WELCOME TO COMPUTER SCIENCE:
DESIGNING A COMIC TOUR OF COMPUTERS AND

COMPUTING

by

AUDRA MCNAMEE

A THESIS

Presented to the Department of Computer and Information Science
and the Robert D. Clark Honors College
in partial fulfillment of the requirements for the degree of
Bachelor of Science

June 2022

An Abstract of the Thesis of

Audra McNamee for the degree of Bachelor of Science
in the Department of Computer and Information Science to be taken June 2022

Title: Welcome to Computer Science: Designing a Comic Tour of Computers and
Computing

Approved: Kathleen Freeman, PhD
Primary Thesis Advisor

While the number of high-quality educational comics is growing, there are no
modern long-form comics discussing computer science at an undergraduate level. The
computer science comics that do exist, along with being for a younger audience, are
generally focused on teaching the reader programming concepts without exploring other
aspects of computer science. For this thesis I scripted and drew the 56-page comic
Welcome to Computer Science, which introduces the reader to computer science
concepts including computer architecture, programming languages, and the internet. As
a narrative comic written for an undergraduate audience, it can draw in readers who
otherwise might not choose to engage with the material. As a breadth-first introduction,
the comic provides the reader with a foundational understanding of computers and
computer science; this work may provide even more experienced students with a better

understanding of how their computer science classes relate to the rest of the field.

i

Acknowledgements

Thank you to my thesis committee; I got to work on my absolute dream thesis
because of you. Specifically, thank you Dr. Kathleen Freeman for being excited about
the strange kind of computer science education I’'m interested in, and all the time
you’ve spent with me figuring out what words are working, and what words need to go.
Thank you, Dr. Katherine Kelp-Stebbins, for all your advice on comics and the support
you’ve given me. I never would have taken the leap of committing so much time to this
project, or to any comics project, without you. Thank you, Dr. Carol Paty, for the
excellent conversations we’ve had about this project and plenty of other things (and I'm
sorry I didn’t give FORTRAN its due). Thank you to the Clark Honors College for
making such an idiosyncratic project possible, and to the professors I’ve had in the
Computer Science and other departments who have encouraged me during my time at
UO. Thank you to my family for answering my calls and always being willing to talk
through ideas with me. Finally, to my roommates through these strange pandemic years:

I’'m so grateful for the time we’ve had together.

il

Table of Contents

Literature Review
Discussion
Topic Selection
Scripting
Choosing the “narrative frame”
Design
Narrator
Environment
Visual Style of the Comic
Methods
Thumbnailing
Penciling
Inking
Results
Future work
Contributions
Appendix
Bibliography

v

10
10
11
13
20
20
22
22
24
25
26
27
28
30
32
33
87

List of Figures

Figure 1: Drawing of the audience surrogate and computer
Figure 2: Sketching the Narrator

Figure 3: Part One thumbnails

Figure 4: Part One, page one during the sketch and inking stage

17
21
25
26

Literature Review

Computer scientist, teacher, and comics creator Gene Luen Yang (2018)
proposes that comics are not merely an effective teaching tool, but the most natural
format for communicating complicated concepts. He argues this is because students
have grown up in a visual world, and so comics are a way to present material which
more completely taps into the way students tend to process information. Other comics
creators have their own theories as to why comics are an effective method for scientific
education. Nuclear engineer and comics writer Jim Ottaviani (2011b) points out that
science has always used diagrams and visualizations to convey meaning and claims
comics as a natural extension of this tradition. Ottaviani also says the fact that comics
typically have narrative structure is key, because “stories are what make learning
worthwhile”. These are common explanations for why comics are an excellent format to
use for science communication. Collver & Weitkamp (2018) interviewed science comic
creators and grouped the major strengths the creators saw in their form into four
categories: First, the visual aspect of comics grabbed attention, and was beneficial in
illustrating complicated scientific concepts. Second, the narrative of comics attracted
readers who like stories, making the science relatable and memorable to the reader.
Third, the reader has control over the speed at which information is presented when
learning from a comic. In video, the other major visual form, the speed of information
presented is determined by the video’s creator. When watching a video, to spend more
time on an explanation or to move on from information already known a student must

skip through the video. When learning from a comic, readers can spend longer on

complex sections, skim information they already understand, and return to earlier
sections without breaking the flow of information presentation. Fourth, the still existent
perception of comics as “not difficult,” based on stereotypes of comics as unsubstantial
material for kids, has the advantage of ensuring that science comics are not
intimidating. Ideally, this means people hesitant to pick up scientific articles or
textbooks, perceiving them to be uninteresting or an imposing commitment, would
remain willing to read science comics.

Another form of educational comics is the emerging field of “data comics,” or
the use of comics to present scientific data. Bach et al. (2017) define a data comic as a
comic where the narrative is formed from data and aims to explain this data in an
accessible manner. Data comics have four beneficial components: Comic drawings turn
abstract data into concrete images, ideally visualizations that readers without prior
knowledge on the subject can understand. Comic pages break complicated information
into smaller chunks (panels), creatively guiding the reader through a topic. Comics can
present data within a narrative, including a fictional narrative, to tell a story. Finally,
data comics integrate words and images, which is important because both mediums
have strengths and weaknesses. Each of these four components must be carefully
balanced to convey information clearly. Leaning too heavily into the technical “data” or
the nonfactual “art” muddies the message the data comic is attempting to clarify. Data
comics are a powerful tool for outreach, though Bach et al. mention that there are a
huge number of questions still to explore, including what makes an effective data comic

and how the form can be varied.

Clearly, educational comics about scientific topics is an expanding and
promising field. Coming with that promise, though, are tensions and areas of ill-
definition. Though comics have the potential to draw in readers who may not otherwise
engage with science, and to give readers a different experience with scientific
information, it can be difficult for science comics to reach readers. Many comics
readers do not expect science comics, and many scientifically minded people do not see
comics as scientific enough. Neuroscientist and comics creator Matteo Farinella (2018)
believes this perception of comics is what has led to the relative dearth of studies
researching the way that science comics are read and understood. When studies about
learning do include comics, the comics are usually included as a supplemental reading
tool rather than the focus of the study. While this research is important, the way that
readers process scientific information through comics remains largely unknown. The
small scale of existing research cannot clarify whether the learning benefits from
comics are a result of their novelty, their visualizations, from the fact that they often
have a narrative structure, some combination of the above, or other aspects entirely.
Also, current research does not have the capacity to consider the great variability within
comics: differences of artistic style, narrative structure, and information presentation.

Despite this uncertainty, Farinella identifies several aspects of comics that may
be particularly beneficial in science communication: first, they appear to be most useful
for students without prior information, so it is possible they could be a good way to give
the reader a background in a topic before moving on to information formatted into other
ways. Visualizations broken into panels, as Bach et al. (2017) argue, could be especially

good at explaining complex information in an unintimidating way. Narratives have been
3

found to be easier to remember, and while not all science comics use fictional narratives
to structure their story, they use narrative at a higher rate than other modes of scientific
communication. Finally, science communication often relies on metaphor, something
that comics are particularly adept at illustrating (Farinella, 2018). Science comics are a
subject with few rules and fewer guidelines, but a huge amount of creative space and
potential.

Turning for guidance to the comics and graphic novels themselves, it is evident
that there are many effective science comics. Notable long-form examples include: The
graphic novel Logicomix: An Epic Search for Truth (Doxiadgs et al., 2009), which uses
the narrative of logician Bertrand Russell’s life to teach the reader about set theory.
Neurocomic (Farinella & Ros, 2014) uses the narrative of a man falling into his crush’s
brain to teach the reader how the brain works. BrainComix (Marmion & Monsieur B.,
2021) is a fictional interview with the brain, and The Body Factory (Chochois, 2021) is
about prosthetics and human augmentation. Howtoons: Tools of Mass Construction
(Griffith et al., 2014), a science fiction story about two siblings in the future who go on
adventures and solving problems by creating gadgets. The book teaches the reader how
to make these gadgets, everything from useful knots to marshmallow shooters, and uses
physics and chemistry to explain how the gadgets function. Clan Apis (Hosler, 2013)
and Last of the Sandwalkers (Hosler, 2015) are narrative stories whose main characters
are insects. These books contain accurate information about the habits of these insects,
and emotional narratives about their lives. Feynman (Ottaviani & Myrick, 2011a) tells
the life story of physicist Richard Feynman, including information about his

breakthroughs in physics, and his approach to solving hard problems; other books
4

Ottaviani has written about scientists include Hawking (2019), Primates: The Fearless
Science of Jane Goodall, Dian Fossey, and Biruté Galdikas (Ottaviani & Wicks, 2013),
and The Imitation Game: Alan Turing Decoded (Ottaviani & Purvis, 2016). Three
books focused on computer science are The Thrilling Adventures of Lovelace and
Babbage: The (Mostly) True Story of the First Computer (Padua, 2015), Secret Coders
(Yang & Holmes, 2015), and The Cartoon Guide to Computer Science (Gonick, 1983).
The Thrilling Adventures of Lovelace and Babbage chronicles the fictional adventures
of real-life computer pioneers Ada Lovelace and Charles Babbage and is more focused
on humor than on education. Secret Coders, written for a middle-grade audience, is
about a group of friends going on adventures and solving puzzles by applying computer
science principles. The Cartoon Guide to Computer Science is an introduction to
computer science from 1983. It is not focused on a consistent cast of characters, one
element that is helpful for building narrative and reader attention, and it is currently out
of print. Works written for adults about computer science with an illustration
component include the works of Amy Wibowo, with her BubbleSort Zines project and
Julia Evans, with her Wizard Zines project. Both these collections of zines introduce
readers to topics like how to build your own calculator, or how to use Linux debugging
tools. These zines are prose with some illustrations, rather than comics. Taken together,
these books are aimed at a diverse set of readers, and differ in how directly they explain
scientific concepts, as well as in how much science they are trying to teach the reader.
What they have in common is a goal of encouraging curiosity and wonder about the

science on which they are focused.

The fact that visual metaphors are so effective in comics, and the way the reader
can pause and examine complex pages for as long as they would like, makes comics a
natural fit for computer science education. Indeed, there are many examples of using
comics and comic-like objects for this purpose. Many of them, like The Magic School
Bus Gets Programmed (Cole & Sykora, 1999), Hello Ruby: Adventures in coding
(Liukas, 2015), and Ara the Star Engineer (Singh & Konak, 2018), are not comics, but
rather illustrated picture and chapter-books. Secret Coders (Yang & Holmes, 2015) is a
narrative comic. What these all have in common is they are aimed at a younger,
elementary or middle school, audience.

For a specifically undergraduate audience, Suh et al. (2020) have incorporated
comic strips (“coding strips”) into introductory CS lectures and examined their impact
on computer science learning. This work is based in the educational theories of
concreteness fading and dual coding. Concreteness fading is a teaching technique where
an idea is illustrated at various levels of abstraction in order to show the relationship
between those levels of abstraction. In this case, code is the abstract idea, and the
comics are the concrete illustration of a computer science concept (Suh et al., 2020).
Dual coding refers to the fact that people take in information verbally and visually and
so comics, which have both text and images, may activate both channels leading to
better retention of the information (Suh et al., 2021). Suh et al. report that in practice
students find “coding strips” to be effective and enjoyable additions to lecture, except
when asked to interpret them specifically as code. This work is the most prominent
current incorporation of comics and undergraduate-level computer science education.

However, the coding strips are supplemental material and short; many of them are
6

single-panel images. While the researchers ensure they have a narrative within the
coding strips, due to the nature of the one-off strips characters are created and vanish
quickly. This does not provide space to create complex stories, eliminating one of the
possible beneficial dimensions of comics. These strips are a novel method of
undergraduate computer science education, but they are not taking advantage of all the
possibilities comics can offer.

Looking at computer science education best practices, Pears et al. (2007) put
forward four major areas to consider when teaching an introductory computer science
course. The first is the curricula, which should be based on commonly accepted
standards and fit with the courses that will follow in the sequence. The second is
pedagogy—the metaphors used to describe what a computer is and how it works should
be considered thoughtfully, and the aspect of computer science that the course is
focused on should be clear to the instructor. Thirdly, the programming language or
languages chosen for the course must strike a balance between the often-unwieldy
languages used in industry, and the languages made for teaching which will not be
useful to students going forwards. Lastly, the tools (integrated development
environments, visualization software, and other ways of interacting with the computer
and seeing what it is doing) should be selected with care. Vakil (2018) argues that
another important component of this education, especially as computer science becomes
a subject that is offered or even required of every student, is a robust discussion on
ethics and the way that computer systems impact the world. Her first critique of
computer science education is that “linking the need for CS in schools to the interests of

multinational corporations obscures the sociopolitical implications, relevance, and,
7

ultimately, liberatory possibilities of teaching and learning CS” (Vakil, 2018). She says
that increasing equity in computer science education should not be solely focused on
preparing students traditionally underrepresented in the field for jobs at large tech
companies. Instead focus should be on designing curricula that “engag[es]...ethical and
political implications as well as unrealized possibilities for technology to transform and
empower communities” (Vakil, 2018).

The computer science comics identified previously are focused on teaching
“computational thinking” and, to a lesser extent, teaching programming syntax. While
this is valuable and important information, it is only one part of computer science, and
possibly the part of computer science that is best understood by non-computer
scientists. There are other philosophies of teaching computer science, one of which is

the focus of Invitation to Computer Science (8th edition):

[A] breadth-first computer science service course would ... cover
foundational issues such as algorithms, abstraction, hardware, computer
organization, system software, language models, and the social and
ethical issues of computing. An introduction to these core ideas exposes
students to the overall richness and beauty of the field and allows them
not only to use computers and software effectively, but also to
understand and appreciate the basic ideas underlying the discipline of
computer science and the creation of computational artifacts ...
[S]tudents who complete such a course will have a much better idea of
what a major or a minor in computer science will entail (Schneider &
Gersting, 2019).

This breadth-first approach has the strength of going from concrete, real machinery to
more complex and abstracted higher-level code. The concrete nature of this method of
explaining computers makes it particularly adaptable to the comic page. It is also
particularly suited to the kind of comic reader that science comics tend to satisfy the

most—beginners in computer science who may not feel willing to commit to reading a
8

textbook or other intimidating book about computer science. Ideally, a science comic
which focuses on the breadth of computer science would provide a framework with
which to process computer science information, making the process of learning more
computer science down the line less confusing.

For this thesis I scripted and drew the 56-page comic Welcome to Computer
Science, represented in full in the Appendix, which introduces the reader to computer
science concepts including computer architecture, programming languages, and the
internet. Welcome to Computer Science is, to my knowledge, unique as an

undergraduate-level comic which introduces the breadth of computer science.

Discussion

Topic Selection

The “breadth” of computer science is an open-ended guiding principle. The first
stage of the writing process required I select specific topics. Several informal criteria
guided my topic selection: how fundamental the topic was to understanding computers,
how capable I felt in explaining it, and whether it could fit in some useful form in eight
drawn pages. This last criterion was the most constraining.

I chose to cover computer architecture, programming languages, and the
internet. These topics offer a natural progression from the nuts and bolts of the
computer, through low-level encoding of information, to the higher-level ways that
people code on computers and use computers to interact with each other. Each of these
topics are pertinent to a person who wants to learn computer science, and, I would
argue, anyone who uses computers. These topics also build naturally in complexity.

I chose computer architecture for the first section because, as I say in the comic,
computer science is not solely about computers, and yet, it is difficult to do computer
science without them. I chose programming languages for the second section because
often a person’s first interaction with computer science is through learning a
programming language. Though that is not what this comic is focused on, the comic
does define what a programming language is and explains generally how programming
languages work. I chose the internet for the third section because the internet is almost
certainly the primary use of the reader’s computer, so it makes sense for them to learn

how it works both on an algorithmic and an infrastructural level.

10

I initially planned for a fourth section about artificial intelligence and computer
ethics, presenting several of the prominent computer-related issues of the moment, but
this section remained ill-defined and too conceptually large to fit within eight concise
pages.

I used reference books to clarify my knowledge of the topics I was writing
about, and to make sure that the metaphors I was using were relatively standard. I
considered trying to create novel metaphors, but many computer science education
cliches (like the internet being akin to the postal system) are widely used because they
are apt. I also liked the ability to fully illustrate metaphors that usually are described
with words—drawing out an IP packet as an actual postcard, visualizing the travel of
information across the world, and so on. I feel the comics format made me able to add

more life to the standard computer metaphors.

Scripting

After deciding the topics on which I would be focusing, I consulted reference
books, as well as my own knowledge of the topics, to decide the key points that I
wanted to emphasize for the reader in each section.

Things I kept in mind as I was creating this project included:

1) Was I using comics to deliver computer science information, or were the

images incidental to the text?
2) What assumptions was I making about the knowledge of my audience?

3) How well did the sections flow together?

11

Figuring out what information was inessential to the project and could be
removed was, as always, the most important step.

Computer science is replete with jargon, and I was careful to minimize its use in
any case where it came up. While it is useful to know technical language when working
in the field, teaching this language was not one of the goals of my work. To keep
Welcome to Computer Science accessible to readers who didn’t know these technical
terms, I avoided using jargon when possible and used alternate phrasing alongside
jargon everywhere else. The subjects of each of the comic’s sections, “computer

2 ¢

architecture,” “programming languages,” and “the internet” do not inherently inspire
interest. To address this, I wrote the title of each section in two ways—on the title page
of the section, I rephrased the content of the section alternately with less-jargony
synonyms, a question, or an observation. On the following page which faced the first
page of the section and otherwise would have been blank I wrote the technical term for
the topic at hand.

The thesis title was another struggle. “Computer science” itself is a term that
does not necessarily have an intuitive meaning to someone outside of the field, nor does
it have comprehensible synonyms. Additionally, the closest inspirations for my work
have names like Logicomix, Neurocomic, BrainComix, or The Cartoon Guide to
Computer Science, none of which were inspiring to me. I wanted the title to convey that
the comic would be about computer science, would be accessible to complete beginners,
was for a high school/undergraduate/adult audience, and that it took a breadth-first

approach rather than being focused on programming. I also potentially wanted to

indicate that it was a comic. I settled on Welcome to Computer Science, uncomfortably
12

close to Invitation to Computer Science, but I appreciated how it worked on the cover,
juxtaposed with an image of the Narrator opening the door to the space where the reader
would be spending the bulk of the comic.

The last part of writing this Welcome to Computer Science was creating the
Further Reading pages for each section. Because my goal with the comic was to cover a
lot of material in an accessible way, I prioritized ease of understanding over going deep
into a topic. This made the Further Reading section essential—because it was here that |
could provide a way to go deeper into the topics [mentioned, in the (ideal) situation that
a reader would be so interested in a topic I had described that they would want to learn
more. [decided to format the Further Reading by page number, essentially providing
endnotes on each page. The essential aspects of the Further Reading page included:

1) The formal names for every topic introduced in the comic.

2) Any kind of off-beat resource (comics, videogames, interactive websites,

and short videos) I personally enjoy for learning more about a topic.

The final Further Reading section (after the Conclusion) also references the
three major books that I referenced when writing the comic, in case readers are
interested in learning from traditional textbooks. Internet searches can also bring up

useful information on each topic within the comic, if that is the route a reader chooses.

Choosing the “narrative frame”
Most educational comics are not a straightforward collection of illustrated facts.
Instead, they use a (fiction or nonfiction) narrative frame in conjunction with

educational material to create a richer reading experience.

13

There are several narrative framing methods that educational comics use. The
first one is to focus on an audience surrogate character who, like the audience, doesn’t
know anything about the topic at hand and, for fictional reasons, must learn about it.
Oftentimes this is accomplished by interacting with one or more other fictional
characters who do have expertise and who teach them; the key aspect of this framing
device is that the audience surrogate is learning with the audience. This framing device
is used in Neurocomic (Farinella & Ros, 2014), BrainComix (Marmion & Monsieur B.,
2021), Secret Coders (Yang & Holmes, 2015), and The Body Factory (Chochois, 2021).

The audience surrogate method naturally heightens the emotions of the piece.
The character the audience is meant to relate to is put through fictional narrative, adding
drama to the piece. They’re also engaging with the material and expressing emotions
the audience might also be feeling, alternately perplexed, bored, and intrigued. This
method tends to work well with a more fantastic method of teaching about the subject,
by: taking the audience surrogate literally into the subject at hand (for example,
traveling into the brain in Neurocomic); by creating a narrative where the subject matter
is personally relevant to the audience surrogate, and pulls them through a story (the
main character undergoing a traumatic injury and learning about prosthesis in 7he Body
Factory, or the school-age kids puzzling out mysteries with code in Secret Coders); or
having an absurdly fantastic setup (like interviewing the brain and other organs in a
talk-show situation in BrainComix). This framing device lends itself to creating a
narrative out of the teaching experience, useful because people are narrative creatures.
Recall that narratives are one of the elements comics creators identified as being

particularly beneficial about educational comics (Bach et al., 2017).
14

However, this narrative frame is not universally applicable. It works better when
the topic would naturally draw a character into it in a compelling way. In The Body
Factory, the educational narrative covers “the first prosthetics to the augmented
human.” Likewise, the emotional narrative follows the audience stand-in getting into a
motorcycle crash and losing one of his legs, and his coming to terms with the loss, and
becoming comfortable with his prosthesis. In Secret Coders, the main characters are
directly solving suspenseful puzzles with programming principles, so the framing
device adds energy and excitement the comic would not otherwise have. Other comics
that use this method can feel more artificial, and instead of bringing the reader closer to
the narrative can drive them away. Neurocomic is a story in which the audience
surrogate sees a beautiful woman from afar, is attracted to her, and then is sucked into
the reader’s brain and must work his way through the reader’s various brain structures
to find her again. I like the whimsy of the way the brain is drawn, but fundamentally the
main character’s plight is more alienating than relatable. Partially this is because the
only woman with a speaking role in the comic is relegated to object of attraction for the
audience surrogate to chase with the help of several neuroscientists, but also this is
because the audience surrogate is an unwilling student; he has been forced into a
situation against his will, and while he begins feeling wonder at the brain’s structures,
the knowledge he has to learn to escape and move on to his happy ending is entirely
separate from his personal motivation to talk to the woman. Likewise, the talk-show
frame of BrainComix falls flat in practice. While the question-response structure of the
interview between the talk-show host and the brain makes sense, the format of a talk

show does not lend itself naturally to comics (without increasingly whimsical situations
15

it would devolve into talking heads) and the talk show itself does not have any thematic
meaning in the comic, instead simply adding noise into the comic. If the audience
surrogate’s journey and the educational narrative do not smoothly parallel, they can feel
like the bumpy product of a lack of trust in the reader’s capacity to pay attention
without a requisite number of one-liners and crude but irrelevant jokes. Or the two
narratives can directly clash, resulting in the fictional component distracting the reader
from the educational component, and/or the educational component causing the
fictional component to ring false.

The audience surrogate technique was the framing device that I initially
considered, planning on centering the comic around a student perplexed in a computer
lab, and a sentient computer who answers their questions. I like the fact that this would
make the comic into a conversation between two characters. However, as I began
scripting this comic, the idea started feeling like it would be unwieldy and distracting
from the educational points I was trying to make. While I believe that this type of
educational story is powerful, without a standout idea for an audience surrogate
narrative, I chose to not use this framing technique. The risks outweighed the potential

benefits for this project.

16

Figure 1: Drawing of the audience surrogate and computer

Preliminary sketches made when I was planning on having the comic be a conversation
between an audience surrogate character—a confused student in a computer lab—and a

sentient computer who answers her questions.

17

Another common framing device is to focus the comic on the life of someone
relevant to a field of study. Through telling this person’s story, the comic discusses their
work and broader field. Generally, this figure (either historical or modern) is the
narrator, and they explain their work to a fictional audience or directly to the reader.
While there may be some kind of audience surrogate present, the notable figure(s) are
the focus in this device, rather than the surrogate. Educational comics which employ
this technique include Logicomix (Doxiadgs et al., 2009) and most of Jim Ottaviani’s
projects including Feynman, Hawking, The Imitation Game: Alan Turing Decoded, and
Primates: The Fearless Science of Jane Goodall, Dian Fossey, and Biruté Galdikas
each of which are focused on the eponymous scientist. This framing makes it possible
for the author to provide history and broad context on the field. In Welcome to
Computer Science, my focus was too broad to be able to select a single or a small
number of historical figures to focus my comic on.

A third device which draws on aspects of the first two is to, rather than write
about figures whose lives are inexorably tied to their scientific fields, write about
fictional creatures who themselves are living examples of the topic. Through unfolding
narratives about these fictional characters’ lives, an author can fit in details about the
scientific subject at hand. Examples of this technique are Clan Apis (2013), about the
lives of a hive of bees, and The Last of the Sandwalkers (2015), about a beetle named
Lucy going on an adventure, both by biologist and cartoonist Jay Hosler. Hosler uses
his insect characters to tell emotionally rich stories about family, life, and exploration.
They are worth reading as thoughtful fiction. Within these compelling narratives Hosler

includes scientific facts about the insects’ life cycles, patterns of behavior, and physical
18

form and a reader, regardless of their interest in the story’s scientific content, comes
away knowing more about insects. I didn’t select this narrative frame for similar reasons
to why I abandoned the audience surrogate frame; I didn’t have a story I found
compelling enough to commit to. This framing device also tends to deprioritize the
science for the sake of a more compelling story, which didn’t align with my goals for
Welcome to Computer Science.

The last framing device I considered is to have a narrator directly explaining a
topic to the reader. This narrator can either be a fictional character of some sort, the
author themself, or a professional in the field that the author interviewed or worked with
on the topic. Many comics use this method; notably, this is the preferred framing device
of Larry Gonick, author of The Cartoon History of the Universe (1990) and nearly 20
other Cartoon Guides and Histories. Often Gonick’s narrator is a wild-haired professor,
though in some of his works the narrator represents his co-author, as in
Hypercapitalism: A Cartoon Critique of the Modern Economy and Its Values (Gonick
& Kasser, 2018). Scott McCloud’s comic Google Chrome (2008) introducing Chrome
and explaining how it differed from previous browsers, directly excerpts narration from
interviews McCloud conducted with involved programmers and designers, producing a
comic with many narrators.

Of course, many educational comics’ framing devices fall into multiple of these
categories—while Logicomix is centered on 20th century logician and philosopher
Bertrand Russell narrating his life and work, there are segments where Logicomix’s
authors appear in the narrative and talk among themselves. Some comics do not use any

of these techniques: Gonick’s The Cartoon Guide to Computer Science (1983) does not
19

have a narrator at all, and instead is written in a style closer to an illustrated textbook.
Not having a narrator at all would have made it difficult to create a comic that I was
satisfied with. While I could have drawn images to go with text, there would have been
few images that temporally connected to each other; it likely would have come out more
like an illustrated textbook. Additionally, I like the conversational nature of having a
narrator. I chose to go with what seemed to me the safest and most straightforward
method, using a narrator without any other major characters, who is grounded in an
identifiable physical space (a drawing of my own living room) but who also has the
flexibility to appear in metaphorical panels, like a drawing of a compiler as a conveyor-

belt machine.

Design

Narrator

Initially I thought the Narrator would be a computer monitor with little arms and
legs coming directly out of it. However, after sketching the Narrator several times, as |
figured out how to make them expressive, I drew a background and tried to put the
Narrator into it. I realized that without a full body, the Narrator did not take up very
much space. Giving the Narrator a humanoid body enabled me to use their body

language as a communication tool.

20

v

Figure 2: Sketching the Narrator

When drawing the Narrator in space, I realized their design would be more effective if
they had a full body. They would be able to take up space in varied ways, and I could

use their body language to convey emotion and information.

21

Environment

While working on the design of the computer, I was also developing the
physical location in which the comic would take place. I initially considered setting the
comic in a computer lab, because that seemed a natural location to learn about computer
science. However, a computer lab did not offer me many additional visual storytelling
opportunities. It was too on the nose. While sketching spaces I felt comfortable with, I
hit upon the living room environment. I like that the living room is comfortable and,
hopefully, inviting to the reader. I like the juxtaposition between the computer and the
homey environment. I based the living room off of the living room in my current home,

as a farewell to the space I have been inhabiting for so many pandemic months.

Visual Style of the Comic

I enjoy organic, imperfect lines. They make a comic look more tactile and
friendly. I also like the juxtaposition of the very concrete, artificial, exact nature of
computers and the very handmade look of imperfect drawings. Because of this, I knew I
wanted to draw the comic somewhat roughly, laying down the panel borders and word
balloons without straightedge tools. I was also invested in making the comic look hand
lettered. In the past I have gone through and lettered the whole comic myself, a time-
consuming process. Because Welcome to Computer Science is so long, I decided for
speed’s sake I would make a font out of my handwriting, to get something that looked
more natural and handmade, but which would be significantly faster than lettering the

entire comic manually.

22

I chose to draw the comic primarily in black and white with relatively simple
shading mostly for efficiency, but also because I feel a more subdued method of
presentation (not highly rendered, not particularly colorful) helps keep the balance
between words and images in a technical comic. It provides minimal distraction from

the pertinent information.

23

Methods

To draw Welcome to Computer Science 1 used a Wacom 13HD Creative Pen &
Touch Display (2015), with a large ergonomic grip on the tablet’s pen. I used the
software Clip Studio Paint EX because it supports multi-page documents and makes it
simple to input and manipulate long scripts. I used the website Calligraphr to turn my
handwriting into a font. Calligraphr supports having multiple alternate characters for
each letter in the font, which makes the font look more naturally handwritten by
ensuring that fewer of the letters are identical. However, Clip Studio Paint did not
support alternate characters (or ligatures) in fonts, so I was not able to use this
functionality, making the font I created less flexible than I hoped.

The comic is the industry standard graphic novel size at 6.625 inches by 10.25
inches, with a bleed width of 0.13 inches. The canvas has a DPI of 450. I inked the
comic using the G-pen, set to a brush size of 27. The comic is lettered with a 12pt font.

I drew the comic with the guidance of a rough script, which in form was
something between a paragraph description of each page and a film or theater script
with dialogue and blocking description. In contrast to prose writing, which has
approximately 250-350 words per page, a comic—even a very wordy one—has between

50 and 150 words per page.

24

e Gl
*;“‘",‘"c o 1) (_."lim'\s
) AR,
ged] 322 e — E _\'/ [0
F . e e 'j“q: !
| , S [wile At 1
== = 3 ‘ =
\‘é’;“ = | - . (‘-,J r_”.T_J iz _l
| & o ﬁ et '; \
Lot l T S e
‘ 1 (/730 W s _sRtin, 5 me
s = @ '\E:[Z) B E s

T —

1magl

!i”‘ 4‘1\4

l = _f‘_\\ | i e sl goulg SN L
" 20 | \t C_‘\," :
! \i.../' Al L‘.E':Y :CC.‘ e
| adder |~
5E B T | R T L) T inshuckens |
NG Lt ‘ Lo
® i - ... 0 .

o

f‘j?‘)\ lé .
“3\‘.® — - —

gnd sketch

Figure 3: Part One thumbnails

The thumbnail sketch of the first section of Welcome to Computer Science. In the

completed comic many of the page layouts are different, but the topics each page is

focused on in the final comic is the same as it is presented here.

Thumbnailing

The thumbnailing stage of a comic refers to creating very small, quick sketches
of pages to figure out their layout without wasting time on refining drawings that would
be eventually discarded. After having an approximate script, I created thumbnails in

order to decide which portion of the script would appear on which page, and what

aspects of the chapters I needed to cut.

25

Let's start at Anyways,
the bottom,
at the hard meta
and squishy silicon

Lets start at
the bottom,
ot the hord petal
and squishy silicon

“The modern physical
building block of fhe
computer is

the fransistor) +*

The madern-physical
building block.of
the computer.

Think of
it like the
computer's
aTem

I'm a talking compul
sometines 1 say thilg
for fun, not 'cause
they te-useful

Think of itlike an atom

This primary comparnt Tira primary conpanent
used 1o be vacuum fubes

the size of your haﬂd the size of your hand

Trur\ isTors come

-‘ ‘ in many sizes
w 10 bifion

th\s*crs can
fitina e
spoce (1),

These would:
heat up and
fail all the ime

1-2 billion transistors
can fitin a 1em**3 gpace
{Invitation, 179).

As of 2018, an estimatgd

13 sextillion rranst! have

e -- an order

sqmtade more than the

nur'\ber of stars in the milky way.

/" Transistors and pathuays

between them ore fobricafed on

slicon to create an infegrated
circuit. also called a chip.

As of 2078, an astimated

13 sexfiffion transistors
have been monufactured

Transistors and pathways between|

them are printed onto silicon to

create an integrated circutt, also

called a chip.

an order of magnitude
more than the number of
stars in the Milky Way (2)

Figure 4: Part One, page one during the sketch and inking stage

On the left is the preliminary rough pencil sketch. On the right is the version of the page
after inking and adding many finishing details.

Penciling

The penciling stage can be broken into two parts. The first is to make a loose
sketch based on the thumbnails, like the one seen above, on the left. This is when panel
borders are created and the text from the script is roughly put into place. Then, for more
complicated panels, I went back to the pencils and carefully sketched out the details of
the image. This was particularly important for objects that required visual accuracy, like

historical computers. Scenes that were mostly the Narrator in their apartment I tended to

leave at the level of sketch seen above.

26

Inking

The inking stage consists of putting down darker lines and details. First, I inked
the panel borders and word balloons so I could be certain of their placement. Then I
drew the figures and backgrounds inside the panels. After I finished marking down the
black lines of the comic, I went back through adding finishing details—mostly gray
tones and other small pieces of visual interest. During this process I also edited the text

to make it flow better.

27

Results

I created the 56-page comic Welcome to Computer Science, reproduced in full in
the Appendix. The comic’s cover shows a humanoid figure with a CRT monitor for a
head (henceforth referred to as “the Narrator”) holding open the door of a brick
apartment building, welcoming the reader inside. There is a cat at the Narrator’s feet.

After an introduction the body of the comic is broken into three parts, each part
focused on a different topic: computer architecture, programming languages, and the
internet. Each part has a title page, eight comic pages of material about the section, and
a further reading page linking to external educational materials. This is followed by a

conclusion.

Introduction

The introduction is three pages long, and introduces the Narrator, several
elements of the Narrator’s apartment which is the setting for most of the comic, and the
comic’s methodology: rather than introducing computers with “computational
thinking,” teaching the reader how to frame ideas and problems in terms of the logic
structures computers use, this comic introduces the reader to the “breadth of computer

science,” explaining the machine from hardware to software.

Part One: What is a computer? No, literally, what is it?
Part one is about computer architecture. It introduces computer science by
describing the computer itself, according to the “Von Neumann architecture,” which

defines the computer as being assembled from four essential parts. Then the comic

28

progresses to talking about how both logic and information (numbers, letters, images,
and sound) are encoded using a binary representation, and finally it mentions how

simple the commands that a computer “natively” understands are.

Part Two: There sure are a lot of programming languages, huh

Part two is about programming languages. Using illustrations of historical
computers from the 19th century to the near-present, the comic discusses how
programming languages and, more broadly, how interacting with computers through
devices like keyboards and computer mice, has changed over time. Then it defines what
machine code and assembly code are in relation to higher level programming languages
and explains how compilers take higher-level languages and translate the code into
something a particular computer can understand. The comic offers an explanation to
why there are so many different programming languages by illustrating them on a map
with a brief description of some of the benefits certain languages provide, and the
problems the languages are best at solving. Lastly, the comic finally defines what
programming language is in a roundabout manner, by sketching out a definition of
“Turing completeness” and noting that if a system is not Turing complete, it is not a

programming language.

Part Three: Everything is connected

Part three is about the internet. It covers the basic protocols underlying the
internet which make it possible to reliably transfer information between machines and
across long distances. Then it describes the infrastructure underlying the internet, that

most users do not think about: the physical cables that bring Wi-Fi to internet users, and
29

the very concrete datacenters that store information that is typically thought of as in “the
cloud.” Next, it describes how the internet is made up of smaller networks, and how
traffic is routed through this system. The section ends by differentiating the internet and

the World Wide Web—the latter is built on top of the former.

Conclusion: And that’s enough, for now

The conclusion to Welcome to Computer Science offers a look at the breadth of
computer science by illustrating an (incomplete) map of different computer science sub-
fields. Then, the comic ties together the sections by reiterating that the fundamental
information computers manipulate is ones and zeros, and everything a computer does is

built from these simple parts.

Future work

There is need for more studies focused on how comics can be best used in
educational settings, and what kinds of educational comics are most useful for students.
Particularly in computer science, studying what pedagogical tack is most useful for
students, and how best to incorporate comics in a computer science course, would be
useful in helping to design more effective and impactful educational comics.

I would like to expand Welcome to Computer Science to include more topics. I
would like to complete the section I had planned on Al and Society, probably into more
than eight pages and potentially breaking it into more manageable sub-topics. I would
also like to create sections on other computer science topics. I could list any number of
topics I would be interested in writing a section about, but foremost I am interested in

cryptography, and talking about number theory and the ways math and computer
30

science intersect in this area. Many of the topics that I mentioned briefly in this comic,
like compilers, could be expanded into sections of their own. I also want to make
sections about the intersection of computers and society, including Net Neutrality,
DRM, and the “hacker ethos,” defining its historical meaning and looking at how that
intersects with how it is understood in the broader culture. I could also focus in on much
smaller topics that are often initially unintuitive to students, like recursion, where I
could create a comic to help the reader visualize the process of recursion. With more
sections added I could potentially publish this piece as a complete book, or, because of

the work’s modular nature, I could publish specific sections.

31

Contributions

I created the comic Welcome to Computer Science, which uses the framing
device of a narrator talking to the reader to introduce computer science concepts chosen
from the breadth of the field. Unlike other comics focused on computer science
education, Welcome to Computer Science is a breadth-first introduction to computers
and computing written for an undergraduate audience.

The comic does not expect previous knowledge of computer science. The comic
introduces the reader to computer hardware, programming languages, and the internet,
explaining these topics and visualizing the common metaphors used to explain them.
This breadth-first approach provides the reader with a framework for understanding the
field of computer science, and as such would be good preparatory reading before or
concurrently with an introduction to programming class.

The comic strikes a balance between being accessible and communicating
complex information, prioritizing clear explanation over technical terminology.

The study of the use of comics for teaching computer science is in its early
stages. Welcome to Computer Science is a starting point for comic creators and
educators looking for a method of creating comics about computer science, as well as

researchers studying the impact of educational comics about computer science.

32

Appendix

o —
— j 3
-]— - J "
— a—
OMD C ¢ C
L} —]
(@ o
14
00000 000
00000060
0000 0 GO:

ST e

33

~

Welcome to
Computer Science

N

Computer and
Information Science
Clark Honors

| | - College
L | |

2022 Thesis
Audra McNamee

.

34

The elusive computer
in its natural habitat.

Gissecfion?

|

T

35

iSism

r’rmen{

W'\y do |

have a body?

To make gesturing
easier, of course,

my compu’rer 1
history poster B
collection, £

36

lm gonna teach you
some computer science.

Two key things:

You don't need to
know any compu‘rer

SCIQI’\CQ

m

|2

ond | w0n+ talk abou+
programmmg at all.

| ”
There are lots of ‘
excellent programming

j. Pesources (| refer +o

e\, some of them!)
E=——>" Lt while

pro rammmg is a good
roduchon to Cs,

q'

and you can+
get far in the
|€|d Wl‘H’\OM" |+

compuhr science
|sn+ Jjust programmmg

//A

I'll be using a
different method.

My goal is to help you
build a mental mode| of how
your computer works,

so yow'll find it

eosier to learn more

about computers
going forward.

w2

37

—

There's an old quip
’, x

“computer science is as much -
about computers as astronomy
is about felescopes.” y

™) —
But an astronomer who didn'+i———
know how their telescope worked e

would have a rough time.

38

—— PART ONE:
WHAT'S A COMPUTER?

L NO, UTERAWY,
I WHAT 1S T2 \)))\
— \ VA

I, V4 ZAXA
ALY
_ \ <
- * 7 i v vV

o v\x

L

«—

39

PART ONE:
coOMPUT ER ARCHITECTURE

40

Let's start ot The modern physical
the bottom, = building block of the
computer is
the transistor.

Think of

it like the

computer's
atom.

This primary component
used to be vacuum tubes
the size of your hand,

Transistors come
in many sizes,;

now 10 billion
transistors can
fit in a lcm?

space.

Tronsistors and pathways

between them are fabricated on .
silicon to create an infegrated
circuit, also called a chip. .
. . As of 2018, an estimated

13 sextillion transistors
have been manufactured

Z on order of magnitude
more than the number of

\ stars in the Milky Way.
_

41

-;_Ma of a COMPUTE!:\:’

A computer is built by
putting specialized chips
onto a circuit board.

The way computers are
currently loid out

--ond have been

for decades— IS colled the
Von Neumann

architecture.

MEMORY

.y

Where information is stored. This meoans

computers have four

it's organized into cells which ma jor components:

o)

ore accessed with addresses. 4
1 [

Referred to as Random Access

Memory (RAM) because it takes

the some amount of time to access
the information at any address.

More RAM allows your ")B“
computer to keep more (

processes open at the
(1) !

same time.
INPUT/OUTPUT C1/0) - ~7

-

-~
\ . -
Compared to the other \ =N
three components, 1/0 is) ‘ e
more ’rheore’ricalliy varied ~ ’ ’ —
<

and works more slowly.

Outputs include

Inputs include the
computer monitors

mouse and keyboard

Y
(5

42

And some things are
inputs and outputs,
like external stable

storage drives and ’-/
wifi/networking. (

@
e

3

<

CONTROL UNIT

Decodes and
executes instructions.

ARITHMETIC/LOGIC
UNIT (ALU)

Performs operations like
addition, subtraction, and
testing if values are equal.

These two components
are bundled together
ond typically called the:

.\ rf[/[[)\

CENTRAL PROCESSING
UNIT (CPW)

Modern CPUs have multiple cores, acting
like multiple CPUs operating together.

This physical architecture manifests
in every computer;

you can see it in your phone,
in ancient supercomputers,
ond in microwave ovens.

43

You might be
wondering--

where does
the computation
come in?

You have chips, built
from transistors,

but what is it about
tronsistors that make

a computer able to
execute instructions?

We equate the value
., false with being of f
(and the number 0)

=

Boolean Logic (or Boolean Algebra)
uses the values #rue and Falze to

build complex conditional statements.
The fundamental
O Boolean operations are:

AND OR
symbolized . 4 A ' ?D
b);f these AJ - yD; >
logic gates: 8= . .

O €each of these logic
gates can be bui?’f
with transistors,

--and the value
true with being on
(and the number 1)

troansistors can switch
between states in a
billionth of & second,

Going theoretical:

O

44

From these three operations
you con derive others, including:

NAND NOR
TP)

And more
complicated

circuits: ADDER

A
]

5 G

S

. Each of the chips we've
e ‘)___ ¢, discussed are built from
Ewall Sut these transistors, using

these principles.

oA

The final element
of the Von Neumann
architecture is

We can't describe
decoding til we know
how information
is encoded.

nit, - e
eCDd] ¢ ‘
c
but we've gotta
slow down.
-3

45

O

Information is encoded
in binary, or bose-Z,
the number @

two digits:

0O folge

system with 1 \
: OE: Onl Seein

9 an
patterns?

+rue

e

y)

As oan aside,

o single digit,
Tor O, is
colled a bit.

A collection of
bits is colled a byte

which has a
volue of up to

But computers
don't deal only
with numbers--

Dunno about you,
but there are an
awful lot of images,

| @

‘\

and plenty of text
.\ on my computer,

L
—

12

46

even the odd
sound or two.

The goal of (which computers
v encoding information represent in binary)
into numbers

is to take information
humans understand

ond translate it into a
form that computers can store,
transport, and replicate.
}

Text

Usua"y encoded
according to the

standard Unicode.

55 73 15 61 6c 6e
1920 65 6e 63 6f
646564206163

63 6% 72 64696e

Imoaqges
Broken‘into an
array of pixels.

it has standards As well as symbols
for encoding
characters from oQ 22\€
159+ scripts + 2260
& o3pa @ IFG43
A ooFl IF440
oe Q0€Eb OO
i 00fC Q 2764

Each pixel stores its
color, commonly with the
RGB encoding scheme.

255 (] vz
O.: @35 O

Red, green, and blue each have on
associated byte expressing how much

of that color is present in the pixel,

Sound

Encoded according to
the wave's amplitude.

A9

between O (none), and 255 (max).

Points along the
wave are sampled;
these points are
used to reconstruct
on approximation of
the wave.

13

47

A computer fetches
instructions from —_ I

memory, decodes them, cCPU [
and executes them.

The CPU has an element
| haven't mentioned yet--

Registers, which store values
so the CPU can access and
perform operations on them.

(Incidentally, a 64-bit computer
is one whicz has a CPU with
registers that store 64 bits)

adding, subtracting or
multiplying the values
of two registers,

=) o
4
\
}
“Tord comparing the values These instructions are simple,
of fwo regisfers. making programs the CPU can

understand.. wordy.

0wl g

.

These operations are declared
with opcodes, which are short

names for these commands.
Nothing more to it!

Every program is built from this

NEXT TIME:
kind of fundamental operation, how do we write
\ ™ complicated programs?

48

Further Reading

If you want to learn more about any topics mentioned, the computer
science books cited at the end of the end of the comic, or your search
engine of choice, can teach you a lot!

Page 7: Computer pictured is the ENIAC.

To?a| transistors estimation from "3 Sextillion & Counting: The Long &
Winding Road to the Most Frequently Manufactured Human Ar+ifac1? in
History" by David Laws on the Computer History Museum blog (2018).

Page 8-%: Reading more about the Von Newmann architecture will explain
in much more detail the working of each of the components mentioned.
Computer engineering courses are more focused on hardware than
computer science is. This Von Neumann architecture will remain the way
computers will be built, at least if/until quantum computing is realized.

Page 10-11: Boolean logic is often taught in logic philosophy classes as well
as computer science courses. Logic gates are related to circuit design
and hardware-- one way 1o learn more about them is playing the video
game SHENZHEN 1/0,

Page 12: Binary, or base-2, is how information is encoded in computers,
bu? information encoded in binary within the computer is often

written in hexadecimal, or base-16, when humans have to read it. This is
because information is more compressed in hexadecimal than it is in
binary, but unlike decimal, or base-10, the ‘normal’ number system,
hexadecimal and binary ‘translate’ directly between each other--
whereas a decimal digit can be between 1and 4 binary digits, a
hexadecimal digit is aﬁways exactly 4 binary digits.

Page 13: The Unicode Consortium controls the Unicode standard-- if you
want to look at all the scripts they represent, learn about their
decision-making process, or look at the way Unicode has developed over
time, their website is an interesting resource,

Page 14: This pa?e briefly mentions lower-level programming-- there will
be more on this topic in Jr{e next section.

15

49

50

—_—

PART
TWO:
“There sure are

a lot of programming
lanquages, huh,

3

0111100\
0110010\
o100
oontin o

00
000000 oo

¢

—

-
-

u
D

P @Q—ﬁ—\ - D2 A n% W

51

PART TWO:
PROGRAMMING LANGUAGES

52

Rython

def fib(n):
ifn<=1
return n
else:
return fib(n - 1)
+ fibln - 2)

n = intinput())
print(fib(n})

Q| {

The Fibonacci Numbers, created three ways

C

Hinclude <stdioh>
#Hinclude <stdlibh>

i{n+ fibGint n)

iflne=1)

return n;
return fib(n - O
+ £ib(n - 2);

int main(int arqc,
char *argvlD

char *¥a = arqvi1];
intn= a+oi(03;
printf("/.d", fib(n));
getchar();

return O;

Assemb\:j

s.globl_fib

pLalignZ

—fib:

cfi_startproc

; 7bb.0:

subsp, sp, #32
stpx29, x30, [sp, #16]
addx29, sp, #16
cfi_def_cfa w2, 16
cfi_offset w30, -8
cfi_offset w2, -16
strwO, [sp, #8]
ldrw8, (sp, #38]
subsw8, w8, #1
b.qtLBBO_2

; 7bb:

ldrw8, [sp, #81]
sturw8, [x29, #-4]
bLBBO_3

LBBO_2:

ldrw8, [sp, #8]
subswQ, w8, #1
bl_fib

strwO, (sp, #4]
\drw3, (sp, #8]
subswQ, w8, H#2
bl_fib

movx8, xO

53

’} Idpx29, %30, [sp, #16]

ldrwO, [sp, #4]
addw8, w0, w8
sturw8, [x29, #-4]
LBBO_3;

ldurwO, [x29, #-4]

WQOsy,

X

i)y
N
1S\ />
$T7¢

/
\

Computers have been
programmed in many
ways over the years:

1] ——— R | /"
1945 ENIAC] “ f_(.
—

Pro?‘rams 'mapped’ onto Sfe T §

e Iy

olc

TFE=E
elojcle

)
o
~Jo

It's believed ENIAC did more
calculations over the ten years
it was in operation than aﬁ of
humanity had done previously.

3 ——

| AT A |
1952 Harwell Computer

Z

1s are holes,
O's are paper.

1954 1BM 704

g poooy

Loueoopeoo?

o= Tpgqled in programs
& pooudt
one bit at a time.

cocCoc

LA/

54

WG g
00000

Typewriters could input
numbers and letters.

INSPECT FUN T
D1seLAY
{omPute

Computers with consoles
could display text.

COBOL was designed for
businesses; it had o little
over 100 commands.

[
'“Il ?K\I“

ohD
E N

‘Accessible’ to consumers
($595 in ‘82, the price of
.| o high-end laptop today).

The language BASIC was
designed for students,

Eventually, Graphic User
Interfaces (GUls), enabled - o
point and click interaction, -

RERRA

55

Machine code is written
in binary and is understood
by the computer's CPU

DO W
0000

Assembly code uses

human-readable names
for the machine code

Imagine trying

9 00100000
00000000
00000000
000000N

Vi

"~ Instead, with
assembly you have

registers mentioned at
the end of section ‘I)

However, assembly languages
are limited by the few commands
the CPU can execute
And the lanquage is
specific to the CPu,

--specific to the
CPU model--

if you want an assembly
program to work on
different devices, you have
to rewrite the whole Jrhing

56

Programming languages
that don't translate directly
into machine code are called
higher level languages.
They read more
like human lanquage
(to varying ex em?s)
Their selling point
is abstraction

Instead of manipulating bits,
they can understand the encoding
systems for text and images
we discussed in Section One,

Need a function?

It might already
be in a library!.

And finally, higher
level programming
languages are portable
to different computers.

This is possible with the
help of a compiler, a
program packaged with
higher level languages.

Compilers take
source code

and break it into units
of meaning-- like breaking)
a sentence down into words.

\ ol Y,
Then compilers check the \ ‘

‘grammar’ of the code <
If the ‘grammar’ is _f §.]
incorrect, the compiler

halts to prevent
undefined behavior,

machine code,
- NN ¢0Y 4
Then the compiler optimizes

the code, to make it run
faster and use less memory

SN~ by turning variables into
constants, eliminating operations,
and generally making the code
much harder to read.

Which doesn't matter,
because it outputs
machine code, ready
to run,

57

R

Used for
statistics.

LANGUAGE
Proprietary language
belonging to a single
application, blurring the
line between application
ond language.

| 1\[//0
Wl

databases

and webpages.
V=)

Enables automation on Unix
(aka, Apple & Linux computers)
which can manipulate and call
other programs, automating
the boring and repetitive,

python

General-purpose. Friendly, with
lots of libraries o moke complex
programs easy to write quickly.

$¢RATcH %

A visual coding language,
aimed at making learnin
code accessible and +oc,?i|€.

T
BASIC 2% é:l
l.ogommds rms ,\\'

SHORS S

58

(i, NN,

JavaScript
Not related to Java; the

other language was just
popular when it was released.

Used for coding (interactive)
(webpages, now some web Ja\’a & KOH“\

database interfacing. - K
or speaking

native Android.

For speaking
native Apple.

Rust

Uses its type system
to guarantee memory
safety—compiled, \

fast, multipurpose.

An older language; c =+
relatively low-level. An object-oriented
retooling of C, which is
used in PC software

and servers today.
C

Another, newer extension of
C with garbage collection, and
other c?\ecking capabilities.

/ .

\ “‘%ﬂa‘c“e Assembl
fast, small,
optimized
programs.

59

ﬂ How do we define
a programming language?

One thing that isn't:

We can ot least
indicate what's
not a language,

A system is
Turing complete Named o

" Turing
if (in theory)

it can describe
any algorithm,

Say, from calculating
a square root to
implementing Google's

search algorithm.
Whether something is
Turing complete is a
common criteria for a
programming language.

Surprising things are
Turing complete--
including Microsoft
Excel ?and many
spreadsheet programs) and Minecraft's
—n Redstone system

(it's easier to
implement Facebook in
PHP and Javascript than
Excel, though-- using the right tool for
the job is important))

&div id="ex">

<p> HTML is not Turing complete
so it’s not typically considered
a programming language. </p>

This doesn't mean HTML isn't
valuable-- just that it's a tool
<p> Instead, it’s a markup with a different purpose.

language— it formats text. </p>
</div>

26

60

Further Reading

Page 14: The Fibonacci numbers are the sequence 1,1, 2, 3,5, 8,13, 21,..
where each number in the sequence is formed by adding the two

previous numbers.

The formal study of "programming languages” is focused on topics like

how to prove the 'correm?ness' of a program, and the surprisingly tricky
question of whether the program will end, or loop forever. If you like proofs
and math, it's exciting stuff’

Page 20-21: The computers mentioned on these pages are only some of
the notable computers from history. A great resource for learning more
obout these computers is the Computer History Museum's website (the
source for the ENIAC computation fact). The ﬁis’rory of the ENIAC in
particular is partially recounted in Broad Band: The Untold Story of the
Women Who Made the Internet.

Page 22: Just because programming in assembly is hard, doesn't mean it's
no? useful--if you need o small optimized program for specific hardware,
there's no better tool to use than an assembly language. Also, just
because it's fiddly, doesn't mean it's not fun-- the videogames T15-100
and Exapunks are both focused on solving problems with assembly-like
languages.

Page 23: Compilers are a whole section of computer science unto
themselves-- there's an enormous amount of further information to learn
about them.

Page 24-25: Of course, not all programming languages are invented for a
purpose. There's a whole subcategory of esoteric programming lanquages,
or esolangs, whose wiki describes them as "computer programming
languagels] designed to experiment with weird ideas, to be hard to
program in, or as a joke, rather than for practical use.” They range from
baffling, with having deliberately hard-to-follow programming structure
and syntax, to silly, like having syntax designed to make the program

look. [ike a cooking recipe (Chef) or a power ballad (Rockstar).

Page 26: Turing completeness is insufficiently described here, becouse
describing what makes a language Turing-complete requires programming
constructs we haven't covered; to see more surprisingly Turing-complete
languages check out the video “On the Turing Complefeness of
PowerPoint”

Obligatory graphic novel mention: The Imitation Game: Alan Turing
Decoded by Jim Ottaviani and Leland Purvis is a biography of Alan Turing.

21

61

62

PART THREE:

EVERVTHING
1S CONNECTED

PART THREE:
THE INTERNET

64

While we may think
of computers as our

@ N ' '
- | L

g’ n 7 desktops, @'
2 O ‘ laptops, M: ol
E ‘ \ @ tablets,

smartphones, N

NS

they're also in modern
cars, gome consoles, smart
thermostats and cameras...
. .' -
> .
M These devices f
— don't stand alone.

* o\ The volue that we get out
ML —~n of them is by sending and
) receiving information.

The shift in our society isn't
that we’ve all got computers;
it’s that we're all networked.

65

So how does
this internet thing
work, anyway?

A common
m€+aph0r is

that it's like the
postal system.

TS

I+'s packet based. -
Internet plrbf‘OCol (1P) packet @

Think of each packet Each packets has
like a postcard. its destination
Each can hold only : address,
Il
oy oot | i
of where it
come from.

There's no
quarantee they'll reach
their destination--

And the y're
unreliable.

if the network is
bus . it's Per‘FQCHy
val)i’d to drop them.

66

So, when, say, your
penpal wants to
send you a novel:

She breaks it wp
into postcards.

She numbers each postcard
according to where they
are in the sequence.

Then one by one,
she sends them all.

Like a good pal,
when you get them
you write her back

ond if you're missing any
in the sequence, you
let her know that, too

ond she resends them.

By repeating this
enough times and
resending information
if there's no response

the unreliable system

of sending packets (IP)
turns into a functionally
reliable stream of dota,

This system is calléd
TCP (fransmission
control protocol).

33

67

[There's no "clond."

Data is stored on
faraway computers,
and it fravels on wires
(ot speeds on the
order of magnitude
of the speed of light).

These wires run
through neighborhoods
and between cities,

Some of them
@ s E spanning oceans. \ 0

They're significan‘l‘ While satellites are

installations-- accessible from almost
this is why rural anywhere, the distance
areas offen don't have the data has to travel
sufficient connection. (up to the satellite and
back down)

-
s
’I

— - l

gives satellites o delayed
response time that's less
than ideal for modern
internet browsing.

34

68

1\

While any computer running

the rigi\lynpplicahon can

be a server, meaning other computers
on the network con ask it
for files and dota,

UIN

most of the internet is hos*d
ot much larger dafa centers,

g] specialty buildings that
house large volumes of
computer equipment.

y.

-L’
Rooms full of computers
still exist!

O =

-

LT

Data centers are efficient.
specialized hardware
means higher speeds,
organized upkeep,
better (or standardized,

ot least) security. g
— Data centers need to keep C$

JH their computers in optimal

r / condition,

Air conditioning or hydrocooling
is used to keep the machines

= - 74’— between 63-80 degrees fahrenheit.
.

In most facilities this

/ N '
. requires at least 407 1
/ / S

of their total enerqgy.

]
4 T
- _,_Z Dota centers in 2021 \
accounted for 0.37 of »
the world's carbon \
£missions. This is the internet's
I physical infrastructure.
\
35

69

%y

9
Yon~and v

The Internet is a complex e
interweaving of countless b ca
smaller networks. \ W

’TLoml Area Network (LAN)
is of ten a single home, with
connection provided by an ISP
(Internet Service Provider).

Each computer connected to
the internet has its own IP
address, like a postal address.

Wherever multiple networks
intersect are routers, also

generically called gateways <
<0

(/

which connect different networks,
ond direct traffic between them
making global communication possible.

oy |
M_
Becouse it's hard to remember
addresses like "142.250.69.206", Ty ﬁ
~ mony sites adopt domain names Yy :1
like “google.com,” 1 D

To figure out where to direct
troffic, we rely on DNS (the Domain
Name System) fo translate domain
e names into 1P addresses and back,

’ N

el

70

Routers literally
route requests

if you look up google.com,

that request moves through
our router, to your ISP,

ihen through their network;

\

requests are bounced through the
network, often in ways that don’t
entirely correspond to geography.

\

The ma jor meeting points
between 1SPs are called
Internet Exchange Points, b

In these locations, traffic
is directed across different

be’rworks.

This is the physical
infrastructure for
networking.

Even{'ua"]e(requests arrive

ot the site you requested
information from, which sends
data all the way back to you.

71

The "Internet" and
the “World Wide web"

The (glamously named) ‘ol WWW is
an application built on the internet.

It's a particular set of
servers and protocols
among many.

') X And the Network Time
Others include email Protocol (NTP), which

(referred to, hronizes the +
intuitively, as IMAP) yneronizes the Time

——
R
(DNS is another application
built on the internet)

S

Just as TCPis
built on top of IP

HTTP/HTTPS, IMAP,
NTP, and others are
built on top of TCP.

38

72

Further Reading

Page 32: This page is talking about Internet Protocol (IP).
Page 33: This page is talking about Transmission control protocol (TCP).

Page 35: Information on this page is sourced from the article “The
Staggering Ecological Impacts of Computation and the Cloud" by Steven
Gonzalez Monserrate (2022),

Page 36-37: | based the map of the second part of this page on the way
my own visit to google.com traveled across the network. If you want to

see the way your requests travel, you can use the Traceroute mapper

website I've finked on the following page, which walks you through using

the BASH command 'traceroute,’ and then visualizes ’r{e output.

39

73

74

CONCLUSION

76

to networks
spanning the
entire globe

We've gone from
transistors made of
o couple molecules
of silicon

The fact that computers
exist, that they work at all, is a
testament to human ingenuity

and the product of
collaboration among
countless people.

77

Of course,

we didn't get into a
fraction of what
computer science is.

computer
programming archofecfwe

languoges

compilers

78

nefworlrmg

+he internet

79

=

Maybe to learn about algorithms
and efficiency, or computer

security, artificial intelligence,
what being ‘open source’ means
/

Stick around
for next time
Who's to say, we could even
I get programming involved

| hope you
got a sense of how

fundamentally simple the
information that computers
store and organize is

And how you con
understand the computer as
built in layers out of these
simple pieces.

80

Further Reading

While working on this project the three textbooks that | referenced
most frequently were:

Justice, M. (20Z0). How computers really work: A hands-on guide to the
inner workings of the machine. No Starch Press, inc.

Covers computers, from binary, through circuitry and hardware,
to machine code, operating systems, and the internet. This book
spends time on the hardware side of the equation, and has
hands-on breadboard and circuits projects.

Kernighan, B, (2021). Understanding the digital world (Znd edition).
Princeton University Press.

This book is written for a not strictly technical audience. Its
fourth section is titled “Datn,” and is about how computers are
used in society from a philosophical and ethical standpoint.

Schneider, G, M, & Gersting, J. L. (2019). Invifation to computer science
(8th edition). Cengage Learning.

This is a traditional textbook and a complete introductor

computer science course focused on delivering the breadth
of the field.

1f you're interested in any topic in mentioned here, 1 highly recommend
you pick one of these books, or your favorite search engine, and look it
up to learn some more!

You may have noticed that | recommended three Zachtronics video
games (SHENZHEN 1/0, TIS-100, and Exapunks). The gome Human
Resource Machine is also a fun way to get your hands on some
progrnmming ino gﬁme en\ﬁronl’h{n{,

It's years out of date, but | have to acknowledge this project's similarity
to The Cartoon Guide to Computer Science by Larry Gronick (1983).
Other books combining computer science and cartooning include
llustrated Basic, which teaches the reader the programming language
Basic (not Visual Basic, a later language), The Secref Coders series
provides an introduction to programming for a middle-reader audience.

My personal favorite computer-adjacent graphic novel is Logicomix, about
the life and work of logician and philosopher Bertrand Russell. It's mostly
about math and logic, much of which relates closely to computer science,
particularly the field of functional programming. The art is beautiful,
and the masterful way it combines the narrative of Russell's life and an
impressive amount of math is unparalleled.

47

81

Links
Unicode consortium site: unicode.org

"13 sextillion & Counting: The Long & Winding Road to the Most Frequently
Manufactured Human Artifact in History" by David Laws on the Computer
History Museum blog (2018): https://computerhistory.org/blog/13-
sextillion-counting-the-lon -winding-road-+o-+he-mos¥-frequenﬂy-
manufndured-human-ar+i%ac+—in-l\is+ory/

“On the Turing Completeness of PowerPoint":
https:/ /www.youtube com/watch?v=uN jxe 8ShM-8

Surprisingly Turing-complete systems:
https://www.qwern.net/ Turing-complete

Esoteric programming languages wiki:
https://esolangs.org/wiki/Esoteric _programming_language

Computer History Museum website: computerhistory.org

“The Stagaering Ecological Impacts of Computation and the Cloud" by
Steven Gonzalez Monserrate (2022): https://thereader mitpress.mit.edu/
the-staggering-ecological-impac ts-of-computation-and-the-cloud/

Traceroute mapper: https://stefansundin.github.io/traceroute-mapper/

43

82

Developmental art

ABOVE: Sketches of the
narrator before making the
decision they had a Ful?body.

BELOW: Sketches of pages
20 ond 21.

83

84

About the author

Audra McNamee is a senior at UO, class of ‘22, majoring in Math and
Computer science and minoring in Comics and Cartoon Studies. In 2020
Audra participated in the UO Science and Comics Initiative, creating the
8 page comic “A Trip into Serotonin” with computational neuroscien?id‘
Dr. Luca Mazzucato.

Outside of school, Audra makes short comics for fun, on topics ranging
from the 60-year history of a liberatarian billboard off 1-5 to an
abridged history of Jell-0.

Audra’s personal website is audmcname.com.

49

85

86

Bibliography

Bach, B., Riche, N. H., Carpendale, S., & Pfister, H. (2017). The Emerging Genre of
Data Comics. IEEE Computer Graphics and Applications, 37(3), 6—13.
https://doi.org/10.1109/MCG.2017.33

Chochois, H. (2021). The body factory: From the first prosthetics to the augmented
human. The Pennsylvania State University Press, Graphic Mundi.

Collver, J., & Weitkamp, E. (2018). Alter egos: An exploration of the perspectives and
identities of science comic creators. Journal of Science Communication, 17(1),
AO1. https://doi.org/10.22323/2.17010201

Doxiadgs, A. K., Papadimitriou, C. H., Papadatos, A., & Di Donna, A. (2009).
Logicomix: An epic search for truth (1st U.S. ed. 2009). Bloomsbury.

Evans, J. (n.d.). Wizard zines. Wizard Zines. Retrieved April 12, 2022, from
https://wizardzines.com/

Farinella, M. (2018). The potential of comics in science communication. Journal of
Science Communication, 17(1), YO1. https://doi.org/10.22323/2.17010401

Farinella, M., & Ros, H. (2014). Neurocomic (First edition). Nobrow Press.
Gonick, L. (1983). The cartoon guide to computer science. Barnes & Noble.

Gonick, L., & Kasser, T. (2018). Hypercapitalism: The modern economy, its values,
and how to change them. The New Press.

Griffith, S., Dragotta, N., Dragotta, 1., Griffith, A., & Bonsen, J. (2014). Howtoons:
Tools of mass construction. Image Comics.

Hosler, J. (2013). Clan Apis. Createspace.
Hosler, J. (2015). Last of the sandwalkers. First Second.

Justice, M. (2020). How computers really work: A hands-on guide to the inner workings
of the machine. No Starch Press, Inc.

Kernighan, B. W. (2021). Understanding the digital world: What you need to know
about computers, the Internet, privacy, and security (Second edition). Princeton
University Press.

Liukas, L. (2015). Hello Ruby: Adventures in coding.

Marmion, J.-F., & Monsieur B. (2021). Braincomix. Graphic Mundi.
87

https://doi.org/10.1109/MCG.2017.33
https://doi.org/10.22323/2.17010201
https://wizardzines.com/
https://doi.org/10.22323/2.17010401

McCloud, S. (n.d.). Google Chrome. Retrieved April 12, 2022, from
https://www.google.com/googlebooks/chrome/small_00.html

Ottaviani, J. (2011a). Feynman. First Second.

Ottaviani, J. (2011b, December 9). Feynman—Science Study Break.
https://www.youtube.com/watch?v=s30Cm3GHUDbI

Ottaviani, J., Myrick, L., & Polk, A. (2019). Hawking. First Second.

Ottaviani, J., & Purvis, L. (2016). The imitation game: Alan Turing decoded. Abrams
ComicArts.

Ottaviani, J., & Wicks, M. (2013). Primates: The fearless science of Jane Goodall,
Dian Fossey, and Biruté Galdikas. First Second.

Padua, S. (2015). The thrilling adventures of Lovelace and Babbage: The (mostly) true
story of the first computer. Pantheon Books.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M.,
& Paterson, J. (2007). A survey of literature on the teaching of introductory
programming. Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education, 204-223.
https://doi.org/10.1145/1345443.1345441

Schneider, G. M., & Gersting, J. L. (2019). Invitation to computer science (8th edition).
Cengage Learning.

Singh, K., & Konak, 1. (2018). Ara the Star Engineer.

Suh, S., Latulipe, C., Lee, K. J., Cheng, B., & Law, E. (2021). Using Comics to
Introduce and Reinforce Programming Concepts in CS1. Proceedings of the
52nd ACM Technical Symposium on Computer Science Education, 369-375.
https://doi.org/10.1145/3408877.3432465

Suh, S., Lee, M., Xia, G., & law, E. (2020). Coding Strip: A Pedagogical Tool for
Teaching and Learning Programming Concepts through Comics. 2020 I[EEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 1—
10. https://doi.org/10.1109/VL/HCC50065.2020.9127262

Vakil, S. (2018). Ethics, Identity, and Political Vision: Toward a Justice-Centered
Approach to Equity in Computer Science Education. Harvard Educational
Review, 88(1), 26-52. https://doi.org/10.17763/1943-5045-88.1.26

White, N. (1999). The Magic School Bus Gets Programmed. Scholastic Inc.

88

https://www.google.com/googlebooks/chrome/small_00.html
https://www.youtube.com/watch?v=s3OCm3GHUbI
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/3408877.3432465
https://doi.org/10.1109/VL/HCC50065.2020.9127262
https://doi.org/10.17763/1943-5045-88.1.26

Wibowo, A. (n.d.). BubbleSort Zines. BubbleSort Zines. Retrieved April 12, 2022, from
https://shop.bubblesort.io/

Yang, G. L. (2018, June 15). Comics belong in the classroom.
https://www.youtube.com/watch?v=xjvTIP7pV20

Yang, G. L., & Holmes, M. (2015). Secret coders. First Second.

89

https://shop.bubblesort.io/
https://www.youtube.com/watch?v=xjvTIP7pV20

