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DISSERTATION ABSTRACT

Andrew H. Morris

Doctor of Philosophy

Department of Biology

March 2022

Title: Linking Microbial Community Structure to Ecosystem Function Using
Microbiome Association Mapping and Artificial Ecosystem Selection

Microbiomes mediate a variety of important ecosystem functions. However,

it remains unclear what attributes of the microbiome are important for determining

the rate of ecosystem functions. Past attempts to elucidate this relationship

have either looked too broadly at microbiome diversity or have assumed a priori

that we know which taxa are limiting to the rate of function. To overcome this

challenge, I borrowed strategies from population genetics including association

mapping and artificial selection to robustly identify microbial markers of ecosystem

function. I observed high heritability of methane oxidation rate in soil microbiomes

demonstrating that variation in the microbial community can generate variation in

ecosystem function independent of the environment. In addition, I characterized

soil metagenomes along a land-use change gradient with increasing methane

emissions. By looking agnostically across all microbial metabolic pathways, I

identifed a surprising relationship between the relative abundance of nitrogen

fixation genes and the rate of methane emissions. Using this conceptual framework

to investigate biodiversity-ecosystem function relationships will deepen our

understanding of microbiome function for ecosystem services and human health.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

Microbial communities (a.k.a., “microbiomes”) mediate important ecosystem

functions such as decomposition, greenhouse gas cycling, and carbon storage (Van

Der Heijden, Bardgett, & Van Straalen, 2008). Despite the recent influx of genomic

data from high-throughput sequencing, microbial ecologists have identified few

general rules regarding how variation in microbiome attributes, such as diversity,

taxonomic composition, or gene content, contribute to variation in the rate of

nutrient cycles (Fuhrman, 2009; Hall et al., 2018). There is growing interest in

managing microbiomes for specific ecosystem functions such as crop productivity,

carbon sequestration, and greenhouse gas mitigation (Verstraete, 2007). However,

achieving these goals requires an understanding of how microbiome variation

contributes to variation in ecosystem function.

There is some evidence to suggest that microbiome variation may be

important to ecosystem functioning. Many studies have compared ecosystem

functions across microbiomes of different origins using common garden and

reciprocal transplant experiments (Balser & Firestone, 2005; Cavigelli & Robertson,

2000; Reed & Martiny, 2007; Strickland, Lauber, Fierer, & Bradford, 2009). For

example, one study observed differences in the rate and pathway of N2O production

when microbiomes from different soils were incubated under identical conditions,

suggesting that microbiome variation contributed to variation in this ecosystem

process (Cavigelli & Robertson, 2000). Another study reported that reciprocal

transplants of intact soil cores between forest and grassland ecosystems showed

functional differences in nitrogen pools and gas fluxes even when subjected to the

same climatic conditions (Balser & Firestone, 2005). Similarly, when microbiomes
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isolated from plant leaf substrates were re-inoculated onto sterile substrates,

microbiomes decomposed their native plant litter faster than communities

unfamiliar with that substrate (Strickland et al., 2009). This indicates that

different microbiomes exhibit different functional rates under the same conditions.

Clearly, different microbiomes are correlated with different rates and controls

on ecosystem functions, but it is not yet clear which attributes of microbiomes

contribute most strongly to this structure-function relationship.

One hypothesis is that an increase in the abundance of a particular

microbial functional group results in an increase in the rate of the process

mediated by that functional group (Rocca et al., 2015). The attributes of microbial

functional groups (e.g., presence/absence, diversity, membership, etc.) can be

inferred from 16S rRNA gene sequences based on taxonomic assignment, from

metagenomes based on protein-coding gene annotations, or from the presence,

absence, and/or sequence of genes that encode an enzyme involved in the function

of interest. For example, the abundance of the methyl coenzyme M reductase

(mcrA) gene, which encodes a subunit of an enzyme involved in CH4 production

has been shown to be correlated with CH4 flux in some cases (Freitag & Prosser,

2009; Friedrich, 2005). The percent abundance of methanogens as inferred from

the gene content of metagenomes has also been correlated with CH4 production,

for example, in arctic soil (Wagner, Zona, Oechel, & Lipson, 2017). However,

measuring functional group abundance via marker genes has not proven very

successful at revealing microbial community structure-function relationships since

only a third of studies report a significant correlation between the abundance of

a marker gene and its corresponding function (Graham et al., 2016; Rocca et al.,

2015).
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Though it is intuitive to consider that the abundance of a functional group

should be related to the rate of the function it mediates, it is possible that other

attributes of microbiomes may also be related to a given ecosystem function. For

example, there are other functional groups that interact directly or indirectly

with CH4, such as ammonium-oxidizers, which have been reported to oxidize CH4

(Bédard & Knowles, 1989). This relationship would not be identified by simply

measuring the abundance of a marker gene for CH4 oxidation, such as the gene

pmoA, which codes for the primary enzyme involved in CH4 oxidation in most

methanotrophs (Kolb, Knief, Stubner, & Conrad, 2003). To fully understand

microbiome structure-function relationships, we need to look more agnostically

at broader microbiome variation as it relates to ecosystem function.

One approach to looking at broader microbiome composition is to perform

a comparative survey of natural variation in an ecosystem function and the

associated microbiome variation. This is analogous to surveying variation in an

organismal trait and the associated genetic variation. In organismal biology, this

is often accomplished via genome-wide association studies (GWAS) where many

genetic loci are correlated with a complex trait (Bush & Moore, 2012). Generally,

these studies take into account population structure, genetic architecture,

and multiple hypothesis-testing in order to identify loci likely linked to the

trait of interest (Bush & Moore, 2012; Price et al., 2006; Storey, 2002). An

analogous approach has been used for identifying connections between the human

microbiome and disease (Gilbert et al., 2016; Qin et al., 2012). However, there are

comparatively few applications of this approach to non-host-associated microbiomes

and ecosystem function (H.-X. Chang, Haudenshield, Bowen, & Hartman, 2017).

Applying this framework to microbiome structure-function relationships while

15



accounting for ecological covariance structure could help reveal the mapping

between microbiome structure and function. I explore this idea in more detail

in Chapter 2 of this dissertation. This chapter was previously published with co-

authors Brendan J. M. Bohannan and Kyle M. Meyer.

Another common approach for investigating the genetic basis of traits in

organismal biology is through artificial selection (Conner, 2003). Microbiomes

have been shown to respond to artificial, ecosystem-level selection on a variety

of functions (Panke-Buisse, Poole, Goodrich, Ley, & Kao-Kniffin, 2015; Swenson,

Arendt, & Wilson, 2000; Swenson, Wilson, & Elias, 2000). However, this approach

has not yet been used to identify microbiome attributes (such as, microbial taxa,

traits, or genes) likely linked to the trait under selection. This could be a useful

approach to enrich for and identify members of the microbiome that are associated

with an ecosystem function. I provide an example of the application of this

approach in Chapter 3 of this dissertation. This unpublished work was co-authored

with Brendan J. M. Bohannan.

Applying these ideas to a major challenge in ecosystem science could reveal

new answers to classic questions. For example, a major area of research in ecology

wants to address the question: Does the loss of biodiversity resulting from global

change lead to a loss in ecosystem function? An important soil ecosystem function

is the consumption of atmospheric CH4 by tropical forest soils (Dirzo & Raven,

2003; Laurance, Sayer, & Cassman, 2014). Deforestation is progressing rapidly

throughout the tropics and conversion of rainforest to agriculture flips these soils

from a CH4 sink to a CH4 source (Meyer, Morris, et al., 2020; Steudler et al.,

1996; Verchot, Davidson, Cattânio, & Ackerman, 2000). While there are many soil

changes that result from deforestation, it remains unclear what drives this change
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in ecosystem function. In Chapter 4, I apply the ideas from this dissertation about

how microbiomes mediate ecosystem function to the problem of CH4 and land-

use change. I investigate a land-use change gradient and analyze the functional

composition of the soil microbiome to understand what drives changes in CH4

emissions in tropical soils. This unpublished work was co-authored with Brendan

J. M. Bohannan and Kyle M. Meyer.

For my dissertation research, I have chosen to focus on the ecosystem

function of soil CH4 oxidation to deduce microbiome structure-function

relationships. The primary reason for this choice is that results of previous research

suggest that CH4 oxidation is more readily explained by microbiome attributes

than other components of the CH4 cycle (Meyer, Morris, et al., 2020). In addition,

CH4 oxidation is one of the most highly phylogenetically-conserved functional traits

of microorganisms and so offers the greatest potential for compositional changes

to affect functional rate (A. C. Martiny, Treseder, & Pusch, 2013). Because of this

trait conservatism, methanotroph ecology is well characterized relative to other

microbial functional groups (Ho et al., 2013) and is thus an ideal model with which

to study microbial community structure-function relationships. My ultimate goal,

however, is to develop and test robust approaches that apply beyond CH4 oxidation

and that could potentially reveal any microbial structure-function relationship.

In addition to the ecological reasons for focusing on CH4 oxidation, there

are broader reasons in the context of global change. Methane is the second most

important greenhouse gas after CO2 and represents 16% of global greenhouse gas

emissions (IPCC, 2013). Global wetlands have the greatest uncertainty in CH4

emissions of any source and CH4-consuming microbes are the primary biological

sink for CH4 (Kirschke et al., 2013; Saunois et al., 2016). In addition, since
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2006, the proportion of microbial CH4 sources has been increasing relative to

other sources (Schaefer et al., 2016). Therefore, not only is microbial community

structure potentially an important driver of CH4 oxidation, but understanding

the CH4 cycling community may have a disproportionate effect on our ability to

predict future CH4 emissions. The ultimate goal of my dissertation research is to

contribute to the ability of scientists to predict CH4 emissions by developing novel

approaches to identifying relationships between microbiome variation and variation

in CH4 cycling in soil.
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CHAPTER II

LINKING MICROBIAL COMMUNITIES TO ECOSYSTEM FUNCTIONS:

WHAT WE CAN LEARN FROM GENOTYPE–PHENOTYPE MAPPING IN

ORGANISMS

The main ideas in the manuscript were my own resulting from discussions

with co-authors. I assisted with molecular laboratory work, performed the data

analysis and drafted the manuscript; Kyle M. Meyer collected field data, performed

molecular laboratory work and critically revised the manuscript; Brendan J.

M. Bohannan conceived of the study, designed the study and helped draft the

manuscript.

From Morris, A., Meyer, K., & Bohannan, B. (2020). Linking microbial

communities to ecosystem functions: What we can learn from genotype–phenotype

mapping in organisms. Philosophical Transactions of the Royal Society B:

Biological Sciences, 375(1798), 20190244.

2.1 Introduction

Ecology is broadly focused on understanding biodiversity and how that

biodiversity shapes the ecosystems that humans depend on. Many ecosystem

processes essential to all of life are mediated by microorganisms and therefore

understanding the relationship between microbial biodiversity and ecosystem

function is important (Schimel & Gulledge, 1998; Singh, Bardgett, Smith, &

Reay, 2010). Certain ecosystem functions are correlated with microbial diversity,

indicating that we should be able to determine what aspects of microbial

biodiversity influence ecosystem function. However, attempts to describe that

mapping have borne little fruit (Graham et al., 2016; Rocca et al., 2015). We argue

that to overcome this challenge we should look to other successful attempts at
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mapping biological variation onto higher order processes. In particular, population

genetics and the process of genotype-phenotype mapping provide a number of

potentially useful insights. For example, genotype-phenotype mapping often

makes few assumptions about the nature of the map, i.e. it is ‘agnostic.’ In

addition, population geneticists have developed rigorous methods for reducing

potentially confounding relationships such as geographic structuring of populations.

Finally, the ultimate goal of genotype-phenotype mapping is to identify the unique

contribution of genotype to phenotype separately from other drivers of phenotypic

variation such as the environment. Inspired by this, we suggest a reframe of the

question, ‘is microbial biodiversity related to ecosystem function?’ to, ‘what is the

unique contribution of the microbiome to ecosystem function independent of the

environment?’

2.1.1 There is evidence that microbial biodiversity matters for

ecosystem function. There is increasing evidence for microbial biodiversity-

ecosystem function relationships. For example, there are positive correlations

between microbial diversity and ecosystem multifunctionality for a variety of

ecosystems and most major lineages of microorganisms (Delgado-Baquerizo et

al., 2016, 2017; Jing et al., 2015). Adding microbial diversity or abundance to

ecosystem models can in some cases improve model accuracy (Graham et al.,

2016). Contrived communities that vary in richness and communities created

through sequential dilution or varying filter size to generate differences in diversity

can also exhibit differences in ecosystem function (Maron et al., 2018; Philippot

et al., 2013; Schnyder, Bodelier, Hartmann, Henneberger, & Niklaus, 2018;

Wagg, Bender, Widmer, & van der Heijden, 2014). Finally, reciprocal transplant

and common garden experiments that manipulate the connection between
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community composition and environment reveal differences in ecosystem function

for communities of distinct origins (Cavigelli & Robertson, 2000; Glassman et al.,

2018; Strickland et al., 2009). Given these relationships, many investigators have

now moved on to the challenge of identifying the aspects of microbial biodiversity

(e.g. specific taxa, genes, functional groups, etc.) that influence a given ecosystem

function; however, this has proven especially challenging.

2.1.2 The mapping between microbial biodiversity and

ecosystem function has been elusive. Most studies that attempt to identify

the aspects of microbial biodiversity that influence a given ecosystem function

focus on ‘functional’ gene or transcript abundance. In this case, qPCR or shotgun

metagenomic sequencing is used to estimate the abundance of a gene or transcript

that is a putative marker for a microbial process (and thus a marker for the

functional group that performs that process). For example, the gene mcrA, which

encodes a subunit of the enzyme that performs the final step in methanogenesis, is

commonly used as a marker for methanogenesis and for the methanogen functional

group. Other examples include pmoA and methanotrophy, nifH and nitrification,

and nosZ and denitrification. It is often hypothesized that the abundance of these

markers is predictive of the rate of the associated processes (for example, it is

hypothesized that the abundance of mcrA is related to the rate of methanogenesis).

Some ecosystem functions in certain ecosystems can be predicted from the

abundance or transcriptional activity of genetic markers for those functions. For

example, soil methane production and consumption can under some circumstances

be predicted from the genetic markers mcrA and pmoA (Freitag & Prosser, 2009;

Freitag, Toet, Ineson, & Prosser, 2010; McCalley et al., 2014). However, for most

ecosystem functions, the abundance of a functional gene or transcript is rarely
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positively correlated with the rate of the corresponding process. The cases where

there is a positive correlation tend to be restricted to agricultural ecosystems and

certain functions within the nitrogen cycle(Rocca et al., 2015). In general, including

aspects of microbial biodiversity (e.g. functional gene abundance or diversity)

improves models of ecosystem function less than one-third of the time and increases

variance explained by an average of only eight percentage points over environmental

variables (Graham et al., 2016).

2.2 Genotype-phenotype mapping as a source of inspiration

In the approaches described above, microbial ecologists often use microbiome

data to infer taxonomic composition, essentially creating species lists from data

such as 16S rRNA marker genes or shotgun metagenomes. Interpreting microbiome

data in this way has allowed us to use approaches from biodiversity-ecosystem

function research (which are often focused on taxonomic or functional groups),

but it has generally not been useful for creating more detailed descriptions of

the relationship between microbial biodiversity and ecosystem function. But

this approach is not the only way we could determine the relationship between a

complex set of highly variable data and an aggregate function.

This kind of ‘many-to-one’ mapping is analogous to the challenge of

identifying the genetic basis of complex traits in organismal populations. In

such ‘genotype–phenotype’ mapping studies, a population exhibits variation in a

phenotype (e.g. height or disease state) as well as variation in potentially thousands

of single-nucleotide polymorphisms (SNPs). To identify the genetic basis for a trait,

investigators sample from this population and correlate phenotype with genotype.

While some phenotypes (e.g. the propensity for diseases such as Parkinson’s) are

controlled by a single locus (Kerem et al., 1989; MacDonald et al., 1992), most
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traits depend on a large number of genes that control variation in phenotype

(Hindorff et al., 2009; Reich & Lander, 2001). In addition, there is often no a priori

expectation about which regions of the genome control that trait so we must search

for genetic markers throughout the genome. If a marker is significantly correlated

with the phenotype of interest, this either indicates it is inside a gene with a direct

or indirect effect on phenotype or that it is in linkage disequilibrium (i.e. non-

random association between two alleles) with a causal gene.

There are a number of parallels between this challenge faced by organismal

biologists and that facing microbial community ecologists. They both involve

large numbers of statistical comparisons. Both are attempting to identify causal

relationships that are potentially confounded by complex patterns of covariation.

There is often no strong expectation about which entities (i.e. which genomic

regions or which microbial genes or lineages) are most likely to be causally related

to phenotype or function, and thus ‘agnostic’ approaches are needed. For some

ecosystem functions, it is possible that a single taxon could substantially influence

its rate. For example, methane flux from permafrost in Sweden may be controlled

by a single taxon (McCalley et al., 2014). But for most ecosystem functions,

there could be many taxa of small effect that contribute to the rate of ecosystem

function. Finally, both ultimately require manipulation (of genes or taxa) to

establish causation.

2.2.1 The importance of a taxonomically ‘agnostic’ approach.

Most microbial biodiversity-ecosystem function research up to this point has used

an approach analogous to that used by plant ecologists studying biodiversity-

ecosystem function relationships. This approach is to measure or manipulate

the diversity of a taxonomic group (e.g. plants) and look for an association with
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the function performed by that group (e.g. primary productivity). We can think

of plants as a ‘functional group,’ i.e. a group of taxa united by their ability to

perform a particular ecosystem function. For microbes, estimating functional

group abundance can be much more challenging. From a small number of cultured

isolates, we have a provisional understanding of which microbes might be involved

in some ecosystem functions. By sequencing the genomes of these isolates, we

have identified genetic markers for certain functions, which we call ‘functional

genes.’ But most microbial taxa remain uncultured and we do not know the

function of most microbial taxa detected in environmental samples (Hug et al.,

2016; A. C. Martiny, 2019). In addition, there have been recent discoveries of

functions in unexpected taxonomic groups, for example methanogenesis by fungi

and cyanobacteria, a function previously considered restricted to archaea (Bižić et

al., 2020; Lenhart et al., 2012).

As stated earlier, these functional markers are not correlated with their

corresponding ecosystem function in most ecosystems and for most processes. In

addition, they provide little explanatory power to the models of ecosystem function.

Because of this, it might be prudent to look more agnostically at microbial

communities to identify taxa, groups of taxa or genes that are important for

predicting the rates of ecosystem functions rather than assuming that the genetic

markers we have provisionally identified for a given function represent the most

likely taxa or genes involved. This agnostic approach is analogous to the approach

of many genotype–phenotype mapping studies (e.g. genome-wide association

studies), which often look for associations between a phenotype and loci anywhere

in the genome.
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Beyond finding new physiologies in unexpected lineages, there are other

reasons for looking agnostically. In the case of microbial functions, it may be that

the organism that performs a function is not the limiting factor for the rate of

that function. For example, the rate of soil-to-atmosphere methane flux could be

limited by methanogens or methanotrophs or the balance of the two. However, it

could also be limited by the bacteria that produce the fermentative byproducts

that methanogens use as substrates. Or there could be indirect limitation by

organisms that liberate nitrogen or phosphorus into mineral forms. In other words,

the influence of microbial communities on the rate of ecosystem function could

represent a complex metabolic network much like the regulation of gene expression

in organisms that partially determines their phenotype. These broader patterns

of biodiversity-ecosystem function relationships would be invisible to any study

that solely focuses on the most relevant functional group without considering the

possible influence of other taxa.

2.2.2 Controlling for population stratification. It is widely

accepted that organisms, including microorganisms, exhibit population

stratification due to geographic and environmental separation (J. B. H. Martiny et

al., 2006; Wright, 1943). This can lead to spurious associations between phenotypes

and genetic markers that are at high frequency in isolated sub-populations.

Association studies generally control for population stratification by accounting for

shared ancestry among organisms in a population when modelling the connection

between genotype and phenotype. Typically, microbial biodiversity-ecosystem

function studies do not account for population stratification (i.e. community

similarity among ecosystems), although there are some exceptions (Lloyd-Price et

al., 2019; Meyer, Hopple, et al., 2020; Qin et al., 2012). Community similarity (the
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community analogue of shared ancestry among organisms) is not as tightly linked

to geography or environment as is shared ancestry. Therefore, it could be useful to

account for these separately in microbial studies, particularly if we are interested in

quantifying the effect of microbial communities on ecosystem function independent

of these other factors.

Genome-wide association studies correct for stratification using a variety of

methods. Generally, they ignore the underlying environmental and spatial distance

between samples and instead use shared ancestry as a proxy for local selection and

assortative mating. A common approach is to perform a regression of phenotype

and shared ancestry (computed as the first one or more principal components

of a genotype matrix) and then use the residuals from this model as the values

for phenotype in a subsequent regression using the genotypes directly (Price et

al., 2006). This principal component correction is designed to test the effect of

individual genes after removing the effect of shared ancestry among individuals.

Another approach, employed in our example, is variance component modelling

(or mixed modelling, hierarchical modelling, etc.), where genotypic similarity is

included as a covariate in the model to control for stratification while testing the

genotype–phenotype connection(Kang et al., 2010).

If we control for covariates such as community similarity, geographic

distance or environmental similarity, it changes the nature of our question. For

example, if we test the correlation between the relative abundance of a taxon and

the rate of methane flux, we are asking ‘is this taxon correlated with methane flux?’

If we find a significant result, that may be because variation in the abundance

of that organism directly or indirectly contributes to methane flux. However, it

might also be that that organism lives only in ecosystems that happen to have a
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high rate of methane flux. In this scenario, we are unable to distinguish between

these possibilities. However, if we add environmental variables or environmental

similarity as a covariate in our model, we can ask, ‘Is this taxon uniquely associated

with function in a way that it is independent of the environment?’ By ‘uniquely

associated’, we mean those taxa associated with the function irrespective of

environmental conditions, local community structure or spatial proximity. This

slight reframing of the question could be especially rewarding for microbial

biodiversity-ecosystem function research, particularly as it relates to incorporating

microbial community data into ecosystem models. Finally, it is interesting in

its own right to understand whether microbial communities are selected by the

underlying environmental conditions to produce a particular rate of ecosystem

function or whether community variation has functional consequences independent

of the environment.

2.3 An example: high-affinity methane oxidation

To illustrate the ideas outlined above, we reanalysed a subset of previously

published data from a paper that has demonstrated one successful approach for

applying genotype-phenotype mapping to microbial communities (Meyer, Hopple,

et al., 2020). In our reanalysis, we do not intend to challenge the conclusions of

that paper, but instead we want to demonstrate how to perform this type of study

for microbial ecologists unfamiliar with association studies. A full description of

the study design, samples and data generation can be found in that article. Briefly,

these data were gathered from intact soil cores taken from diverse ecosystems of

the Congo Basin in Gabon, Africa. Cores were incubated in the laboratory under

different concentrations of methane to identify the rates of specific methane cycling

pathways. In this example, we analyse data from just one of these pathways,
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high-affinity methane oxidation (the oxidation of atmospheric concentrations of

methane), which we will refer to simply as ‘methane oxidation’. In addition, we

only include amplicon sequences from the DNA-inferred community and not the

RNA-inferred community, both of which are presented in the original paper (Meyer,

Hopple, et al., 2020). The data we analysed include methane oxidation rates,

amplicon sequence variants (ASVs) generated using the ‘DADA2’ pipeline and

inferred from unique 16S rRNA gene sequences (Callahan, McMurdie, & Holmes,

2017), pmoA abundance estimates (via qPCR), and four environmental covariates

(soil moisture, bulk density, carbon and nitrogen).

Analyses were conducted in the ‘R’ statistical environment using the

‘phyloseq’ package (McMurdie & Holmes, 2013; R Core Team, 2018). The relative

abundances of ASVs were corrected using the variance stabilizing transformation

from ‘DESeq2’ (Love, Huber, & Anders, 2014; McMurdie & Holmes, 2014). We first

tested the correlation between ecosystem function and typical measures of microbial

community structure: functional gene abundance and community richness, which

were estimated using the ‘breakaway’ package (A. Willis & Bunge, 2015). We then

tested covariation between community structure (estimated as Bray–Curtis distance

using ‘vegan’), environmental variation (Euclidean distance) and geographic

distance (Euclidean distance) using Mantel tests (Bray & Curtis, 1957; Oksanen

et al., 2019). Finally, we identified taxa that were significantly associated with

function independent of the environment by fitting variance component models

using ‘varComp’ to test the relationship between relative abundance of each ASV

and methane oxidation rate (Kang et al., 2010; Qu, Guennel, & Marshall, 2013).

To illustrate how including different covariates (environmental, geographic and

community) can result in different conclusions about which taxa are associated
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with function, we fitted this model with and without random effects variance

components for environmental similarity, geographic site ID and Bray-Curtis

similarity. Significant taxa were determined by controlling the false discovery rate

at q-value < 0.05 (Storey, 2002). Figures were created using ‘ggplot2’ (Wickham,

2016). All raw data and scripts required to recreate this analysis are available in

the electronic supplementary material.

Figure 1. Methane oxidation rate is not correlated with functional gene abundance
or ASV richness. Correlations between methane oxidation rate and (a) abundance
of the functional gene pmoA (n = 42), and (b) ASV richness (n = 44). Lines
represent the ordinary least squares regression lines with standard errors.

2.3.1 Results and Discussion. Microbial biodiversity-ecosystem

function studies typically test functional group abundance or community richness

as it relates to ecosystem function. In our case, methane oxidation rate was not

significantly correlated with pmoA gene abundance or 16S rRNA gene-based

taxonomic richness (table 1 and Figure 1). To demonstrate that the covariance

structure of the data might alter our conclusions about which taxa regulate

ecosystem function, we tested collinearity between each pair of distance matrices
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for community, environment and geography. We found a moderate and significant

correlation between community composition and environmental variation,

geography and community composition, and geography and environmental variation

(table 2 and Figure 2). To visualize this population stratification, principal

coordinate plots show that beta diversity of samples separated by site ID and by

ecosystem type (wetland or upland; Figure 2), which indicates substantial spatial

and environmental structuring of microbial populations. This suggests that the

presence or abundance of certain taxa will be elevated in specific ecosystems. In

this case, high-affinity methane oxidation is typically greater in upland ecosystems

than in wetland ecosystems and so any taxa differentially abundant in uplands will

tend to be correlated with methane oxidation regardless of their involvement in

that process. It is necessary to control for this stratification to rigorously identify

associations between taxa and function.

Table 1. Estimates for the linear relationship between methane oxidation rate and
two measures of microbial community structure: pmoA functional gene abundance
and ASV richness.

term estimate s.e. t-statistic p-value
pmoA copy number 0.019 0.011 1.705 0.096
richness 0.001 0.001 0.694 0.491

Table 2. Mantel tests for each pair of dissimilarity matrices. Community distance
matrix was based on Bray-Curtis distance while both environment and geography
distance matrices were based on Euclidean distance. p-values were determined by
permutation test with 999 permutations.

terms Mantel
statistics
(r)

95% upper
quantile of
permutations

p-value

community ∼ geography 0.353 0.056 0.001
community ∼ environment 0.474 0.109 0.001
geography ∼ environment 0.241 0.055 0.001
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To demonstrate this approach, we tested the effect of the relative abundance

of each ASV on methane oxidation rate while controlling for different sets of

covariates including environment, geography and community. After controlling the

false discovery rate, 460 unique ASVs were identified as significantly correlated

with function when no covariates were included in the model. We found the

different numbers of taxa significantly associated with methane oxidation depending

on which covariates were included in the model (table 3). Each of these sets of

taxa represents different versions of the biodiversity-ecosystem function mapping

question. For example, by attempting to control for environmental variation

statistically, we can identify taxa whose traits may contribute to variation in

function that is independent of environmental conditions. Similarly, by controlling

for geographic distance among samples, we can reduce the likelihood that the

taxa we identify are only related to function because of an association with

unmeasured environmental variation that is spatially structured or because of

differences in dispersal history among sites. In the model that controlled for

all three covariates (community, environment and geography), only six ASVs

were significantly correlated with methane oxidation rate (Figure 3). These taxa

could be useful indicators of methane oxidation rate across space and different

ecosystems. Researchers could elaborate on these findings using targeted cultivation

and manipulative experiments to further understand their contribution to methane

oxidation.
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Figure 2. Microbial community composition is spatially and environmentally
structured. Principal coordinate plots of Bray–Curtis distance representing the
first three axes of community composition. In (a–c) points are identified by site
ID, and in (d–f) points are identified by wetland or upland ecosystem. All four
environmental covariates separate strongly by wetland/upland. Axis length is
proportional to variance explained as indicated in parentheses. PC, principal
coordinate.
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Figure 3. Taxa associated with methane oxidation rates after controlling for
geographic location, environmental similarity and community composition. Points
are estimates for the linear relationship between the relative abundance of a single
ASV and methane oxidation rate with standard errors from variance component
models including similarity matrices as covariates for community and environment
and site ID for geographic location. Amplicon sequence variants are labelled at the
finest resolution available: genus for all except the Group 1 Acidobacteria. Points
are identified by phylum. Significant taxa were determined by controlling the false
discovery rate at q-value <0.05.

Table 3. Number of significant taxa after including each set of covariates in a
variance component model. ‘removed’ and ‘added’ columns are relative to the no-
covariate model. Significance was determined by controlling the false discovery rate
at q-values <0.05.

term(s) removed added significant
none 0 0 460
geo 338 21 143
com 460 0 0
env 281 1 180
geo + com 458 0 2
geo + env 377 13 96
com + env 447 0 13
geo + com + env 454 0 6
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Notably, these six taxa fall into three genera and one class with cultured

representatives that are not known to consume methane (Belova, Pankratov,

Detkova, Kaparullina, & Dedysh, 2009; Y.-j. Chang et al., 2011; Domeignoz-Horta,

DeAngelis, & Pold, 2019; Fritz, Strömpl, & Abraham, 2004). These taxa could be

related to ecosystem function in multiple ways. The most interesting possibility

is that each of these taxa is statistically related because it is causally connected

to the function. This could be direct––for example, an organism that consumes

methane––or indirect––for example, an organism that regulates substrates necessary

for methane oxidizers. Alternatively, a significant association could occur for non-

causal reasons. For example, any organism that tends to be in high abundance

where methane oxidation rates are high would be correlated with methane

oxidation, even if it has no causal relationship. This could be because such an

organism is favoured under the same conditions that favour methane oxidation.

Such covariation can drive associations that are not causal, but the effects of

covariation would have been reduced by controlling for covariates in our tests.

2.4 Caveats and future directions

Once taxa have been identified with an association test (such as the one

we outline above), there are multiple ways they could be used for future study.

One approach common in genetics, particularly for markers of genetic disorders,

is to generate a polygenic score based on the summed effect of many genes on a

phenotype of interest, such as the probability of developing a disorder. A similar

aggregate bioindicator could be generated for ecosystems that would summarize

the probability of the rate or occurrence of a particular ecosystem function. This

would be accomplished by measuring the abundance of the taxa identified in an

association study and determining their association with the rate of an ecosystem
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function. Alternatively, the identified taxa could be incorporated into a structural

equation model in an attempt to better understand the individual effects and

interactions among taxa as they contribute to the rate of ecosystem function

(Grace, Anderson, Olff, & Scheiner, 2010). This might give an indication of the

relative importance of different taxa as compared with other factors, such as

environmental variables, and also identify underlying latent variables that explain

variation in ecosystem function.

Ultimately, the relationships identified in any comparative mapping study

must be verified. For genotype-phenotype studies in organisms, there are multiple

ways that this verification is accomplished. In some cases, organisms can be

artificially selected for a particular phenotype (e.g. through experimental evolution

in an environment that favours the phenotype of interest) and the genetic changes

that occur in response to selection can be compared with those identified via

mapping studies. An analogous approach for microbial biodiversity-ecosystem

function studies would be to apply artificial ecosystem selection (sensu Swenson,

Wilson, and Elias (2000)) on a given function and compare the taxa (or genes) that

change in response to selection with those identified via a comparative approach

(such as the one illustrated in our example).

The most common way that loci identified in a genotype-phenotype

mapping study are verified is through manipulative genetics. The identified loci

can be knocked out or over-expressed and the effect on phenotype compared

with that predicted from mapping studies. In the case of microbial biodiversity

studies, it may be possible to inhibit a particular functional group through the

use of specific antimicrobial or chemical inhibitors or using phages that exhibit

high host-specificity (Koskella & Meaden, 2013; Maxson & Mitchell, 2016),
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but this is not generally possible. In some cases, we may be able to isolate a

microorganism of interest in pure culture and add it back to an ecosystem,

transiently increasing its abundance (roughly analogous to ‘overexpressing’ a

gene). A greater focus on culture-based approaches could increase the success of

these kinds of microbial enrichments. Finally, synthetic communities (contrived

assemblages of microorganisms) may be the most powerful way to test hypotheses

about microbial biodiversity-ecosystem function relationships, but currently these

approaches are limited by the small number of taxa that can be routinely cultured

from most environments (but see Schnyder et al. (2018) and Berg and Koskella

(2018)).

There are a number of limitations to the biodiversity-ecosystem function

mapping approach we describe, some in common with organismal mapping

studies and others unique. For example, simple linear models such as the variance

component model used in this study are typical for genetics studies, but may

not be the best way to identify correlations for microbiomes because of the

unique challenges of microbial data. Marker gene and metagenome sequences are

inherently compositional, reads are often absent from most samples (i.e. they are

zero-inflated), and differences in sequencing depth make it difficult to compare

relative abundances across samples, challenges that are not faced by population

geneticists. We have addressed these challenges using a variance stabilizing

transformation, but other models that test differential abundance and differential

variance which can control for differences in sequencing depth and are robust

to zero-inflation might be more appropriate (e.g., Martin, Witten, and Willis

(2020)). Clustering reads at higher taxonomic levels could circumvent zero-inflation

by providing more continuous variation in taxon abundances across ecosystems.
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However, this approach introduces biases based on the completeness of taxonomic

databases, the accuracy of 16S-based taxonomic assignment, and the removal of

reads that lack a taxonomic assignment (although, newer approaches to taxonomic

classification might help (Shah, Meisel, & Pop, 2019)). Alternatively, decreasing

the threshold of sequence similarity to cluster reads without taxonomy could be

analogous to aggregating at higher taxonomic levels, but it is uncertain whether

these larger aggregates of taxa have any trait conservatism related to function.

Here, we chose to test ASVs at the level of the individual read so as not to bias our

results in these ways. Finally, we have applied this approach to ASVs inferred from

16S rRNA gene sequences, but any unit of microbiome data such as metagenomic

reads or metatranscriptomic mRNA reads could be tested in an association study.

Experimentally, future studies could improve on our example by sampling

a more homogeneous set of ecosystems. Our survey includes an especially broad

assortment of ecosystems, including grasslands, plantations, forests, peatlands

and mineral soil wetlands among others. These ecosystems represent a range of

moisture conditions that could regulate the abundance and activity of methane

oxidizers and access to methane and oxygen, which methane oxidizers rely on.

While this captured substantial variation in methane oxidation rates, sampling

from such diverse ecosystems could result in spurious associations between taxa and

function. For example, taxa differentially abundant in upland ecosystems that are

unrelated to methane oxidation might appear correlated simply as a result of their

presence in those ecosystems with high oxidation rates. Future studies could try

restricting their search to a more homogeneous population of ecosystems specific to

the question at hand.
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2.5 Conclusion

Microbial biodiversity-ecosystem function research has demonstrated positive

correlations between diversity and ecosystem function. However, the abundances

of microbial functional groups (as currently defined) are often poor predictors

of ecosystem function and commonly do not add substantial explanatory power

to ecosystem models. Therefore, a new perspective on how to determine the

relationship between microbial communities and ecosystem functions is sorely

needed. Organismal biologists have over a hundred years of experience identifying

relationships between complex sets of highly variable data (genotypes or genome

sequences) and aggregate functions (organismal phenotypes). We assert that

combining the approaches of traditional biodiversity-ecosystem function research

with ideas from genotype-phenotype mapping could provide this new perspective.

This integration could not only make underutilized approaches such as covariate

modelling and artificial selection more available to microbial ecologists, but also

provide instructive examples of how best to conceive of microbial biodiversity-

ecosystem function questions. If this integration is successful, it is possible that

in the not-so-distant future our field will be able to robustly identify taxa, genes, or

even molecules that will allow us to accurately predict the response of ecosystems

to environmental change. Doing so will not only generate novel hypotheses about

how complex microbial communities drive ecosystem function, but also help

scientists predict and manage changes to ecosystem functions resulting from human

activities.

2.6 Bridge

The ideas in this chapter represent the conceptual framework that will guide

the rest of my dissertation. This framework was designed to address the problem of
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understanding how biodiversity loss due to global change will contribute to changes

in ecosystem function. This framework draws on an analogy between population

genetics and biodiversity-ecosystem function research. Based on this analogy, I

will borrow two approaches from population genetics: an experimental approach

using artificial selection and a comparative approach using a natural gradient

of variation in CH4 emissions. The following Chapter 3 will apply the artificial

selection approach and the later Chapter 4 will apply the comparative approach.
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CHAPTER III

ARTIFICIAL ECOSYSTEM SELECTION TO DEDUCE THE MAPPING

BETWEEN MICROBIOME STRUCTURE AND ECOSYSTEM FUNCTION

For the unpublished work in this chapter, I conceived of the study, designed

the study, carried out the experiment, performed molecular laboratory work,

performed the data analysis, and drafted the manuscript. Brendan J. M. Bohannan

was the principal investigator, designed the study, and critically revised the

manuscript.

3.1 Introduction

Microbiomes mediate a variety of important functions in ecosystems,

and there is great interest in understanding how attributes of microbiomes

may influence variation in ecosystem functions (Crowther et al., 2019).

Biodiversity-ecosystem function relationships have been described for a variety

of macroorganismal communities. For example, plant species richness correlates

with productivity and marine community diversity correlates with a variety of

ecosystem functions (Cardinale et al., 2006; Gamfeldt et al., 2015; Hooper et al.,

2012). While there is evidence that microbiomes are important for determing

ecosystem functions, describing this relationship has been elusive (Graham et al.,

2016; Rocca et al., 2015).

One reason for this difficulty is that it is challenging to directly manipulate

microbiome composition and diversity they way we can for macroorganismal

communities. Instead, we must use genetics through marker gene or metagenomic

sequencing to characterize the microbiome. However, studies that measure the

taxonomic or functional diversity of a microbiome through these approaches rarely

find a correlation between diversity and function (Graham et al., 2016). Another
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approach is to quantify cells or genes using flow cytometry or quantitative PCR.

Studies such as this still rarely find a correlation between the abundance of a

functional group and the rate of the corresponding process (Rocca et al., 2015).

As a result, it remains unclear how and when microbiome variation contributes to

variation in the rate of ecosystem functions.

Another likely reason that microbiome-ecosystem function relationships

have been difficult to document is that the most common approaches for looking

for a relationship requires some prior knowledge of the likely causal links between

microbiomes and ecosystem functions. For example, many studies have looked for

relationships with the abundance or diversity of a “marker gene” for a particular

function. Marker genes are microbial genes that code for an enzyme or enzyme-

subunit known to be involved in a particular function. But this approach assumes

that one can identify the “right” marker gene a priori which, given how little is

understood about microbial diversity, seems highly unlikely. As I argue in Chapter

2, what is needed are approaches to microbiome-ecosystem function mapping that

do not require this degree of prior knowledge.

Yet another likely reason that microbiome-ecosystem function relationships

have been difficult to document is that microbiomes can be related to ecosystem

functions in two related but distinct ways that historically have been difficult to

separate. One way is that microbiomes may simply be conduits through which

the environment drives function. That is to say that the environmental conditions

completely regulate the attributes of the microbiome and a shift in the environment

causes a shift in microbiomes attributes, such as the abundance of a microbial

functional group. This shift results in a change in the rate of an ecosystem

function. In this case, microbiome attributes would be statistically associated
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with variation in ecosystem function, but also strongly covary with environmental

conditions. Therefore, there would be no association between microbiomes and

ecosystem functions independent of the environmental conditions. Under this

scenario, knowing anything about the microbiome would not necessarily provide

you with information regarding the causes of the change in ecosystem function

or improve one’s ability to predict changes in ecosystem function. Furthermore,

attempting to alter ecosystem function by altering the microbiome without

changing the underlying environmental conditions would likely be fruitless.

Another possibility is that the microbiome itself alters the rate of ecosystem

function independent of the environment. In this case, one cannot predict the

rate of ecosystem function without understanding changes in the microbiome. In

addition, managing the microbiome through inoculation or selective antibiotics

would potentially be an effective approach for enhancing or mitigating certain

changes to ecosystem functions. These two scenarios are not mutually exclusive,

nor are they likely unique to microbes, but methods to determine the relative

important of these two scenarios have not until recently been employed.

The problem of connecting microbiome attributes to the rate of an

ecosystem function is analogous to the problem of connecting genomic variation

to phenotypic traits in organisms, and solutions to this problem may be found

by exploring this analogy (Morris, Meyer, & Bohannan, 2020). For example, one

approach to the problem of genotype-phenotype mapping is to perform artificial

selection on a trait of interest and identify genes that respond to selection. Such

genes are likely to be causally linked to the trait under selection. An analogous

approach for exploring microbiome-ecosystem function relationships is gaining

acceptance among microbiologists (Panke-Buisse et al., 2015; Swenson, Wilson,
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& Elias, 2000). Microbiomes have been shown to respond to selection at the

ecosystem-trait level (Swenson, Wilson, & Elias, 2000), and some ecosystem-

scale microbiome traits have been shown to be transferable through microbiome

inoculations (Panke-Buisse et al., 2015). Applying artificial selection to whole

microbiomes could be a novel approach for quantifying how much of the variation

in the rate of an ecosystem function could be attributed independently to

microbiome variation (Goodnight, 2000). In addition, this approach could be used

to identify microbiome attributes, such as genes or taxa, associated with the rate

of an ecosystem function, although, to my knowledge this has not previously been

accomplished (Arias-Sánchez, Vessman, & Mitri, 2019; Morris et al., 2020). Such an

approach has the potential to expand our ability to model microbial ecosystem-

function relationships more accurately and allow us to manage ecosystems for

particular outcomes (Fuhrman, 2009; Schimel & Gulledge, 1998). Here I use this

approach to estimate how much of the variation in ecosystem function (the flux

of CH4 gas between the soil and atmosphere) can be attributed to variation in

the microbiome and to identify microbial markers associated with this ecosystem

function.

Soil CH4 oxidation is a suitable function for this study because there is

evidence that it may vary with microbiome attributes. For example, variation in

CH4 emissions in arctic permafrost is correlated with the transcriptional activity

of certain methanogens (Freitag & Prosser, 2009; Freitag et al., 2010). In addition,

soil microbiome phylogenetic variation is a strong predictor of CH4 oxidation in

forests and pastures of the Brazilian Amazon (Meyer, Morris, et al., 2020). Finally,

methanogenesis and methanotrophy are two of the most deeply conserved microbial

physiologies and are represented in a narrow range of taxa and so the taxonomic
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composition of the microbiome is more likely to be associated with the rate of CH4

flux than other broader or more shallowly conserved functions (A. C. Martiny et

al., 2013; Schimel & Gulledge, 1998). This suggests that microbiome variation

might drive variation in CH4 oxidation in soils.

For the current project, I applied artificial ecosystem selection on soil

microbiomes by selecting on the ecosystem-scale CH4 oxidation rate in order to

estimate the additive genetic variance of soil CH4 oxidation (Swenson, Wilson,

& Elias, 2000). To identify which microorganisms could be markers of CH4

oxidation rate, I compared the composition of the artificially selected microbiomes

to a control set of microbiomes without selection. Artificial ecosystem selection

has a similar effect to enrichment culturing by amplifying the population of

interest (Swenson, Wilson, & Elias, 2000). This will reduce the diversity of the

soil microbiome and allow for greater power in detecting significant markers of

CH4 oxidation rate. I then evaluate whether these markers meet our underlying

assumptions about which taxa limit the rate of ecosystem function.

3.2 Materials and Methods

3.2.1 Experimental design. I performed an artificial ecosystem

selection experiment (sensu Swenson, Wilson, and Elias (2000) by passaging

replicate soil microbiomes. The trait I selected on was CH4 oxidation rate. My

experiment had two selection lines with twelve jars each for a total of twenty-four

jars per passage. One line was a positive selection line where the two or three

jars with the highest CH4 oxidation rate were chosen to inoculate the next set of

positive jars. The other line was a neutral selection line where an equal number

of jars as the positive line were chosen at random to inoculate the next set of

neutral jars. The number of jars chosen was based on the distribution of fluxes
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among the positive jars, i.e., I chose the top three jars unless only two jars had

considerably greater CH4 oxidation rates based on visual inspection of histograms.

The experiment was carried out over five passages until a significant divergence in

functional rates was observed between the two selection treatments.

The initial soil microbiome was sampled from the top 10 cm of an upland

mineral soil under a deciduous forest ecosystem near the University of Oregon

campus in Eugene, OR, USA. Incubations were performed in 500 mL mason jars

with rubber septa installed in the lids. Each jar was sterilized with 70% ethanol

to which was added 45 g of autoclaved potting mix, 5 g of living soil, and 3.5

mL of sterile deionized water to bring them to 60% of field capacity. The jars

were then homogenized, capped, and injected with 4.3 mL of 99% CH4 to bring

the headspace concentration to approximately 1000 ppm CH4. To create the

two treatment groups, twenty-four jars were created in an identical manner and

then randomly assigned to either the positive or neutral selection line. Jars were

flushed and respiked twice per week to maintain aerobic conditions and elevated

CH4 concentrations and were incubated at ambient temperature for approximately

three weeks. Methane oxidation rates were determined at the end of the incubation

period. For the positive treatment, the three jars with the greatest CH4 oxidation

rate were chosen to inoculate the next generation. For the neutral treatment, three

jars were randomly selected to inoculate the next generation. For each treatment,

these three jars were homogenized and this homogenized soil was used as the 5 g

inoculum for the next set of jars. The next set of jars were created in an identical

manner to the first generation with fresh autoclaved potting mix and the same

moisture and CH4 content.
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3.2.2 Methane oxidation rate. Methane oxidation rates were

determined after flushing and spiking jars to approximately 1000 ppm CH4.

Headspace samples of 1 mL were collected from each jar immediately after spiking

and then at time points 3, 6, 24, and 48 hours for a 5-point curve. Samples were

immediately injected into a SRI model 8610C gas chromatograph equipped with

a flame ionization detector (Torrance, CA, USA) to determine the headspace CH4

concentration. Fluxes were calculated from a first-order exponential decay function

as decay constant k with units day-1. Oxidation rates are presented as the additive

inverse of k (i.e., −k) so that a more positive value represents a greater oxidation

rate. The jars selected for the positive treatment in passage 2 had the lowest CH4

oxidation rate of the twelve jars due to a calculation error in the CH4 oxidation

rate. All other passages correctly used the top three jars.

3.2.3 Soil DNA extraction and sequencing. A subsample of soil

from the starting inoculum and from every jar in passages 2 and 5 was collected

and stored at −80◦C. Soil DNA was extracted from 0.25 g soil. Negative controls

were extracted from autoclaved potting mix and DNase-free water. Extractions

were performed using the DNeasy PowerSoil kit (QIAGEN, Germany) and

quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, USA). In

order to estimate the diversity and relative abundance of the bacterial and archaeal

taxa in my soil ecosystems, I sequenced the V4 region of the 16S rRNA gene using

the 515F - 806R primer combination (Caporaso et al., 2011). PCR mixtures were:

10 µl NEBNext Q5 Hot Start HiFi PCR master mix, 9.2 µl primer mixture (1.09

µM concentration), and 0.8 µl of DNA template. Reaction conditions were: 98◦C

for 30 s (initialization); 35 cycles of 98◦C for 10 s (denaturation), 61◦C for 20 s

(annealing), and 72◦C for 20 s (extension); and 72◦C for 2 m (final extension).
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Amplicons were purified twice using 0.8x ratio Mag-Bind RxnPure Plus isolation

beads (Omega Bio-Tek, USA). Sequencing libraries were prepared using a dual-

indexing approach (Fadrosh et al., 2014; Kozich, Westcott, Baxter, Highlander,

& Schloss, 2013). Amplicon concentrations were quantified using Qubit (Thermo

Fisher Scientific Technologies, USA) and multiplexed at equimolar concentration.

Sequencing was performed at the University of Oregon Genomics Core Facility on

the Illumina NovaSeq 6000 with paired-end 150 bp reads.

3.2.4 Bioinformatics. Bioinformatics processing was performed in

‘R’ (R Core Team, 2018). Demultiplexed sequencing reads were denoised using

‘DADA2’ to generate a table of amplicon sequence variants (ASVs) (Callahan et

al., 2016). Taxonomic assignment for the 16S reads was performed using the RDP

naive Bayesian classifier (Wang, Garrity, Tiedje, & Cole, 2007). The presence of

contaminants was evaluated using both the prevalence and frequency methods from

‘DECONTAM’ by comparing samples to negative controls (Davis, Proctor, Holmes,

Relman, & Callahan, 2018). I did not identify any obvious contamination using

these methods.

3.2.5 Statistical Analysis. Statistical analyses were performed in

‘R’ (R Core Team, 2018). To test whether there was a significant change in CH4

oxidation rate (k) as a response to selection, I tested a difference in slopes between

the positive and neutral selection lines. The CH4 oxidation rates were strongly right

skewed with most values close to zero and few large, positive values. This resulted

in residuals that did not meet the assumptions of constant variance and normal

distribution. Therefore, CH4 oxidation rates were log10 transformed to better meet

the assumptions of a linear model and to make figures easier to interpret. First,

I tested the effect of treatment by fitting two nested models with and without
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treatment using ‘lm’. I compared these models using the likelihood ratio test with

the ‘anova’ function. I then fit the full model to estimate the slope of the positive

line, which represents the change in CH4 oxidation rate per passage as a response

to selection.

To estimate the proportion of variance in ecosystem function due to

variation in the microbiome, I estimated narrow-sense heritability (h2) as the

regression of mid-offspring on mid-parent (Falconer & MacKay, 1996). The mid-

parent was the mean for all three selected jars and the mid-offspring was the

mean for all jars produced by those parents. First, I tested if there was an effect

of treatment on the heritability estimate. I compared these models using the

likelihood ratio test with the ‘anova’ function. I then fit the full model to estimate

the heritability of the Positive and Neutral treatments.

Richness estimates and tests were performed using ‘breakaway’ (A. D. Willis

& Martin, 2020). I tested a difference in richness between Passages 2 and 5

with both treatments combined. Then I subset the samples from Passage 5 and

compared richness between the Positive and Neutral treatment. Next, I compared

beta-diversity as both Aitchison dissimilarity, which is the Euclidean distance after

center-log ratio transformation, and the binary Jaccard distance for presence or

absence (Aitchison, 1982). I tested a difference in centroid and dispersion of beta

diversity between the Positive and Neutral treatment and Passage 2 and 5 with

permutational analysis of variance (PERMANOVA) using the ‘adonis2’ function

from ‘vegan’ (McArdle & Anderson, 2001; Oksanen et al., 2019).

To identify taxa that responded to selection on CH4 oxidation rate, I tested

differential abundance using a beta-binomial model (Martin et al., 2020). I first

grouped ASVs at the family level keeping ASVs without a family assignment. I

48



then subset the samples in Passage 5 and removed all families with a prevalence

of less than 10%. Taxa present in < 10% of samples would only be present in one

or two jars and therefore it would be unreasonable to test differential abundance

on these taxa. I compared families in passage 5 between the Positive and Neutral

treatment to identify taxa that were enriched or depleted as a response to selection.

I used the likelihood ratio test to estimate p-values with a significance threshold

of false-discovery rate < 0.05 (Martin et al., 2020). Estimates are presented as

the expected relative abundance in the positive treatment relative to the neutral

treatment.

3.3 Results

Figure 4. Response to selection on soil CH4 oxidation rate fit by ordinary least
squares regression. The y-axis is the log10 of the additive inverse of the first-order
exponential decay constant k (i.e., −k) with units day-1. The x-axis is the passage
number. The orange line and points are the Positive treatment and the gray line
and points are the Neutral treatment.

I observed a response to selection on whole-ecosystem soil CH4 oxidation

rate (Figure 4). In addition, the response to selection varied with treatment (LRT
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of nested models with and without treatment: df = 2, ss = 1.86, p = 0.02). At the

start of the experiment, the Positive treatment had a mean CH4 oxidation rate that

was 24% lower than the Neutral treatment (difference of y-intercepts = -0.34, SE

= 0.16, t = -2.14, p = 0.03). There was no change in CH4 oxidation rate of the

Neutral treatment over the five passages (slope = -0.01, SE = 0.05, t = -0.26, p

= 0.80). By contrast, the Positive treatment had a 51% increase in CH4 oxidation

rate per passage (slope = 0.18, SE = 0.06, t = 2.76, p = 0.01).

I estimated heritability as the regression of mid-offspring on mid-parent

(Figure 5). Offspring CH4 oxidation rates were correlated with parental CH4

oxidation rates in both the Positive treatment (slope = 1.08, SE = 0.24, t = 4.43,

p = 0.01) and the Neutral treatment (slope = -0.58, SE = 0.20, t = -2.89, p =

0.04). Notably, the sign of the effect was reversed with a positive heritability for

the Positive treatment and a negative heritability for the Neutral treatment.

Figure 5. Ordinary least squares regression of mid-offspring CH4 flux on mid-parent
CH4 flux (−k with units day-1). Mid-parent is the mean of the jars selected to
inoculate the next passage. Mid-offspring is the mean of all twelve jars produced in
one passage. The orange lines and points are the Positive treatment and the gray
lines and points are the Neutral treatment.
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Sequencing of 16S rRNA amplicons revealed that there were 9717 unique

amplicon sequence variants (ASVs) across all 46 jars sampled. Richness of ASVs

decreased among all of the jars between Passage 2 and 5 (Richness difference

between Passage 5 and Passage 2 = -2450.8, SE = 285.09, p < 0.001). However,

there was no difference in richness between the Positive and the Neutral treatment

in Passage 5 (Difference = 6.1, SE = 36.04, p = 0.866). In addition, there was

no correlation between richness and CH4 oxidation rate across all passages and

treatments. (CH4 = -18.3, SE = 55.41, p = 0.742).

Figure 6. Principal component analysis (PCA) plot of beta diversity for all jars.
Dissimilarities are based on Aitchison dissimilarity, which is Euclidean distance
after center-log ratio transformation. Colors represent treatment and shapes
represent passage number. The ratio of the axes is proportional to the variance
explained by each principal component in order to accurately represent the distance
between the points.

Taxonomic dissimilarity of the soil microbiome varied strongly by passage

and weakly by treatment (Figures 6). Permutational analysis of variance

(PERMANOVA) demonstrated an effect of passage, treatment, and their

interaction on Aitchison dissimilarity (Table 4). Passage explained 41.9% of the

variation in Aitchison dissimilarity and 47.4% in Jaccard dissimilarity. Treatment

explained 4.7% for Aitchison and 3.4% for Jaccard. Variation in microbiome
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Table 4. PERMANOVA on Aitchison and Jaccard dissimilarities.

Term df SS R2 F p

Aitchison
Passage 1 192687.59 0.42 34.96 0.001
Treatment 1 21430.52 0.05 3.89 0.006
Pass:Treat 1 13888.56 0.03 2.52 0.038
Residual 42 231507.31 0.50 NA NA
Total 45 459513.98 1.00 NA NA

Jaccard
Passage 1 3.68 0.47 42.51 0.001
Treatment 1 0.26 0.03 3.04 0.019
Pass:Treat 1 0.19 0.02 2.22 0.072
Residual 42 3.64 0.47 NA NA
Total 45 7.77 1.00 NA NA

composition decreased as a result of passaging in jars (F = 80.5, p < 0.001), but

did not differ between selection treatments (F = 0.40, p = 0.54).

To investigate which taxa responded to selection on soil CH4 oxidation

rate, I first looked at which taxa were unique to the Positive and Neutral

treatments aggregated at the family level. Several taxa were present in the Positive

treatment and absent in the Neutral treatment. Most of these families had low

prevalance (present in 3 or fewer samples) and low abundance (median < 5 reads).

There were two families unique to the Positive treatment with relatively high

prevalence. This included an ASV that was a member of the Bacteroidia Class

with no lower taxonomic designation. This ASV had a prevalence of 10/12 and

a median abundance of 2 reads. The other prevalent family was a member of

the Silvanigrellaceae, a newly described family placed in its own order. This

family was present in all 12 samples and had a median abundance of 8 reads.

Silvanigrella is the only cultivated member of Silvanigrellaceae and was isolated

from a temperate fresh water lake (Hahn et al., 2017). Of the families unique to

52



the Neutral treatment, only one had a prevalence greater than 2/12. This family,

Armatimonadaceae, was present in half of the Neutral samples (prevalence =

6/12). The type strain for Armatimonadaceae was isolated from the rhizosphere

of Phragmites australis (Tamaki et al., 2011).

The remaining families were shared between the Positive and Neutral

treatment, but some differed in their relative abundance. To identify taxa that

responded to selection on soil CH4 oxidation rate, I tested the differential relative

abundance of families in the Positive jars relative to the Neutral jars within

Passage 5 using a beta-binomial model. I identified 37 families that were enriched

or depleted in the Positive treatmeant relative to the Neutral treatment (Figure 7).

Overall, none of the families enriched in the Positive selection treatment are

known methanotrophs. Several taxa identified had a higher taxonomic designation

that contains methanotrophs, for example, the Gammaproteobacteria class had a

large effect size. This class is one of the groups containing methanotrophic families

such as Methylococcaceae. However, gammaproteobacteria is among the most

diverse groups in the Prokaryotes, so this is not strong evidence for a selection

response by methanotrophs (Garrity, Bell, & Lilburn, 2005). The next family was

Puniceicoccaceae, which is a member of the phylum Verrucomicrobia and contains

marine microbes. The Verrucomicrobia is a diverse group that contain known

methanotrophs as well as ammonia-oxidizing bacteria (Freitag & Prosser, 2003). An

ASV from the order Armatimonadales was also enriched in the Positive treatment.

Interestingly, this order also contains the family Armatimonadaceae, which was

found to be unique to the Neutral treatment. Cytophagaceae was also enriched in

the Positive treatment and contains a number of mainly aerobic heterotrophs that

can digest a variety of macromolecules (McBride, Liu, Lu, Zhu, & Zhang, 2014).
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Notably, the family Gemmatimonadaceae has a single bacterial bin, Candidatus

‘Methylotropicum kingii ’, that contains methanotrophy genes, but this family was

depleted in the Positive selection treatment (Bay et al., 2021).

Figure 7. Differentially abundant family-level taxa based on a beta-binomial model.
Values on the x-axis are estimates and standard errors of the expected difference
in the logit-transformed relative abundance between the two treatments. Positive
values are enriched in the Positive treatment and negative values are enriched in
the Neutral treatment. Taxa presented here are significant at FDR < 0.5.
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3.4 Discussion

I observed a response to selection on whole-ecosystem soil CH4 oxidation

rate. This type of response has been observed for other functions, such as

chloroaniline degradation in water (Swenson, Wilson, & Elias, 2000), but this is

the first instance, to my knowledge, of selection being performed directly on soil

biogeochemical cycling. This experimental design attempted to create multiple

ecosystems that were very similar with respect to the type and quantity of soil, soil

moisture content, and the headspace concentration of CH4. I further controlled for

environmental variation across replicates by having twelve replicates per treatment,

using controlled laboratory conditions, and by having a random selection treatment

as a control. Therefore, the observed response to selection on CH4 oxidation rate is

likely due to changes in the microbiome.

To investigate the relationship between microbiome structure and ecosystem

function, I wanted to determine how much of the variation in soil CH4 oxidation

was attributable to variation in the microbiome. This ecological question is

analogous to the problem of estimating heritability in quantitative genetics (Morris

et al., 2020). Variation in an organismal trait is determined by the sum of genetic

variation, environmental variation, and the interaction between the two (Falconer &

MacKay, 1996). One goal of quantitative genetics is to determine the proportion of

phenotypic variation attributable to genetic variation. This is commonly estimated

as the narrow-sense heritability defined as the additive genetic variance. This

goal can be achieved through artificial selection experiments with selection on the

character of interest (Falconer & MacKay, 1996).

The heritability I observed in the Positive treatment was large (h2 =

1.08) relative to other studies of biological heritability (Visscher, Hill, & Wray,
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2008). However, given the small sample size and wide confidence intervals (95%

CI: 0.40, 1.75) it is likely that a larger study could more precisely estimate the

true heritability. I intentionally eliminated much of the environmental variation

that would be present in natural ecosystems, but it is unclear how much jar-to-

jar variation there is in the composition of the soil substrate. Given these data,

though, I conclude that variation within the soil microbiome has a very strong

effect on soil CH4 oxidation rates independent of any environmental variation.

The negative heritability observed in the Neutral treatment could indicate

a negative genetic correlation between CH4 oxidation rate and traits associated

with persistence in a jar (Conner, 2003). The conditions in the jar favor organisms

that can grow in potting mix, reproduce within a three week incubation, and

survive passaging between jars. These traits might be negatively correlated with

a community’s ability to oxidize CH4 indicating a potential tradeoff (Conner, 2003).

This tradeoff would result in a negative heritability of CH4 oxidation rate in the

Neutral treatment, which did not experience selection on CH4 oxidation rate.

Since there was a response to selection, I wanted to identify which taxa

responded to selection. That is, the taxa that were enriched in the Positive

treatment relative to the Neutral treatment. Studies of microbiome structure-

function relationships typically quantify marker genes for the final enzyme in a

pathway to try to predict the rate of flux through that pathway. However, of the 37

taxa identified by the differential abundance test, none were members of a family

known to oxidize CH4. This suggests that in my system the taxa that perform

the function CH4 oxidation do not limit the rate of flux through the pathway.

Traits that we assume are important for regulating function (such as the diversity

or relative abundance of methanotrophs estimated from phylogenetic marker
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genes) may not be important for determining variation in function. Perhaps once

a sufficient number of methanotrophs are present, the process itself is limited by

other metabolic processes in the ecosystem, such as nitrogen cycling mediated by

non-methanotrophic organisms.

I found that 24 taxa were enriched in the Positive treatment, which might

indicate that the soil CH4 oxidation rate in these jars is controlled by multiple

taxa. This conclusion is analogous to the conclusion in quantitative genetics that

most traits at the organismal level are the result of the interaction between many

independent genes. Indeed, very few traits or genetic diseases are the result of

a single gene or mutation (Kerem et al., 1989; MacDonald et al., 1992). This

results in the use of polygenic risk scores for predicting phenotype or disease risk in

humans (Hindorff et al., 2009; Reich & Lander, 2001). An analogous conclusion can

be drawn for predicting the rate of ecosystem function from the presence or relative

abundance of microbial taxa. The rate of an ecosystem function at the whole-

ecosystem level is the result of interactions among a variety of disparate taxa with

different traits. To better understand microbiome structure-function relationships,

my results suggest that we should move away from single marker genes and instead

investigate the role of multiple functional groups in determining the function of

ecosystems whether it is CH4 flux from soil or host-microbiome health.

Taxonomic richness dropped precipitously between Passage 2 and Passage

5. There are several explanations for this drop in diversity. The initial community

was a diverse microbiome sampled from a natural soil. With the initial inoculation

and at each subsequent passaging, the ecosystem was subsampled to 10% (5 g of

living soil was combined with 45 g of sterilized substrate). This subsampling likely

explains a large part of the drop in diversity. In addition, beyond the imposed
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selection regime based on CH4 oxidation rate, these soil microbiomes were under

a variety of selection pressures such as persistence in a jar, survival during the

transfer from one jar to the next, and the ability to colonize a new jar in a couple

of weeks, to name a few. These selection pressures would have further filtered the

microbiome for taxa that could persist in this laboratory environment.

In addition to the drop in richness, there was also a decrease in beta

diversity among the jars as a result of passaging. This could be due to the

homogenization step between each passage. Once the jars were selected to

generate the next set of jars, the soil from those jars was homogenized and this

homogenate was used to inoculate the next set of jars. The goal of this step

was to “shuffle” membership in the microbiomes among the jars in order to test

different combinations and relative abundances of taxa in terms of their effect on

CH4 oxidation rate. This likely also made the communities more similar in their

membership by increasingly the likelihood that each taxon was represented in

each jar. Another explanation for this biotic homogenization is the aforementioned

selection for persistence in a jar. These selection pressures would have favored the

subset of taxa suited to these laboratory conditions regardless of whether they were

in the Positive or Neutral selection line. This can be seen by the relative similarity

of the Positive and Neutral jars in Passage 5. Despite the Positive treatment

undergoing selection on CH4 oxidation rate, both the Positive and Neutral jars

were experiencing selection on a variety of other traits that made the overall soil

microbiomes appear similar.

One caveat that is important to keep in mind is that 16S rRNA genes are

not markers of functional characteristics of microorganisms. They are simply

phylogenetic markers useful for determining the relative position of taxa in a
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phylogenetic tree. In addition, assigning functions to taxa based solely on their

taxonomy is a fraught exercise because many microbial functions are not very

deeply conserved, are spread across disparate lineages of the tree of life, or are

easily transferred between distantly related taxa. However, methanotrophy

and methanogenesis are two of the most deeply conserved microbial traits

(A. C. Martiny et al., 2013). This results in part from the fact that those

functions require multiple genes to perform and are therefore not easy to evolve

independently or to transfer between lineages through horizontal gene transfer.

However, in order to be confident that the response I observed was not simply

due to a relative increase in methanotrophs, I would need to apply a functional

approach to characterizing the microbiome, for example, by sequencing whole

metagenomes from my samples.

Future research in this area should use methods that are able to detect

functions and metabolic pathways within the community that respond to selection.

For example, genome-resolved metagenomics could identify pathways that are

enriched in the Positive selection treatment. This would further advance our

understanding of the exact traits that are enriched in high-flux ecosystems and

therefore could be markers of ecosystem function. In addition, future studies could

build on experimental results such as mine to sample a gradient of ecosystem CH4

fluxes to determine whether the taxa identified in our selection experiment could

be useful indicators of CH4 flux in the field. These studies would allow us to build

a picture of the multiple traits that drive variation in ecosystem function at the

whole-ecosystem level. I will address some of this challenges in the final chapter of

this dissertation.

59



3.5 Conclusion

I performed an artificial ecosystem selection experiment on whole-ecosystem

CH4 oxidation rate to determine whether variation in microbiome composition can

contribute to variation in ecosystem function. I observed a significant response to

selection on CH4 oxidation rate - the first example of an experiment performing

selection on soil biogeochemical cycling. In addition, I observed a strong heritability

of CH4 flux between passages, suggesting that variation in microbiome composition

could be a major source of variation in CH4 flux in ecosystems. Surprisingly, the

taxonomic groups that experienced selection on CH4 oxidation rate were not

enriched in methanotrophs. This suggests that understanding a single functional

group is insufficient for predicting the effect of microbiome composition on the rate

of ecosystem function. Instead, we may need to investigate alternative functional

groups or multiple interacting taxa to understand the role of microbiomes in

ecosystem function. While it has often been assumed that microorganisms

play a major role in determining variation in ecosystem function, this has not

previously been shown empirically. This experiment demonstrates that variation

in microbiome composition can contribute to considerable variation in ecosystem

function.

3.6 Bridge

The overarching questions for this dissertation is whether variation in the

microbiome is necessary to predict variation in ecosystem function. In this chapter,

I addressed this question by experimentally demonstrating that variation in the

soil microbiome can generate variation in an important ecosystem function–CH4

oxidation. In addition, to begin to unravel what aspects of microbiome variation

are important for generating variation in ecosystem function, I identified taxonomic
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groups from 16S rRNA gene variants that were enriched in the ecosystems that

underwent selection on CH4 oxidation rate. One limitation to this approach is

the contrived nature of the experiment in artificial potting mix in a laboratory

environment under elevated CH4 concentrations. In addition, using 16S markers

did not allow me to identify functional groups within my microbiomes. To address

these limitations, in the next chapter I will use shotgun metagenomics of soil

microbiomes along an ecological gradient of CH4 oxidation rates to identify which

functional groups are altered by global change and which are association with high

rates of CH4 emissions. The objective of this chapter will be to understand whether

biodiversity loss due to global change will lead to a loss of essential ecosystem

functions.
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CHAPTER IV

IDENTIFYING THE METAGENOMIC DRIVERS OF METHANE EMISSIONS

FROM PASTURES OF THE BRAZILIAN AMAZON

For the unpublished work in this chapter, field samples were collected by

Kyle M. Meyer and Brendan J. M. Bohannan. I was the primary contributor to the

experimental design, laboratory work, and data analysis and did all the writing.

Brendan J. M. Bohannan was the principal investigator for this work and helped

conceptualize the experiment and revise the writing.

4.1 Introduction

One objective for biological research is to understand how global change will

alter biodiversity patterns (Foley et al., 2005; Newbold et al., 2015). These changes

can, in turn, affect the provisioning of ecosystem functions, such as gas exchange

between the soil and atmosphere (Hooper et al., 2005; Schimel & Gulledge, 1998).

A major global change affecting tropical rainforests is the conversion of forests to

agricultural pastures (Dirzo & Raven, 2003; Laurance et al., 2014). This has been

widely noted to shift ecosystems from net CH4 sinks to net CH4 sources (Meyer,

Morris, et al., 2020; Steudler et al., 1996; Verchot et al., 2000). In addition, one of

the strongest predictors of CH4 flux in these systems is microbiome composition

(Meyer, Morris, et al., 2020). Based on these observations, I want to understand

how changes in belowground biodiversity patterns alter ecosystem-scale CH4 fluxes.

A shift in the rate of an ecosystem function as a response to global change

could be driven by changes to abiotic conditions, biotic communities, or both. For

example, such a response could follow predictable patterns of reaction kinetics

based on temperature, redox conditions, and the availability of substrates. If

changes in these factors lead to changes in the microbiome as well as changes in
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ecosystem function, it would be unnecessary to measure microbiome composition in

order to accurately predict the response of an ecosystem function to environmental

change. One could accurately predict the rate of future ecosystem functions

from soil abiotic characteristics alone. However, if global change introduces or

eliminates certain functional groups or if the relative abundances and distributions

of species are altered directly by global change, then future functional rates might

be unpredictable from basic reaction parameters (Schimel & Gulledge, 1998). In

that case, understanding which microbial functional groups are shifting in response

to environmental change will be essential for predicting future ecosystem functions.

One system in which microbiome composition may be an important driver

of the rate of ecosystem function is in soil CH4 emissions from the Brazilian

Amazon. Past research in the Brazilian Amazon has shown that forest-to-pasture

conversion switches an ecosystem from a net CH4 sink in forest to a net CH4 source

in pasture (Meyer, Morris, et al., 2020; Steudler et al., 1996). Deep metagenomic

sequencing of forests and pastures in the western Amazon revealed that forest-to-

pasture conversion resulted in shifts in the CH4 cycling community. Specifically,

the proportion of methanogens increased relative to methanotrophs (Meyer et al.,

2017). In addition, laboratory incubations using stable-isotope probing revealed an

increase in the abundance and activity of methanogens as a result of deforestation

(Kroeger et al., 2018). While it seems that the shift from CH4 sink to CH4 source

could easily be explained by these changes in the CH4-cycling community, these

studies lacked CH4 flux measurements and so it is not certain that high-flux sites

can be explained only by the relative abundance of methanogens.

One study directly compared 16S rRNA gene variants with CH4 flux

measurements co-located in time and space (Meyer, Morris, et al., 2020).
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This study found that microbiome composition was the strongest predictor of

variation in CH4 flux. In this study, CH4 flux was correlated with the richness of

methanogens based on phylogenetic markers (Meyer, Morris, et al., 2020). While

methanogens and methanotrophs were associated with CH4 flux in this study, most

associated taxa were not known to produce or consume CH4 (Meyer, Morris, et

al., 2020). In addition, my project in Chapter 3 revealed that selection on soil

CH4 oxidation rate was associated with shifts in the 16S-inferred microbiome

composition without any changes in the relative abundance of CH4 oxidizing

taxa, suggesting that CH4 flux may not necessarily be controlled only by CH4

cycling taxa. These studies are limited in the inferences that can be made about

microbiome function since they used sequence similarity in regions of the 16S rRNA

genes to identify microbial taxa; this approach only provides limited phylogenetic

information about the taxa present and does not provide direct information about

functional potential.

To address the shortcomings of these previous studies, I combined in-

situ CH4 flux measurements in two regions of the Brazilian Amazon co-located

in time and space with soil metagenomic sequencing to identify aspects of the

soil microbiome that are associated with increases in CH4 flux. This approach

is powerful, because metagenomic sequencing allows the direct identification of

specific metabolic pathways without the need to infer function from phylogenetic

affiliation. In addition, I compared the relative abundance of microbial pathways

directly with rates of CH4 flux to identify functional groups that increase as a

proportion of the soil microbiome in high flux ecosystems. By using a comparative

approach across a chronosequence of land use change in the field, as opposed to a

laboratory study, the results of this study will be maximally applicable to a real-
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world system. However, there are limitations to this approach; by not relying on

a manipulative experiment, evaluating mechanisms underlying the association

was difficult. Despite this tradeoff, the work I describe here will be essential to

guide future studies using controlled field experiments or laboratory incubations to

evaluate hypotheses generated from this study.

The core goal of this study was to determine whether it is necessary to

measure variation in microbiome composition in order to predict future CH4

emissions. In addition I wanted to identify specific aspects of the microbiome

that are informative for predicting variation in CH4 emissions. By modeling the

relationship between microbiome composition and CH4 flux while controlling for

underlying environmental covariates and the geographic distance between sites, I

was able to identify microbiome functional pathways that were associated with CH4

flux independent of the measured environmental variables. These results will help

guide future efforts to model how variation in the soil microbiome can be used to

predict CH4 emissions under future global change.

4.2 Materials and Methods

This study was conducted along land-use change gradients in two regions

of the Brazilian Amazon: Fazenda Nova Vida (FNV) in the state of Rondônia and

Santarem in the state of Pará. The full site information can be found in Meyer,

Morris, et al. (2020). Briefly, soil samples were collected from primary forest, cattle

pasture, and secondary forest. In FNV, samples included 10 forest, 10 pasture,

and 9 secondary forest samples. In santarem, samples included 10 forest samples,

10 pasture samples, and 13 secondary forest samples. At each site, samples were

collected along a 200 m transect at 50 m intervals. At each sampling location, soil

CH4 flux was measured in real time using a Fourier-transform infrared spectrometer
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(Gasmet, DX 4015, Vantaa, Finland). Immediately following gas sampling, air

temperature, soil temperature, and soil moisture data were collected. In addition,

five soil cores were collected with a sterilized corer (5 cm diameter and 10 cm

depth). These cores were homogenized, subsampled, and stored at 4◦C for chemical

analysis or frozen for DNA extraction. Soils were analyzed for 19 attributes which

were used as the environmental covariates. These included pH, organic matter, P,

S, K, Ca, Mg, Al, H + Al, sum of exchangeable bases, cation exchange capacity,

base saturation, Al saturation, Cu, Mn, Zn, and N. Total DNA was extracted from

0.25 g soil using the DNeasy PowerSoil kit (Qiagen Inc., Valencia, CA, USA).

4.2.1 Metagenomic sequencing, assembly, and annotation.

Sequencing was perfomed on the Illumina NovaSeq S4 platform with 151 bp paired-

end reads. Quality filtering was performed on raw reads using the ‘rqcfilter2.sh’

script from ‘bbtools’ version 38.88 (Bushnell, 2021; Bushnell, Rood, & Singer,

2017). Sequencing and quality filtering were performed by the Joint Genome

Institute (JGI). Filtered reads were downloaded from the JGI Genome Portal and

were normalized using ‘bbnorm.sh’ from ‘bbtools’ version 38.90 (Bushnell, 2021).

Assembly was performed on normalized reads using ‘megahit’ version 1.2.9 with

settings ‘–min-contig-len 1000 –k-min 27 –k-max 127 –k-step 10 –kmin-1pass’ (Li,

Liu, Luo, Sadakane, & Lam, 2015). Filtered (not normalized) reads were mapped to

the assembly using ‘bowtie2’ (Langmead & Salzberg, 2012). Contigs and coverages

were imported to ‘anvio-7’ (Eren et al., 2021). Open reading frames were identified

using ‘prodigal’ (Hyatt et al., 2010). Contig coverages were quantified as coverage

per nucleotide position using ‘anvi-profile’ in Anvio with a minimum contig length

of 2500 bp/nts. Functional genes and pathways were annotated using KEGG
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KoFams (Aramaki et al., 2020). Finally, functional gene abundances were estimated

as mean coverage across the contig.

4.2.2 Microbiome Analysis. Microbiome functional gene

annotations and mean coverage data were exported from ‘Anvi’o’ and imported

to ‘R’ (R Core Team, 2018). Functional genes were aggregated at the KEGG

Module level by summing the mean coverage of genes from the same Module. The

resulting 297 pathways were used in subsequent analyses. Microbiome analyses in

‘R’ were performed using the ‘phyloseq’ and ‘microViz’ packages (Barnett, Arts,

& Penders, 2021; McMurdie & Holmes, 2013). For the distance-based analyses

and ordinations, microbiome functional dissimilarities were calculated using the

Aitchison dissimilarity, which is the Euclidean distance after center-log ratio

transformation (Aitchison, 1982). This dissimilarity preserves the ratios between

functional pathway abundances while controlling for the compositional nature of

the data. Ordinations were created using principal component analysis (PCA) on

Aitchison dissimilarity.

4.2.3 Statistical Analysis. Statistical analyses were perfomed

in the ‘R’ programming environment version 4.1.2 (R Core Team, 2018). Plots

were created using ‘ggplot2’ (Wickham, 2016). Difference in mean CH4 flux

by Region and Land Type were tested with a Kruskal-Wallis test using the

‘kruskal.test’ function (Hollander & Wolfe, 1973). Multiple comparisons were

perfomed using Dunn’s test with the Benjamini-Hochberg p-value adjustment

using the ‘dunnTest’ function from the ‘FSA’ package (Dunn, 1964). Multivariate

differences in soil physicochemical characteristics by Region and Land Type were

tested with PERMANOVA using the ‘adonis2’ function from the ‘vegan’ package

using the Euclidean distance on all soil abiotic data (McArdle & Anderson, 2001;
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Oksanen et al., 2019). Multivariate differences in soil microbiome functional

composition by Region and Land Type were similarly tested with PERMANOVA

using the Aitchison dissimilarity (Aitchison, 1982; McArdle & Anderson, 2001).

Multivariate correlation between soil physicochemical data and microbiome

functional composition were tested using a Mantel test with the ‘mantel.rtest’

function from ‘ade4’ and the p-value was determined with 999 permutations

(Mantel, 1967).

To identify microbiome functional markers for CH4, I used a regression

approach based on the ideas described in Chapter 2 of this dissertation (Morris et

al., 2020). Methane fluxes were strongly right-skewed and so were log10 transformed

after adding a constant to make all values positive. Next, I used a two step

approach to remove multi-collinear variables. First, soil abiotic variables were

evaluated for multi-collinearity based on Pearson’s correlation coefficients. Any

variables with a correlation coefficient > 0.70 were removed. The variables I

selected for inclusion in subsequent analyses were pH, organic matter, N, P, K,

S, Fe, and a principal component axis correlated with micronutrients (Cu, Mn, and

Zn). Multiple linear regression was used to model CH4 as a function of all selected

abiotic variables and the geographic distance between sites. Models were evaluated

for normality of the residuals and homoscedasticity. Variables were again evaluated

for collinearity based on variance-inflation factors (VIF) using the ‘vif’ function

from the ‘car’ package (Fox & Weisberg, 2018). Variables with VIF greater than 3

were removed from subsequent models. This analysis was repeated individually for

each Region since the response of CH4 to forest-to-pasture conversion differed by

Region. For the individual regional models, latitude and longitude were converted
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to distance in meters and were rotated using a PCA to pull out the main axis of

the transect and the first PC of this analysis was included as geographic distance.

Using the previous multiple regression models, the model was refit for each

KEGG pathway with coverage as the last variable in the model. In this way, each

pathway was tested in terms of its marginal effect on CH4 flux after controlling

for the distance between sites and the underlying environmental variation. The

significance threshold was adjusted for multiple comparisons using the Bonferroni

correction (i.e., α/n). This process was repeated without the covariates to test each

KEGG pathway on its own.

4.3 Results

Past research showed that CH4 fluxes differed across land use types in the

Amazon (Meyer, Morris, et al., 2020). In these data, CH4 flux varied by Region and

Land Type (Kruskal-Wallis: X = 33.98, df = 5, p < 0.001; Figure 8). However, there

was a region-by-land-type interaction where forest-to-pasture conversion increased

CH4 flux in FNV (Dunn’s: FNV Forest:FNV Pasture Z = −3.06, adj. p < 0.001),

but not in Santarem (Dunn’s: Santarem Forest:Santarem Pasture Z = −1.70, p =

0.22; Figure 8).

Soil physicochemical characteristics differed by Region and Land Type

(Table 5; Figure 9A). However, only 10% of the variation in soil characteristics

could be explained by Land Type compared to 28% across Regions. Looking at

broad patterns of microbiome composition, both Land Type and Region and their

interaction separated strongly by the functional composition of the soil microbiome

based on Aitchison dissimilarity of KEGG pathways (Table 6; Figure 9B). Lastly,

there was a weak multivariate correlation between soil physicochemical properties

and soil microbiome functional composition (Mantel: R2 = 0.18, p = 0.003).
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Figure 8. Soil-to-atmosphere CH4 flux. The y-axis has been transformed with
the psuedo-log base 10 for ease of interpretation. Positive values are net CH4

production and negative values are net CH4 consumption. Separate plots for each
region (FNV and Santarem). Land-use is indicated by color (forest, pasture, or
secondary forest). Recreated from Meyer, Morris, et al. (2020).

Table 5. PERMANOVA on Euclidean distance of soil characteristics.

Term df SS R2 F p

Region 1 336.88 0.28 29.16 0.001
Land type 2 116.36 0.10 5.04 0.001
Region:Land type 2 81.10 0.07 3.51 0.002
Residual 59 681.66 0.56 NA NA
Total 64 1216.00 1.00 NA NA

Next, I tested the relationship between microbial functional pathway

coverage and CH4 flux. This analysis had the goal of identifying microbiome

markers for CH4 flux in ecosystems and to generate hypotheses about what might

be limiting CH4 flux in these regions. Since the response of CH4 to land-use change

varied by region with increased CH4 in FNV Pastures, but no increase in Santarem

Pastures, I decided to test the relationship between microbial functional pathways

and CH4 flux separately for each region.
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Table 6. PERMANOVA on Aitchison dissimilarity of microbiome functional
composition.

Term df SS R2 F p

Region 1 10408.15 0.24 59.20 0.001
Land type 2 13193.21 0.31 37.52 0.001
Region:Land type 2 8651.78 0.20 24.60 0.001
Residual 59 10373.69 0.24 NA NA
Total 64 42626.84 1.00 NA NA

Figure 9. Principal component analysis (PCA) plot of environmental dissimilarity
and microbiome function dissimilarity. A, PCA plot of environmental dissimilarity
using euclidean distance with all soil metadata. B, PCA plot of microbiome
functional dissimilarity using Aitchison dissimilarity of all KEGG pathways.
Aitchison is euclidean distance after center-log ratio transformation. A, B, Land-
use (forest, pasture, or secondary forest) is indicated by the color of the points and
Region (FNV or Santarem) by shape. The ratio of the axes is proportional to the
variance explained by each principal component in order to accurately represent the
distance between the points.

For the FNV region, the full abiotic model of CH4 included the predictors

geographic distance, organic matter, nitrogen, phosphorus, potassium, iron, and

sulfur after removing multicollinear variables based on variance-inflation factors.

This model explained 22.5% of the variation in CH4 flux (adj. R2 = 0.225, F =

2.58, df = 7, p = 0.03). After adding KEGG pathway coverage to the model,

two KEGG pathways were identified by this analysis. The first was the abscisic
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acid biosynthesis pathway, which is a plant metabolic pathway (adj. R2 = 0.53,

estimate = 0.08, se = 0.017, t = 4.6, adj. p = 0.019). The second was the nitrogen

fixation pathway (adj. R2 = 0.527, estimate = 0.018, se = 0.004, t = 4.6, adj. p =

0.022). When each KEGG pathway model was fit without abiotic covariates and

with KEGG pathway coverage as the only predictor, 21 pathways were significantly

correlated with CH4 flux. All but 1 were positively correlated with CH4. Of these

21 pathways, none were directly related to CH4 cycling. They included nitrogen

fixation, sulfate-sulfur assimilation, two antimicrobial resistance genes, and a

variety of metabolic genes related to carbohydrate biosynthesis and degradation.

For the Santarem region, the full abiotic model of CH4 included the

predictors geographic distance, organic matter, nitrogen, potassium, iron, and

micronutrients (copper, manganese, and zinc) after removing multicollinear

variables based on variance-inflation factors. This model was not significant (adj.

R2 = 0.126, F = 1.60, df = 6, p = 0.20). This model was then refit with coverage

for each KEGG pathway as the ultimate parameter in the model. These models

exhibited a uniform p-value distribution and no significant pathways were returned

after Bonferroni correction. The same result was observed for models fit with

only individual KEGG pathways - uniform p-value distribution and no significant

pathways after Bonferroni correction.

4.4 Discussion

In this study, I wanted to understand whether it is important to measure

variation in the microbiome to predict changes in ecosystem function. In addition,

I wanted to identify which aspects of the microbiome drive variation in CH4 flux

independent of geographic and environmental factors. To address these questions,

I analyzed CH4 fluxes across a land-use change gradient in the Brazilian Amazon.
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Forest-to-pasture conversion increased CH4 flux in these ecosystems, as has been

demonstrated before (Meyer, Morris, et al., 2020; Steudler et al., 1996; Verchot et

al., 2000). The response of CH4 to deforestation varied by region with increased

CH4 flux in FNV but not in Santarem. This suggests that the soil, climate, and/or

biota differ between these regions resulting in unique responses to land-use change.

Indeed, the overall soil characteristics separated much more strongly by region

than by land-use type. Therefore, I chose to test the relationship between CH4,

soil characteristics, and microbiome composition separately in these two regions.

The full abiotic model of CH4 in the Santarem region was not significant.

The pasture systems in Santarem and FNV are managed differently. Santarem

was converted relatively recently and is not intensively managed whereas FNV

was converted much longer ago and has a more intensive rotation system. The

lack of model fit may indicate that there was not enough variation in CH4 flux in

Santarem to model rates based on the variables measured. Sampling this region

more intensively might reveal a significant affect, but that cannot be determined

with these data.

Microbiome functional composition based on coverage of KEGG Pathways

separated strongly by region, land type, and their interaction. This indicates

that the regions have different microbiome compositions and displayed unique

microbiome trajectories as a response to land-use change. For Santarem, I did

not find any KEGG pathways that were associated with CH4 flux with or without

controlling for abiotic covariates. This may be due to relatively low variation

in CH4 at these sites. This does not necessarily mean that the microbiome is

unimportant to CH4 flux, but that in order to detect significant features at this

small effect size would require greater sampling replication. In FNV, 21 pathways
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were associated with CH4 before controlling for environmental covariates, though

none were related to CH4 cycling. After controlling for abiotic covariates, nitrogen

fixation was the only microbial pathway that was correlated with CH4 emissions.

Others have also identified nitrogen fixation as an important response to

land-use change. It has been reported that the number of gene copies of nifH,

the marker gene for the nitrogen fixation pathway, increased ten-fold in pastures

relative to forests and secondary forests at the FNV sites (Mirza, Potisap, Nüsslein,

Bohannan, & Rodrigues, 2014). In addition, the nifH -inferred nitrogen fixing

community composition was strongly correlated with soil nitrogen concentration

and the soil C:N ratio. In that study, pastures exhibited a decrease in soil nitrogen

concentration and an increase in the soil C:N ratio relative to forests, possibly

driven by increased N demand by pasture plants. These conditions would favor

nitrogen fixation and indicate a general state of nitrogen limitation in pastures

(Mirza et al., 2014).

There are several hypotheses regarding how nitrogen fixation might be

related to CH4 cycling. One possibility is that nitrogen-fixing methanogens are

increasing in relative abundance in high flux sites. Nitrogen fixation is one way

for methanogens to overcome N-limitation. However, methanogenic diazotrophs

are mostly prevalent in wetlands and aquatic ecosystems and so are unlikely

to be important in upland pastures (Bae, Morrison, Chanton, & Ogram, 2018;

Bodelier & Steenbergh, 2014). Another possibility is that nitrogen fixation provides

substrates for methanogenesis. One of the primary substrates for hydrogenotrophic

methanogenesis is H2 (CO2 + 4 H2 −−→ CH4 + 2 H2O), which is a byproduct of

nitrogen fixation (N2 + 8 H + −−→ 2 NH3 + H2) (Min & Sherman, 2010). A third

possibility is that nitrogen fixation could be a sign of decreased NO3 concentrations
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in pastures. Denitrification competes with methanogenesis for H2, but NO3 is more

thermodynamically favorable than substrates for methanogenesis, such as CO2 and

acetate. Therefore, in the presence of NO3, methanogenesis is inhibited (Klüber

& Conrad, 1998). Rather than being directly related to CH4 production through

substrate production, nitrogen fixation genes could simply be a sign of low NO3

sites where methanogenesis is more oxidatively favorable. This would not require

an increase in the relative abundance of methanogens, only an increase in the

thermodynamic favorability of methanogenesis.

To address these hypotheses, one could ask whether NO3 is more limiting or

nitrification is less favored in pastures. This seems to be the case in the western

Amazon where the FNV sites are located. Conversion from forest to pasture

decreases soil NO3 concentrations and net nitrification rates (Neill et al., 1997).

In addition, it has been reported that microbial genes involved in nitrification

are more strongly associated with primary and secondary forests than pastures

(Paula et al., 2014). These results would indicate that pastures are less favorable

for nitrifiers and/or that soil NO3 concentrations would be decreased in these

environments, which would promote nitrogen fixation and potentially make

methanogenesis more thermodynamically favorable and/or less substrate limited.

Why were there no CH4-cycling genes associated with CH4 flux rates when

past research has demonstrated shifts in the CH4 cycling community as a response

to forest-to-pasture conversion (Kroeger et al., 2018; Meyer et al., 2017; Meyer,

Morris, et al., 2020)? First, CH4 cycling taxa are not the only ones identified

by past studies; many nitrogen-cycling taxa were identified as associated with

CH4 flux in a previous 16S rRNA survey at these sites (Meyer, Morris, et al.,

2020). In addition, it is not mutually exclusive that the ratio of methanogens to
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methanotrophs could increase in pastures without a correlation with CH4 flux

rates. One possibility is that methanogens increase in abundance or methanotrophs

decrease in abundance in pastures due to more favorable conditions, but CH4 flux

is not limited by the abundance of these functional groups. Instead, it could be

limited by reactants, redox conditions, or other nutrients, which might be alleviated

by or indicated by other functional groups, such as nitrogen fixers. Another

possibility is that the relative abundance of CH4-cycling organisms is strongly

correlated with soil abiotic variables. Therefore, methanogens and methanotrophs

track the changing abiotic conditions, but these changes do not inform our

understanding of variation in CH4 beyond what we could glean from measuring

simple abiotic soil characteristics. However, the previous 16S study controlled for

environmental and geographic covariates before testing the association between

taxa and CH4 flux so this should have been accounted for (Meyer, Morris, et al.,

2020). In addition, I did not detect any significant CH4 cycling pathways with the

no-covariate model. It may be that since metagenomic sequencing samples the

microbiome at a relatively shallow level compared to 16S that this metagenomic

survey missed some relatively low abundance CH4-cycling taxa.

One limitation of this study design and any metagenomic or marker gene

survey is that sequencing data are fundamentally compositional (Calle, 2019).

Therefore, an increase in relative abundance of one feature does not guarantee

an increase in the absolute abundance of that feature. Future research could use

results from compositional studies such as this to guide measurements of the

absolute abundance of specific functional genes, such as with the nifH gene in

Mirza et al. (2014). Alternatively, future analyses could employ compositional

approaches to the analysis of metagenomic datasets to draw more robust
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conclusions from sequencing data (Calle, 2019; Fernandes et al., 2014). In addition,

while this study is useful for generating hypotheses about what might drive

variation in CH4 at the ecosystem-scale, evaluating those hypotheses requires

controlled studies. For example, future research could target the sequencing or

quantification of nitrogen fixing organisms in these field sites or perform laboratory

manipulations through the addition of pure cultures or the targeted removal of

nitrogen fixers with antibiotics. Alternatively, soil abiotic conditions, such as NO3

concentrations, could be experimentally manipulated to see what effect they have

on the CH4-cycling community independent of other factors in these soils.

4.5 Conclusion

Increased CH4 emissions from soils is a major consequence of land-

use change in tropical rainforests. Deforestation leads to a switch from CH4

consumption to CH4 production in certain soil ecosystems. Therefore, a major

research goal in the face of global change is to identify what attributes of these

ecosystems lead to this shift in ecosystem function. Past research has been

inconclusive, likely due to the use of phylogenetic marker genes with limited

functional inference, because metagenomic surveys were not co-located in time and

space with in situ CH4 flux measurements, and because abiotic covariates were not

consistently considered. In this study, I found that soil abiotic variables were not

strongly informative of CH4 flux rates. In addition, CH4-cycling organisms were

not correlated with CH4 flux, possibly due to collinearity with abiotic variables or

because CH4 fluxes are not limited by the abundance of these organisms. Nitrogen

fixation was the pathway most associated with CH4 flux. This could be because

nitrogen fixation directly provides substrates for methanogenesis or because it is

an indicator of environmental conditions favorable for methanogenesis, such as low
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NO3 concentrations. Microbiome biodiversity-ecosystem function studies typically

assume that the gene most limiting to the rate of an ecosystem function is the

gene coding for the final enzyme in a pathway, such as the enzyme encoded by

the mcrA gene in methanogenesis. This assumption may not be valid for natural

ecosystems in which a process may be limited by the products of other pathways

or by unfavorable redox conditions. Therefore, future studies should take a more

agnostic approach to testing genes associated with the rate of ecosystem function.
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CHAPTER V

CONCLUSION

Microbiomes mediate important ecosystem functions and yet it remains

unclear if understanding variation in the microbiome is important for predicting

the rate of ecosystem function. While it is generally true that the rate of some

ecosystem functions is correlated with microbiome composition, describing a more

detailed mapping between microbial biodiversity and ecosystem function remains

elusive. To address this challenge, I proposed a framework for understanding the

microbiome-ecosystem function mapping as analogous to the mapping between

genomic variation and phenotype in organisms. Drawing on this analogy, I designed

both an experimental approach and a comparative approach for evaluating the

relationship between the soil microbiome and the rate of CH4 emissions from soil.

In the experimental approach, I performed artificial ecosystem selection at

the whole-community level by selecting for microbiomes with high rates of CH4

oxidation. I found a strong response to selection on ecosystem-level microbiome

traits and strong heritability of CH4 oxidation by the soil microbiome. This

indicates that understanding variation in microbiome composition is potentially

important for predicting future variation in the rate of ecosystem CH4 flux. I also

identified many taxa that were enriched as a response to selection. To apply this to

a real-world example, I used a land-use change study in the Brazilian Amazon to

test which functional pathways were associated with elevated CH4 emissions after

forest-to-pasture conversion. The only microbial function associated with high CH4

flux sites was nitrogen fixation. In both of these studies, the strongest microbiome

predictors of CH4 flux were not directly related to CH4 cycling.
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The typical assumption for microbiome ecosystem function relationships

is that the abundance of a functional group is the primary limiting factor for the

function performed by that group. My results show that this is not necessarily the

case for CH4 cycling in soil. Instead, the rate of CH4 emissions could be limited

by other functional groups that are not directly related to CH4, such as nitrogen

fixers. Alternatively, CH4 fluxes could be regulated by multiple taxa, much like

quantitative traits in organisms that are controlled by many genetic loci. Using

this framework, mcirobial ecologists can begin to more precisely describe the

mechanisms behind variation in the rate of microbial ecosystem functions. By

better understanding what drives variation in ecosystem function, we will be better

equipped to predict future ecosystem functions under global change and to manage

ecosystems for particular outcomes.
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