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DISSERTATION ABSTRACT

Nathan S Hunter

Doctor of Philosophy

Department of Mathematics

September 2022

Title: The Distribution of the Cusped Hypocycloidal Mahler Measure

We explore generalized Mahler measures associated to regions in the complex

plane. These generalized Mahler measures describe the complexity of polynomials

in C[x] by comparing the geometry of their roots to compact subsets of C. Citing

past work connecting the Mahler measure to the unit disk and the reciprocal

Mahler measure to the interval [−2, 2], we explore a family of cusped hypocycloidal

Mahler measures µ(N) associated to the (N + 1)-cusped hypocycloids, using

potential theory to show how a generalized Mahler measure may be constructed

from Jensen’s formula.

Let s be a complex variable, and d a positive integer. To every generalized

Mahler measure Φ we define the complex moment function Hd(Φ; s) which provides

information about the range of values Φ takes on degree d polynomials in C[x].

These functions are analytic in the half-plane R(s) > d. We will show how

Hd(s) may be represented as the determinant of a Gram matrix in a Hilbert space

determined by Φ and s. We thus discover properties of Hd(µ
(N); s) as a rational

function of s.
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CHAPTER I

INTRODUCTION

Mahler Measure

Definition 1. The Mahler measure µ(p) of a polynomial p with leading coefficient

a and zeroes α1, α2, ..., αn is defined by µ(p) = |a|
n∏

i=1

max{1, |αi|}.

As a simple example, the Mahler measure of any cyclotomic polynomial is 1.

The Mahler measure is often used as a measure of complexity of polynomials.

Jensen’s Formula

For any α ∈ C and r > 0,

∫ 1

0

log |re2πiθ − α| dθ = logmax{r, |α|}.

This statement is called Jensen’s formula. By Jensen’s formula, the Mahler measure

corresponds to the geometric mean around the unit circle:

µ(p) = exp

(
1

2π

∫ 2π

0

log |p(eiθ)| dθ
)
.

These two representations highlight the Mahler measure’s role as a measure of

complexity of polynomials; we have a contrast between the roots or the coefficients

of the polynomial.
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Lehmer’s Problem

The Mahler measure has been the subject of significant study, especially

regarding the unsolved problem known as Lehmer’s conjecture [1].

Unsolved problem 1. (Lehmer’s problem, 1933) Does there exist an ϵ > 0 such

that if f(x) is an irreducible, non-cyclotomic polynomial in Z[x], then µ(f) > 1 + ϵ?

The best known lower bound for a nontrivial Mahler measure is µ(p) =

1.17628..., with one polynomial satisfying this being Lehmer’s polynomial P (x) =

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1; however, it remains open whether this is a

true lower bound.

C. Smyth [2] provided a partial solution in the case of non-reciprocal

polynomials. A polynomial of degree n is reciprocal if f(x) = xnp(1/x) for some

polynomial p(x) ̸= x − 1. Smyth showed that if f is an irreducible, non-reciprocal

polynomial then µ(f) ≥ µ(x3 − x − 1) = 1.32.... Lehmer’s problem can thus be

considered in terms of reciprocal polynomials.

This thesis does not focus on Lehmer’s problem; this conjecture is referenced

here because it gives context to much of past exploration of the Mahler measure.

Rather, we focus here on distributions of Mahler measures, which was first explored

by S-J. Chern and J. Vaaler in [3]; C. Sinclair continued this line of work in [4],

with a particular focus on the reciprocal Mahler measure µ1 [5] defined by µ1(f) =

µ(f(x+ 1/x)).

Volume Calculations

For positive integer d, we may consider the Mahler measure restricted to the

set of polynomials of degree at most d; specifically, one may view a polynomial of
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degree at most d as a vector in Cd+1 based on its coefficients, and thus view µ as a

function on Cd+1. The Mahler measure satisfies most axioms of a vector norm, all

except the triangle inequality, so we can construct a set akin to the unit ball. We

shall call this set the degree d complex star body of µ, and denote it

Vd = {a ∈ Cd+1 : µ(a) ≤ 1}.

We may similarly define the degree d real star body of µ as

Ud = {a ∈ Rd+1 : µ(a) ≤ 1};

however, this thesis will focus primarily on the former.

Chern and Vaaler [3] cleverly utilized a Mellin transform to determine the

volumes of Ud and Vd; they considered a monic Mahler measure µ̃ : Cd → [1,∞),

where µ̃(b) is defined as the Mahler measure of the monic polynomial whose

non-leading coefficients are the entries of b. Writing λd and λ2d for the Lebesgue

measures on Rd and Cd, respectively, we may define distribution functions :

fd(ξ) := λd{b ∈ Rd : µ̃(b) ≤ ξ};

hd(ξ) := λ2d{b ∈ Cd : µ̃(b) ≤ ξ}.

These functions contain information on the range of values of the Mahler

measure on the set of monic polynomials of degree d, from R[x] and C[x]
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respectively. The Mellin transforms of these are given by

f̂d(s) =

∫ ∞

0

ξ−s−1fd(ξ) dξ,

ĥd(s) =

∫ ∞

0

ξ−s−1hd(ξ) dξ,

where s is a complex variable. For R(s) > d these integrals converge to an analytic

function, thus encoding information on the range of values of the Mahler measure

of monic polynomials of degree d into analytic functions. As it turns out,

vol(Ud) = λd+1(Ud) = 2f̂d(d+ 1);

vol(Vd) = λ2d+2(Vd) = 2πĥd(2d+ 2).

These values can then be computed using a change of variables:

f̂d(s) =
1

s

∫
Rd

µ̃(b)−s dλd(b);

ĥd(s) =
1

2s

∫
Rd

µ̃(b)−2s dλ2d(b).

We will define functions

Fd(s) :=

∫
Rd

µ̃(b)−sdλd(b);

Hd(s) :=

∫
Cd

µ̃(b)−2sdλ2d(b),

respectively, the real and complex moment functions of µ, which similarly to fd

and hd converge on R(s) > d. A second change of variables allows for integration

over root vectors of the polynomials instead of coefficient vectors. Chern and Vaaler
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then showed that both Fd(s) and Hd(s) analytically continue to rational functions

with simple poles at positive integers and high multiplicity roots at the origin:

Theorem 1. (Chern, Vaaler) Let J be the integer part of d/2; then

Hd(s) =
πd

d!

d∏
n=1

s

s− n
;

Fd(s) =

(
2d

J∏
j=1

(
2j

2j + 1

)d−2j
)

J−1∏
j=0

s

s− (d− 2j)
.

Notably, and perhaps surprisingly, this means that the volume of Ud is a

rational number, and the volume of Vd is a rational number times πd. Further,

since Hd and Fd are built from Mellin transforms of hd and fd, we can recover

explicit formulae for fd and hd from the Mellin inversion formula. Thus, Chern

and Vaaler showed that fd and hd are polynomials of degree d, with respectively

rational coefficients and rational coefficients times πd.

Sinclair [4] showed that these volumes as special values of Mellin transforms

can be applied to generalized Mahler measures Φ. Given a function Φ on

polynomials, we may consider star bodies Ud(Φ) and Vd(Φ), distribution functions

fd(Φ; ξ) and hd(Φ; ξ), and moment functions Fd(Φ; s) and Hd(Φ; s). Fascinatingly,

many of the properties of the volume calculations above continued on to other cases

Sinclair considered. To start, taking µ1 as the reciprocal Mahler measure, Sinclair

found that Hd(µ1; s) has an analytic continuation to a rational function of s:

Theorem 2. (Sinclair,[5])

Hd(µ1; s) = (2π)d
d∏

n=1

s

s2 − n2
.
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Much like Hd(µ; s), Hd(µ1; s) has poles at integers, and the origin as a root of

multiplicity d. Similarly to above, a corollary of this is that hd(µ1; ξ) is a reciprocal

Laurent polynomial of degree d.

Sinclair then considered a family of generalized Mahler measures µq defined

by µq(f) = µ(f(x + q/x)), for q ∈ [0, 1], as well as discussing the possiblility of

exploring other generalized Mahler measures of the form Φ(f) = µ(f ◦ F ) for some

Laurent polynomial F [4].

Theorem 3. (Sinclair) If q ∈ [0, 1], then Hd(µq; s) analytically continues to the

rational function of s given by

Hd(µq; s) =
πdsd

d!

d∏
n=1

(1− q2n)s+ (1 + q2n)n

s2 − n2
.

Note that µ0 is simply the Mahler measure, and µ1 is the reciprocal Mahler

measure; thus, for q ∈ [0, 1], Hd(µq; s) serves as a “path” of moment functions

between Hd(µ; s) and Hd(µ1; s). Notable for the purposes of this computation,

there is a link between these µq and a family of ellipses deforming the unit circle

to the interval [−2, 2].

The key to finding Hd(Φ; s) to be a rational function of s was the realization

that the moment function can be written as the determinant of a matrix in a

Hilbert space associated to Φ. This determinant arises from a Gram matrix,

allowing Hd(Φ; s) to be considered as the volume of a parallelepiped in the

associated Hilbert space.

To this end, define the complex measure ν = ν(Φ) on C by dν(α) =

φ(α)−sφ(ᾱ)−sdλ2(α), where φ : C → (0,∞) is a root function associated with
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Φ. Then L2(ν) is a Hilbert space equipped with inner product

⟨f, g⟩ =
∫
C
φ(α)−2sf(α)g(α)dλ2(α)

for f, g ∈ L2(ν), along with a norm N(f)2 = N(f ; s)2 := ⟨f, f⟩. For R(s) > d, we

can see that any polynomial with degree less than d is in L2(ν).

Now, let Q = {Qn(α) : n = 1, 2, ..., d} be a set of monic polynomials in C[x]

with deg(Qn) = n− 1; we call such a set a complete family of polynomials. Each Qn

is in L2(ν), and Q spans a parallelepiped in the Hilbert space. The Gram matrix of

Q is then the d × d matrix whose ℓ,m entry is ⟨Qℓ, Qm⟩. This is then a symmetric

matrix depending on Q, Φ, and s.

Theorem 4. (Sinclair, [4]) Let Q be a complete family of monic polynomials. Then

Hn(s) = det(WQ).

N-Cusped Hypocycloids

This thesis will consider generalized Mahler measures for the family of shapes

known as the (n-cusped) hypocycloids. For n ∈ Z, the n-cusped hypocycloid is

most commonly defined in terms of rolling circles: suppose a circle is inscribed

inside another circle with radius n-times that of the inner circle. Choose a point

on the boundary of the inner circle, then allow the inner circle to roll along the

boundary from inside the outer circle; the curve traced by the chosen point forms

a simple closed loop, called the n-cusped hypocycloid. See Figure 1 for a 3-cusped

hypocycloid and Figure 2 for a 5-cusped hypocycloid.

Hypocycloids also have a description in terms of conformal and quasi-

conformal maps on the complex plane. The map z 7→ z +
z−N

N
is a conformal

7



FIGURE 1 A rendition of the 3-cusped hypocycloid.

FIGURE 2 A rendition of the 5-cusped hypocycloid.

map sending points on the exterior of the closed unit disk to the exterior of the

region enclosed by the (N + 1)-cusped hypocycloid. Likewise, the map z 7→ z̄N

N

is a quasiconformal map between the closed unit disk and the interior of the

hypocycloid [8].

Of interesting note, the 2-cusped hypocycloid corresponds to the real interval

[−2, 2]. This has important connections to reciprocal polynomials, and thus by

Smyth [2] relates to potential solutions to Lehmer’s conjecture; this prompted

Sinclair’s study of the reciprocal Mahler measure [5]. Under the rolling circles

definition, the unit circle may similarly be considered the 1-cusped hypocycloid.

8



We can thus see that for the first two levels of cusps, Hd(s) has integer poles ≤ d

(with the 2-cusped case adding negative poles that the 1-cusped did not have) and

the origin as a root of high multiplicity.

The question arose, then, what happens with the Hd(s) corresponding to

higher cusped hypocycloids? Does it maintain the high multiplicity roots at the

origin, and where are the poles?

This thesis explores generalized Mahler measures corresponding to the

cusped hypocycloids: we define the N th cusped hypocycloidal Mahler measure by

µ(N)(f) := µ(f(x+ x−N

N
)), for N > 1.

Theorem 5. (Main Theorem) For N > 1 an integer, Hd(µ
(N); s) analytically

continues to a rational function of s, which is πd times a rational function with

rational coefficients, has nonzero integer poles, the origin as a root of multiplicity

d, and all other roots are negative. Further, the numerator and denominator have

matching degrees, bounded by (d− 1)(N + 1).

One can see that Hd(µ
(N); s) indeed continues many of the properties of

Hd(µq; s), suggesting that these might be continued for other generalized Mahler

measures explored in the future. In addition, it is not hard to calculate Hd(µ
(N); s)

for specific choices of N and d, and thus we can calculate vol(Vd), as well as other

volumes we will discuss later; see Table 1 for some particular results.

Counting Points of Bounded Height

This thesis has applications of the asymptotics to Hd(µ
(N); s). Schanuel [?

] pioneered a study of counting algebraic numbers of bounded height through the

asymptotics of a height function; Masser and Vaaler [? ] explored how this concept

may be applied to counting polynomials using the Mahler measure as a height on

9



TABLE 1 Sample calculations of vol(Vd) for various values of N+1 cusps and
polynomial degrees d

(N + 1) vs. d 2 3 4 5

3 cusps
3

28
π3 262

10395
π4 18125

1437696
π5 311481

2896974080
π6

4 cusps
7

60
π3 5104

184275
π4 18063359375

3341114297136
π5 2272135257604

3295289986463475
π6

5 cusps
1

8
π3 67

2112
π4 41758354375

6744887525376
π5 63792691434842763

61482997256500019200
π6

polynomials. These counting problems may be extended to our generalized Mahler

measures.

First, we may calculate the volume of monic polynomials as the limit of Hd(s)

as s → ∞; see 2 for some examples of the asymptotics of Hd(µ
(N); s).

Further, the volumes of star bodies approximately gives the number of lattice

points in the region, which corresponds to polynomials with Gaussian integer

coefficients. Consider ηd(T ) = #{f ∈ Z[i][x] : µ(N)(f) ≤ T, deg(f) ≤ d}. Then, by

the geometry of numbers (under some assumptions regarding the boundary of the

star body),

ηd(T ) ∼ vol(Vd)T
d+1 +O(T d)

as T → ∞. Similarly, if η̃d(T ) is the monic version of ηd(T ), then ηd(T ) ≈ hd(T )

as T → ∞. In this way hd, vol(Vd), and Hd capture information for the counting

of Gaussian integer polynomials of bounded degree and bounded height for our

generalized Mahler measures.
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TABLE 2 Asymptotics of Hd(µ
(N); s) for various degree d and cusps N+1

(N + 1) vs. d 2 3 4 5

3 cusps
1

4
π2 7

192
π3 49

12288
π4 1617

5242880
π5

4 cusps
5

18
π2 65

1458
π3 24245

4251528
π4 935857

13947137604
π5

5 cusps
5

16
π2 695

12288
π3 375995

50331648
π4 2756870539

3298534883328
π5

Structure of this thesis

In chapter 2, we cover key theorems of potential theory that enable our

discussion on generalized Mahler measures. In chapter 3, we discuss in depth

the results regarding Hd(s) found first by Chern and Vaaler, then by Sinclair. In

chapter 4, we discuss results pertaining to the hypocycloidal Mahler measure, along

with lines of further study stemming from this work.

11



CHAPTER II

GENERALIZED MAHLER MEASURES

We return to the representation of the Mahler measure provided by Jensen’s

formula:

µ(f) = exp

(∫ 1

0

log |f(e2πiθ)|dθ
)
.

While the root definition of the Mahler measure is defined on polynomials, this

form may be more generically applied to Laurent polynomials, since it recovers the

Mahler measure from the coefficients rather than the roots. Further, we can use

this form to consider generalized Mahler measures : for particular choices of measure

ν on C, we will explore

Φ(f) = exp

(∫
C
log |f(z)| dν(z)

)
.

Using Jensen’s formula, we will likewise develop root functions φ : C → (0,∞)

such that

Φ(f) = |a|
d∏

n=1

φ(αn),

where f is a degree d polynomial with leading coefficient a.

Developing these choices of ν and φ will come from an exploration of

potential theory. Everything in the following section is background, and already

well established; we will focus here on the definitions and theorems directly

important to our discussion, though we will mention some well established theorems

when necessary. For a more thorough discussion of potential theory, Ransford

12



[6] gives an excellent discussion on the subject. We will end this chapter with a

discussion on how potential theory impacts this thesis.

Potential Theory

Subharmonic and Harmonic Functions

Before discussing potentials, we must first introduce subharmonic functions.

Definition 2. Let U ⊂ C be an open set, and let u : U → [−∞,∞) be a function

which is not identically −∞; u is upper semicontinuous at α ∈ U if

lim sup
z→α

u(z) ≤ u(α).

If u is upper semicontinuous at every α ∈ U , we say it is upper semicontinuous on

U .

Importantly, if u is upper semicontinuous on U and K is a compact subset of

U , then u is bounded above and attains it maximum on K.

If there exists ρ = ρ(α) > 0 such that, for 0 ≤ r < ρ,

u(α) ≤ 1

2π

∫ 2π

0

u(α + reiθ) dθ,

then u satisfies the submean inequality at α. The submean inequality gives that

f(α) is smaller than the average value taken by f along the boundary of a disk of

sufficiently small radius around α. To understand how to think of it, the submean

inequality is analagous to the property of locally convex functions: if f : (a, b) →

[−∞,∞) is locally convex at x ∈ (a, b), then there exists r > 0 such that for

13



0 ≤ ϵ < r,

f(x) ≤ f(x− ϵ) + f(x+ ϵ)

2
,

and f is smaller than the average value of f taken on an interval of sufficiently

small length around x.

We come now to subharmonic functions:

Definition 3. If u is upper semicontinuous and satisfies the submean inequality at

every α ∈ U , then u is subharmonic on U . If both u and −u are subharmonic on

U , we may call u harmonic on U .

Notably, harmonic functions are continuous and have equality for the

submean inequality.

Potentials and Logarithmic Potentials

Definition 4. If ν is a finite Borel measure on C with compact support K, its

potential is the function pν : C → [−∞,∞) with

pν(z) := exp

∫
K

log |z − w| dν(w),

for z ∈ C.

Importantly, the potential pν is subharmonic on C. As we will explain later,

this name arises as an analog of the potential energy of a physical system. At

times, it will be easier to work instead with the logarithmic potential of ν, given by

log pν ; in fact, some texts refer to the logarithmic potential simply as the potential.

We shall start with a proof that the logarithmic potential is subharmonic.

14



Theorem 6. Let ν be a finite Borel measure on C with compact support K; then

log pν is subharmonic on C and harmonic on C\K.

Proof. First, note that subharmonicity is a local condition, so it suffices to show

that log pν is subharmonic on every relatively compact open set U ⊂ C.

Define v : C × C → [−∞,∞) by v(α,w) = log |w − α|. It may be seen that

v is subharmonic in each variable, and is thus also upper semicontinuous in each

variable. Thus there exists some c such that v(α,w) < c on Ū × K. Now, since

v(α,w)− c is negative on Ū ×K, by Fatou’s lemma it follows that

lim sup
z→α

log pν(z)− c = lim sup
z→α

∫
K

v(z, w)− c dν(w)

≤
∫
K

lim sup
z→α

v(z, w)− c dν(w)

= log pν(α)− c.

Thus, log pν is upper semicontinuous.

For each α ∈ U , there exists ρ > 0 such that for 0 ≤ r < ρ,

log |w − α| ≤ 1

2π

∫ 2π

0

log |w − α + reiθ|dθ,

with equality when w ̸= α. Thus, for 0 ≤ r < ρ,

log pν(α) =

∫
C
log |w − α|dν(w)

≤ 1

2π

∫
C
∫ 2π

0

log |w − α + reiθ|dθ dν(w)

=
1

2π

∫ 2π

0

∫
C
log |w − α + reiθ|dν(w) dθ

=
1

2π

∫ 2π

0

log pν(α + reiθ)dθ

15



so that log pν satisfies the submean inequality. Note that equality here holds if α ̸∈

K. Thus, log pν is subharmonic on C and harmonic on C\K.

Lemma 1. Let ν be a Borel probability measure on C with compact support K;

then pν ∼ |α| as |α| → ∞.

Proof. First,

pν(α) = exp

{∫
K

log |α− w| dν(w)
}

= exp

{
log |α|+

∫
K

log |1− w/α| dν(w)
}

= |α| exp
{
log

∫
K

log |1− w/α| dν(w)
}
.

Thus,

lim
|α|→∞

pν(α)

|α|
= lim

|α|→∞
exp

{
log |α|+

∫
K

log |1− w/α| dν(w)
}
.

Setting c = supw∈K |w|, we see that for all w ∈ K

log |1− w/α| ≤ log(1 + c/|α|).

Now, if |α| > c, then log |1− w/α| ≤ 2, so by dominated convergence theorem,

lim
|α|→∞

exp

{∫
K

log |1− w/α| dν(w)
}

= 1.

Thus, pν ∼ |α| as |α| → ∞.
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Equilibrium Potentials

We continue with a value which proves critical for finding our ideal choice of

measures.

Definition 5. If ν is a finite Borel measure on C with compact support K, its

energy I(ν) is

I(ν) :=

∫
K

log pν(z) dν(z) =

∫
K

∫
K

log |z − w| dν(w) dν(z).

To understand the origin of the term “energy”, consider ν as a distribution of

electric charges in C; then pν(z) is the potential energy felt by a particle at point z,

making I(ν) the total energy of the system of charges.

Much as it helps to consider log pν in place of pν at times, we will likewise

consider a parallel value to the energy.

Definition 6. Let P(K) be the set of Borel probability measures supported on K.

The capacity of K is the quantity

c(K) = exp

(
sup

ν∈P(K)

I(ν)

)
.

Capacity zero sets fulfill a similar role of “negligible” sets in potential theory

as sets of measure zero do in measure theory; in fact, capacity zero sets have

measure zero.

We arrive now at the way to choose probability measures to produce

generalized Mahler measures.
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Definition 7. Let K ⊂ C be a compact set, and consider P(K) the collection of all

Borel probability measures on K. If there exists νK ∈ P(K) with

I(νK) = sup
ν∈P(K)

I(ν)

then νK is called an equilibrium measure for K. The corresponding potential pνK =

pK is called an equilibrium potential for K.

As a first example, we can quickly see that if ν is an equilibrium measure

corresponding to the unit disc, then Jensen’s formula gives that the Mahler

measure may be written:

µ(f) = exp

(∫
C
log |f(z)| dν(z)

)
.

We now may give a rigorous definition for these generalized Mahler measures:

Definition 8. Let K ⊂ C be a compact set with equilibrium measure ν; the

generalized Mahler measure over K is

Φ(f) := exp

(∫
C
log |f(z)| dν(z)

)
.

We continue with additional properties of potential theory to understand how

to work with these generalized Mahler measures.

Theorem 7. (Frostman’s Theorem) Let K be a compact set in C with c(K) > 0,

and suppose the equilibrium potential pK is continuous; then pK ≥ c(K) on C, and

pK = c(K) on K.

We shall make great use of Frostman’s theorem for simplifying certain

calculations in chapter 4.
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Proof. We will work with the logarithmic potential to show that log pK ≥ I(νK) on

C and log pK − I(νK) on K. Since we assumed c(K) > 0, we have I(νK) > −∞.

For n ≥ 1, set Un = {z ∈ K : log pν(z) > I(ν) + 1/n}, and call Kn =

Un. We will show that Un is empty. Assume there is some n ≥ 1 such that Un is

nonempty; notice that the corresponding Kn must have positive Lebesgue measure,

so c(Kn) > 0 as well. We thus may find ν ∈ P(Kn) such that I(ν) > −∞. By

definition, I(νK) =
∫
K
log pK(z)dνK(z), so there exists some z1 ∈ supp νK such

that log pK(z1) ≤ I(νK). By upper semicontinuity there exists r1 > 0 such that for

z ∈ ∆̄(z1, r1),

log pK(z) < I(νK) +
1

2n
.

Now, ∆̄(z1, r1)∩Kn is empty, and since z1 ∈ supp νK , we must have νK(∆̄(z1, r1)) >

0. Call a = νK(∆̄(z1, r1)) and define a signed measure on K:

σ =



ν on K

−νK/a on ∆̄(z1, r1)

0 elsewhere

.

For each t ∈ (0, a), define a measure on K by νt = νK + tσ. It is easily

verifiable that νt satisfies the criteria to be a measure, and since σ(K) = 0 we can

also see that νt is a probability measure on K. Now,

I(νt)− I(νK) =

∫
K

∫
K

log |z − w|dνt(w) dνt(z)−
∫
K

∫
K

log |z − w|dνK(w) dνK(z)

= 2t

∫
K

∫
K

log |z − w|dνK(z) dσ(w) + t2
∫
K

∫
K

log |z − w|dσ(z) dσ(w).
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The second integral in the last line is finite, since I(ν) > −∞ implies that I(|σ|) >

−∞. Thus the second integral is a constant depending on σ, which we shall call η,

so

I(νt)− I(νK) = 2t

∫
K

log pK(w)dσ(w) + t2η

= 2t

∫
Kn

log pK(w)dν(w)−
2t

a

∫
∆̄(z1,r1)

log pK(w)dνK(w) + t2η

≥ 2t

((
I(ν) +

1

n

)
−
(
I(ν) +

1

2n

))
+ t2η

= t

(
1

n
+ tη

)
.

For sufficiently small t, we have I(νt) > I(νK), contradicting the status of νK as an

equilibrium measure of K. Thus Un must be empty for all n ≥ 1, so that log pK ≤

I(νK) on K.

We now show that log pK ≥ I(νK) on the support of νK ; by a theorem of

potential theory called the minimum principle, this implies that log pK ≥ I(νK)

over all of C. Thus we will conclude that log pK ≥ I(νK) on C, and log pK = I(νK)

on K.

For each n ≥ 1, we define

Vn = {z ∈ supp νK : log pK(z) < I(νK)}.

We will again show that Vn is empty for each n ≥ 1 and thus that log pK(z) ≥

I(νK) on the support of νK . By the minimum principle, log pK ≥ I(νK) on all C,

providing part 1 of the theorem.

Assume that Vn is nonempty for some n ≥ 1, and choose z2 ∈ Vn. By upper

semicontinuity, there exists r2 > 0 such that log pK < I(νK) − 1/n on ∆̄(z2, r2).
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Since z2 ∈ supp νK , we have νK(∆̄(z2, r2)) > 0; call b = νK(∆̄(z2, r2)). We

previously showed that log pK ≤ I(νK) on K, so

I(νK) =

∫
K

log pK(z)dνK(z)

=

∫
∆̄(z2,r2)

log pK(z)dνK(z) +

∫
K\∆̄(z2,r2)

log pK(z)dνK(z)

≤ b

(
I(νK)−

1

n

)
+ (1− b)I(νK)

< I(νK),

providing a clear contradiction. Thus Vn must be empty for each n ≥ 1, completing

the proof.

Green’s Functions

We turn now to a method of finding explicit formulae for equilibrium

potentials; Green’s functions will enable us to determine Jensen’s formulae for

generalized Mahler measures formed from equilibrium measures. Here we consider

C∞ the extended complex plane.

Definition 9. If D is a proper subdomain on C∞, a Green’s funciton for D is a

map gD : D × D → (−∞,∞] such that, for any w ∈ D, gD(·, w) is harmonic on

D\{w} and bounded outside each neighborhood of w; gD(w,w) = ∞, and as z → w,

gD(z, w) =


log |z|+O(1) w = ∞

− log |z − w|+O(1) w ̸= ∞;

and gD(z, w) → 0 as z → ζ for each ζ ∈ ∂D outside a capacity 0 subset of ∂D.
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Our next theorem gives some insight into the utility of Green’s functions for

our study of generalized Mahler measures.

Theorem 8. (Subordination Principle) Let D1 and D2 be domains in C∞ with

nonzero-capacity boundaries, and let f : D1 → D2 be a meromorphic function. Then

gD2(f(z), f(w)) ≥ gD1(z, w), with equality if f is a conformal mapping of D1 onto

D2.

We will primarily utilize the case of equality when f is conformal. First, we

will require a lemma providing the positivity of Green’s functions.

Lemma 2. Let D be a domain with Green’s function gD; then gD(z, w) > 0 for all

z, w ∈ D.

For a proof of this lemma, see chapter 4.4 of Ransford [6]. Returning to a

proof of the subordination principle:

Proof. We first consider the case where w ̸= ∞ and f(w) ̸= ∞; for z ∈ D1\{w},

define u(z) = gD1(z, w) − gD2(f(z), f(w)). One can see that u is subharmonic on

D1\{w}, bounded above outside every neighborhood of w, and

lim
z→w

u(z) = log

∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣+O(1) = log |f ′(w)|+O(1)

so that u is bounded above on all of D1\{w}. The preceding lemma gives that

gD2 > 0 so that

lim sup
z→ζ

u(z) ≤ lim
z→ζ

gD1(z, w) = 0

which means that by the maximum principle, a theorem of potential theory, u ≤ 0

on D1\{w}. Thus, for w ̸= ∞ and f(w) ̸= ∞, gD1(z, w) ≤ gD2(f(z), f(w)). For the
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case where f is a conformal map, we may take the same argument with f−1 : D2 →

D1 to obtain equality.

To cover the case when w = ∞, let F be the conformal map z 7→ 1/z, and let

D′
1 be the image of D1 under this map. Notice now that if f ◦ F(w) ̸= ∞, then

gD1(1/z, 1/w) = gD′
1
(z, w) = gD2(f ◦ F(z), f ◦ F(w)

so that

gD1(z,∞) = gD′
1
(1/z, 0) = gD2(f(z), f(∞)).

The case where f(w) = ∞ follows from a similar inversion.

We finish our discussion on Green’s functions with a corollary to the

subordination principle, which will be helpful in our construction of generalized

Mahler measures:

Corollary 1. Let K be a simply connected compact subset of C with positive

capacity and continuous potential. Let D1 = C∞\∆̄ and D2 = C∞\K, and let

f : D1 → D2 be a conformal map with f(∞) = ∞; then

pK(α) =


c(K) α ∈ K

c(K)|f−1(α)| α ̸∈ K

.

We thus have a construction for the equilibrium potential pK in terms of the

capacity of K and a conformal map from the complement of the unit disk to the

complement of K. Specifically, the potential is identically the capacity within

K (as stated by Frostman’s Theorem), and outside K it is the capacity times

the absolute inverse of the conformal map. This may seem unwieldly for some
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conformal maps, but our conformal maps will prove easy to work with, particularly

after an appropriate change of coordinates we will come to later.

Generalized Jensen’s Formula

We come now to an application of Jensen’s formula to generalized Mahler

measures Φ for compact set K, along with a discussion on how to construct the

associated root function φ. Recall that if ν is a Borel probability measure on C

with compact support, then pν(α) ∼ |α| as |α| → ∞. By Jensen’s formula, if

f(x) = a

d∏
n=1

(x− αn), then

Φ(f) = exp

(∫
C
log |f(z)| dνK(z)

)
= |a|

d∏
n=1

pK(α)

showing that φ = pK ; the construction provided by the corollary above reveals why

we refer to φ as a root function for K.

Sinclair [4] studied the generalized Mahler measures for the family of ellipses

Eq =

{
x+ iy ∈ C :

x2

(1 + q)2
+

y2

(1− q)2
≤ 1

}

for q ∈ [0, 1], where E0 is the closed unit disk, and E1 is the degenerate ellipse

[−2, 2]. The family of conformal maps z 7→ z+q/z send the exterior of the unit disk

to the exterior of these regions Eq. Using the technology covered above, one may

verify that these ellipses have capacity c(Eq) = 1.

We will similarly consider a family of closed regions with capacity 1. We shall

define the closed (N + 1)-cusped hypocycloid HN as the complement of the image

of the exterior of the unit circle under the conformal map CN : z 7→ z +
z−N

N
.
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Importantly, this family of hypocycloids each has capacity 1. Thus, by the corollary

above,

pHN
(α) =


1 α ∈ HN

|C−1
N (α)| α ̸∈ HN

.

We thus have a simple expression for our root function φ of µ(N).
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CHAPTER III

VOLUMES OF POLYNOMIALS

We come now to a discussion of the distributions of generalized Mahler

measures. Our goal will be to discuss the volume of star bodies of generalized

Mahler measures:

vol(Vd(Φ)) = λ2d+2{a ∈ Cd+1 : Φ(a) ≤ 1}

by use of the cumulative distance function of Φ̃

hd(ξ) = hd(Φ; ξ) = λ2d{b ∈ Cd : Φ̃(b) ≤ ξ}

and the complex moment function of Φ,

Hd(s) = Hd(Φ; s) =

∫
Cd

Φ̃(b)−2sdλ2d(b)

These objects each describe the range of values of Φ on polynomials in C[x]

of degree d. One particular connection we will cover is that the volume of Vd(Φ) is

a special value of the Mellin transform of hd(Φ; ξ). Similarly, the complex moment

function of Φ is closely related to the Mellin transform of hd(Φ; ξ).

The determination of Hd(Φ; s) will be the primary focus of this and the

final chapters. In particular, Hd(s) may be expressed as the determinant of a

particular matrix, which allows us to describe the volume Vd(Φ) as the volume of

a parallelepiped in a Hilbert space determined by Φ. Utilizing this Hilbert space

will allow us to refine Hd(Φ; s) and the volume of Vd(Φ) in terms of a family of
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orthogonal polynomials produced by Φ. Given an expression for Hd(s), we can

recover hd(ξ) from the Mellin inversion theorem.

In this chapter, we will explore the formulae for Hd(Φ; s) and hd(Φ; ξ) for

cases of Φ covered in previous research. As a point of interest, all examples of

Hd(s) computed here and in the final chapter have a meromorphic continuation

to all of C. Information on the distribution of the generalized Mahler measures can

be recovered from the values of the poles and roots of these meromorphic functions;

in particular, Hd(s) is a rational function of s with poles at nonzero integers, and

the origin is a root of multiplicity d. Under certain criteria, the coefficients of this

rational function will be rational numbers times πd. These results will lead to

finding that hd(ξ) is a Laurent polynomial on [1,∞), and in the special cases the

coefficients will be rational numbers times πd.

Mellin Transformation

We start by discussing the method covered by Chern and Vaaler [3] to express

the volume of Vd as a special value of a Mellin transform of a function found from

Φ.

Definition 10. The Mellin transform of a function f : [0,∞) → R is

f̂(s) :=

∫ ∞

0

x−s−1f(x) dx

where s is a complex variable.

If this integral converges, it does so in the complex strip defined by a <

R(s) < b, where a and b are the extended real numbers defined by the asymptotic

behavior of f(x) as x → ∞ and x → 0, respectively. Where the integral converges,
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f̂ is an analytic function: consider a triangle ∆ in the region a < R(s) < b; then

∫
∆

f̂(s) ds =

∫
∆

∫ ∞

0

x−s−1f(x) dx ds

=

∫ ∞

0+
f(x)

∫
∆

x−s−1 ds dx = 0,

where the last is due to x−s being analytic. Thus, Morera’s theorem gives that f̂ is

analytic in the region of convergence.

Theorem 9. (Chern and Vaaler [3]) Let Φ be a generalized Mahler measure, then

the volume of the degree d star body of Φ is

λ2d+2(Vd) = 2πĥd(2d+ 2).

Proof. The volume of Vd may be written as

λ2d+2(Vd) =

∫
C
λ2d{b ∈ Cd : Φ(b, z) ≤ 1} dλ2(z).

By homogeneity, we can rewrite

λ2d{b ∈ Cd : Φ(b, z) ≤ 1} = λ2d{zc ∈ Cd : (zc, z) ≤ 1}

= |z|2dλ2d

{
c ∈ Cd : Φ(c, 1) ≤ 1

|z|

}
.

By switching to polar coordinates and setting ξ = 1/r, it follows
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λ2d+2(Vd) =

∫
C
|z|2dλ2d

{
c ∈ Cd : Φ(c, 1) ≤ 1

|z|

}
dλ2(z)

= 2π

∫ ∞

0

r2d+1λ2d

{
c ∈ Cd : Φ(c, 1) ≤ 1

r

}
dr

= 2π

∫ ∞

0

ξ−2d−3
{
c ∈ Cd : Φ(c, 1) ≤ ξ

}
dξ

= 2π

∫ ∞

0

ξ−2d−3
{
c ∈ Cd : Φ̃(c) ≤ ξ

}
dξ

= 2πĥd(2d+ 2).

To better understand hd, it helps to consider the set-up geometrically. The

set of coefficient vectors of monic polynomials of degree d forms a d-dimensional

hyperplane in Cd+1; for T sufficiently large, the dilated star body TVd intersects

this hyperplane. We can consider hd(T ) as the d dimensional Lebesgue measure of

the intersection of this hyperplane with TVd. We can now analyze the asymptotic

behavior of hd(T ) as T → ∞ or T → 0.

Lemma 3. (Chern and Vaaler) Let Φ be a generalized Mahler measure, and

hd : [0,∞) → [0,∞) be defined as above. Then there exists ϵ > 0 such that hd

is identically zero on [0, ϵ); and hd(T ) = O(T 2d) as T → ∞, specifically

lim
T→∞

hd(T )

T 2d
= λ2d(Vd−1).

Proof. Let ∆d+1 be the d+1 dimensional unit polydisk centered at the origin. Since

Vd is bounded, there exists η > 0 such that Vd ⊂ η∆d+1, so TVd ⊂ Tη∆d+1. Now

we consider the hyperplane B ⊂ Cd+1 of coefficient vectors of monic polynomials of
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degree d,

B = {(b, 1) : b ∈ Cd}.

It follows that (B ∩ TVd) ⊂ (B ∩ Tη∆d+1). Now, the set (B ∩ Tη∆d+1) is a d-

dimensional polydisk with radius Tη when Tη ≥ 1, and is empty otherwise. Thus

hd(T ) ≤ λ2d(B ∩ Tη∆d+1).

With regards to the first claim, let ϵ = 1/η; if T < ϵ then from the above

observation, (B ∩ Tϵ∆d+1) is empty. Thus hd(T ) = 0 if T < ϵ.

As for the second claim, let B1/T = {(b, 1/T ) : b ∈ Cd}; the set of

polynomials with leading coefficient 1/T and distance 1 is B1/T ∩ Vd. Now,

B1/T = (1/T )B1, so

B1/T ∩ Vd =
1

T
(B ∩ TVd).

Notice that (B1/T ∩ Vd) → Vd−1 as T → ∞, since a leading coefficient of 0 just

makes the polynomial one degree lower. It follows that

λ2d(Vd−1) = lim
T→∞

λ2d(B1/T ∩ Vd)

= lim
T→∞

λ2d

(
1

T
(B ∩ TVd

)
= lim

T→∞

hd(T )

T 2d

as desired.
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Notice from this that the volume of the degree d − 1 star body is the leading

coefficient of the leading term of hd(T ):

hd(T ) = λ2d(Vd)T
2d + o(T 2d).

To understand why this should be expected, consider how hd is defined by taking

the volume of slices of Vd, while Vd−1 embeds into Vd as a slice.

Going forward we shall consider ĥd(2s) instead of ĥd(s). Note that the

integral composing ĥd(2s) is convergent as s = d + 1, since λ2d+2(Vd) is finite.

In particular, ĥd(2s) is convergent and analytic in the region R(s) > d. Considering

ĥd(2s) as a Lebesgue-Stieltjies integral, we can use integration by parts:

ĥd(2s) = −ξ−2shd(ξ)

2s

∣∣∣∣∞
0

+
1

2s

∫ ∞

0

ξ−2sdhd(ξ).

From the preceding lemma, hd(0) = 0 and hd(ξ) is dominated by Cξ2d, for some

constant C. Note that the first term from the integration by parts vanishes for

R(s) > d. With a change of variables we write

ĥd(2s) =
1

2s

∫
Cd

Φ̃(a)−2s dλ2d(a)

revealing the connection between the Mellin transform of hd and Hd. By the

preceding theorem, the volume of Vd is

λ2d+2(Vd) =
πHd(d+ 1)

d+ 1
.

Moreover, if Hd(s) has a meromorphic continuation to a neighborhood of s = d,

then the lemma gives that the volume of Vd−1 is the residue of the pole at s = d [3].
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Though we do not use it further in this thesis, this fact proves useful in verifying

computational results.

We now introduce a change of variables from root vectors to coefficient

vectors. Let n ≤ d be a positive integer, and let en : Cd → C be the nth elementary

symmetric function:

en(α) = (−1)n
∑
t∈P d

n

n∏
ℓ=1

αt(ℓ),

where P d
n = {t : {1, 2, ..., n} → {1, 2, ..., d}|t(1) < t(2) < ... < t(n)}. Notice

d∏
n=1

(x− αn) = xd +
d∑

n=1

en(α)xd−n.

Now, let Ed : Cd → Cd be the map whose nth coordinate function is en; then

Ed sends root vectors to (monic) coefficient vectors. Importantly, each monic

polynomial is uniquely determined by its roots, and every permutation of roots

leaves Ed(α), so the degree of Ed is d!. It is well known that the Jacobian of Ed is

|V (α)|2 where

V (α) =
∏

1≤m<n≤d

(αn − αm).

We provide an outline of the proof: first, it is easy to take the Jacobian with

partial derivatives. The determinant of this matrix is a symmetric polynomial,

and its degree may be verified to match that of the Vandermonde. Further, these

polynomials have the same zeroes, so they must be equal up to a constant multiple,

which turns out to be 1.
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Notice from this formula that |V (α)| ̸= 0 for almost all points in Cd. Finaly,

change of variables a = Ed(α) provides

Hd(s) =
1

d!

∫
Cd

(
d∏

n=1

φ(αn)
−2s

)
|V (α)|2 dλ2d(α)

At a glance, this may seem like a more complicated formulation for Hd(Φ; s);

however we will capitalize on how V (α) may be expressed as the Vandermonde

determinant. This fact along with some combinatorics and Fubini’s Theorem allows

for Hd(Φ; s) to be further rewritten as a determinant whose entries are integrals

over C; we will interpret these entries as values of inner products of polynomials in

a Hilbert space determined by Φ.

Recall, if ν is the measure supported on the complex plane given by dν(α) =

φ−2s(α)dλ2(α), where s is a complex parameter, then L2(ν) is a Hilbert space with

inner product

⟨f, g⟩ =
∫
C
φ(α)−2sf(α)g(α)dλ2(α).

This inner product induces a norm N(f)2 = N(f ; s)2 := ⟨f, f⟩. For R(s) > d, any

polynomial in C[x] with degree less than d is in L2(ν).

Let Q = {Qn(α) : n = 1, 2, ..., d} be a set of monic polynomials in C[x] with

deg(Qn) = n− 1; we will call such a set a complete family of polynomials. Each Qn

is in L2(ν), and Q spans a parallelepiped in the Hilbert space. The Gram matrix of

Q is a d × d matrix, whose ℓ, k entry is ⟨Qℓ, Qk⟩; this is a symmetric matrix whose

ℓ, k entry depends on Qℓ, Qk, φ, and s. Importantly, the determinant of this matrix

may be interpreted as the volume of the parallelepiped spanned by Q in the Hilbert

space. As it turns out, the determinant of WQ is equivalent to Hd(s)
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Theorem 10. (Sinclair [4]) Let Q be any complete family of monic polynomials;

then

Hd(s) = det(WQ).

Since this theorem holds for any complete family of polynomials, we may

choose a family Q that makes det(WQ) simple to evaluate. Note also that while

R(s) > d, we may leave s as a parameter to be chosen later, so we may consider the

inner product as independent of d.

A powerful corollary arises from choosing an orthogonal set of polynomials for

the complete family Q.

Corollary 2. Let R(s) > d, and let Q be a complete family of monic polynomials

with

⟨Qℓ, Qk⟩ = δℓkN(Qk; s)
2

where δℓk = 1 if ℓ = k, and 0 otherwise; then

Hd(s) =
d∏

n=1

N(Qn; s)
2.

We now introduce two lemmas to prove this important theorem.

Lemma 4. Let I = I(ℓ, k) be a d× d matrix; then

det(I) =
1

d!

∑
τ∈Sd

∑
σ∈Sd

sgn(τ) sgn(σ)
d∏

n=1

I(τ(n), σ(n)).

Proof. First note
d∏

n=1

I(τ(n), σ(n)) =
d∏

n=1

I(n, σ ◦ τ−1(n)),
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so we may write

1

d!

∑
τ∈Sd

∑
σ∈Sd

sgn(τ) sgn(σ)
d∏

n=1

I(τ(n), σ(n))

=
1

d!

∑
τ∈Sd

∑
σ∈Sd

sgn(σ ◦ τ−1)
d∏

n=1

I(n, σ ◦ τ−1(n))

=
1

d!

∑
τ∈Sd

∑
σ∈Sd

sgn(σ)
d∏

n=1

I(n, σ(n))

=
∑
σ∈Sd

sgn(σ)
d∏

n=1

I(n, σ(n))

=det(I).

Lemma 5. Let Q be a complete family of monic polynomials; then

V (α) = det(VQ)

where VQ is the d× d matrix whose ℓ, k entry is VQ(ℓ, k) = Qℓ(αk).

Proof. Notice that we may write

VQ =



1 0 · · · 0

∗ 1 · · · 0

∗ ∗ · · · 0

...
...

. . .
...

∗ ∗ · · · 1





1 1 · · · 1

α1 α2 · · · αd

α2
1 α2

2 · · · α2
d

...
...

. . .
...

αd−1
1 αd−1

2 · · · αd−1
d


where ∗ represent entries that are not necessarily zero. The second matrix is easily

recognized as the Vandermonde matrix; it is well known that the determinant of

the Vandermonde is V (α), which leads to the desired result.
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We may now proceed to our proof that Hd(s) = det(WQ):

Proof. We have previously shown that

Hd(s) =
1

d!

∫
Cd

(
d∏

n=1

φ(αn)
−2s

)
|V (α)|2 dλ2d(α).

By expanding det(VQ) as a sum over permutations from Sd, we write

|V (α)|2 =
∑
τ∈Sd

∑
σ∈Sd

sgn(τ) sgn(σ)
d∏

n=1

Qτ(n)(αn)Qσ(n)(αn).

We thus have

Hd(s) =
1

d!

∑
τ∈Sd

∑
σ∈Sd

∫
Cd

d∏
n=1

φ(αn)
−2sQτ(n)(αn)Qσ(n)(αn) dλ2d(α).

Now Hd(s) is convergent for R(s) > d, so Fubini’s Theorem gives

Hd(s) =
1

d!
Qτ(n)(αn)Qσ(n)(αn)

d∏
n=1

⟨Qτ(n), Qσ(n)⟩,

which gives the result by the first lemma above.

Mahler Measure Cases

Chern and Vaaler [3] explored the unit circle case, corresponding to the

Mahler measure. In this case, the inner product on monomials follows

⟨αℓ, αk⟩ =
∫
C
φ(α)−2sαℓᾱk dλ2(α)

=

∫ ∞

0

φ(r)−2srℓ+k+1dr

∫ 2π

0

e(ℓ−k)iθdθ.
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By Parseval’s formula, ∫ 2π

0

e(ℓ−k)iθdθ =


0 ℓ ̸= k

1 ℓ = k

so the set {1, α, α2, ..., αd−1} is a complete family of orthogonal polynomials

in L2(ν). Thus WQ a diagonal matrix, making the computation of Hd(s)

comparatively easy; they found

Hd(µ; s) =
πd

d!

d∏
n=1

s

s− n
.

We can see here that the poles of Hd(s) are all positive integers, and the origin is a

root with multiplicity d.

Elliptical Case

Sinclair [4] considered a family of ellipses of capacity 1. In particular, the

conformal map z 7→ z + q
z
(for q ∈ [0, 1)) maps the exterior of the unit disc to the

exterior of an ellipse; this leads to a set {Hd(µq; s) : q ∈ [0, 1]} which forms a curve

of rational functions between Hd(µ; s) and Hd(µ1; s).

Theorem 11. (Sinclair) Let d be a positive integer. If q ∈ [0, 1], then Hd(µq; s)

analytically continues to a rational function of s given by

Hd(µq; s) =
πdsd

d!

d∏
n=1

(1− q2n)s+ (1 + q2n)n

s2 − n2
.

For q > 0 the poles of Hd(µq; s) are at a mix of positive and negative integers,

in contrast to the strictly positive integer poles of Hd(µ; s). However, Hd(µq; s)

maintains the origin as a root of multiplicity d. For q ∈ (0, 1), there are an
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additional d roots in the half plane R(s) < 0. Of interest, in addition to being

rational in s, Hd(µq; s) is polynomial in q.

We will not provide a full proof of Sinclair’s result, though we will outline the

start of a key lemma providing ⟨f, g⟩ for monomials:

Lemma 6. Let J,K < d be postive integers, and let q ∈ [0, 1]; then ⟨αJ−1, αK−1⟩

analytically continues to a a rational function of s:

2π
d∑

n=1

{
qJ/2

((
J − 1
J+n
2

)
−
(

J − 1
J+n
2

− 1

))}{
qK/2

((
K − 1
K+n
2

)
−
(

K − 1
K+n
2

− 1

))}
× s

2n

(
s(q−n − qn) + n(q−n + qn)

s2 − n2

)

where the binomial terms are zero for non-integer or negative entries.

Sinclair starts by setting up the integral

⟨αJ−1, αK−1⟩ =
∫
C
φ(α)−2sαJ−1ᾱK−1dλ2(α)

then splits the integral into two regions: one inside the ellipse Eq, and one outside

the ellipse. By Frostman’s theorem, φ is identically c(Eq) = 1 inside the ellipse.

By taking a change of variables along the conformal map α 7→ z + q/z mapping

the interior (respectively exterior) of the circle to the interior (resp. exterior) of

the ellipse, we may integrate instead the regions inside and outside the unit disk.

This substitution takes φ(α) to |z| outside the ellipse, so that we may bypass φ

entirely. From here, Sinclair expands the powers of z according to the binomial

theorem (introducing the binomial coefficients seen above). After a switch to polar

coordinates, rearranging and identifying cases where the integral would be zero

leads to the expression above.
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Interval Case

As a special case, for q = 1 the elliptical case reduces to the interval [−2, 2],

with

Hd(µ1; s) = (2π)d
d∏

n=1

s

s2 − n2
.

Of interesting note, this interval serves both as a degenerate ellipse, and is

considered the 2-cusped hypocycloid (what we would denote H1 in the notation

introduced in the preceding chapter). We note however that the methods used

for the calculation of Hd(µ
(N); s) next chapter cannot be applied to this 2-cusped

hypocycloid, as we will assume the presence of both an interior and exterior region.

We note now some similarities on Hd among all three cases explored above;

in all cases, Hd is πd times a rational function from Q(s), with integer poles ≤ d,

the origin as a root of multiplicity d, and matching degree of numerator and

denominator for q ̸= 1. A notable difference is that while the Mahler measure

case has only positive poles, the elliptical and interval cases have equal numbers of

positive and negative poles. We will see a similar extension of poles when we come

to the cusped hypocycloids, with additional negative poles beyond −d.
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CHAPTER IV

THE CUSPED HYPOCYCLOIDAL MAHLER MEASURE

Before coming to the main results of this thesis, let us summarize our journey

so far. Our goal has been to discuss generalized Mahler measures for the region K

Φ(f) = exp

(∫
C
log |f(z)|dνK(z)

)

and in particular the volumes of the star body Vd corresponding to the generalized

Mahler measure. From Green’s functions, we saw that the equilibrium potential

may be realized in terms of the capacity of the region K and a conformal map

between the exteriors of the unit disk and K. From Chern and Vaaler, we may

realize the volume of Vd in terms of Hd(s), which in turn from Sinclair may

be written as the determinant of the matrix whose entries are inner products

⟨αM , αL⟩ =
∫
C φ(α)

−2sf(α)g(α)dλ2(α).

The Distribution of the Cusped Hypocycloidal Mahler Measure

We come now to a discussion of the cusped hypocycloidal Mahler measure.

We’ll start by acknowledging the differences compared to the elliptical cases.

In the elliptical case, the integral ⟨f, g⟩ was broken into two regions: inside

and outside the ellipse. Sinclair used the change of coordinates α = z + q/z

to transform this to inside and outside the circle, capitalizing on how this is a

conformal map to utilize the subordination principle. This technique breaks down

for the cusped hypocycloids; while the conformal map α = z +
z−N

N
may be applied

to the outside of the hypocycloid, the non-smoothness of the cusps along the
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boundary means we cannot apply the same conformal map to the inner integral.

We instead capitalize on two facts; first, by Frostman’s theorem φ is identically 1

within the hypocycloid. Second, we may instead apply the quasi-conformal map

α = z +
z̄N

N
from the interior of the circle to the interior of the hypocycloid; this is

still an integrable expression, and so we may bypass the cusps.

We now introduce the inner product for the the Hilbert space associated to

µ(N).

Lemma 7. (Main Lemma) Let L,M,N, d be nonnegative integers such that M,L <

d and N ≥ 2; then ⟨αM , αL⟩ equals

π

1
N+1

M∑
n= −N

N+1
M

(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n
n(N + 1) + 1

(n+ N
N+1

M + 1)(n+ N
N+1

L+ 1)

× s

s− n(N + 1)− 1

for L ≡ M mod (N + 1); and 0 otherwise. This sum is taken with integer

increments (so the elements of the sum are integers plus M
N+1

). Further, the

binomial coefficients are taken as zero for non-integer entries, or bottom entries

less than zero or greater than the top entry.

As an example, taking N = 2, M = 1, and L = 4, we have:

⟨α1, α4⟩ = π

1/3∑
n=−2/3

(
1

n+ 2
3

)(
4

n+ 8
3

)(
1

2

) 5
3
−2n

3n+ 1

(n+ 2
3
+ 1)(n+ 8

3
+ 1)

(
s

s− 3n− 1

)

= π

(
1

(
4

3

)(
1

2

)(
2

8

)(
s

s− 2

)
+ 1

(
4

2

)(
1

2

)3(−1

3

)(
s

s+ 1

))

=
(π
2

) s

s− 2
−
(π
4

) s

s+ 1
.
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TABLE 3 Sample calculations of vol(Vd) for various values of N+1 cusps and
polynomial degrees d

cusps d
(N + 1) 2 3 4 5

3 cusps
3

28
π3 262

10395
π4 18125

1437696
π5 311481

2896974080
π6

4 cusps
7

60
π3 5104

184275
π4 18063359375

3341114297136
π5 2272135257604

3295289986463475
π6

5 cusps
1

8
π3 67

2112
π4 41758354375

6744887525376
π5 63792691434842763

61482997256500019200
π6

We leave the proof of this identity to its own section at the end of this

chapter.

Volume of complex polynomials

Recall from chapter 3 that

λ2d+2(Vd) =
πHd(d+ 1)

d+ 1
.

Since Hd(s) is a determinant of the Gram matrix of terms ⟨αM , αL⟩, our main

lemma allows us to compute volumes of star bodies for any choice of degree d or

cusps N + 1; see Table 3 for some examples.

Of interesting note, Schanuel [? ] showed that the volume of a region gives

the approximate number of lattice points of the region. In the case of our volumes

of polynomials, lattice points correspond to polynomials with Gaussian integer

coefficients. Because our generalized Mahler measures are homogeneous, this means

we can easily compute the volume of “balls” of hypocycloidal Mahler measure ≤ T
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TABLE 4 Asymptotics of Hd(µ
(N); s) for various degree d and cusps N+1

cusps d
(N + 1) 2 3 4 5

3 cusps
1

4
π2 7

192
π3 49

12288
π4 1617

5242880
π5

4 cusps
5

18
π2 65

1458
π3 24245

4251528
π4 935857

13947137604
π5

5 cusps
5

16
π2 695

12288
π3 375995

50331648
π4 2756870539

3298534883328
π5

from the volume of Vd. This gives the asymptotic (main term) for the number of

Gaussian integer polynomials of degree ≤ d and “height” ≤ T as T → ∞.

Building off of Schanuel, Masser and Vaaler [? ] showed that Hd(µ; s)

asymptotically approaches the volume of monic polynomials with bounded Mahler

measure. This similarly extends to the generalized Mahler measures; see Table 4 for

examples of the volume of monic polynomials of bounded Mahler measure.

Analysis of poles and roots of rational function

We note for the following theorems that the inner product ⟨αM , αL⟩ is a sum

of terms
s

s− k
; this enables a characterization of the rational function Hd(µ

(N); s).

Theorem 12. For (N + 1)-cusps and degree d, the negative poles of Hd(µ
(N); s) are

a subset of

{N + 1−Nd,N + 2−Nd, ...,−2,−1}

and the positive poles are {1, 2, ..., d}.
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Proof. We start by acknowledging why s = 0 is not a pole; notice that each term in

the sum includes

(n(N + 1) + 1)
s

s− n(N + 1)− 1
.

Thus, the term
s

s− 0
is attached to a coefficient 0, and may be disregarded.

We will now simplify the coefficients of ⟨αM , αL⟩ as a single term Cn, and

consider the sum as
1

N+1
M∑

n= −N
N+1

M

Cns

s− n(N + 1)− 1

The poles are provided by the expression s− n(N +1)− 1. For a fixed M , the poles

range from 1 − NM to M + 1, with increments of N + 1. It follows that for M

ranging from 0 to d− 1, the poles range from N + 1−Nd to d.

It should be noted that for d not a nonzero multiple of N + 1, the poles will

be a strict subset of the possible poles; as noted above, for a fixed M the spacing of

poles is by N +1, thus skipping over some of the possible poles between N +1−Nd

and −1. The positive poles are captured by the term n = M
N+1

in the sum, so all

poles from 1 to d are included.

Theorem 13. For (N + 1)-cusps and degree d, s = 0 is a root of Hd(µ
(N); s) with

multiplicity d.

Proof. We note that s = 0 is certainly a root since ⟨αM , αL⟩ is a sum of terms all

with s = 0 as a root. Now, Hd(µ
(N); s) is a determinant of a d × d matrix whose

entries all have s = 0 as a root, and thus has 0 as a root with multiplicity d.

Theorem 14. The remaining roots of Hd(µ
(N); s) are all nonpositve.
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Note from Descartes’ Rule of Signs that if all coefficients of a polynomial

are positive, then none of the roots are positive. It thus suffices to show that the

numerator polynomial of the simplified ⟨αM , αL⟩ has no negative coefficients. This

follows from the term

(
1

N

)L+M
N+1

−2n

in our expression for the inner product; terms

in the sum with negative coefficients are more strongly bounded by powers

(
1

N

)k

,

so that positive terms in the combined rational function outweight the negative

terms.

Analysis of diagonal block matrices

While we have an construction for evaluating Hd(µ
(N); s), we do not currently

have a closed form expression for this function. In this section, we explore avenues

for finding a closed form expression by utilizing the structure of the Gram matrix

whose determinant gave us Hd(s).

In the following analysis, we’ll refer to our Gram matrix as A, and focus on

block matrices Aij of size N+1 (operating under the assumption that d = K(N+1)

for some K ∈ Z. Importantly, since ⟨αM , αL⟩ = 0 unless M ≡ L mod (N + 1), the

block matrices are diagonal.

Cholesky Decomposition

As a Hermitian matrix, we may rewrite the matrix using the Cholesky

decomposition A = LDL∗, where D is a diagonal matrix, L is a lower triangular

matrix with entries of 1 along the diagonal, and L∗ is the conjugate transpose of L.

H. Fang [7] worked out a block representation of this decomposition; if A = (Aij),
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then we can represent L = (Lij) and D = (Dj), where

Dj = Ajj −
j−1∑
k=1

LjkDkL
T
jk

Lij =

(
Aij −

j−1∑
k=1

LjkDkL
T
jk

)
D−1

j i > j

Lii = I Lij = LT
ji.

Since the block matrices Aij are diagonal, Lij = LT
ij, and matrix arithmetic

may be performed entry-wise, so we may write

Dj = Ajj −
j−1∑
k=1

L2
jkDk

Lij = AijD
−1
j −

j−1∑
k=1

L2
jkDkD

−1
j .

The term D−1
j serves as a telescoping role, eliminating poles present in blocks

prior to j. Since the main diagonal entries of L are all 1, it follows that det(A) =

det(D).

Block Matrix Determinant

An alternative consideration comes from capitalizing only on the commuting

nature of the diagonal block matrices Aij; from Kovacs, Silver, and Williams [? ],

the determinants of commuting-block matrices may be computed as:

det(A) = det

(∑
σ∈Sk

(sgn(σ))
k∏

i=1

Aiσ(i)

)
.
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In essence, this formula treats A not as a d× d matrix with complex entries, but as

a K ×K matrix (with d = K(N + 1)) over the ring of commuting matrices.

It shall be convenient to index the blocks Aij by 0 ≤ i, j ≤ K. Let us define

D(A) =
∑
σ∈Sk

(sgn(σ))
k∏

i=1

Aiσ(i), and consider the entries of a particular Aij to

determine the behavior of D(A). Recall again how ⟨αM , αL⟩ = 0 unless M ≡ L

mod (N + 1); thus the powers of the nonzero entries of Aij are equivalent mod

N + 1. For example,

A0,1 =



⟨α0, αN+1⟩ 0 0 · · · 0

0 ⟨α1, αN+2⟩ 0 · · · 0

...
. . .

...

0 0 0 · · · ⟨αN , α2N+1⟩


and in general,

Aij =



⟨αi(N+1), αj(N+1)⟩ 0 · · · 0

0 ⟨αi(N+1)+1, αj(N+1)+1⟩ · · · 0

...
. . .

...

0 0 · · · ⟨αi(N+1)+N , αj(N+1)+N⟩


.

Remember again that algebra with diagonal matrices may be performed

entry-wise; taking D(A) as a “determinant” of the blocks Aij, notice that D(A)

is itself diagonal, and its entries may be thought of as determinants of K × K
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submatrices constructed from characteristic classes modulo N + 1:

D(A) =



det([⟨αi, αj⟩]i,j≡0) 0 · · · 0

0 det([⟨αi, αj⟩]i,j≡1) · · · 0

...
. . .

...

0 0 · · · det([⟨αi, αj⟩]i,j≡N)


leading to

det(A) =
N∏
k=0

det([⟨αi, αj⟩]i,j≡k mod (N+1)).

This serves as a fascinating parallel to checkerboard matrices, such as the Gram

matrix Sinclair worked with in dealing with the reciprocal Mahler measure [4]. A

known method for taking the determinant of a checkerboard (alternating nonzero

and zero) matrix is to break the nonzero entries into two matrices and multiply

their determinants. The checkerboard matrix is simply the case N + 1 = 2 for this

result.

Proof of Main Lemma of Inner Product Identity

For polynomials f and g, ⟨f, g⟩ =
∫
C φ(α)

−2sf(α)g(α)dλ2(α). Using

polynomials zM and zL, then integrating over the (N + 1)-cusped hypocycloid HN

and its complement HN
C , we obtain

=

∫
HN

αM ᾱLdλ2(α) +

∫
HN

C

φ(α)−2sαM ᾱLdλ2(α)

since within the hypocycloid, φ = 1. Now, within the hypocycloid we set

α = z + z̄N

N
, while outside we set α = z + z−N

N
to shift the integration to the unit

disc D and its complement:
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∫
D

(
z +

z̄N

N

)M (
z̄ +

zN

N

)L

(1− |z|2(N−1))dλ2(z)

+

∫
DC

|z|−2s

(
z +

z−N

N

)M (
z̄ +

z̄−N

N

)L

|1− z−N−1|2dλ2(z).

We then expand the polynomial terms as sums with binomial coefficients and

switch to polar coordinates, obtaining:

∫ 1

0

∫ 2π

0

M∑
m=0

L∑
ℓ=0

(
M

m

)(
L

ℓ

)
rm+N(M−m)+ℓ+N(L−ℓ)+1

(
1

N

)M−m+L−ℓ

× eiθ(m−N(M−m)−ℓ+N(L−ℓ))(1− r2(N−1))dθ dr

+

∫ ∞

1

∫ 2π

0

M∑
m=0

L∑
ℓ=0

(
M

m

)(
L

ℓ

)
r−2s+m−N(M−m)+ℓ−N(L−ℓ)+1

(
1

N

)M−m+L−ℓ

× eiθ(m−N(M−m)−ℓ+N(L−ℓ))(1− r−(N+1)e−iθ(N+1) − r−(N+1)eiθ(N+1) + r−2(N+1))dθ dr.

By Parseval’s, the integral with respect to θ is 0 for all terms in the double

sum except those that give eiθ×0; we thus eliminate the sum over ℓ by taking ℓ =

m+ N
N+1

(L−M) in the left integral, and

ℓ =



m+ N
N+1

(L−M)

m+ N
N+1

(L−M) + 1

m+ N
N+1

(L−M)− 1

m+ N
N+1

(L−M)

for the four terms at the end of the right integral, giving
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2π

∫ 1

0

M∑
m=0

(
M

m

)(
L

m+ N
N+1

(L−M)

)
r2m(1−N)+ 2N

N+1
L+ 2N2

N+1
M+1

×
(

1

N

) 2n+1
N+1

M+ 1
N+1

L−2m

(1− r2(N−1))dr

+ 2π

∫ ∞

1

M∑
m=0

(
M

m

)[(
L

m+ N
N+1

(L−M)

)
r−2s+2m(N+1)−2NM+1

×
(

1

N

) 2N+1
N+1

M+ 1
N+1

L−2m

(1 + r−2(N+1))

−
(

L

m+ N
N+1

(L−M) + 1

)
r−2s+2m(N+1)−2NM+1

(
1

N

) 2N+1
N+1

M+ 1
N+1

L−2m−1

−
(

L

m+ N
N+1

(L−M)− 1

)
r−2s+2m(N+1)−2NM−2N−1

(
1

N

) 2N+1
N+1

M+ 1
N+1

L−2m+1
]
dr.

Note that the binomial terms previously had only integer entries; we thus

note that ⟨αM , αL⟩ = 0 if M ̸≡ L mod (N+1); going forward, we thus assume M ≡

L mod (N + 1). To see the symmetry of ⟨αM , αL⟩, we substitute m = n+ N
N+1

M .
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2π

∫ 1

0

1
N+1

M∑
n= −N

N+1
M

(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)

×
(

1

N

)M+L
N+1

−2n

r2n(1−N)+ 2N
N+1

(L+M)+1(1− r2(N−1))dr

+ 2π

∫ ∞

1

1
N+1

M∑
n= −N

N+1
M

(
M

n+ N
N+1

M

)[(
L

n+ N
N+1

L

)

×
(

1

N

)M+L
N+1

−2n

r−2s+2n(N+1)+1(1 + r−2(N+1))

−
(

L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−1

r−2s+2n(N+1)+1

−
(

L

n+ N
N+1

L− 1

)(
1

N

)M+L
N+1

−2n+1

r−2s+2n(N+1)−2N−1

]
dr.

Note that within each binomial term
(
K
k

)
, if k < 0 or k > K, the binomial is

identically zero; we may thus reindex some terms by n → n+1 to align powers of r,

obtaining
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2π

∫ 1

0

1
N+1

M∑
n= −N

N+1
M

r2n(1−N)+ 2N
N+1

(L+M)+1

[(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n

−
(

M

n+ N
N+1

M + 1

)(
L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−2
]
dr

+ 2π

∫ ∞

1

1
N+1

M∑
n= −N

N+1
M

r−2s+2n(N+1)+1

[(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n

+

(
M

n+ N
N+1

M + 1

)(
L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−2

−
(

M

n+ N
N+1

M

)(
L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−1

−
(

M

n+ N
N+1

M + 1

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n−1
]
dr.

Integrating gives

2π

1
N+1

M∑
n= −N

N+1
M

{
1

2n(1−N) + 2N
N+1

(L+M) + 2

[(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n

−
(

M

n+ N
N+1

M + 1

)(
L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−2
]

+
1

2s− 2n(N + 1)− 2

[(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n

+

(
M

n+ N
N+1

M + 1

)(
L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−2

−
(

M

n+ N
N+1

M

)(
L

n+ N
N+1

L+ 1

)(
1

N

)M+L
N+1

−2n−1

−
(

M

n+ N
N+1

M + 1

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n−1
]}

.
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Now, by factoring out
(

M
n+ N

N+1
M

)(
L

n+ N
N+1

L

) (
1
N

)M+L
N+1

−2n
from all terms, we arrive

at

2π

1
N+1

M∑
n= −N

N+1
M

(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n
{

1

2n(1−N) + 2N
N+1

(L+M) + 2

×

[
1−

(
M

N+1
− n

n+ N
N+1

M + 1

)(
L

N+1
− n

n+ N
N+1

L+ 1

)
N2

]

+
1

2s− 2n(N + 1)− 2

[
1−

M
N+1

− n

n+ N
N+1

M + 1
N

][
1−

L
N+1

− n

n+ N
N+1

L+ 1
N

]}
.

Expanding the terms and simplifying gives the desired

π

1
N+1

M∑
n= −N

N+1
M

(
M

n+ N
N+1

M

)(
L

n+ N
N+1

L

)(
1

N

)M+L
N+1

−2n
n(N + 1) + 1

(n+ N
N+1

M + 1)(n+ N
N+1

L+ 1)

× s

s− n(N + 1)− 1
.

Future work

Real case

We mentioned in the introduction a parallel set of star bodies for a restriction

to real polynomials. In chapter 3 we discussed the degree d complex star body

Vd(Φ) using the cumulative distance function hd(Φ; ξ) and the complex moment

function Hd(Φ; s). We may likewise ponder the degree d real star body of Φ

Ud(Φ) := {u ∈ Rd+1 : Φ(u) ≤ 1}
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utilizing the cumulative distance function

fd(Φ; ξ) := λd{b ∈ Rd : Φ̃ ≤ ξ},

and real moment function

Fd(Φ; s) :=

∫
Rd

Φ̃(b)−sdλd(s).

Importantly, this line of study utlizes a skew-symmetric inner product, rather than

an inner product as used for studying Hd(Φ; s). We may define a pair of skew-

symmetric inner products ⟨·; ·⟩R and ⟨·; ·⟩C by

⟨f ; g⟩R =

∫ ∞

−∞

∫ ∞

−∞
φ(x)−sφ(y)−sf(x)g(y) sgn(y − x) dx dy;

⟨f ; g⟩C = −2i

∫
C
φ(β)−sφ(β̄)−sf(β)g(β) sgn(I(β))dλ2(β).

Given Q a complete family of monic polynomials in R[x], we may create d× d anti-

symmetric matrices RQ and CQ whose j, k entries are ⟨Qj;Qk⟩R and ⟨Qj;Qk⟩C,

respectively. Finally, define the antisymmetric matrix UQ = RQ + CQ; UQ serves as

an antisymmetric analog to the Gram matrix WQ explored in the complex case.

As a further difference from the complex case, rather than working with a

determinant as in Hd(s) = det(WQ), we must instead work with the Pfaffian; for

d = 2J and U a d× d anti-symmetric matrix, the Pfaffian of U is

Pf(U) =
1

2JJ !

∑
τ∈S2J

sgn(τ)
J∏

j=1

U(τ(2j − 1), τ(2j)).
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The Pfaffian is often thought of as the signed square root of the determinant of the

matrix. As it turns out, Fd(s) = Pf(UQ). Utilizing this, Chern and Vaaler [3] found

Theorem 15. (Chern and Vaaler) For d = 2J ,

Fd(µ; s) = 2d
J∏

j=1

(
2j

2j + 1

)d−2j J−1∏
i=0

s

s− (d− 2i)
.

In the case of the reciprocal Mahler measure, Sinclair [4] similarly found

Theorem 16. (Sinclair) For d = 2J ,

Fd(µ1; s) =
2d

d!

d∏
n=1

(
2n

2n− 1

)d+1−n J−1∏
j=0

s2

s2 − (d− 2j)2
.

From this, one may see that in both cases, Fd(s) ∈ Q(s) has numerator and

denominator of matching degrees, integer poles ≤ d (all positive in the Mahler

measure case), and the origin as a root of high multiplicity. We thus speculate:

Conjecture 1. For N > 1, Fd(µ
(N); s) ∈ Q(s) has numerator and denominator of

matching degrees, integer poles ≤ d, and the origin as a root of high multiplicity.

Other hypotrochoids

Much as the ellipses served to smoothly connect the circular and interval

cases, we may explore other families of hypotrochoids to smoothly connect the

circular and cusped hypocycloids. Much as we had the conformal map α 7→ z + q/z

sending the unit disk to interior of the ellipse Eq for q ∈ [0, 1], we could consider a

conformal map α 7→ z + q
z−N

N
and quasi-conformal map α 7→ z + q

z̄N

N
sending the

unit disk to the interior of a hypotrochoid with (N + 1) petals; see Figure 3 for an

example with 5 cusps. For further discussion, let us call these hypotrochoids H(N)
q ,
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FIGURE 3 A rendition of H(4)
0.4, the 5-cusped 0.4-hypotrochoid.

and the associated generalized Mahler measures µ
(N)
q . Based on the behaviors of µq

and µ(N), we speculate:

Conjecture 2. For q ∈ (0, 1) and positive integers N ≥ 2 and d, Hd(µ
(N)
q ; s)

is rational in s and polynomial in q. As a function of s, it has poles at nonzero

integers ≤ d, the origin as a root of mulitplicity d, and additional roots so that the

degress of numerator and denominator are equal.

We may also wish to explore non-integer cusped hypocycloids. If N + 1 is a

non-integer rational number with reduced form
a

b
, the corresponding hypocycloid

has a cusps, but unlike the integer case, the boundary produced by the conformal

map intersects itself within the interior of the region; see Figure 4 for an example

with N + 1 = 5/3. Careful use of algebraic geometry could produce a modified

conformal map for further exploration.

Conjecture 3. For N ∈ Q\Z, Hd(µ
(N); s) is rational in s with matching degrees

in numerator and denominator. This function has poles at nonzero rational values

≤ d, the origin as a root of multiplicity d, and additional roots.
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FIGURE 4 A rendition of the 5
3
-cusped hypocycloid.
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