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DISSERTATION ABSTRACT

Ziyad Alsaeed

Doctor of Philosophy

Department of Computer and Information Science

December 2021

Title: Strength and Limitations of Reinforcement Learning and Monte Carlo
Methods for Generating Pathological Performance Test Cases

Detecting and repairing software performance issues requires test cases

that demonstrate those problems. The quality and availability of test cases play

an instrumental role in applications performance testing. Worst-case complexity

edge cases often escape developers’ understanding as the size and complexity of

the application grow. Research shows that feedback-directed search (mutational

fuzzing) can effectively discover pathological inputs that expose performance issues,

but blindly mutating byte strings slows search by producing mostly invalid inputs.

The search can be accelerated for applications that accept richly structured textual

input by adapting search techniques with grammar-based generation. Monte

Carlo tree search (MCTS, a random sampling search method) and reinforcement

learning (RL, a machine learning-based technique to learn through environment

interactions) are two unexplored paths in the domain of pathological input

generation.

MCTS and RL have been applied to different domains, with notable

success in the game domain. Adapting these techniques to search for inputs that

trigger slow processing in a diverse set of applications poses different challenges.

Primarily, adapting feedback-directed techniques from game search to a domain
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with widely varying rewards jeopardizes the search effort by skewing toward initial

and mostly trivial observations. We devise different adaptive reward functions that

perform well despite the diversity in application cost ranges and grammars. Other

challenges vary depending on the applied search technique (e.g., the quality of the

state representation). We overcome each challenge by applying a dynamic solution

that requires no user involvement or exploring different paths to understand their

trade-offs.

We construct and evaluate the application of MCTS and RL on two different

techniques (TreeLine and PerfRL). The core tool for instrumentation and

testing as used in the state-of-the-art fuzzing techniques allows us to evaluate our

contributions effectively. Results on a mix of real-world applications show that

our implementation of TreeLine is up to several times faster than a mutational

fuzzer at finding expensive inputs for applications with richly structured input

(e.g., graph layout) and only modestly slower on applications with unstructured

textual input (e.g., word frequency). In general, we can discover bounded-length

inputs that trigger exceptionally slow processing in the target applications within

few minutes.

This dissertation includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Whether a developer is conscious of the performance of their software

as they construct it or not, acceptable software performance is an application

requirement. As applications grow in size and complexity, identifying performance

issues1 becomes increasingly challenging. Despite the decades of research within

the domain of performance analysis, finding test cases that reveal unknown

performance edge cases or confirm the developer’s understanding is an active and

open research domain.

The application workload (inputs) is an essential element of testing

applications’ performance. They preserve the whole application context and reflect

the actual user experience. However, obtaining these inputs requires deep domain

knowledge of the application and hours of testing. The vast research body on input

generation for performance testing lacks a good constraint of desired possible worst-

case inputs (e.g., search for scaled inputs).

Finding an input pattern of a bounded size that maximizes application

execution cost is challenging. Following Lemieux et al. (Lemieux et al., 2018), we

define pathological inputs as ones that maximize software execution cost subject to

a bound on input length. The bound on length implies that the search for scalable

inputs is usually trivial and can be explored manually. However, finding an input

pattern of a bounded size that maximizes the application execution cost is not.

1The phrases performance issue, performance bug, performance problem, and performance
improvement opportunity are used interchangeably in the software performance analysis literature.
All of these refer to a spot in software in which, if the code block given is fixed; it will improve
the application’s overall performance. Throughout this document, we will use the phrase
“performance issue” to refer to such a case.
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Recent efforts that use machine learning (Grechanik, Fu, & Xie, 2012) and

genetic mutation (Shen, Luo, Poshyvanyk, & Grechanik, 2015) adapt combinatorial

test case generation to search for combinations of values that trigger bugs. Despite

their loose definition of targeted inputs, they require manual identification for

search space input properties.

A notable success in finding pathological inputs for a more general class

of programs has been shown by mutating arbitrary byte strings for performance

testing (Lemieux et al., 2018; Petsios et al., 2017). Fuzzing is a crucial foundation

for security testing as attacks often use malformed inputs. However, arbitrary

mutations of seed inputs waste significant computational effort and might not be

effective beyond testing the applications’ parsing module. Finding algorithmic

performance issues in applications is typically sought in the space of well-formed

inputs, which may be obtained more efficiently with generation from a model (e.g.,

context-free grammar).

Well-known search and learning techniques such as Monte Carlo Tree

Search (MCTS) and Reinforcement Learning (RL) can be formalized to use an

input generation model to define the search space’s scope. Both MCTS and RL

have proven their effectiveness in complex search spaces such as board or video

games. They can accelerate search toward interesting pathological inputs with an

empirically balanced effort between exploration and exploitation of the defined

search space.

We adapt both MCTS and RL to search for pathological inputs in two

different techniques. Both techniques are capable of finding pathological inputs

of tested applications. However, we have much better success in adapting MCTS.

Compared to the state-of-the-art fuzzers, we find pathological inputs on more

2



diverse real-world applications. Specifically, our adaptation of MCTS outperforms

fuzzing techniques on applications with well-structured inputs while modest on

applications that expect unstructured textual inputs. Furthermore, our technique

can scale to a larger desired formation of the same input despite the granular

measurement we use for testing (bytes).

The following section elaborates on the problem scope and contributions.

We outline the dissertation in Sections 1.2.

1.1 Problem Scope and Contributions

In this dissertation, we focus on generating test cases to expose the

performance issues of a wide variety of applications. We use context-free grammar

(CFG) as our search scope definer (Section 1.1.1). To constrain the size of the

generated inputs to an upper bound following the definition of pathological

inputs, we construct an input generation process defining a cost of using CFG

tokens and a budget to be used with different search techniques (Section 1.1.2).

Moreover, we introduce different methods to scale significantly diverse cost

feedback from different applications suitable for search techniques such as MCTS

and RL (Section 1.1.3). Finally, we apply some necessary enhancements to RL

(Section 1.1.4) and MCTS (Section 1.1.5) to efficiently and effectively drive the

search toward expensive workloads.

1.1.1 The Effectiveness of CFG Over Raw Inputs. The set

of sentences generated as derivations of a CFG is far smaller than the sentences

generated by randomly mutating a text string. Thus, grammars are a common

choice for narrowing the search space explored by testing tools, including grammar-

aware and grammar-based fuzzers (Aschermann et al., 2019; Mathis et al., 2019;

Srivastava & Payer, 2021).
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Nonetheless, a CFG is seldom restrictive enough to narrow the search space

to all and only the sentences accepted by an application. For example, if the

application is a programming language processor, the set of derivable sentences

will include mostly sentences that violate static semantic constraints, such as using

only identifiers that have been declared. Some grammar-based testing tools use a

CFG augmented with additional constraints for a programming language (Jsfuzz

- Coverage Guided Fuzz Testing for JavaScript , 2019), some leverage a corpus of

valid texts to improve the likelihood that a generated sentence will be accepted

(Aschermann et al., 2019; Holler, Herzig, & Zeller, 2012; Mathis et al., 2019). In

general, the cost of generating invalid sentences that are useless in testing must be

balanced against the cost of slowing the sentence generation process.

In the case of fuzzing tools, in particular, a common operation is splicing

a portion of one derivation (generally a sentence derived from one non-terminal

symbol) into another, creating a new sentence from two or more previously

generated sentences or samples from a corpus (Aschermann et al., 2019; Srivastava

& Payer, 2021). If we think of searching in the space of sentences derived from

the start symbol of a CFG, we can imagine two different kinds of search steps.

One search step takes a complete sentence or derivation and “mutates” it to

form another (e.g., by splicing). Fuzzing tools generally use this tactic, though

not always exclusively. If we conceive of a search tree (typically not represented

explicitly), nodes in the search tree are complete sentences or derivations. In a

purely generative approach, a search step may be a single derivation step so that

nodes in the (conceptual or concrete) search tree are instead phrases. We adopt

this finer grain approach for MCTS and RL.

4



1.1.2 Constraining the Input Size. Bounding the size of test cases

dictates that we restrict the derivation step to some input size. Therefore, we

associate a notion of cost with grammar elements. Moreover, we associate a notion

of budget to the derivation sequence. The cost and budget are formalized on what

we call an InputGenerator.

The InputGenerator allows us to use different search methodology to

explore inputs of sizes less than or equal to the budget. Moreover, we can use

different definitions of cost to define the possible input length. For example, we

can use a cost base based on bytes, characters, or even grammar tokens.

1.1.3 Adaptive Feedback. The nature of the problem emphasizes

that applications under test can be of different sizes and complexities. Therefore,

the cost range for each application is diverse. Moreover, search techniques expect

well-defined feedback to drive the search toward the desired goal. For example,

MCTS traditionally expect binary rewards to distinguish good from bad paths.

To this extent, we devise different reward functions for different search

techniques to drive and adapt to the search progress. Consequently, our techniques

can adapt dynamically to applications of different sizes and complexities.

1.1.4 Reinforcement Learning Applicability. Reinforcement

learning provides a powerful platform for learning to accelerate in complex

environments. Although training in reinforcement learning (or any other machine

learning approach) is slow relative to other techniques, it is a promising approach

as the overhead of initial training could be carried to subsequent search sessions.

Thus, an accurate reinforcement-learning-based test cases generator could be

helpful in settings where a continuous integration process is utilized. After initial

training sessions, new input generation requires no new heuristics. And as the

5



application grows, ideally training sessions will require shorter time through

transferring knowledge from preceding trained models.

The test case generation problem poses a unique challenge for the

reinforcement learning model in that it provides partially observable states. We

put together different neural network models to solve the absence of complete

derivation context. Moreover, we apply the technique to small target applications

such as a word-frequency counter and quicksort algorithm. The model is capable

of finding the known worst test cases in a much shorter time than anticipated.

However, we identify some scalability limitations before we can apply the technique

to larger target applications.

1.1.5 Adaptation of Monte Carlo Tree Search. Monte Carlo

Tree Search (MCTS) presents a good model that can find worst-case test cases

in a short time. As the size of the search problems becomes larger, MCTS provides

an effective strategy to asymmetrically explore the problem space, emphasizing

potentially good decision sequences.

With substantial modifications to the original algorithm, TreeLine

(an approach based on MCTS) can find complex test cases for various target

applications. Evaluating TreeLine on applications that expect well-formed

input and others with minimal to no structures expectations demonstrates that

TreeLine can find 7.46x expensive inputs compared to the state-of-the-art input-

generation fuzzer within the same time constraint. TreeLine is also capable of

finding a worst-case pattern for applications with no inputs structure expectations.

Moreover, TreeLine will consistently achieve its goal with significantly fewer

target-application run cycles.

6



1.2 Dissertation Outline

The dissertation is outlined as follows. In Chapter II, we provide an

overview of related work in the performance analysis domain. We first look into

profilers in general to understand the basic methods of performance measurement

and the trade-offs in their design. In the same chapter, we cover passive and active

input-based profilers to distinguish closely related work. Chapter III provides

the fundamental background of context-free grammar, Monte Carlo tree search,

and reinforcement learning. We present our work in TreeLine and the basics

of input size budgeting and rewarding in Chapter IV. Chapter V presents the

work on reinforcement learning and discusses the limitations based on conducted

evaluations. We discuss and conclude with the high-level contributions based on the

research domain in Chapter VI.

The content in chapter IV is a result of collaboration with co-author (Michal

Young) and is not published yet. Ziyad Alsaeed is the primary author of this work

and responsible for conducting all the presented analyses.
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CHAPTER II

RELATED WORK

In this chapter, we review an extensive body of work in the domain of

performance analysis. We aim to classify dynamic performance analysis efforts

based on their goals and limitations to identify the research opportunities.

We first detail the general state of software performance analysis (generally

known as profiling) in Section 2.1. The established techniques in profiling help

define outstanding technical efforts and some trade-offs in performance analysis.

Moreover, the reviewed efforts in this part present a good sample of techniques

lacking the influence of good test cases. Input-based performance analysis

techniques are categorized in Section 2.2. We review the effort made in recognizing

the effect of workload on performance analysis. We generally group these into

passive input-based analyzers and active input-based analyzers.

We organize each part of the related work chapter as follows:

1. High Level Look at the State of Software Profiling: In this section,

we review the early established techniques in software profiling such as gprof

(Graham, Kessler, & Mckusick, 1982) (Section 2.1.1). The early efforts made

in software profiling establish a necessary background of basic technical

details on measuring performance and avoiding significant overhead. Next, we

review a body of work that focuses on loops as the sole cause of performance

issues (Section 2.1.2) and distinguish how these mostly look for scalability

issues of software performance. Model-based techniques that dynamically

define the oracles for performance testing are reviewed in Section 2.1.3. We

show how these model-based techniques work and are usually beneficial in

deployed applications only due to possible limited testing workloads. The
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work in mitigating the understandability issue of profilers’ results is reviewed

in Section 2.1.4. Mostly the mitigation of the understandability leads to a

trade-off in the technique thoroughness. In the last section (Section 2.1.5),

we review some selected domain-oriented papers to show that the essence of

profiling limitations are mostly the same despite the differences in targeted

domains.

2. Input Based Performance Analysis: In this section, we focus on

software analysis techniques that recognize the influence of test cases

on the thoroughness of profilers. The first group of efforts we categorize

(Section 2.2.1) recognizes test cases’ importance but does not generate

any new inputs (passive). Generally, these techniques offer insight into

how the input influences the application performance. For example, define

a cost function based on the given input (B. Chen, Liu, & Le, 2016;

Coppa, Demetrescu, & Finocchi, 2012; Goldsmith, Aiken, & Wilkerson,

2007; Zaparanuks & Hauswirth, 2012), consider inputs as the high-level

configuration to understand their permutations (Siegmund et al., 2012;

S. Zhang & Ernst, 2014), or naively provide a stress test of user-defined

ranges of inputs to mainly test scalability (Ayala-Rivera, Kaczmarski,

Murphy, Darisa, & Portillo-Dominguez, 2018; Küstner, Weidendorfer, &

Weinzierl, 2010). Techniques that generate new inputs for performance

testing are reviewed in Section 2.2.2. We categorize these based on their core

method of input search. Very few techniques use machine learning to generate

new inputs (Ahmad, Ashraf, Truscan, & Porres, 2019; Grechanik et al.,

2012)—other use genetic algorithms to search for new expensive inputs (Shen

et al., 2015). The established machine learning and genetic algorithms lack
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the constraint of the pathological input definition, among other limitations.

The state-of-the-art techniques use mutational fuzzing to randomly generate

new expensive inputs taking advantage of the total increase in test coverage

(Lemieux et al., 2018; Petsios et al., 2017). However, as we demonstrate in

the related work and other chapters, they suffer from a significant waste in

computational effort.

The reminder of the chapter cover each category in details. We conclude

this chapter by summarizing the studies and defining research opportunities

(Section 2.3).

2.1 High Level Look at the State of Software Profiling

Performance analysis techniques have been developed with different goals in

mind. Here, we go over the diverse approaches of software performance analysis,

identify their goals and strengths and examine how they address the needs of

software engineers. The general established technique will help distinguish basic

techniques for profiling (e.g., collecting heuristics) and highlight possible trade-offs

in the profilers’ design decisions.

Naturally, developers think about performance in terms of how much time

a method is taking. In the simplest form of applications, such intuition is valid.

However, real-world programs are ever more complex. Applications are constructed

of multiple modules, objects, and methods, each interacting with the other. Such

complications require more sophisticated software performance analysis techniques

that drive the analysis to valuable results and present them in a meaningful way to

the developers.

2.1.1 Control-Flow Based Profiling. Initial distinguished efforts

to software performance analysis started as early as the 1980s (Ball & Larus, 1996;
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Bentley, 1982; Graham et al., 1982). Graham et al. (Graham et al., 1982) were

looking at the software performance analysis in its simplest form. The simplest

insight developers are looking for is understanding the method execution time and

calls counts at different software architecture abstractions. Provided the software

control-flow graph, Graham et al. (Graham et al., 1982) collected the needed

information during the application runtime.

Programs are usually composed of multiple parts that different developers

write. Moreover, programs usually use external libraries to implement frequently

used methods (e.g., data structure libraries). Such composition makes programs

intricate and challenging to understand. Graham et al. (Graham et al., 1982)

understood such complications and sought to provide results that show the

performance cost of routines within the executable program at different

abstractions. Such composition can be easier to understand and increase the

probability that developers would find appropriate refactoring opportunities for

performance gain.

In their solution, Graham et al. (Graham et al., 1982; Graham, Kessler,

& McKusick, 2004) explain that merging the two basic measurements of method

usage count and time will highlight more significant bottlenecks. Counts are taken

within a context (call site), provide the chance to understand the task a method

is serving along with its cost. Call site is the identification of a method based on

its location within invocation. For example, as shown in Figure 1, if method foo()

is invoked twice through the program execution, once from within method bar()

and once from within method baz(), then we have two different call sites of foo().

On the other hand, the timing profile provides an insight to assess if a method’s

time consumption is justified given the task it serves despite the number of times it
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Caller 1
e.g. baz( )

Caller 2
e.g. bar ( )

Method
e.g. f oo( )

Callee 2 Callee 3Callee 1

Figure 1. A method within the context of callers and callees.

was called. Once all counts and durations of methods are collected and propagated,

they present results in two forms. A flat representation ranking methods based on

which contributed the most to the program execution time. Second, provide the

ability to examine methods in a sub-call graph that shows all the given method

callers and callees (see Figure 1). Such representation allows the users to see how

the method contributes to its callers’ time by knowing how much time a given

caller called it compared to all other call instances. Also, it shows which of the

callees contributed to its execution time the most by examining how many times a

callee was called from that method, given all the calls to that particular callee.

Gprof (Graham et al., 1982) covers the essential cost developers usually

think about when analyzing program performance. Moreover, it provides different

levels of abstractions for the developer to examine the application. The essential

limitation of gprof is that it is highly dependent on the given developer test cases

to drive the profiling analysis. Developers are not usually performance testing
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experts. Moreover, given that unit tests for applications are usually written to

assert functional requirement soundness, it is doubtful that the given tests will

be helpful for performance testing. Hence, gprof would highlight bottlenecks in

the programs that are trivial and miss potential threats to program performance.

A question comes to mind is would more detailed profiling help mitigate such

limitation?

Ball and Larus (Ball & Larus, 1996) focused on the efficiency of the

profiling tool itself for fine-grained performance analysis. Path profiling, where a

profiler measures how many times a path is executed within a method (Ammons,

Ball, & Larus, 1997; Ball & Larus, 1994; Ball, Mataga, & Sagiv, 1998; D’Elia

& Demetrescu, 2013; Duesterwald & Bala, 2000; Larus, 1999; Mudduluru &

Ramanathan, 2016), is much more precise than block or edge profiling. Moreover,

it provides much more detailed information about the method’s internal cost

compared to gprof (Graham et al., 1982) by breaking a method into paths instead

of possible method calls from the profiled method. However, a detailed look into

a method introduces a significantly higher overhead. It could even be sometimes

infeasible for some significantly large applications.

Ball and Larus (Ball & Larus, 1996) introduced an algorithm to enhance the

overhead issue that assigns unique IDs to each path to keep a counter of how many

times the path gets executed. More precisely, they first convert the Control-Flow

Graph (CFG) of methods to Directed Acyclic Graph (DAG). The transformation

of CFG creates dummy paths from graph entry to a loop head and from the loop

end to the graph exit for each existing loop (back-edges). Loop transformation

would reduce the size of the graph and misrepresent loops, but it is necessary for

instrumentation. Given the DAG, each edge is assigned an integer value such that
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the sum of any path values in the DAG is unique. Such an assignment allows for

the unique identification of each path by calculating its ID instead of storing it in

memory. Each time a path is taken, the algorithm calculates the path’s ID and

increment its counter. Hence, it is possible to collect detailed information on large

applications.

Duesterwald et al. (Duesterwald & Bala, 2000) focus even more on profiling

efficiency. They argue that there is an even higher demand for lower overhead in

some profiling cases (e.g., just-in-time compilation). A solution is to impose less

profiling to gain more knowledge within a smaller space and time. The key idea

is to identify a threshold to determine a path head is hot. Once a path head is

identified as hot, no more profiling is made, and a prediction is made about its

tail using a dynamic optimization system. The argument is that shorter intervals

of path evaluations help reduce the overhead while maintaining similar hot path

predictions.

The work established by Ball and Larus (Ball & Larus, 1996) determines

bottlenecks in applications in terms of execution complexity. However, it does not

take into account the application usage of memory. Mudduluru et al. (Mudduluru

& Ramanathan, 2016) consider such a problem and established a control-flow

profile (called object-flow profile) to track object (data) creation and access based

on Ball and Larus numbering. For each allocation, Mudduluru et al. (Mudduluru

& Ramanathan, 2016) will preserve a control-flow graph from the allocation site to

the locations where the object got used (maintaining a count for each edge). The

intuition is that hot paths in such flow profiles will help locate inefficiently used

memory spaces.

14



Efficient and highly detailed profiling techniques (Ball & Larus, 1996;

Duesterwald & Bala, 2000; Mudduluru & Ramanathan, 2016) made it possible

to collect count information of path profiles regardless of the application size

or complexity. However, a more detailed view makes it evident that designated

performance test cases are necessary compared to gprof (Graham et al., 1982)

as more precise paths need to be exercised. The efficiency and preciseness of

performance analysis tools do not ensure the profiling results’ fruitfulness or

understandability. If different, it can help highlight where additional testing might

be necessary.

2.1.2 Loop Focused Profiling. In addition to the need to overcome

limitations in interpreting loops based on control-flow profiling (D’Elia &

Demetrescu, 2013), the common knowledge in the field and few study papers (Jin,

Song, Shi, Scherpelz, & Lu, 2012; Nistor, Jiang, & Tan, 2013) asserts that most

complex and hard to fixed performance issues happened within special forms of

loops. Loops can be in different forms. For example, loops can be in the simple

form of language provided keywords such as for or while loops, as a recursive

method or even less clear as mutually recursive methods (see Figure 2). Studies

(Jin et al., 2012; Nistor, Jiang, & Tan, 2013) assert that performance issues are

even more severe within nested loops. Such a conclusion prompted different

research efforts to focus the program analysis on loops where most performance

issues occur.

Focusing on loops when analyzing program performance introduces a couple

of advantages. First, it reduces the number of instrumented instructions to those

within known loop patterns. Thus, reducing the overhead. Second, it guides the

studies of program performance toward the actual symptom of performance issues.
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st at i c i nt  f emal e( i nt  n)  {
    i f  ( n == 0)
        r et ur n 1;
    el se
        r et ur n n -  mal e( f emal e( n- 1) ) ;
}

st at i c i nt  mal e( i nt  n)  {  
    i f  ( n == 0)
        r et ur n 0;
    el se
        r et ur n n -  f emal e( mal e( n- 1) ) ;       
}

Figure 2. Java example of mutually recursive methods forming a loop based on
Hofstadter female and male sequences.

In this section, we go over distinguished efforts (Dhok & Ramanathan, 2016; Nistor,

Song, et al., 2013; Song & Lu, 2017; Xiao, Han, Zhang, & Xie, 2013) that explicitly

study the effect of unique loop cases on performance.

Figure 3. Computation redundancy performance issue found on JFreeChart as
shown in (Nistor, Song, et al., 2013).

Nistor et al. (Nistor, Song, et al., 2013) established the general idea of

monitoring instructions behavior within loops. In particular, they look for nested

loops that do redundant work. For instance, the code shown in Figure 3 illustrates
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a severe computation redundancy that is hard to find (Nistor, Song, et al., 2013).

As the outer loop iterate over all items in a data set (line 3), it calls the method

drawItem which in turn calls the method drawVerticalItem. The inner loop

within drawVerticalItem (line 10) also iterates over all items in the data set to

find the one with maximum volume. As the volume in the data set does not change

over the different loops, such computation is redundant and found to be causing

the rendering to freeze. The performance issue is fixed by caching the maximum

volume value within the outer loop to avoid redundant work.

Nistor et al. (Nistor, Song, et al., 2013) monitored memory access within the

identified nested loops to automatically find redundant computations. If a group

of instructions accesses similar memory values across iterations, those instructions

probably compute similar results. Thus, there is a performance issue. Nistor et

al. (Nistor, Song, et al., 2013) introduced a tool called Toddler that implements

loop monitoring. Toddler first statically analyzes the code searching for loops and

assigning unique IDs to each loop. Then, Toddler instruments the code by inserting

triggers to identify loops at three major stages: loop starts, loop iteration starts,

and loop end. Toddler identifies a read instruction by both the static occurrence

of the instruction in the code and the dynamic context (call stack) in which the

instruction is executed and calls it IPCS (Instruction Pointer + Call Stack). A

sequence of IPCS is collected for each loop within a nested loop structure (outer

or inner). IPCS sequences are eventually compared given a threshold looking for

read values similarities across loop iterations. If there is any such IPCS sequence,

Toddler reports a performance issue.

Slightly different from Toddler, Song and Lu (Song & Lu, 2017), tackled

the problem based on prior knowledge of the performance issues symptoms within
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loops. Initially, Song and Lu (Song & Lu, 2017) studied known performance issues

within loops to provide a taxonomy of the root causes of the inefficiencies. Their

study resulted in two notable classifications of loop inefficiency resultless loops and

redundant loops. Resultless loops do many computations but do not show any side

effects. Redundant loops do repetitive computations (same inputs and outputs

on some of the iterations). Song and Lu (Song & Lu, 2017) argue that using the

taxonomy to look for suspicious loops helps focus the search on a smaller set of

loops. To validate their hypothesis, they developed a tool called LDoctor that uses

static analysis techniques to identify potential loops. It also uses dynamic analysis

techniques along with sampling to analyze applications under a given workload.

The tool proves to be efficient and accurate, but only for the given limited search

scope.

Toddler (Nistor, Song, et al., 2013) and LDoctor (Song & Lu, 2017)

represent a focused look at program performance analysis. However, they do not

explore instrumented application beyond the developer-provided test cases. Thus,

similar to old basic techniques (Ball & Larus, 1996; Duesterwald & Bala, 2000;

Graham et al., 1982; Mudduluru & Ramanathan, 2016), they inherit the limitation

of the developer’s testing assumptions during analysis. As a mitigation, the same

idea of exploring loops has been explored with the attempt to stress loops given

new inputs.

In order to overcome the limitation of finding new and unanticipated

performance issues within loops, Xiao et al. (Xiao et al., 2013) analyzed application

given a set of test cases. The test cases provided are assumed to be expressing the

application functionality. For example, for a compression algorithm, a test case

or a scenario, as Xiao et al. (Xiao et al., 2013) calls it, can be a task a user can
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complete and a set of parameters to manipulate. This restriction makes it easier to

create new inputs by manipulating the parameters and recording the ones that

affect the performance. However, even with such restrictions, the approach is

limited in finding scalable inputs only. Scalable inputs are best described as ones

that increase the test case’s size but do not manipulate the input structure. For

example, when compressing files, they are only capable of increasing the number of

files to compress, not the nature of the files. Thus, they only evaluate one aspect of

input manipulation.

Dhok and Ramanathan (Dhok & Ramanathan, 2016) presented another

technique that identifies the main limitation of Toddler (Nistor, Song, et al.,

2013) and others. They attempt to generate more tests based on the seed tests

provided by developers or existing random test generators (Pacheco & Ernst, 2007).

First, they generate methods summaries based on the given tests. The methods

summaries are composed of information about the presence of a loop, the objects

traversed in each loop, and the methods invoked within the loop. Second, they

identify methods with potential nested loops. Method detection is based on looking

at the call graph for symptoms of known patterns (Wert, Happe, & Happe, 2013)

that lead to bad performance using similar techniques presented in (Song & Lu,

2017). Finally, they generate performance-focused tests for the given methods

with emphasis on the scale of the inputs. This approach overcomes the manual

parameter identification presented by Xiao et al. (Xiao et al., 2013). However, in

addition to finding scalable inputs only, the introduced approach’s main limitation

is in its assumption that initial given tests will lead to interesting performance

issues. Moreover, it is limited to known symptoms of lousy performance within
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the code. Thus, it can reveal some performance issues, but at the same time, skip

others.

The loops focused technique provides a more valuable understanding

of the performance issues in generals. However, they either are not exploring

unanticipated issues or mainly provide scalable inputs to a small set of

known performance issue patterns (Wert et al., 2013). These efforts (Dhok &

Ramanathan, 2016; Nistor, Song, et al., 2013; Song & Lu, 2017; Xiao et al.,

2013) and basic ones (Ball & Larus, 1996; Duesterwald & Bala, 2000; Graham et

al., 1982; Mudduluru & Ramanathan, 2016) are limited in asserting developers’

understanding of the program by profiling applications based on developer’s test

cases. If an unanticipated performance issue exists, neither passive nor active

presented performance analysis tools will help capture them.

2.1.3 Model Based Profiling. A unique characteristic of non-

functional requirements (e.g., performance) is the difficulty of setting a goal for

the requirement. Such nature made it necessary to explore methods that would

assist in establishing some boundaries that define the system performance goals.

For example, in a word processing application, it is expected for a letter to appear

instantly on the screen as soon as the user hits the letter key. However, in addition

to the difficulty of thinking about every possible scenario in the application in

terms of performance, it is hard to put a number on such cases. Moreover, if a task

becomes the focus of the developers, it is usually easier to understand if the current

performance is acceptable given some prior knowledge than writing specifications

that define the expected performance. Performance modeling is a formal way

to mitigate the issue and establish rules about program expected performance

(oracles) (Balsamo, Di Marco, Inverardi, & Simeoni, 2004). Performance models
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define the precise performance boundaries of an application or its modules. Given

the advantages modeling provides in understanding the performance, many

(Balsamo et al., 2004; Brünink & Rosenblum, 2016; Hoefler, Gropp, Kramer, &

Snir, 2011; Koziolek, 2010) attempted to find such models automatically.

Brünink and Rosenblum (Brünink & Rosenblum, 2016) made a notable

effort in this area. They automate the finding of performance models based on

actual runs of the program then summarize these models to maintain performance

assertions about the program. The intuition is that such assertions would help

monitor the application’s performance and get triggered upon any performance

deviations. To find these performance models, Brünink and Rosenblum (Brünink

& Rosenblum, 2016) monitor an application during a given run (usually a deployed

application) to obtain runtime insight of given methods (usually hot methods).

Then they analyze the collected runtime data to check if it fits different runtime

clusters and stable (i.e., no new unclassifiable data is further showing up). If such

data for a given method exists, they collect call stack information to relate them

to these different runtime clusters. The process then repeats for the given method

callers until no other interesting methods are introduced.

The generated performance models are usually large and hard to

understand. Therefore, Brünink and Rosenblum (Brünink & Rosenblum, 2016)

introduced the idea of finding performance assertions. These performance assertions

are the shortest possible descriptive paths in the form of an expression to the given

method, and the time it took relative to the path. The resulting set of assertions is

maintained for future tests or actual use monitoring. Any execution that breaks a

given assertion is a performance issue.
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Figure 4. Performance model of calls to method semop in Apache 2.0.64 (Brünink
& Rosenblum, 2016).

An example of the generated model given Brünink and Rosenblum (Brünink

& Rosenblum, 2016) approach is illustrated in Figure 4. The model shows the

different summarized context to the method semop in Apache v2.0.64. This

automatically learned model state that calls which does not involve edge e1 or e2

take less than 70ms. Otherwise, executions would take less than 70ms in 41.9%

of the cases if it includes edge e1 and in 35.5% of the cases if it includes edge e2.

Hence, assertion about the method semop for newer versions can be as simple as if

e1 ∧ ¬e2 then t < 70ms in 41.9% of the cases, if ¬e1 ∧ e2 then t < 70ms in 35.5%

of the cases and if ¬e1 ∧ ¬e2 then t < 70ms in 99% of the cases where t is the time

spent to call the method semop. Using expressions to capture the system behavior

given new changes to the code is precise and meaningful feedback to developers.

Brünink and Rosenblum (Brünink & Rosenblum, 2016) approach provides a

method that would generate test oracles. However, obtaining valuable test oracles

occurs only if the tool is used with deployed applications. Valuable workloads are

only present when actual users are using the system. Therefore, actual performance

22



insights appear only if the application is in use. And as stated before, at this stage

of the application life cycle, performance issues are usually unaffordable.

Hoefler et al. (Hoefler et al., 2011) presented a method to build performance

models for parallel applications. Nevertheless, the essence of their work is also

applicable to non-parallel applications. Hoefler et al. (Hoefler et al., 2011) offer

to introduce performance-modeling techniques in every software development

stage (e.g., design, implementation, and testing). However, such an approach is

unrealistic for a more agile1 project management methodology as design efforts

are minimal. The guidelines they introduced from their study apply to user-based

applications. They obtained the guidelines from experimenting with performance

modeling on a set of subject applications. These guidelines can differ based

on the point of view when looking at an application. For example, identifying

input parameters that influence the runtime considers application workload, but

determining communication patterns considers application structure. Although

no automation was proposed to generate performance models, they established a

foundational systemic approach of performance modeling for others to use (e.g., the

work developed by Brünink and Rosenblum (Brünink & Rosenblum, 2016)).

In general, performance modeling approaches (Balsamo et al., 2004; Brünink

& Rosenblum, 2016; Hoefler et al., 2011; Koziolek, 2010) are essential in identifying

boundaries that would help test the applications’ performance. However, those

boundaries can be vague or difficult to understand. Hence, lower chances of

adaptation. Moreover, identifying those boundaries is difficult. Automating such

tasks requires thorough unit tests and workloads that would lead to potential

performance issues within a given application.

1Agile is a widely adapted software development approach under which requirements and
artifacts grow and change together.
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Listing 2.1 Input generated by SlowFuzz (Petsios et al., 2017) to demonstrate a
special input that causes a slowdown in PCRE (pcre.org, 2019) regular expression
matching library. Although the input demonstrates a performance issue, it is not
easy for a developer to understand, and therefore not very helpful in addressing the
issue.

2.1.4 Actionable Profilers. An essential strength in any

given profiling technique is its ability to simplify its results to facilitate its

comprehensibility by developers. Simplifying the results is not an easy task since

it requires predicting the developer’s needs. Moreover, profilers have to provide

different abstraction levels at which the developer can observe the results. For

example, Listing 2.1 shows a special input that exhibits a 20% slowdown in the

PCRE (pcre.org, 2019) regular expression matching library. From the example, it

is clear how it is hard to link the input to the root cause of the performance issue.

Lack of improving the result understandability could lead to losses in performance

optimization opportunities. Established efforts (Della Toffola, Pradel, & Gross,

2015; Nistor, Chang, Radoi, & Lu, 2015; Selakovic, Glaser, & Pradel, 2017) tried to

analyze applications with the goal of understandability in mind.

A simple method to measure the understandability of the results is to make

them actionable. Actionable results are automatic syntactically valid suggestions of

performance issues fixes a developer can approve or reject. Based on the developer’s

longtime understanding of the code, they can approve the fix without even

understanding the performance issue if they agrees with the changes’ functional
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integrity. Such recommendations take out the barrier of explaining the performance

issue by providing a code change that guarantees performance improvement.

Nistor et al. (Nistor et al., 2015), are the first to ask the question of how

likely are developers to fix a detected performance issue? They study the question

in relation to many attributes such as how likely is fixing a performance bug would

introduce a functional bug or break a good coding practice. Most importantly,

they study the behavior of the developers given the effort and time needed to

understand the performance issue as well as understanding the trade-off on other

modules of the software if any. They found that it is less likely to fix performance

issues if it is hard to understand the issues or relate them to other modules in the

software. Given this understanding, they settle on statically finding bugs that have

non-intrusive fixes. Primarily, they focus on loops that waste computation after

a certain condition is satisfied. The fix for such performance issues is simple and

a developer needs only to check if a condition is satisfied to break off the loop.

Nistor et al. (Nistor et al., 2015) showed that their reported issues have a high

adaptation rate given that they are easy to understand. However, even if the

found performance issue would introduce a significant speedup in the software, the

search scope is very limited. Thus, it is clear that there is a trade-off between the

performance analysis tool comprehensibility and the result understandability.

An important question comes to mind when provided with a solution

that makes change suggestions is why would not the profilers make the changes

without even going back to the developer? As the profiler ensures performance

enhancement, they should make the change. To the contrary of compiler

optimization, profilers cannot ensure preserving the program integrity if a change

is applied. The suggested changes are always syntactical sound but not necessarily
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semantically. Preserving semantic safety means the performance analysis technique

would be very limited. Performance analysis techniques targets changes that are

beyond the compiler ability to optimize. Therefore, human judgment is necessary

to approve the changes.

Selakovic et al. (Selakovic et al., 2017) present a notable effort in providing

actionable results. The focus of the technique is on finding the optimal order of

logical expressions. Given a logical expression (e.g., if or switch statements), what

would be the optimal order of the expressions to evaluate and reach a decision. For

example, if we have the statement if (a > 0 && b == 1), based on the program

executions which expression ”a > 0” or ”b == 1” would be false most of the

times. Whatever expression that usually yields false more frequently should be

evaluated first. The intuition is that if a low-cost expression evaluates mostly to

false, you would want to check it first to avoid wasting calculations on other

expressions. The example given is trivial, and changing its order would not affect

the performance. However, other logical expressions could be large and have a

tangible opportunity. In addition, the authors (Selakovic et al., 2017) are looking

for the cumulative gain from these small changes.

Selakovic et al. (Selakovic et al., 2017) will run all available expressions

after preserving the program state. Given the available test cases, the profiler will

collect data about the expressions’ cost and results for each traced execution. The

cost is defined as the number of executed branching points within each expression

rather than time. Measuring the time for such expression is challenging as these are

usually fast operations. Given the expressions’ common results (True or False) and

the execution cost, the profiler will compute the computational cost of all possible

orders of the expressions. Once they chose a given order and proved to be making
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the program faster by executing it, the author will suggest the new order to the

developer as an actionable suggestion.

The work introduced by Selakovic et al. (Selakovic et al., 2017) achieves a

high degree of result simplification and understandability. However, the trade-off

between the understandability of the results and the value of the fix is significant.

The enhancement when applying all the semantics preserving changes based on

their evaluations is between 2.5% and 6.5% at the application level. Given the

significant size of the evaluated applications (e.g., Apache Struts), this is a meager

improvement. Moreover, these changes are highly dependent on the given workload

in the unit tests. As we know, a significant issue is that it is hard for developers to

anticipate real-world workloads. Thus, any change in the workload at deployment

might render the performance changes obsolete.

Della Toffola et al. (Della Toffola et al., 2015) established another

distinguishable work that attempts to be actionable. They introduce a technique

called MemoizeIt to look for memoization opportunities. As code might suffer

from redundant computations that lead to program performance issues, these

are good opportunities to optimize the code. Traditional profilers might miss or

low-rank such opportunities. Locating such redundant computations based on

the given inputs and outputs of methods could reveal memoization opportunities

that enhance the program’s overall performance (Della Toffola et al., 2015; Guo &

Engler, 2011; Xu, 2012).

MemoizeIt narrows down the tracked elements into the target object,

parameters, and return results. Nevertheless, such a profiling technique can be

significantly expensive. Therefore, the authors introduced an iterative approach

to monitoring the program. First, run the program with light profiling that
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records the execution time of each method. A method that does not have an

expensive computation is discarded as it is less likely to be optimized even further.

Second, increase the depth of object exploration gradually to look for structure

inconsistencies based on a flattened object representation (flattened representation

is nothing but representing objects’ types and values in nested arrays). For

example, if a method is called twice wherein the first call returned an object with

two fields but in the second an object with three fields, then the method is dropped

from the list for further analysis. Such iterative trimming and depth increasing

allows MemoizeIt to maintain efficiency while increasing accuracy gradually. It is

important to note that as the depth can be unbounded for MemoizeIt, the authors

observed that object exploration of depth-2 is sufficient to be accurate. Third,

MemoizeIt computes a cache-hit rate as it iteratively monitors candidate methods.

They discard methods that go below a user-defined hit-rate threshold for each

iteration. Such computation helps to maintain a list of potential methods that are

more likely to benefit from memoization.

In addition to profiling methods based on their input and output, cluster

them, and rank the method based on their potential performance gain, MemoizeIt

suggests a fix to the developer to simplify the result. In order to provide a

suggestion on how to fix a method, MemoizeIt simulates different ways of fixes

while validating the program integrity after applying the fix based on the given unit

tests. Memoization fixes usually happen globally or locally (instance level) and are

of multi (storing more than one input and output value) or single cached input-

output pairs. Combining these possibilities required the authors (Della Toffola et

al., 2015) to simulate four different fixes. Given the result with the highest hit rate,
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MemoizeIt considers it the best possible change and suggests it to the developer as

an actionable fix.

There are other memoization techniques (Infante, 2014; Nguyen & Xu,

2013; Xu, 2012), but taking only MemoizeIt (Della Toffola et al., 2015) as a

representative technique, we can identify the major limitations in memoization.

First, given the conducted tests by Della Toffola et al. (Della Toffola et al.,

2015), it is clear that the number of such memoization opportunities is minimal.

From eight different applications (DeCapo benchmarks (Blackburn et al., 2006)),

they found only nine distinct memoization opportunities. Second, most of the

found memoization opportunities are workload-dependent. Thus, regardless of

its performance gain, the fix might not be of significance when deployed. We can

generalize these limitations to all memoization techniques.

Our discussion about actionable profilers (Della Toffola et al., 2015; Nistor

et al., 2015; Selakovic et al., 2017) shows a clear trade-off between the result

understandability and performance optimization opportunities. To make results

actionable, they must be simple and follow a narrow a well-defined pattern.

Moreover, simple fixes are less likely to capture significant or unanticipated

performance issues.

2.1.5 Domain Oriented Performance Analysis. Some

performance analysis techniques have been targeting specific domains such as

mobile devices or supercomputing. Nevertheless, the fundamental challenges

are usually the same. In this section, we cover efforts that target different but

related techniques to our work. The main domains are related to mobile, parallel

computing, or scientific computing.
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Given that smartphones are widely popular nowadays, the challenges

smartphone application developers face in tuning the performance of their

applications are fundamentally similar to known performance analysis challenges

(Liu, Xu, & Cheung, 2014). However, the developer’s focus in parts of the

applications where performance issues might appear is slightly different. For

example, many of the performance issues found on smartphone applications are

UI-related. Because the UI actions trigger asynchronous executions in many

different ways, Kang et al. (Kang, Zhou, Xu, & Lyu, 2015; 2016) introduced a

method to track and profile these executions by categorizing them into small sets.

Similarly, Brocanelli et al. (Brocanelli & Wang, 2018) focus on the expensive

operation happening on threads other than the application’s main thread but

cause performance issues. These techniques are different in directing the analysis

to specific application areas but are fundamentally similar to all other performance

analysis techniques in relation to data collection and analysis.

Performance analysis of supercomputers or more generally distributed

systems has its different emphasis on what to profile. However, techniques that

target supercomputers are also fundamentally similar to techniques that target

sequential applications. Frameworks like TAU (Shende & Malony, 2006), in

addition to providing a performance analysis of distributed systems, it target

providing an architecture-specific insight about the application performance

(Boehme et al., 2016; Ofenbeck, Steinmann, Caparros, Spampinato, & Püschel,

2014). Some techniques try to measure the software performance given the

supercomputer capabilities (Ofenbeck et al., 2014) and highlight if the systems have

been used to their full extent or not. Other (Boehme et al., 2016) tackle collecting

and unifying the knowledge about the data in a more modular supercomputer
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environment. Some techniques like the one presented by Herodotou and Babu

(Herodotou & Babu, 2011) focus on providing an insight to the developer about the

system performance under a given workload by manipulating multiple configuration

options.

More focused on parallel programs, Curtsinger and Berger (Curtsinger &

Berger, 2015) attempt to provide developers with information about the expected

performance gain if a particular method is fixed. They show that by slowing other

threads whenever the method is executed on one of the tracked threads. The

slowdown of threads simulates the performance gain of fixing the targeted part

of the code.

A fundamental difference in performance analysis techniques for

supercomputers or closely related applications is that the results’ understandability

is not a significant concern. Users of supercomputer analysis tools are usually more

experienced and knowledgeable about their applications. Moreover, the use case for

those systems like what Herodotou and Babu (Herodotou & Babu, 2011) presented

is usually task-oriented. Meaning, the user has a given location in mind about the

software and needs comprehensive insight about its interactions and cost. Thus,

there is less to no emphasis on understandability in such techniques.

The work focused on mobile devices or supercomputers is similar to other

performance analysis techniques designed for sequential computers. They are

distinguishable in that they are domain-specific. Given the knowledge about a

given domain and the probability of where performance issues might appear, they

tailor the fundamental methods of profiling to exploit such performance issues.

However, these established works do not solve some fundamental challenge such as

identifying worst-case workloads.
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2.2 Input Based Performance Analysis

Inputs (i.e., workload or test cases) are an essential factor in any software

analysis tool. The absence of expressive inputs that trigger worst-case complexity

within the performance analysis field is an inherent issue. Different sets, sizes,

and orders of inputs can express different limitations of code blocks. Moreover,

the performance of a code block based on a given input can significantly differ

according to the whole program state (i.e., context). For instance, Mozilla Bug

#490742 (Jin et al., 2012) illustrates such a performance issue. The reported (and

fixed) performance issue appeared only when users tried to bookmark 20 or more

pages at once using the Bookmark-All functionality on Mozilla Firefox. Without

going into details of how the performance issue was introduced and fixed, it is easy

to see how a given case could escape the software testing designed toward testing

the method’s functionality. Load testing (Burnim, Juvekar, & Sen, 2009; Cadar,

Dunbar, & Engler, 2008; P. Zhang, Elbaum, & Dwyer, 2011) could be a probable

solution for such simple performance issues. However, the dimensionality of inputs

complexity is only assumed to be larger in most cases. There exist performance

issues that does not occur because of the size of the inputs. Thus, having a

meaningful input that expresses the application performance is an essential and

challenging problem.

The number of different possible paths within an application can be

significantly large. Static and dynamic analysis tools provide insightful feedback

(Tikir & Hollingsworth, 2002) and module classification (Grant, Cordy, &

Skillicorn, 2008) about the application under test. For example, code coverage tools

(Tikir & Hollingsworth, 2002) can easily report that the path ABDE in Figure 5 has

never been taken. Such insight allows the developers to write tests that express
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the functionality of such a path. However, presented performance analysis tools do

not help the user distinguish how tested paths ACE and ABCE from Figure 5 differ.

Because of the given input data by the user, a passive performance analysis tool

could mislead the developer into believing that path ACE has a performance issue

and thereby miss actual performance optimization opportunities.

A

B

C D

E

Expressive Load

Inexpressive Load

Untaken

Figure 5. Example of different paths traversed based on testing data.

In this section, we present proposed performance analysis tools that look

into the influence of the input data on the performance of applications under test.

There are two major types of input-based performance analysis tools. One tries to

provide insight on how the inputs influence the application performance based on

provided inputs (Luo, 2016b; Zaparanuks & Hauswirth, 2012) (Section 2.2.1). In

contrast, the other tries to explore new inputs that would express the application’s

performance beyond what the developer anticipated (Grechanik et al., 2012;

Lemieux et al., 2018; Petsios et al., 2017; Shen et al., 2015) (Section 2.2.2).

2.2.1 Input Influenced Insight. Several performance analysis

techniques realize the significant influence of inputs on how applications are
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performing (Ayala-Rivera et al., 2018; Coppa et al., 2012; Küstner et al., 2010; Luo,

2016a; 2016b; Shen et al., 2015; Siegmund et al., 2012; Zaparanuks & Hauswirth,

2012; S. Zhang & Ernst, 2014). These approaches differ in how they define the

inputs and analyze them. For example, some efforts (B. Chen et al., 2016; Coppa

et al., 2012; Zaparanuks & Hauswirth, 2012) try to define the cost functions of the

analyzed methods based on the given inputs. Some others (Siegmund et al., 2012;

S. Zhang & Ernst, 2014) narrowly define input as the possible configuration a user

could change for a given application and provide insight into which combinations

maximize the performance. Others (Ayala-Rivera et al., 2018; Küstner et al.,

2010) try to find application bottlenecks based on the given inputs and provide the

developer with insightful feedback to provide better inputs manually. Despite their

differences, all of these techniques are either passive techniques where they do not

look for new interesting inputs or rely on the developer to drive the input search.

2.2.1.1 Defining Cost Functions. Algorithm researchers and

software engineers for scientific applications usually use cost functions when

analyzing algorithms complexity. Cost functions are usually asymptotic lower and

upper bound representations of the algorithm time or space cost. Such insight can

be helpful to understand what inputs could lead the application under test into an

unsatisfying performance. Using cost functions, software engineers overcome the

input anticipation issue by confirming whether the inputs they expect fall within

a bad performance portion of the cost function or not. Cost functions are not

necessarily trivial to obtain. Moreover, they are even more challenging when the

input’s structure is multifaceted for real-world applications. Hence, performance

analysis researchers (B. Chen et al., 2016; Coppa et al., 2012; Goldsmith et al.,
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2007; Zaparanuks & Hauswirth, 2012) attempted to find these cost functions

automatically based on program runs.

Automating the construction of cost functions is not trivial. One of the

primary challenges in automating the construction of cost functions is determining

the inputs’ basic blocks of an algorithm. Zaparanuks and Hauswirth (Zaparanuks &

Hauswirth, 2012) established a technique that identifies all loops in a control-flow

graph and recursions in the program’s call graph to locate areas where performance

issues might occur. Moreover, they use the execution count of loops as the cost

instead of measuring time to avoid significant overhead. Zaparanuks and Hauswirth

(Zaparanuks & Hauswirth, 2012) essential shortcoming is in determining the

algorithm’s or method’s inputs. Either they limit what they considered inputs to

field references to data structures accessed within the method execution or external

input files. Even more, their approach has issues with algorithm inputs based on

primitive data. Because the cost interpretation of primitive data types can differ

(e.g., an integer can be seen as a number of digits on the schoolbook multiplication

algorithm or a value on a factorial algorithm), their approach focuses on one aspect

only.

Conceiving primitive inputs is not the only noticeable limitation on

Zaparanuks and Hauswirth (Zaparanuks & Hauswirth, 2012) work. Experimental

algorithmic techniques such as Zaparanuks and Hauswirth (Zaparanuks &

Hauswirth, 2012) take portions of the code and test it extensively on different

input sizes. While such approaches can provide valuable insight into the code

portion, it suffers from studying those small portions outside of their context (the

system as a whole) (Sumner, Zheng, Weeratunge, & Zhang, 2010; Zhuang, Serrano,

Cain, & Choi, 2006). Much of the performance issues that escape testing combine
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multiple and complex interactions between different portions of the system. Taking

a method out of its context or looking at it within a static context does not provide

complete insight into the application performance.

Coppa et al. (Coppa et al., 2012) understood the context issues for

performance analysis in general and approaches that try to generate cost

functions in particular. They mitigated the limitations of existing approaches that

automatically measure the performance of the routines as a function of their input

size by looking at it within the actual context of the software.

Before looking into the context issue, it is important to look into how Coppa

et al. (Coppa et al., 2012) approached the fundamental challenge of defining the

inputs to track application performance. They introduced a metric called Read

Memory Size (RMS). They define RMS as the number of distinct memory cells

first accessed by a method or by a descendant of the method in the call tree, with

a read operation. Such fine-grained insight can be obtained using tools such as

Valgrind (Nethercote & Seward, 2007). Coppa et al. (Coppa et al., 2012) argue

that calls to memory by a function for the first time (never accessed before) with a

read operation contain the input values of the function. Conversely, if a cell value

is first written and then read by the function, the value is not part of its input as it

was determined by the function itself.

Although the RMS definition can limit the number of tracked inputs, we

think this is a distinguished contribution to defining inputs in the domain of

performance analysis. This approach in defining inputs breakdown complex user-

defined objects by representing them in their simplest form. The overhead of the

technique is significantly high, but that is an expected trade-off between the details

and cost of any software analysis tool.
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Having the RMS defined, Coppa et al. (Coppa et al., 2012) define the

performance analysis technique as the collection of RMS for each method

encountered in the program. For example, for method foo(), they find the set

Nfoo = {n1, n2, ...} of distinct RMS values on which foo() has called during the

execution of the program. For each estimate of the input size ni ∈ Nfoo(), they

collect the number of times the method is called under that input, the maximum

and minimum cost for the method to be executed based on the observation, the

sum of all the costs observed for the given method, and the sum of the costs’

square.

This definition of how Coppa et al. (Coppa et al., 2012) collect inputs makes

their approach context-sensitive. Because they separated how they collect input

information from the method’s location, they captured the whole program context.

As the ultimate goal of the complexity analysis of an algorithm (or a method) is

to find a closed-form expression for the cost (e.g., running time) on the input size,

Coppa et al. (Coppa et al., 2012) used curve fitting and curve bounding to generate

cost functions.

In line with expectations, the overhead of the Coppa et al. (Coppa et al.,

2012) approach is significantly high. Their approach requires an average of 30 times

the typical run (the peak was 78.3x). For space requirements, their approach,

on average, requires two times the usual space. It is normal to have such high

overhead given the fine granularity of collected information.

Coppa et al. (Coppa et al., 2012) state that a single run of their tool using

the system under test is mostly sufficient. The key observation they highlight is

that the number of distinct RMSs for each method will not increase under the same

input. Distinct RMSs are more critical than RMSs with different values because
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they expose different paths within the same code block. Nevertheless, we think this

is the essential limitation on such approaches (Coppa et al., 2012; Zaparanuks &

Hauswirth, 2012), as low distinct RMSs are possible given that developer’s inputs

usually target functional testing.

Closely related to these two major techniques (Coppa et al., 2012;

Zaparanuks & Hauswirth, 2012), Chen et al. (B. Chen et al., 2016) generate

cost functions for selected paths. Based on given inputs, they classify paths into

high-probability and low-probability paths. The high-probability paths are those

that execute under most of the given inputs. Respectively, low-probability paths

represent the corner cases of the program that found based on a small number of

inputs. Chen et al. (B. Chen et al., 2016) use symbolic execution (Păsăreanu et al.,

2013) to classify the given paths and use loops unfolding to ensure the scalability

of the technique. The high-probability paths are a representation of the program’s

normal execution. Understanding the program performance under these cases helps

developers understand the state of the program’s normal behavior. Low-probability

paths, on the other hand, represent the usually untested cases by developers.

Highlighting these cases brings developers’ attention to unanticipated issues. Given

the symbolic inputs and the high-probability and low-probability paths, Chen et al.

(B. Chen et al., 2016) generate cost functions to communicate their findings.

Symbolic inputs are efficiently translatable to actual inputs in theory

(Visser, Pǎsǎreanu, & Khurshid, 2004). However, given how Chen et al. (B. Chen

et al., 2016) treated loops to prevent an explosion on the number of possible paths,

interesting performance insights are not explored since the majority of performance

issues occur within loops as discussed in Section 2.1.2. Moreover, the inputs

generated by the symbolic inputs are not pathological. Meaning they express the
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change in the input scale rather than the inputs’ structure. Thus, also missing

meaningful performance analysis opportunities.

The approaches presented (B. Chen et al., 2016; Coppa et al., 2012;

Zaparanuks & Hauswirth, 2012), regardless of other limitations, suffer from the

essential issues of ensuring that given inputs are sufficient for driving the analysis

tools into interesting performance issues. For techniques such as Coppa et al.

(Coppa et al., 2012), this can be mitigated by incorporating the code coverage

insight to ensure that the highest number of paths is taken. However, this is

beyond the problem of input generation.

2.2.1.2 Inputs as Configurations. A typical root cause of

introducing performance issues is the misuse of off-shelf software (Han & Yu,

2016; Jin et al., 2012; Nistor, Jiang, & Tan, 2013). Developers usually do not

clearly understand how to use an API (Application Programming Interface)

or APIs behavior changes across different versions of the same system, but no

update is applied to their calls. Whether these off-shelf software are libraries or

standalone programs, the configurations passed are considered as inputs. From

this perspective, few techniques (Siegmund et al., 2012; S. Zhang & Ernst, 2014)

analyzed how different configurations (inputs) combinations might influence the

application’s performance.

Performance issues introduced on applications that were working as

expected can be hard to understand for software engineers. These performance

issues usually arise by introducing wrong configurations over different versions

of the software. Zhang and Ernst (S. Zhang & Ernst, 2014) introduced a

recommender system to choose the correct configurations for the desired

performance.
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To identify and report configuration changes that cause performance issues,

Zhang and Ernst (S. Zhang & Ernst, 2014) require two different versions of the

same artifacts. Instrumenting the code and using the same configuration, they use

the user’s usage (test cases or actual usage of the system) to record traces. The

instrumentation follows simple techniques that identify predicates on branching

control-flows and count their executions. Given traces, Zhang and Ernst (S. Zhang

& Ernst, 2014) match predicates of the traces on the old version of the system to

the ones from the newer version. They then compute the behavioral deviation for

the matched predicates from different versions within a given method. The gained

insight indicates how similar or different these two predicates are within different

versions. Using thin-slicing, following the dependency between a slicing criterion

(e.g., statement initialization) and predicate using only the data flow dependency,

to identify the relationship between a given behavioral change and a configuration

option, Zhang and Ernst (S. Zhang & Ernst, 2014) recommend which configuration

is most likely the cause of the behavioral deviation.

A distinguishable limitation in Zhang and Ernst’s (S. Zhang & Ernst, 2014)

approach is the necessity of two different versions to measure the influence of

configurations. Access to older versions of the same software might sometimes be

difficult, if not impossible. However, even if older versions are available, Zhang

and Ernst’s (S. Zhang & Ernst, 2014) approach does not look into how the given

configurations influence the system compared to other configurations for the

same version. Thus, they might miss performance optimization opportunities

that are actual to the software. To mitigate this Siegmund et al. (Siegmund et

al., 2012) proposed an approach that looks at how a user can select the optimal

configurations while maintaining the desired performance.
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The work presented by Siegmund et al. (Siegmund et al., 2012) target large

systems where configurations changes by the user could significantly affect the

performance. For example, measuring the performance of a database management

system with indexing turned on or off can provide helpful insight about the

indexing effect on performance. The number of such features can be significant in

large systems. Moreover, it is hard to predict their effect on performance by users.

Even in Siegmund et al. (Siegmund et al., 2012), the number of features can be

an obstacle because the number of interaction possibilities is exponential on the

number of configurations. They compose the features that cannot be measured in

isolation into a single feature to reduce the number of possibilities to mitigate the

scalability challenge. In addition, Siegmund et al. (Siegmund et al., 2012) focused

on test heuristics to trim the search space. Given these guidelines, Siegmund et al.

(Siegmund et al., 2012) predict the system performance and report it to the users.

Such techniques have a different definition of what we considered input.

Nevertheless, these are still passive techniques (no new inputs generated).

2.2.1.3 Input Driven Analysis. The need for input-driven

performance analysis was grasped by a few established techniques (Ayala-Rivera

et al., 2018; Küstner et al., 2010), but automation is very limited to nonexistent.

Such established ideas recognize the importance of the inputs to drive the software

engineers’ understanding of the software’s performance. Moreover, they understand

the number of iterations and the deep understanding needed to find inputs that

influence performance. Thus, these techniques provided tools that assist in the

performance analysis process based on the manually provided inputs.

Küstner et al. (Küstner et al., 2010) present the simplest form of the

techniques. Given that inputs highly influence the application under test
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performance, Küstner et al. (Küstner et al., 2010) provided a tool that highlights

code blocks based on their inputs. There is no automation on the tested inputs.

Rather they provide an input based perspective of the application performance. For

example, given the selected set of methods a developer would like to understand,

the developer defines input ranges (e.g., x < 5; 5 <= x <= 10; 10 < x). Using

the given ranges of inputs, the tool generates three different profiles for each input

range based on the provided test suite. Küstner et al. (Küstner et al., 2010) put

much emphasis on the input when analyzing the application under test. However,

the needed manual interference by the developers is an obvious limitation.

Ayala-Rivera et al. (Ayala-Rivera et al., 2018) also focus on the workload to

assist developers in boosting their productivity. However, compared to Küstner et

al. (Küstner et al., 2010), they provide some automation of the workload. Instead

of providing only performance feedback and wait for new inputs, Ayala-Rivera et

al. (Ayala-Rivera et al., 2018) allow the developers to identify a set of essential

input parameters and their characteristics. The given inputs are then automatically

stressed (e.g., quadratically increasing an array size for each new execution) based

on predefined policies to inspect possible performance issues. Although such an

approach might have some automation to manipulate the workload, it does not

explore any unanticipated issues by providing scalable inputs, as scalable inputs are

not necessarily expressive inputs of performance issues.

2.2.2 Input Generation. Finding a solution that would drive all the

presented performance analysis techniques to actual performance issues requires

searching the space of all possible special inputs given the whole program context

(Korel, 1990). Special inputs are not only stress of some input size (e.g., increasing

a size of an array for a sorting algorithm (Burnim et al., 2009)), random generation
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of load inputs then passively select the most diverse (P. Zhang et al., 2011) or focus

on increasing the coverage of the tests (Cadar et al., 2008). Instead, it is a deeper

understanding of the given method or algorithm functionality.

In this section, we walk through distinguishable attempts to generate new

special inputs automatically for performance analysis. Distinguishable input

generation techniques use machine learning methods (Grechanik et al., 2012),

genetic algorithm (Shen et al., 2015), or fuzzing (Lemieux et al., 2018; Petsios et

al., 2017) to search for special inputs.

2.2.2.1 Machine Learning Driven. The earliest found technique to

use machine learning as a driver to search for special inputs presented by Grechanik

et al. (Grechanik et al., 2012). They created a tool called FOREPOST that takes

initial inputs and their associated execution times to generate new possible special

inputs.

FOREPOST (Grechanik et al., 2012; Luo, 2016a; 2016b; Luo, Poshyvanyk,

Nair, & Grechanik, 2016) execute the application under test on a small set of

randomly chosen test inputs. Then it infers rules with high precision for selecting

test input automatically to drive the application toward possible performance

issues. Rules are in a form of if-then statements. For example, based on the

loaning system evaluated, a rule could be “if inputs convictedFraud is true and

deadboltInstalled is false then the test case is good.” The example indicates

that using the given inputs leads to an expensive performance (more computation

time); thus, it is a good test case as it exposes performance issues. As input

data are clustered into expensive and cheap tests, FOREPOST report methods

are marked with expensive test cases. The reported methods are most likely to

contribute to a bottleneck.
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It is important to understand how FOREPOST obtains performance rules to

understand the usage of a machine learning technique. FOREPOST uses the set of

values of the application under test as input to an unsupervised machine-learning

algorithm. Such input can be represented as VI1 , . . . , VIk → T where VIm is the

value of the input Im and T ∈ {Good,Bad}. The machine learning classification

algorithm learns the model and outputs rules of the form Ip � VIp • Iq � VIq •

. . . • Ik � VIk → T , where � is one of the relational operators and • stands for

logical connector and or or. Such learned rule is sent back to the testing script to

automatically collect execution costs and guide the selection of new input data.

Repeating the process will partition the input data and generate newly learned

rules. The algorithm reaches a high degree of probability of expensive input values

if no new rules are learned.

Grechanik et al. (Grechanik et al., 2012) argue that frequently invoked

methods, which appear in cheap and expensive test cases, can be of no significance

to performance insight. Rather, FOREPOST reports less frequently invoked

methods that appear within expensive test cases or have little to no significant

impact in cheap test cases. It is clear that such an argument does not always hold

as simple examples (e.g., sorting algorithms) could have good and cheap test cases

over many invocations and still be of performance significance. However, such

observation can be domain-specific (Bergel, Nierstrasz, Renggli, & Ressia, 2011) as

Grechanik et al. (Grechanik et al., 2012) mainly evaluate their tool on closed-source

loaning application and select only Boolean inputs to manipulate.

Evaluating FOREPOST shows that the technique does generate inputs that

worsen the performance. For example, under random testing of JPetStore, a widely

used java benchmark, it takes an average of 576.7 seconds to execute 125,000

44



transactions. With FOREPOST, executing the same number of transactions

takes an average of 6,494.8 seconds. However, FOREPOST is less efficient in

finding bottlenecks; examining FOREPOST’s top 30 possible bottlenecks methods

for a Renter application results in finding a single performance issue of wasted

computations.

We believe that the limitation in ranking interesting performance issues is

not a significant one. We argue that reporting bottlenecks should not be examined

using input generation techniques (see Section 6.1.1). Instead, it should only feed

such data to specifically built profilers (e.g., gprof ).

Reinforcement learning (another form of machine learning) is adapted to

generate test cases (Ahmad et al., 2019; Porres, Ahmad, Rexha, Lafond, & Truscan,

2020). However, there are some known limitations to these techniques. Most

notably, their limit to manipulating primitives to test the input size rather than

finding an expensive pattern high-level input pattern.

A hopeful advantage in using reinforcement learning is to have the

agent generate expensive inputs for x number of preceding versions of the same

application. Reinforcement learning (and machine learning in general) are

expensive to train. Therefore, a good fit for reinforcement learning is to consider it

within a continuous integration environment. Hence, only small training increments

that build on top of an established model are required. Established reinforcement

learning techniques (Ahmad et al., 2019; Porres et al., 2020) do not demonstrate

how they fit in a continuous integration environment.

A known advantage of reinforcement learning is handling a search space

with a vast number of parameters. As demonstrated with game training (Mnih

et al., 2013; 2015), reinforcement learning can handle a stream of pixel data from
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images to learn the position of the game and take actions accordingly. Established

reinforcement learning techniques (Ahmad et al., 2019) for input generation

demonstrate their work on a small number of parameters (four elements to generate

inputs of length less than 10). Real-world applications are only expected to have

numerous parameters to permute and will most likely need inputs of more than ten

elements to demonstrate an expensive pattern.

A possible cause for the reduced number of elements is the limited feedback

Ahmad et al. (Ahmad et al., 2019) can collect. They assume the environment

is a black-box. Therefore, they only have access to partial run information (e.g.,

execution time). However, constraining the problem to be black-box analysis only

is unnecessary. The goal of using a profiler is to fix performance issues. Hence, it is

safe to assume the availability of the source code and plan for more competencies

feedback.

The known successes of reinforcement learning on other complex domains

and the established techniques (Ahmad et al., 2019; Porres et al., 2020)

demonstrate the applicability of reinforcement learning to search for pathological

test cases. However, they do not thoroughly demonstrate an excellent working

example according to the limitation described above. Using the successfully tested

models of reinforcement learning and the formalizations and techniques that reduce

the search scope in software systems, reinforcement learning can have an advantage

over other methodologies to generate pathological inputs.

2.2.2.2 Genetic Algorithms Based. Another distinguished

approach for input generation was proposed by Shen et al. (Luo, 2016a; 2016b;

Shen et al., 2015). Their definition of the input generation for performance

problems is similar to the one given by Grechanik et al. (Grechanik et al., 2012).
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However, as we will explain later, their definition lacked a demonstration of

generality toward evaluating their approach. Shen et al. (Shen et al., 2015) define

the input generation problem as a search and optimization problem. Moreover, they

suggest using a genetic algorithm to drive the search task. Shen et al. (Shen et al.,

2015) argue that machine-learning-based techniques (Grechanik et al., 2012) fit

pattern recognition rather than search and optimization problems. Thus, because

the genetic algorithm’s core idea is to find new fitter “individuals” based on

existing ones, they argue it is a good fit for inputs search for performance testing.

Although we think that a good classifier (machine learning algorithm) is

suitable for input generation if combined with a sound input selection method

for testing, a genetic algorithm is also a good fit if combined with a non-random

input selection method. As we will describe it, a significant limitation in the

genetic approach is the possibility of falling into less important local-minimas when

searching for special inputs.

Shen et al. (Shen et al., 2015) major contributions are on explaining how

to represent inputs using genetic algorithm. In the genetic algorithm, they have

what is known as an individual who is essentially a chromosome. Chromosomes

in their part are made of a set of genes. The goal of genetic algorithms is to

generate new individuals by crossing-over fit chromosomes. Calculating the fitness

of a chromosome is based on a predefined fitness function that considers each

gene. Figure 6 shows a representation of the chromosomes tailored for the input

generation problem.

For each set of inputs, Shen et al. (Shen et al., 2015) consider these

as chromosomes. Within each given chromosome, we have a set of genes that

represent an individual parameter and its value. For example, if a method accepts
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Figure 6. An abstract representation of using genetic algorithms for input
generation.

an array x = [1, 2, 3] and a boolean y = True, then a chromosomes is the

sequence of genes {x1 = 1, x2 = 2, x3 = 3, y = True}. Using inputs with different

values for the same method, the fittest sequences of inputs (i.e., chromosomes) are

crossed-over to generate a potentially new fitter sequence of inputs.

The fitness function maps the input values to the elapsed execution time.

Inputs that maximize the fitness function are fit inputs. Given a run of the

application under test based on randomly generated inputs, the fitness function

will have few candidate sequences of inputs. As shown in Figure 6, each pair of the

candidate sequence of inputs (i.e., chromosome) will be crossed over. The crossover

phase consists of selecting a subset of the inputs (i.e., a set of genes) and exchange

them between the sequence of inputs. Finally, for each crossed subset of inputs, the

values are randomly changed (authors did not provide details on how they select

new values; thus, we assume it is random). In the last step of each iteration, the

application under test is rerun using the newly generated sequence of inputs to

calculate its fitness.
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The presented evaluation by Shen et al. (Shen et al., 2015) does not provide

precise results to assess the technique’s potential. The evaluation uses URLs as

inputs, which does not correlate clearly with how the approach applies to widely

available non-web-based applications. Moreover, the experiments highlight the

technique’s results on injected performance issues. Injecting performance issues

does not help in understanding the possible limitation of the technique. Thus, it is

hard to draw conclusions about the approach.

Regardless of the evaluation methodology, we can identify some possible

limitations. First, the crossover step between two sequences of inputs (i.e.,

chromosomes) by itself does not necessarily generate new inputs. Trying different

combinations of the same set of values can lead to some interesting results, but no

new inputs are generated. Thus, we fall into the essential issue of the developer’s

given inputs that does not necessarily cover all the performance possibilities.

Second, based on the previous limitation, Shen et al. (Shen et al., 2015) randomly

generated new values for each exchange input (i.e., gene). This solution does

introduce an actual new input. However, because the given genetic algorithm

does not calculate how each value (i.e., gene) is contributing to the fitness of each

sequence of inputs, the new values are not necessarily selected with a high potential

of generating new fit sequences of inputs that drives the application’s performance

toward performance issues. The absence of a link between the newly selected values

and the new combinations of inputs is an essential limitation of such approaches.

2.2.2.3 Fuzzing Driven Inputs. To our knowledge, Lemieux et al.

(Lemieux et al., 2018) presented the most general and focused approach to generate

input that leads to performance issues and target the comprehensive definition of
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performance inputs. They precisely target pathological inputs by always fixing the

size of the manipulated set of inputs.

Lemieux et al. (Lemieux et al., 2018) use fuzz testing as an engine to drive

the input generation. Fuzzing is widely used in functional requirements testing

where the application under test is barraged with randomly generated test cases.

Fuzzing has also demonstrated a good use for security testing as they typically

exposed with totally unexpected test cases. For performance testing Petsios et al.

(Petsios et al., 2017) are the first to use a feedback-directed mutational fuzzing to

increase the code coverage. Their intuition is to iteratively use evolutionary search

techniques to maximize a program execution cost.

As shown in Figure 7, Petsios et al. (Petsios et al., 2017) developed a

technique called SlowFuzz that uses a fuzzing engine to generate inputs. In

addition, SlowFuzz defines a cost function to rank the inputs based on their

execution cost. The example shown explains how the fuzzing algorithm iteratively

finds a sorted array that maximizes the cost of executing the given quicksort

algorithm (i.e., increasing the length of execution paths).

Lemieux et al. (Lemieux et al., 2018) adopt the same methodology, but

instead of targeting inputs that only maximize bucketed coverage of the execution

cost (e.g., SlowFuzz (Petsios et al., 2017)), they also considered inputs that shows

any maximization on path hit rate. SlowFuzz is greedy in that it looks for inputs

that maximize the count of edges on the control-flow graph over exploring new

paths in favor of achieving a worsen performance in a shorter time. As the search

space of any target application is only assumed to be non-convex, SlowFuzz is more

likely to fall into local-minimas.
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Figure 7. Steps taken by SlowFuzz to find inputs that maximize the execution
cost of quicksort (Petsios et al., 2017).

Lemieux et al. (Lemieux et al., 2018) implemented their approach in a tool

called PerfFuzz. Initializing PerfFuzz requires seed inputs that are known to

run the program. The seed inputs are added to a set called ParentInputs that

maintains known special inputs. The set holds inputs known to either maximize
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the bucketed test coverage or maximize the execution cost of the given control-

flow graph. Lemieux et al. (Lemieux et al., 2018) argue that such a strategy

allows them to avoid local maximums by having a multi-dimensions objective.

Remarkably, they argue that it helps them not necessarily finding the global

maximum but potentially many different near-global maximums.

If we look at a single iteration of PerfFuzz’s algorithm, we find that the

algorithm first generates new inputs by randomly permuting the bytes of inputs

from the ParentInputs that has potential. Bytes permutation simplifies the

input scope problem. However, it might not be a good approach for complicated

inputs such as widely used data structures. Potential inputs, nevertheless, are

the ones from the ParentInputs set that maximizes performance value for some

cost measurement in the application. The cost definition can differ based on

the developer’s needs. For example, it could be the number of bytes allocated

at malloc statement or cache misses. For PerfFuzz they defined cost as the

execution counts of control-flow graph edges.

All newly found inputs are defined as ChildInputs. As PerfFuzz finds

a collection of new ChildInputs, the application under test is rerun given the

new collection. PerfFuzz adds inputs to the ParentInputs set if they show a

maximization in the bucketed coverage or maximization on any edge hit. The

number of inputs in the ParentInputs set cannot exceed the number of control-

flow graph edges at any given point in time. Thus, PerfFuzz reevaluates all

inputs within the set of ParentInputs each time a new input shows a performance

maximization. The algorithm repeats this process of finding new inputs and

running the application against them until it hits a given time threshold (e.g., 1

hour).

52



Lemieux et al. (Lemieux et al., 2018) evaluate their findings compared with

the ones generated by SlowFuzz (Petsios et al., 2017). PerfFuzz outperforms

SlowFuzz in finding more pathological inputs. However, an essential issue in

fuzzing-based approaches is the time required to generate pathological input. The

demonstrated evaluation was based on a 6-hours run for each target application,

which are micro to small. Even with the small applications, the results achieved are

only possible thanks to the well-engineered AFL fuzzing engine (Zalewski, 2013).

Because they generate completely random input, fuzzers usually waste a significant

number of computations on trivial or invalid inputs.

Another less critical limitation is the difficulty of understanding the output

of the fuzzing engine concerning the performance issue they trigger. For instance,

applying PerfFuzz on a WordFrequency application would generate results

similar to the ones shown in Figure 8. The shown three inputs are all revealing

different performance issues. Input (1) in Figure 8 depicts a single long word issue,

which maximizes the time taken by the application to compute a hash of the word.

The second input (2) in Figure 8 exercises a case where a repeated execution of the

method add word() occurs because of the many short words. The last given input

(3) presents a case where many hash collisions occur, thus a longer execution time

in traversing a linked list.

( 1)  " t vÇ1PFEj ??A4A+v! ^?^AE! §^?MPt t ò8dg80ÿ( 8mr ÿÿÿÿ"

( 2)  " t  t  t  t  i  nv t  X t  1 9 t  l  t  l  t  t  t  t  t "

( 3)  " t  <81>v ^?@t  <80>! ^?@t  <80>! t  t ^Rn t  t  t  t  t  t  t  t  t "

Figure 8. Different inputs generated by PerfFuzz (Lemieux et al., 2018) for the
WordFrequency application.
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All the given inputs in Figure 8 are valid and valuable examples. However,

relating them to the root causes of the performance issue requires a deep

understanding of the application under test. In addition, as the size of the

application grows, the problem worsens.

Despite their limitations, fuzzing solution (PerfFuzz in particular)

represent the states of the art techniques in finding pathological input. However,

unlike security testing, performance testing usually is affirmed within known set

of possible inputs. In addition to wasting many computational cost opportunities,

the random test case generation will usually not exceed a parsing module of real-

world applications. Hence, fuzzers will have more success in revealing performance

issues related to validating the input rather than the issue related to the core

functionality of the application under test. A solution that searches within the valid

set of input using fuzzers or any other search methodology can have more effective

results.

2.3 Related Work Summary and Research Opportunities

The need to understand software performance behavior has long been

recognized (Ammons et al., 1997; Ball & Larus, 1996; Graham et al., 1982; Larus,

1999). The need for performance satisfactory applications or algorithms has been

studied long before the software was written on a large scale. The problem has

existed since the formalization of what is known now as the study of algorithmic

complexity. Software performance analysis is still an active research area. The level

of abstraction at which the solution works, the definition of the performance issues,

the diverse nature of software performance requirements, and the decision to fix or

only highlight performance issues are a few of the factors that make the problem

manifold. Moreover, the inherent habit among the software engineering community
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of “fix it later” (Dugan, 2004), makes performance analysis researchers confront

a wildly complicated problem. A clear definition of the problem is necessary to

narrow down the focus of our work.

Jin et al. (Jin et al., 2012) define performance issues as bugs that would

enhance the software performance with simple solutions while preserving software

functionality. However, such a definition introduces other issues, such as defining

a simple solution and how much enhancement is acceptable. We know that the

actual measurement is in the cost (monetary value) of having a lousy performing

application on production (Kim, Rhee, Lee, Zhang, & Xu, 2016). Unfortunately, if

such cost is used to define performance issues, it is most likely too late to discover

or fix these issues.

We define performance issues as a poor software performance that

contradicts the developer’s understanding or escapes his/her anticipation. As

software evolves by integrating several modules, prior developers’ understanding

of how each procedure is performing does not necessarily always hold. In addition,

usage of out-source libraries introduces a risk of misusing their interfaces (Jin et al.,

2012). The workload mismatch between what the developer anticipated and reality

is a good indicator of performance issues.

Our definition does not cover all cases in which a performance issue is

identified. Less common causes of introducing performance issues beyond the

software scope (e.g., user behavior change) might occur. However, we think

software engineers’ understanding of the code behavior and anticipation of

workload at the deployment time is sufficient.

Similar to the performance issue, it is also hard to categorize performance

analysis tools based on the published literature. The main objective of a
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performance analysis tool is usually to fix performance issues. Some performance

analysis tools are designed to take it upon themselves to fix performance issues

(Selakovic et al., 2017). Others focus on particular but complex known patterns of

issues to highlight them to developers (Dhok & Ramanathan, 2016; Mudduluru &

Ramanathan, 2016; Nistor, Song, et al., 2013; Wert et al., 2013; Xiao et al., 2013).

Tracking the input to understand their influence on performance is also a different

objective for some performance analysis tools (Coppa et al., 2012; Grechanik et al.,

2012; Küstner et al., 2010; Xiao et al., 2013).

In addition to the different objectives, there are different targeted

environments. Some performance analysis tools are focused on solutions that are

only applicable to parallel programs (Curtsinger & Berger, 2015). Others focus on

analyzing software entities and their interactions in the environment of distributed

systems (Boehme et al., 2016; Herodotou & Babu, 2011; Ofenbeck et al., 2014;

Shende & Malony, 2006). Such diversity in the objectives and environments makes

it hard to categorize performance analysis tools. More importantly, it makes it

harder to compare their effectiveness.

One of the challenges in software performance analysis literature is

how to compare techniques’ effectiveness concerning performance. Due to

diverse objectives (e.g., targeting performance anti-patterns (Wert et al., 2013),

considering configuration as inputs (S. Zhang & Ernst, 2014), and improving the

understandability of the results (Della Toffola et al., 2015)), each solution would

emphasize its analysis goal more during evaluation. For example, Curtsinger and

Berger (Curtsinger & Berger, 2015) argue that the performance improvement

opportunities they discover are far more effective than those found by gprof

(Graham et al., 1982) for the given benchmark. However, it is known that profiling
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parallel program was never an objective for gprof (Graham et al., 1982) as it was

for Curtsinger and Berger (Curtsinger & Berger, 2015). By fixing the highly ranked

hotspots, the overall application speed-up could be seen as a good measurement

of the technique’s effectiveness. Nevertheless, such an indicator can be biased as

the fix is highly dependent on the developer’s experience and understanding of

the applications. The technique’s added value to developers (e.g., ease of use, root

cause understandability, and other feedbacks) could be a good measurement but

hard to capture.

For software engineers, a valuable performance analysis tool would

provide fine-grained details efficiently (Ball & Larus, 1996), searches for new and

unanticipated behaviors (Lemieux et al., 2018), and identify the root cause of the

performance behavior (Selakovic et al., 2017). Such challenging characteristics of a

performance analysis tool would help software engineers assert their understanding

of their written software or reveal an unanticipated performance issue.

Collecting very detailed traces of an application run is costly. There is a

trade-off between how detailed the information provided by a performance analysis

tool and how acceptable the overhead is. Details can be of different types. For

example, effectively collecting the number of times a path is taken within an

application among all possible paths is one type (Ball & Larus, 1996). Another

type would be identifying possible inputs of all executed methods (Coppa et al.,

2012). Such fine-grained information is usually associated with a high overhead cost

that could preclude their adoption in the real world.

In addition to the overhead trade-off, existing performance analysis tools

rarely attempt to discover unanticipated worst-case scenarios. For dynamic

analysis techniques, the primary cause of such limitation is the dependency on the
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developer’s written unit tests to drive the analysis of a given application. Such unit

tests are usually written to ensure the preservation of the application’s functional

requirements. Thus, the result of using such unit tests can rarely lead to interesting

performance observations. Different inputs alone could have a significant effect on

analysis outcomes. There has been some effort to study the effect of the inputs on

the performance analysis process (B. Chen et al., 2016; Coppa et al., 2012; Küstner

et al., 2010; Xiao et al., 2013), but these either did not attempt to generate new

and interesting inputs to drive the test or were limited to unique input generation

and permutation cases.

Recent effort explored possible solutions to generating inputs for the goal of

performance analysis (Grechanik et al., 2012; Lemieux et al., 2018; Petsios et al.,

2017; Shen et al., 2015). These techniques differ on how they define the issue of

pathalogical inputs. However, the work by Lemieux et al. (Lemieux et al., 2018) is

that first that actually address such issue broadly and attempt to generate inputs

based on fuzzing techniques. The outcomes of their evaluation shows promising

results that indicates minimal improvements could lead to significant performance

insight about the application under test using the same existing profilers.

Moreover, existing performance analysis tools focus on locating possible

performance issues but not communicating these to the developer in an

understandable use case or architectural abstraction (Z. Chen et al., 2018). Result

understandability is a significant criterion that performance analysis tools should

consider. Misunderstanding a tool result would lead to wasted optimization

opportunities (Nistor et al., 2015). Usually, there is a significant trade-off between

how comprehensive a performance tool is and the daptation of its results due to

difficulties in understanding it (Nistor et al., 2015; Selakovic et al., 2017).
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The leading fuzzing-based test case generation techniques (Lemieux

et al., 2018) suffer from multiple limitations. First, it randomly generates

input for performance testing, which does not pass the parsing module of the

target application in most instances. Second, it wastes a significant amount of

computational budget by generating invalid inputs. Third, fuzzers’ produced

test cases are most likely to be challenging to comprehend, making the result

adaptation harder.

To this extent, we aim to use grammar obtained from the target application

own parser or documentation to drive the search of expensive inputs toward the

core functionality of target applications. Furthermore, using a grammar-based

search engine will result in test cases that match the developer expectations of

the application’s input. In addition, we think adapting a more structured search

technique such as Monte Carlo tree search or reinforcement learning would waste

less computational effort; thus, expediting the search process.

In the following chapters, we present a necessary background for formalizing

each technique and present our contribution of each technique in separate chapters

and discuss each one.
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CHAPTER III

BACKGROUND

The production rules of a context-free grammar (CFG, Section 3.1) can

produce different texts depending on which production rules are chosen at each

step. These choices can be seen as defining a search space, with the start symbol

at the root of a search tree. Our primary contribution is adapting Monte Carlo

tree search (MCTS, Section 3.2) as the search technique to explore portions of the

search space defined by a CFG. Monte Carlo tree search uses random probes, called

rollouts, in lieu of a static heuristic to determine which choices in the tree merit

more search effort. An alternative would be to use reinforcement learning (RL)

techniques to learn a robust heuristic. We also explored RL techniques to guide

test data generation but found it less effective. The fundamentals of RL are given

in Section 3.3.

3.1 Context-Free Grammar

Context-free grammars (CFGs) are a natural and common choice for

describing text with rich, recursive structure, including not only programming

language source code but also configurations and instructions for many

applications. A CFG can be specified as a set of rewrite rules of the form A → a,

where A is a non-terminal symbol and a is a phrase, a sequence of zero or more

non-terminal and terminal symbols. For our purposes the terminal symbols are

string literals. We will refer to terminal symbols as literals to avoid confusion

with terminal nodes in a search tree, and we will treat a sequence of literals as

equivalent to their concatenation.

Valid inputs for an application comprise a formal language, but complete

rules to accept all and only valid inputs, including semantic constraints, may

60



not be expressible by any description less complex than the application itself. A

Context-Free language is far more limited, expressing only limited syntactic rules

of well-formedness. However, a Context-Free language can be described simply and

compactly by grammar, and while the set of sentences generated by the grammar

may be a substantial superset of the valid inputs, it is far smaller than the inputs

generated by blind mutation.

Formally, a context free grammar G is a tuple (N,L,R, S). N and L are

finite sets of non-terminal symbols and literals, respectively. R is a finite set of

production rules in the form A → a where A ∈ N and a ∈ N ∪ L. Finally, S is

the start symbol of the grammar where S ∈ N . Any derived sentences from G must

start from S as a distinguished non-terminal.

〈expr〉 ::= ‘(’ 〈expr〉 ‘)’ 〈pow〉 | 〈expr〉 〈op〉 〈expr〉 | 〈digit〉

〈pow〉 ::= ‘ˆ’ 〈digit〉 | /* empty */

〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Grammar 1. A Context-Free Grammar for a simple expression solver.

The grammar in Grammar 1 is a concise example of CFG written in BNF

notation. To simplify notation we always consider the left-hand-side symbol of

the first production rule as the starting symbol of the grammar (i.e., S). Each

generated input can be described as a sequence of steps (derivations) in which a

non-terminal symbol is replaced by a sequence of non-terminal and literals. For

example, the production rule 〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ from Grammar 1 can be

expanded to ‘+’, ‘-’, ‘*’, or ‘/’. In derivations, we evaluate left-most non-terminal

elements one by one until all non-terminals are consumed. To show a working
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example, consider generating the sequence 5+2 . Using Grammar 1, the derivation

steps would be as the following:

〈expr〉 → 〈expr〉 〈op〉 〈expr〉

→ 〈digit〉 〈op〉 〈expr〉

→ 5 〈op〉 〈expr〉

→ 5+ 〈digit〉

→ 5+2

The main advantage of using raw seed inputs with fuzzing over a CFG

to drive the input generation is the ease of use. Seed inputs are usually easy to

create if not readily available. Thus, developers would not need to construct a

grammar to use an approach such as PerfFuzz (Lemieux et al., 2018). There

have been several attempts to derive CFG from seed inputs (Bastani, Sharma,

Aiken, & Liang, 2017; Kulkarni, Lemieux, & Sen, 2021; Wu et al., 2019) to achieve

such a goal. We study the applicability of using the most prominent approach

(Glade (Bastani et al., 2017)). However, we do not attempt to synthesize grammar

ourselves as this is a different research field.

3.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a heuristic tree-based search algorithm

(Baier & Drake, 2010; Browne et al., 2012; Chaslot, Bakkes, Szita, & Spronck,

2008; Coulom, 2006; Kocsis & Szepesvári, 2006; Perez, Samothrakis, & Lucas, 2014;

Schadd, Winands, van den Herik, Chaslot, & Uiterwijk, 2008). It construct a search

tree based on random sampling. The MCTS algorithm has proven useful in many
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different sequential decision making Artificial-Intelligence domains. Most notably,

MCTS is used in gaming problems.

As the size of a problem is increasingly large, MCTS provides a effective

strategy to asymmetrically explore the problem space with emphasis on potentially

good decision sequences. MCTS’s goal is to not samples every possible decision-

sequence but to increase the confidence of making a good decision given a limited

computational budget.

To formally explain how MCTS works, we formalize a problem as a Markov

Decision Processes (MDP) problem. MDP gives us a way to formalize sequential

decision making. Given some environment and an agent, in an MDP we have a

set of states S where s0 is the initial state, a set of actions A, a transition model

T (s, a, s′) that dictates the probability of reaching state s′ if action a is taken on

state s, and a rewards function R. As the problem is sequential, at each time step

t = 1, 2, 3, ...n, the agent use the current state st ∈ S to select a valid action at ∈ A

that produces the state-action pair (st, at). As the time increments (time is the

number of steps taken), the environment transition to the next state st+1 ∈ S, and

the agent receives a reward rt+1 ∈ R based on its last action at.

At each state st ∈ S the agent takes a valid action at ∈ A to form the

decision pair (st, at). The goal for the agent is to find a policy that maps state-

action pairs from the initial state s0 to a terminal state sterminal that maximize the

expected return Q(s, a).

UCT = Xi + C

√
lnNi

ni

Most commonly, and in our case, the UCT (Upper Confidence bound apply

to Tree) is used to define Q(s, a). Given the transition model T , the expected
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return Q(s, a) of the action a that takes us from state s to state s′ is found using

the UCT formula above. The variable Xi defines the average rewards observed

from state s′. Ni represent the number visits to state s. Similarly, ni represent

the number of visits to state s′ (the child state). Finally, the variable C is a

constant that is used to tune exploration vs. exploitation. A value between [0, 2]

is commonly used in the MCTS literature. A lower C value will lead to exploiting

the tree more where a higher C value will lead to more exploration of the tree.

Now that the basics are formalized, we describe the MCTS algorithm.

MCTS build a search tree iteratively until a defined computational budget is

consumed. Building the search tree involves four major steps; selection, expansion,

simulation, and backpropagation. For each iteration in building the search tree the

four steps are defined as the following:

– Selection: From root node in the tree s0 select the best child according to

the UCT formula until you reach a terminal or expandable node. A node is

expandable if it was visited before but it is not a terminal node (has possible

children).

– Expansion: Populate all the children from the current node following the

TreePolicy where each child node represent a valid state-action pair (st,

at). Then move to one of the populated children (randomly or following some

policy as all children have no valid Q(s, a) yet).

– Simulation: From the current node, select valid actions according to

TreePolicy all the way to a terminal state. These actions are not

populated. This step is also known as a rollout.

64



– Backpropagation: Given the reward from a simulation or a known terminal

state back-propagate the reward following the node’s ancestors. At each step

from a node to its parent the reward is added to the accumulated known

rewards and the number of visits is increased by 1.

Selection Expansion Simulation Backpropagation

Figure 9. An illustration of the basic steps (selection, expansion, simulation, and
backpropagation) performed in each MCTS iteration step.

The illustration in Figure 9 provide a working example of how an iteration

could go. For each node, the variables w and v are the accumulative wins and the

number of visits respectively. In the first step the algorithm selected nodes with the

highest UCT value. Second, it Expand the node S4 as it was visited at least once

before. Third, run a simulation from one of S4 new children (selected randomly) to

reach a terminal node and collect reward information. Finally, the value obtained

from the simulation is back-propagated through the ancestors of S7. Note how

nodes within a simulation step are not added to the search tree.

A node expansion typically occurs after one visit to some non-terminal node.

However, to save memory and increase the probability of the node effectiveness

before expanding it, the MCTS algorithm can define a visits threshold for
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expansion. The larger the threshold, the more visits will be needed to a node before

expanding it. Thus, more rollouts from the same node. Such a strategy reduces the

number of nodes created within the search tree and increases the potential of the

populated ones.

3.3 Reinforcement Learning

Reinforcement learning is an iterative approach to train agents to do good in

some environments by providing them with rewards given each action the agent

takes within the environment. The process in Figure 10 illustrates the agent

interaction with the environment. An environment must have a well-defined state

structure to communicate and a set of actions it can accept. An agent interacts

with the environment by selecting an action and passing it to the environment.

Given the current state of the environment and the agent’s action, the environment

acts and passes the new state back to the agent along with the reward based on

the last given action. The agent’s goal is to maximize the reward by learning which

action is likely to return the highest rewards on a given state.

Agent

Environment

rewardstate action

Figure 10. The agent-environment interaction in a reinforcement learning
algorithm. The figure is redrawn based on illustration seen on (Sutton & Barto,
2018)
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In the following section (Section 3.3.1), we will go over the fundamentals of

reinforcement learning. Next, (Section 3.3.2), we briefly introduce the state of the

art reinforcement algorithm on deep neural network and briefly discuss some areas

where it was applied successfully.

3.3.1 Reinforcement Learning Fundamentals. To formally

explain how reinforcement learning works, we need to break the learning process

into different parts. The key to any problem to work for a reinforcement learning

algorithm is to be formalized as a Markov Decision Processes (MDP) problem.

MDP gives us a way to formalize sequential decision making, which is the basis

for reinforcement learning. Given some environment and an agent, in an MDP we

have a set of states S, a set of actions A, and a set of rewards R. As the problem is

sequential, at each time step t = 1, 2, 3, ...n, the agent use the current state st ∈ S

to select an action at ∈ A that produces the state-action pair (st, at). As the time

increments (time is the number of steps taken), the environment transition to the

next state st+1 ∈ S, and the agent receives a reward rt+1 ∈ R based on its last

action at.

The agent goal in such an environment is to maximize the expected return

from all state-action pairs (St, At). The expected return is the sum of all future

rewards. Formally, the expected return G at time t is defined as:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT

The former expected return definition works with episodic tasks1. In the

case of continuing tasks (e.g., learning to adjust a thermometer of a room), the

final time step’s T notion does not apply as this time step would go to infinity (∞).

1 Episodic tasks are ones with terminal states.
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Therefore, the definition of expected return needs to be adjusted with a discount

rate to account for some tasks’ continuous notion. Hence the goal becomes to

maximize the discounted return of rewards instead of expected rewards’ return.

The expected return formula can be adjusted by choosing a value between 0 and 1

for the discount rate γ to make the agent cares more about immediate future return

rather than returns far in the future.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1

Given the goal and the formalization of the problems, what the agent learns,

is a policy of selecting the states’ actions. Understating the policy effectiveness

requires introducing the notion of value-function. A policy π then is a function

that calculates the probability of selecting an action given a state π(a|s) at time t.

Furthermore, the value-function of a state-action pair tells us how good is any given

action from the given state. We can find how good an action is from a given state

by calculating its expected return E (using the discounted return formula described

above).

The action-value function for policy π can be written as qπ. Therefore, the

action-value function for selecting action a in state s under π (i.e., qπ(s, a)) is the

expected return starting from state s at time t, taking action a and following policy

π thereafter.

qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
Finding a policy is not hard. However, finding the optimal policy that yields

the maximum expected return is. The policy π is considered better than or the
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same as policy π′ if the expected return from π is greater than or equal to the

expected return of π′ for all state-action pairs. There is always at least one policy

that is better than or equal to all other policies; that is the optimal policy π∗. The

optimal policy has an associated optimal action-value function q∗.

q∗(s, a) = max
π

qπ(s, a)∀s ∈ S, a ∈ A

The learning strategy and the definition of optimality described above are

the basic blocks of formalizing reinforcement learning. To cover the complete

details of the learning process, we have to understand how expected-return

(qπ(s, a)) values are tracked. Also, how the policies are compared to find optimality.

3.3.2 Q-Learning & Deep Neural Networks. In its simple

structure, reinforcement learning uses what is called Q-Learning or Q-Table. Q-

Learning algorithm stores the Q-Values mapping between all states and actions

and iteratively update these Q-Values given Bellman optimality equation to find

the optimal policy. To update the Q-Values, we need to introduce the notion

of learning rate α. A learning rate is a number between 0 and 1 that set the

percentage of how much the agent should keep from what it learned before versus

what it knows now. Hence, to calculate a new q value, we apply the following

equation on each encountered Q-Value.

qnew(s, a) = (1− α) qold(s, a) + α
(
Rt+1 + γmax

a′
q(s′, a′)

)
In the previous section, we always stated that our goal is to maximize

expected rewards. Even though this is our goal, such greediness could lead the
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agent to fall into some local minima2 more often than we would like. Therefore in

most reinforcement learning algorithms, we use the epsilon-greedy strategy to find a

balance between exploration and exploitation of actions. The ε value determines

whether to select an action based on the Q-Values in hand (exploitation) or

randomly (exploration). Reinforcement algorithms use a dynamic epsilon strategy

that would select more random actions at the beginning of the training, then the

rate decay as the training moves toward the end of the number of set episodes.

Input

Hidden

Output

0 1 1 1 1 0State

0. 2 0. 4 0. 3 0. 1Q-Values

Figure 11. An illustration of a simple neural network. This is not similar to
the one explained in Mnih et al. (Mnih et al., 2013). In the Atari paper, they
use convolutional neural network as they learn from games screenshots. The
illustration here shows the basics of how neural network in general can be used
for reinforcement learning. In practice they are much deeper and wider and might
involve special components.

The Q-Learning model that we explained is easy to understand. However,

the model does not scale to more extensive problems where the number of possible

2For any mathematical function, local minima are the values where the functions reached the
lowest possible value at sub-space, but this low value is not the lowest value at any point of the
function (i.e., global minima).
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states and actions is vast. Mnih et al. (Mnih et al., 2013) were the first to

introduce the use of Deep Q-Networks (DQN) for reinforcement learning to use

the network as an estimator of the Q-Values. Having the deep neural network

where the input is the state and the output are the action values for the given

state (see Figure 11), Mnih et al. (Mnih et al., 2013) were able to train an agent

to play Atari games learning from pixel values as a state and interacting with

the environment with the available actions (e.g., right, left, or jump) to reach the

human-level expertise.

This basic idea of interaction between the agent and the environment

has proven powerful when integrated with the state of the art DQN on different

domains. Reinforcement learning techniques have demonstrated effectiveness on

complex problems such as playing video games (Lillicrap et al., 2015; Mnih et al.,

2016; 2013; 2015; van Hasselt, Guez, & Silver, 2015), text modeling (Hellendoorn

& Devanbu, 2017; Kalchbrenner, Grefenstette, & Blunsom, 2014), and image

classification (Krizhevsky, Sutskever, & Hinton, 2017). Therefore, it is reasonable

to examine reinforcement learning applicability on finding all possible pathological

inputs that maximize the execution cost of a given target application.
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CHAPTER IV

TreeLine: FINDING SLOW INPUTS FASTER WITH MONTE CARLO TREE

SEARCH

In this chapter, we explain our approach to composing inputs for

performance testing. We first explain our methodology and detail each contribution

(Section 4.1). In Section 4.2, we evaluate TreeLine in comparison with the state-

of-the-art input generation fuzzer. We also conduct evaluations that address

the significance of the proposed enhancement on top of the Monte Carlo Tree

Search (MCTS). At the end of the chapter (Section 4.3), we discuss TreeLine’s

limitations and possible future work.

The content in this chapter is a result of collaboration with co-author

(Michal Young) and is not published yet. Ziyad Alsaeed is the primary author of

this work and responsible for conducting all the presented analyses.

4.1 Approach

4.1.1 Overview. TreeLine uses context-free grammar (CFG), as

defined in Section 3.1, as a base for its input syntheses. The application’s CFG can

be provided by the developer or synthesized from raw seed inputs using tools such

as Glade (Bastani et al., 2017). We focus on user-defined grammar obtained from

program parser or documentation. We discuss the suitability of synthesizer-based

grammar later in the chapter.

We construct a tree-based input generator where the starting symbol of

the grammar is the root of the tree (Section 4.1.4), and the derivations from

the root are constrained with a budget (Section 4.1.3). Using MCTS algorithm

(Section 4.1.5), TreeLine performs rollouts and expansions on the derivation

tree, leading to more expensive inputs. The feedback of executed inputs is
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gathered from the target application (Section 4.1.2). However, we modulate the

feedback according to the target application cost range to compensate skewed

feedback (Section 4.1.5.2). Also, we enhance MCTS by favoring coverage-increasing

nodes (Section 4.1.5.1) and avoiding excessive exploration of visited paths

(Section 4.1.5.4).
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Raw

Seed Inputs

CFG

Grammar
Synthesizers

Context-Free Grammar

Construct
Input Generator

Input Search
(Enhanced MCTS)

Input Execution
(Using AFL over Socket)

Feedback Adjustment
(Dynamic Reward Scaling)

Progress Assessment
(Dynamically Evaluate Tree 

Exhaustion)

Exhausted Trees
Dropped To
Start Over

Figure 12. TreeLine’s high-level overview. Phase-1 involves manual preparation
of seed inputs or grammars. Phase-2 illustrates the automated steps TreeLine go
through to search for expensive inputs.

Figure 12 illustrates the high-level process of TreeLine. We split

the process into two phases. Although we do some minor enhancements to

automatically synthesized grammars in Phase-1, most of our contribution is in the

processes shown in Phase-2.

In Phase-2, TreeLine will first parse the CFG into a tree-based input

generator. Using the input generator, TreeLine will keep searching for expensive

input until it consumes the allowed computation budget (e.g., defined timeout).
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TreeLine will search for new expensive input in each search iteration following the

enhanced MCTS algorithm we describe in Section 4.1.5. The feedback for running

the newly found inputs is obtained using AFL. Our reward method dynamically

adjust the feedback to work for MCTS balancing. The rewards are sent to the

search tree for back-propagation. At the end of each cycle, TreeLine dynamically

assess the exhaustion of the current search tree. If the tree is exhausted, TreeLine

drop the tree and construct a new one based on the same grammar to take

advantage of the more cultivated rewards. In each search iteration, we keep track

of expensive input for final reporting.

4.1.2 Target Application Instrumentation & Run Tracking.

Instrumentation tools like AFL’s (Zalewski, 2013) work best with program source

code, although instrumentation of binaries is also possible. However, we consider

the application’s source code for our experiments as it is reasonable to assume that

source code is available. A testing tool such as searching for expensive inputs is

used to fix performance issues. Using a binary version of the target application may

only simplify the integration process with the testing tool. However, the source

code would require an inspection to validate the tool’s findings and apply fixes.

We rely on AFL to instrument the target application considering the effort

put into implementing it over the years. However, we only use the instrumentation

and target-application runner and tracker of the tool. We do not use any of the

fuzzing tactics that are the core of AFL.

In principle, we can define the cost component with different desired bases

(e.g., cache hits, memory-operations, or wall-time), but in our evaluation we use

control-flow graph edge hits as our cost component for performance. The control-

flow graph is easy to adapt as it is how AFL define cost component. Although
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not the only performance indicator, edge hits are a reliable and cheap component

to measure. Unlike time, if the target application is deterministic, we expect the

input’s cost to be the same across different environments and loads of the system.

Also, it facilitates a good ground for comparison with other fuzzing tools.

AFL tracks the target application coverage by counting the control-flow

graph edges hit rate (an illustration is given in Figure 5 from the Related Work

chapter 2.2). Therefore, it is different from well-known profilers (Graham et al.,

1982), which count blocks. AFL collects edge hits information each time the

target application is executed with new inputs. The edge hits rate forms a base

for different possible insights. For example, the total edge hits describe the cost

of executing the whole application given some input. And the value of each edge

describes the cost of exercising a particular component within the application.

Focusing on each edge in the control-flow graph, one can form two different

insights. AFL initial design tracks different states of coverage in which the edges

can be categorized. An edge that gets hit for the first time or one that unlocks

a bucket of hit ranges (hit 1 time, 2 times, 3 times, 4–7 times, 8–15 times, 16–31

times, 32–127 times, or 128–255 times) increases the coverage. Such feedback is

a broad interpretation of the test case coverage. We refer to such feedback as

NewCov. An input will exercise a NewCov on the target application if some

edge unlocks a new bucket of hits compared to all previously observed inputs.

Another edge-specific insight is based on the granular change to hits for

each edge. PerfFuzz (Lemieux et al., 2018) introduced unsummarized feedback

by taking advantage of a more precise tracking of any maximizing change in hits

to each edge. Instead of categorizing the hits into predefined buckets, PerfFuzz

tracks the exact number of edge hits. An input that shows an increase in the
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number of hits to some edge in the control-flow graph compared to all previously

executed inputs exercises NewMax feedback.

Although the NewCov and NewMax tracking seems to be serving the

same purpose, they are different. NewMax tracks any slight increase to hits of a

given edge. On the other hand, NewCov tracks different states of coverage, and

can register new coverage by decreasing as well as increasing the count of edge hits.

Thus, after few iterations, inputs can increase the max hit to an edge with no new

coverage and vice versa.

Overall feedback can be drawn from the whole control-flow graph map.

From AFL, we also track the new change in the total cost of executing an input.

The NewCost is exercised if and only if the sum of all edge hits from the

control-flow graph is larger than the last known max sum. Similar to the case

with NewCov and NewMax it is possible to have an input that maximizes the

NewCost but has no NewCov or NewMax. Our goal in the search tree is to

maximize the cost.

With each input run, AFL will always return the feedback elements

NewCov, NewMax, and NewCost. We save and favor inputs for which any

of the given feedback elements are true.

4.1.3 Cost & Budget. Derivation lengths from CFGs with recursive

productions are unbounded (refer to Section 3.1 for fundamentals of CFG). Thus,

the depth of the search tree will be unbounded. Also, our definition of pathological

inputs dictates that all inputs in search space must be of bounded size, because we

want to find a short input that demonstrates a pattern that triggers slow execution,

rather than the possibility of slowing an application down with enormous inputs.
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Therefore, we introduce the notion of cost to grammar and budget to tree search to

bound the generated input length and tree size.

A cost is associated with each symbol in the grammar s ∈ N ∪ L. To

constrain the derivation length, we calculate the minimum possible cost based

on the literals a symbol s ∈ N can lead to. Therefore, we have a minimum cost

associated with each symbol s ∈ N ∪ L.

∃ MinCost(s),∀s ∈ N ∪ L

The base for defining the cost in any grammar is the literals set L. We can

look at the cost of literals l ∈ L as a token; thus, it costs 1. However, we also

can define the minimum cost as the number of characters in that literal symbol.

For example, the symbol 〈B〉 from the production rule 〈B〉 ::= ‘bb’ | ‘bbb’ can

have MinCost(〈B〉) = 1 considering a token-based cost or MinCost(〈B〉) = 2

considering a character-based cost. Because the closely related work for input

search (Lemieux et al., 2018; Petsios et al., 2017) adopts a byte-based approach

that is even more granular than characters, we adopt a byte-based cost across all

experiments unless stated otherwise.

We strongly believe adopting a token-based definition of cost is more

suitable for MCTS-based search techniques going forward. Defining the cost of

a symbol in the grammar based on the tokens is consistent with the definition of

pathological inputs. Real world application have predefined keywords for their

inputs. Treating each keywords equally regardless of its size in term of character

count is consistent with inputs’ length constraint. Although resulting inputs might

have different number of characters but they would always have the same number

of used tokens. Moreover, using character or byte-based costs could lead to the
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search algorithm favoring one keyword over the other due to size only (e.g., graph

is shorter than digraph for graph layout applications). Shorter keywords will

allow the accommodation of more other characters. Therefore, shorter keywords are

favored due to size. A token-based cost will regularize the importance of keywords.

Given that each literal symbol has a defined minimum cost, we can

inductively define a minimum cost for all symbols s ∈ N ∪ L. Any non-terminal

symbol will have a MinCost based on its options.

MinCost(A|B) = min(MinCost(A),MinCost(B))

MinCost(AB) = MinCost(A) + MinCost(B)

Defining a cost for each symbol allows a budget constraint on how many

literals can be used to form inputs. Thus, grammar derivations are bounded. For

each derivation step, the options available are reduced in consideration of the

remaining budget at that step. For example, with a budget of 2, evaluating the

symbol 〈B〉 based on the production rule 〈B〉 ::= ‘bb’ | ‘bbb’, then only ‘bb’ is

available as an option given that the cost of ‘bbb’ is larger than the remaining

budget. We elaborate on the mechanics of the derivation with budget constraints

when we describe our InputGenerator (Section 4.1.4).

Using the cost and budget defined above, we ensure a bounded number of

derivations for regular grammar. However, if a grammar has possible cyclic and

cost-less (i.e., MinCost=0) symbols, then our defined cost and budget method

will not bound the derivation steps. Although it is possible to form such grammars,

we found them uncommon with hand-crafted ones, found in documentation, or

inferred from the application parser. Nevertheless, a mitigation can be applied by
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transforming a cyclic grammar into other acyclic forms like the Greibach Normal

Form (Greibach, 1965; Hopcroft & Ullman, 1969).

4.1.4 Input Generator. We described the funcdmenetal of MCTS in

Section 3.2. For the CFG to work with MCTS, we need to represent the grammar

as a tree to generate inputs. The same generator defines the TreePolicy

that enforces the constraints on expansions of the search tree. Therefore, our

InputGenerator is a tree-based generator that uses the grammar starting

symbol S ∈ G to construct a root node n of a search tree.

In relation to InputGenerator, a node n in the search tree has six

relevant properties parent, symbol, budget, children, text, and stack. Each

property is described as follows:

– parent(n): A pointer to the node’s parent.

– symbol(n): The current symbol s ∈ N from G we are evaluating. In

derivation steps, this is the next non-terminal we are evaluating.

– budget(n): The budget passed from the node’s parent.

– children(n): A set of all valid grammar options from the current symbol

given its production rule and budget(n).

– text(n): Is the produced literals up to this node. This is an empty string in

the case of the root node.

– stack(n): Is the set of derived and non-resolved symbols s ∈ N ∪ L so far

based on the production choices.

To illustrate how the InputGenerator works we use a simple but

representative grammar as shown in Grammar 2 with a small budget B = 3.
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〈rcompound〉 ::= 〈edgeop〉 〈simple〉 〈rcompound〉 | /* empty */

〈simple〉 ::= 〈nodelist〉 | 〈subgraph〉

〈edgeop〉 ::= ‘->’ | /* empty */

〈nodelist〉 ::= 〈node〉 | 〈nodelist〉 ‘,’ 〈node〉

〈node〉 ::= 〈atom〉 | 〈atom〉 ‘:’ 〈port〉

〈port〉 ::= ‘n’ | ‘ne’ | ‘e’ | ‘se’ | ‘s’ | ‘sw’ | ‘w’ | ‘nw’ | ‘c’ | ‘ ’

〈atom〉 ::= [a-zA-Z0-9_]

Grammar 2. Excerpt of a grammar transcribed from parser source code found
in the graphviz source code repository. The full grammar can be found in the
Appendix (Grammar 7)

Calculating the minimum cost for each symbol s ∈ N we get a MinCost of zero

for 〈rcompound〉 and 〈edgeop〉 as both lead to an empty case and a MinCost of

one for all other symbols. A summary of all possible derivation based on the given

budget and costs is shown in Figure 13.

The budget on the root node is budget(nroot) = 3. As the root node

is the first node in the derivation we adjust its budget based on its minimum

cost compared to the passed budget (budget(nroot) = PassedBudget −

MinCost(symbol(nroot)). For all other nodes, the budget is exactly the value

passed from the parent node as the value is adjusted with option selection. At each

node n, the set of children has the options that adhere to the ValidOptions

equation below. Thus, from the root node nroot all options are valid because

for each option α ∈ symbol(nroot) the MinCost(α) is <= to budget +

MinCost(〈rcompound〉).
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Figure 13. An excerpt of derivations based on Grammar 2 with a budget of 3. At
each step, only choices consistent with the remaining budget are considered. Red
tags points at which of the available steps are reduced by the available budget.
White tages indicate that a literal moves from stack to text without an extra
derivation step. The abbreviations B, T, and S correspond to Budget, Text, and
Stack respectively.

∀ α ∈ A from symbol(n) :

ValidOptions(symbol(n)) =

OptMinCost(a) <= budget(n) + MinCost(symbol(n))
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In the case of option α1: 〈edgeop〉 〈simple〉 〈rcompound〉 the combined

cost of the phrase is equal to 1 coming from the MinCost(〈simple〉).Thus,

the budget in the produced child is reduced by 1 in the first derivation step

following the MarginBudget formula given below. The formula validates if the

option consumed more budget than its minimum possible cost. Then passes the

appropriate remaining budget to the child.

∀ α ∈ ValidOptions(symbol(n)) :

MarginBudget(n) = budget(n)−
(
OptMinCost(α)−MinCost(symbol(n))

)
The second option from the root node α2: /* empty */1 leads directly to

terminal node. The budget in a terminal node does not matter as much as the

generated text (null in this case).

The derivation step from 〈node〉 to 〈atom〉 ‘:’ 〈port〉 illustrates a case where

the full budget is consumed. Thus, future derivations will be bounded by their

minimum cost budget. The nodes tagged in red with partial options in Figure 13,

are given only a limited set of their options according to the possible remaining

budget. In the case of the node where the symbol under evaluation is 〈port〉, the

options that cost 1-byte are the only options that are allowed. Similarly, in the

last derivation step from 〈rcompound〉 only the option /* empty */is allowed as it

defines the evaluated symbol minimum cost.

Handling the budget is the most intricate step in tree derivation, all other

variables are relatively simpler to handle. For each new valid child, all the symbols

of the valid option that populated the child from current node n are added to n’s

stack to be the child’s stack. The top of the stack is the next symbol to evaluate

1We use the notation /* empty */to refer to a null option.
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(i.e., symbol(child)). If the top of the stack is a literal l ∈ L it is translated and

appended to the text(child) with the budget adjust until the top of the stack is a

non-terminal symbol s ∈ N . This is illustrated in the node tagged with white Skip

Literal in Figure 13. Literals are choiceless symbols from the grammar. Therefore,

we do not create explicit nodes for them to maintain decent performance.

The derivation continues until the stack is empty and there are no symbols

left to evaluate. These are the terminal nodes in Figure 13. Note that it is possible

for the stack to be empty but we keep evaluating the symbol in hand if the

derivations lead to a single symbol each time. Thus, both the stack(n) and the

symbol(n) must be empty to call a node n a terminal node.

Given the defined tree-based InputGenerator, it is clear how the budget

does not limit the number derivation steps but it constrain it. Hence, it constrain

the maximum length of the input. The derivation path that leads to a terminal

with the text ‘g’ from the root node in Figure 13, illustrate a partial budget

consumption. Therefore, the InputGenerator allows us to explore inputs of size

0− B.

4.1.5 TreeLine Algorithm. The high-level processes of searching

for expensive inputs is shown in Algorithm 1. We integrate the concept of MCTS

(Section 3.2) to the InputGenerator (Section 4.1.4). Moreover, we make

adjustment to the traditional MCTS algorithm such as a notion of hot-nodes buffer

and rebuilding the search tree with heuristics. We describe each enhancement

separately.

TreeLine algorithm expect few parameters to be defined before a search

can start. However, most of these are basic parameters that are inherited either

from the problem definition or the a methods we used. Moreover, we do not
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Algorithm 1: TreeLine algorithm

inputs: grammar G, number of iterations N, budget B, exploration
threshold C, expansion threshold E, skip threshold K

1 δ ← InputGenerator(G,B,C,E);
2 β ← [ ];
3 history ← [ ];
4 while within N do
5 node← δ;
6 with probability ∈ [0, 1] > K do
7 if HasNodes(β) then
8 node← max(UCT(β));

9 node← BestChild(node);
10 feedback ← CollectFeedback(node);
11 BackPropagate(node, GetReward(feedback));
12 HandleHotNodes(node, β, feedback);
13 TreeExhaustionEvaluation(history, δ, β, feedback);

hand tune these parameters for each target application. The grammar G is the

seed we operate on. The parameter N is the computational budget allowed for

our algorithm to do the search. The computational budget can be defined based

on time or any other notion of computational constraint. We use both time

and iteration as one allows us to get a sense of a wall time cost and the other

empathizes the number of required target application executions. The budget B is

what constrain the generated input length as described in Sections 4.1.3 and 4.1.4.

The parameters exploration-threshold C, expansion-threshold E, and

skip-threshold K are related to how we operate the MCTS algorithm. Values of

C are recommended to be in range [0-2] according to the MCTS literature to

balance exploration and exploitation of the search tree. We try to minimize the

reliance on the value of C by adjusting the rewards passed to the search tree (see

Section 4.1.5.2). We use the value 1.5 for C across all experiments. The parameter

E is also usually found in MCTS literature to balance the memory use and improve
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the nodes value estimation before expanding it. Larger values of E means more

visits to a node before it can be expanded, while smaller values means faster

expansion of the tree. Memory is not an issue based on our experiments; thus, we

keep E low (E = 20). The last parameter K controls from which node we start the

search for the given iteration. This is a new notion that we introduce and explain

on Section 4.1.5.1. We always use the value 0.5 for K.

In Algorithm 1 we define the notion of buffer β (line 2) and history (line 3).

These variables are used to enhance the search result by exploring verity of

potential paths faster and dropping the tree for fresh search as we have better

heuristics of the target application cost range. We elaborate on these on their

designated sections (4.1.5.1 and 4.1.5.3 respectively). We focus on the steps we

define that align with the traditional MCTS algorithm for now.

For each pass in the search tree (Algorithm 1, line 4) we obtain a node

to start from. We then traverse the tree to reach the best known frontier node

(Algorithm 1, line 9) as shown in Algorithm 2. A leaf is a node that has no children

yet. Thus, a leaf node has a broader definition than terminal nodes where terminals

must have no children, empty stack and empty symbol.

Algorithm 2: BestChild function for tree traversal

inputs: MCTS node
1 while not IsLeaf(node) do
2 children← GetChildren(node);
3 node← max(UCT(children));

4 return node

Following Algorithm 1 we then collect the feedback based on the frontier

node we obtained (line 10). The details of collecting the feedback for a frontier
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node are given in Algorithm 3. If the frontier node we get IsTerminal(node) we

then collect the feedback from the target application (Algorithm 3, lines 1 & 2).

Algorithm 3: CollectFeedback function for random traversal or
generated input execution.

inputs: MCTS node
1 if IsTerminal(node) then
2 feedback ← execute(text(node));

3 else if IsNew(node) then
4 feedback ← rollout(node);

5 else
6 Expand(node);
7 node← GetFirstChild(node);
8 feedback ← rollout(node);

9 return node

In the case where the node is new (Algorithm 3, line 3), then we apply

a rollout(node) (Algorithm 3, line 4) from the the given node to randomly

complete the the derivation steps from the given node to some terminal node. The

rollout will then collect a feedback based on the given random found input. A node

is new if it was visited less times than E. Thus, we are not allowed to expand the

node yet. If the leaf node is neither a terminal nor new, then it must be ready for

expansion. The function Expand(node) (Algorithm 3, line 6) expands the node

according to the TreePolicy defined in our InputGenerator. All new children

have the same UCT value when they are newly generated (+∞). Thus, we select

the first child (Algorithm 3, line 7). A random rollout is performed from the new

child to collect a new feedback for the given iteration.

In expanding a node we populate all children at once as given in the

InputGenerator (Section 4.1.4). Thus, all valid children from the given node

are added. However, there are other possible strategies to populate new children.

For example, it is possible to populate children one at a time. Given the max cost
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known, if the populated child is outperforming it, then it is less likely we need to

populate all children and explore them all. Such strategy can be beneficial if the

number of valid children is significantly large but there is small to no distinction

between choosing one over the other. We choose to populate all children as we do

not know how other approaches would generalize over different target applications.

The feedback of running the target application on either a rollout or a

terminal node is passed to our GetReward(feedback) function to back-propagate

rewards (Algorithm 1, line 11). The reward is a smoothed value of the actual input

cost. More details on the reward function in Section 4.1.5.2. The back-propagation,

however, as shown in Algorithm 4 updates all nodes from the known populated

node all the way to the root node. For each node in the traversed path we increase

the number of visits by one and add the given reward value to the node’s score.

Algorithm 4: BackPropagate function for updating the traversed path
scores and visits.

inputs: MCTS node, reward R
1 while node is not root do
2 node.visits← node.visits+ 1;
3 node.score← node.score+ R;
4 node← parent(node);

Within each iteration we evaluate the frontier node for coverage increase

(Algorithm 1, line 12). Hot nodes are added to the buffer to expedite the search

progress within hot-paths as we will describe in Section 4.1.5.1.

In the last step of the TreeLine algorithm (Algorithm 1, line 13), we

check the search tree exhaustion to decide whether we should drop the tree and

start with a fresh search tree or do more exploration with the tree in hand. The

handling of feedback history and dropping the search tree is explained in details in

Section 4.1.5.3.
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As with similar anytime algorithms, the TreeLine algorithm runs until

the computational budget is fully consumed. The larger the computational budget

(regardless of its definition), the better result the algorithm would return. The

inputs that maximize the cost or increase the coverage of the application are

tracked during the process for post-search evaluation.

4.1.5.1 Nodes Buffer. The UCT formula balances MCTS. It uses

the exploration value to help decide on which node to select, expand, or do a

rollout from at each iteration. The UCT formula, given empirically known good

C value, can explore the tree toward a costly input. However, given that our

problem is not a win-loss type of problem, exploring a variety of high-potential

paths might take longer than we aim for. As we will explain in the reward function

(see Section 4.1.5.2), our rewards are in the range between 0 and 1. Traditional

MCTS algorithms expect absolute binary values for rewarding. A binary rewarding

module provides a straightforward notion of win or loss (good or bad in our case).

Thus, it helps the MCTS algorithm have a faster convergence than our case. We

introduce a node buffer of potentially good nodes to start the search from with

some probability that would expedite the search toward more expensive paths.

In addition to the raw cost of an input execution, the feedback, as explained

in Section 4.1.2, offers more information than just the cost. For each run we have

the NewCov and NewMax indicators. These two indicators are part of the

total cost. However, both NewCov and NewMax give a different perspective

than the raw cost of the input effect, and they are not used to their full potential.

Each time we do a rollout from some node, we only backpropagate and track the

scaled cost. However, in traditional MCTS, if the rollout from the given node

showed some NewCov or NewMax the information will be discarded as soon
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as we finish the iteration. Tracking nodes that depict NewCov or NewMax for

future exploitation could help expedite the search toward the ultimate goal of a

more expensive input.

For each node that shows NewCov or NewMax we add the node to the a

buffer β as shown in Algorithm 5. We only allow non-terminal nodes to be added

to the buffer as terminal nodes have no further selections or expansions possible.

By tracking nodes that showed NewCov or NewMax we then can start an

iteration from some high-potential node instead of the root node (Algorithm 1,

lines 6-8). Similar to child selection from any node, nodes in the buffer are selected

based on their UCT value (Algorithm 1, line 8). Therefore, for some iterations with

probability > K we explore a high-potential node that is either already in the good

path from the root node or explore a completely different branch according to the

UCT formula.

Algorithm 5: HandleHotNodes function for tracking hot nodes by
adding them to the shared buffer β.

inputs: MCTS node, buffer β, feedback
1 if NOT IsTerminal(node) then
2 if NewCov(feedback) ∨ NewMax(feedback) ∨ NewCost(feedback)

then
3 β ← β ∪ {node}

To illustrate the behavior of the buffer according to the nodes’ UCT value,

we conducted an isolated experiment. In this experiment, we track the UCT value

for each node added to the buffer from the moment it is tracked until the end of

the experiment. The goal is to understand how these nodes’ UCT values increase

over time. Hence, they are likely to be selected from the buffer as a starting node

for an iteration. Figure 14, illustrate the complete view of the UCT value progress

for each added node. The x-axis in the figure represents iterations, and the y-axis
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represents the UCT value for each node. Each line in the plot represents a unique

node. Line colors are random but help distinguish a group of nodes added earlier

(blue) in the experiment versus ones added later (black) and the ones in between.

This high-level view shows that a large number of nodes is added to the buffer.

However, it does not help us understand the UCT value progress.
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Figure 14. The buffered nodes’ UCT value change over iteration of an isolated
experiment using libxml2. The x-axis represents iterations, and the y-axis
represents the UCT value for each hot node node.

The illustration in Figure 15 shows a zoomed-in version of the same

experiment on the y-axis (values between 10 and 12.25). This view shows how the

UCT value of a sub-set of nodes are increasing over iterations. It indicates that not

all nodes in the buffer have high potential. Furthermore, the figure shows how fast

the UCT value grows for some nodes compared to the others. It is hard for each

iteration to know what subset of the shown nodes falls within the known expensive

path at that iteration. However, it is safe to assume that some node with max UCT

value in the buffer is not in the hot-path from the root node for some iterations.

Thus, selecting it would speed up the exploration of its path compared to the hot

path from the root node.
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Figure 15. A zoomed-in version of the buffered nodes’ UCT value change over
iteration of an isolated experiment using libxml2. The x-axis represents iterations,
and the y-axis represents the UCT value for each hot node node.

In addition to expediting the search process by affirming an exemplary node

or rolling it out, the buffer β helps us avoid falling into local maxima. Within

the first few iterations the search tends to be a breadth-first search. As more

information is gathered from executions, MCTS tends to exploit a few selected

branches relative to the root node. Keeping track of nodes that has NewCov

or NewMax and exploiting them allows us to balance the exploration of high-

potential paths other than the ones that fall within the UCT formula’s reach.

The nodes added to the buffer β can be nodes at a very high level of the

search tree. Thus, a node that showed some NewCov or NewMax based on

applying a random rollout might be less expressive with how to regenerate the

same or closely related input. Hence, it is less likely to be helpful in exploiting

the particular increase or maximization in coverage of an edge in the control-

flow graph. Mitigation can be applied by changing how rollouts works by and

populating all the nodes from the root to a terminal where the input showed

NewCov or NewMax. However, the exact path where NewCov or NewMax
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is observed is not what we aim for. It is the potentially slight variations from the

given path that might have some potential. Thus, although nodes at a high level in

the search tree might be a broad representation of the NewCov or NewMax case,

they are still a good starting point for selection, expansion, or rollout if they have a

good UCT value compared to other nodes in the buffer β.

4.1.5.2 Dynamically Adjusting Rewards. Each target application

has its unique cost range. Based on the size of the control-flow graph, the

provided grammar, and the allowed budget, the possible range will change. In our

experience, the ranges are radically diverse. Some will have ranges as low as in

thousands, and others will be in billions. Moreover, naive inputs such as an empty

input would not cost 0. The simplest possible inputs would have some cost larger

than 0. The range between the minimum cost and the maximum known one is an

application-dependent value. These factors enforce the use of a reward function

that adjusts the feedback to some known range.

Moreover, the cost of executing an input is not always good enough to drive

the search toward more expensive inputs. The length of the input is an important

factor in finding the most expensive input. For example, the input 1 2 3 for

an application such as QuickSort will depict the worst-case of a sorted array.

However, if the budget allowed is 10, even though the input shown of length 3

captures the pattern of the worst-case input, it is not the most expensive possible

input given the allowed budget. Therefore, spending time on paths that consume a

lower budget than allowed is, in most cases, a wasted computation effort.

A counter-argument to the push toward the total consumption of the

budget is the possibility of depicting a worst-case execution with low budgets (e.g.,

an infinite while loop in a programming language can be written in 10 bytes).
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However, input generation profilers are usually used to find some pattern rather

than obvious exceptional cases. Moreover, shorter cases can be included in more

extended input. Therefore, biasing toward longer inputs encompasses both.

We scale the reward for execution cost between 0 and 1 with t-digest, a

streaming quantile estimation function (Dunning, 2021; Dunning & Ertl, 2019).

Quantiles in statistics are cutting points for a range of data. And a streaming

estimation of quantiles is the adjustment of the defined cutting points in a

continues data observation environment. Hence, it is a good fit for our problem

as we do not know the range of cost a priori. With t-digest, regardless of the

application cost range, we will always get a reward between 0 and 1. Moreover,

the quantile function helps distinguish more expensive costs as they are discovered

and adjust dynamically. As the t-digest observe more raw cost is becomes more

accurate in its estimation. Similarly, we adjust the generated input length using a

linear function to fit the known length minimum and maximum values between 0

and 1.

The reward function returns a balanced weighted value in the range

Θ = [0.1, 0.9] of the smoothed cost and length values. Initially, the reward function

starts by assigning the most negligible weight to the length (0.1). Then according

to observations, the weight is adjusted slowly in both directions.

GetReward(feedback) = Quantile(cost) ∗ (1−Θ) + Scale(len(input)) ∗Θ

In a case where the grammar and the target application often lead to longer

inputs, the weight will be in its lowest case. Otherwise, the weight will be increased

to a point where the actual length value is used. The weight adjustment in the

reward occurs only within the first established search tree (Section 4.1.5.3).
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4.1.5.3 Search Refresh. The nature of the problem and how we

designed our reward function (Section 4.1.5.2) implies that the same inputs can be

rewarded differently over time. Because the search space is unknown, the rewards

at best are a good approximation of the cost space. As the number of target app

execution on expensive input grows, the estimation becomes better. For example,

assume we generate the input i1 at time t0, costing 10K as the most expensive

input observed at time t0. Then assume we generate input i2 at time t10 where the

cost of i2 is 20K as the new most expensive input. In this case, the reward function

will be adjusted according to the cost of input i2. Thus, any future observation of

input i1 after time t10, will not get the same reward as given at time t0. The reward

given to any non-maximum input will be relatively larger than the reward given to

the same input at any future time.

Even with a smoothed reward function, having a better approximation

of the cost space of a target application causes the search to be skewed toward

initially observed expensive input. Unfortunately, tracking rewards within each

node for future reward value correction as we observe new expensive inputs is

computationally infeasible. Thus, our next best solution is to thoroughly explore

the current search tree given the anomalies in its reward accumulation before we

refresh the search tree and start over. The intuition is that the current accumulated

rewards within the search tree at worst must have led the search to some local-

maxima. Because reaching a good state of the search tree is expensive, we aim for

making sure we exhaustively search the established space before dropping the tree

and starting over (Algorithm 1, line 13).

The details of evaluating the tree search exhaustion are given in

Algorithm 6. We first update the history of observation since the establishment
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of the tree in hand. Next, if we satisfy the number of required observations (tail)

and stability definition, we drop the tree by clearing all the tree-related variables

and establishing a new tree root. It is important to note that the observed reward

estimate and the coverage information from the target application are carried

across trees.

Algorithm 6: TreeExhaustionEvaluation function for evaluating and
possibly refreshing the exploration progress of an established tree.

inputs: the execution cost history history, the tree root δ, buffer β, the
most recent execution feedback

1 history ← history ∪ {feedback};
2 if len(history) > tail ∧ HasStabilized(history[−tail :]) then
3 Clear(β);
4 Clear(history);
5 Drop(δ);
6 δ ← InputGenerator(G,B,C,E);

The function HasStabilized measure the probability of search effectiveness

given the current tree (Algorithm 7). It looks into the last tail number of

observed costs from history. Given the passed set of most recent observations,

HasStabilized measure the percentage of redundant costs observed compared

to the set provided. A more diverse set of costs indicates exploring a wide range

of inputs and paths given the current search tree. On the other hand, a less

diverse set of costs indicates we are exploring similar inputs and devoting more

computational effort to the same tree is probably a computational waste.

A problem with our previous definition of stabilization is that the cost

range for target application is widely diverse as described in Section 4.1.5.2.

Target applications with a smaller cost range will tend to have less diverse input

regardless of the search tree state. Therefore, we define a dynamic cutting threshold

of what percentage of redundant costs is allowed to determine a search tree

95



Algorithm 7: HasStabilized function for stabilization evaluation.

inputs: a sub-set of observations history H
1 unique percentage← len(NumUniqueValues(H))/len(H);
2 if unique percentage < ε-refresh(Q) then
3 return true
4 else
5 return false

HasStabilized. Moreover, we determine the tail size according to the known

range. Applications with more extensive ranges will use smaller tail sizes and vise

versa.

The primary concern in defining the tree refresh strategy is to waste as least

computational effort as possible. Thus, we define our refresh threshold based on

the computational effort spent. We keep track of the number of target application

executions processed (Q) for each established search tree. Using the ε − refresh(Q)

formula below, we can control how the cutting refresh threshold grows given the

number of executions made.

ε− refresh(Q) =

1−
(
ratemin + (ratemax − ratemin) ∗ e(−1 ∗ Q ∗ ratedecay)

)
The variables ratemin, ratemax, and ratedecay are user-defined and fixed

values. We use the value 0.1, 1, and 0.00005 respectively for each variable. Given

the ε-refresh(Q) function, the threshold will then start from 0.0 and grows slowly

with each execution up to 0.9. The intuition behind the dynamic cutting threshold

is that as each search tree is established, it is less likely to exhaust the search even

if we have many redundant costs observed. However, as the number of executions
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grows, the established tree must have good exploration distribution. Therefore,

with each new execution, the threshold is less tolerant of redundant observation.

Similar to the cutting threshold, the tail size is adjusted based on the

observed range. We keep this simple by defining bucketed ranges between 2500 and

200, 000. Given the size of the cost range, we adjust the tail size. More extensive

ranges are expected to have more diverse costs; therefore, we assign them smaller

tail sizes and vise versa.

Each time we start the search with a new search tree, we reward input

exploration based on the most accurate reward estimate. The search from a new

search tree is either going to lead us to the same expensive input in the case where

we found the max or will be offered the opportunity to find a new expensive path

based on the most recent reward function much faster.

4.1.5.4 Avoiding Search in Exhausted Subtrees. In finding the

most possibly expensive input, the goal is not to learn the optimal path but find

it. Thus, it is ideal for populated nodes in the search tree if we traversed them a

minimal number of times. It is safe to say a node is traversed enough time if it

is a terminal node as it has no possible children. Thus, we define a node locking

strategy to minimize the number of visits to an already explored path.

Locking a node simply changes its UCT value to be negatively infinite

(−∞). Therefore, a locked node will only be selected if all other nodes are locked

as they have the same UCT value.

We can only determine to lock a node if it is populated (not part of a

random rollout). Moreover, we can only lock terminal nodes or one that has all its

children locked. Therefore, the locking strategy works from a bottom-up approach

on populated nodes. Hence, it will only be effective at a late stage of the search
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process. Nevertheless, it ensures that as soon as we determine the cost of some

path, we never revisit the same path, even if it is the most expensive path.

The locking strategy, the UCT formula, and nodes buffer provide a method

to explore as much unique inputs as possible. However, contrary to the UCT

formula and node buffer, the locking strategy applies a backward refinement to

the tree rather than a forward exploration. It is essential to highlight that the

locking strategy is less likely to be effective with search tasks of large budgets. The

computational effort required to populate deep paths (reaching a terminal node)

are usually significantly large. Thus, in most cases, locking acts as a safety check to

not waste computational effort rather than an enchantment.

4.1.5.5 Biased Rollouts. A rollout in MCTS can complete a

sequence of moves completely randomly or with some heuristic bias. Grammars

tend to have a large set of options in some production rules. Most commonly,

we would have options similar to the ones given on 〈atom〉 from Grammar 2.

The consequence on cost of selecting a versus A is an application dependent.

However, often such options represent a variable naming. Thus, it is more

important to distinguish a pattern based on past selections rather than randomly

making a decision.

Selecting the best possible decision at each choice requires keeping track

of all potentially relevant factors (including the full path to that choice) in which

it has been selected before. Unfortunately, tracking full context for each possible

decision is computationally infeasible. Moreover, populated nodes based on the

MCTS algorithm already represent the full context of observed derivation steps.

A simple solution that tracks good choices based on partial context can reduce the

exploration necessity of grammars with a large set of options.
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We devise a bigram biasing selection based on rewarded and penalized

grammar options. For each non-terminal symbol s ∈ N , the bias will track weight

for each option given all the non-terminal symbols that might lead to s. Each time

a sequence of bigrams lead to an input with NewCov, NewMax, or NewCost

the weight is increased significantly. Otherwise, the weight is gradually decreased

for each idle cost observation of pair symbols.

The bias weight of bigrams is only used in rollouts. Hence, the algorithm

follows the UCT formula for populated nodes. However, within each rollout, we

perform educated random selection to some terminal node.

4.1.6 Notable Implementation Details. Here we provide a few

additional details about our current implementation of TreeLine.

Docker container. To further expedite building, testing, and extending

TreeLine, we have implemented it in a Docker container with all the legacy

dependencies of AFL. We split our prototype into two different processes. One

running AFL, and the other runs our core implementation of the search process.

AFL handles the target application instrumentation and runs. All other processes

are handled by TreeLine. Using Docker provides some flexibility on distribution

and replication.

We have implemented the main logic of TreeLine as a Python program

communicating over a Unix socket with a version of AFL that builds upon the

extensions earlier built by the developers of PerfFuzz. This architecture has a

performance cost, not only because the Python interpreter is much slower than

compiled C code in AFL and because AFL is idle between requests, but also

because each test execution requires inter-process communication to send a test

input to AFL side and another to receive feedback. This could be ameliorated by
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building a single process executable with Python’s embedding support, but we did

not think this is a significant limitation to adopting such a solution. Using Python

was a decision taken to expedite experimentation and ease of change compared to

C.

The rollout and the target application run are the most computationally

expensive task in our current process. To put this into perspective, currently,

we are processing at best 80 inputs per second while PerfFuzz is capable of

processing 1, 508 (18.85x) inputs per second for the same benchmark (libxml2).

Timeouts. Although we search for slow test cases, sometimes TreeLine

finds test input that is too expensive. We set a timeout of ten seconds on test case

execution. Allowing unbounded runs could lead to wasting the entire computational

budget over very few generated inputs.

Lazy search. We do not exhaustively search for the reachable node with

maximum UCT value each time we draw from the buffer of hot nodes. Since the

UCT values change slowly on most iterations, we look only at a smaller buffer of

nodes with the top 10 UCT values. Periodically (every 500 iterations), this buffer is

updated.

4.2 Evaluation

We experimentally evaluate TreeLine with respect to three research

questions.

RQ1. How does the performance of the TreeLine approach compare to mutational

fuzzing with limited expenditure of computational effort?

RQ2. Do heavy rollouts with simple bigram bias improve search effectiveness in

TreeLine, relative to light (uniform random) rollouts?
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Benchmark Description Version SLoC
wf Simple Word Frequency Counter 0.41 394
libxml2 The XML C parser and toolkit of Gnome 2.9.7 191, 371
graphviz Graph visualization software 2.47.0 1, 050, 696
flex Generator of lexical analyzers 2.6.4 22, 260

Table 1. List of benchmarks used for evaluation and their properties.

RQ3. How does the TreeLine approach scale with an increase in the length bound

for generated inputs?

The first RQ relates MCTS-based input generation to an alternative

mutational approach. The latter two are questions about effectiveness of

improvements on random rollout and rewarding.

We conduct our experiments on a Docker container hosted on a modest

workstation (2017 iMac with 3.8Ghz i5 and 8GB memory). Aside from stopping

other user applications for consistency, the workstation was running in its normal

state (e.g., it was not isolated from the department network). The Docker container

was given 8GB of memory and access to all four CPU cores.

Although AFL (Zalewski, 2013) allows the use of plugins to instrument

programs in any language, we use its default settings to work with C/C++

applications. We conduct experiment using four real-world C/C++ applications.

We choose two that were previously used to evaluate PerfFuzz (Lemieux et

al., 2018): wf (de Barros, 2021), and libxml2 (Veillard, 2017). We add two new

benchmarks graphviz (AT&T Labs Research, 2021) and flex (Paxson, 2017) that

are widely used software tools with available source code, and which exemplify the

class of application, driven by richly structured input, that TreeLine is intended

to address. The details of all the benchmarks are given in Table 1.
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The selected benchmarks span a variety of sizes. We count SLoC using the

utility cloc to count source line of code for the core language in each benchmark

(c/c++) and skipping appropriately marked test files.

The wf application requires no particular input structure. While libxml2

processes structured text, it is only a parser whose behavior is not driven by that

structure beyond accepting or rejecting it. In fact fully valid XML is a cheap input

for libxml2; its taxing inputs are invalid files. In contrast, graphviz processing is

controlled by inputs that meet the syntactic requirements of its dot input language,

although that syntax is minimal and forgiving. Mutational fuzzing tools still have

a good chance of generating valid inputs for graphviz. flex expects valid regular

expressions and has a richer input language than graphviz. Like graphviz, the

processing of flex is controlled by a valid input file, and (as far as we know)

rejecting syntactically incorrect files is not among its worst case behaviors.

Prior published evaluations of PerfFuzz used trivial seeds consisting of

strings of zero bytes. Such seeds would disadvantage PerfFuzz in a comparison

with TreeLine, so we instead collect seed inputs from official documentation

as available. As required by AFL, we adjust the size of seed inputs to be within

maximum allowed input budget, either breaking them into multiple valid seeds or

removing redundant keywords. In the case of flex we omit C code from inputs

to keep input reasonably sized and additionally provided PerfFuzz with random

but valid seeds produced by TreeLine. We manually composed seed inputs that

capture all the possible grammatical patterns in the grammar for TreeLine.

For TreeLine, we construct grammars for each benchmark based on

official documentation or an existing parser. We transliterated the yacc parser from

graphviz to the form we required by trimming extraneous code. We created a flex
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grammar based on a page of documentation. In the case of wf and libxml2, which

expect less structured input, we constructed very simple grammars by hand. For

example, for wf we construct a trivial grammar of character sequences composed

from the English alphabet and whitespace. For libxml2 we construct a grammar

that includes XML special characters (e.g., opening < or closing > tags.) and the

English alphabet for tags or content. All constructed grammars are given in the

Appendix.

Experiments can be conducted based on different computational budgets.

For example, we can run TreeLine for T hours or specify the number of target-

application execution allowed. We primarily used a time budget of 60 minutes, but

also conducted some experiments with a limit of 200k executions to evaluate (by

comparison with time-bounded experiments) the impact of generation speed.

The efficiency of grammar-based and mutational fuzzing are impacted by the

length bound on generated inputs. Longer inputs take longer to generate, but may

be necessary for applications that take richly structured input. A length bound as

little as 10 could be enough to find performance issues in wf, but for applications

like graphviz with keywords like “digraph” and recursively nested structures,

longer inputs may be required. We use a budget of 60 bytes as a base across all

benchmarks comparing TreeLine to PerfFuzz, and longer inputs for exploring

RQ3.

For each benchmark we keep track of NewCost to measure tool’s

effectiveness in finding new expensive inputs. We also track the maximum

hotspot to measure the tool’s effectiveness in finding the program component that

maximizes the cost the most. A hotspot is simply the edge with the maximum

hits given some input. We keep the maximum hotspot observed over all generated
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Benchmark TreeLine exec/s PerfFuzz exec/s
wf 61.25 2936.80
libxml2 79.32 1507.81
graphviz 46.20 729.45
flex 1.33 162.78

Table 2. Average number of target application executions per second (exec/s) for
each benchmark across 20 runs for each. Mutational fuzzing in PerfFuzz is much
faster.

inputs. Moreover, we track the generated input size as it shows the search progress

concentration in term of budget consumption.

4.2.1 How TreeLine Compare to Fuzzing-Based Techniques.

Ideally we would compare an implementation of TreeLine to a variant

implementation that is identical in every regard except that it uses mutational text

fuzzing and a genetic search (the AFL approach) rather than MCTS search with

grammar-based generation. PerfFuzz is not quite that ideal comparison, but it

is the state-of-the-art tool for finding pathological inputs, and it is built atop the

same AFL engine for execution monitoring, with some extensions that we have also

used.

A clear advantage of mutational fuzzing over tree-based search is the

speed with which inputs can be generated. AFL is particularly well-engineered

to generate and test a vast number of mutants very quickly. The difference in speed

of execution between TreeLine and PerfFuzz ranges from 15.8x times slower for

graphviz to 122.5x slower for flex, as shown in Table 2. Clearly TreeLine must

generate much better inputs on average to compete.

The impact of raw generation speed is illustrated by comparing the progress

of TreeLine and PerfFuzz in Figure 17 to their relative progress in Figure 16.
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It is clear that the primary advantage of PerfFuzz for these benchmarks is in

producing test cases much more quickly.

From Figure 16, in applications that require little structure PerfFuzz is

likely to eventually find more expensive inputs than TreeLine. The wf is a micro

application with no expectation of any input structure. From the 20 experiments

conducted, PerfFuzz reach a very high confidence level (minimal blue shaded area

in Figure 16a). A sample expensive input generated by PerfFuzz shown below2.

The main pattern captured hints that maximizing the number of words by placing

the shortest possible words into a dedicated line for each leads to a more expensive

input. Following the same sampling from TreeLine we obtain the input below.

The input from TreeLine has the same general pattern, but PerfFuzz refines

it more effectively. Note that while TreeLine uses the full English alphabet,

PerfFuzz generates a much wider family of characters by random generation.

The PerfFuzz developers report effectiveness at finding hash collisions (Lemieux

et al., 2018), which the more limited alphabet used in our grammar is less likely

to generate. The average maximum cost of input found by PerfFuzz is 1.01x

as expensive as the average maximum cost found by TreeLine. For this class of

application, mutational fuzzing is at least as effective as TreeLine, although the

advantage is not as large as we might have expected.

2The symbols ←↩ and ↪→ indicate we broke the line to fit the input within space. All other
colored sequences represent unprintable characters, such as escape sequences.
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Figure 16. Time-based comparison between TreeLine and PerfFuzz showing
maximum path length found throughout the duration of the 1-hour (scaled by
minutes). Lines and bands show averages and 95% confidence intervals across 20
repetitions. PerfFuzz eventually finds better inputs for wf and libxml2. For
graphviz and flex, TreeLine dominates and finds more costly inputs in 10
minutes than PerfFuzz finds in an hour.

106



0 25K 50K 75K 100K 125K 150K 175K 200K
# of Target App Executions

16K

16.1K

16.2K

16.3K

16.4K

16.5K

16.6K

16.7K

16.8K
Ex

ec
ut

io
n 

Co
st

 (C
ou

nt
 o

f C
FG

 E
dg

e 
Hi

ts
)

PerfFuzz
TreeLine

(a) wf

0 25K 50K 75K 100K 125K 150K 175K 200K
# of Target App Executions

20K

40K

60K

80K

100K

120K

Ex
ec

ut
io

n 
Co

st
 (C

ou
nt

 o
f C

FG
 E

dg
e 

Hi
ts

)

PerfFuzz
TreeLine

(b) libxml2

Figure 17. Execution-based comparison between TreeLine and PerfFuzz on wf

and libxml2 showing maximum path length found throughout 200K executions.
Lines and bands show averages and 95% confidence intervals across 20 repetitions.

On the other hand, applications that require structured input (Figures 16c

& 16d) to test the core functionality impose a challenge for PerfFuzz. For

graphviz and flex the average maximum cost found by TreeLine are

respectively 7.46x and 2.73x as expensive as the average maximum cost found

by PerfFuzz. A representative maximum input from TreeLine in the case of

graphviz (shown below) created a complex cyclic digraph that embeds a complete

bipartite digraph on a subset of its nodes (Figure 18).

To maximize the input cost, it is not enough to create a bipartite digraph; a

balance between the bipartite part and cycles must be found. For example,

even though they represent a bipartite digraph the hand crafted inputs below, a

bipartite graph and a graph in which all nodes participate in cycles respectively, are

10.37x to 26.45x cheaper than the input found by TreeLine.
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Figure 18. A graphviz rendering of the most expensive input found by TreeLine.
The input created a complex cyclic digraph that embeds a complete bipartite
digraph on a subset of its nodes

A special case is shown in the case of flex (Figure 16d). TreeLine found

an input so expensive it triggered a 10-second timeout in less than 2 minutes across

all 20 experiments. A selected random maximum input from TreeLine triggers

the warning for the known “dangerous trailing context” (Paxson, 2001) from

flex’s documentation.

To maintain consistency for this evaluation we do not make any changes to the

grammar or timeout values. However, an advantage of a grammar-based input

generator is the ability to steer the grammar off generating such input. If the

performance bug is known by the developer and accepted as it is, then a grammar

can be tailored to focus on other or more specific modules.

Another perspective we can use to measure the effectiveness of each

approach is to look at the single application component the maximize the cost.

In other words, we look at the application’s hotspot, which is the single edge in

the control-flow graph with the greatest hits. Figure 19 shows our findings again

compared to PerfFuzz. In all cases, the maximum hotspot is consistent with

each tool’s overall finding in terms of cost (Figure 16). However, an interesting

observation is shown in the case of wf (Figure 19a). Although PerfFuzz finds

inputs that maximize the overall cost, both TreeLine and PerfFuzz find
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the application’s hotspot immediately. The similarity in hotspot value for wf is

consistent with our conjecture that a general pattern is found by TreeLine.

4.2.2 Biasing Choice for Heavy Rollouts. In grammars where

there is a large set of equally important options if broken from their context,

we devised the use of heavy rollouts (bias) to maintain a partial-context-based

when exploring the tree. Results presented in Section 4.2.1 are all use heavy

rollouts with biased choice of bigrams. The bigram bias table has a cost. Thus,

we ask how effective is keeping a partial context for all the benchmarks on overall

performance? Figure 20 shows the progress of TreeLine with and without bias for

each benchmark.

A clear advantage of using heavy rollouts is illustrated in the case of

graphviz and flex (Figures 20c & 20d). Although less observable in the case of

flex, the bias allows TreeLine to reach a more expensive input in a shorter time.

In the case of graphviz the maximum cost found using heavy rollouts is 1.58x as

expensive as random rollouts.

The same pattern does not hold in the case of wf and libxml2. Also, the

maximum cost found for flex is not significantly different with heavy rollouts.

However, in line with intuition, the confidence is higher when using heavy rollouts

with bigram bias than with random rollouts. This suggests there will be more

consistent results using heavy rollouts than random rollouts.

4.2.3 TreeLine Scalability for Generating Longer Inputs. The

length limit for generated texts impacts performance in both mutation-based and

grammar-based generators, so they are often limited to creating short test cases.

However, longer inputs may be needed for exploring rich syntax. The experiments

described above use the same 60-byte limit as prior published evaluation of
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Figure 19. Time-based comparison between TreeLine and PerfFuzz showing
maximum hotspot found throughout the duration of the 1-hour (scaled by
minutes). Lines and bands show averages and 95% confidence intervals across 20
repetitions. The results are consistent with the overall performance cost. However,
for wf TreeLine actually finds the exact hotspot found by PerfFuzz even if the
overall cost found by PerfFuzz is higher.
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Figure 20. Time based comparison between TreeLine with and without bias
rollouts showing maximum path length found throughout the duration of the 1-
hour (scaled by minutes). Lines and bands show averages and 95% confidence
intervals across 20 repetitions.
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Figure 21. Summary of the time it takes TreeLine to find the cost-maximizing
input for each run. Each budget was repeated 20 times.

PerfFuzz and SlowFuzz. If we double or triple that limit, to 120 or 180 bytes

will TreeLine still be as effective?

If TreeLine scales well to these longer bounds on generated input size, we

expect to see three things: TreeLine should still find its worst case input reliably

within an hour, TreeLine should make full use of the allowed length (rather than

getting stuck exploring shorter texts), and the patterns found with shorter bounds

should be found also with the longer bounds (it doesn’t get lost), although we

would also accept new and better patterns. We only consider graphviz and flex

for these experiments.

Speed of finding maximum cost input. We consider the time distribution

required for TreeLine to settle on each max cost (Figure 21). In the case of

graphviz (Figure 21a), a few searches continue finding new maximum costs until

the last possible second. For the budgets 60 and 120, TreeLine occasionally found

the maximum cost input within the first 10 minutes. Typically, however, an input

that maximizes cost is found within 40 to 50 minutes.
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budget cost flex graphviz

60
min 3,673,195,978 10,244,177
max 3,696,182,810 33,831,034
avg 3,683,384,935 21,763,449

120
min 3,235,375,950 92,440,322
max 3,694,925,552 444,512,672
avg 3,539,103,578 202,003,601

180
min 3,079,590,117 201,111,331
max 3,502,093,167 933,050,447
avg 3,070,942,248 511,007,813

Table 3. The expensive input minimum, maximum and average cost of the 20
repetition for each budget. The cost of processing graphviz inputs grows super-
linearly as the bound on input size grows. flex times out even on the smallest
input size bound, so larger inputs do not lead to longer execution times.

Similarly, there are cases where it takes TreeLine the whole hour in

finding new maximum input in the case of flex. This is misleading, however,

because TreeLine quickly finds an input so costly that it triggers a timeout in

the monitoring. The maximum cost that does not trigger a timeout likely varies

due to uncontrolled variables like the host machine load state.

The minimum, maximum, and average maximum-cost found within each

budget is shown in Table 3. The costs obtained for flex are consistent with

conclusion on the time variation it takes TreeLine to find a maximum input

(Figure 21b). For all budgets TreeLine reaches the same execution cost due to

timeout. For graphviz the costs obtained show that there is a super-linear increase

in cost when doubling the budget from 60 to 120. However, as we reach the higher

budgets (i.e, 180) TreeLine’s start to deteriorate. The pattern described next may

explain the deterioration.

Consistently finding the same pattern. In Section 4.2.1, we illustrated that

the maximum cost input found by TreeLine for graphviz with a budget of 60 is

one that forms a cyclic digraph embedding a complete bipartite digraph on a subset
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of its nodes. Following the same input selection criteria, TreeLine is capable of

finding an input with the same pattern given a budget of 120.

In the case of the 180 budget, the maximum cost pattern varies slightly

from the pattern found with smaller length budgets. TreeLine find closely

similar complex pattern by using sub-graphs (shown below), but it wastes some

opportunities by over using the keyword subgraph which wastefully consumes its

length budget.

Exploring longer inputs. The length of the input generated, as discussed

before, has a significant effect on the cost. Expensive patterns can be represented

in shorter inputs. However, the budget set by the user implies an expectation that

the given input budget is needed to represent interesting and unknown patterns.

Therefore, we designed TreeLine’s reward function to push the search toward

paths that maximize the input length. We expect TreeLine to make use of the

whole length, or nearly so (but without wasting it).

In Figure 22 we show the median size of generated inputs over the allowed

time. For each different budget a search within the maximum possible input length

maximizes the chances of finding an expensive input within the desired budget.

In the case of graphviz (Figure 22a), TreeLine hits the maximum possible

input-length within the first few seconds of search. However, in the case of flex

(Figure 22b), TreeLine consumes only part of the budget of 120 or 180 bytes.
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Figure 22. The median length of generated inputs across 20 repetition for each
budget over the allowed time. TreeLine quickly exploits its full length budget.

This again appears to be an effect of quickly finding an input so expensive that it

times out.

Overall TreeLine appears robust with at least a moderate increase in

length allowance, from 60 to 120 bytes, on these examples. At triple, it remains

effective but shows signs of needing refinement.

4.3 Discussion

4.3.1 Threats to Validity. Our evaluation compared to PerfFuzz

(RQ1) is a question about approaches and algorithms, not implementations.

However, as usual our evaluation can only compare representative implementations

of the approaches. Implementing TreeLine atop AFL goes some way toward

facilitating a meaningful comparison to PerfFuzz as the leading representative

of the mutational approach, but it is far from perfect. We know that TreeLine

executes far fewer test cases per unit time than PerfFuzz, but we cannot say

with confidence how much of that difference is attributable to the basic approach

(TreeLine expends more computational effort choosing which search node to

explore further) and how much is attributable to the TreeLine search running in
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a separate Python process and communicating with the AFL-based test harness

through inter-process communication, while the PerfFuzz implementation is

integrated into the AFL process. A variety of other incidental implementation

decisions might affect the results.

More fundamentally, both TreeLine and PerfFuzz depend on provided

artifacts: a grammar in the case of TreeLine, and seed inputs in the case of

PerfFuzz. We have tried to use “minimum effort” artifacts in the evaluation —

a single example input as a seed for PerfFuzz, and a grammar derived directly

from documentation or converted from a parser specification file for TreeLine. In

the case of flex, we provided PerfFuzz a set of seed inputs that included all the

constructs in the grammar used by TreeLine. While we have tried to be fair (and

in particular, not to ”tune” grammars to improve TreeLine’s relative advantage),

results could certainly be different with a different set of grammars or seeds.

Comparisons of tools that require even a small amount of human

configuration can be done only with a limited set of examples, which may or may

not be representative of a larger population of applications. We have selected

two examples (wf and libxml2) that were previously used in evaluation of the

PerfFuzz approach, which we believe are representative of systems for which the

mutational approach should be advantageous. Moreover, we introduced two new

examples (graphviz and flex) which we believe are representative of applications

driven by syntactically richer input, and therefore more favorable to the TreeLine

approach. A larger and more varied set of examples would certainly be desirable,

but will take time to accumulate.

4.3.2 Alternatives. We cannot say how much of the difference

between the performance of TreeLine and that of the best current mutational
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fuzzers is specifically due to the MCTS approach, and how much is due to using a

grammar. It would be useful to pick apart those two changes, but adapting any

grammar-based fuzzer to search for performance bugs will require concomitant

changes to other parts of the search strategy.

Two weaknesses of TreeLine might be addressed by techniques that have

been developed in grammar-based fuzzing. One is that, while a context-free

grammar greatly reduces the proportion of syntactically invalid inputs generated, in

many cases they remain the majority of generated texts. This has been addressed

by grammar-based fuzzing with additional constraints, notably in fuzzers for

programming language texts (Mathis et al., 2019; Srivastava & Payer, 2021;

Vyukov, 2021). Additionally, some grammar-based fuzzers perform mutation

operations on a concrete or abstract syntax tree (e.g., replacing a subtree). This

would not be compatible with the MCTS search strategy, which requires all of a

nodes children to be populated together, but an adaptation might be possible.

Throughout the evaluation process, we measured the length of generated

inputs in bytes. This cost choice allowed us to make a fair comparison to

PerfFuzz, but is not the choice we would have made otherwise. For applications

driven by richly structured input, efficiency is unlikely to be determined primarily

by reading and scanning the input; a higher level measure such as number of tokens

is likely to be better.

Producing grammars for use with our prototype tool is considerably easier

than writing a grammar for a parser. It does not have to be LALR(1) or LL(k) or

even unambiguous. We found it short work to transcribe a Yacc parser grammar in

graphviz to an acceptable form, and to compose a simple grammar for flex from

a page of documentation.
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Nonetheless, it might be better yet if we could infer grammars directly

from program behavior. In principle, grammars for TreeLine can be inferred

from seed inputs. Unfortunately this does not work very well at the current state

of black-box grammar inference engines. (We have not tried white-box or grey-

box grammar inference engines such as Mimid (Gopinath, Mathis, & Zeller, 2020;

Höschele & Zeller, 2016)). We attempted to use TreeLine with Glade (Bastani et

al., 2017), a state-of-the-art tool for grammar synthesis. Although Glade succeeded

in synthesizing grammars for all benchmarks, they were not suited for generating

performance tests with TreeLine. For example, the grammar synthesized

for libxml2 using Glade tended to be limited to the smallest set of XML tags

(e.g. <a> and </a>) to produce valid XML inputs. The grammars generated for

graphviz and flex were much larger than those we created by hand, and both

included unbounded derivation cycles that our tool is not currently able to handle.

4.3.3 Other Related Work. TreeLine as well as many alternatives

fit generally into the field of search-based software engineering (Harman, Mansouri,

& Zhang, 2012). The most closely related work is mutational fuzzing to find

performance bugs and grammar-based fuzzing for other purposes, especially for

security. SlowFuzz and PerfFuzz are representative of the state of mutational

fuzzing for performance testing. As PerfFuzz dominates SlowFuzz through

introduction of multi-objective search, and is otherwise similar, a separate

comparison to SlowFuzz is not useful. Related work in grammar inference and

grammar-based fuzzing has been noted above.

Syntactic structure is not the only kind of structure that one might use as

a framework to search for pathological inputs. The subfield of combinatorial test

case generation searches for combinations of values that trigger bugs. GA-Prof
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uses a genetic algorithm search to find application bottlenecks (Shen et al., 2015);

Forepost uses unsupervised learning to search primarily for a set of boolean choices

(Grechanik et al., 2012). These search spaces are very different from a search of

syntactic structure, and likely require different techniques.

Glass-box analysis, typically using symbolic execution, has also been applied

to characterizing worst case execution time, which could be viewed as subsuming

search for pathological inputs (B. Chen et al., 2016; Zaparanuks & Hauswirth,

2012). These are powerful techniques but usually limited to smaller components

of an application due to their complexity.
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CHAPTER V

PerfRL: FINDING ACCURATE PATHOLOGICAL TEXT CASE PATTERNS

WITH REINFORCEMENT LEARNING

Machine learning has been influential in many different domains but has

barely been explored for performance analysis. Our comprehensive search for

techniques that explicitly adopt machine learning to generate input for performance

testing resulted only in work presented by Grechanik et al. (Grechanik et al., 2012).

As presented in the related work (Chapter II), Grechanik et al. (Grechanik et al.,

2012) approach did not generalize enough to identify inputs automatically.

As machine learning proves itself a good or promising solution for different

applications, we thought it important to explore what established machine learning

modules apply to the input generation problem. Finding an arrangement of inputs

that maximizes a method’s execution is a very high-dimensional problem. Machine

learning is widely known to be suitable for high-dimensional problems.

Machine learning techniques are classified into supervised, unsupervised, and

reinforced learning. We first evaluate the applicability of each learning method then

discuss the most appropriate method for the domain of input generation.

Supervised machine learning approaches are applicable in cases where

labeled data are available. In software analysis, data is not an issue as inputs can

be paired with the runtime cost based on a given traced run. In fact, the sheer

amount of data where slight changes in input could produce a slight uninteresting

change in output is one of the problems. Another problem is that supervised

learning models must use random data generation methods to generate actual new

inputs. Otherwise, the model would be passive in that it looks only at what user

provided as inputs rather than finding new ones.
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We think that supervised learning methods are more applicable in

performance-driven source code learning than input generation. For example,

using regression-testing techniques that identify the source code change causing

a performance change (Luo, Poshyvanyk, & Grechanik, 2016; Sandoval Alcocer,

Bergel, & Valente, 2016) can create labeled data of source code fixes for

performance improvements. A challenge here is to automate the deployment, run

the application, and collect traces of heterogeneous artifacts and many different

versions of the same artifact.

Unsupervised machine learning techniques, where no labels are available, are

suitable for clustering, anomaly detection, or finding associations amongst other

applications. Similar to supervised learning, unsupervised learning can cluster

expensive inputs from cheap inputs. However, also similar to supervised learning,

there must be an input generation used to explore new paths. Depending on user-

created tests would lead to limitations such as those presented in different passive

performance analysis approaches (Ball & Larus, 1996; Graham et al., 1982; Nistor,

Song, et al., 2013).

Reinforcement learning maintains a reward function that increases as

a learning model gets closer to the optimal solution by trying different inputs

at different learning phases. For input generation, the reward function can be

seen as a fitness function that increases as a method’s execution cost increases

and decreases otherwise. At each learning phase, the reinforcement learning

model should learn to generate expensive inputs. Therefore, we investigate the

applicability of using reinforcement learning to generate pathological inputs of

diverse applications.
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We covered the essentials of reinforcement learning in the Background

Chapter (Section 3.3). Similar to adopting Monte Carlo Tree Search, we use

context-free grammar (CFG) to generate valid inputs. The fundamentals of CFG

are covered in Section 3.1.

5.1 RL Integration Formalization

Similar to the Monte Carlo tree search (MCTS) based, we use Context-Free

Grammar (CFG) to search for pathological inputs using reinforcement learning

(RL). We adapt the same notion of cost ans budget for grammar and derivation

as defined in Section 4.1.3. However, options , or actions as they are referred to in

the reinforcement learning domain, require additional special handling to work with

reinforcement learning.

To define the actions an agent can take we need to consider the number of

possible options from each production rule. Different CFG have different number

of production rules and a different number of alternations for each production

rule. In our work, we abstract every aspect of the environment (e.g., states or

rewards) to be exchangeable and allow for different experimentation methods.

However, for simplicity, consider the left-hand side of any production rule as

the state the agent is in at any given moment. And the alternations (options) on

the right-hand side of any production rule are the possible actions.

The issue that arises from the simple definition of states and actions is that

any reinforcement learning model must have a well-defined state and action space.

As the number of alternations for each production-rule might vary, this definition

needs some constraints. Thus, we introduce the notion of valid-options for each

state. Assume we have a grammar of two symbols 〈A〉 and 〈B〉. Also, assume 〈A〉

has two alternations, and 〈B〉 has three. In this case, we say the number of possible
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actions from any state is 3. However, the number of valid-options for 〈A〉 and 〈B〉

are 2 and 3, respectively. This definition means the number of possible Q-values at

any state in our neural network equals the maximum number of alternations from

all production rules.

It is important to note that it is valid in reinforcement learning to allow

an agent to take non-existing options for cases such as ours, where the number of

possible actions varies based on states. In such design, the environment ensures

nothing changes in terms of the state if a non-existing action was taken, then we

can re-introduce the agent with the same options again. Such design means there

will be many wasted computation efforts before the agent can change its choice

either through exploration or exploitation. We prefer to have more control over

the actions the agent can take to avoid such wasted computations. Thus, we limit

options from any state to the set of valid-options only.

The notion of cost and budget we formalized earlier along with the notion

of valid-options together restrict the possible action from any state. Instead of

only constraining the valid-options dynamics on each production rule’s available

alternations, we also tie it to the remaining-budget as we did with TreeLine.

After each step, we reevaluate the remaining-budget within the environment and

constrain the valid-options according to the remaining-budget.

Our definition of the agent’s actions demonstrates that we treat the

grammar elements with no bias and safely interact with the agent without infinite

derivations. Therefore, if the grammar thoroughly expresses the target application

input, and the agent is capable of learning, then the elements of importance will be

learned in the training process itself.
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Another parameter we need to formalize is the rewards function as it

plays an instrumental role in training an agent using reinforcement learning.

For each step the agent takes (moving from one state to a new one), we have to

send the agent a feedback to help it assess the quality of the move it made. As

described in Sections 4.1.2 & 4.1.5.2 from TreeLine, the feedback from running

the application with a new input is diverse based on target application and the

range is of minimum to maximum is unknown. Similar to TreeLine, PerfRL

use the the feedback from AFL (Zalewski, 2013) to get the control flow graph hit

rates for each input (i.e., NewCost). However, we do not utilize the NewCov or

NewMax in the case of PerfRL.

Moreover, we abstract the cost obtained using a defined reward method

as we abstract many other parts of our environment (e.g., state representation).

The abstraction of reward methods allows for different representations of the

reward; hence, different experimentation opportunities. An example reward

method abstraction is a method that performs a few warm-up runs of the target

application to establish a regular input average cost (total edge hits). Once we find

the average, a rewarding method can be the percentage increase or decrease in total

edge hits relative to the average input cost. We elaborate on different examples of

reward functions in Section 5.2.2.

Using CFG as a driver for input generation implies we lose the previously

generated derivation context at each new state. For example, at some intermediate

step in the derivation process, we have a sense of the non-terminal symbols to

come as they are preserved in the stack. However, we do not know the sequence

of decisions made to reach the current state. For the agent to learn how to generate

the most expensive input, it must keep track of past experiences and choices it
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made. Given that our environment is essentially an interpreter of the grammar,

the best option is to use the call-stack as a state representative to help the agent

perceive the derivation choices it made and what lies ahead. However, again,

the neural network for reinforcement learning must be defined ahead of training.

By definition, the call-stack is dynamic. Thus, we cannot predict the maximum

number of elements the call-stack might contain during the derivation process.

From the essentials of reinforcement learning (Section 3.3), we stated that a

problem must be formalized as Markov Decision Processes (MDP) to solve it using

reinforcement learning. One of the MDP properties is to have a full observation

of the environment’s state. However, from the paragraph above, we see that we

cannot observe all the states’ information in our problem domain. We lack the

observation of essential information about the context of the derivation. Therefore,

we define our problem as a Partially-Observable Markov Decision Processes

(POMDP). For problems defined as POMDP, a possible solution is to infer the

missing information using the neural network itself.

In most of the published work in reinforcement learning, problems are

formulated as MDP problems. Therefore, reinforcement learning literature uses

linear or convolutional neural networks to demonstrate the training process and

model. However, in the domain of Natural Language Processing (NLP), where

a context is needed to classify an input for tasks such as machine translation or

text generation, linear or convolutional layers are not suitable. NLP problems are

posed as a supervised learning problem where labeled data is available. To carry

the context, say between generating one word after the other in machine sentence

generation, NLP techniques uses Recurrent Neural Networks (RNN) for training.
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Figure 23. Two neural network prototypes using LSTM to represent context of
derivation. Each prototype is a step snippet of the neural network structure in the
possible chain of derivations.

RNN are a special type of neural networks that carry a hidden state between

the steps of generating an input. The hidden state main purpose is to maintain

context between steps of the same episode. For example, the hidden state of RNN

could be carrying the subject-verb agreement information observed in the first

step to be used in some later step while generating a sentence. RNNs are the

basic neural cells of recurrent neural networks. They tend to carry information

of recently seen contexts. As the context gets larger (i.e., longer sentences),

RNN suffers from recalling long seen information. Long-Short Term Memory

(LSTM) cells are introduced to mitigate the issue of larger contexts. LSTM is

an enhancement on the original RNN cells to carry recently observed information

(hidden-state) as well as ones seen much earlier (cell-state) in any context.

126



Although not much work has been done in reinforcement learning using

LSTM cells, we believe it is a good fit for our problem as it has been successfully

used on other closely related domain such as NLP. To mitigate the partial state

observation problem, we will rely on LSTM cells to carry the information and

influence the agent choices based on the derivation context. Figure 23 shows

prototypes of how we think LSTM cells can be used in our domain. See that both

versions (a) and (b) uses linear layers to map states to the number of possible

actions as we described earlier in this section. We believe we should use as many

linear layers as needed to fit the problem. Hence, using the LSTM cells does not

mean we do not use other forms of neural nets.

5.2 Solution Design and Abstractions

In this section, we will describe the broad implementation design decisions

(Section 5.2.1), describe the state and reward abstractions we use (Section 5.2.2),

and discuss our neural network structure (Section 5.2.3).

5.2.1 Design Overview. The general implementation and design

decision of PerfRL follow the conventional Deep Q-Network (DQN) design

(see Section 3.3 in the background chapter for details) . For example, as shown

in Figure 24, we have a neural network model, an agent, a replay memory, and

an exploration policy the agent follows. However, some of the details of each

component are different from what have been proposed in essential DQN literature

(Lillicrap et al., 2015; Mnih et al., 2016; 2013; 2015; van Hasselt et al., 2015). In

general, we are either modifying the process to be compatible with our problem or

apply optimizations specific to our problem. In the rest of this section, we explain

the complete process of generating an executable input (an episode) and detail how

the components interact within an episode.
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Figure 24. PerfRL high-level architecture and interactions.

A training session in PerfRL starts with a warm-up period. We do not

depict the details of the warm-up phase in Figure 24. In the warm-up phase, we

use the environment to generate n number of executable inputs randomly. We use

the collected costs to generate future rewards. There are different ways in which we

use the collected costs depending on the training session (Section 5.2.2). Similar to

TreeLine, the main advantage of a establishing a base of cost is to scale possible

high absolute cost to some appropriate known scale. For example, passing an array

[9, 8, 3, 4] to QuickSort could result in cost c = 3391 where we might be targeting

cost in range between 0 and 1.

Absolute execution-cost values are not suitable for rewarding the agent. The

absolute value of a trivial input such as the one we showed here will have very close

proximity to the worst-case input execution-cost value. Moreover, they are both

positive. Thus, they might not categorically express the difference between a worst-

case input and any other input. Furthermore, in reinforcement learning, rewards

tend to be small (between −1 and 2) to avoid causing a sudden increase or decrease
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in q-values. Thus, we would like to use a relative value of the absolute execution-

cost. The warm-up phase’s total cost could give us a notion of the average costs.

Hence, allowing us to find different rewards method based on the established

average rather than the absolute execution-cost.

With an established sense of average cost within the environment, the agent

starts to interact with the environment for learning. We define a step as each choice

the agent makes within the grammar for which it takes it from one derivation

step to the next one. An episode is the collection of steps starting from the root

element in the grammar until obtaining a final input that we can pass to the target

application. With these definitions, we explain the details of the process of each

episode.

First, the agent selects an action a either randomly (exploration) or based

on the current policy (exploitation) using a predefined epsilon-greedy strategy. We

configure our epsilon-greedy strategy to allow very few exploration opportunities

toward the end of completing any learning session.

Second, the current state s and the action a are passed to the Grammar

Interpreter within the environment to take a step. As long as there are non-

terminal elements within the derivation sequence, we do not have a final step. The

Grammar Interpreter manages the status of the derivation. It classifies each step to

be either an intermediate-step or a final-step.

Third, based on the step’s type, the BNF environment will determine the

reward type. It will keep passing passive reward back to the agent as long as we did

not reach a final-step. Passive rewards can be defined as we see fit. We initially

used the value of 0 for intermediate-steps, as it is not possible to measure the

intermediate-step’s quality without knowing the final-step it leads to. However,
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we later used a reward of 1 for intermediate-steps as they encourage the agent

to produce longer derivations than shorter ones. We think that longer derivation

(selecting non-terminal options as often as possible) is the desired behavior in

general for finding pathological input. It usually means the agent will consume

the whole allowed budget. Also, we believe that longer derivations increase the

probability of finding interesting input patterns than shorter ones.

Fourth, regardless of whether the step is a final or intermediate, the BNF

environment will pass the reward and the current derivation state through a

state and reward abstraction objects. There are many ways in which we can

represent the state and the reward. Therefore, we thought of decoupling the

interpreter’s state and the execution cost from the state and reward observed by

the agent and neural net. Different state representations and reward methods have

different advantages; this setup allows us to experiment with more than one state

representation and reward calculation for different sessions. We will elaborate on

some of the state abstractions we developed and reward methods in Section 5.2.2.

Fifth, the new state s′ and reward r are passed to the Trainer. One copy

is fed back to the agent to take a new action, and another copy is assembled with

the previous state s and action a to form an experience. Experiences are added to

replay memory for future sampling and optimizations. At each step, the Trainer

collects k random sample experiences to be replayed and use their values for

optimization as typically done in reinforcement learning.

In PerfRL, we made a fundamental change to the experience notion

from the known notion in reinforcement learning literature by collecting episodic

experiences instead of step experiences. Conventionally, each step from a state

s taking action a at time t and observing the new state s′ and reward r is an
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experience (i.e., Experience = (s, a, s′, r)). In the case where the problem is

formulated as an MDP, this notion of experience is valid. However, in our case

where the problem is formulated as POMDP, we either have to add the hidden-

state (hidden-states are defined in Section 5.2.3) to each experience or look at a

complete episode as an experience.

It is possible to capture the hidden-state within the step experiences.

However, we cannot guarantee an old hidden-state’s integrity compared to

the policy’s future value. Therefore, we define the experience as the ordered

collection of steps within an episode. If at episode e1 we observer the steps

p1(s, a, s
′, r), p2(s, a, s

′, r), ..., pt(s, a, s
′, r) where p1 is the first step in a derivation

from the root element and pt is the last step where a final input is generated, then

the experience E for episode e1 is E[p1(s, a, s
′, r), p2(s, a, s

′, r), ..., pt(s, a, s
′, r)].

By sampling episodic experiences and optimizing the policy at the end of

each step, we complete a full step cycle. Our Trainer reset the environment to its

initial state by the end of each episode. Hence, even for optimization, where we

replay stored experiences, we reset the environment. Each training session has a

predefined number of episodes to run. The final policy is the neural net state by

the end of running the last episode.

5.2.2 State and Reward Abstractions. One of the implementation

and design challenges we had to address is representing the states and rewards

to be perceived by the neural network. Any neural network expects a numerical

representation of the environment state. There are many possible ways and

indicators for state representation. With no clear advantage of one state

representation over the other, it is only realistic to separate the Grammar

Interpreter ’s state from the state sent to the neural network.
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The same idea applies to the execution cost value. We briefly stated that

the absolute execution-cost value is not suitable for reinforcement learning. As

explained in the warm-up phase, we can initialize a normal cost average that we

can use for later reward calculation. Additionally, we also can track an upper and

lower bound of observed execution costs for later reward calculation. Decoupling

the actual execution cost from the reward function allows us to try different

rewarding methods.

We only explain the relevant state and reward-method abstractions that we

use in the evaluation (Section 5.3). However, we explain the most simple ones to

introduce the abstractions elements. We discuss the state-abstraction design first.

We can use many indicators from the Grammar Interpreter to represent

an abstract state. For example, the derivation sequence, the remaining budget

allowed for the input, and the production rules are all indicators. In general, we

think the sequence of derivation steps or the current production rule are the most

useful ones. The budget is valuable, but the remaining budget’s value might be

incomprehensible to a neural network as it is to us, humans. Also, even for the

derivation sequence steps, we cannot represent the full sequence. As we explained

before, the number of derivations cannot be bound even with a defined budget. At

the same time, the neural network expects a well-defined set of elements within

a state. Thus, we can only represent a defined buffered size of the derivation

sequence.

Despite these challenges, we have a state-abstraction that captures each

idea. However, the one we use here is the simple production rule state-abstraction.

We use a one-hot representation to express the production rule we are evaluating at
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any moment. Moreover, we include all the available options for all production rules.

For example, for a grammar as the one given below.

〈A〉 ::= 〈A〉 〈B〉 | ‘a’

〈B〉 ::= ‘b’

The production rules state-abstraction when we are evaluating the

production rule 〈A〉 will be [1, 0, 1, 1, 0]. Similarly, when we are evaluating the

production rule 〈B〉 the state-abstraction will be [0, 1, 0, 0, 1]. Any time we evaluate

a production rule, we highlight its position within the array and the positions of all

its options with 1 while all other positions are set to zero.

This production-rules state-abstraction highlights the production rule we

are evaluating at any given moment to the neural network. In other words, it

indicates where the agent is standing. What we are missing here is the context

of previous derivations. However, as stated before, capturing the full context is

computationally infeasible. We can either settle for partial context representation

using the buffered sequence of derivation state-abstraction or delegate the context’s

inference to the neural network. With the production rule state abstraction case,

we choose to delegate the context to the neural network.

For the reward-method abstraction, there are two main ideas. The first

option is to keep a bound of upper and lower execution-costs. The upper-bound

is defined as the maximum absolute execution-cost the agent observed up until

any given moment. Furthermore, the lower-bound is defined as the upper-bound

minus k, where k is a defined threshold based on the target application itself. The

second options is to initialize a normal execution-cost average based on random

input mutations.
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We can use the first approach to find the normalized value of the current

input execution-cost based on the defined upper and lower bounds. The issue

with this approach is its introduction of the moving target notion. As the agent

observes new inputs, what is know to be an expensive input in the past might not

be expensive in the future. Intuitively, this approach might seem advantageous

as we want to drive the agent toward more expensive inputs to gain positive

knowledge about the program space. However, based on our experience, this

approach introduces significant instability in the learning process.

Therefore, we tend to experiment with the second approach, where we define

a fixed average of normal execution-cost then use the average value to calculate

future rewards. One of the reward-methods defined to use the found average

calculate the new input’s execution-cost percentage increase or decrease relative

to the defined average. Thus, any input that costs more than the defined average

will result in a positive reward been sent to the agent and vice-versa.

5.2.3 Neural Networks Structure. A unique characteristic of our

problem compared to ones described in reinforcement learning literature is the

inability to observe the environment’s full state. Thus, we defined our problem

as POMDP. To overcome this challenge, we looked into the popular neural network

used for natural language processing in supervised learning settings. Moreover,

we conjectured that LSTM cells could help in inferring the missing context of

derivation sequences. Here we show how we use LSTM cells within our neural

network model.

The neural network structure illustrated in Figure 25 shows the basic

building blocks of our neural network. The depth and width of linear neural

networks, as well as the size of the hidden-states, might vary based on the target
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Figure 25. PerfRL neural network basic structure. It uses LSTM cells along with
linear neural network to accept the input from a state-abstraction and outputs and
action based on the valid-options

application and grammar. However, the illustration highlights how the LSTM cells

carry the context from one step to the next for each episode. Each time we start

a new episode of derivations, we start with the same valued hidden and cell states

(usually zeroed). The LSTM cells’ goal is to learn how to represent the context

of derivation as we step within an episode. Hence, it passes the learned values

of the hidden and cell state from one LSTM cell to the next as the agent makes

the derivations. At the same time, we use the same hidden-state from each LSTM

cell at each step to influence the decision of which action to take from the current

production rule.

5.3 Benchmarks & Experiments

The ultimate goal is to demonstrate our approach using multiple and

diverse target applications. However, to better understand how effective our

approach, having a small set of target applications with known possible behavior
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is more valuable at this stage than broadening our test to several and larger

target applications. At the same time, we acknowledge the risk of fine-tuning the

approach to fit the smaller set of a target applications. To this extent we focus

our testing on QuickSort (GeeksForGeeks, 2021)1 and WordFrequency (de

Barros, 2021).

As know to many, the QuickSort worst-cases inputs are either a sorted

list, reversely sorted list, or a list of equal values. The WordFrequency, on

the other hand, is a simple word counter application. It takes text as input and

returns a count of each word in the text. One of the known worst-case inputs of

WordFrequency is an input where a word is repeated as many times as possible.

The repeated word input causes it to hash the word to the same bucket. Hence,

introducing a hash collision. PerfFuzz reports the following input as the one it

finds for the worst-case execution.

t <81>v ˆ?@t <80>!ˆ?@t <80>!t tˆRn t t t t t t t t t

We use the grammars shown in Grammar 3 and Grammar 4 for QuickSort

and WordFrequency respectively. We recognize that the grammar written for

WordFrequency is a much-simplified version of what a program author would

write or a synthesizer would generate. We effectively test on other comprehensive

grammar, but we use the grammar given to show sample results.

We run every experiment with a budget of 10 given a character-based

defined cost. Because the terminal elements are composed of a single character in

both grammars, the maximum possible string length is equal to the budget. Due to

space limitations, we cannot show all possible plots that would help illustrate our

1We extended the QuickSort implementation to read inputs from file instead of stdin.
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〈entry〉 ::= 〈entry〉 〈digit〉 | 〈entry〉 〈space〉 | /* empty */

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

〈digit〉 ::= ‘ ’

Grammar 3. Manually written context-free grammar for QuickSort algorithm.
Used in evaluating PerfRL.

〈Word〉 ::= 〈Word〉 〈Char〉 | /* empty */

〈Char〉 ::= 〈T〉 | 〈Space〉

〈T〉 ::= ‘t’

〈Space〉 ::= ‘ ’

Grammar 4. Manually written context-free grammar for WordFrequency
application. Used in evaluating PerfRL.

model’s current state. Therefore, we will briefly present the final results for each

target application and then focus on one of them to highlight evaluation details.

PerfRL can confidently learn to generate one of the expensive worst-case

input of QuickSort. In particular, our model learns to generate an array of the

same digit (e.g., 9 9 9 9 9 ). However, for the WordFrequency application,

our model usually converge on a sub-optimal input (e.g., tt t ). The

WordFrequency example is a more interesting and challenging one; thus, we

elaborate on its result. Figure 26 shows the learning trend of the agent on the

WordFrequency. The values shown are smoothed values for readability. We

can infer from the charts that the agent finds the most expensive input around the

2, 000th episode (known actual cost is 16, 284) but does not sustain the knowledge.

At the same time, it does not converge on a significantly bad policy. The range in

which the policy converges is between 0.8 and 1.0, which is between 16, 188 and

16, 228 of the actual cost.
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Figure 26. Policy-based results of training PerfRL for 15,000 episodes on the
WordFrequency. The actual cost is the total edge count of executing an input.
And the reward is what the agent receives as a reward for the actual cost.

The plots alone might not help understand what the agent was observing.

Thus, we collected all the generated inputs then added to replay memory. These

inputs influence the learning as they are what the agent observe and use to

adjust the policy. However, toward the end of the experiment run, and because

we decrease the exploration opportunities given an epsilon-greedy strategy, these

inputs can reflect what the policy learned. Therefore, they are a combination of the

learning opportunity and an observation of the learning progress. Table 4 shows the

top-10 results sorted by count (how many times they were observed) and Table 5

shows the top-10 results sorted by cost (the actual cost of Control-Flow Graph edge

count). We discuss the limitation of our model in the next section, given the results

shown here.

The most important takeaway to note here from the result shown in

Tables 4 and 5 is the ability of our model to explore. Good exploration is a

significantly important factor in learning. Without the ability to form interesting

patterns of input, the agent will have no means to learn. The results shown in the

table indicate that our exploration strategy yields different variations of the most
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expensive input. The goal is to increase the generation of these expensive inputs

compared to less costly ones.

Input Count Cost Reward
‘’ 1,550 16,042 -0.066
‘tt tt’ 1,303 16,180 0.793
‘t’ 1,019 16,092 0.245
‘tttt tt’ 844 16,182 0.806
‘tt t’ 707 16,200 0.918
‘tttt t’ 705 16,188 0.843
‘tttt t ’ 684 16,188 0.843
‘ttt tt’ 653 16,188 0.843
‘ttttt ’ 646 16,140 0.544
‘tt’ 553 16,094 0.257

Table 4. WordFrequency top 10 inputs arranged by count (how many times
they were observed) using PerfRL.

Input Count Cost Reward
‘t tt t t t’ 2 16,284 1.441
‘tt t t t t’ 3 16,284 1.441
‘t t t t t’ 1 16,276 1.391
‘ttt tt t t’ 3 16,258 1.279
‘tt ttt t t’ 3 16,258 1.279
‘t ttt tt t’ 3 16,258 1.279
‘t ttt t tt’ 1 16,258 1.279
‘t tt ttt t’ 1 16,258 1.279
‘ttt t tt t’ 3 16,258 1.279
‘ttt t t tt’ 2 16,258 1.279

Table 5. WordFrequency top 10 inputs arranged by cost (the actual cost of
Control-Flow Graph edge count) using PerfRL.

5.4 Limitations & Challenges Discussion

It is hard to critically analyze PerfRL’s performance at this stage,

given some identified limitations. Instead, we address these limitations for future

research. We have identified four main limitations of our technique. First, wasted

effort in exploring the input’s length instead of its structure. Second, frequent
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and fast policy adjustment. Third, possible worst-case input structure variations.

Finally, memorizing a worst-case input instead of learning its pattern. We will

discuss each challenge in detail next.

Exploring Input Length. The last statement we made about our model was

about its ability to explore the input space and finding interesting input patterns.

However, the exploration as it works is not ideal. From the results in Table 4, we

can see that the exploration strategy produces an empty string 1, 550 times as the

most frequently seen input. The learning rate charts in Figure 26 shows that the

policy determined that longer inputs are more desirable than shorter ones very

early in the learning process.

Nevertheless, the agent generates shorter inputs more frequently based on

the exploration strategy. Given the grammar and budget, the agent would have to

make ten decisions about the length of the input before it has an opportunity to

decide on the structure of the input. With a high epsilon-greedy value, it is most

likely that the exploration will fall within the length steps rather than the structure

deciding steps. The frequent exploration of length wastes many opportunities of

exploring the interesting problem of structure.

To mitigate this issue, we introduced an amended exploration strategy.

Instead of relying only on the value of the epsilon-greedy strategy to decide to

explore or exploit, we also randomly evaluate the difference between the two

highest Q-values according to the policy. Therefore, if the epsilon-greedy value

is very high, and the policy is not k% confident about the next step, we will

most likely explore. Otherwise, we exploit the policy. Based on our experiments,

we found that it is hard to find a reasonable k threshold for good exploration

opportunities across different derivation steps.
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Another possible future mitigation is to force longer derivation from the

grammar interpreter itself. Given a budget and some grammar, we evaluate the

remaining budget and the production rule in hand for each derivation step. If we

have enough remaining budget and the production rule options could produce zero

or more elements, then we favor options that produce more elements over the null

production option. Hence, the valid-options should be amended to favor longer

derivations. Therefore, whether the agent is exploring or exploiting, it will only be

allowed to elongate the derivation whenever possible.

Fast Policy Adjustment. Steady and gradual learning progress is one of the

most important properties of any machine learning model. A model that steadily

improves the learning rate is one that accommodates new positive experiences

without forgetting older ones. As shown in Figure 26, our model indicates that it

is sensitive to new experiences. We can observe the issue by looking at how much

the learned policy fluctuates between one episode and the next.

We can attribute the fluctuation problem to high learning rates. We

experimented with lowering the learning rate, which improves the stability of

the learning progress. However, even with a low learning rate (compared to the

practical values typically used), we still suffer from fluctuation.

Another factor could be the size (depth and width) of the neural network.

A more extensive neural network is more capable of accommodating a complex

problem space. Hence, it ought to stabilize the learning progress. However, a larger

neural network requires extensive and diverse experiences. Increasing the number of

experiences means we also increase the required learning time. Moreover, we have

to guarantee the diversity of the generated samples. We can tolerate the required

increase in training time. However, the diversity of the sample is coupled to the
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exploration problem we discussed in the first limitation case. Thus, increasing

the size of the neural network does not show effective results under the same

exploration strategy.

We experimented with a neural network where we have two stacked LSTM

cells instead of one. The result shows a significant improvement in stability.

However, the learning progress becomes stable to a point where it is hard to

change. Thus, within a few episodes, the neural network will converge on some

policies that seldom change.

We see the fluctuation issue as a tuning problem. Thus, we use the best

hyper-parameters setting we know and visit this as we address other challenges for

more generalized tuning.

Input Variations. Different target applications might have different unique

challenges. A common challenge we think all target application share is the

possibility to have a variety of expensive inputs that lead to the same cost. For

example, from Table 5 the inputs ttt tt t t , tt ttt t t , t ttt tt t ,

t ttt t tt , t tt ttt t , ttt t tt t , and ttt t t tt all share the same

exact cost (16, 258). We think the possibility of having different inputs of the same

cost is even larger than we could show here.

Different orders or shapes of input elements that lead to the same cost are

expected behavior. However, these variations can make it even more challenging for

the policy to converge on one input. A proposed solution is to unify these inputs

that share the same execution cost under one form as they are added to the replay

memory. However, it is not clear that this issue is the leading cause of converging

on a sub-optimal policy.
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Input Memorization. The only example we showed for experimenting with

QuickSort clearly shows that the policy converges on one of the inputs the

express the worst-case execution ( 9 9 9 9 9 ). However, upon closer analysis, we

see that the policy memorized the input rather than learning the actual pattern.

For example, if we test the policy by forcing the first digit choice (e.g. 2), the

policy will not continue filling the remaining digits with the same value.

More in-depth analysis indicates that the policy memorize some input

rather than learning a pattern. Our final goal is to learn to generate some

final input. Thus, memorizing a worst-case input does not contradict our goal.

However, learning a pattern and expressing it to the developer is more useful than

memorizing an input. It will allow a developer to understand what pattern exactly

triggers the worse-case execution.
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CHAPTER VI

GENERAL DISCUSSION & FUTURE WORK

The discussions for each technique in Chapters IV and V are specific to

each approach. This chapter discusses more general topics that are significant in

the performance analysis domain and encompasses both techniques (TreeLine

and PerfRL). We first discuss the challenge of measuring the effectiveness of

any performance analysis technique in Section 6.1.1. Second, we discuss how the

techniques we introduced fits within the performance analysis domain to assist

software engineers in achieving their goals (Section 6.1.2).

Moreover, we provide an overall conclusion (Section 6.2) and identify

possible future work directions based on the presented topics in this dissertation

(Section 6.3).

6.1 Evaluation Validity

6.1.1 Efficiency Measurement. An apparent issue in performance

analysis, in general, is the lack of a unified method for efficiency measurement

(Sánchez, Delgado-Pérez, Medina-Bulo, & Segura, 2018). The ultimate goal for any

performance analysis technique is to effectively help software engineers find actual

and previously unknown performance issues. Mytkowicz et al. (Mytkowicz, Diwan,

Hauswirth, & Sweeney, 2010) illustrate the severity of the efficiency measurement

problem. In their work, they show how a set of Java profilers (xprof, hprof, jprofile,

and yourkit) do not agree on a hot method under a unified benchmark and

testing data. Such disagreements indicate that there must be at least three wrong

profilers (Mytkowicz et al., 2010). In examining the core issues between the given

profilers, they found them violating a fundamental sampling attribute. None of the
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profilers collected samples randomly as they often collected samples at yield points.

Therefore, each profiler would serve a different purpose.

When presenting their evaluation, authors of performance analysis tools

follow different evaluation methods. Some authors present their findings and

confirm them with the application’s developers to measure efficiency (Graham et

al., 1982; 2004). Others evaluate their efforts against tools with similar general

goals but focus on other strengths such as overhead or coverage (Coppa et al.,

2012). A more prominent efficiency measurement methodology (Curtsinger &

Berger, 2015; Grechanik et al., 2012) compares results with other performance

analysis techniques given a unified application under test but one that expresses

the presented goal better. The last method can be unfair if mishandled because

the goals of the two performance analysis techniques can be different. For example,

Curtsinger and Berger (Curtsinger & Berger, 2015), who developed an application

for finding performance improvement opportunities within a parallel program,

compare its results to the ones produced by gprof (Graham et al., 1982). The goal

for gprof was never to profile parallel programs. Thus, the comparison does not

hold.

Grouped benchmarks for performance testing such as the DeCapo

(Blackburn et al., 2006) benchmarks is also insufficient efficiency measurement.

These benchmarks are not necessarily a realistic representation of real-world

applications. In addition, these benchmarks could lead to more tailored solutions,

as the goal becomes to find new performance issues from the same applications.

Performance analysis tools do not apply fixes automatically. Due to the

tradeoff between preserving the program soundness and the potential of finding

actual performance issues (Section 2.1.4), applying fixes automatically would
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limit the changes to trivial fixes. Using the performance improvement percentage

based on automatically applied fixes is a precise measurement for compiler-level

optimization techniques. It shows the benefits of automatically applied fixes.

However, adopting the same approach by performance analysis techniques would

limit their effectiveness.

As fixes are manual, the performance improvement measurement cannot

be precise for the performance analysis techniques. Humans’ experiences and

understanding can vary significantly. Thus, fixes applied for the reported

performance issues could provide different speedup values depending on the

developer’s experience. Nevertheless, adapting and fixing the top k number of

reported performance issues is a sound efficiency measurement method. Such

parameter would bridge the gap in the performance efficiency measurement

limitation. However, adapting such technique usually requires a much longer time

as it depends on the application maintainers willingness to put the effort.

In our analysis, we try to minimize the impact of the fundamental

differences between our work and comparable techniques. For example, given that

the seed from which we start the search is a grammar alternative approaches start

from raw seed inputs, we attempted to provide raw-input-based techniques with as

comprehensive seed input as possible. Furthermore, we used the same cost base as

with comparable techniques (control-flow graph edge hits) to have a unified cost

definition.

An even more compelling solution for the input-generation approach is to

use existing performance analysis techniques to measure their efficiency. The major

input generation efforts discussed (Grechanik et al., 2012; Lemieux et al., 2018;

Petsios et al., 2017; Shen et al., 2015) could delegate the analysis to an designated
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profiler. For example, using tools such as gprof (Graham et al., 1982) to monitor

the ranking change in performance issues between different methods given found

input for each technique. Performance analysis tools might not serve a precise goal

an input generator is targeting, but multiple profilers should cover and highlight

different goals.

6.1.2 Assisting Software Engineers. In the introduction of this

document, we briefly discussed the importance of the problem we are solving. Also,

we presented other closely related techniques that try to solve the same workload

issue. Here we present the challenges and needs of software engineers concerning

performance testing in general and discuss how our contribution help address some

of these challenges.

Software engineers design their systems with performance in mind

regardless of the requirements. For example, in file management applications, the

performance requirements might not be formally stated. However, there is a general

understanding that it is not acceptable for a file creation to take minutes or even

seconds. Software engineers usually rely on standard software architecture tactics

(Bass, Clements, & Kazman, 2012) or even on the experience of the developers to

meet the performance constraints.

Moreover, developers make decisions early on the application development

cycle about software performance. A design might include hardware or software

solutions, depending on solutions that involve hardware are usually limited to

financial constraints. The hardware solutions have their limitations and often

are applicable if the requirements are guaranteed to exceed individual hardware

capabilities (Ammons et al., 1997; Ohmann et al., 2014). For example, a web-

based application that processes tens of millions of requests in a few seconds might
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replicate the software on multiple machines to handle more requests on time.

However, many performance issues are fixable within the software design. Some

performance issues are not solvable even if replicated over many pieces of hardware.

How to decide on what is acceptable as performance is another factor

software engineers need to tackle. Most frequently, it is clear what would

be the satisfactory execution or response time. However, as applications

become functionally complete, previous measures might not hold. For example,

developers need to anticipate the user’s short-term memory in completing a task

(Molyneaux, 2009). If the cumulative time to complete a task using the system

exceeds a threshold of the user’s short-term memory, then the application’s

usability degrades. Thus, previously identified acceptable response time changes.

Consequently, finding and fixing those tasks becomes harder.

A severe problem that could arise is the developer’s mis-anticipation of

workload. Most reported performance issues arise from an unanticipated workload

or library use misunderstanding (Jin et al., 2012; Zaman, Adams, & Hassan, 2012).

Regardless of the developer’s experience, it is hard to know how users will use the

application. Any unanticipated use of the system could create severe performance

issues. Even harder is finding these performance issues on deployed applications.

Our contribution helps software engineers gain better performance

understanding in a shorter time than established techniques (Lemieux et al., 2018;

Petsios et al., 2017). The time needed to find an extreme workload usually takes

less than 10 minutes. Any additional time is usually only needed to refine the

workload pattern. Although fuzzing techniques would eventually reach the same

workload pattern, they usually require significantly more time than our approach.
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Moreover, although the grammar use as a base in our case can be seen as a

barrier, it actually can be advantageous. Fuzzing techniques assume the absence of

any input structure and try all possible input by mutating seeds at the byte level.

Unlike security, performance testing tends to be conducted within known possible

inputs. Furthermore, a developer could test some modules of the application in

isolation from the whole system. Using grammars allows the software engineer to

have different performance testing abstractions by providing particular grammar for

targeted modules.

6.2 Conclusion

This dissertation identified generating pathological input as a problem in

the software performance analysis field. We provided background on established

performance analysis techniques highlighting the trade-offs of each and how the

research evolved within the domain. We then explained closely related techniques

that use different strategies (e.g., machine learning, genetic algorithms, and fuzzing)

to generate pathological input.

We identified possible research opportunities based on the limitation we

identified on the state-of-the-art pathological input generator (PerfFuzz). We

mainly explored using interactive search techniques such as reinforcrement learning

(RL) and Monte Carlo tree search (MCTS) to find effective functions for generating

pathological inputs of different real-world applications using easy-to-obtain input

models. We used context-free grammar (CFG) as a base for generating input and

formalized the CFG environment within an input generator that ensures bounding

the generated input size.

Our adaptation of RL overcomes different limitations of using RL to

generate pathological inputs. Our technique, PerfRL, adapts a long short-term
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memory (LSTM) model to maintain derivation context, memory of the steps

leading to each grammar choice. Without the derivation context, the model’s

accuracy will deteriorate due to inherited context loss from CFGs. Moreover,

we introduce different state function abstractions to allow for different features.

We also adapt various reward methods to dynamically adapt to the growing cost

of executing inputs as the agent explores the target application’s environment.

Our implementation of PerfRL shows that we can find pathological inputs for

trivial applications much faster than the fuzzing techniques. However, we identified

limitations that indicate we must tune the training model’s hyper-parameters for

each tested application. Thus, we lose generality.

Adaptation of MCTS in a tool we called TreeLine proved more fruitful.

Similar to RL, adapting MCTS to find pathological inputs requires enhancement of

the traditional MCTS algorithm. Most notably, we introduce an adaptive reward

function based on quantile streams, use lazy search based on hot nodes to speed up

the search process and avoid falling into local maxima, refresh the search tree based

on a dynamic evaluation of exhausted trees, and use a simple bigram heavy rollout

strategy to bias toward known expensive patterns.

Our evaluation of TreeLine focuses on comparing it to PerfFuzz (the

state-of-the-art pathological input generator) over a small but diverse set of

real-world applications. The results show that we outperform the fuzzing-based

technique on structured inputs while maintaining a very close performance on

applications with unstructured inputs. Specifically, we find inputs that are 7.4x

as expensive as the input found by PerfFuzz on a graph layout application

(graphviz) and 2.7x on a lexical analyzer (flex) for which we immediately exercise

a timeout (i.e., the maximum possible cost for the given grammar). While for
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applications with unstructured input such as wfand libxml2, PerfFuzz finds

inputs that are 1.01x and 1.1x respectively as expensive as the ones found by

TreeLine. In our tests, TreeLine found pathological input in less than 10

minutes, while fuzzing techniques may require hours to find the same pathological

inputs. Additionally, we showed how TreeLine can scale to larger input bounds

(budget) while still finding similar expensive patterns.

6.3 Future Work

In addition to apparent technique-based enhancements such as expanding

the evaluation to more target applications and studying the applicability of using

different grammar synthesizers, we define several new directions for future work.

6.3.1 Branch-Based Search Tree. Our work in TreeLine and

PerfRL uses a symbol-based search tree to generate pathological inputs. The

search tree design poses a challenge in correcting earlier decisions made in the

search tree. Focusing on TreeLine as an example, the earlier few decisions made

in the search tree compose a derivation that can significantly affect the search

quality. As the search moves deeper into the tree, the search thoroughness becomes

better at the bottom of the tree. Lower nodes in the tree are expected to get more

exploration opportunities. However, any very early wrong decision (i.e., at the top

of the tree) requires a thorough exploration of the whole branch before it can be

changed. These cases were apparent in applications such as the word frequency

counter. And the larger the budget is given for input; the more severe this problem

would become.

Adapting a branch-based swapping for known good branches could help

mitigate the severity of the problem. For example, we can track and rank good

low branches to be used in future established trees instead of repeating the same
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exploration at the bottom of each tree. Thus, with each tree refresh, we explore the

top of the tree more often than earlier ones.

6.3.2 Intelligent Heavy Rollouts. The heavy rollout we

implemented is a straightforward enhancement of tracking pair symbol weights.

Moreover, the reinforcement learning application we presented is very complicated;

making minor enhancements comes with a high cost in search (e.g., longer time).

A possible merge between the Monte Carlo tree search approach and reinforcement

learning could lead to significant enhancements on search quality.

Instead of using a neural network-based model for reinforcement learning,

it is possible to use a tabular-based approach to drive the rollouts in the Monte

Carlo tree search. For each production rule, we can establish a designated tabular

reinforcement learning model. Consequently, for each random rollout, we consult

the reinforcement learning model for each evaluated node. Training a tabular-based

reinforcement learning model is much cheaper than a neural network-based model

regardless of the number of models we have to train. Furthermore, it might offers a

better learner than our simple bigram bias rollout.

6.3.3 Enhanced Heuristics. The tree refresh mechanism we

introduced with TreeLine is a critical method that helps us reach expensive input

faster. However, the decision to drop a tree and start with a fresh one is simple and

might not generalize over new target applications. It essentially depends on a single

factor (cost redundancy) to make the refresh decision. We mitigate the shortcoming

of such single factor dependency with a dynamic threshold and number of samples

to consider to generalize over different target applications. A richer heuristics

that drive tree refresh decisions could introduce a more stable and accurate search

method.
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APPENDIX

COMPLETE GRAMMARS

This appendix provides a reference for the complete grammars used in

testing each target application.

〈Entry〉 ::= 〈Entry〉 〈Word〉 | 〈Entry〉 〈Break〉 | 〈MPT〉 ;

〈Word〉 ::= 〈Char〉 | 〈Digit〉 ;

〈Break〉 ::= ‘ ’ | ‘\n’ ;

〈Char〉 ::= ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’
| ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’
| ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘a’ | ‘b’
| ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’
| ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’
| ‘w’ | ‘x’ | ‘y’ | ‘z’ ;

〈Digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;

〈MPT〉 ::= λ ;

Grammar 5. Manually written grammar for wf.

〈entry〉 ::= 〈entry〉 〈char〉 | 〈MPT〉 ;

〈char〉 ::= ‘<’ | ‘>’ | 〈Alphanumeric〉 | 〈SpecialCharacters〉 ;

〈Alphanumeric〉 ::= ‘1’ | ‘2’ | ‘3’ | ‘a’ | ‘b’ | ‘c’ ;

〈SpecialCharacters〉 ::= ‘-’ | ‘.’ | ‘/’ | ‘:’ | ‘?’ | ‘ ’ ;

〈MPT〉 ::= λ ;

Grammar 6. Manually written grammar for libxml2.
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〈graph〉 ::= 〈hdr〉 〈body〉 ;

〈hdr〉 ::= 〈optstrict〉 ‘digraph’ 〈optgraphname〉 ;

〈body〉 ::= ‘{’ 〈optstmtlist〉 ‘}’ ;

〈optstmtlist〉 ::= 〈stmtlist〉 | 〈MPT〉 ;

〈optstrict〉 ::= ‘strict ’ | 〈MPT〉 ;

〈optgraphname〉 ::= ‘ ’ 〈atom〉 | 〈MPT〉 ;

〈atom〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
| ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’
| ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’
| ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘ ’
| ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’
| ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’
| ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ ;

〈stmtlist〉 ::= 〈stmtlist〉 〈stmt〉 | 〈stmt〉 ;

〈stmt〉 ::= 〈attrstmt〉 〈optsemi〉 | 〈compound〉 〈optsemi〉 ;

〈attrstmt〉 ::= 〈attrtype〉 〈optmacroname〉 〈attrlist〉 | 〈attrassignment〉
;

〈optsemi〉 ::= ‘;’ | 〈MPT〉 ;

〈compound〉 ::= 〈simple〉 〈rcompound〉 〈optattr〉 ;

〈simple〉 ::= 〈nodelist〉 | 〈subgraph〉 ;

〈rcompound〉 ::= 〈edgeop〉 〈simple〉 〈rcompound〉 | 〈MPT〉 ;

〈optattr〉 ::= 〈attrlist〉 | 〈MPT〉 ;

〈nodelist〉 ::= 〈node〉 | 〈nodelist〉 ‘,’ 〈node〉 ;

〈subgraph〉 ::= 〈optsubghdr〉 〈body〉 ;

〈edgeop〉 ::= ‘->’ | 〈MPT〉 ;

〈node〉 ::= 〈atom〉 | 〈atom〉 ‘:’ 〈port〉 ;

〈port〉 ::= ‘n’ | ‘ne’ | ‘e’ | ‘se’ | ‘s’ | ‘sw’ | ‘w’ | ‘nw’ | ‘c’ | ‘ ’
;

〈attrtype〉 ::= ‘graph’ | ‘node’ | ‘edge’ ;

〈optmacroname〉 ::= ‘ ’ 〈atom〉 ‘=’ | 〈MPT〉 ;
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〈attrlist〉 ::= 〈optattr〉 ‘[’ 〈optattrdefs〉 ‘]’ ;

〈optattrdefs〉 ::= 〈optattrdefs〉 〈attrdefs〉 | 〈MPT〉 ;

〈attrdefs〉 ::= 〈attritem〉 〈optseparator〉 ;

〈attritem〉 ::= 〈attrassignment〉 | 〈attrmacro〉 ;

〈optseparator〉 ::= ‘;’ | ‘,’ | 〈MPT〉 ;

〈attrassignment〉 ::= 〈atom〉 ‘=’ 〈atom〉 ;

〈attrmacro〉 ::= ‘@’ 〈atom〉 ;

〈optsubghdr〉 ::= ‘subgraph ’ 〈atom〉 | ‘subgraph’ | 〈MPT〉 ;

〈MPT〉 ::= λ ;

Grammar 7. Parser-based grammar for graphviz.
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〈flexspec〉 ::= 〈definitions〉 ‘%%\n’ 〈rules〉 ‘%%\n’ ;

〈definitions〉 ::= λ ;

〈rules〉 ::= {〈regex〉 〈sp〉 ‘;\n’} ;

〈macro〉 ::= 〈mname〉 〈sp〉 〈regex〉 ‘\n’ ;

〈mname〉 ::= [A-Z] {[A-Z]} ;

〈sp〉 ::= ‘ ’ ;

〈regex〉 ::= 〈r term〉 〈optContext〉 ;

〈r term〉 ::= 〈normal char〉 | ‘.’ | 〈char class〉 | 〈kleene〉
| 〈kleene plus〉 | 〈optional〉 | 〈repeat range〉 | 〈quoted〉
| 〈escape seq〉 | 〈group〉 | 〈seq〉 | 〈either〉 ;

〈optContext〉 ::= ‘/’ 〈r term〉 | λ ;

〈normal char〉 ::= [a-zA-Z0-9] | 〈escape seq〉 ;

〈char class〉 ::= ‘[’ ‘ˆ’ | λ 〈range〉 {〈range〉} ‘]’ ;

〈kleene〉 ::= 〈r term〉 ‘*’ ;

〈kleene plus〉 ::= 〈r term〉 ‘+’ ;

〈optional〉 ::= 〈r term〉 ‘?’ ;

〈repeat range〉 ::= 〈r term〉 ‘{’ 〈how many〉 ‘}’ ;

〈quoted〉 ::= [”] 〈char〉 {〈char〉} [”] ;

〈escape seq〉 ::= ‘\\’ 〈escaped〉 ;

〈group〉 ::= ‘(’ 〈r term〉 ‘)’ ;

〈seq〉 ::= 〈r term〉 〈r term〉 ;

〈either〉 ::= 〈r term〉 ‘| ’ 〈r term〉 ;

〈char〉 ::= [a-zA-Z0-9 ,*+?-] | 〈escape seq〉 ;

〈range〉 ::= 〈char〉 {〈char〉} | 〈char〉 ‘-’ 〈char〉 ;

〈escaped〉 ::= [a-zA-Z0-9] | [-+*?\\0. ] | ‘[’ | ‘]’ | [0-9] [0-9] [0-9]
| ‘x’ [0-9a-f] [0-9a-fA-F] ;

〈how many〉 ::= [0-9] {[0-9]} | [0-9] {[0-9]} ‘,’ {[0-9]} ;
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〈expansion〉 ::= ‘{’ 〈mname〉 ‘}’ ;

〈in start condition〉 ::= ‘<’ [a-zA-Z0-9] {[a-zA-Z0-9]} ‘>’ 〈r term〉 ;

Grammar 8. Documentation-based grammar for flex.
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