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DISSERTATION ABSTRACT
Nathan S Hunter
Doctor of Philosophy
Department of Mathematics
September 2022

Title: The Distribution of the Cusped Hypocycloidal Mahler Measure

We explore generalized Mahler measures associated to regions in the complex
plane. These generalized Mahler measures describe the complexity of polynomials
in C[z] by comparing the geometry of their roots to compact subsets of C. Citing
past work connecting the Mahler measure to the unit disk and the reciprocal
Mahler measure to the interval [—2, 2], we explore a family of cusped hypocycloidal

(M) associated to the (N + 1)-cusped hypocycloids, using

Mahler measures p
potential theory to show how a generalized Mahler measure may be constructed
from Jensen’s formula.

Let s be a complex variable, and d a positive integer. To every generalized
Mahler measure ® we define the complez moment function Hy(®;s) which provides
information about the range of values ® takes on degree d polynomials in C[z].
These functions are analytic in the half-plane R(s) > d. We will show how
H,(s) may be represented as the determinant of a Gram matrix in a Hilbert space

determined by ® and s. We thus discover properties of Hy(uV); s) as a rational

function of s.
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CHAPTER I

INTRODUCTION

Mahler Measure

Definition 1. The Mahler measure u(p) of a polynomial p with leading coefficient

a and zeroes aq, g, ..., o, 1s defined by pu(p) = |a| Hmax{l, ||}
i=1

As a simple example, the Mahler measure of any cyclotomic polynomial is 1.

The Mahler measure is often used as a measure of complexity of polynomials.

Jensen’s Formula

For any o € C and r > 0,
1 .
/ log |re*™ — a| df = log max{r, |a|}.
0

This statement is called Jensen’s formula. By Jensen’s formula, the Mahler measure

corresponds to the geometric mean around the unit circle:

p(p) = exp (% /0 " log [p(e™)| d9) :

These two representations highlight the Mahler measure’s role as a measure of
complexity of polynomials; we have a contrast between the roots or the coefficients

of the polynomial.



Lehmer’s Problem

The Mahler measure has been the subject of significant study, especially

regarding the unsolved problem known as Lehmer’s conjecture [1J.

Unsolved problem 1. (Lehmer’s problem, 1933) Does there exist an € > 0 such

that if f(x) is an irreducible, non-cyclotomic polynomial in Z[z], then pu(f) > 1+ €?

The best known lower bound for a nontrivial Mahler measure is p(p) =
1.17628..., with one polynomial satisfying this being Lehmer’s polynomial P(z) =
204+ 2% — 2" — 2% — 25 — 2* — 23 + 2 + 1; however, it remains open whether this is a
true lower bound.

C. Smyth [2] provided a partial solution in the case of non-reciprocal
polynomials. A polynomial of degree n is reciprocal if f(x) = x™p(1/z) for some
polynomial p(x) # x — 1. Smyth showed that if f is an irreducible, non-reciprocal
polynomial then u(f) > p(x® — 2z — 1) = 1.32.... Lehmer’s problem can thus be
considered in terms of reciprocal polynomials.

This thesis does not focus on Lehmer’s problem; this conjecture is referenced
here because it gives context to much of past exploration of the Mahler measure.
Rather, we focus here on distributions of Mahler measures, which was first explored

by S-J. Chern and J. Vaaler in [3]; C. Sinclair continued this line of work in [4],

with a particular focus on the reciprocal Mahler measure py [B] defined by pi(f) =
p(f(x+1/z)).

Volume Calculations

For positive integer d, we may consider the Mahler measure restricted to the

set of polynomials of degree at most d; specifically, one may view a polynomial of
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degree at most d as a vector in C?*! based on its coefficients, and thus view p as a
function on C%!'. The Mahler measure satisfies most axioms of a vector norm, all
except the triangle inequality, so we can construct a set akin to the unit ball. We

shall call this set the degree d complex star body of i, and denote it

V,={aeC¥: pya) <1}

We may similarly define the degree d real star body of u as

Uy ={acR¥: p(a) < 1}

however, this thesis will focus primarily on the former.

Chern and Vaaler [3] cleverly utilized a Mellin transform to determine the
volumes of U, and Vy; they considered a monic Mahler measure fi : C? — [1,00),
where fi(b) is defined as the Mahler measure of the monic polynomial whose
non-leading coefficients are the entries of b. Writing A\; and Ay for the Lebesgue

measures on R? and C?, respectively, we may define distribution functions:

fa(€) == Xa{b e R?: u(b) < &};

ha(§) == Aaa{b € C*: fu(b) < &}

These functions contain information on the range of values of the Mahler

measure on the set of monic polynomials of degree d, from R[z] and Clz]



respectively. The Mellin transforms of these are given by

ﬁww=lmfﬂ*n@wm
ExgzaAmfs%aoda

where s is a complex variable. For 2R(s) > d these integrals converge to an analytic
function, thus encoding information on the range of values of the Mahler measure

of monic polynomials of degree d into analytic functions. As it turns out,

vol(Uy) = Aa1(Uy) = Qf/;(d +1);

vol(Vy) = Aaara(Va) = 2mha(2d + 2).

These values can then be computed using a change of variables:

Jats) =5 [ o) axa(b;
) = 52 [ (D) daa(b)

We will define functions

Fy(s) = / lb) Sdna(b);
R
Hy(s) = / lb) #da(b),
C
respectively, the real and complex moment functions of p, which similarly to f,

and hg converge on R(s) > d. A second change of variables allows for integration

over root vectors of the polynomials instead of coefficient vectors. Chern and Vaaler



then showed that both Fy(s) and Hy(s) analytically continue to rational functions

with simple poles at positive integers and high multiplicity roots at the origin:

Theorem 1. (Chern, Vaaler) Let J be the integer part of d/2; then

g4 d
s S
Hao) = g 11 =
" n=1
J 2 d—25\ J—1 s
Fy(s) = (27 ( )
( gl_[1 27+1 ﬂ)s—(d—Qj)

Notably, and perhaps surprisingly, this means that the volume of U is a
rational number, and the volume of V; is a rational number times 7. Further,
since Hy and Fy are built from Mellin transforms of hy and f;, we can recover
explicit formulae for f; and hy from the Mellin inversion formula. Thus, Chern
and Vaaler showed that f; and hy are polynomials of degree d, with respectively
rational coefficients and rational coefficients times 7.

Sinclair [4] showed that these volumes as special values of Mellin transforms
can be applied to generalized Mahler measures ®. Given a function ® on
polynomials, we may consider star bodies Uy(®) and V,(®P), distribution functions
fa(®: &) and hy(P; &), and moment functions Fy(®;s) and Hy(®;s). Fascinatingly,
many of the properties of the volume calculations above continued on to other cases

Sinclair considered. To start, taking u; as the reciprocal Mahler measure, Sinclair

found that Hy(py;s) has an analytic continuation to a rational function of s:

Theorem 2. (Sinclair,[5])

d
S
Hy(p;s) = 2m)* [ ] a7
n=1



Much like Hy(u;s), Hy(p1; s) has poles at integers, and the origin as a root of
multiplicity d. Similarly to above, a corollary of this is that hq(u;&) is a reciprocal
Laurent polynomial of degree d.

Sinclair then considered a family of generalized Mahler measures f, defined
by p,(f) = u(f(z + ¢/x)), for ¢ € [0,1], as well as discussing the possiblility of
exploring other generalized Mahler measures of the form ®(f) = u(f o F) for some

Laurent polynomial F [4].

Theorem 3. (Sinclair) If ¢ € [0,1], then Hy(g; s) analytically continues to the

rational function of s given by

rdgd ﬁ (1— s+ (1+¢")n

Hd(uq; S) = d s2 — n2

n=1

Note that pg is simply the Mahler measure, and p; is the reciprocal Mahler
measure; thus, for ¢ € [0, 1], Hq(pg; s) serves as a “path” of moment functions
between Hy(p; s) and Hg(u1;s). Notable for the purposes of this computation,
there is a link between these p, and a family of ellipses deforming the unit circle
to the interval [—2,2].

The key to finding Hy(®; s) to be a rational function of s was the realization
that the moment function can be written as the determinant of a matrix in a
Hilbert space associated to ®. This determinant arises from a Gram matrix,
allowing H;(®; s) to be considered as the volume of a parallelepiped in the
associated Hilbert space.

To this end, define the complex measure v = v(®) on C by dv(a) =

ola) (@) *dAy(a), where ¢ : C — (0,00) is a root function associated with



®. Then L*(v) is a Hilbert space equipped with inner product

(f.g) = / () f(a)g(@)dAs(a)

for f,g € L*(v), along with a norm M(f)* = N(f;s)? := (f, f). For R(s) > d, we
can see that any polynomial with degree less than d is in L*(v).

Now, let Q@ = {Q.(«) : n = 1,2,...,d} be a set of monic polynomials in C[z]
with deg(Q@,) = n — 1; we call such a set a complete family of polynomials. Each @,
is in L?(v), and Q spans a parallelepiped in the Hilbert space. The Gram matrix of
@ is then the d x d matrix whose ¢, m entry is (Q, Q,,). This is then a symmetric

matrix depending on @), ®, and s.

Theorem 4. (Sinclair, [4]) Let Q be a complete family of monic polynomials. Then
H,(s) = det(Wy).

N-Cusped Hypocycloids

This thesis will consider generalized Mahler measures for the family of shapes
known as the (n-cusped) hypocycloids. For n € Z, the n-cusped hypocycloid is
most commonly defined in terms of rolling circles: suppose a circle is inscribed
inside another circle with radius n-times that of the inner circle. Choose a point
on the boundary of the inner circle, then allow the inner circle to roll along the
boundary from inside the outer circle; the curve traced by the chosen point forms
a simple closed loop, called the n-cusped hypocycloid. See Figure [1] for a 3-cusped
hypocycloid and Figure 2| for a 5-cusped hypocycloid.

Hypocycloids also have a description in terms of conformal and quasi-

-N
z
conformal maps on the complex plane. The map z — 2z + N is a conformal



FIGURE 1 A rendition of the 3-cusped hypocycloid.

FIGURE 2 A rendition of the 5-cusped hypocycloid.

map sending points on the exterior of the closed unit disk to the exterior of the
SN
z

region enclosed by the (N + 1)-cusped hypocycloid. Likewise, the map z — —

N
is a quasiconformal map between the closed unit disk and the interior of the
hypocycloid [§].
Of interesting note, the 2-cusped hypocycloid corresponds to the real interval
[—2,2]. This has important connections to reciprocal polynomials, and thus by
Smyth [2] relates to potential solutions to Lehmer’s conjecture; this prompted

Sinclair’s study of the reciprocal Mahler measure [5]. Under the rolling circles

definition, the unit circle may similarly be considered the 1-cusped hypocycloid.



We can thus see that for the first two levels of cusps, Hy(s) has integer poles < d
(with the 2-cusped case adding negative poles that the 1-cusped did not have) and
the origin as a root of high multiplicity.

The question arose, then, what happens with the Hy(s) corresponding to
higher cusped hypocycloids? Does it maintain the high multiplicity roots at the
origin, and where are the poles?

This thesis explores generalized Mahler measures corresponding to the

cusped hypocycloids: we define the Nth cusped hypocycloidal Mahler measure by

pM(f) = p(f (@ + =), for N > 1.

Theorem 5. (Main Theorem) For N > 1 an integer, Hq(u™N); s) analytically
continues to a rational function of s, which is ©@ times a rational function with
rational coefficients, has nonzero integer poles, the origin as a root of multiplicity
d, and all other roots are negative. Further, the numerator and denominator have

matching degrees, bounded by (d — 1)(N +1).

One can see that Hy(u?Y);s) indeed continues many of the properties of
Hy(pg; s), suggesting that these might be continued for other generalized Mahler
measures explored in the future. In addition, it is not hard to calculate Hy(u™; s)
for specific choices of N and d, and thus we can calculate vol(V,), as well as other

volumes we will discuss later; see Table [1| for some particular results.

Counting Points of Bounded Height

This thesis has applications of the asymptotics to Hy(u™);s). Schanuel [?
| pioneered a study of counting algebraic numbers of bounded height through the
asymptotics of a height function; Masser and Vaaler [? | explored how this concept

may be applied to counting polynomials using the Mahler measure as a height on

9



TABLE 1 Sample calculations of vol(V,) for various values of N+1 cusps and
polynomial degrees d

(N+1)vs.d| 2 3 4 5

3 4 262, 18125 311481
3 cusps —T —T T —_——————— 7

28 10395 1437696 2896974080

7 4 5104 , 18063359375 . 2272135257604
4 cusps —T

60" 184275 3341114207136 3295289936463475

5 cusDs 171-3 67 - 41758354375 5 63792691434842763 6
P 8 2112 6744887525376 61482997256500019200

polynomials. These counting problems may be extended to our generalized Mahler
measures.

First, we may calculate the volume of monic polynomials as the limit of Hy(s)
as s — 00; see [2| for some examples of the asymptotics of Hy(u®);s).

Further, the volumes of star bodies approximately gives the number of lattice
points in the region, which corresponds to polynomials with Gaussian integer
coefficients. Consider n4(T) = #{f € Zl[i][z] : p'™)(f) < T,deg(f) < d}. Then, by
the geometry of numbers (under some assumptions regarding the boundary of the
star body),

na(T) ~ vol(V,)T! 4+ O(T?)

as T — oo. Similarly, if 74(7") is the monic version of n4(7"), then ny(T") ~ hq(T)
as T — oo. In this way hg, vol(Vy;), and H, capture information for the counting
of Gaussian integer polynomials of bounded degree and bounded height for our

generalized Mahler measures.

10



TABLE 2 Asymptotics of Hy(u™);s) for various degree d and cusps N+1

(N+1)vs.d| 2 3 4 5
1, T, 49 1617 .
3 cusps & 192" 12288 5242880 "
4 cusi 5, 65 5 24245 935857
P 18 1458 4251528 13947137604
5 , 695 ., 375995 , 2756870539
5 cusps —m us T s
16 12288 50331648 3298534883328

Structure of this thesis

In chapter 2, we cover key theorems of potential theory that enable our
discussion on generalized Mahler measures. In chapter 3, we discuss in depth
the results regarding Hy,(s) found first by Chern and Vaaler, then by Sinclair. In
chapter 4, we discuss results pertaining to the hypocycloidal Mahler measure, along

with lines of further study stemming from this work.

11



CHAPTER II

GENERALIZED MAHLER MEASURES

We return to the representation of the Mahler measure provided by Jensen’s

formula:

uth) = e ([ toglr(e)as).

While the root definition of the Mahler measure is defined on polynomials, this
form may be more generically applied to Laurent polynomials, since it recovers the
Mahler measure from the coefficients rather than the roots. Further, we can use
this form to consider generalized Mahler measures: for particular choices of measure

v on C, we will explore

(1) = e [ gl av(z) ).

Using Jensen’s formula, we will likewise develop root functions ¢ : C — (0, 00)

such that
d

©(f) = la| [ ] e(an).

n=1
where f is a degree d polynomial with leading coefficient a.

Developing these choices of v and ¢ will come from an exploration of
potential theory. Everything in the following section is background, and already
well established; we will focus here on the definitions and theorems directly
important to our discussion, though we will mention some well established theorems

when necessary. For a more thorough discussion of potential theory, Ransford

12



[6] gives an excellent discussion on the subject. We will end this chapter with a

discussion on how potential theory impacts this thesis.

Potential Theory
Subharmonic and Harmonic Functions
Before discussing potentials, we must first introduce subharmonic functions.

Definition 2. Let U C C be an open set, and let u : U — [—o00,00) be a function

which 1s not identically —oo; u s upper semicontinuous at o € U if

lim sup u(z) < u(a).

Z—Q

If u is upper semicontinuous at every o € U, we say il is upper semicontinuous on

U.

Importantly, if u is upper semicontinuous on U and K is a compact subset of
U, then u is bounded above and attains it maximum on K.
If there exists p = p(a) > 0 such that, for 0 <r < p,

1 2 )
< 0
u(a) < _27T/0 u(a+re”) do,

then u satisfies the submean inequality at o. The submean inequality gives that

f(a) is smaller than the average value taken by f along the boundary of a disk of
sufficiently small radius around «. To understand how to think of it, the submean
inequality is analagous to the property of locally convex functions: if f : (a,b) —

[—00, 00) is locally convex at z € (a,b), then there exists » > 0 such that for

13



0<e<r,

flx—e)+ flx+e
5 ;

fx) <

and f is smaller than the average value of f taken on an interval of sufficiently
small length around =x.

We come now to subharmonic functions:

Definition 3. If u is upper semicontinuous and satisfies the submean inequality at
every a € U, then u is subharmonic on U. If both u and —u are subharmonic on

U, we may call v harmonic on U.

Notably, harmonic functions are continuous and have equality for the

submean inequality.

Potentials and Logarithmic Potentials
Definition 4. If v is a finite Borel measure on C with compact support K, its

potential is the function p, : C — [—00,00) with

pu(z) = exp [ loglz — uldv(w)
K

for z € C.

Importantly, the potential p, is subharmonic on C. As we will explain later,
this name arises as an analog of the potential energy of a physical system. At
times, it will be easier to work instead with the logarithmic potential of v, given by
log p,; in fact, some texts refer to the logarithmic potential simply as the potential.

We shall start with a proof that the logarithmic potential is subharmonic.

14



Theorem 6. Let v be a finite Borel measure on C with compact support K ; then

log p, is subharmonic on C and harmonic on C\K.

Proof. First, note that subharmonicity is a local condition, so it suffices to show
that log p, is subharmonic on every relatively compact open set U C C.

Define v : C x C — [—00,00) by v(a, w) = log |w — «|. It may be seen that
v is subharmonic in each variable, and is thus also upper semicontinuous in each
variable. Thus there exists some ¢ such that v(a,w) < con U x K. Now, since

v(a, w) — ¢ is negative on U x K, by Fatou’s lemma it follows that

lim sup log p,(z) — ¢ = lim sup/ v(z,w) — cdv(w)
K

Z—rQ zZ—a

g/limsupv(z,w)—CdV(w)
K

zZ—a

= logp, () —c.

Thus, log p, is upper semicontinuous.

For each av € U, there exists p > 0 such that for 0 < r < p,
1 2m )
log |w — o < —/ log |w — a + re|df),
2m J,
with equality when w # «. Thus, for 0 < r < p,

logp,(@) = [ loglw — aldv(w
C
1 2m P
<— | C log |w — o + re”|df dv(w)
2m 0

1 /QW/ 0

= — log |w — a + re'|dv(w) df
5| [ el )
1 2

- 7 i log p, (o + reie)dﬁ

15



so that log p, satisfies the submean inequality. Note that equality here holds if « ¢

K. Thus, log p, is subharmonic on C and harmonic on C\ K. O]

Lemma 1. Let v be a Borel probability measure on C with compact support K ;

then p, ~ |a| as |a| — oc.

Proof. First,

pta) =exp{ [ 1oglo— uldvtw)}
:exp{10g|a\+/Klog|1—w/a|dy(w)}

— lo] exp {log/KlogH _ w/al du(w)}.

Thus,

lim pu(@) = lim exp {log\a| +/ log |1 —w/a|dv(w)}.
|a| =00 K
Setting ¢ = sup,,cx |w|, we see that for all w € K
log |1 — w/a| <log(1+ ¢/|al).

Now, if |a] > ¢, then log |1 — w/a| < 2, so by dominated convergence theorem,

lim exp{/ log |1 —w/a|du(w)} = 1.
|a| =00 K

Thus, p, ~ |a| as |a| — oc. O

16



Equilibrium Potentials

We continue with a value which proves critical for finding our ideal choice of

measures.

Definition 5. If v is a finite Borel measure on C with compact support K, its

energy I(v) is

() = /K log py () d(2) = /K /K log | — w| dv(w) dv (2).

To understand the origin of the term “energy”, consider v as a distribution of
electric charges in C; then p,(z) is the potential energy felt by a particle at point z,
making [(v) the total energy of the system of charges.

Much as it helps to consider log p, in place of p, at times, we will likewise

consider a parallel value to the energy.

Definition 6. Let P(K) be the set of Borel probability measures supported on K.

The capacity of K is the quantity

c(K) = exp ( sup [(V)) .
veP(K)

Capacity zero sets fulfill a similar role of “negligible” sets in potential theory
as sets of measure zero do in measure theory; in fact, capacity zero sets have
measure zero.

We arrive now at the way to choose probability measures to produce

generalized Mahler measures.

17



Definition 7. Let K C C be a compact set, and consider P(K) the collection of all

Borel probability measures on K. If there exists v € P(K) with

I(vg) = sg&)[(u)
ve

then vi is called an equilibrium measure for K. The corresponding potential p,, =
px is called an equilibrium potential for K.

As a first example, we can quickly see that if v is an equilibrium measure
corresponding to the unit disc, then Jensen’s formula gives that the Mahler

measure may be written:

uth) = oo ([ 1o6lrl ).

We now may give a rigorous definition for these generalized Mahler measures:

Definition 8. Let K C C be a compact set with equilibrium measure v; the

generalized Mahler measure over K is

0() = exp ([ 108171 av(2)).

We continue with additional properties of potential theory to understand how

to work with these generalized Mahler measures.

Theorem 7. (Frostman’s Theorem) Let K be a compact set in C with ¢(K) > 0,
and suppose the equilibrium potential py is continuous; then px > c¢(K) on C, and
pr = c(K) on K.

We shall make great use of Frostman’s theorem for simplifying certain

calculations in chapter 4.
18



Proof. We will work with the logarithmic potential to show that logpx > I(vk) on
C and logpx — I(vk) on K. Since we assumed ¢(K) > 0, we have I(vg) > —oc.
Forn > 1,set U, = {z € K : logp,(z) > I(v) + 1/n}, and call K,, =

U,. We will show that U, is empty. Assume there is some n > 1 such that U, is
nonempty; notice that the corresponding K,, must have positive Lebesgue measure,
so ¢(K,) > 0 as well. We thus may find v € P(K,) such that I(rv) > —oo. By
definition, I(vg) = [, logpk(2)dvk(2), so there exists some z; € supp vg such
that log px(21) < I(vk). By upper semicontinuity there exists 71 > 0 such that for
z € Az, m1),

1
log prc(2) < I(vie) + 5

Now, A(z1,71)N K, is empty, and since z; € supp v, we must have vg(A(z1,71)) >

0. Call a = vg(A(z1,71)) and define a signed measure on K:

)
v on K
0=19 —vi/a on A(z,7m) -
0 elsewhere
\
For each t € (0,a), define a measure on K by v, = vk + to. It is easily

verifiable that v, satisfies the criteria to be a measure, and since o(K) = 0 we can

also see that v, is a probability measure on K. Now,

I(wy) — I(vge) //log|z—w|dl/t e //log|z—w|d1/K( ) dve(2)
:zt/K/Klogyz—wuyK(z)da(w)+t2/K/Klog\z—w\da(z)da(w).
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The second integral in the last line is finite, since I(r) > —oo implies that I(|o|) >
—o00. Thus the second integral is a constant depending on o, which we shall call 7,

SO

I{00) = Ivk) =2 [ Togpicw)dn(uw) + ¢y

2t
=2t [ ogpiwiiv) - [ togplwdiu) + £y
K a JA(z1,m1)

o ((10+2) - (10 1))+
(L),

For sufficiently small ¢, we have I(1;) > I(vk), contradicting the status of vx as an
equilibrium measure of K. Thus U, must be empty for all n > 1, so that logpx <
I(vk) on K.

We now show that logpx > I(vgk) on the support of vk; by a theorem of
potential theory called the minimum principle, this implies that log px > I(vk)
over all of C. Thus we will conclude that log px > I(vk) on C, and logpyx = I(vk)
on K.

For each n > 1, we define

Vo = {z € supp vk :logpk(z) < I(vk)}.

We will again show that V,, is empty for each n > 1 and thus that logpx(z) >
I(v) on the support of vi. By the minimum principle, log px > I(vk) on all C,
providing part 1 of the theorem.

Assume that V,, is nonempty for some n > 1, and choose z, € V,,. By upper
semicontinuity, there exists 7o > 0 such that logpx < I(vg) — 1/n on A(zg, 7).
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Since zo € supp vk, we have vg(A(22,75)) > 0;call b = vg(A(zo,73)). We

previously showed that logpx < I(vg) on K, so

umzémmew

:/ mmvwma+/_ log prc (2)dvic ()
A(z2,r2) K\A(z2,r2)

<0 (J(VK) - %) + (1= ) I(vie)

< I(vk),

providing a clear contradiction. Thus V,, must be empty for each n > 1, completing

the proof. n

Green’s Functions

We turn now to a method of finding explicit formulae for equilibrium
potentials; Green’s functions will enable us to determine Jensen’s formulae for
generalized Mahler measures formed from equilibrium measures. Here we consider

Cs the extended complex plane.

Definition 9. If D is a proper subdomain on C.,, a Green’s funciton for D is a
map gp : D X D — (—o00,00] such that, for any w € D, gp(-,w) is harmonic on

D\{w} and bounded outside each neighborhood of w; gp(w,w) = oo, and as z — w,

log |z| + O(1) w = 00
gD(Zaw) =
—log|z —w|+ O(1) w # o0

and gp(z,w) = 0 as z — ¢ for each ¢ € D outside a capacity 0 subset of D.
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Our next theorem gives some insight into the utility of Green’s functions for

our study of generalized Mahler measures.

Theorem 8. (Subordination Principle) Let Dy and Dy be domains in Co, with
nonzero-capacity boundaries, and let f : D1 — Dy be a meromorphic function. Then
9p,(f(2), f(w)) > gp,(z,w), with equality if f is a conformal mapping of Dy onto

Ds.

We will primarily utilize the case of equality when f is conformal. First, we

will require a lemma providing the positivity of Green’s functions.

Lemma 2. Let D be a domain with Green’s function gp; then gp(z,w) > 0 for all

z,w e D.

For a proof of this lemma, see chapter 4.4 of Ransford [6]. Returning to a

proof of the subordination principle:

Proof. We first consider the case where w # oo and f(w) # oo; for z € Dy\{w},
define u(z) = gp,(z,w) — gp,(f(2), f(w)). One can see that u is subharmonic on

Dy \{w}, bounded above outside every neighborhood of w, and

lim u(z) = log +0(1) =log |f'(w)| + O(1)

Z—w

f(Z)—f(w)‘

so that u is bounded above on all of D;\{w}. The preceding lemma gives that
gp, > 0 so that

limsup u(z) < lim gp, (z,w) =0
z—( z—¢

which means that by the maximum principle, a theorem of potential theory, u < 0

on Di\{w}. Thus, for w # oo and f(w) # o0, gp,(z,w) < gp,(f(2), f(w)). For the
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case where f is a conformal map, we may take the same argument with f=!: Dy —
D; to obtain equality.
To cover the case when w = oo, let F be the conformal map z — 1/z, and let

D} be the image of D; under this map. Notice now that if f o F(w) # oo, then

90, (1/2,1/w) = gp;(2,w) = gp,(f 0 F(2), f o F(w)

so that

9D, (Za OO) = gD{(l/Za O) = gD2(f(Z)7 f(OO))
The case where f(w) = oo follows from a similar inversion. O

We finish our discussion on Green’s functions with a corollary to the
subordination principle, which will be helpful in our construction of generalized

Mahler measures:

Corollary 1. Let K be a simply connected compact subset of C with positive
capacity and continuous potential. Let Dy = C \A and Dy = C \K, and let

f: Dy — Dy be a conformal map with f(oco) = oo, then

c(K) ac K
pr(a) = .
() f )] agK

We thus have a construction for the equilibrium potential pg in terms of the
capacity of K and a conformal map from the complement of the unit disk to the
complement of K. Specifically, the potential is identically the capacity within
K (as stated by Frostman’s Theorem), and outside K it is the capacity times

the absolute inverse of the conformal map. This may seem unwieldly for some
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conformal maps, but our conformal maps will prove easy to work with, particularly

after an appropriate change of coordinates we will come to later.

Generalized Jensen’s Formula

We come now to an application of Jensen’s formula to generalized Mahler
measures ¢ for compact set K, along with a discussion on how to construct the
associated root function . Recall that if v is a Borel probability measure on C

with compact support, then p,(a) ~ |a| as o] — oo. By Jensen’s formula, if
d

f(z) = aH(x — ), then

D(f) = exp ( / log | (=) duK<z>) — Jal nri[lpK(a)

showing that ¢ = pk; the construction provided by the corollary above reveals why
we refer to ¢ as a root function for K.

Sinclair [4] studied the generalized Mahler measures for the family of ellipses

‘ 72 y?
B {rree g g tp

for ¢ € [0,1], where Ejy is the closed unit disk, and F; is the degenerate ellipse
[—2,2]. The family of conformal maps z — z+¢/z send the exterior of the unit disk
to the exterior of these regions £,. Using the technology covered above, one may
verify that these ellipses have capacity ¢(E,) = 1.

We will similarly consider a family of closed regions with capacity 1. We shall
define the closed (N + 1)-cusped hypocycloid Hy as the complement of the image

Z_N

of the exterior of the unit circle under the conformal map Cy : 2 — 2z + N
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Importantly, this family of hypocycloids each has capacity 1. Thus, by the corollary
above,

1 o€ Hy
Pry (a> =
Cy ()] o d Hy

We thus have a simple expression for our root function ¢ of ™).
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CHAPTER III

VOLUMES OF POLYNOMIALS

We come now to a discussion of the distributions of generalized Mahler
measures. Our goal will be to discuss the volume of star bodies of generalized

Mahler measures:

vol(Vy(®)) = Mgaro{a € CH . d(a) < 1}
by use of the cumulative distance function of ®

ha(€) = ha(®;€) = doafb € C*: B(b) < &}
and the complex moment function of ®,

Hy(s) = Hy(®;5) = [c d ®(b) "% dAgg(b)

These objects each describe the range of values of ® on polynomials in C|z]
of degree d. One particular connection we will cover is that the volume of Vy(®) is
a special value of the Mellin transform of hy(®;¢). Similarly, the complex moment
function of @ is closely related to the Mellin transform of hgy(®;&).

The determination of Hy(®;s) will be the primary focus of this and the
final chapters. In particular, H,(s) may be expressed as the determinant of a
particular matrix, which allows us to describe the volume V,;(®) as the volume of
a parallelepiped in a Hilbert space determined by ®. Utilizing this Hilbert space

will allow us to refine Hy(®; s) and the volume of V;(®) in terms of a family of
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orthogonal polynomials produced by ®. Given an expression for Hy(s), we can
recover hy(€) from the Mellin inversion theorem.

In this chapter, we will explore the formulae for Hy(®;s) and hg(P;¢) for
cases of ® covered in previous research. As a point of interest, all examples of
H,(s) computed here and in the final chapter have a meromorphic continuation
to all of C. Information on the distribution of the generalized Mahler measures can
be recovered from the values of the poles and roots of these meromorphic functions;
in particular, Hy(s) is a rational function of s with poles at nonzero integers, and
the origin is a root of multiplicity d. Under certain criteria, the coefficients of this
rational function will be rational numbers times 7¢. These results will lead to
finding that hy(€) is a Laurent polynomial on [1,00), and in the special cases the

coefficients will be rational numbers times 7.

Mellin Transformation

We start by discussing the method covered by Chern and Vaaler [3] to express
the volume of V; as a special value of a Mellin transform of a function found from

b.

Definition 10. The Mellin transform of a function f :[0,00) — R is

fo= | T (@) da

where s is a complex variable.

If this integral converges, it does so in the complex strip defined by a <
MR(s) < b, where a and b are the extended real numbers defined by the asymptotic

behavior of f(z) as x — oo and x — 0, respectively. Where the integral converges,
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fis an analytic function: consider a triangle A in the region a < R(s) < b; then

/f ds-// — 1 f(x) dxds
—/0+ (95)/A “ldsdr =0,

where the last is due to 7% being analytic. Thus, Morera’s theorem gives that ]?is

analytic in the region of convergence.

Theorem 9. (Chern and Vaaler [3]) Let ® be a generalized Mahler measure, then

the volume of the degree d star body of ® is
Aaara(Va) = 2mha(2d + 2).
Proof. The volume of V; may be written as
Naar2(Vy) = /(C Aaa{b € C?: ®(b, 2) < 1} dMy(2).

By homogeneity, we can rewrite

Aaa{b € C: ®(b,2) <1} = \g{zc € C?: (2¢,2) < 1}
1
= |2**Maa {c € C: d(c,1) < —} :

2|

By switching to polar coordinates and setting & = 1/r, it follows
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1
)\2d+2(Vd) = / |Z|2d)\2d {C € Cd . (I)(C, 1) S m} d)\Q(Z)
C
= 27r/ r2H N0y {c eC?: d(c,1) < %} dr
0

=2 /Oo 23 {ceCh: d(c,1) <&} de
0

—or [ g C*: d(e) <&p d
w [ et {eect b <} ae

= 2mhg(2d + 2). 0

To better understand hy, it helps to consider the set-up geometrically. The
set of coefficient vectors of monic polynomials of degree d forms a d-dimensional
hyperplane in C4*!; for T sufficiently large, the dilated star body TV, intersects
this hyperplane. We can consider hy(7') as the d dimensional Lebesgue measure of
the intersection of this hyperplane with 7'V,;. We can now analyze the asymptotic

behavior of hy(T) as T — oo or T — 0.

Lemma 3. (Chern and Vaaler) Let ® be a generalized Mahler measure, and
hg = [0,00) — [0,00) be defined as above. Then there exists € > 0 such that hy
is identically zero on [0,€); and hq(T) = O(T?*?) as T — oo, specifically

lim ha(T)

T—o00 T2d

= Noa(Va ).

Proof. Let A%! be the d+ 1 dimensional unit polydisk centered at the origin. Since
V,; is bounded, there exists n > 0 such that V; C nA%! so TV, C TnAl. Now

we consider the hyperplane B C C4*! of coefficient vectors of monic polynomials of
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degree d,
B={(b,1):becC.

It follows that (B N TV,;) C (B N TnA%1!). Now, the set (B N TnA4l) is a d-

dimensional polydisk with radius 7n when Tn > 1, and is empty otherwise. Thus
ha(T) < Xog(B N TnA*),

With regards to the first claim, let ¢ = 1/n; if T < ¢ then from the above
observation, (B N TeA%) is empty. Thus hg(T) =0 if T < e.

As for the second claim, let By = {(b,1/T) : b € C%}; the set of
polynomials with leading coefficient 1/7" and distance 1 is Byp» N V;. Now,
Bijr = (1/T) By, so

1
BI/T ﬂVd - T(B ﬂTVd)

Notice that (Bl/T NV4) = Vi1 as T — o0, since a leading coefficient of 0 just

makes the polynomial one degree lower. It follows that

Aoa(Va—1) = Tlgl(f)lo Aad(B1yr N Va)

as desired.
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Notice from this that the volume of the degree d — 1 star body is the leading

coefficient of the leading term of hy(T):
hd<T) = )\gd(Vd)TQd + O(TQd).

To understand why this should be expected, consider how h, is defined by taking
the volume of slices of V;, while V;_; embeds into V, as a slice.

Going forward we shall consider f/z\d(2s) instead of ]’/l\d(S). Note that the
integral composing hAd(Zs) is convergent as s = d + 1, since A\ygy2(Vy) is finite.
In particular, 714(2s) is convergent and analytic in the region R(s) > d. Considering

~

hq(2s) as a Lebesgue-Stieltjies integral, we can use integration by parts:

[e.e]

/\ —2s
Fr(2s) = S 2f;d(f)

1 > —2s
to /0 25 dhy(©).

0

From the preceding lemma, hy(0) = 0 and hy(€) is dominated by C&2¢, for some
constant C. Note that the first term from the integration by parts vanishes for

R(s) > d. With a change of variables we write

~ 1

fu(2s) = o- /C a)* dAasfa)

revealing the connection between the Mellin transform of hy; and Hy. By the

preceding theorem, the volume of V; is

7THd<d —+ 1)

Xoara(Vi) = 11

Moreover, if Hy(s) has a meromorphic continuation to a neighborhood of s = d,

then the lemma gives that the volume of V,_; is the residue of the pole at s = d [3].
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Though we do not use it further in this thesis, this fact proves useful in verifying
computational results.

We now introduce a change of variables from root vectors to coefficient
vectors. Let n < d be a positive integer, and let e, : C¢ — C be the nth elementary

symmetric function:

en(e) = (=1)" Y [ [ aweo.

tepd (=1

where P4 = {t: {1,2, ....n} — {1,2, .., d}t(1) < £(2) < ... < #(n)}. Notice

d d

H(m —ay) =17+ Z en(a)z".

n=1 n=1

Now, let E; : C¢ — C? be the map whose nth coordinate function is e,,; then
E4 sends root vectors to (monic) coefficient vectors. Importantly, each monic
polynomial is uniquely determined by its roots, and every permutation of roots
leaves Fy(«), so the degree of Fy is d!. It is well known that the Jacobian of Ey is
|V ()|? where

V)= [ (on—om)

1<m<n<d
We provide an outline of the proof: first, it is easy to take the Jacobian with
partial derivatives. The determinant of this matrix is a symmetric polynomial,
and its degree may be verified to match that of the Vandermonde. Further, these
polynomials have the same zeroes, so they must be equal up to a constant multiple,

which turns out to be 1.
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Notice from this formula that [V ()| # 0 for almost all points in C%. Finaly,

change of variables a = Fy(a) provides

m@zgéiﬂw%wﬁwmwwﬂw

At a glance, this may seem like a more complicated formulation for Hy(®; s);
however we will capitalize on how V(a) may be expressed as the Vandermonde
determinant. This fact along with some combinatorics and Fubini’s Theorem allows
for Hy(®; s) to be further rewritten as a determinant whose entries are integrals
over C; we will interpret these entries as values of inner products of polynomials in
a Hilbert space determined by .

Recall, if v is the measure supported on the complex plane given by dv(a) =
02 (a)dNo(), where s is a complex parameter, then L?(v) is a Hilbert space with

inner product

<ﬁm=4ww%ﬂwﬁﬁww»

This inner product induces a norm N(f)? = N(f;s)? := (f, f). For R(s) > d, any
polynomial in C[z] with degree less than d is in L*(v).

Let @ = {Qn(a) : n = 1,2,...,d} be a set of monic polynomials in Clz] with
deg(Q,) = n — 1; we will call such a set a complete family of polynomials. Each @,
is in L?(v), and Q spans a parallelepiped in the Hilbert space. The Gram matrix of
@ is a d x d matrix, whose ¢, k entry is (Q, Q); this is a symmetric matrix whose
(, k entry depends on Qy, Qk, ¢, and s. Importantly, the determinant of this matrix
may be interpreted as the volume of the parallelepiped spanned by () in the Hilbert

space. As it turns out, the determinant of Wy, is equivalent to H,(s)
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Theorem 10. (Sinclair [4]) Let Q be any complete family of monic polynomials;
then

Hd(s) = det(WQ).

Since this theorem holds for any complete family of polynomials, we may
choose a family () that makes det(W() simple to evaluate. Note also that while
MR(s) > d, we may leave s as a parameter to be chosen later, so we may consider the
inner product as independent of d.

A powerful corollary arises from choosing an orthogonal set of polynomials for

the complete family Q).

Corollary 2. Let R(s) > d, and let Q be a complete family of monic polynomials
with
(Qe, Qr) = 6uaM(Qr; 5)°
where dg, = 1 if £ = k, and 0 otherwise; then
d
Hy(s) = [ [ 2(@ns 5)*.

n=1

We now introduce two lemmas to prove this important theorem.

Lemma 4. Let I = I({,k) be a d X d matriz; then

d
det () % SN sen(r)sen(o) [ 1((n), o(n)).
" 7€S40€8, n=1
Proof. First note
d d
[T1(7(n),o(n)) =] 1(n.com7"(n)),
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SO we may write

a Z Z sgn(7) sgn(o

' TESG 0ESy

" r€Sy 0€S8y
— i > sl T
TESy 0ESY n=1
d
=" sen(o) [[ 1m0 ()
€Sy n=1
=det(])

d
IR
n=1
1 d
:EZZSgn(JOT H n,ocoT

Lemma 5. Let Q) be a complete family of monic polynomials; then

V() = det(Vyp)

where Vg is the d x d matriz whose £,k entry is Vo (¢, k)

Proof. Notice that we may write

10 --- 0 1

* 1 0 aq
Vo= 1% 0 af

* ok 1 af!

6%)

= Qe(ag).

aq

where * represent entries that are not necessarily zero. The second matrix is easily

recognized as the Vandermonde matrix; it is well known that the determinant of

the Vandermonde is V' (), which leads to the desired result.
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We may now proceed to our proof that Hy(s) = det(Wy):

Proof. We have previously shown that

d
)= [ (H w(an)_2$> V(@) dhai(er),

By expanding det(V() as a sum over permutations from S;, we write

Z Z sgn(7) sgn(o H Qr(n)(n) Qo(n) ().

TESG 0ESy n=1

We thus have

a2 [ Hwn "Qron (00) Qoo () ().

‘ TESG 0ESy

Now Hy(s) is convergent for 9(s) > d, so Fubini’s Theorem gives

d
H ( ) QT n) 677} Qon H QT (n)» Qa(n
n=1

which gives the result by the first lemma above.

Mahler Measure Cases

Chern and Vaaler [3] explored the unit circle case, corresponding to the

Mahler measure. In this case, the inner product on monomials follows

(o, o) :/go(oz)_%o/dk dz ()
c
oo 2
:/ QO(T)QST'ZJrkJrldT'/ e(éfk)iadei
0 0
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By Parseval’s formula,

2 ) 0 14 7£ k
/ 6(€—k)19d9 _
° 1 0=k

2 ...,a% !} is a complete family of orthogonal polynomials

so the set {1, o, «
in L*(v). Thus W a diagonal matrix, making the computation of Hy(s)

comparatively easy; they found

We can see here that the poles of H,(s) are all positive integers, and the origin is a

root with multiplicity d.

Elliptical Case

Sinclair [4] considered a family of ellipses of capacity 1. In particular, the
conformal map z — z + % (for ¢ € [0,1)) maps the exterior of the unit disc to the
exterior of an ellipse; this leads to a set {Hy(pg;s) : ¢ € [0,1]} which forms a curve

of rational functions between Hy(u;s) and Hy(ps; s).

Theorem 11. (Sinclair) Let d be a positive integer. If ¢ € [0,1], then Hy(jiy; s)

analytically continues to a rational function of s given by

7Td8d ﬁ (1 _ q2n)8 + (1 + q2n)n

Hd(lj“q; S) = d $2 — 2

For ¢ > 0 the poles of Hy(u,; s) are at a mix of positive and negative integers,
in contrast to the strictly positive integer poles of Hy(u;s). However, Hq(pg; S)

maintains the origin as a root of multiplicity d. For ¢ € (0, 1), there are an
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additional d roots in the half plane PR(s) < 0. Of interest, in addition to being
rational in s, Hy(fi,; s) is polynomial in g.
We will not provide a full proof of Sinclair’s result, though we will outline the

start of a key lemma providing (f, g) for monomials:

Lemma 6. Let J, K < d be postive integers, and let ¢ € [0,1]; then {(a’=% of~1)

analytically continues to a a rational function of s:

rE L ((5) D) ()

s (8(61‘” —¢")+nlg"+ Q”))

X —
2n 52 —n?

where the binomial terms are zero for non-integer or negative entries.

Sinclair starts by setting up the integral

<aJ_1,CYK_1> — /(:¢<a)—23aj—laK—1d)\2(a>

then splits the integral into two regions: one inside the ellipse £, and one outside
the ellipse. By Frostman’s theorem, ¢ is identically ¢(E,) = 1 inside the ellipse.
By taking a change of variables along the conformal map « — z + ¢/z mapping
the interior (respectively exterior) of the circle to the interior (resp. exterior) of
the ellipse, we may integrate instead the regions inside and outside the unit disk.
This substitution takes ¢(«) to |z| outside the ellipse, so that we may bypass ¢
entirely. From here, Sinclair expands the powers of z according to the binomial
theorem (introducing the binomial coefficients seen above). After a switch to polar
coordinates, rearranging and identifying cases where the integral would be zero

leads to the expression above.
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Interval Case

As a special case, for ¢ = 1 the elliptical case reduces to the interval [—2, 2],

with
d

Hy(pi;s) = (2m)* ]|

n=1

S
82—712.

Of interesting note, this interval serves both as a degenerate ellipse, and is
considered the 2-cusped hypocycloid (what we would denote H; in the notation
introduced in the preceding chapter). We note however that the methods used
for the calculation of Hy(u™);s) next chapter cannot be applied to this 2-cusped
hypocycloid, as we will assume the presence of both an interior and exterior region.
We note now some similarities on H; among all three cases explored above;
in all cases, Hy is 7¢ times a rational function from Q(s), with integer poles < d,
the origin as a root of multiplicity d, and matching degree of numerator and
denominator for ¢ # 1. A notable difference is that while the Mahler measure
case has only positive poles, the elliptical and interval cases have equal numbers of
positive and negative poles. We will see a similar extension of poles when we come

to the cusped hypocycloids, with additional negative poles beyond —d.
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CHAPTER IV

THE CUSPED HYPOCYCLOIDAL MAHLER MEASURE

Before coming to the main results of this thesis, let us summarize our journey

so far. Our goal has been to discuss generalized Mahler measures for the region K

(1) = e ( [ g7 ldvnl2))

and in particular the volumes of the star body V,; corresponding to the generalized
Mahler measure. From Green’s functions, we saw that the equilibrium potential
may be realized in terms of the capacity of the region K and a conformal map
between the exteriors of the unit disk and K. From Chern and Vaaler, we may
realize the volume of V; in terms of Hy(s), which in turn from Sinclair may

be written as the determinant of the matrix whose entries are inner products

(@M, at) = [ (@)™ f(a)g(a)dAs(a).
The Distribution of the Cusped Hypocycloidal Mahler Measure

We come now to a discussion of the cusped hypocycloidal Mahler measure.
We'll start by acknowledging the differences compared to the elliptical cases.
In the elliptical case, the integral (f, g) was broken into two regions: inside
and outside the ellipse. Sinclair used the change of coordinates « = z + ¢/z
to transform this to inside and outside the circle, capitalizing on how this is a
conformal map to utilize the subordination principle. This technique breaks down
-N

for the cusped hypocycloids; while the conformal map a = z + ZT may be applied

to the outside of the hypocycloid, the non-smoothness of the cusps along the
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boundary means we cannot apply the same conformal map to the inner integral.
We instead capitalize on two facts; first, by Frostman’s theorem ¢ is identically 1
within the hypocycloid. Second, we may instead apply the quasi-conformal map
a=z+ % from the interior of the circle to the interior of the hypocycloid; this is
still an integrable expression, and so we may bypass the cusps.

We now introduce the inner product for the the Hilbert space associated to

el

Lemma 7. (Main Lemma) Let L, M, N, d be nonnegative integers such that M, L <

d and N > 2; then (o™ ol) equals

7T J—
— \n+75M/)\n+FH5L) \N (n+F5M+1)(n+F5L+1)

><s—n(N%—l)—l

for L = M mod (N + 1); and 0 otherwise. This sum is taken with integer
increments (so the elements of the sum are integers plus N%H) Further, the
binomial coefficients are taken as zero for non-integer entries, or bottom entries

less than zero or greater than the top entry.

As an example, taking N =2, M =1, and L = 4, we have:

1/3 3_on
1 4 1\ ? 3n+ 1 s
14
al,at) = -
< > Wﬂ§/3<n+§)(n+§) (2) (n+3+1)(n+3+1) <3—3n—1>

SOIOICIERBIONCIC)
- Doy

41



TABLE 3 Sample calculations of vol(V,) for various values of N+1 cusps and
polynomial degrees d

cusps d
(N+1)| 2 3 4 5
g enens | 38 262 18125 . 311481
P51 og™ 103957 1437696 2896974080
enans | Do 5104, 18063350375 2272135257604
P51 60™ 1842757 3341114297136 3295289936463475
Conene | Lo 67, AITSS354375 . G3702601434842763
PS 13 2112 6744887525376 61482997256500019200

We leave the proof of this identity to its own section at the end of this

chapter.

Volume of complex polynomials

Recall from chapter 3 that

7THd<d —|— 1)

)\2d+2(Vd) = d+1

Since Hy(s) is a determinant of the Gram matrix of terms (o™ o), our main
lemma allows us to compute volumes of star bodies for any choice of degree d or
cusps N + 1; see Table |3| for some examples.

Of interesting note, Schanuel [? | showed that the volume of a region gives
the approximate number of lattice points of the region. In the case of our volumes
of polynomials, lattice points correspond to polynomials with Gaussian integer

coefficients. Because our generalized Mahler measures are homogeneous, this means

we can easily compute the volume of “balls” of hypocycloidal Mahler measure < T
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TABLE 4 Asymptotics of Hy(u™);s) for various degree d and cusps N+1

cusps d
(N +1) 2 3 4 5
1, [ 49 1617
SEWPS [ AT 13" 12288" 5242880
5 , 65 24245 935857 5
4 cusps | —nm° ——T s —_——7
18 1458 4251528 13947137604
5 5 , 695 ., 375995 2756870539 .
cusps | —m° ———7° ————T T
SRITE 12288 50331648 3298534883328

from the volume of V,;. This gives the asymptotic (main term) for the number of
Gaussian integer polynomials of degree < d and “height” < T as T — oo.

Building off of Schanuel, Masser and Vaaler [? | showed that Hu(y; s)
asymptotically approaches the volume of monic polynomials with bounded Mahler
measure. This similarly extends to the generalized Mahler measures; see Table [4] for

examples of the volume of monic polynomials of bounded Mahler measure.

Analysis of poles and roots of rational function

We note for the following theorems that the inner product (o, al) is a sum

s
of terms . this enables a characterization of the rational function Hy(u™;s).

S p—
Theorem 12. For (N + 1)-cusps and degree d, the negative poles of Hy(u™);s) are

a subset of

{N+1—Nd,N+2-Nd,..,—2,—1}

and the positive poles are {1,2,...,d}.
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Proof. We start by acknowledging why s = 0 is not a pole; notice that each term in

the sum includes

s
s—n(N+1)—1

(n(N+1)+1)

Thus, the term

is attached to a coefficient 0, and may be disregarded.
S —

We will now simplify the coefficients of (o™, a*) as a single term C,,, and

consider the sum as

1
& Cps
Z s—n(N+1)—-1

_ N
N"=N¥1

The poles are provided by the expression s —n(N + 1) — 1. For a fixed M, the poles
range from 1 — NM to M + 1, with increments of N + 1. It follows that for M

ranging from 0 to d — 1, the poles range from N + 1 — Nd to d.

It should be noted that for d not a nonzero multiple of N + 1, the poles will
be a strict subset of the possible poles; as noted above, for a fixed M the spacing of
poles is by N + 1, thus skipping over some of the possible poles between N +1— Nd

M

and —1. The positive poles are captured by the term n = 75 in the sum, so all

poles from 1 to d are included.

Theorem 13. For (N + 1)-cusps and degree d, s = 0 is a root of Hy(u™); s) with

multiplicity d.

Proof. We note that s = 0 is certainly a root since (o™, al) is a sum of terms all
with s = 0 as a root. Now, Hy(u™); s) is a determinant of a d x d matrix whose

entries all have s = 0 as a root, and thus has 0 as a root with multiplicity d. O

Theorem 14. The remaining roots of Hy(u™N); s) are all nonpositve.

44



Note from Descartes’ Rule of Signs that if all coefficients of a polynomial
are positive, then none of the roots are positive. It thus suffices to show that the

numerator polynomial of the simplified (o™, a¥) has no negative coefficients. This

L+M _
NIt 2n

follows from the term (N) in our expression for the inner product; terms

k

1
in the sum with negative coefficients are more strongly bounded by powers <N) ,
so that positive terms in the combined rational function outweight the negative

terms.

Analysis of diagonal block matrices

While we have an construction for evaluating Hy(u™Y); s), we do not currently
have a closed form expression for this function. In this section, we explore avenues
for finding a closed form expression by utilizing the structure of the Gram matrix
whose determinant gave us Hy(s).

In the following analysis, we’ll refer to our Gram matrix as A, and focus on
block matrices A;; of size N+1 (operating under the assumption that d = K(N+1)
for some K € Z. Importantly, since (o™, a*) = 0 unless M = L mod (N + 1), the

block matrices are diagonal.

Cholesky Decomposition

As a Hermitian matrix, we may rewrite the matrix using the Cholesky
decomposition A = LDL*, where D is a diagonal matrix, L is a lower triangular
matrix with entries of 1 along the diagonal, and L* is the conjugate transpose of L.

H. Fang [7] worked out a block representation of this decomposition; if A = (A;;),
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then we can represent L = (L;;) and D = (D), where

j—1
k=1
j—1
L; = (Aij - ZijDkL]Tk) D' Q>
k=1

L,=1 L;=L%

Since the block matrices A,;; are diagonal, L;; = Lg;, and matrix arithmetic

may be performed entry-wise, so we may write

7j—1
2
D;=Aj;;— ) LiyD;
k=1
7j—1
Li; = A;D;' =) L3 D,D;".
k=1
The term Dj_1 serves as a telescoping role, eliminating poles present in blocks

prior to j. Since the main diagonal entries of L are all 1, it follows that det(A) =

det(D).

Block Matrix Determinant

An alternative consideration comes from capitalizing only on the commuting
nature of the diagonal block matrices A;;; from Kovacs, Silver, and Williams [? |,

the determinants of commuting-block matrices may be computed as:

det(A) = det (Z (sgn(o)) H Aw(i)) .

oESE =1
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In essence, this formula treats A not as a d x d matrix with complex entries, but as
a K x K matrix (with d = K(N + 1)) over the ring of commuting matrices.

It shall be convenient to index the blocks A;; by 0 < 4,7 < K. Let us define
k

D(A) = Z (sgn(o)) H A, (), and consider the entries of a particular A;; to
€Sk =1
determine the behavior of D(A). Recall again how (o™, al) = 0 unless M = L

mod (N + 1); thus the powers of the nonzero entries of A;; are equivalent mod

N + 1. For example,

(ozo, aN+1> 0 o .- 0
A 0 <a1, aN+2> o .- 0
0,1 =
0 0 0 ... <aN7a2N+1>
and in general,
<ai(N+1)7 aj(N+1)> 0 e 0
R 0 <ai(N+1)+17 aj(N+1)+1> - 0
ij —
0 0 oo (@I INFDAN i (NFD+NY

Remember again that algebra with diagonal matrices may be performed
entry-wise; taking D(A) as a “determinant” of the blocks A;;, notice that D(A)

is itself diagonal, and its entries may be thought of as determinants of K x K
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submatrices constructed from characteristic classes modulo N + 1:

det([{a’, a?)]; j=0) 0 s 0
D(A) _ 0 det([(o/, Oéj>]z"j51) ce 0
0 0 oo det([{a, a)]i j=n)
leading to
det(A) = Hdet([(ozi, aj>]i,j5k: mod (N+1))-
k=0

This serves as a fascinating parallel to checkerboard matrices, such as the Gram
matrix Sinclair worked with in dealing with the reciprocal Mahler measure [4]. A
known method for taking the determinant of a checkerboard (alternating nonzero
and zero) matrix is to break the nonzero entries into two matrices and multiply
their determinants. The checkerboard matrix is simply the case N + 1 = 2 for this

result.

Proof of Main Lemma of Inner Product Identity

For polynomials f and g, (f,9) = [.¢(a) 2 f(a)g(a)drs(a). Using

polynomials 2™ and 2%, then integrating over the (N + 1)-cusped hypocycloid Hy

and its complement H ¢, we obtain

:/ aM&Ld)\2(a)+/ ola) > aMaldry ()
'HN HNC

since within the hypocycloid, ¢ = 1. Now, within the hypocycloid we set

disc D and its complement:
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M 2\ " 2(N—1)
/D (z+—N) <z+—N> (1— |7 YdAa2(2)
2 N\ 7 - ~N-12

We then expand the polynomial terms as sums with binomial coefficients and

switch to polar coordinates, obtaining:

s M L M—m+L—t
/ ' / 2 ZZ MY (LY men@r—myeenw-e+1 (1 i
o Jo m ) \{ N

m=0 ¢=0

x Om=NM=m)—+N(L=0) (] _ 2N=1) 4 g

- or M L M—m~+L—¢
n / / Z M L T—Qs—&—m—N(M—m)-‘rf—N(L_g)‘f'l i
L Jo —\m l N

m=0 0
x 0m=NM=m)~ttN(L~0) (] _ = (N+1) 0N+ _ o =(N+1) gi0(N+1) 4 =2(N+D) g9 gy

By Parseval’s, the integral with respect to 6 is 0 for all terms in the double

sum except those that give e?*%; we thus eliminate the sum over ¢ by taking ¢ =

m+ NLH(L — M) in the left integral, and

m+ 5 (L — M)

\
for the four terms at the end of the right integral, giving
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M
o /1 Z M L P 2m(1=N)+ 235 L+ 385 M1

( L )r_23+2m(N+1)—2NM+1
m+ 5 (L — M)

X %) R (1 + = 2(NHD)
L —2st2m(N+1)—2NM+1 [ L N Mty L=2m-1
B <m+NL+1(L—M)+1)T (N)
_ ( L )7,23+2m(N+1)2NM2N1 (i) QJIVVIfMJerHL—Qmﬂ] N
m+ 5 (L—M)—1 ~ _

Note that the binomial terms previously had only integer entries; we thus
note that (o™ a%) =0if M # L mod (N+1); going forward, we thus assume M =

L mod (N + 1). To see the symmetry of (o™, a¥), we substitute m = n + NLHM
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1 NFI
M L
o [50 (uroan) (o )
0 2}; n+NL+1M n+NL+1L

( . )
N
nt wl

M N+1
N1 2n
) 723+2n(1\7+1)+1(1 +7,—2(N+1))

00 +1 M
2
T 7T/l > (n+LM>

r

MAL_9p_1
_ L l A T*23+2n(N+1)+1
n+7L+1)\N

MAL_9pt1
_( L ) (l) v ,,,,—25+2n(N+1)—2N—1 dr
N .

Note that within each binomial term (Ik(), if Kk <0ork > K, the binomial is
identically zero; we may thus reindex some terms by n — n + 1 to align powers of r,

obtaining
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1
1 M
27r/ E ( F2n(1=N)+ 355 (L+M)+1
0 N
N+1M

n=-—-

M+L
(b)) )
n+N+1M n+N+1L N
MAL_o
M L 1\ M+1 ;
- r
(n—l— N]YHM"'l) (”+ NJYHL+1) (N) ]
M+L
o)) (3)
n+55M)\n+F5L) \N
M L 1 %71{’—271—2
+(n+NL+1M+1)(n+NLHL+1)(N)
o)l nad) (5)
n—I—NLHM n+N—+1L+1
MEL _op—1
M 1 N+1
_(n—i_N_HM—i_l)(n"’_NJYHL)(N) ]

Integrating gives

o0 N+1
+ 27 / F-25H2n(N+1)+1

MAL o,
N1 2n—l

ﬁM M+L

2 Z 1 ( M >< L ) (1)N+1
s ! . 1
n=r M 2n(1—N)—|-]3—ﬂ\:1(L+M)+2 n+ygM) \n+ 5L N

M L 1 %—271—2
_<n+NL+1M+1><n+N—HL+1> <N) ]
MEL _op
+ ! M L ( 1 ) N
25 —2n(N +1) -2 N]YHM n+N]YHL N
M L 1 %7_'_1—271—2
! <n+NL+1M+1> <n‘|‘N—+1L+1> <N)
MAL _op_1
M L 1\ M+1
o) b ) (5)
M+L
M L 1\ Mr—2n-l
—<”+NJLM+1><”+NJLL) (N) :

52




. M L 1 M+L _op .
Now, by factoring out ( N M)( N L) (ﬁ) N+t from all terms, we arrive

nt+ Ny n+N]Ykl
at
w5 () () (D (e
7T R
o n+5M/)\n+F5L) \N 2n(1 — N) + 25(L+ M) +2
2
M L
w1 ES N ) 2
n+wgM+1) \n+F5L+1
M L
n 1 P == S I PR s i v N
2s — 2n(N +1) — 2 n+ 7 M+1 n+5L+1

Expanding the terms and simplifying gives the desired

S Y/
NZ( M )( L ><1>%if—2“ n(N+1)+1
7r N N il
wm g T R M AR+ L AN (n+ 25 M+ 1)(n+ gL+ 1)
s
X .
s—n(N+1)—1
Future work
Real case

We mentioned in the introduction a parallel set of star bodies for a restriction
to real polynomials. In chapter 3 we discussed the degree d complex star body
Va(®) using the cumulative distance function hy(®;¢) and the complex moment

function Hy(®;s). We may likewise ponder the degree d real star body of @

Uy(®) == {u e R™ : d(u) < 1}
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utilizing the cumulative distance function
fa(®:8) = A{b eR?: & < &},
and real moment function

Fy(®;s) := /Rd B (b)*dg(s).

Importantly, this line of study utlizes a skew-symmetric inner product, rather than
an inner product as used for studying Hy(®;s). We may define a pair of skew-

symmetric inner products (-;-)g and (-; )¢ by

fgm—/ / y)~* F(2)g(y) senly — =) do dy;

ka:—méﬂmsw®8ﬂ>mm%mmmMMw>

Given @ a complete family of monic polynomials in R[z], we may create d X d anti-
symmetric matrices R and Cg whose j, k entries are (Q;; Qr)r and (Qj; Qk)c,
respectively. Finally, define the antisymmetric matrix Ug = Rg + Cg; Ug serves as
an antisymmetric analog to the Gram matrix W explored in the complex case.

As a further difference from the complex case, rather than working with a
determinant as in H,(s) = det(Wy), we must instead work with the Pfaffian; for

d=2J and U a d x d anti-symmetric matrix, the Pfaffian of U is

J
2J|ngn HU (27 —1),7(29)).
7j=1

’ TESQJ

o4



The Pfaffian is often thought of as the signed square root of the determinant of the

matrix. As it turns out, Fy(s) = Pf(Ug). Utilizing this, Chern and Vaaler [3] found

Theorem 15. (Chern and Vaaler) For d = 2J,

d—2j J—1 s
=24 —
H<2j+1) gs—(d—%)
In the case of the reciprocal Mahler measure, Sinclair [4] similarly found

Theorem 16. (Sinclair) For d = 2J,

d d+1—-n J—1 82
Al s _d_g(n—l> E)SQ—(d—2j)2'

From this, one may see that in both cases, Fy(s) € Q(s) has numerator and

denominator of matching degrees, integer poles < d (all positive in the Mahler

measure case), and the origin as a root of high multiplicity. We thus speculate:

Conjecture 1. For N > 1, Fy(u™);s) € Q(s) has numerator and denominator of

matching degrees, integer poles < d, and the origin as a root of high multiplicity.

Other hypotrochoids

Much as the ellipses served to smoothly connect the circular and interval
cases, we may explore other families of hypotrochoids to smoothly connect the
circular and cusped hypocycloids. Much as we had the conformal map o — z + ¢/z
sending the unit disk to interior of the ellipse E, for ¢ € [0, 1], we could consider a

2N zZN
conformal map a +— z + qT and quasi-conformal map a +— z + qW sending the

unit disk to the interior of a hypotrochoid with (N + 1) petals; see Figure |3| for an

example with 5 cusps. For further discussion, let us call these hypotrochoids ’H((]N),
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FIGURE 3 A rendition of 7—[8‘2, the 5-cusped 0.4-hypotrochoid.

and the associated generalized Mahler measures uéN). Based on the behaviors of y,

and ) we speculate:

Conjecture 2. Forq € (0,1) and positive integers N > 2 and d, Hd(ugN); s)
1s rational in s and polynomial in q. As a function of s, it has poles at nonzero
integers < d, the origin as a root of mulitplicity d, and additional roots so that the

degress of numerator and denominator are equal.

We may also wish to explore non-integer cusped hypocycloids. If N 4+ 1 is a
non-integer rational number with reduced form %, the corresponding hypocycloid
has a cusps, but unlike the integer case, the boundary produced by the conformal
map intersects itself within the interior of the region; see Figure [4] for an example
with N + 1 = 5/3. Careful use of algebraic geometry could produce a modified

conformal map for further exploration.

Conjecture 3. For N € Q\Z, Hy(u™); s) is rational in s with matching degrees
in numerator and denominator. This function has poles at nonzero rational values

<d, the origin as a root of multiplicity d, and additional roots.
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FIGURE 4 A rendition of the g-cusped hypocycloid.
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