattern.

Other relevant factors in the HHC articles include but are not limited to travel

time/cost/distance, overtime work, precedence, and synchronization, where several nurses are

expected to provide a service at the same time. To have a better understanding of the constraints,

objective functions, and solution methods employed in this discipline, we refer readers to studies

by Paraskevopoulos et al. [30], Fikar and Hirsch [25], and Erhard et al. [31].
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Now we will review the publications that most closely match our settings. Using a mixed-

integer linear programming model, Kandakoglu et al. [32] created a decision support scheme to

improve day-to-day care routes and reduce home dialysis costs in a pre-specified group of patients.

They also took into account the balance of nurses’ workload, need for overtime breaks (lunch or

dinner depending on shift hours), constraints and preferences associated with visiting periods, and

various kinds of services available to patients. Data from the nephrological division at Ottawa

Hospital were used to test the model. They show a noticeable improvement over the allocation of

working load among nurses and a reduction in the overall distance traveled by nurses.

The problem of green delivery pick-up for Home Hemodialysis Machines (HHMs) as

scarce commodities has been studied by Asghari, and Mirzapour Al-e-hashem [33]. The HHMs

are supplied either from the company’s central warehouse or from the actual shareholders. Based

on the shared economy model, individuals who own HHM devices will participate in this home

health care scheme and share the devices with others through the company’s fleet to make money.

After the portable HHM machines are delivered to the patients, they will be reused by a series of

actions: a collection of machines, disinfection, and redistribution to the demand points. They use

a bi-objective mixed-integer linear programming model to minimize total system cost and total

carbon emissions. The model is named Torabi and Hassini’s (TH) technique used to solve this

problem, followed by development of multi-objective meta-heuristic algorithm, called self-learning

non-dominated sorting genetic algorithm (SNSGA-II), for medium and large-sized problems.

Overall, our study contributes to the first research stream in the sense that we provide

Medicare with a reimbursement policy to induce a healthcare provider to take actions that can

reduce the total cost burden for Medicare. Additionally, our reimbursement structure is linked

with patient welfare, which results in increased healthcare service quality for ESRD patients. The

second stream has focused on the dialysis treatment level for enhancing the outcomes of dialysis

care. At the same time, our research is also distinct from both the first and second streams of

related literature since there is no previous research that has examined the role of reimbursement

policy design for inducing a dialysis service provider to introduce new service modalities (e.g.,

mobile or satellite clinics), albeit costly, and yet aim to reduce the total cost for Medicare, while

also improving health outcomes for ESRD patients. We incorporate key insights from the third

stream of literature to design a reimbursement policy that focuses on mitigating a major driver
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of hospitalization cost for Medicare. The analytics in our strategic framework incorporates the

adverse e↵ects of patients’ travel time on Medicare’s cost in the dialysis service network. The

majority of publications in the fourth stream o↵ered a mathematical model without taking patient

preferences into account. Additionally, most mathematical models do not examine the relationship

between the provider, Medicare, and patients. Our suggested mathematical model is unique in

that it incorporates both patient preference and the potential of o↵ering home assisted dialysis

in addition to other dialysis modalities. We discuss the details of the analytical framework in the

following chapters.
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CHAPTER III

ECONOMICS OF INTRODUCING A MOBILE CLINIC AS AN ADDED OR EXCLUSIVE

MODALITY FOR DIALYSIS SERVICE

This work is coauthored with Prof. Nagesh Murthy and Dr. Eren Çil.

3.1 Introduction

In 2018, 3.6% of individuals with end-stage renal disease received a kidney transplant [34].

Due to the low rate of kidney transplantation, dialysis is currently the only viable option for the

majority of patients. According to section 299I of Public Law 92-603, passed on Oct. 30th, 1972,

Medicare covers dialysis treatment expenses, and any associated hospitalization cost for all ESRD

patients [35]. Medicare takes overall coverage at the end of 30 months even for ESRD patients

who have coverage from job-related insurance, retiree insurance, or COBRA. The scope and costs

of the ESRD program have greatly exceeded the preliminary estimates envisioned in the early

years of the program. This is largely due to the growth in ESRD patient population, and the cost

of treatments [36]. According to the latest Annual Report of U.S. Renal Data, more than 750,000

Americans are being treated for ESRD [37]. The number of ESRD patients in the U.S. is growing

at an annual rate of 4% [38]. This imposes a substantial cost burden on the government. Dialysis

patients represent less than 1% of all patients served by the U.S. Centers for Medicare & Medicaid

Services (CMS). However, their treatments account for 7% of all CMS expenditures [39]. In order

to reign in the costs, Medicare has sought to revamp its payment systems to the dialysis service

providers. Medicare implemented a bundled prospective system for dialysis patients in 2011 [40].

Despite such measures, ESRD spending per person per year (PPPY) has continued to increase

annually at a high rate. In 2016, Medicare spending for patients with ESRD was nearly $35 billion

[38].

While the total cost burden from recurring dialysis service accounts for the largest

fraction of ESRD budget, the hospitalization costs incurred to cover ESRD patients in U.S. too is

significant and accounts for about 33% of the ESRD expenditure [41]. Hence, in order to decrease

hospitalization costs resulting from health complications for ESRD patients, it is critical to hone

on factors that have adverse impact on their health outcomes.

Studies confirm that distance of patients’ residence from health service facilities is

inversely associated with clinical benefits to patients [42]. This adverse e↵ect is specifically
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relevant and most likely exacerbated for ESRD patients as they have to travel to clinics for

treatment between 140 and 160 times per year. An estimated 139 million one-way trips to dialysis

clinics are needed annually to serve the population of ESRD patients in the U.S. Travel distance

adversely a↵ects access to care for ESRD patients more than most people, even when compared

with other chronically ill patients with high health care utilization [43]. Studies show that patients

who live far from dialysis facilities have worse outcomes [18]. Thus, recurring travel to dialysis

clinics adversely a↵ects patients’ health, which in turn increases Medicare’s costs due to the

enhanced risk of health complications and ensuing hospitalization. Increased travel distance

has serious clinical implications for ESRD patients and could have potentially adverse e↵ects

on patient mortality as well as their quality of life [44]. Thus, decreasing the travel distance

for ESRD patients can significantly change their health outcomes and consequently decrease

Medicare’s cost.

In Oct. 2019, Medicare finalized some changes to ESRD reimbursements e↵ective

from Jan. 1st, 2020. The updated reimbursement scheme supports the development and use

of innovative technologies: “CMS is establishing a transitional add-on payment adjustment to

support the use of new and innovative renal dialysis equipment or supplies furnished by ESRD

facilities” [1]. This essay is motivated by Medicare’s renewed impetus to promote innovation

in dialysis treatment and service delivery to reduce the overall cost burden for Medicare while

improving treatment outcomes and quality of life for patients.

Our study examines the possibility of judicious introduction of a new and non-traditional

service modality that can reduce or eliminate the travel burden for ESRD patients while also

leading to a reduction in hospitalization costs that can reduce the additional burden associated

with operating an infrastructure for the new modality for dialysis service.

The status quo service modality is comprised of a main clinic in a central location

and operated by the service provider wherein all the ESRD patients assigned to the clinic

travel to receive dialysis service at this clinic. We specifically examine whether, when, and

how Medicare can benefit from incentivizing dialysis service providers to introduce state-of-

the art mobile dialysis clinics as an additional service modality and stipulate the optimal

coverage when introduced. The new dialysis service modality, called a mobile dialysis clinic, is

a customized vehicle that is configured to house dialysis equipment identical to the ones used at
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the hemodialysis clinic and can move to a place near the patient’s location. The quality of nursing

care and other sta↵ support for this new service modality is also considered to be comparable to

that for the clinic. Thus, mobile dialysis clinic, as a new modality, can be configured to deliver

high-quality treatment to ESRD patients.

Introduction of mobile dialysis clinic reduces the distance traveled by patients, which in

turn reduces hospitalization costs incurred by Medicare. However, it is costly for the provider

to introduce and operate the mobile dialysis clinic infrastructure. Hence, the provider needs an

incentive payment to consider o↵ering this new modality. It has been articulated in previous

research that payment models can a↵ect the type of service o↵ered by the providers [45]. However,

understanding the economics and viability of the introduction of mobile clinics as a new modality

for dialysis service has hitherto not been considered in the academic literature or in practice. In

this research, we develop a framework to consider the strategic interaction between Medicare

and a dialysis service provider and examine the potential benefit to Medicare for considering a

“shared-savings payment policy.” In this policy, Medicare shares with the provider a fraction of

savings realized due to reduced hospitalization cost on account of dialysis service coverage o↵ered

by the provider using mobile clinic service as a new modality. The specific range of distances from

the main clinic over which the mobile clinic service is o↵ered is used to determine the coverage for

the ESRD patients as well as the added cost incurred by the provider to introduce and operate

the new service modality. We allow for a special case of this new modality wherein no patients

have zero travel, and it amounts to introduction of an additional clinic that is distant from the

main clinic (i.e., a satellite clinic). The incentive payment structure in our new policy features

“reward rate” as the percentage of Medicare’s hospitalization cost savings that the provider

receives as a bonus payment for o↵ering coverage using a mobile dialysis clinic.

We specifically examine the role of Medicare’s payment policy in influencing the

provider’s decision to introduce a new modality, which in turn a↵ects patients’ selection of service

modality, and ensuing hospitalization costs. We model this strategic interaction in a game-

theoretic framework that proceeds in three steps. First, Medicare selects the reimbursement

contract that depends on modalities o↵ered by the provider. Observing Medicare’s contract

and anticipating patients’ decision, the provider o↵ers the dialysis modalities and decides about
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the dialysis coverage. Finally, patients observe the available modalities and choose the one that

decreases their travel distance. Therefore, patients’ modality decision is endogenously determined.

Our analysis shows that there exists a reimbursement scheme (i.e., reward rate) for which

the provider o↵ers a new modality that results in net savings in total hospitalization cost for

Medicare even after sharing some of the savings with the provider. We show that as the reward

rate increases beyond a threshold, the provider serves more patients (i.e., o↵ers a greater coverage)

with the new modality, which in turn decreases the hospitalization costs for Medicare on account

of reduced overall travel in the ESRD patient population. However, when the hospitalization cost

is relatively low, Medicare does not o↵er enough compensation to the provider to justify o↵ering

coverage with a mobile clinic. In this case, for a low reward rate, the provider either just o↵ers

a satellite dialysis clinic (i.e., an additional clinic at a new location) or does not o↵er any new

modality (i.e., prefers the status quo). Thus, Medicare faces a trade-o↵ between hospitalization

cost and sharing cost-savings with the provider. Interestingly, under certain conditions, we observe

that Medicare finds it optimal to increase the reward rate to incentivize the provider to o↵er a

mobile clinic even when this increased reward rate results in a drastic improvement in provider’s

profit with only a marginal reduction in Medicare’s cost. Overall, our equilibrium analysis not

only identifies conditions when new modality is introduced but also provides the specific range

of distances from the main clinic over which the new modality is introduced. In our stylized

modeling framework, this is akin to providing information on the location of a new facility (i.e., a

satellite clinic) or route and coverage for mobile clinics in a dialysis service delivery network.

This paper makes the following contributions; first, we present a reimbursement scheme

that centers on improving ESRD patients’ health outcomes considering their travel distance to

dialysis clinics. Second, we study the possibility of adding a new modality to the current dialysis

network. Our analysis provides the condition under which introducing this innovative dialysis

service is optimal. These findings can help CMS design new policies that motivate providers

to introduce new and innovative ways of o↵ering dialysis to patients. We review the relevant

literature in Section 2. Section 3.2 provides our modeling framework and assumptions. Section

3.3 contains our key analytical results. A numerical analysis is provided for a robustness check in

Section 3.4. Conclusions are provided in Section 3.5.
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3.2 The Model Setup

In this essay, we study the strategic interaction between Medicare, a dialysis service

provider, and ESRD patients. In the initial dialysis network, the dialysis provider operates a

main clinic where it o↵ers dialysis service to the patients who are heterogeneous in their location

with respect to the main clinic. The status quo service modality is comprised of a main clinic in

a central location and operated by the service provider wherein all the ESRD patients assigned

to the clinic travel to receive dialysis service at this clinic. We specifically examine whether,

when, and how Medicare can benefit from incentivizing dialysis service providers to introduce

the mobile dialysis clinics as an additional service modality and stipulate the optimal coverage

when introduced. In this research, we develop a framework to consider the strategic interaction

between Medicare and a dialysis service provider and examine the potential benefit to Medicare

for considering a “shared-savings payment policy.” In this policy, Medicare shares with the

provider a fraction of savings realized due to reduced hospitalization cost on account of dialysis

service coverage o↵ered by the provider using mobile clinic service as a new modality. The specific

range of distances from the main clinic over which the mobile clinic service is o↵ered is used to

determine the coverage for the ESRD patients as well as the added cost incurred by the provider

to introduce and operate the new service modality. We allow for a special case of this new

modality wherein no patients have zero travel, and it amounts to introduction of an additional

clinic that is distant from the main clinic (i.e., a satellite clinic).

The incentive payment structure in our new policy features “reward rate” as the

percentage of hospitalization cost savings that the provider receives as a bonus payment for

o↵ering coverage using a mobile dialysis clinic. We specifically examine the role of Medicare’s

payment policy in influencing the provider’s decision to introduce a new modality, which in turn

a↵ects patients’ selection of service modality, and ensuing hospitalization costs. We model this

strategic interaction in a game-theoretic framework that proceeds in three steps. First, Medicare

selects the reimbursement contract that depends on modalities o↵ered by the provider. Observing

Medicare’s contract and anticipating patients’ decision, the provider o↵ers the dialysis modalities

and decides about the dialysis coverage. Finally, patients observe the available modalities and

choose the one that decreases their travel distance. Therefore, patients’ modality decision is
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Figure 1. Patients’ dialysis modality choice when mobile dialysis is o↵ered from ds to de

endogenously determined. We also assume that patients’ locations with respect to the clinic are

uniformly spread over the interval unit interval [0, 1].

In this paper, we examine the viability of a new service modality for dialysis wherein

the provider introduces a mobile dialysis service over the [ds, de] interval. We refer to this new

modality as the “mobile clinic” and the [ds, de] interval as the “mobile clinic range.” We assume

that the quality of dialysis care is identical in both the main and the mobile clinic.

Mobile dialysis service can be delivered practically at patients’ locations via specialized

vans, trucks, and busses. Therefore, we assume that the patients located inside the mobile clinic

range do not incur any travel costs. As the patients value the main and the mobile clinic equally,

patients inside the mobile clinic range always prefer to receive treatment at the mobile clinic. The

remaining patients, on the other hand, are assumed to incur a positive cost proportional to the

distance they travel to receive dialysis treatment. We do not restrict the service coverage of the

mobile clinic to its range. Therefore, patients outside the mobile clinic range can choose between

the main clinic and the end points of the mobile clinic range based on their distances to these

three locations. In particular, each of these patients chooses to receive treatment at the closest of

the three: the main clinic, ds, and de. Note that it is sub-optimal for patients to request dialysis

service from the mobile clinic at a location other than its end points. Figure 1 shows the changes

in patients’ coverage with a possible mobile dialysis service.

Medicare covers treatment costs for all ESRD patients [46]. We assume that the total

regular payment made by Medicare to the provider for o↵ering recurring dialysis treatment to

the entire patient population is constant regardless of the service modalities. Another major

component of Medicare’s cost is driven by the hospitalization of the patients receiving dialysis. As

mentioned before, patients’ distance from dialysis facilities plays an important role in their overall

health outcomes, including their likelihood of hospitalization. To capture the adverse e↵ects of

patients’ travel on the hospitalization costs, we assume that Medicare incurs a cost of hc per unit
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distance traveled by patients to receive dialysis treatment. Then, in the absence of a mobile clinic,

we can write the Medicare’s total hospitalization cost as:

Ho ⌘ hc

Z 1

0
xdx = hc/2.

On the other hand, when the provider o↵ers a mobile dialysis clinic range of [ds, de],

Medicare’s total hospitalization cost becomes

H(ds, de) ⌘ hc

 Z
ds/2

0
xdx+

Z
ds

ds/2
(ds � x)dx+

Z 1

de

(x� de)dx

!

= hc

d
2
s
+ 2(1� de)2

4
.

The above cost function is always lower than Ho as long as de > 0. Hence, mobile clinic

decreases Medicare’s hospitalization cost. However, the mobile clinic is a costly modality for the

provider. In particular, we assume that the provider incurs

C(ds, de) ⌘ Cr(de � ds) + Cd(1� de + ds/2),

Where the first term is the cost of serving the patients via the mobile clinic at their exact

locations, and the second term is the cost of serving patients outside the mobile clinic range

via the end points ds and de. We refer to Cr as the “range cost” since it is the marginal cost of

o↵ering a mobile clinic range. Furthermore, Cd captures the incremental cost of serving patients

at a distant facility rather than its main clinic, and thus, we refer to it as the “distant-service

cost.”

Due to its range and the distant-service costs, for-profit providers will not find o↵ering

mobile dialysis profitable unless they are specifically motivated to do so. We assume that

Medicare facilitates such motivation by committing to share ↵ portion of its cost savings when

a provider o↵ers a mobile clinic. We refer to ↵ as the “reward rate.” For any given reward rate ↵,

a provider o↵ering a mobile clinic range of [ds, de] receives a total reward of ↵[Ho �H(ds, de)], and

thus we can write the profit function of the provider as

⇧Pro(ds, de;↵) ⌘ ↵[Ho �H(ds, de)]� C(ds, de). (3.1)

3.3 Analysis

In this section, we study the optimal decisions of Medicare and the dialysis provider. We

model the strategic interaction between Medicare and the provider as a sequential move game

where Medicare first sets the reward rate ↵ to minimize its total cost. Then, the provider chooses
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the mobile clinic range that maximizes its profits. We derive the outcome of the game between

Medicare and the provider via backward induction. Thus, we first focus on the provider’s problem.

3.3.1 The Optimal Mobile Clinic Range

As we mention above, we, first, characterize the provider’s optimal mobile clinic range

for any given reward rate ↵. To this end, we solve the following problem where the provider’s

objective is to maximize its profit, which is defined as ⇧Pro(ds, de;↵):

⇧⇤
Pro

(↵) ⌘ max
0dsde1

⇧Pro(ds, de;↵). (3.2)

We denote the optimal decisions of the provider as d⇤
s
(↵) and d

⇤
e
(↵) (d⇤

s
and d

⇤
e
in short).

As it can be seen in the above problem, the provider may find it optimal to set d⇤
s
= d

⇤
e
. We

refer to such special cases of mobile clinics as “satellite clinic.” A satellite clinic can be considered

as a stationary, mobile clinic that does not serve any patients at their exact location. Note that

a satellite clinic can still serve a significant portion of patients since it may be closer to these

patients than the main clinic. Lemma 1 shows the minimum reward rate that incentives the

provider to o↵er a new modality.

Lemma 1. Considering costs of o↵ering new modality, the provider makes decision with the goal

of maximizing her own profit according to the reward rate (↵):

When ↵ < ↵, the provider does not o↵er new modality.

When ↵ � ↵(Cr), the provider has enough incentive to o↵er new modality, where

↵(Cr) =

8
>>>>>>>>>><

>>>>>>>>>>:

2Cr/hc if Cr < Cd/2

(
q
�C

2
d
2 + 2CdCr � C2

r
+ Cr)/hc if Cd/2  Cr < Cd

(
q
� 3C2

d
2 + 4CdCr � 2C2

r
+ Cr)/hc if Cd  Cr < (6Cd +

p
3Cd)/6

(
p
3/2 + 1)Cd/hc if (6Cd +

p
3Cd)/6  Cr

To guarantee the provider’s participation, Medicare should o↵er a su�cient reward rate

(↵). ↵ is a non-decreasing function of range cost. This result is consistent with the intuition that

provider needs higher motivation to o↵er new modality when the cost of o↵ering new modality

is higher. Using lemma 1, we can indicate the optimal decisions of the provider, presented in the

following proposition.

Proposition 1. For any ↵ � ↵, the provider optimally behaves in one of the following ways:
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– The provider with 0  Cr < (6Cd +
p
3Cd)/6 o↵ers new modality at d⇤

s
=

min{0, 2Cr�Cd
hc↵

}, d⇤
e
= max{1� Cr�Cd

hc↵
, 1}.

– The provider with Cr � (6Cd +
p
3Cd)/6 optimally behaves in one of the following ways,

depending on the reward rate (↵).

When (
p
3/2 + 1)Cd/hc  ↵ <

3Cr�2Cd
hc

the provider o↵ers new modality at d⇤
s
= d

⇤
e
=

2hc↵+Cd
3hc↵

.

When ↵ � 3Cr�2Cd
hc

, the provider o↵ers new modality at d⇤
s
= 2Cr�Cd

hc↵
, d

⇤
e
= 1� Cr�Cd

hc↵
.

Proposition 1 shows that for small values of the reward rate ↵, the provider would not

have any incentive to incur the extra cost of new modality even if the mobile clinic range were

chosen optimally. Therefore, the provider does not find o↵ering a new modality profitable when

↵ is small. When the reward rate increases enough to cover the new modality cost, o↵ering a

new modality becomes optimal. In particular, as ↵ increases, the provider, first, chooses to

o↵er a satellite clinic. Once the reward rate exceeds the critical level of (3Cr � 2Cd)/hc, the

provider optimally o↵ers a mobile clinic range with d
⇤
s
< d

⇤
e
. We also show that as the reward

rate increases, the provider serves more patients via its new modality. To achieve this, the

provider moves either its satellite clinic or the starting point of its mobile clinic range closer to

the main clinic. Figure 2 shows the location of the Satellite and a mobile clinic for a possible set

of parameters.

As one expects, the cost parameters of the provider also play a significant role in the

optimal decision of the provider. To be specific, the provider moves its satellite clinic farther from

the main clinic as the distant-service cost Cd increases, and thus, it serves fewer patients via the

new modality. The range cost also has a similar e↵ect on the provider’s optimal mobile clinic

range: the optimal mobile clinic range shrinks as the range cost Cr increases, and the provider

serves fewer patients with the new modality as it moves the starting point of the mobile clinic

range farther from the main clinic. However, the distant-service cost Cd a↵ects the provider’s

optimal mobile clinic range di↵erently. We find that as Cd increases, the provider expands its

optimal mobile clinic range and also serves more patients with the new modality by moving

the starting point of the mobile clinic range closer to the main clinic. We also note that the

hospitalization cost hc, which is not a cost directly incurred by the provider, also a↵ects the

19



ds*

de*

0.0 0.2 0.4 0.6 0.8 1.0
α0.0

0.2

0.4

0.6

0.8

1.0
Location

Status-Quo

Figure 2. d
⇤
S
, d

⇤
e
as a function of the reward rate (↵) when Cr = 20, Cd = 10, hc = 100 and d

⇤
S
= d

⇤
e

if provider o↵ers satellite clinic.

provider’s optimal decisions. Since Medicare shares its total cost savings with the provider, the

provider responds in the same way to the changes in the hospitalization cost as it does when the

reward rate ↵ changes.

The above proposition presents the provider’s optimal decision when the range cost Cr

is above the critical level of (6Cd +
p
3Cd)/6. When Cr is lower than this critical level, the range

of reward levels leading to a satellite clinic disappears, and thus we only observe the optimal

decisions with d
⇤
s
< d

⇤
e
.

3.3.2 The Optimal Reward Rate

After studying the provider’s problem, we now turn our attention to Medicare’s decision.

Anticipating the provider’s optimal mobile clinic range, Medicare selects a reward rate ↵ to

minimize its total costs. As the total cost of Medicare includes the total hospitalization cost and

the cost savings shared with the provider, we write Medicare’s total cost as

Med(↵) ⌘ H(d⇤
s
, d

⇤
e
) + ↵

⇥
Ho �H(d⇤

s
, d

⇤
e
)
⇤

(3.3)

=
hc

4

�
2(d⇤

e
� 2)d⇤

e
+ d

⇤
s

2�(1� ↵) + 2

�
.

Then, we solve the following problem to find the optimal reward rate, which we denote as ↵⇤:


⇤
Med

⌘ min
0↵1

Med(↵). (3.4)
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As the hospitalization cost H(d⇤
s
, d

⇤
e
) is a crucial part of Medicare’s total cost, we first

focus on the e↵ects of the reward rate ↵ on the hospitalization cost before finding the optimal

reward rate.

Proposition 2. H(d⇤
s
, d

⇤
e
), Medicare’s total hospitalization cost, is monotonically decreasing in

↵. Furthermore, ↵
⇥
Ho � H(d⇤

s
, d

⇤
e
)
⇤
, the cost savings shared with the provider, is monotonically

increasing in ↵.

In Proposition 2, we show that Medicare’s total hospitalization cost decreases as Medicare

o↵ers a higher reward rate. The main driver of such a cost reduction is that the provider serves

more patients via its new modality as the reward rate increases, as discussed after Proposition 1.

As a direct implication of this cost reduction, the provider receives a larger total reward. Hence,

while choosing its optimal reward rate, Medicare has to balance these two opposing e↵ects of

increasing the reward rate. Additionally, as Figure 3 illustrates, the hospitalization cost decreases

at di↵erent rates depending on whether the provider o↵ers a mobile clinic range or a satellite

clinic, and thus has a piece-wise structure.
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Figure 3. Medicare’s hospitalization cost H(d⇤
S
, d

⇤
e
) as a function of the reward rate (↵).

Due to the piece-wise nature of the hospitalization cost H(d⇤
s
, d

⇤
e
), Medicare’s total cost

Med(↵) also becomes a piece-wise function of the reward rate ↵. To be specific, as Figure 4

illustrates, Med(↵) is the combination of two convex functions where one convex function refers

to a range of ↵ leading to a satellite clinic and the other one is the range of ↵ leading to a mobile

clinic range.

As Medicare’s total cost function may not always be quasi-convex, Medicare may need

to find two locally optimal reward rates and compare these two in order to obtain the optimal
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Figure 4. Medicare’s total cost as a function of the reward rate (↵) when Cr = 20, Cd = 10, hc =
180

reward rate. In Proposition 3, we derive the conditions under which such a comparison is needed.

We also derive the conditions under which motivating the provider to o↵er a satellite (a mobile)

clinic is clearly dominated by motivating the provider to o↵er a mobile (a satellite) clinic.

Proposition 3. For any combination of Cr, Cd, hc we can characterize the Medicare and provider

best responses as follows:

– if (Cr, hc) 2 ⌦1 then d
⇤
s
(↵⇤) = d

⇤
e
(↵⇤) and ⇧⇤

Pro
(↵⇤) = 0.

– if (Cr, hc) 2 ⌦2 then d
⇤
s
(↵⇤) = d

⇤
e
(↵⇤) and ⇧⇤

Pro
(↵⇤) > 0.

– if (Cr, hc) 2 ⌦3 then 9 (↵⇤
1,↵

⇤
2) such that d⇤

s
(↵⇤

1) = d
⇤
e
(↵⇤

1) and d
⇤
s
(↵⇤

2) < d
⇤
e
(↵⇤

2)

where ↵
⇤ =

8
>><

>>:

↵
⇤
1 if Med(↵⇤

1) < Med(↵⇤
2)

↵
⇤
2 if Med(↵⇤

2) < Med(↵⇤
1)

and

8
>><

>>:

⇧⇤
Pro

(↵⇤) > 0 if ↵⇤ = ↵2

⇧⇤
Pro

(↵⇤) � 0 if ↵⇤ = ↵1

– if (Cr, hc) 2 ⌦4 then d
⇤
s
(↵⇤) < d

⇤
e
(↵⇤) and ⇧⇤

Pro
(↵⇤) > 0.

where

- ⌦1 ⌘ {(Cr, hc) :
7
p
3Cd+12Cd

4
p
3+6

< hc < min{4
p
3Cd + 7Cd,

p
3Cd+2Cd

2hc
}, Cr > (6Cd +

p
3Cd)/6}.

- ⌦2 ⌘ {(Cr, hc) : 4
p
3Cd + 7Cd < hc <

72C3
r�144C2

rCd+97CrC
2
d�22C3

d

12C2
r�16CrCd+6C2

d
, Cr > (6Cd +

p
3Cd)/6}

- ⌦3 ⌘ {(Cr, hc) : 72C3
r�144C2

rCd+97CrC
2
d�22C3

d

12C2
r�16CrCd+6C2

d
< hc <

108C3
r�216C2

rCd+147CrC
2
d�34C3

d

2C2
d

, Cr >

(6Cd +
p
3Cd)/6}.
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- ⌦4 ⌘ {(Cr, hc) : hc >
108C3

r�216C2
rCd+147CrC

2
d�34C3

d

2C2
d

, Cr > (6Cd +
p
3Cd)/6}.

In Proposition 3, we characterize the optimal reward rate o↵ered by Medicare in four

di↵erent regions of the range and the unit hospitalization costs (Cr, hc). When the range and

the unit hospitalization costs are in regions ⌦1 and ⌦2, we find that Medicare’s total cost is

an increasing function of the reward rate ↵ in the range of ↵ leading to a mobile clinic. Since

the range cost Cr is relatively high compared to the unit hospitalization cost in regions ⌦1

and ⌦2, it turns out that the decline in the total hospitalization cost due to a higher reward

rate is not enough to cover the rise in the cost savings shared with the provider. Hence, it is

optimal for Medicare to choose a reward rate at which the provider o↵ers a satellite clinic when

(Cr, hc) 2 ⌦1[⌦2. Conversely, when the range and the unit hospitalization costs are in region ⌦4,

we find that Medicare optimally chooses a reward rate at which the provider o↵ers a mobile clinic.

The range cost Cr is relatively low compared to the unit hospitalization cost in region ⌦4, and

thus, Medicare’s total cost is a decreasing function of the reward rate ↵ in the range of ↵ leading

to a satellite clinic. Unlike the ⌦1, ⌦2, and ⌦4 regions, when (Cr, hc) 2 ⌦3, Medicare’s decision

is more intricate. Namely, Medicare needs to compare two candidate reward rates: one minimizing

the total cost in the range of ↵ leading to a satellite clinic and the other one minimizing the total

cost in the range of ↵ leading to a mobile clinic. As Figure 5 illustrates, we also numerically

observe that we can partition region ⌦3 into two sub-regions: Medicare chooses an optimal reward

rate leading to a satellite clinic in one of these sub-regions, and the optimal reward rate motivates

the provider to o↵er a mobile clinic range in the other sub-region.

Proposition 3 also characterizes the relationship between provider’s profit and the four

regions of (Cr, hc). Except for region ⌦1 and a portion of region ⌦3, we find that the provider

achieves a positive profit. In ⌦1 and a part of ⌦3, Medicare’s total cost is an increasing function

of the reward rate ↵ regardless of the resulting modality due to the low unit hospitalization

cost. Hence, Medicare chooses its optimal reward rate exactly at the level where the provider is

indi↵erent between the status-quo and o↵ering a satellite clinic.

Using the equilibrium outcomes presented in proposition 3, we can further analyze

Medicare’s optimal total cost, the optimal reward rate, and the provider’s optimal profit with

respect to the range and the unit hospitalization costs (Cr, hc). Proposition 4 shows the e↵ects of

cost parameters on Medicare’s total cost.
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Figure 5. Optimal Solution Set as a function of hc, Cr when Cd = 10

Proposition 4. Medicare’s optimal total cost is an increasing function of the unit hospitalization

cost and a non-decreasing function of the unit range cost.

Proposition 4 verifies that both (Cr, hc) cost parameters adversely a↵ect Medicare’s

optimal total cost. As we discussed in section 3.3.1, the provider decreases mobile clinic coverage

as the range cost increases. Due to these changes, as the range cost increases, total hospitalization

cost increases, and Medicare with a fixed reward rate faces higher costs. Note that the changes in

the range cost do not a↵ect the provider’s decision when it o↵ers a satellite clinic. In this case,

Medicare’s total cost does not change with higher range costs. However, with a fixed reward

rate and higher hc, the provider serves more patients with its new modality causing lower total

hospitalization cost. This can help Medicare to save on hospitalization costs. Since Medicare’s

cost saving needs to be shared with the provider, for a fixed reward rate, as hospitalization cost

increases, Medicare pays less total hospitalization cost and higher cost saving shared with the

provider. For a range of reward rates, including ↵
⇤, higher total shared saving dominates the

savings from lower hospitalization cost. Thus, Medicare’s total cost is an increasing function of

hospitalization cost. Figure 6 illustrates, Medicare’s optimal total cost is increasing as hc increases

and as Cr is increasing Medicare’s total cost is either increasing or constant.
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Figure 6. Medicare’s optimal total cost Med(↵⇤) as a function of hc and Cr when Cd = 10.

Despite the somewhat apparent e↵ects of the range and the hospitalization costs on

Medicare’s optimal total cost, the optimal reward rate and the provider’s optimal profit have

more intricate relationships with these cost parameters.

Proposition 5. The optimal reward rate leading to a specific modality (i.e., satellite or mobile

clinic) is a decreasing function of hospitalization cost and a non-decreasing function of range cost.

From proposition 2, we know that Medicare’s total hospitalization cost is monotonically

decreasing in ↵ and the cost savings shared with the provider is monotonically increasing in ↵. At

the optimal level of ↵, the marginal benefits gained from lower hospitalization cost for Medicare

equals the marginal loss in savings shared with the provider. A change in the unit hospitalization

cost, or range cost, leads to an unbalanced trade-o↵ between marginal total hospitalization cost

and marginal cost savings shared with the provider. To be specific, as hc increases, the marginal

reduction in total hospitalization cost decreases, and the marginal cost savings shared with the

provider increases. In this case, Medicare can decrease the reward rate to keep the balance

between these two opposing marginal e↵ects. Similarly, an increase in the range cost changes

the balance in marginal costs by increasing the marginal e↵ect of total hospitalization cost and

decreasing the marginal e↵ect of cost savings shared with the provider. Considering the fact that

@H(d⇤
s
, d

⇤
e
)/@Cr > 0 when the provider o↵ers mobile clinic, Medicare can determine the balance

between marginal total hospitalization cost and marginal cost savings shared with the provider by

increasing the reward rate.

Through our numerical analysis, we find that Medicare optimally o↵ers a lower reward

rate as the unit hospitalization cost hc increases. As we discuss in Section 3.3.1, for a fixed
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reward rate, the provider serves more patients via its new modality as the unit hospitalization cost

increases. Since the total hospitalization cost directly depends on the fraction of patients served

via the provider’s new modality, the provider’s response to changes in hc may allow Medicare to

reduce the optimal reward rate (↵) after an increase in the unit hospitalization cost. As illustrated

in Figure 7.a, such a decline in the optimal reward rate occurs unless the decrease in the unit

hospitalization cost makes Medicare choose a reward rate that changes the new modality o↵ered

by the provider from a satellite clinic to a mobile clinic range. Since the provider needs a stronger

motivation to o↵er a mobile clinic range, we observe a jump in the optimal reward rate once

motivating the provider to o↵er a mobile clinic becomes optimal for Medicare. On the other hand,

for a fixed reward rate, the provider serves less patients via its new modality as the range cost Cr

increases. Since provider’s response to changes in Cr already results in higher total hospitalization

cost, reducing the reward rate would either increase the total hospitalization cost or make the

provider o↵er a satellite clinic. As Figure 7.b illustrates, Medicare optimally o↵ers a higher

reward rate as the range cost Cr increases up to a threshold level. Once the range cost exceeds

this threshold, Medicare finds it optimal to motivate the provider to o↵er a satellite clinic. As

an increase in the range cost does not a↵ect the optimal location of a satellite clinic, we observe

that the range cost also does not a↵ect Medicare’s optimal reward decision once Cr exceeds the

aforementioned threshold.
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Figure 7. Optimal reward rate ↵
⇤ as a function of hc and Cr when Cd = 10.

As we discussed above, Medicare makes sharp changes in the optimal reward rate at

the critical levels of the range, and the unit hospitalization cost illustrated. Consequently,

these substantial adjustments in the optimal reward rate cause pronounced changes in the

26



total hospitalization cost. Since Medicare is the party choosing the optimal reward rate, the

sudden jumps or drops in the optimal reward rate do not lead to comparably extreme changes

in Medicare’s optimal total cost. However, they have notable implications for the provider’s

optimal profit. Namely, as illustrated in Figure 8, the provider’s optimal profit rises sharply when

the increase in the unit hospitalization cost makes the provider switch from a satellite clinic to

a mobile clinic. Similarly, we observe a sharp decline in the provider’s optimal profit when the

increase in the range cost leads to a switch from a mobile clinic to a satellite clinic. Furthermore,

Figure 8 also illustrates that any increases in the range and the unit hospitalization cost do not

harm the provider’s optimal profit as long as these changes in the cost parameters do not cause a

switch between o↵ering a satellite clinic and o↵ering a mobile clinic.
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Figure 8. The provider’s optimal profit ⇧⇤
Pro

(↵⇤) as a function of hc and Cr when Cd = 10.

3.4 Numerical Study

In this section, we illustrate that our key results characterizing the outcome of the

interaction between Medicare and the provider continue to hold when we modify our original

model. To this end, we perform a series of numerical studies by first modifying the distribution

of the patient locations. We, then, consider an alternative cost function for operating a mobile

dialysis service that applies a higher cost to modalities provided farther away from the main

facility. Lastly, we develop a model allowing the provider to o↵er multiple new modalities

simultaneously. Studying these alternative models particularly demonstrate the robustness of our

findings in our original model regarding the e↵ects of Medicare’s reward rate (↵) on the provider’s

decision to o↵er a new modality and Medicare’s total cost.
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3.4.1 Patients’ distribution

In our original model, we consider a population of patients whose locations with

respect to the clinic are uniformly spread out. Since dialysis clinics may be located after careful

consideration of the patient population, it is reasonable to expect that the density of patients who

are closer to the dialysis clinics is higher. According to the author’s field study, some patients

choose to relocate near a dialysis clinic after being diagnosed with end-stage renal disease. As

per this reasoning, in the first extension of the model, we assume the following distribution of

patients’ locations with respect to the main clinic:

f(x) = �2�x+ 1 + � 0  x, �  1 (3.5)

Where f(x) indicates the density of patients in the proximity of the main clinic, with

higher � indicating a greater density of patients in the proximity of the main clinic. This

modification converts the H0 and H(ds, de) to:

H
0
o
⌘ hc

Z 1

0
(�2�x+ 1 + �)xdx = hc(1/2� �/6).

H
0(ds, de) ⌘hc(

Z
ds/2

0
(�2�x+ 1 + �)xdx

+

Z
ds

ds/2
(ds � x)(�2�x+ 1 + �)dx+

Z 1

de

(x� de)(�2�x+ 1 + �)dx)

(3.6)

It is worth noting that the original model mentioned in section 3.2 is a special case of

this new model. To be more precise, when � = 0 in equations 3.6 and 3.6, H 0
o
and H

0(ds, de)

equal Ho and H(ds, de) respectively. This new adjustment will alter the provider profit explained

in equation 3.1 as well as Medicare’s cost function indicated in equation 3.3, as they are both

functions of Ho and H(ds, de).

We selected a low (0.2) and high (0.8) � value for this numerical analysis to validate our

main propositions. As previously stated, � = 0.2 denotes relatively small population congestion

around the main clinic, whereas � = 0.8 denotes a predominantly centered patient population

surrounding the main clinic.

The results of our numerical study demonstrate the robustness of our findings in

proposition 1 to the changes in the distribution of patient locations. In particular, we find that

with � > 0, the provider would hesitate to undertake the additional costs of a new modality for
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small values of the reward rate ↵, even if the mobile clinic range is optimally set. As a result,

when ↵ is small, the provider does not consider o↵ering a new modality to be profitable. O↵ering

a new modality becomes optimal when the reward rate improves su�ciently to cover the cost

of the new modality. Specifically, when ↵ rises, the provider begins by o↵ering a satellite clinic.

Once the incentive rate surpasses a threshold level, the provider optimally o↵ers a d
⇤
s
< d

⇤
e
mobile

clinic range. In addition, we notice that when the incentive rate improves, the provider is able to

support a greater number of patients through its new modality by relocating either its satellite

clinic or the beginning points of its mobile clinic range closer to the main clinic.

The placement of a satellite and a mobile clinic for a possible set of parameters is

visualized in Figure 9. As the incentive rate improves, the provider expands the coverage of the

new modality, similar to what we found in our original model.
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Figure 9. d
⇤
S
, d

⇤
e
as a function of the reward rate (↵) when Cr = 20, Cd = 10, hc = 100 and d

⇤
S
= d

⇤
e

if provider o↵ers satellite clinic.

As explained in Proposition 2, the total hospitalization cost for Medicare drops with a

higher reward rate. The revised cost structure discussed in this section follows the same pattern

as figure 10 shows. The primary reason for this cost reduction is that the provider treats more

patients through the new modality as the reward rate grows, as previously mentioned. The

provider earns a greater overall incentive as a direct result of this cost decrease. As a result,

when Medicare determines the appropriate reward rate, it must balance these two conflicting

consequences of increasing the reward rate. Notably, as with the primary cost structure,

hospitalization costs decrease at varying rates in Figure 10. The reduction rate varies according to

the provider’s range of mobile clinics or satellite clinics, and follows a piece-wise structure.
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Figure 10. Medicare’s hospitalization cost H(d⇤
S
, d

⇤
e
) as a function of the reward rate (↵).

As previously noted, because hospitalization cost H(d⇤
s
, d

⇤
e
) is a piece-wise function,

Medicare’s total cost Med(↵) is similarly a piece-wise function of the reward rate ↵.

Figure 11 illustrates Med(↵) when � 2 {0.2, 0.8}. In this case, the overall cost of

Medicare is a function of two convex functions, one of which refers to the range of ↵ leading

to a satellite clinic and the other of which refers to the range of ↵ leading to a mobile clinic, as

previously reported. Medicare may need to identify two locally optimal reward rates and compare

them in order to determine the optimal reward rate in this scenario since the total cost function of

Medicare is not necessarily quasi-convex.
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Figure 11. Medicare’s total cost as a function of the reward rate (↵).

The following step is to study the robustness of the findings of proposition 4 using

di↵erent patient location distributions. To this end, we first examine how Medicare’s optimal

total cost responds to changes in unit hospitalization costs. With � = 0.2 and � = 0.8, we can

see that Medicare’s total cost is an increasing function of unit hospitalization cost, like in the
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case of � = 0. When the reward rate is fixed and hc increases, the provider can serve a greater

number of patients through its new modality, resulting in a reduced total hospitalization cost.

This could result in savings for Medicare. Since Medicare must share its cost savings with the

provider, as hospitalization costs rise, Medicare pays less total hospitalization costs and shares a

larger portion of its cost savings with the provider. When the reward rate is optimal, the shared

cost savings associated with decreased hospitalization costs outweigh the benefits associated with

lower hospitalization cost resulting in higher total cost for Medicare. Figure 12 illustrates that

Medicare’s optimal total cost is increasing as hc increases when � 2 {0.2, 0.8}.
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Figure 12. Medicare’s optimal total cost Med(↵⇤) as a function of hc.

As with proposition 4, we demonstrate that as Cr increases, Medicare’s total cost either

increases or remains constant when the patient distribution is not uniform. This is due to the fact

that the provider limits mobile clinic coverage as the range cost rises. With these modifications, as

the range cost increases, the total hospitalization cost increases, and Medicare will incur increased

expenses while the reward rate is fixed. It is important to note that changes in the range cost do

not a↵ect the provider’s decision when o↵ering satellite clinics. In this example, the total cost of

Medicare remains constant as the range costs increase. The change in total medicare costs when

Cr increases is displayed in figure 13.

Our numerical analysis of di↵erent patient distributions also demonstrates that our

qualitative insights about the sensitivity of the optimal reward rate o↵ered by Medicare with

respect to the unit hospitalization cost hc continue to hold. When � 2 {0.2, 0.8}, As illustrated

in figure 14, when Medicare chooses a reward rate that shifts the provider’s new modality from a

satellite clinic to a mobile clinic range, the optimal reward rate increases since the provider needs
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Figure 13. Medicare’s optimal total cost Med(↵⇤) as a function of Cr.

a higher incentive to o↵er a mobile clinic range. Otherwise, the optimal reward decreases as the

unit cost of hospitalization increases. Like in our original model, the main driver of this result

is that as the unit cost of hospitalization increases, the provider serves more patients via its new

modality at a given reward rate. The provider response to changes in hc may enable Medicare

to reduce the reward rate when unit hospitalization cost increases, given that the overall cost

of hospitalization is directly related to the proportion of patients served via the provider’s new

modality. This drop continues until the provider changes the modality being o↵ered.
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Figure 14. Optimal reward rate ↵
⇤ as a function of hc.

Additionally, we note that our results characterizing the relationship between the range

cost and the optimal reward rate are also robust to the changes in the distribution of patient

locations. As illustrated in figure 15, Medicare optimally o↵ers a higher reward rate as the range

cost Cr approaches a threshold value. Once the range cost reaches this threshold, Medicare

determines that the satellite clinic is the most cost-e↵ective option. As an increase in the range
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cost has no e↵ect on the optimal location of a satellite clinic, we observe that after Cr exceeds the

stated threshold, the range cost also has no e↵ect on Medicare’s optimal incentive decision. The

structure of how the range cost a↵ects the optimal reward remains unchanged after modifying the

distribution of patient locations because, with � > 0, the provider’s response to changes in Cr

again results in a rise in overall hospitalization costs fixing the reward rate. Hence, decreasing the

reward rate either increases total hospitalization costs or forces the provider to o↵er a satellite

clinic.
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Figure 15. Optimal reward rate ↵
⇤ as a function of Cr.

Furthermore, we examine the e↵ect of patient distribution on the provider’s profit.

Figure 16 and 17 illustrate our numerical study’s findings. As shown in Figure 16, provider

profit increases as hospitalization cost increases, most notably when the provider switches from

a satellite clinic to a mobile clinic.
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Figure 16. The provider’s optimal profit ⇧⇤
Pro

(↵⇤) as a function of hc.
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Additionally, when the range cost increases and the provider o↵ers a mobile clinic, the

pattern is identical to that observed in the main model. As illustrated in Figure 17, a significant

drop in the provider’s optimal profit is observed when the range cost increases, resulting in a

switch from a mobile to a satellite clinic, for both examined distributions. We can conclude that

all the key results hold when the patients’ distance from the main dialysis clinic is not uniformly

distributed.
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Figure 17. Medicare’s optimal total cost Med(↵⇤) as a function of Cr.

3.4.2 Mobile Clinic Cost

Following our analysis on patient distribution, we are now concentrating on the cost of

operating a mobile clinic. In this section, a more complicated cost function for the new modality

is examined. We realize, based on a review of the literature, that funding satellite clinics in

remote places are more expensive [47]. As a result, we alter the cost of o↵ering a new modality

to equation 3.7. This has an e↵ect on the provider’s total cost.

C(ds, de) ⌘ Cr(de � ds)(1 + �
ds + de

2
) + Cd

ds

2
(1 + �ds) + Cd(1� de)(1 + �de). (3.7)

In the updated setting, � = 0 corresponds to the primary cost structure discussed in

the original model. A larger � indicates the higher expenses of mobile or satellite clinic at a

remote location. We replicate the analysis conducted in section 3.3.2 with the new cost structure

when � = 1 & � = 2. The numerical analysis shows that all our key qualitative results remain

true with the new cost structure. The remainder of this section discusses the major findings and

observations from this numerical analysis.
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Our numerical study demonstrates the validity of the conclusions in proposition 1. Even

if the mobile clinic range is optimally selected, the provider would have little incentive to incur

the additional costs associated with a new modality for low reward rates ↵. As a result, when ↵ is

low, the provider finds delivering a new modality unprofitable. O↵ering a new modality becomes

optimal when the reward rate improves su�ciently to pay the expense of the new modality. More

precisely, when ↵ increases, the provider begins o↵ering satellite clinic. Once the reward rate

reaches a predetermined level, the provider o↵ers the optimal range of d⇤
s
< d

⇤
e
mobile clinics.

Additionally, we observe that as the incentive rate increases, the provider can support a greater

number of patients via the new modality by relocating either the satellite clinic or the starting

point of the mobile clinic range closer to the main clinic.

Figure 18 illustrates the location of a satellite and a mobile clinic for a hypothetical set

of parameters. As the reward rate increases, the provider’s coverage of the new modality expands,

similar to what we saw in our initial model.
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e
if provider o↵ers satellite clinic.

As we establish in proposition 2, a greater reward rate reduces the total hospitalization

cost for Medicare. The new cost structure introduced in this section follows the same pattern.

Figure 19 illustrates Medicare’s hospitalization cost as a function of reward rate. As previously

stated, the fundamental reason for this cost reduction is that the provider serves more patients

using the new modality as the reward rate increases. Notably, similar to our initial cost structure,

Medicare’s hospitalization costs fall at a variable rate in Figure 19. The reduction rate varies

according to the provider’s mobile or satellite clinics network and is structured in a piece-
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wise function. Furthermore, due to the piece-wise nature of the hospitalization cost function,

Medicare’s total cost is also a piece-wise function of the reward rate. Figure 20 depicts the

relationship between Med and reward rate with various di↵erent levels of �. Specifically, the

overall cost of Medicare is a function of two convex functions, one of which corresponds to the

range of ↵ leading to a satellite clinic and the other of which corresponds to the range of ↵ leading

to a mobile clinic, as previously described.
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Figure 19. Medicare’s hospitalization cost H(d⇤
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) as a function of the reward rate (↵).
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Figure 20. Medicare’s total cost as a function of the reward rate (↵).

The conclusions of Proposition 4 are also tested with this new cost structure. When

� = 1 and � = 2, the total cost of Medicare is increasing as the cost of unit hospitalization

increases. With a fixed reward rate as hc increases, a greater number of patients can be served

by the provider’s new modality, resulting in a lower total cost of care for the patient, which is

comparable to what we saw in our original model. Since Medicare’s cost savings must be shared

with providers, as hospitalization cost increases, Medicare pays less in total hospitalization costs
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and more in cost savings shared with the provider. As a result, when the reward rate is optimal,

the shared cost savings associated with lower hospitalization costs surpass the benefits associated

with lower hospitalization costs, resulting in a higher total cost for Medicare. As illustrated in

Figure 20, Medicare’s optimal total cost is increasing in hc when � = 1 and � = 2.
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Figure 21. Medicare’s optimal total cost Med(↵⇤) as a function of hc.

Next, similar to proposition 4, we illustrate how, as Cr increases, Medicare’s overall cost

either increases or remains constant under the new cost structure. This is owing to the fact that

the provider reduces mobile clinic coverage when the range cost increases. With these changes, as

the range cost rises, so will the total hospitalization cost, and Medicare will pay more costs while

the reward rate is unchanged. It is critical to highlight that when a provider o↵ers satellite clinics,

changes in the range cost have no e↵ect on the provider’s decisions. Therefore, while the range

costs increase, the total cost of Medicare remains constant in this scenario. Figure 22 illustrates

the change in overall Medicare’s costs as Cr increases.
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Figure 22. Medicare’s optimal total cost Med(↵⇤) as a function of Cr.
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Using a new cost structure for o↵ering a new modality, our numerical study demonstrates

that when the unit hospitalization cost hc rises, Medicare o↵ers a lower reward rate. At a given

reward rate, we know that if the unit hospitalization increases, the provider is willing to serve

more patients through its newly developed modality. As a result of the provider’s response to

changes in hc, Medicare may be able to reduce the reward rate when unit hospitalization costs

increase since the overall cost of hospitalization is directly tied to the proportion of patients

serviced by the new modality. This decrease in reward rate continues until the provider changes

the modality. As seen in Figure 23, when Medicare selects a reward rate that switches the

provider’s new modality from a satellite clinic to a mobile clinic range, the optimal reward rate

increases. In other scenarios, similar to what we observed in our original model, the optimal

reward drops as the unit hospitalization cost increases.
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Figure 23. Optimal reward rate ↵
⇤ as a function of hc.

Similar to our findings under the initial cost structure, when the range cost increases as

the provider o↵ers mobile dialysis, the optimal reward rate increases in the unit range cost Cr

after modifying the cost of operating a new modality. As the range cost Cr increases, the provider

continues to serve fewer patients through the new modality with a fixed reward rate under the

new cost structure. Hence, cutting the reward rate either further increases total hospitalization

costs or pushes the provider to o↵er a satellite clinic, which both increase total hospitalization

costs. The e↵ects of the unit range cost on the optimal reward rate is demonstrated in Figure 24.

Medicare o↵ers a higher reward rate when the range cost Cr surpasses a specified threshold where

Medicare finds the satellite clinic to be a more cost e↵ective alternative. Due to the fact that an

increase in the range cost has no e↵ect on the ideal site of a satellite clinic, we notice once again
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that once Cr exceeds the indicated threshold, the range cost has no e↵ect on Medicare’s optimal

option. This is consistent with the previous observation.
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Figure 24. Optimal reward rate ↵
⇤ as a function of Cr.

In addition, we investigate the impact of the new cost structure on the provider’s profit

margin. The conclusions of our numerical analysis are illustrated in the figures 25 and 26.

The provider’s profit increases with hospitalization cost, as illustrated in Figure25, and this is

especially true when the healthcare provider shifts the modality from a satellite clinic to a mobile

clinic.
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Figure 25. The provider’s optimal profit ⇧⇤
Pro

(↵⇤) as a function of hc.

It is also found that the trend is identical to that observed in the main model when the

range cost increases and the provider o↵ers a mobile clinic. Increasing the range cost results in

a considerable decrease in the provider’s optimal profit when the provider switches the modality

from mobile to satellite clinic, as seen in Figure 26. After considering all of the findings, we can
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conclude that all of the key results hold when the cost of delivering a new modality di↵ers from

the cost proposed in the main model.
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Figure 26. Medicare’s optimal total cost Med(↵⇤) as a function of Cr.

3.4.3 Multiple Mobile Clinics

In this section, we examine the possibility of providing multiple new modalities. We

first consider the provider’s ability to provide the new modality across three intervals, then

extend our analysis to the case where five modalities are feasible. In both cases, we note that

the provider o↵ers satellite clinics for a wider range of reward rate. Nevertheless, all of the key

insights obtained by studying the single modality model remain qualitatively unchanged.

Similar to our previous robustness studies, we first confirm that our findings in

Proposition 1 continue to hold when the provider has the capability of operating multiple

modalities simultaneously. We again find that with low reward rates, the provider would have

little incentive to undertake further costs associated with new modalities. Optimal conditions for

o↵ering a new modality are reached when the reward rate improves su�ciently to pay for the new

modalities. As the value of ↵ rises, the provider begins to o↵er multiple satellite clinics. Once

the reward rate has reached a specified threshold, the provider will provide the optimal range of

mobile clinics. We also note that as the reward rate increases, the provider is able to service a

bigger proportion of patients through the new modality. The location of a satellite and a mobile

clinic with a hypothetical set of parameters is depicted in Figure 27. As illustrated in the basic

model, coverage of a new modality increases as the reward rate increases.

Next, we study the relationship between the reward rate, ↵, and Medicare’s

hospitalization cost. Our numerical study reveals that, as we prove in Proposition 2, the total cost
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of hospitalization for Medicare decreases when the reward rate increases when multiple modalities

are o↵ered. The hospitalization cost for Medicare as a function of reward rate is depicted in

Figure 28. As previously noted, the primary rationale for this cost reduction is that as the reward

rate improves, the provider treats more patients using the new modalities, resulting in a fall in

hospitalization costs. As a result of the provider’s mobile or satellite clinics network, the decline

rate is structured in a piece-wise format.
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Figure 28. Medicare’s hospitalization cost as a function of the reward rate (↵).

When multiple new modalities are introduced, the total cost of Medicare is also a piece-

wise function of the reward rate because the cost of hospitalization is a piece-wise function. The

relationship between Med and reward rate with multiple modalities is depicted in Figure 29.

As previously mentioned, the total cost of Medicare is a function of two convex functions, one
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of which relates to the range of ↵ leading to multiple satellite clinics and the other of which

corresponds to the range of ↵ leading to multiple mobile clinics.
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Figure 29. Medicare’s total cost as a function of the reward rate (↵).

After examining Medicare’s cost functions, we now turn our attention to verifying our

results establishing the e↵ects of cost parameters on Medicare’s optimal total cost, which is

presented in Proposition 4. Whenever the provider operates either three or five new modalities,

the total cost of Medicare increases in the unit hospitalization cost. With a fixed reward rate as

hc increases, the provider’s new modalities can serve a bigger proportion of patients, resulting

in a lower total hospitalization cost that is comparable to the main model. Due to the fact that

Medicare must share cost savings with providers, as hospitalization cost rise, Medicare pays less

in overall hospitalization costs and more in cost savings shared with the provider, similar to the

main model. At the optimal reward rate, due to the fact that the shared cost savings associated

with lower hospitalization costs outweigh the benefits associated with reduced hospitalization

costs, Medicare’s optimal total cost is increasing in the unit hospitalization cost hc when multiple

modalities are o↵ered, as illustrated in Figure 29.

Furthermore, we confirm that Medicare’s overall cost increases or stays the same when

Cr increases when multiple modalities are o↵ered. This is similar to our result presented in

Proposition 4. Similar to our original model, the provider’s coverage of mobile clinics is reduced

when the range cost is higher. Hence, with these adjustments, as the range cost increases, the

total hospitalization cost increases, and Medicare will pay higher costs with a fixed reward rate.

When a provider o↵ers satellite clinics, it is important to emphasize that changes in the range

cost have no e↵ect on the provider’s decisions. As a result, even when the range cost increases, the

42



Satellite

Mobile

200 400 600 800 1000
hc

10

20

30

40

50

60

κMed(α*)

a) Cr = 15, Cd = 10, 3 new modalities

Satellite

Mobile

200 400 600 800 1000
hc

10

20

30

40

50

60

70

κMed(α*)

b) Cr = 15, Cd = 10, 5 new modalities

Figure 30. Medicare’s optimal total cost Med(↵⇤) as a function of hc.

total cost of Medicare remains unchanged in this situation. Figure 31 depicts the changes in total

Medicare cost as the value of Cr increases.
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Figure 31. Medicare’s optimal total cost Med(↵⇤) as a function of Cr.

When a provider o↵ers multiple modalities, our numerical study reveals that Medicare

o↵ers a lower reward rate as the unit hospitalization cost hc increases. We know that if the unit

hospitalization cost increases, the provider will serve more patients through its newly established

modality if the reward rate remains constant. In response, Medicare may be able to cut the

reward rate when unit hospitalization cost rises because the overall cost of hospitalization is

directly related to the proportion of patients served by the provider. This decline in reward rate

will exist until the provider changes the mode of dialysis delivery. As illustrated in Figure 32, the

optimal reward rate increases when Medicare sets a reward rate that shifts the provider’s new

modality from a satellite clinic to a mobile clinic range.
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Figure 32. Optimal reward rate ↵
⇤ as a function of hc.

Similar to our original model, when a provider o↵ers mobile dialysis, the optimal reward

rate increases as the unit range cost Cr increases when multiple modalities are available. This is

because the provider with a fixed reward rate treats fewer patients as the range cost Cr increases

with the mobile clinic. Reduced reward rates may increase total hospitalization costs more or

encourage providers to o↵er satellite clinics, both of which increase total hospitalization costs.

Figure 33 illustrates the optimal reward rate. Medicare pays a higher reward rate when the range

cost Cr exceeds a predetermined level where satellite clinic becomes the more cost e↵ective choice.

Because an increase in the range cost has no e↵ect on the optimal location of satellite clinics,

we see once again that once Cr surpasses the stated threshold, the range cost has no e↵ect on

Medicare’s preferred alternative. This observation is compatible with the preceding one.
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Figure 33. Optimal reward rate ↵
⇤ as a function of Cr.

Finally, we analyze the influence of delivering a variety of new modalities on the profit

margin of the dialysis provider. Figures 34 and 35 show the results of our numerical study, which
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are detailed in the text. The hospitalization cost, as shown in Figure 34, has a direct influence

on the provider’s profit. When the provider shifts the modality from a satellite clinic to a mobile

clinic, her profit increase significantly.
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Figure 34. The provider’s optimal profit ⇧⇤
Pro

(↵⇤) as a function of hc.

Additionally, when the range cost increases and the provider o↵ers a mobile clinic,

the pattern is identical to that observed in our initial model. Increased range costs result in a

significant fall in the provider’s optimal profit when the provider switches from mobile to satellite

clinic operation mode, as illustrated in Figure 35. After taking into account all of the data, we can

conclude that when a provider o↵ers multiple new modalities simultaneously, all of the important

findings hold true.
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Figure 35. Medicare’s optimal total cost Med(↵⇤) as a function of Cr.

3.5 Summary and Conclusion

In this essay, the feasibility of incorporating mobile clinics as a new dialysis treatment

has been investigated. In this study, we conduct a systematic examination of the relationship
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between new payment structures and providers’ incentives to o↵er novel dialysis modalities. Using

theoretical models, we demonstrate how Medicare should design the payment structure to reduce

the patient’s travel distance while minimizing Medicare’s costs.

In this model, we examine a single provider who can o↵er dialysis via a mobile clinic.

This innovative modality can treat patients from a single location, referred to as a satellite clinic,

or over a range of locations wherein patient’s within the range have zero travel, referred to as

mobile dialysis.

Given that the provider incurs additional costs to implement this innovative modality,

we propose that Medicare incentivize providers to facilitate this novel modality. We demonstrate

that, under the model assumptions, a reimbursement mechanism exists that creates an incentive

for the provider to o↵er a new modality in the form of mobile or satellite clinic. As an additional

or exclusive service modality, a mobile or satellite clinic can be a win-win-win for Medicare, the

dialysis provider, and the patients.

The incentive design used to compensate for the extra costs is a shared-savings

mechanism in which Medicare shares a proportion of its hospitalization cost savings with the

provider. We analytically prove that the provider finds it optimal to o↵er new modalities based on

reimbursement rate under specific conditions and can increase its profit by o↵ering new modality.

Specifically, when hospitalization costs associated with travel distance are relatively high, the

provider’s profit can increase significantly by o↵ering a new modality. We identify the conditions

under which the provider o↵ers the new modalities, as well as the proportion of patients who are

served by the new modality.

This research is a first attempt to explore the possibility of introducing a new modality in

the context of ESRD modality service design. We look at more sophisticated modeling setups in

order to extend our model and ensure that the results are robust. First, we study an alternative

option for patient distribution from the main clinic other than what was considered in the original

model. This new distribution of patient locations enables consideration of increased density in

the vicinity of the main clinic. Our numerical analysis of two alternative distributions indicates

that the primary findings of the original model are valid even when patients’ distance from main

clinic follows a di↵erent distribution. Moreover, we study an alternative cost function for mobile

dialysis clinic. This new modality cost structure considers a higher cost on modalities o↵ered at
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a site remote from the clinic. In particular, we propose a nonlinear cost function for the provider

of mobile or satellite clinics and conduct a numerical analysis using this new cost structure. We

observe that all of the key conclusions from the original model are robust.

Finally, as the most important extension of this project, we design a model to analyze the

possibility of o↵ering multiple new modalities. We specifically aim at exploring how our findings

carry over the cases wherein three and five modalities are o↵ered. Our numerical study indicates

that the provider’s behavior is comparable to what we observed in the main model, with a few

minor di↵erences that do not a↵ect the major findings.

A critical aspect of providing a new modality is determining the extent to which the

new modality will be o↵ered by dialysis care provider. Due to the fact that the nature of the

new modality can vary greatly depending on whether mobile or satellite dialysis is o↵ered, it is

critical to analyze the features that the new modality should have and the extent to which the

cost structures are comparable.

In the current work, we choose a simplified cost structure and incentive design to model

provider and Medicare decision-making. This allows us to focus on critical research questions

while still accounting for details such as patient coverage percentages. We believe that future

research might build on our findings by adopting a more realistic pricing structure for satellite and

mobile clinics that takes capacity constraints into account.

Although our findings on the introduction of new modalities and incentive designs are

encouraging, additional research is needed to fully understand the scope of this new modality,

particularly the capacity of mobile dialysis and the primary clinic, as well as the role of patients

participating in this new modality. With a new setup, the following chapter examines a dialysis

network that incorporates nurse-assisted home dialysis as an additional modality and considers

patient preference when assigning patients to various modalities.
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CHAPTER IV

A MATHEMATICAL MODEL FOR A PATIENT-CENTRIC DIALYSIS NETWORK

This work is coauthored with Prof. Nagesh Murthy and Dr. Eren Çil.

4.1 Introduction

Kidney transplant is the most cost-e↵ective, and high-quality treatment option for kidney

failure [48]. While the volume of kidney transplants has increased in recent years and data from

2019, indicate some encouraging trends, the demand for donor organs continues to exceed the

supply [49]. As a result, the vast majority of patients with end-stage renal disease (ESRD) are

treated with life-saving dialysis. The major portion of dialysis is administered in clinics, despite

evidence that home-based hemodialysis (Home HD) may be more cost-e↵ective [50, 51]. Home HD

enables patients to maintain their social ties by preventing them from relocating to bigger cities

and maintaining their cultural involvement, which is especially crucial for patients in rural areas

and indigenous population [52].

Internationally, rates of home HD di↵er significantly; countries with a large home HD

”community,” such as New Zealand and Australia, sustain 18% and 9% of all dialysis patients on

home HD. This compares to 3–6% in Canada [37]. In 2017, only 2% of hemodialysis patients in

the U.S. were treated by home hemodialysis. Therefore, most patients must travel to the dialysis

center, and the intensity of the treatment and transportation result in extensive fatigue, nausea,

and other adverse e↵ects [53]. The barriers that deter patients from selecting home HD include

cognitive and physical barriers, lack of confidence, fear of social isolation, concerns about the

insu�ciency of treatment, and inadequate care and supervision [54, 55, 56, 57, 58]. In addition,

phobia from dialysis equipment and needle are common obstacles to self-care home HD [56].

Other than the barriers we have mentioned before, another reason for the low participation rate

might be the limited coverage of training cost for home HD to prepare patients [54].

In this study, we examine the feasibility of providing home HD with the assistance of a

nurse practitioner. Home HD with nurse assistant is an alternate and appropriate care choice for

patients who are not capable or willing to engage in self-care activities at home. Additionally,

research comparing small assisted home HD programs to in-center HD for patients with physical

and mental disabilities found that it is both safer and more cost e�cient [59, 60]. Some countries

such as Australia and New Zealand have developed innovative ideas to improve and maintain their
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high home HD rate. As an example, in southern New Zealand, trained nurses assist and support

some home HD patients [52]. Recently, an assisted home HD pilot trial in Canada showed positive

e↵ects, and a broader study is now being undertaken to determine the cost e↵ectiveness of this

program [61]. The United States can leverage Australia, New Zealand, and Canada’s policies,

which may help overcome some of the challenges to home HD reported by patients.

As previously mentioned, dialysis places a significant financial burden on healthcare

systems due to the resource-intensive nature of dialysis. The studies show that the annual cost of

ESRD patients’ transportation to and from dialysis units is expected to cost $3 billion where half

of that is for ambulances [62]. On top of that, as mentioned in the first essay, increased travel for

ESRD patients would result in increased hospitalization expenditures and could have an adverse

impact on patients’ health. The majority of patients who live in rural areas without access to

dialysis clinics must move to larger cities. This clearly shows the disparities that exist in the US

dialysis care system [63]. Thus, o↵ering home HD with nurse assistance may result in decreased

travel distance as well as significant improvement in patients’ health outcomes and consequently

decrease Medicare’s cost, which is the focus of this study.

Medicare has attempted to facilitate home dialysis in the past by adjusting its payment

policy. The ESRD Prospective Payment System, launched in 2011, established the same base

payment for the home and in-center dialysis with an add-on payment per day for training. This

reform was intended to provide an incentive for home-based therapies. However, these incentives

had a minimal impact on promoting home HD. Patients, policymakers, and healthcare systems

continually seek higher value, which can only be accomplished by genuine patient-centered

creativity that encourages high-quality, high-value care. Significant steps are currently being

taken to encourage the necessary transformative reforms. To remove the barriers of home HD,

we propose that a professional caregiver (nurse) be present during the home HD session to carry

out or support patients to do the dialysis. The involvement and support of the nurse during the

dialysis decreases dialysis complications and improves patients’ confidence in home HD as medical

assistance is available if required. Home HD and assisted home HD cannot address all types of

patients. Some patients can do the dialysis themselves, but they still prefer to go to clinics. We

propose satellite clinics as a good alternative for this type of patient to minimize their traveling

distance.
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Some ESRD patients are willing to receive home HD. However, they are concerned about

the dialysis complications and would like access to an on-call nurse who can answer their queries

during dialysis sessions. This is particularly for stable patients, who may greatly benefit from the

frequent use of telehealth. However, unstable patients who are struggling with travel schedules

will still benefit from telehealth when there is no other option. Advances in modern telemedicine

and telehealth technology have expanded the flexibility and usefulness of these technologies for

patients who live far away from medical centers or finds it di�cult to travel to a clinic. Telehealth

and online patient supervision can be helpful in addressing regional obstacles to treatment,

therefore improving access to home dialysis care, patient quality of life, and dialysis performance

[64]. Telehealth and home dialysis also promote more home-based treatment, reduced travel time,

and fewer visits to the clinic while still o↵ering patient and care provider control and self-care.

Telehealth and remote control of patients with dialysis have been increasing in the last decade,

notably in Australia, where telehealth is extensively used for home dialysis patients. Remote

surveillance has been shown to decrease hospitalizations and costs in high-risk hemodialysis

patients [65, 66, 67]. Therefore, we suggest the use of telehealth for home HD as a new modality

in the dialysis network for providers in the U.S.

The current COVID-19 pandemic has also contributed to the remarkable and rapid

increase of the use of telemedicine in many areas of the world for healthcare, including in-

center hemodialysis patients. Telehealth systems, particularly during the pandemic, assist in

providing necessary treatment to patients while reducing the risk of contracting COVID-19 for

both healthcare personnel (HCP) and patients. Despite being understudied to date, telehealth for

hemodialysis patients has the potential to expand the adoption of home dialysis and raise patient

care while ultimately lowering costs and enhancing results [53]. The lessons learned during the

pandemic facilitate the healthcare delivery services in permanently incorporating telemedicine into

their delivery systems. Post-COVID-19 healthcare delivery is unlikely to resemble the past years

where healthcare delivery was centered around walk-in clinics and doctors’ o�ces. The potential

role of telehealth in medical care in the United States remains to be seen, especially in the context

of the dialysis delivery network.

This chapter presents a comprehensive mathematical model that analyzes the provider’s

profit and Medicare’s cost when multiple modes of modality are o↵ered, including assisted home
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HD. We propose that a nurse be present during the assisted home HD session, either physically

or virtually via telemedicine, to administer dialysis or aid patients with dialysis. Furthermore,

we suggest adding satellite clinics for the minority of patients who still prefer (or are required)

to undergo dialysis in a clinic. The second essay’s primary objective is to investigate the cost-

e↵ectiveness and feasibility of delivering home dialysis help to people currently on dialysis while

also allowing for access to other main clinics and satellite clinics. We particularly focus on the

following research questions:

-Whether, when, and how Medicare can incentivize dialysis service providers to introduce

home dialysis service as a new modality to reduce hospitalization costs incurred by Medicare for

ESRD patients on account of the detrimental impact of their recurring travel for in-clinic dialysis?

-What fraction of savings in Medicare’s hospitalization cost on account of reduced patient

travel due to new service modalities is needed to incentivize (i.e., compensate) the dialysis service

provider to do so?

-How is this fraction of savings shared (i.e., reward rate) influenced by factors such as

Medicare’s cost structure, dialysis provider’s cost structure, clinic’s operating policy, geographic

location of clinics and patients, and patient preference for in-clinic and home-dialysis?

This chapter is organized as follows; in section 4.2 we discuss the problem definition and

the developed mathematical model. Next, we present the structure of our numerical study and

some preliminary results.

4.2 Model setup

To remove the barriers of home HD, we investigate the feasibility of providing medical

support to patients when they are on home dialysis. Assistance is delivered in two ways:

nurses visit patients in their house or patients are connected to clinicians and nurses through

telecommunications technology to increase the quality of their care and satisfaction. This ensures

that nephrology consultations are available on a weekly basis, as prescribed by guidelines [64].

In the proposed dialysis distribution network, dialysis providers would o↵er dialysis

services to patients through four distinct treatment modalities, t 2 T , where t = 1 represents

in-clinic dialysis under the direct supervision of healthcare providers, t = 2 represents satellite

dialysis under the direct supervision of healthcare providers in a medical facility other than the

main clinic, t = 3 indicates home dialysis administered to patients under the direct supervision
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of nurse in patients’ house. t = 4 represents home dialysis performed by patients under the direct

supervision of nurses via telemedicine.

We assume that the main clinic already exists and satellite clinics would operate if at

least one patient is assigned to them. Therefore, the capital cost for the main clinic is based upon

finished o↵ and existing building and purchasing new machines. There is an extra capital cost,

FC
2
s
, for the satellite clinic due to remodeling the building and obtaining the permits. Typically,

a dialysis center operates Monday to Saturday and serves patients in two schedules identified

by f 2 F where f = 1 represent Monday, Wednesday, Friday and f = 2 represents Tuesday,

Thursday, Saturday schedule.

S
t, t 2 T represents the set of dialysis service locations for treatment modality t. S1

represents the main clinic location. S2 is the set of possible locations for satellite clinics. S3

identifies the set of locations from which nurses assigned to home dialysis depart and return at

the end of the workday. S4 represents the location from where nurses provide telemedicine service

to patients.

We assume that patients are either uniformly or normally distributed around the main

clinic and define a distance limit dtp beyond which patients are unwilling to travel and hence

expect home dialysis as per their preference for the nature of nurse assistance. Patient treatment

costs CPt including biomedical costs, and dialysis supplies vary according to dialysis service

treatment. Usually, home dialysis biomedical costs are higher than those for main/satellite

dialysis. Nurses who serve patients at home, work NT hours a day, and V NM identifies their

annual salary. In-home nurses begin their travel to patients’ homes from s
3 2 S

3 and return to the

same location at the end of the day. They get a compensation of V T dollars per mile traveled and

spend PT hours monitoring the dialysis procedure for each patient.

There are two types of nurses who serve patients at main/satellite clinics: a) registered

nurse; b) patient care sta↵. Each registered nurse requires a minimum of 12 months of clinical

nursing experience and an additional 6 months of clinical experience caring for patients with

end-stage renal disease (ESRD), including experience with the hemodialysis procedure. The

Centers for Medicare and Medicaid Services (CMS) mandates that one licensed nurse be on duty

to supervise patient treatment for every twelve hemodialysis patients. Moreover, CMS requires

that the dialysis center provide one patient care sta↵ dedicated to dialysis care for every four
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patients [34]. The annual salary of registered nurse and patient care sta↵ is defined as V N dollars

and V P dollars in this model.

The network is designed for two shifts a day at the main and satellite clinics. We also

assume five hours for in-clinic and satellite shift duration, with two schedules a week. We assume

that the provider is compensated in proportion to the savings in hospitalization costs generated

by the patient’s reduced travel distance. The set, indices, and parameters are introduced in this

section, followed by a discussion of the decision variables, and lastly, the math model is presented.

4.2.1 Sets, Indices and Parameters

Model sets, indices, and parameters are all listed in this section.

P= Set of patients’ location

T= Set of modalities

F= Set of weekly schedules

S
t= Sets of locations where t 2 T

p = Patient location index. p 2 P

t = Modality index t 2 T = {1, ..., 4}

f = Schedule index f 2 F = {1, 2}

i, j= Location index. i, j 2 P [ S
t|t = 3

dpst =Distance between patient’s location p and s
t

dnij =Distance traveled by nurse from location i to j

dt = Distance threshold for patients’ travel distance to main or satellite clinics

CPt = Patient’s treatment cost with modality t

TTij =Travel time between locations i and j

NT= Nurse available time in a day when serving home dialysis patients at home

PT= Service time needed for each patient for t = 3

CMC = Annualized cost of dialysis machine used in main and satellite clinics

CMH = Annualized cost of dialysis machine used in home dialysis

FCM= Annualized clinic construction/operation cost per unit of dialysis machine

installed in main or satellite clinics

FCs2= Annualized fixed cost of starting a satellite clinic located at s2 2 S
2
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FCs4= Annualized fixed cost of o↵ering telemedicine modality including nurse training,

communication equipment, etc.

NSt= Number of Nurses needed in each shift of each schedule of modality S
t , t = 1, 2, 4

NPSt= Number of patient care sta↵ needed in each shift of each schedule for modality S
t

when t 2 {1, 2}

V N= Annual cost for a nurse including salary and benefits when serving at t = 1, 2, 4.

We assume that a nurse is working 40 hours a week. Nst ⇤ 60 provides us with total nurse hours

needed to support two five-hour sessions in a day for 6 days a week. NSt ⇤ 60/40 number nurses

FTE needed.

V P= Annual cost for patient-care sta↵ including salary and benefits. We assume that a

patient-care sta↵ is working 40 hours a week. NPst ⇤ 60 provides us with total patient-care sta↵

hours needed to support two five-hour sessions in a day for 6 days a week. NPSt ⇤ 60/40 number

of patient-care sta↵ FTE needed.

V NM= Annual salary of a in-home dialysis nurse for working 40 hours a week. Assuming

each day of schedule is limited to be 10 hours a schedule needs 30 hours hence each schedule

requires 30/40=0.75 FTE of nurse.

V T= Variable travel cost for nurse when nurse is traveling, $ per mile for recurring travel

in a year.

hc= Annual hospitalization cost incurred by Medicare per patient per mile of patient’s

recurring travel (3 trips a week and 52 weeks a year)

Dp= The distance between patient’s location p and main clinic

↵= Reward rate

PRpst= Patients’ preference parameter for modality t. This parameter takes value of 1

if patient p prefers modality t and zero otherwise. We assumed all patients are willing to receive

dialysis at main and satellite clinics.

CS= Status quo cost for the provider where:

CS = |P | ⇤ CPt=1 + d |P |
4 e(CMC + FCM) + d |P |

4⇤12e ⇤ (60/40) ⇤ V N + d |P |
4⇤4e ⇤ (60/40) ⇤ V P

4.2.2 Decision Variables

xpst =

8
>><

>>:

1 If patient located at p is assigned to modality t located at st 2 S
t

0 Otherwise
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yijs3f=

8
>>>>>><

>>>>>>:

1 If nurse located at s3 for home dialysis visits location j 2 P [ s
3

after i 2 P [ s
3 and i 6= j in schedule f

0 Otherwise

As2=

8
>><

>>:

1 If the satellite at location s
2 2 S

2 is active

0 Otherwise

Bs4=

8
>><

>>:

1 If the telemedicine modality is o↵ered

0 Otherwise

NMCst= Auxiliary variable for number of machines needed at st 2 S
1 [ S

2

NMH= Auxiliary variable for number of machines needed for home dialysis.

SPis3f= Service start time of patient i if he/she is visited by nurse s
3 during shift f .

4.2.3 Math Model

The objective of the math model in this section is to maximize the provider’s profit for

any given fraction of the savings in hospitalization cost on account of reduced patient travel

that Medicare is willing to share with the provider. The provider receives an extra payment

proportional to the savings in patients’ hospitalization costs when o↵ering the new modalities.

The cost of establishing a new dialysis distribution network covers the operating costs of active

satellite clinics and telemedicine infrastructure, nurse and sta↵ expenses, transportation costs

for nurses serving patients at their homes, patients’ treatment costs, dialysis equipment, and

maintenance costs. The math model is presented as follows:

Maximize ↵(hc(
X

p2P

Dp �
X

t=1,2

X

p2P

xpstdpst))� [(
X

s22S2

(As2 ⇤ FCs2) +Bs4 ⇤ FCs4)+

(V N ⇤
X

t=1,2,4

NSt ⇤ 60/40) + (V P ⇤
X

t=1,2

NPSt ⇤ 60/40) + (V NM ⇤ 0.75 ⇤
X

s32S3

X

j2P

X

f2F

ys3js3f )+

(V T ⇤
X

i2s3[P

X

j2s3[P

X

s32S3

X

f2F

yijs3fdnij) + (
X

t2T

X

p2P

xpstCPt)+

X

st2S1[S2

(CMC + FMC) ⇤NMCst + CMH ⇤NMH � CS]
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Constraint 4.1 ensures each patient is assigned to only one modality and served from only

one location. This constraint is called traditional assignment constraint.

X

t2T

X

st2ST

xpst = 1 8p 2 P (4.1)

Constraint 4.2 ensures the distance travelled by patients who receive dialysis from main or

satellite clinic is less than patients’ predefined threshold. In other words, it guarantees that the

model does not include any assignment that violates this threshold.

xpstdpst  dt 8p 2 P, s
t
, t 2 {1, 2} (4.2)

Constraint 4.3 indicates if a nurse located at s3 is assigned to serve a patient at location p

for in-person home dialysis during the schedule f then location p should be on the nurse’s route.

To be more precise, this constraint ensures that there is just one variable that takes one if that

patient is assigned to a nurse and that variable is always zero if that patient is not assigned to any

nurse.

X

j2[P�{p}][{s3}

X

f2F

ypjs3f = xps3 8p 2 P, s
3 2 S

3 (4.3)

Constraint 4.4 ensures if nurse s
3 is assigned to serve patient p during schedule f , he/she

will leave the patient’s home to visit another patient or return to s
3. (in-flow/out-flow)

X

i2[P�{p}][{s3}

yips3f =
X

j2[P�{p}][{s3}

ypjs3f 8f 2 F, 8s3 2 S
3
, 8p 2 P (4.4)

Equation 4.5,4.6 make sure if a nurse located at s3 is assigned to serve the patient at

location p during shift f , she/he starts and finishes the route at s3.

X

j2P

ys3js3f  1 8f 2 F, 8s3 2 S
3
, (4.5)

X

j2P

yjs3s3f  1 8f 2 F, 8s3 2 S
3
, (4.6)

Constraint 4.7 ensures the time nurses spend traveling and serving patients is smaller

than their shift length when they have to travel.
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X

i2P[{s3}

X

j2[P�{i}][{s3}

yijs3f tij + (
X

i2P[{s3}

X

j2P[{s3}

yijs3f � 1)PT  NT 8s3 2 S
3
, f 2 F, i 6= j

(4.7)

Constraint 4.8 specifies the time of service for a visited patient by a specific nurse based

on the service time of the previous patient. This constraint determines the route based on the

start times and locations of patients. It imposes strictly increasing service start times along the

path of a nurse. This also prevents loops on a route, since returning to an already visited patient

will violate the service start time constraint.

spis3f + PT + tij  spjs3f +M(1� yijs3f ) 8s3 2 S
3
, f 2 F, i 2 P, j 2 P (4.8)

Constraint 4.9 ensures if a satellite serves a patient, then that satellite is active and its

corresponding cost associated with the satellite is incurred in the objective function.

As2 � xps2 8p 2 P, s
2 2 S

2 (4.9)

Constraint 4.10 specifies that if a patient is assigned to telemedicine, the fixed cost

associated with telemedicine is incurred in the objective function.

Bs4 � xps4 8p 2 P, s
4 2 S

4 (4.10)

Number of dialysis machines in clinic and home are calculated with constraint 4.11

assuming that there are two shifts in each day for each schedule.

X

p2P

xpst  4 ⇤NMCst 8st 2 S
1 [ S

2 (4.11)

Constraint 4.12 calculates the number of dialysis machines required to serve patients at

home, which is exactly equal to the number of patients assigned to home HD with nurse assistance

and telehealth.

X

p2P

xpst = NMH 8st 2 S
3 [ S

4 (4.12)

Assuming that there are two shifts each day for each schedule, the total number of nurses

for the clinic and satellite during each shift in each modality is calculated by constrains 4.13, 4.14
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and 4.15. (NSt ⇤ 60/40= number nurses FTE needed)
P

p2P
xpst

4
 12 ⇤Nst 8st 2 S

1 [ S
2 (4.13)

P
p2P

xpst

4
 4 ⇤NPst 8st 2 S

1 [ S
2 (4.14)

P
p2P

P
s42S4 xps4

4
 12 ⇤Ns4 (4.15)

Constraint 4.16 ensures that patients’ preference for home dialysis with nurse assistance

is considered. To be more precise, this constraint ensures that there is no modality assignment

against the patient’s will.

X

st

xpstPrpst = 1 8p 2 P (4.16)

The decision variables’ feasible values and non-negativity constraints are as follows:

xpst 2 {0, 1} 8p 2 P, 8t 2 T

yijs3f 2 {0, 1} 8i, j 2 P [ S
3
, 8s3 2 S

3
, 8f 2 F

As2 2 {0, 1} 8s2 2 S
2

Bs4 2 {0, 1} 8s4 2 S
4

spjs3f � 0 8i 2 P, 8s3 2 S
3
, 8f 2 F

NMCst & NMH are integer variables.

4.3 Numerical Analysis

This section outlines the details of our numerical study. To begin, we discuss the

numerical analysis in further detail by introducing the parameters, variable factors, and their

levels. Then, we’ll explain the procedure for scenario construction and problem generation. The

following section discusses the scenario analysis and highlights several of our observations and

insights.

4.3.1 Scenario Development

It is worth mentioning that this study was motivated by a goal of evaluating the e↵ect of

several parameters on the optimal reward rate (i.e.,↵⇤ ), Medicare’s Cost Saving Ratio (MCSR),

and optimal modality assignment from the provider’s perspective. As a result, we focus on
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quantifying the e↵ect of changing the parameters and their interplay on performance measures.

We classified the parameters into two categories. For each problem scenario, a set of parameters

are fixed and do not change across the scenarios and di↵erent random draws. Table 1 displays the

values of the fix parameters. The remaining parameters are referred to as ”parameters of interest”

(i.e., environmental factors), and they include the hospitalization cost (i.e.,hc ), Geographic

Distribution of Distance (i.e.,GDD ), Distance Threshold (i.e.,DT ), and Patient Preference for

nurse assistance (PP ). In order to have a general model and provide reliable insights, we set

two values for factors of interest and came up with sixteen di↵erent scenarios (i.e. 24 ). Table

2 summarizes these parameter levels and their associated values. The remainder of this section

outlines why the suggested values were chosen.

In 2018, the average annual Medicare spending for an ESRD case was $93,191 [70].

Hospitalization costs account for about 33% of ESRD expenditures [41]. At the low end, we

can assume that 5% of the 33% annual hospitalization expense is derived from hospitalization

costs, and at the high level, we assume that 10% of the annual hospitalization cost is derived

from patient distance traveled. As a result, the low level value of annual hospitalization cost

per patient is $93, 191 ⇤ 0.33 ⇤ 0.05 ⇡ $1538, and the high level of hospitalization cost equals

$93, 191 ⇤ 0.33 ⇤ 0.1 ⇡ $3075. These numbers should be divided by seven which is the average

number of miles that a patient travels on a one-way trip [43].

The median one-way driving distance to a dialysis clinic for remote hemodialysis patients

is 10.4 miles [43]. To be consistent with our assumption in the first essay, we assume patient

locations are uniformly distributed over (-30,30) for level I. Considering all hemodialysis patients,

the median one-way travel distance to a dialysis center is 6 miles [43]. Thus, at level II, we can

assume that the distance between patients’ locations and the main clinic follows a bivariate

normal distribution with the following parameters:

µ = (0, 0) , ⌃ =

2

64
15.68 0

0 15.68

3

75

For Patients Preference (PP), we choose the following two levels:

-When people do home dialysis 100% expect nurse at home.

-When people do home dialysis 80% expect nurse at home.
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Table 1. Parameters’ estimation

Parameter Description Amount Reference

CPt

The cost of a patient’s
treatment with a certain
modality t

According to the data, the biomedical cost
of clinic dialysis per treatment is $115.2.
Because there is no data on the biomedical
cost of home dialysis, we took data from
the Canadian payment system and used
the same ratio for home treatment costs,
calculating the biomedical cost of home
dialysis as $156.23.

[34]

NT Nurse available time in a shift
10 hours; total hours for a schedule would be
30 hours hence we consider 1.5 * nurse salary
for a 40 hour week

[34]

PT
Service time needed for each
patient

4 hours per treatment [34]

CMC
Annualized cost of dialysis
machine used in clinic dialysis

$1650 (The total cost of buying a machine
is $16500 which should be amortized in
a straight-line manner over a 10-year
period as per biomedical engineering sta↵
recommendations.)

[34]

CMH
Annualized cost of dialysis
machine used in home dialysis

$3500 (The total cost of buying a machine
is $35000 which should be amortized in
a straight-line manner over a 10-year
period as per biomedical engineering sta↵
recommendations.)

[68]

FCM

,FCs2

,FCs4

Fixed cost main clinic,
Fixed cost satellite clinic
located at s

2 2 S
2 ,

Fixed cost telemedicine

Construction and operation cost per station
for the center is estimated to be $3500; and
FCs2 = FCs4= $24000 (amortized over 10
years)

[34]

V N

Variable cost of nurse when
nurse is not traveling.
(Annual salary) Each shift
is 5 hours

$28 per hour.
V N = 28 ⇤ 40 (hours per
week)⇤1.35(benefits)⇤52 = 78624

[34]

V P

Variable cost of Patient-
Care Sta↵ who serve patient
at main clinic and satellite
clinics. (Annual salary)

$15 per hour.
V P = 15 ⇤ 40 ⇤ 1.35 ⇤ 52 = 42120

[34]

V NM

Variable cost of nurse (Salary
per shift) We suppose that
practitioner o↵ers dialysis at
home

$28 per hour.
28 ⇤ 1.35 ⇤ 40 ⇤ 52 = 78624

[34]

V T

variable travel cost for nurse
when nurse is traveling (based
on Canadian reimbursement
policy $0.53 per Kilometer)

0.53$/Km*1.6 Km/mile*0.8 US$*3*52
=105.83$/mile

[69]
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Table 2. Parameters’ of interest

Parameter Description Level I Level II

hc

Annual hospitalization
cost incurred by Medicare
per patient per mile of
recurring travel (3 trips
a week and 52 weeks a
year)

$219.7 $439.3

GDD
Geographic distribution
of patient location vis-a-
vis main clinic

Uniform distribution
over (-30,30)

Bivariate normal
distribution

µ = (0, 0)

,

⌃ =


15.68 0
0 15.68

�

DT Distance threshold 7.5 mile 15 mile

PP

Patient preference for
an in-person nurse home
dialysis vis-à-vis a tele-
nurse

100% (home) - 0% 80% - 20%

In US home dialysis is being adopted by very small fraction of patients. Hence, we model

o↵ering of home dialysis either with nurse rostering or telemedicine as a way of patients getting

comfortable with home dialysis during the early years of transition in US.

Table 3 describes all sixteen scenarios and the code associated with each scenario. L1

stands for Level I and L2 stands for Level II. For example, in scenario 16 (G2P2D2h2) all factors

of interest get Level II values.

We consider 16 patients for this numerical analysis, and by generating 20 random

problems for each combination in Table 3, we have 320 problems (i.e., 20 ⇤ 16 ). To capture the

e↵ect of di↵erent incentives on the provider’s decision and also on Medicare’s total saving, we

incrementally increase the reward rate by 0.05 from zero to 1, which creates 21 combinations. To

be more precise, the total number of generated problems is 6720 (i.e.,21 ⇤ 20 ⇤ 16 ). We examine

the cost of Medicare for each scenario and choose the one with the lowest value. The reward rate

value associated with that cost is indicated by ↵
⇤. So, our analysis is based on the performance

measures for the 320 selected problems.
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Table 3. Scenario levels

Scenario# Code GDD PP DT hc
1 G1P1D1h1 L1 L1 L1 L1
2 G1P1D1h2 L1 L1 L1 L2
3 G1P1D2h1 L1 L1 L2 L1
4 G1P1D2h2 L1 L1 L2 L2
5 G1P2D1h1 L1 L2 L1 L1
6 G1P2D1h2 L1 L2 L1 L2
7 G1P2D2h1 L1 L2 L2 L1
8 G1P2D2h2 L1 L2 L2 L2
9 G2P1D1h1 L2 L1 L1 L1
10 G2P1D1h2 L2 L1 L1 L2
11 G2P1D2h1 L2 L1 L2 L1
12 G2P1D2h2 L2 L1 L2 L2
13 G2P2D1h1 L2 L2 L1 L1
14 G2P2D1h2 L2 L2 L1 L2
15 G2P2D2h1 L2 L2 L2 L1
16 G2P2D2h2 L2 L2 L2 L2

4.3.2 Performance Metrics

In this essay we consider three key performance metrics to understand the implication

of four environmental factors on Medicare’s opportunity and ability to o↵er incentive to benefit

from introduction of nurse assisted home-dialysis. We designed a suitable numerical study for a

preliminary analysis. The first performance metric is the ↵⇤ value, which determines the optimal

reward rate at which Medicare’s net cost is minimized. The second performance metric is the

modality assignment, which defines the best combination of modalities to maximize the provider’s

profit and Medicare’s cost saving in hospitalization costs. The third performance metric is the

Medicare Cost Saving Ratio (MCSR) which compares Medicare’s cost saving with the status-quo

cost of Medicare.

We use CPLEX academic solver to solve the mixed-integer programming model and find

the optimal solutions. All the above-mentioned scenarios are solved on a machine with an Intel®

Core™ i7-6600U CPU @2.60GHz processor and 8GB RAM. Then, we record objective function

values and optimal solutions and calculate the value of performance measures. Next, we present

our preliminary insights from the scenarios discussed in this section and their associated optimal

solutions.
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Table 4. Optimal reward rate statistics

Scenario Code GDD PP DT hc Average SD LB UB
1 G1P1D1h1 L1 L1 L1 L1 0.43 0.02 0.42 0.44
2 G1P1D1h2 L1 L1 L1 L2 0.23 0.02 0.22 0.24
3 G1P1D2h1 L1 L1 L2 L1 0.43 0.02 0.42 0.44
4 G1P1D2h2 L1 L1 L2 L2 0.23 0.02 0.22 0.24
5 G1P2D1h1 L1 L2 L1 L1 0.43 0.02 0.42 0.44
6 G1P2D1h2 L1 L2 L1 L2 0.23 0.02 0.22 0.24
7 G1P2D2h1 L1 L2 L2 L1 0.43 0.02 0.42 0.44
8 G1P2D2h2 L1 L2 L2 L2 0.23 0.02 0.22 0.24
9 G2P1D1h1 L2 L1 L1 L1 0 0 0 0
10 G2P1D1h2 L2 L1 L1 L2 0.43 0.44 0.24 0.63
11 G2P1D2h1 L2 L1 L2 L1 0.51 0.28 0.38 0.63
12 G2P1D2h2 L2 L1 L2 L2 0.73 0.32 0.59 0.87
13 G2P2D1h1 L2 L2 L1 L1 0 0 0 0
14 G2P2D1h2 L2 L2 L1 L2 0.43 0.44 0.24 0.63
15 G2P2D2h1 L2 L2 L2 L1 0.45 0.22 0.36 0.55
16 G2P2D2h2 L2 L2 L2 L2 0.93 0.07 0.9 0.96

4.3.3 Scenario Analysis for the optimal reward rate

In this part, we investigate the optimal reward rate obtained for each of the sixteen

combinations and for each of the twenty randomly generated draws. As can be seen in Table 4,

the average has a robust value almost in all cases in which the patients are distributed uniformly.

For normally distributed patients, the average is approximately twice as high in instances where

hospitalization cost is greater (0.43 vs 0.23). However, the average ranges from zero to 0.95 for

the normally distributed patients. The other notable point in these types of problems is the

zero value in scenarios 9 and 13. For both of these two scenarios, the distance threshold and

hospitalization cost are at their lower level (i.e., Level I). This indicates that Medicare does not

need to incentivize the provider by o↵ering a fraction of the savings when there is a strict distance

threshold in place from patients and the hospitalization cost is lower for Medicare. Finally, the

highest observation belongs to 16th scenario where all of the factors of interest get the second

level value and the 95% confidence interval is (0.9, 0.96). This scenario is a good example of a

win-win-win for all parties involved in this problem, including Medicare, the provider and the

patients. From Medicare’s point of view, the hospitalization cost is lower and the majority of the

savings should be invested to incentivize the provider to o↵er these new modalities. From the

patients’ point of view, they do not have to come back and forth between their home and the

main clinic and they can be served by assisted home HD.
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Figure 36. Main e↵ects of GDD, HC, PP and DT on average reward rate

As illustrated in Figure 36, the average reward rate for all four environmental factors of

interest increases as we progress from Level I to Level II. The highest slope belongs to distance

threshold when we change it from 7.5 miles to 15 miles. To be more precise, Medicare should

increase the incentive value by about 80%, from 0.274 to 0.493, when patients are less demanding.

4.3.4 Scenario Analysis based on Medicare Cost Saving

In this section, we analyze the value of the Medicare Cost Saving Ratio (MCSR) across

all sixteen combinations and for all 20 randomly generated draws. As can be seen in Table

5, the average MCSR for uniformly distributed patients is about 23% higher in cases where

hospitalization cost is higher (i.e., twice as much). It is worth mentioning that the MCSR for

normally distributed patients is zero for four scenarios ( scenario 9 , 11, 13 and 15) and close to

zero (i.e., 2%) for the rest (scenario 10, 12, 14 and 16). The obtained values for MCSR within

each scenario are consistent and the maximum di↵erence we observed was 5%.

As we see in Figure 37, the patients’ preference and distance threshold do not have any

impact on MCSR. However, we can not make the same statement about unit hospitalization cost.
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Table 5. Average MCSR for each scenario

Scenario# Code GDD PP DT hc MCSR
1 G1P1D1h1 L1 L1 L1 L1 0.32
2 G1P1D1h2 L1 L1 L1 L2 0.55
3 G1P1D2h1 L1 L1 L2 L1 0.32
4 G1P1D2h2 L1 L1 L2 L2 0.55
5 G1P2D1h1 L1 L2 L1 L1 0.32
6 G1P2D1h2 L1 L2 L1 L2 0.55
7 G1P2D2h1 L1 L2 L2 L1 0.32
8 G1P2D2h2 L1 L2 L2 L2 0.55
9 G2P1D1h1 L2 L1 L1 L1 0
10 G2P1D1h2 L2 L1 L1 L2 0.02
11 G2P1D2h1 L2 L1 L2 L1 0
12 G2P1D2h2 L2 L1 L2 L2 0.02
13 G2P2D1h1 L2 L2 L1 L1 0
14 G2P2D1h2 L2 L2 L1 L2 0.02
15 G2P2D2h1 L2 L2 L2 L1 0
16 G2P2D2h2 L2 L2 L2 L2 0.02

As we move from low hospitalization cost to high hospitalization cost, the cost saving ratio for

Medicare has roughly doubled from 16% to 30%. This indicates that the benefit of o↵ering new

modalities at high hospitalization cost is higher and noticeable.

4.3.5 Scenario Analysis for Modality Assignment

In this section, we analyze the value of modality assignment for each predefined scenario

and all 20 randomly generated draws. MPR, SPR, NPR and TPR stand for main clinic patients’

ratio, satellite clinic patients’ ratio, nurse assisted home HD patients’ ratio, and telehealth

patients’ ratio, respectively. Table 6 summarizes the the proportion of patients assigned to

each modality. As summarized in Table 6, patients are assigned to nurses to get assistance with

dialysis in all cases with GDD at level I (i.e., scenarios 1 to 8) regardless of the hospitalization

cost, distance threshold, and patients’ preference. This indicates the significant impact of the

geographic distribution of patients on results.

Furthermore, we can observe another trend in normally distributed patients. When

the cost of hospitalization is low, as in scenarios 9, 11, 13, and 15, all patients are assigned

to the main clinic, indicating that the new modalities are not cost e↵ective for the provider.

When patients are distributed normally and hospitalization costs are high at the same time

(i.e., scenarios 10, 12, 14, and 16), we observe that patients are assigned to the main clinic and

home assisted dialysis with nurse. This indicates that the high hospitalization cost does not
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Figure 37. Main e↵ects of GDD, HC, PP and DT on MCSR

Table 6. Average modality assignment ratios in all scenarios

Scenario# Code GDD PP DT hc MPR SPR NPR TPR
1 G1P1D1h1 L1 L1 L1 L1 0 0 1 0
2 G1P1D1h2 L1 L1 L1 L2 0 0 1 0
3 G1P1D2h1 L1 L1 L2 L1 0 0 1 0
4 G1P1D2h2 L1 L1 L2 L2 0 0 1 0
5 G1P2D1h1 L1 L2 L1 L1 0 0 1 0
6 G1P2D1h2 L1 L2 L1 L2 0 0 1 0
7 G1P2D2h1 L1 L2 L2 L1 0 0 1 0
8 G1P2D2h2 L1 L2 L2 L2 0 0 1 0
9 G2P1D1h1 L2 L1 L1 L1 1 0 0 0
10 G2P1D1h2 L2 L1 L1 L2 0.5 0 0.5 0
11 G2P1D2h1 L2 L1 L2 L1 1 0 0 0
12 G2P1D2h2 L2 L1 L2 L2 0.5 0 0.5 0
13 G2P2D1h1 L2 L2 L1 L1 1 0 0 0
14 G2P2D1h2 L2 L2 L1 L2 0.5 0 0.5 0
15 G2P2D2h1 L2 L2 L2 L1 1 0 0 0
16 G2P2D2h2 L2 L2 L2 L2 0.5 0 0.5 0
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always incentivize the provider; but the more important factor is the distance between the main

clinic and the patient’s residence. For instance, in scenario 10, the patient’s assignment is evenly

distributed between the main clinic and home assisted dialysis.

4.4 Summary and Conclusion

Multiple studies indicate the superiority of home HD compared to the traditional in-

clinic dialysis [50]. However, the share of patients use home HD is very small and not comparable

with in-clinic’s share. There are di↵erent barriers that explain this issue. For example, unstable

patients cannot do the home HD by themselves and they need to be under the control of

professional medical sta↵. Other mentioned barriers include phobia from using dialysis equipment

and needle on their own, fear of social isolation, lack of confidence, concerns about insu�ciency

of treatment and inadequate care and supervision. All of the mentioned obstacles are patient-

oriented. However, other parties are involved in this small participation of patients. For example,

some studies reported the limited resources of training cost for promoting home HD among

patients. This indicates that the Medicare should find some innovative ways to incentivize the

providers to o↵er and promote home HD and new modalities.

We propose di↵erent and innovative solutions to tackle the barriers to home HD. Assisted

home HD is the first modality that is proposed in this study. This modality lifts some of these

barriers for a fraction of patients, yet it is not enough. On top of that, we propose adding satellite

clinics for those patients who are not willing to travel to the main clinic that is farther than their

travel limit, particularly when nurse assisted HD is not o↵ered to them. Finally, we o↵er a new

modality which is called telehealth home HD. This modality is highly beneficial for those patients

who are more confident in doing dialysis. This option is viable when their health status is stable

and there is no recommendation against doing home HD by their nephrologist. Despite the fact

that implementing all of the new modalities will increase the cost of healthcare, research indicates

that less travel will result in a longer life expectancy and a lower risk of missing a dialysis session

[18]. Previous research demonstrated the relationship between hospitalization cost and travel time.

Hence, reducing travel time can result in a savings to Medicare’s expenditure on ESRD patients.

To investigate the relationship between crucial factors a↵ecting this complicated problem,

we propose a mathematical model and a systematic approach for determining the importance

of these factors. To begin with modeling practice, we ask some research questions to uncover

67



all aspects of this problem. These questions include i) Whether, when, and how Medicare

can incentivize dialysis service providers to introduce home dialysis service as a new modality

to reduce hospitalization costs incurred by Medicare for ESRD patients on account of the

detrimental impact of their recurring travel for in-clinic dialysis? ii) What fraction of savings in

Medicare’s hospitalization cost on account of reduced patient travel due to new service modalities

is needed to incentivize (i.e., compensate) the dialysis service provider to do so? iii) How is

this fraction of savings shared (i.e., reward rate) influenced by factors such as Medicare’s cost

structure, dialysis provider’s cost structure, clinic’s operating policy, geographic location of

clinics and patients, and patient preference for in-clinic and home-dialysis? Thinking about these

questions helped us to shape the mixed integer mathematical model with the objective function as

a maximization problem and some constraints. Then, we proposed three performance measures,

including optimal reward rate, Medicare’s cost saving ratio, and modality assignment.

To quantify the e↵ects of the investigated factor, we conducted a numerical analysis by

classifying the parameters into two categories: factors of interest and fixed parameters. Then, we

developed techniques for scenario development and problem generation in order to generate 6720

random problems.Then, we solved all of them to the optimal point and recorded the optimal value

of the objective function and optimal solutions. Finally, we calculated the value of performance

metrics.

Here we summarize the key findings of our study. Our numerical study shows that the

average reward rate should be about 20% higher to incentivize providers in cases where patients

are distributed uniformly and the hospitalization cost is high. Moreover, we found that there are

even cases where o↵ering the reward rate is not necessary by Medicare. On the other hand, there

are some cases where Medicare should return almost all (around 96%) of its savings to provider

to promote the new modalities. Furthermore, we show that as we move from level I to level II in

all factors of interest, we see an increase in the average optimal reward rate. The highest increase

happens for the distance threshold parameter. We observe that the average MCSR for uniformly

distributed patients is about 23% higher in cases wherein that hospitalization cost is higher.

Interestingly, the MCSR is zero for four out of eight scenarios in normally distributed patients.

Our simulations indicated that the distance threshold and patient preference have no e↵ect on

MCSR and the MCSR’s value is the same across level I and II for both of these two factors.
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However, the higher hospitalization cost is around two times higher than the low hospitalization

cost for Medicare.

Despite these innovative characteristics and contributions, this work contains modeling

and methodological limitations that can be explored in future research. For example, in this

study, we examine two distinct levels of patient choice. This assumption can be violated in

practice due to the fact that we have a varying percentage of patients’ preferences for certain

modalities. Another exciting avenue for future research is to investigate the possibility of being

allocated to many modalities on di↵erent days or weeks. However, this complicates the planning

process for planners. It enables patients to experiment with many modalities in order to find the

one they prefer. Another possibility is to examine the network’s robustness to various sorts of

disruption. From a methodological standpoint, the unpredictable nature of these factors requires

novel modeling frameworks. Finally, we address problems on a small scale. However, when the size

of the problem rises, the processing time increases exponentially, necessitating the development of

new algorithms for dealing with large scale networks.
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APPENDIX

TECHNICAL PROOFS CHAPTER 3

Proof of Proposition 1: In this part, We first define the original constrained

optimization problem for the provider, whose objective is to maximize the profit while subjecting

to the span of mobile/satellite clinic.

max⇧Pro(ds, de;↵) ⌘ (↵[Ho �H(ds, de)]� C(ds, de))

= ↵(hc/2� hc

d
2
s
+ 2(1� de)2

4
)� (Cr(de � ds) + Cd(1� de + ds/2))

Subject to 0  ds  de  1

This problem can be solved using Lagrangian multipliers. The Lagrangian function and the

optimality conditions for this problem can be setup as follows:

L = ⇧Pro(ds, de;↵) + �1(de � ds) + �2ds + �3(1� de)

@L

@ds
= 0,

@L

@de
= 0,

�1(de � ds) = 0, �2ds = 0, �3(1� de) = 0

Solving the above system of equations, we determine seven potential optimal solutions to

the provider’s problem. Two of these candidate solutions are eliminated due to the non-negativity

requirement for the Lagrange multipliers, i.e., �i � 0. We, then, establish under which condition

each of the remaining five candidate solutions can be the unique optimal solution. In particular,

we find that the provider o↵ers mobile clinic to the entire population, with d
⇤
s
= 0 and d

⇤
e
= 1

when Cr < Cd/2. When the range cost is between Cd/2  Cr < Cd, the provider o↵ers mobile

clinic to cover the [d⇤
s
, d

⇤
e
] interval with d

⇤
s
= 2Cr�Cd

hc↵
and d

⇤
e
= 1. If Cd  Cr < (6Cd +

p
3Cd)/6,

the provider o↵ers mobile clinic starting at d⇤
s
= 2Cr�Cd

hc↵
and ending at d⇤

e
= 1� Cr�Cd

hc↵
. For higher
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range costs when Cr > (6Cd +
p
3Cd)/6, we observe the following response from the provider:

When (
p
3/2 + 1)Cd/hc < ↵ <

3Cr � 2Cd

hc

d
⇤
s
= d

⇤
e
=

2hc↵+ Cd

3hc↵

and when ↵ >
3Cr � 2Cd

hc

d
⇤
s
=

2(Cr � Cd)

hc↵
, d

⇤
e
=

hc↵� Cr � Cd

hc↵

Proof of Lemma 1: Following the examination of the provider’s optimal response,

we should ensure that the provider’s profit is not negative in order to guarantee the provider’s

participation. As a result, we determined the lower bound of ↵ for each interval of range cost by

solving the following equation:

⇧Pro(d
⇤
s
, d

⇤
e
;↵) = 0 (A.1)

For example, when Cr < Cd/2, we have that ⇧Pro(d⇤s, d
⇤
e
;↵) = (↵hc)/2 � Cr, hence the

lower bound of ↵ becomes 2Cr/hc in this case. Following a similar approach for the other interval

of range cost, we establish the following lower bounds for ↵:
8
>>>>>>>>>><

>>>>>>>>>>:

2Cr/hc if Cr < Cd/2

(
q
�C

2
d
2 + 2CdCr � C2

r
+ Cr)/hc if Cd/2  Cr < Cd

(
q
� 3C2

d
2 + 4CdCr � 2C2

r
+ Cr)/hc if Cd  Cr < (6Cd +

p
3Cd)/6

(
p
3/2 + 1)Cd/hc if (6Cd +

p
3Cd)/6  Cr

Proof of Proposition 2: After replacing the provider’s best response in H(d⇤
s
, d

⇤
e
), we

can take the first order condition of the function over ↵ which yields

dH(d⇤
s
, d

⇤
e
)

d↵
=

8CdCr � 3C2
d
� 6C2

r

2h2
c
↵3

When mobile clinic is o↵ered (A.2)

dH(d⇤
s
, d

⇤
e
)

d↵
=

�C
2
d

6h2
c
↵3

When satellite clinic is o↵ered (A.3)

Since Cr > Cd, expression A.2 and A.3 are negative. Therefore, H(d⇤
s
, d

⇤
e
) is decreasing in ↵.

Proof of Proposition 3: After calculating the provider’s optimal decision for d⇤
s
and d

⇤
e
,

we can determine the optimal reward rate for Medicare by solving the following equation:
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
⇤
Med

⌘ min
0↵1

Med(↵)

where Med(↵) =

8
>><

>>:

1
6 (2↵+ 1)hc � (↵�1)C2

d
12↵2hc

if d⇤
s
= d

⇤
e

(�6C2
r+8CrCd�3C2

d)(↵�1)+2↵3
h
2
c

4↵2hc
if d⇤

s
< d

⇤
e

(A.4)

Calculating the first derivative and checking the second derivative can assist us in

determining the value of ↵⇤. When Cr > Cd, Medicare’s total cost is a piece-wise function of

reward rate. As defined in the proposition, we categorize the solution space into four distinct

zones. When Cr, Cd, hC 2 ⌦1, Medicare determines that the optimal minimum reward rate is

↵0 =
p
3Cd+2Cd

2hc
which incentivizes providers to o↵er satellite clinics and leaves provider with no

profit due to it being a corner solution.

For higher hospitalization cost when Cr, Cd, hC 2 ⌦2, Medicare o↵ers

↵
⇤
1 =

1

2

0

@
3

r
18C2

dh
4
c+

p
3
q

C
4
dh

6
c(C2

d+108h2
c)

32/3h2
c

� C
2
d

3

r
54C2

dh
4
c+3

p
3
q

C
4
dh

6
c(C2

d+108h2
c)

1

A

and provider operates a satellite clinic with a positive profit. Notably, when a provider

o↵ers a mobile clinic, the derivative of Medicare’s cost function with respect to ↵ equals to

6C2
r�8CrCd+3C2

d(↵�2)+2↵3
h
2
c

4↵3hc
which is positive when Cr, Cd, hC 2 ⌦1 [ ⌦2.

When Cr, Cd, hC 2 ⌦3 Medicare must compare two local optimal solutions in order to

determine the global minimum. One local optimal solution leads to a satellite, while the other

leads to a mobile clinic. The optimal reward rate that results in satellite clinic is either ↵⇤
0 or ↵⇤

1,

while the optimal reward rate leading to mobile clinic equals to

↵
⇤
2 =

3

r
18h4

c(6C2
r�8CrCd+3C2

d)+
p
6
q

h6
c(6C2

r�8CrCd+3C2
d)

2(6C2
r�8CrCd+3C2

d+54h2
c)

62/3h2
c

+ �6C2
r+8CrCd�3C2

d

3

r
108h4

c(6C2
r�8CrCd+3C2

d)+6
p
6
q

h6
c(6C2

r�8CrCd+3C2
d)

2(6C2
r�8CrCd+3C2

d+54h2
c)

When hospitalization cost is relatively high and Cr, Cd, hC 2 ⌦4 Medicare optimally o↵ers

↵
⇤
2 and provider o↵ers mobile clinic.

Proof of Propositions 4 and 5:

First we prove the reward rate is decreasing in hc. If d⇤s and d
⇤
e
are corner solutions and

d
⇤
s
= d

⇤
e
, ⇧Pro(↵⇤) = 0

d↵
⇤

dhc

@⇧Pro(↵⇤)

@↵
+

@⇧Pro(↵⇤)

@hc

= 0 =) d↵
⇤

dhc

⌘ �
@⇧Pro(↵

⇤)
@hc

@⇧Pro(↵⇤)
@↵

(A.5)
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Where @⇧Pro(↵
⇤)

@hc
= ↵

⇤( 16 + @H(↵⇤)
@hc

) = ↵
⇤

hc
(hc

2 �H(↵⇤)) and @⇧Pro(↵
⇤)

@↵
= hc

6 +H(↵⇤) + ↵
@H(↵)
@↵

=

hc
2 � H(↵⇤) as @H(↵⇤)

@hc
= 1

3 � H(↵⇤)
hc

and @H(↵)
@↵

=
2(hc

2 �H(↵⇤))
↵

. Therefore, from equation A.5, the

reward rate is decreasing in hc since d↵
⇤

dhc
= � ↵

hc
< 0.

We know the provider’s best response is not sensitive to Cr when satellite clinic is o↵ered.

Therefore, d
⇤
Med

dCr
= 0 when satellite clinic is o↵ered. Now we prove that Medicare’s cost is

increasing in Cr when optimal reward rate is an interior solution. Taking derivative of Medicare’s

cost function with respect to Cr results in

d
⇤
Med

dCr

⌘ @Med(↵⇤)

@↵

@↵

@Cr

+
@Med(↵⇤)

@Cr

(A.6)

Medicare chooses the optimal reward rate that minimizes equation 3.3; therefore, @Med(↵
⇤)

@↵
= 0,

and we can rewrite equation A.6 as:

d
⇤
Med

dCr

= (1� ↵
⇤)
@H(d⇤

s
, d

⇤
e
)

@Cr

(A.7)

Where 0 < ↵
⇤
< 1 and @H(d⇤

s
, d

⇤
e
)/@Cr = 3Cr�2Cd

hc↵
2 . Assuming Cr > Cd, from equation A.6 and

A.7 we can conclude d
⇤
Med

dCr
> 0.

To prove that the reward rate is decreasing in Cr, when mobile clinic is o↵ered and d
⇤
s

and d
⇤
e
are corner solutions we use the ⇧Pro(↵⇤) = 0 properties.

d↵
⇤

dCr

@⇧Pro(↵⇤)

@↵
+

@⇧Pro(↵⇤)

@Cr

= 0 =) d↵
⇤

dCr

⌘ �
@⇧Pro(↵

⇤)
@Cr

@⇧Pro(↵⇤)
@↵

(A.8)

Where @⇧Pro(↵
⇤)

@Cr
= �1+↵

⇤ @H(d⇤
s ,d

⇤
e)

@Cr
and @H(d⇤

s ,d
⇤
e)

@Cr
= 3Cr�2Cd

↵⇤2hc
when d

⇤
s
< d

⇤
e
. By replacing

@H(d⇤
s ,d

⇤
e)

@Cr
in @⇧Pro(↵

⇤)
@Cr

, and knowing that d⇤
e
� d

⇤
s
= 1 � 3Cr�2Cd

↵⇤hc
> 0, we can conclude that

@⇧Pro(↵
⇤)

@Cr
< 0.

On the other hand, knowing that @H(d⇤
s ,d

⇤
e)

@↵⇤ = � 2H(d⇤
s ,d

⇤
e)

↵
, we can find the @⇧Pro(↵

⇤)
@↵

as

follows:

@⇧Pro(↵⇤)

@↵
=

hc

2
+H(d⇤

s
, d

⇤
e
) + ↵

⇤ @H(d⇤
s
, d

⇤
e
)

@↵⇤ =
hc

2
�H(d⇤

s
, d

⇤
e
) (A.9)

From section 3.2, we know that hc
2 � H(d⇤

s
, d

⇤
e
) > 0. Therefore, @⇧Pro(↵

⇤)
@↵

> 0. As a result d↵
⇤

dCr
is

increasing i.e. @↵
⇤

@Cr
> 0.

To prove that the Medicare’s total cost is increasing in Cr, when mobile clinic is o↵ered

and ↵
⇤ is a corner solution, we use the property of equation A.6. Where @Med(↵

⇤)
@↵

> 0 since ↵
⇤ is

a corner solution and @↵

@Cr
> 0 as concluded from equation A.9.

@Med(↵⇤)

@Cr

= (1� ↵
⇤)
@H(d⇤

s
, d

⇤
e
)

@Cr

(A.10)
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Assuming Cr > Cd, equation A.10 is positive, knowing that @H(d⇤
s
, d

⇤
e
)/@Cr = 6Cr�4Cd

hc↵
2 .

As all the components at the right side of equation A.6 are positive, we can conclude d
⇤
Med

dCr
is

positive when mobile clinic is o↵ered and ↵
⇤ is a corner solution.

To Prove d↵
⇤

dhc
is decreasing when satellite is o↵ered and ↵

⇤ is an interior solution

d↵
⇤

dhc

@
2
Med(↵⇤)

@↵2
+

@
2
Med(↵⇤)

@↵@hc

= 0 =) d↵
⇤

dhc

⌘ �
@
2
Med(↵

⇤)
@↵@hc

@2Med(↵⇤)
@↵2

(A.11)

Where @
2
Med(↵

⇤)
@↵2 � 0 and @

2
Med(↵

⇤)
@↵@hc

=

8
>><

>>:

1
↵⇤hc

�
H(d⇤

s
, d

⇤
e
)� hc

3 + Med(↵⇤)
�

if d⇤
s
= d

⇤
e

1
↵⇤hc

(H(d⇤
s
, d

⇤
e
) + Med(↵⇤)) if d⇤

s
< d

⇤
e

.

When provider o↵ers mobile clinic, it’s clear that @
2
Med(↵

⇤)
@↵@hc

is positive. We show that

this result holds when the provider o↵ers satellite. When satellite is o↵ered, we can find the total

hospitalization cost as H(d⇤
s
, d

⇤
e
) = C

2
d

12↵2hc
+ hc

6 � hc
6 . Furthermore, from equation 3.3, we

know that Med(↵⇤) � H(d⇤
s
, d

⇤
e
) � hc

6 . Hence, the summation of total hospitalization cost and

Medicare’s total cost is greater than hc
3 and @

2
Med(↵

⇤)
@↵@hc

is positive when d
⇤
s
= d

⇤
e
. Therefore, d↵

⇤

dhc
is

negative, i.e. the reward rate is decreasing in hospitalization cost when it is an interior solution.

Similarly, we can used the provider’s profit to show that the reward rate is decreasing in

hospitalization cost at the corner solution:

d↵
⇤

dhc

@⇧Pro(↵⇤)

@↵
+

@⇧Pro(↵⇤)

@hc

= 0 =) d↵
⇤
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⌘ �
@⇧Pro(↵
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@⇧Pro(↵⇤)
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(A.12)

Where @⇧Pro(↵
⇤)

@hc
=

8
>><

>>:
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s ,d
⇤
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) if d⇤

s
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⇤
e
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e
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⇤
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=

8
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↵
⇤
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2 +H(↵⇤)) if d⇤

s
= d

⇤
e

�H(d⇤
s ,d

⇤
e)

hc
if d⇤

s
< d

⇤
e

Therefore, we can write: @⇧Pro(↵
⇤)

@hc
=

8
>><

>>:

hc
2 �H(↵⇤) if d⇤

s
= d

⇤
e

↵
⇤

hc
(hc

2 �H(d⇤
s
, d

⇤
e
) if d⇤

s
< d

⇤
e

is positive and makes equation A.12 negative. Therefore, the

reward rate is decreasing in hospitalization cost at the corner solution.
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Next we prove that the optimal reward rate is a non-decreasing function of range cost

(Cr) when optimal reward rate is an interior solution. From the Medicare’s cost function, we know

that @Med(↵
⇤)

@↵
= 0. Taking the second derivative of this function results in:

d↵
⇤

dCr

@
2
Med(↵⇤)

@↵2
+

@
2
Med(↵⇤)
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⇤

dCr

⌘ �
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2
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(A.13)

Where @
2
Med(↵

⇤)
@↵@Cr

=

8
>><

>>:

0 if d⇤
s
= d

⇤
e

� 2�↵
⇤

↵⇤
@H(d⇤

s ,d
⇤
e)

@Cr
if d⇤

s
< d

⇤
e

We know that @H(d⇤
s
, d

⇤
e
)/@Cr = 3Cr�2Cd

hc↵
2 is positive. Therefore,@

2
Med(↵

⇤)
@↵@Cr

 0. We can

also replace @
2
Med(↵

⇤)
@↵2 in equation A.13, with 2(3�↵)H(d⇤

s ,d
⇤
e)

↵⇤2 which is a positive expression. This

shows equation A.13 is either negative or zero.

To prove that Medicare’s cost is decreasing in hc, when optimal reward rate is an interior

solution, we can take the same approach and get:

d
⇤
Med

dhc

⌘ @Med(↵⇤)

@↵

@↵

@hc

+
@Med(↵⇤)

@hc

(A.14)

Since @Med(↵
⇤)

@↵
= 0, equation A.17 can be simplified as:
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Where 0 < ↵
⇤
< 1 and
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.

To find @H(d⇤
s ,d

⇤
e)

@↵
, we use the fact that @Med(↵

⇤)
@↵

= 0.
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By replacing the terms for @H(d⇤
s
, d

⇤
e
)/@hc and @H(d⇤

s
, d

⇤
e
)/@↵, in equation A.17, we get:8

>><

>>:

d
⇤
Med
dhc

= 1/6 + ↵/12 + ↵

2hc
(H(d⇤

s
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⇤
e
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s
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⇤
e
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Med
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2hc
(hc/2 +H(d⇤

s
, d

⇤
e
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s
< d

⇤
e

Therefore, d
⇤
Med
dhc

> 0.

To prove that Medicare’s cost is is increasing in hospitalization cost when satellite is

o↵ered and reward rate is a corner solution, we check the FOC.

d
⇤
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⌘ @Med(↵⇤)

@↵

@↵
⇤

@hc

+
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(A.17)

where @↵
⇤

@hc
= �↵

⇤

hc
and @Med(↵

⇤)
@hc

= ↵
⇤

hc
⇤ (@Med(↵

⇤)
@↵

) + H(↵⇤)
hc

. By substituting sub components into

the equation A.17, we can determine that that d
⇤
Med
dhc

= H(↵⇤)
hc

which is positive.
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