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DISSERTATION ABSTRACT 
 
Schyler Ainsworth Reis 
 
Doctor of Philosophy 
 
Environmental Sciences, Studies, and Policy 
 
September 2022 
 
Title: On Western Juniper Climate Relations 
 
 

Western juniper woodlands are highly sensitive to climate in terms of tree-ring 

growth, seedling establishment and range distribution. Understanding the dynamics of 

western juniper woodlands to changes in precipitation, temperature, and atmospheric CO2 

levels is an important component in the development of the next generation of ecological 

models, natural resource policies, and land management actions. Increased atmospheric 

CO2 has been hypothesized to reduce the impact of drought through an increase in 

intrinsic water use efficiency. However, whether this increase in drought tolerance will 

mitigate predicted increases in temperature and decreases in precipitation in poorly 

understood. Additionally, potential geospatial patterns of changes in sensitivity to 

climate, and differential responses of competing plant species warrants further 

investigation.  

Recent projection models focused on the rangelands of Oregon retain a high level 

of uncertainty regarding the dynamics of western juniper woodlands. My dissertation 

reduces this uncertainty by quantifying the impacts of increased atmospheric CO2 on the 

sensitivity of western juniper tree-ring growth to precipitation and temperature. In 

Chapter II, I applied a method for quantifying changes in tree-ring sensitivity to climate 

variables under changing CO2 values to thirteen previous dendrochronological studies. I 
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discovered that climate sensitivity dynamics of western juniper woodlands follow a 

pattern of increasing baseline sensitivity, and greater recent reductions in sensitivity, as 

site aridity increase across climate-space.  Additionally, I developed a permutation model 

to assess the coverage of site locations across western juniper climate-space. In Chapter 

III, I applied the same analytical method on western juniper and ponderosa pine trees I 

sampled in the Chewaucan river basin. I discovered that western juniper are more 

sensitive to precipitation, and ponderosa pine are more sensitive to temperature. Also, 

including a long-term precipitation variable in tree-ring growth models improved model 

fit. In Chapter IV, I compared sensitivity trends from Chapter II with trends from 

bootstrapped moving window correlation and response functions and found strong 

agreement between model types. Throughout these chapters I infer how changes in 

climates sensitivity of western juniper trees may impact the future range and distribution 

of western juniper woodlands along with the potential impacts on policy and land 

management actions. 
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CHAPTER I 

INTRODUCTION 

Western juniper (Juniperus occidentallis) woodlands (WJW) are located at the upper 

elevational ranges of the cool semi-arid sagebrush ecosystems of the American West. Over the 

past century WJW have expanded rapidly into adjacent shrub and grass dominated communities 

(Rowland et al., 2011). Similar expansion of woody species has been observed in cool semi-arid 

ecosystems (CSAEs) around the world. Currently WJW are the second most expansive tree-

dominated ecosystem in eastern Oregon, and cover ~3.6 million ha (The Gymnosperm Database, 

2021), which represents nearly a six-fold increase in area in less than 100 years (Azuma et al., 

2005). 

 Often this expansion is attributed primarily to increased cattle grazing and a concomitant 

reduction in fire frequency. However, recently more attention has been paid to the role that 

climate and increased atmospheric CO2 have played in the increase in area occupied by WJW 

and the growth rates of western juniper trees (Soulé et al., 2004; Soulé & Knapp, 2019). In 

WJW, elevated CO2 can influence tree growth by impacting physiological processes such as 

water-use efficiency, an important characteristic of drought responses (Knapp et al., 2001a; 

Knapp & Soulé, 1996; Soule & Knapp, 1999). 

 Isotope chronologies in tree rings across a wide range of tree species have suggested that 

increases in water use efficiency — the ratio of carbon fixed due to assimilation to water lost 

through stomatal conductance — have occurred at a widespread scale over the last 200 years 

(Franks et al., 2013). In situ studies and meta-analyses addressing the effects of elevated CO2 on 

tree-ring growth in other forested ecosystems are prevalent in the literature (De Kauwe et al., 

2013; Franks et al., 2013; Silva & Anand, 2013), but the impacts and geo-ecological patterns of 

such impacts are still inconclusive (Geldof & Berg 2010; Peñuelas et al., 2011). Additionally, 

there is a paucity of studies addressing this issue in CSAEs around the globe, and particularly in 

WJW. 

 Given the potentially contrasting positive and negative effects of elevated CO2 and 

changes to climate on WJ growth, respectively, this interaction needs to be explored further from 

the perspective of sensitivity to climate and CO2 as well as their interactions. Ideally, an 

improvement in our understanding of the impacts of elevated CO2 and changes to climate on WJ 
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growth can improve the posterity of modeling efforts focused on dynamics of both WJW, 

adjacent ecosystems, and CSAEs around the world.  

 

 

Cool Semi-Arid Ecosystems and Ecological Models 

Cool semi-arid ecosystems are located on every continent except Antarctica. In general, 

most CSAEs could be classified as steppes: areas dominated by grasses, shrubs, and intermittent 

trees that are too arid to support dense forests, but not arid enough to be considered deserts. The 

responses of these ecosystems to climate change are likely to be varied due to the predicted 

asymmetric changes in global temperature and precipitation patterns. In addition, these 

ecosystems have experienced different management histories over the past millennia and 

centuries. Increased atmospheric CO2 concentrations will affect all these ecosystems in several 

ways, but the specifics are still unknown. It has been shown that increased CO2 concentrations 

can increase plant vegetative growth; can ameliorate the effects of disturbances like drought by 

increasing plants’ water use efficiency;and that individual plant species and plant functional 

groups will respond differentially to increases in CO2 concentrations, thus resulting in potential 

shifts in plant community composition particularly between C3 and C4 plants (Polley et al. 

2013). However, most CSAEs are dominated by C3 plants with very little of their flora 

consisting of C4 plants (Still et al. 2003). Therefore, it is important to conduct research 

specifically aimed at elucidating responses of the dominant plant species and the potential 

differential responses multiple species have to changes in CO2 concentrations in CSAEs.   

A better understanding of such phenomena is critical for the next generation of ecological 

forecasting models in CSAEs (Tietjen and Jeltsch, 2007), and as I will further explain in 

subsequent portions of this chapter, an understanding of past processes can inform our 

understanding of current and future processes. This is true for tree rings, ecosystems, and the 

models used to describe their dynamics. An often-used model for understanding and predicting 

ecological dynamics in such ecosystems are state and transition models (STM). Most of the STM 

modeling efforts have been conducted in North America, therefore increased efforts are needed 

to link ecological process across time and space via the generation and refinement of ecological 

theory. Results from this dissertation can be incorporated into the development of the next 
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generation of ecological forecast models that have moved beyond mere STMs by linking them 

with future climate scenarios, topographic and edaphic properties, dynamic global vegetation 

models, and proposed management scenarios, as seen in Halofsky et al. (2013) and Creutzburg et 

al. (2015). 

When an ecological model can no longer make accurate predictions of an ecosystem’s 

responses to management actions or natural disturbances it must be either adapted or abandoned. 

Such was the case with the Clementsian climax model, a model based on traditional climax 

theory that,when applied to rangelands, assumes that successional tendency and above-average 

rainfall drive a plant community towards a favorable condition and climax, and conversely that 

grazing pressure and drought drive that community towards poor condition and early 

successional composition. However, during the 1970s and 1980s this model was under scrutiny 

(Stringham et al., 2003; Walker and Westoby, 2011), leading to a change. By incorporating an 

ecological theory alternative to those presented by Clements (e.g., alternative stable states, 

discontinuous and irreversible transitions, nonequilibrium communities, and stochastic effects on 

succession) and packaging them in a simplified, practical, and organized manner, Westoby et al. 

(1989) developed a new type of model that would be adopted and utilized by land managers and 

scientists across the world. Thus, STMs were born. Fourteen years later Stringham et al. (2003) 

recognized the need to formalize the nomenclature with universally-accepted definitions and to 

refine the model and its associated theories. This cleared up some of the confusion and therefore 

criticism of STMs, but in doing so they defined the temporal scale of STMs as existing within a 

permanent climate regime, and therefore STMs alone are incapable of dealing with issues such a 

climate change.  

Climate change has altered the rangelands of CSAEs around the world in many ways, 

but, how and to what degree a changing climate interacts with land management and natural 

systems differs between the planet’s various CSAEs. Rangelands are semi-natural areas that are 

grazed by domestic livestock. Although not all rangelands are semi-arid, and not all semi-arid 

lands are used for grazing, there is a strong association between the two. Arid and semi-arid 

rangelands support around half of the world’s livestock production, and all the CSAEs that I will 

be discussing are actively managed as rangelands. Also, climate classification is strongly linked 

to the vegetation communites that grow within a given climate. Köppen, being a botanist, 
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defined the climatic categories in his climate classification system based on vegetation variation 

patterns and not vice versa. Although there are many methods for defining climate and the 

associated vegetation, the Köppen system is still the most frequently used climate classification 

system (Kottek et al., 2006; Huang et al., 2015). 

Three major consequences of climate change are elevated CO2 levels, climate warming, 

and precipitation variability, yet how these factors have and will continue to change CSAEs 

around the world is not fully understood. In a review of available models set in semi-arid 

rangelands, Tietjen and Jeltsch (2007) identified six major criteria that a model must address to 

make predictions in system dynamics because of climate change. They are: intra-annual 

precipitation, soil moisture, temperature/evapotranspiration, changes in CO2 concentration, and 

the influence of vegetation on both water infiltration and on fire. They also determined that, as of 

2007, no models incorporated all six criteria and that none of the models they analyzed addressed 

rising CO2 levels. 

Although more recent linked modeling efforts by Halofskey et al (2013) and Creutzberg 

et al. (2015) have incorporated many of the criteria set forth by Tietjen and Jeltsch (2007), and 

have even included additional criteria such as potential management scenarios into their 

predictions, conflicting results over the same study area in central Oregon highlight the need for 

further refinement of included and excluded parameters. For instance, Halofsky et al. (2013) did 

not include species-specific impacts of increasing atmospheric CO2 in their model, and 

Creutzberg et al. (2015) did not include the impacts of increased CO2 in their model at all. 

Enhanced levels of CO2 have been shown to increase plant growth in numerous 

controlled experiments; however, the overall effects of elevated CO2 and warming on semi-arid 

ecosystems are still being determined. For instance, Blumenthal et al. (2013) found that invasive 

forbs increased in biomass and productivity due to elevated CO2, whereas heating had no effect. 

They hypothesized that this was due to the invasive species’ aggressive use of available water in 

the soil due to the increased water-use efficiency of native plants under conditions of elevated 

CO2. In contrast, Blumenthal et al. (2016) found that heating treatments tripled biomass and seed 

production of cheatgrass (Bromus tectorum), a widespread and ecologically-devastating annual 

grass that has invaded tens of millions of hectares of the semi-arid American West. These 
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contrasting results suggest that more species-specific and community-level experiments must be 

conducted and synthesized.   

It is important to understand that the consequences of climate change may not affect 

semi-arid ecosystems around the world in the same way. The northern hemisphere is warming 

faster than the southern hemisphere (Freidman et al., 2013). Semi-arid climate regions are 

expanding across the globe, with the weakening of the Asian summer monsoon leading to the 

expansion of semi-arid climate regions into sub-humid climate regions in the eastern hemisphere. 

In contrast, a weakening of the Aleutian Low, enhanced westerlies, and warming Atlantic Sea 

surface temperatures that modulate the El Niño-Southern Oscillation is causing semi-arid climate 

regions to expand into once-arid climate regions (Huang et al., 2016).  

In addition, the current and past socio-political climates and management histories will 

also impact the future of CSAE ecosystems as well. North and South America and Australia have 

ecosystems in cool semi-arid climates that have a relatively short history of grazing by domestic 

livestock (e.g., 1880s in Patagonia, the mid 1800s in the semi-arid American West and the early 

1800s in Australia; Oliva et al., 2016; Beschta et al., 2012; McAlister et al., 2006). On the other 

hand, areas in Europe, Asia, and Africa were occupied by nomadic pastoralists for over 4 

millennia (Sasaki et al., 2007; Jamiyansharav et al., 2018). The ecological narratives of post-

Soviet and post-Soviet-linked countries, such as Uzbekistan, Kazakhstan, and Mongolia provide 

us with a glimpse of how societal changes can dramatically affect ecological processes. 

Mongolia’s rangelands have become severely degraded due in part to a doubling of stocking 

rates after transitioning to a market economy in the early 1990s (Jamiyansharav et al., 2018). 

Uzbekistan was exploited under Soviet rule, when the widespread and rapid conversion of land 

into irrigated cotton fields (0.42 million ha of cotton fields in 1960 to 4 million ha of cotton 

fields in 1990) led to the collapse of Aral Sea fisheries and to widespread salinization of soils 

across the landscape (Schlüter and Herrfhrdt-Pähle, 2011). In Kazakhstan, the post-Soviet 

government, focused on decentralization and liberalization, severely cut funding to agricultural 

monitoring, and created an environment of hostility towards the collective actions needed for 

pest control. This contributed to the largest and most severe locust plague Kazakhstan had faced 

in a century (Toleubayev et al., 2007).  
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Other CSAEs around the world face similar changes to those in the American West. 

Australian rangelands are being invaded by native woody species, resembling the encroachment 

of the western juniper and sagebrush in North America (Tighe et al., 2009). In Patagonia, as in 

the American West, non-native species and intensive grazing practices are contributing to more 

frequent fires, leading to the transition to fire-prone alternative stable states (Raffael et al., 2011). 

Ideally, the research I conducted and present in this dissertation can be incorporated into 

future studies conducted in CSAEs around the world through a better understanding of the 

responses of WJW to climate change at a mechanistic level, and perhaps influence future 

management actions and policy by improving the performance of future linked-modeling efforts, 

and with the effective communication of the benefits of understanding WJW climate dynamics 

through a more scientifically-informed lens.  

 

Western Juniper Woodlands and Conceptual Models 

I have heard it said that all models are wrong, but some can be useful. In the first 

paragraph of this introductory chapter, I briefly touched on the prevailing conceptual model of 

WJW expansion that has been primarily driven by the interaction between overgrazing by 

domestic livestock and therefore the reduction of fire frequency to fuel reduction through 

herbivory.  Although I do not think that concept isn’t true, more factors need to be addressed to 

make that conceptual model useful regarding ecological forecasting and potential management 

actions.  

Soulé et al. (2004) offers a more complicated and complex hypothesis for the expansion 

of WJW since Euro-American settlement of the American West. By examining growth rates and 

establishment dates of 2,000 juniper trees at five match-paired (historically disturbed by 

livestock and historically undisturbed) study sites across Oregon, Soulé et al. (2004) were able to 

provide insight into detailed patterns of western juniper expansion dynamics, with and without 

grazing pressure. They also address the ecological causes of this expansion. Their conceptual 

model accounts for the following. (1) Biological inertia: as juniper woodlands expand in range, 

they also infill with more juniper, which results in increased seed rain over time and therefore 

increased rates of expansion. (2) Biotic interaction: grazing tends to increase shrub cover; these 
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shrubs act as nurse plant for western juniper seedlings, creating favorable microclimates. (3) 

Increased atmospheric CO2 levels: the direct and indirect benefits of elevated CO2 on WJW 

expansion and juniper seedling establishment are: directly, an increase in available soil water by 

increasing the water use efficiency of juniper themselves; and indirectly, a reduction in the water 

use of other plants due to their increase in water-use efficiency. (4) Influences of seasonal 

temperature and precipitation on both seed production and seedling establishment: high levels of 

winter and springtime precipitation lead to reduced stress in adult western juniper trees, resulting 

in increased growth that year and an increase in the production of viable seeds. High levels of 

seedling establishment were associated with years of high levels of summer precipitation and 

years with above-average annual and summer temperatures; juniper seedlings are subject to 

freeze kill, and freezing events during the growing season are less likely to have occurred in 

years with above average annual/summer temperatures. (5) Topographic positioning and soil 

properties: seedling establishment may be favored in the deep, less well-drained soils of valley 

bottoms, whereas growth in established trees may be favored by shallow, well drained soils at 

higher elevations. Additionally, Soulé et al. (2004) found a significant correlation between 

decadal periods of increased western juniper tree-ring growth and western juniper seedling 

establishment, leading credence to the theory that dendrochronological studies of western juniper 

growth and climate relationships from the perspective of sensitivity to climate and CO2 as well 

as their interactions, not only can be used to improve future modeling efforts, but also have a 

direct linkage to the demography and range dynamics of western juniper trees and WJW.  

 

Dendrochronological Meta-Analysis and Ecological Forecasting  

Recent studies have demonstrated the utility of combining in situ measurements, climate 

data, and ecological data bases to expand spatial and temporal inference beyond what would be 

possible with a single methodological approach (Correa-Díaz et al., 2019; Gu et al., 2007; 

Krofcheck et al., 2015; Snyder et al., 2019). These emerging integrated approaches can provide 

new insight into complex spatial and temporal patterns of key ecosystem functions and landscape 

dynamics (Pasquarella et al., 2016). However, upscaling data generated via a traditional 

dendrochronological sampling regime can potentially result in contrasting errors in future forest 

behavior. Klesse et al., (2018) warns that the utilization of dendrochronological databases can 
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result in an overestimation of forest responses to predicted changes in climate because these 

targeted sampling methods are aimed at amplifying the climate response signals of tree-ring 

chronologies. However, in contrast, reducing noise caused by variation of individual trees, when 

analyzed across a broad scale, may inhibit our ability to detect early warning signals of possible 

regime shifts (Bauch et al., 2016). 

Data generated to answer specific research questions must be examined critically before 

they are applied to other inquires, and traditionally dendrochronological studies have been used 

to enhance our understanding of the past, not the future. If data are taken out of context, 

statistical methods are inappropriately applied, or models generated are not evaluated 

sufficiently, then erroneous conclusions might be drawn (Benestad et al., 2016). Even a minimal 

amount (< 3%) of incorrect conclusions based on improperly conducted scientific studies can 

contribute to large discrepancies in the general public’s understanding and perception of global 

climate change (Benestad et al., 2016). That being said, one way to better inform our 

understanding of likely responses of organisms and ecosystems to changes in climate is to study 

how they reacted to climate variation in the past. Tree annual growth rings act as high-resolution 

natural archives of past climate conditions (Hughes et al., 2011; Swetnam et al., 1999); this is 

because the annual growth of a tree is influenced by many factors, both biological and climatic 

(Speer, 2010). 

According to Speer (2010), the concept that trees produce annual rings was first 

described by the Greek philosopher and botanist Theophrastus (born 371 BC), and perhaps the 

first to describe the relationship between annual variation of tree-rings and climate was Leonardo 

da Vinci. The first recorded discovery of a marker ring occurred in the mid-1700s, when two 

French naturalists, Henri Louis Duhamel du Monceau and George Louis Leclerc de Buffon, 

discovered that many trees showed evidence of frost damage in rings that corresponded with the 

winter of 1709. Marker rings are a key component of one of the most important and basic tenets 

of dendrochronology: cross-dating. Cross-dating is the matching of patterns of ring widths 

between tree cores, thus reducing potential errors due to locally absent or false rings. 

Additionally, when cross-dating is used to link overlapping tree core specimens, a continuous 

tree-ring chronology may be extended for thousands of years into the past. There are now dozens 

of such continuous tree-ring chronologies. These multi-millennial chronologies played an 
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important role in the development and refinement of radio carbon-dating methods, by providing 

annually resolute empirical data used to create 14C calibration curves (Brinks et al., 2012). 

Because dendrochronological studies often aim to maximize climate signal in tree-width 

variation, site selection—macro (e.g., ecotonal boundaries) and micro (e.g., rocky 

outcroppings)—is not done at random. The selection of trees within sites is also biased, with 

older, larger, and more dominant trees being preferred (Hughes et al., 2011; Klesse et al., 2018; 

Speer, 2010). Additionally, the act of averaging multiple tree cores, and the choice of 

standardization techniques, can both further dampen variation due to climate change or 

biological effects. However, Soulé and Knapp (2019) found that all tree-ring standardization 

options produced identical annual growth values in western juniper trees in central Oregon.  

Trees growing near the margins of their species’ climatic range are often under greater 

stress than trees growing within the center of said range; therefore, dendrochronologists often 

sample trees from sites in or around ecotonal boundaries. Klesse et al. (2018) tested how these 

sampling biases influence projections of future tree growth across the southwestern U.S. They 

compared growth variability and climate sensitivity of three tree species: Douglas-fir 

(Pseudotsuga menziesii), ponderosa (Pinus ponderosa) and pinyon (Pinus edulis) pine, from two 

data sets. The targeted (i.e., biased) samples came from the International Tree-Ring Databank 

(ITRDB), and the random (i.e., unbiased, representative) samples came from the USFS Forest 

Inventory and Analysis database. Targeted samples showed higher growth variability and were 

more responsive to climate variation than representative samples, and therefore yielded different 

projections of tree growth in response to climate change. Klesse et al. (2018) cautions that 

artifacts of sampling bias may hinder the ability of ITRDB chronologies to inform accurate 

projections of forest response to future climate scenarios at a species-distribution or regional 

scale. However, in chapter II of this dissertation we will present a novel approach towards 

assessing and quantifying the coverage of a series of ecological sampling site locations or 

“constellation,”  with a newly developed permutation model aimed at quantifying the 

Representation of Ecological Inter-Space-- the REIS method.  

Dissertation Research 

The overarching aim of this dissertation is to examine how the response of western 

juniper tree rings to precipitation, temperature and increases in atmospheric CO2 has or has not 
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changed since 1896 at site and regional scales. Specifically, I investigate this through 1) 

analyzing 13 past western juniper tree-ring studies with a recently-developed modeling approach 

similar to that developed by Zuidema et al. (2020) to create site specific and reginal models,  2) 

exploring spatial patterns of changes in western juniper climate sensitivity over climate-space, 3) 

assessing the coverage of the western juniper climate-space of the 13 study-site locations with a 

novel “Representation of Ecological Inter-Space” permutation model, 4)  validating my findings 

with data I collected in the Chewaucan River Basin of southern central Oregon, and by 5) 

validating my findings by reanalyzing my results with a more commonly-used bootstrapped 

moving-window correlation and response functions.  

 

Chapter II of my dissertation, entitled “Nonstationarity in western juniper growth and 

climate relationships,” has been accepted by Ecology and Evolution and is coauthored by me and 

Lucas Silva. We construct and analyze multiple linear and mixed-effects models of western 

juniper tree-ring responses to precipitation, temperature and atmospheric CO2 constructed from 

13 previous tree-ring studies. In addition, we use a novel permutation model to determine the 

spatial coverage of those study site locations within the climate-space of western juniper 

woodlands.  

Chapter III is entitled “Climate tree-ring growth relationships of western juniper and 

ponderosa pine trees in the Chewaucan River Basin.” In this chapter I focus on applying the 

modeling methodology refined in chapter II to quantitatively compare the changes in responses 

of western juniper and ponderosa pine to precipitation and temperature as atmospheric CO2 has 

increased over time.  

Chapter IV is entitled “Comparison of evaluations of western juniper tree-ring climate 

sensitivity between mixed-effects models and bootstrapped moving-window correlation and 

response functions.” This chapter compares results from the mixed-effects models constructed in 

chapter II to the more commonly used method of analysis of tree ring climate sensitivity, the 

bootstrapped moving window correlation and response function.  

Chapter V is a summary of the preceding chapter’s results, and a discussion of the 

potential future research and management implications.  
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CHAPTER II 

NON-STATIONARITY IN WESTERN JUNIPER GROWTH AND 

CLIMATE RELATIONSHIPS 

 

Introduction 

Western Juniper Woodlands (WJW) are a vast, semi-arid ecosystem that have historically 

occupied areas between 34° N to 47° N and 124° W to 111° W 

(https://www.fs.fed.us/database/feis/plants/tree/junocc/all.html#DistributionAndOccurrence). 

Recent analyses of WJW range indicate that this ecosystem has been expanding rapidly into 

adjacent shrub and grass dominated communities (Rowland et al., 2011), a process that has been 

described since the mid-19th century in the Great Basin of the western United States (Figure 1).  

Today, the extent of WJW is ~3.6 million ha (The Gymnosperm Database, 2021), which 

represents nearly six-fold increase in less than 100 years, making WJW the second most 

expansive tree-dominate ecosystem in eastern Oregon(Azuma et al., 2005).  

 

Figure 1-  A) Western Juniper Woodlands and study sites from the International Tree-Ring Data Bank 
(red dots) in the states of Oregon, Washington, California, Idaho, and Nevada (left). B) Locations of those 
same study sites within the annual precipitation and mean annual temperature “climate-space” biplot 
occupied by western juniper woodlands within the state of Oregon (right).   
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The expansion of WJW into adjacent grass and shrub dominated rangelands has garnered 

much attention from land managers and scientists due to the impacts of its dominant tree species 

- western juniper (WJ): Juniperus occidentalis - on soil resources, availability of livestock 

forage, habitat for species of concern, and ecosystem carbon stocks (Abdallah et al., 2020; Bates, 

2020; Chambers et al., 2017; Schroeder et al., 2004). The use of natural archives like lake pollen 

cores and pack rat middens have provided much insight into the prehistoric patterns and 

distributions of WJW in relation to changes in climate (Miller 2019). The recent expansion of 

WJW, however, has been mostly attributed to the interaction between fire suppression and 

livestock grazing with less attention and agreement over the role climate and of rising 

atmospheric CO2 concentrations on the growth patterns of WJ trees (Miller et al 2008; Johnson 

and Miller 2008; Eddleman et al 1994; Burkhardt and Tisdale 1976). Therefore, the dynamics of 

recent WJW expansion, and their interaction with a changing climate under elevated CO2, 

represent an important factor that can help improve models aiming to forecast future WJW range 

expansion and related changes in ecosystem structure and function (Charney et al., 2016; 

Creutzburg et al., 2015; Klesse et al., 2018; Polley et al., 2013; Tietjen & Jeltsch, 2007; 

Tredennick et al., 2021a)). 

Approximately 7K-4K years before present, WJW were distributed ~500-640 km further 

south than where they are currently located (Mehringer & Wigand, 1987; Miller et al., 2000; 

Miller & Wigand, 1994b). The migration of WJW toward their current range coincided with the 

end of a period of extreme drought 8K-4.5K YBP and general cooling in the northwestern Great 

Basin (Miller & Wigand, 1994). Once WJW reached their current geographic range, their 

elevational-climatic relationship can generally be understood as follows: tree-cover expansion in 

its range at lower and upper elevations during wetter conditions; tree-cover decline at its upper 

elevational range during colder conditions; and/or retreat upslope during hotter and dryer 

conditions (Mehringer & Wigand, 1987; Miller & Wigand, 1994a) More recent analyses of the 

dynamics of WJW post Euro-American settlement attributes its expansion to three main factors: 

1) cool and wet conditions at the turn to the 19th century that were favorable for WJ growth and 

WJ seed production; 2) a reduction in fire-return intervals due to the forced removal indigenous 

peoples from the landscape and; 3) overgrazing by domestic livestock that preferentially grazed 
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non woody species, further reducing the fire-return interval due to a reduction of fine fuels 

(Johnson & Miller, 2008; Miller et al., 2000). Fire has often acted as a control on the lower 

elevational range of WJ, even during climate conditions favorable for expansion at lower 

elevations (Miller & Rose, 1999) However, beyond the drastic biomass removal caused by fire, 

the effects of climate and rising CO2 levels on WJ tree growth remain poorly understood. In 

addition, although the analysis in this study pertains to WJ tree-ring growth and climate, it has 

been shown that WJ seed production, germination rates, and seedling survival are statistically 

correlated with climate and tree-ring growth (Soulé et al., 2004). 

It has been hypothesized that elevated CO2 levels played a role in WJ tree growth rates 

and WJW expansion over the 20th century (Soulé et al., 2004; Soulé & Knapp, 2019). Our study 

further explores this hypothesis from Soulé et al. (2004), and   Soulé & Knapp (2019)  by 

expanding the number of sites studied, and by applying a new analytical method for quantifying 

the impacts that elevated CO2 has on tree-ring growth and sensitivity climate (Zuideman et al. 

2020). Therefore, with the geographic and climatic range of study sites expanded we can 

examine the potential geospatial pattern associated with atmospheric CO2 induced changes in 

tree-ring sensitivity to climate.  

Isotope chronologies in tree-rings across a wide range of tree species have suggested that 

increases in water use efficiency — the ratio of carbon fixed due to assimilation to water lost 

through stomatal conductance — have occurred at a widespread scale over the last 200 years 

(Franks et al., 2013). In WJW, elevated CO2 can influence tree growth by impacting 

physiological processes such as water-use efficiency, an important characteristic of drought 

responses (Knapp et al., 2001a; Knapp & Soulé, 1996; Soule & Knapp, 1999). In situ studies and 

meta-analyses addressing the effects of elevated CO2 on tree-ring growth in other forested 

ecosystems are prevalent in the literature(De Kauwe et al., 2013; Franks et al., 2013; Silva & 

Anand, 2013). However, there is a paucity of studies addressing this issue in cool semi-arid 

ecosystems around the globe, and particularly in WJW.  Given the potentially contrasting 

positive and negative effects of elevated CO2 and changes to climate on WJ growth, respectively, 

this interaction needs to be explored further from the perspective of sensitivity to climate and 

CO2 as well as their interactions.  
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The impacts of climate variables (precipitation and temperature) of WJ growth rates and 

the effects of rising CO2 on drought tolerance of WJ has been investigated with tree-ring analysis 

in a limited number of studies (Knapp et al., 2001a, 2001b; Knapp & Soulé, 1996; Knutson & 

Pyke, 2008; Soulé & Knapp, 2019). Although these studies provide evidence of increased 

drought tolerance due to increased CO2 concentrations in the early 20th century, a more 

comprehensive examination of the recent impacts of increased atmospheric CO2 on WJ growth 

in relation to climate is warranted. For instance, Knapp et al. (2001b) only produced bivariate 

models to describe the relationship between WJ tree-ring growth and precipitation using 

regionally resolute climate data, and therefore would not be suitable to use in projection models 

of future climate scenarios where not just inter-annual but intra-annual precipitation  patterns are 

predicted to change. Knutsnon and Pyke (2008) did provide insight into the role that soil 

subsurface texture plays in the growth response of WJ tree-rings to drought conditions, with trees 

growing on sandy and rocky soils being more negatively impacted by drought than those on 

more fine textured soils, however they also only produced bivariate tree-ring climate relation 

models.  Knapp and Soulé (1996) drew their conclusions from plant cover data collected in 1960 

and 1994 at a single site in central Oregon. Soulé and Knapp (2019) explored the relationship 

between climate and WJ tree-ring growth at four sites in central Oregon and produced both 

bivariate and multi-variate models of tree-ring growth, but did not include CO2 climate 

interactions, a method for assessing the change in climate sensitivity as atmospheric CO2 has 

increased (Zuideman et al. 2020). 

In particular, to the best of our knowledge, no studies have yet examined the interactions 

between climate variables and rising CO2 levels across the geographic and climatic range of 

WJW. Similarly, we know of no studies that examined these relationships at an intra-year 

resolution necessary to explore the impacts that future climate change will have on WJW 

ecosystem functions across geographic ranges. To address this knowledge gap, here we develop 

several related lines of inquiry leveraging thirteen previous WJ tree-ring studies.  

First, we investigate WJ tree-ring growth to sensitivity to precipitation and temperature for all 13 

study sites, then we evaluate whether increased atmospheric CO2 has changed that sensitivity at 

the site and regional levels.  We define sensitivity as the resultant coefficient of linear models 

examining the response of WJ tree-rings to climate variables. Change in sensitivity is explored 
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by examining the coefficient of the interaction between climate variables and CO2 (figure 2). In a 

similar fashion to Zuidema et al (2020) we compare models of tree-ring growth and climate 

relations, with and without interaction terms (i.e. climate * CO2 interactions on tree growth), to 

determine if and to what degree increased CO2 has changed WJ sensitivity to climate. 

Furthermore, we perform several post hoc exploratory analyses to determine if sensitivity of WJ 

tree-ring growth to climate and CO2 produce significant patterns across the climate space of 

WJW in the Great Basin. Additionally, we investigate both 1) how well our study sites represent 

the expanse of WJW climate space, and 2) the site distribution patterns of our study sites, both 

these factors are needed to represent an environmental system such as the climate-space of WJW 

and factors that are often unaccounted for with dendrochronological sampling networks (Babst et 

al., 2018) To this end, we use a novel permutation model that accounts for three metrics of 

climate representation (area of coverage, evenness of site distribution, and representation of site 

density) to compare between our site locations and randomly selected hypothetical site locations 

within the climate-space of WJW. 

 
Figure 2 Conceptual figure of  A) hypothesized western juniper tree-ring responses to climate variables at 
site and regional level. At lower atmospheric CO2 levels (solid lines) tree-rings respond positively to 
precipitation and negatively to summer temperatures. At higher CO2 levels the sign of responses is the 
same but the slope of the response (dashed line) is lower in magnitude. This represents a reduction in 
sensitivity to climate variables at high vs low CO2 levels.  B) hypothesized changes in site level tree-ring 
sensitivity across the regional climate gradient at both high and low CO2 levels. Solid red lines represent 
the site level responses of tree-rings to climate variables, with steeper lines representing higher levels of 
sensitivity. As annual precipitation increases, moving from left to right along the x-axis site level 
sensitivity to climate variables decreases (solid black line). The dashed lines represent what we 
hypothesis to observe at high atmospheric CO2 levels. At high CO2 levels there will still be a relationship 
between site level annual precipitation levels and tree-ring sensitivity, but overall sensitivity will be 
decreased (proximity of dashed black line compared to solid black line) along the y-axis, additionally the 
slope of that relationship will be decreased, meaning that drier sites will have a greater reduction to 
climate variable sensitivity than less dry sites. 
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Our overarching hypothesis is that if increases in atmospheric CO2 are increasing the 

iWUE of western juniper trees we will observe non-stationary, but predictable, trends in tree 

growth emerge over space and time as a result of interactions between climate (seasonal and 

annual), atmospheric CO2 levels, and site conditions. The results from our analyses are used to 

explore three specific categories: 1) site specific responses, 2) regional responses, and 3)  

patterns of sensitivity change across regional climate gradients. Our specific hypotheses are as 

follows. If increases in atmospheric CO2 are increasing the iWUE of western juniper trees: 1a), 

we will observe that at the site level WJ tree growth will have a positive response to seasonal 

precipitation and a negative response summer temperature with significant interactions arising 
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from seasonal climate and CO2 levels (figure 2a); 1b) Site level multiple linear regression models 

that include climate variable * CO2  interactions will have a better fit than multiple linear 

regression models without such interaction terms 2a) At the regional level WJ tree growth will 

have a positive response to seasonal precipitation and a negative response summer temperature 

with significant interactions arising from seasonal climate and CO2 levels (figure 2a); 2b) 

Regional level mixed effects models that include climate variable * CO2  interactions will have a 

better fit than mixed effects models without such interaction terms. 3a) WJ tree-ring sensitivity 

to climate variables will vary across a climate gradient of annual precipitation and temperature 

with drier sites being more sensitive to precipitation than wetter sites (figure 2b) and 3b) the 

impact of elevated CO2 will decrease WJ tree-ring sensitivity to climate variables to a greater 

degree at drier than at wetter sites (figure 2b). 

 

Methods 

Study Sites, Data Sources and Climate Trends: 

To test our three hypotheses, we searched for all available WJ tree width data in the Great Basin, 

which we interpret as a proxy for tree growth across space and time (Figure 1A). We used tree-

ring data gathered from the international tree-ring database (ITRDB), querying the database for 

Juniperus occidentallis. Our initial search rendered 51 dendrochronological studies. We then 

filtered these studies to only include the most recent timeseries, which represent the entirety of 

WJW climate space in Oregon, USA (Figure 1B). We removed studies that sampled Sierra 

juniper (Juniperus grandis) in the same region, which left us with 13 sites where master 

chronologies, each comprised of numerous individual trees, for our analysis of responses to 

rising CO2 levels and climate variability. The number of trees sampled at each of the 13 study 

sites ranged from 14 to 32 with a mean sampling size of 25 trees per site. The studies used for 

our analysis were conducted on varying dates, therefore, the latest tree-ring sampled from each 

site varies by location, from 1980 to 2010. Locations were based on the GPS coordinates 

provided within the meta data from the ITRDB, where the citations to the original studies can 

also be found https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring (Holmes 2002 

a,b,c,d,e; Knapp and Soulé 2008; Malevich 2013 a,b,c,d,e; Meko 2002; Meko 2013).  
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For all study sites, climate data was collected at an 800m resolution for monthly values 

starting in January 1895 and ending in the last year sampled at each site using interpolated spatial 

data products of all available observations from a wide range of monitoring networks (PRISM 

climate group). The location of study sites (Figure 1A) and their corresponding climate space 

(Figure 1B) span the current WJ range from which we gathered monthly and annual climate data 

to test our three hypotheses based on sensitivity relationships over space and interactions with 

atmospheric CO2 over time. In all case, we used average estimates of atmospheric 

CO2 concentrations from NASA reconstructions (1850-1958) 

http://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt. and direct measurements available at 

NOAA (1958-2016) ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt. 

We created plots of seasonally aggregated mean precipitation and temperature values at 

the regional level. Additionally, we calculated the rates of change for precipitation and 

temperature for the three 4-month seasons for the time period of 1980-2010 using the lm 

function  from the stats package (R core team, 2021) (figure 3 and figure 4). 

 

 

Figure 3- Mean seasonal precipitation values of all sites 

http://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt
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Figure 4- Mean seasonal temperature values for all sites 

 

Data Standardization: 

For all sites tree-ring widths were detrended using a modified negative exponential curve 

to account for the ontogenetic effect of tree size on ring width (Speer, 2010.)(figure 5a). 

Individual trees were then aggregated into a mean ring width index, or master chronology, at the 

site level to avoid interdependence of the climate predictor variables that were collected at the 

site level (Walker 2020) (figure 5b). Climate data was standardized at each site (mean=0 SD=1) 

to allow us to directly compare effect, size, and significance of resultant coefficients (figure 5f). 

Additionally, we aggregated monthly climate variables into consecutive equally sized multi-

month “seasons” (figure 5e) To determine season size and calendar location we tested several 

variations of these “seasons” (two 6-month seasons, three 4-month seasons, and four 3-month 

seasons). We determined that three-4 month seasons was the most appropriate season length 

based on comparing AIC scores of linear models for each season size per site, and the general 

shape of climographs we produced show three potential seasons. These seasons are as follows: 

previous year October to current year January (O_J), current year February to current year May 
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(F_M) and current year June to current year September (J_S). We chose to include the preceding 

year’s precipitation and temperature starting in October as a predictor variable in our study 

because previous studies found that precipitation from the previous year’s October through the 

current year is the strongest single predictor of a current year’s ring-width growth in our study 

species (Knapp et al., 2001b; Knutson & Pyke, 2008; Soulé & Knapp, 2019). 

 

 

Figure 5- Flow chart of data processing, model selection and evaluation. Panels A-C represent the data 
flow of data processing for three-ring data. A) Raw tree-ring data from site OR089 series TRJ01B, black 
line shows tree ring variation from the pith of the tree to the year it was cored, yellow line shows the 
modified negative exponent used to detrend the series and account for the ontogenetic effect of tree age 
on ring width; B) The now unitless ring width index plotted against the age of tree at ring formation; C) 
The master chronology for site OR089, this is the mean RWI for all tree series at this site (n=19). Panels 
D-F represent the flow of data processing for climate data gathered from the PRISM climate group for 
each site. A) Monthly climate data for each year (1895-2016), this panel only shows monthly 
precipitation data, but monthly mean temperature data was also used in analysis; D) The same climate 
data but aggregated into three 4-month seasons: the preceding year’s October through current year’s 
January, current year’s February through current years May, and current year’s June through current 
year’s September; E) The same seasonal aggregated data but scaled to have a mean of 0 and an SD of 1. 
Panels G-I represent the model selection, evaluation and visualization flow chart. G) The Dredge function 
is used to generate the most parsimonious model based on two global models (w/o climate CO2 
interactions & w/  climate CO2 interactions); H) the adjusted r-squared value for the most parsimonious 
models (w/o climate CO2 interactions & w/  climate CO2 interactions) are compared to determine what 
one provides a better fit and more predictive power J) The best fitting model is displayed with significant 
covariates (y-axis) and their resulting coefficients (x-axis). 
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Testing Site Specific Responses: 

For each individual site we constructed four multiple linear regression models using the 

lm function from the stats package (R core team, 2021). One model including just climate 

variables as predictor variables, one model including CO2 and its interaction with climate 

variables as predictor variables, and a simplified version of each model using a dredge function 

from the MuMln stats package (R core team, 2021).  (figure 5g). The dredge function works by 

conducting repeated evaluations of all possible iterations of predictor variables and then ranks all 
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possible models based on AIC score. We then selected each model with the lowest AIC score for 

each model group and each site. By comparing the two sets of models (with and without climate 

* CO2 interactions) inference on to what degree increased CO2 levels have been modifying the 

effects of climate on tree-ring growth is possible (figure 5h).  

Testing Regional Responses:  

We used mixed-effects models to evaluate the significance and magnitude of increased 

atmospheric CO2 and climate variables on WJ tree-ring growth at a regional scale with the lme 

function from the nlme package (Pinheiro et al, 2021). For the entirety of our data set we 

constructed four mixed effects models: a model consisting of just the climate variables as 

predictor variables, a model that included the climate variables and climate variable * CO2 

interactions, and a dredged version of each of the aforementioned models. For these mixed 

effects models, we included site a random intercept term.  

Patterns of Sensitivity Across Regional Climate Gradients: 

In order to further expand our understanding of the relationships between the growth of 

WJ tree-rings, climate, and increasing CO2 levels we found it prudent to proceed with an 

explicitly exploratory examination of the resultant coefficients produced in our previously 

described site-specific modeling efforts.   An exploratory approach is particularly useful when 

searching for relationships between climate and ecological processes and is less statistically 

restrictive than models aimed specifically at prediction or inference (Tredennick et al., 2021) To 

accomplish this, we used a mixed-effects model in a similar method to what was done in the 

‘Testing Site Specific Response’ methods subsection. We included all climate variable predictors 

and climate variable * CO2 interaction terms, however, instead of using a dredge function which 

determines what coefficient terms should be included to produce the most parsimonious model 

with the most predictive power; all climate variables, and their interactions with CO2 were 

included.  By including all predictive variables, we were then able to examine all resulting 

coefficients organized along gradients of annual precipitation and temperature. We then 

performed linear regressions using site mean annual precipitation or temperature as the predictor 

variable, and coefficient values from the previous model as the response variable. The approach 

allowed us to explore linear relationships between the sensitivity of WJ tree-ring growth to 
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climate variables and the changes in that sensitivity as CO2 levels have increased over time, 

across the annual precipitation and annual temperature gradients of our study sites.  

Representation of our Regional Model in Western Juniper Climate-Space: 

To explore how well the sites of our regional model represent the climate-space of WJW, 

we constructed a permutation model that compared the proximity of our 13 sites in the climate-

space of WJW to 100 randomly selected 13 sites subsamples from within WJW climate-space. 

This comparison was based on three geospatial factors: the area of the convex-hull created by the 

site locations in climate-space (Area Score) (figure 6b), the dispersal of those sites in climate-

space via an average Ripley’s K function score for the sample sites (Dispersal Score) (figure 6c), 

and the proximity of the sites in climate-space to areas in climate-space with a high density of 

WJW locations, via the sum of site values in correspondence to a 2-D density plot or heat map 

(Density Score) (figure 6a). We chose these three geospatial factors because we hypothesize that 

a set of sample points will be well representative of a climate-space if they 1) cover a large area 

of that climate space, 2) are evenly distributed throughout that climate-space, and 3) the sites are 

within close proximity to areas in that climate-space where there is a high density of occurrence 

of the species of interest.   

Figure 6 Conceptual figure of methods for determining how well all 13 sites from our study represented 
the climate space of western juniper woodlands. The upper panels (a, b, c) represent the three geospatial 
factors we used to quantify representation; proximity to high density potential plot locations (a), the total 
convex area of climate space covered by the constellation of plot locations (b), Rippley’s K function to 
determine the dispersal of plot locations in climate space (c). In the middle panel (d, e, f) are 
corresponding density curves of scores (vertical dashed lines) for each geospatial factor compared to 
results from permutations of 13 randomly selected potential sites from within the climate space of western 
juniper woodlands. The bottom figure (f) is the density of scores of the composite score of all three 
factors (Density percentile score * Area percentile score * Dispersal percentile score), the vertical dotted 
line represents the three-factor score for our configuration of sites. 

 



 30 

 

 

To determine the climate-space of WJW, we used a raster map of western-juniper 

woodlands in Oregon then filtered annual precipitation and temperature values gathered from the 

PRISM climate group, through the presence of WJW, leaving us with 2189 points (4km 

resolution) with annual precipitation and annual temperature values that represent the climate 

space of WJW in Oregon. To calculate the overall climate-space representation score we first 

individually calculated the score for each factor (Area Score, Dispersal Score, and Density 

Score) (figure 6 e,f,g) in our model for the set of our existing site locations. Area Score was 

determined using the convhulln function from the geometry package in r studio. Distribution 

Score was determined by using the Rippley’s K function with the Kest function from the spatstat 

r package. Density Score was determined by calculating the sum score of the 13 points based on 

an overlayed density plot created using the density function with a sigma score of 0.15 from the 

raster package. We then selected 100 sets of 13 randomly selected points within the WJW 
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climate-space that we will refer to as subsamples. For each of those subsamples we calculated 

their scores for each of our three model factors.  

Based on the scores from the 100 sub samples we created empirical cumulative 

distribution functions and calculated the percentile value for each factor in our model for our 

sites and each subset (percentile scores) (figure 6g) . We then multiplied each percentile score 

together to calculate a single three-factor value for our sites and each subsample. These three-

factor values were then used to compute another empirical cumulative distribution function. The 

three-factor value generated from our sites was then used as an input for this function to 

determine a single percentile value score. We then iterated the previous process 100 times in 

order to generate 100 percentile value scores from which we could generate statistics about 

dispersion and variation of percentile value scores from our set of sites (Figure 6).  

Results 

Climate Trends: 

Seasonally aggregated precipitation and temperature values show a high degree of 

interannual variation (figure 4 and figure 5). Thirty-year climate annuals per site range from 250-

669 mm (mean = 402 mm, sd=127) and 3.9-9.5Co (mean=7.24 Co, sd = 1.24) for precipitation 

and temperature respectively. Across all sites Summers are dry and warm, with the Fall, Winter, 

and Springs seasons being cool and wet with 45% (41-48%) of precipitation occurring from 

October to January and 38% (32-44%) of precipitation occurring from February to May. Results 

from linear models of annual values and seasonally aggregated climate variables from 1980-2010 

indicate that precipitation and temperature patterns are changing with annual precipitation 

decreasing, and annual temperature increasing.  October through January precipitation showed 

no significant trend, October through January temperature increasing, February through May 

precipitation decreasing, February through May temperature showing no significant trend, June 

through September precipitation decreasing, and June through September temperature increasing 

(table 1). 
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Table 1 Results of linear regression model for changes in climate at all sites (n=13) from years 1980-
2010, including angular coefficients (i.e. slope) and significance level of each regression. Precipitation 
and Temperature values are aggregated into three 4-month “seasons” starting with the precedent year’s 
October through current year’s January (O_J), the current year’s February through May (F_M) and the 
current year’s June through September (J_S). 

Climate Trends 1980-2010 

Climate Variable Coefficient p-value 

Annual Precip -2.3436 <0.01 

O_J Precip -0.5174 0.1618 

F_M Precip -0.8193 <0.05 

J_S Precip -1.0068 <0.001 

Annual Temp 0.0290 <0.001 

O_J Temp 0.1191 <0.001 

F_M Temp 0.0503 0.108 

J_S Temp 0.1791 <0.001 

   

 

Site Specific Responses: 

Our set of site specific multiple linear models show a positive response of WJ tree-ring growth to 

seasonal precipitation and negative response to summer temperature for the majority of sites, 

supporting hypothesis 1a (table 2, figure 7).  Tree-ring sensitivity to precipitation varied between 

seasons, in terms of magnitude of coefficient values and inclusion in models. Sensitivity to 

October to January precipitation had the greatest mean coefficient value (0.203) but was only an 

included covariate in 8 out of 13 site specific models (table 1). Sensitivity to February to March 

precipitation had the next highest mean coefficient value (0.088) and was included as a covariate 

in all site specific models. Sensitivity to June to September precipitation had a mean coefficient 
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of 0.063 and was included in 12 of 13 site specific models. Seven out of 13 site specific models 

included June to September as a model covariate, with each resulting coefficient being negative 

in sign with a mean value of -0.06.  

 

Table 2- Resultant coefficient values from site specific multiple linear models including climate variables 
and CO2 interactions. Models were created using the dredge function to determine the most parsimonious 
model per site. 
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Figure 7- Site specific results from dredged linear models with climate * CO2 interactions. On the Y-axis 
are the coefficient terms and on the X-axis are the coefficient values. These coefficient values represent 
the sensitivity of WJ tree-rings to these terms. Sites are arranged in the legend and values for sites are 
arranged in the figure descending from lowest annual precipitation values (OR092) to highest annual 
precipitation values (NV518). 

 

By comparing the adjusted r-squared value between models with and without climate * 

CO2 interactions, we can infer the effect of increased atmospheric CO2 on WJ climate-growth 

relationships at a site level. At 10 of 13 sites, the model with the highest adjusted r-squared 

value, and therefore highest amount of model fit, and variance explained, included climate * CO2 

interaction terms, supporting hypothesis 1b (table 3). Mean values for adjusted r-squared values 



 35 

were 0.385 and 0.330 for models with and without climate x CO2 interactions, respectively. 

When examining the resultant coefficients and annual precipitation of each site we see a pattern 

of decreasing coefficient values, as mean annual precipitation increases for fall-winter 

precipitation (Multiple R-squared:  0.5702, Adjusted R-squared:  0.4986, F-statistic: 7.961 on 1 

and 6 DF,  p-value: 0.0303) and winter-spring precipitation (Multiple R-squared:  0.5898, 

Adjusted R-squared:  0.5525, F-statistic: 15.81 on 1 and 11 DF,  p-value: 0.002171). There is 

also a trend of decreasing r-squared values of our linear models for individual sites as annual 

precipitation increases across an annual precipitation gradient (Multiple R-squared:  0.7071, 

Adjusted R-squared:  0.6805, F-statistic: 26.56 on 1 and 11 DF, p-value: 0.0003167). Additional 

trends of sensitivity of tree-ring growth to climate variables is further explored in the section 

‘Patterns of Sensitivity Across Regional Climate Gradients.’ 

Table 3 Comparisons of adjusted r-squared values from two linear models, with and without climate 
*CO2 interactions for all 13 study sites.  

Adjusted r-squared 

Site with interaction terms without interaction terms 

OR092 0.6027 0.5679 

OR093 0.5041 0.4446 

OR095 0.4914 0.332 

OR089 0.5298 0.5164 

OR094 0.459 0.3907 

CA095 0.4039 0.3498 

ID006 0.2494 0.2494 

CA517 0.3991 0.3249 

OR063 0.4619 0.2954 

OR009 0.2627 0.2422 

CA675 0.2197 0.1492 

OR006 0.2154 0.2154 

NV518 0.2105 0.2105 
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Regional Responses: 

Results from our regional model show that precipitation from the previous year’s October 

until the current year’s January (O_J_precip) had the greatest positive influence on tree-ring 

growth for WJ trees within our study sites, followed by February through march precipitation 

(F_M_precip), then June through September precipitation (J_S_precip). Finally, June through 

September (J_S_temp) temperature has a negative influence on WJ tree-ring growth with a 

magnitude that is lower than the climate variables that have a positive influence (Figure 8). This 

supports our hypothesis 2a), that at the regional level WJ tree growth will have a positive 

response to seasonal precipitation and a negative response summer temperature with significant 

interactions arising from seasonal climate and CO2 levels. 

 

Figure 8- Coefficient values (x-axis) and predictor variables (y-axis) from dredged regional mixed effects 
model. 
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Comparison of the marginal and conditional r-squared values for our regional model for 

with and without climate * CO2 interactions show that the model with climate * CO2 interactions 

explains more of the variance and has a better fit (0.3232 and 0.2866, respectively) and therefore 

our hypothesis 2b) is  supported that our model will have a better fit and stronger predictive 

power when CO2 x climate variable interactions are included (Table 4). 

Table 4- Results from our regional mixed effects model of western juniper woodlands 

  Ring Width Index 

Predictors Estimates CI p 

(Intercept) 1.05 1.03 – 1.07 <0.001 

CO2 0.03 0.02 – 0.05 <0.001 

F_M_precip 0.09 0.07 – 0.11 <0.001 

J_S_precip 0.06 0.04 – 0.08 <0.001 

J_S_temp -0.04 -0.06 – -0.02 <0.001 

O_J_precip 0.15 0.13 – 0.17 <0.001 

CO2 * F_M_precip 0.02 0.00 – 0.03 0.022 

CO2 * J_S_precip -0.02 -0.04 – -0.01 0.010 

CO2 * O_J_precip -0.05 -0.06 – -0.03 <0.001 

Random Effects 
σ2 0.09 
τ00 Site 0.00 
ICC 0.00 
N Site 13 

Observations 1317 
Marginal R2 / Conditional R2 0.321 / 0.323 

 

When examining predicted and observed values from our regional model plotted per year 

we can see that both series show a large degree of annual variation, which is highly correlated 
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(R=0.78) (Figure 9). Our model tends to under predict for years of either extremely large or 

small observed ring-widths. 

 

Figure 9- Observed (black) and predicted (red) average regional tree growth, inferred from tree ring 
width, using master chronologies of western juniper woodlands based on 13 different study sites, for 
years 1896-2010. 

 

Our regional model contains three climate variable x CO2 interaction terms. Fall-winter 

precipitation and summer precipitation that are both negative in sign, and winter-spring 

precipitation that is positive in sign. This indicates that WJ ring-widths have been becoming less 

sensitive to fall-winter precipitation and summer precipitation, while becoming more sensitive to 

winter-spring precipitation. These significant interactions between climate variables provides 
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both support and counter evidence for our hypothesis 2) that elevated CO2 levels will result in an 

increase in drought tolerance for WJ trees as evidenced by statistically significant and negative 

CO2 x precipitation coefficient values.  

Patterns of Sensitivity Across Regional Climate Gradients: 

Out of the 14 potential resultant coefficient terms that could have linear relationships 

with site level annual precipitation, between 7 and 4 of them produced significant results (figure 

10). The number of significant results is dependent on if and what type of correction for multiple 

comparisons is used (Bonferroni, Holm). Since this is a model explicitly used for data 

exploration, the consequences of spurious relationships are minimized (Tredennick et al 2021), 

therefore we will report results as being either non-spurious or possibly spurious (figure 10).  

 

Figure 10- Representation of post-hoc data exploration of linear relationships between resultant 
coefficients of climate variables and climate variable CO2 interactions and site level annual precipitation 
values. Mean coefficient values are shown (small colored rectangles) with standard error values (colored 
vertical bars). Bold dashed lines represent linear relationships, red dashed lines are possible spurious 
results, and black dashed lines are non-spurious. Site coefficient values are organized for each climate 
variables along an annual precipitation gradient, with more arid sites on the left side, and less arid sites on 
the right. 
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The four non-spurious relationships are between site annual precipitation and: 

O_J_Precip, F_M_Temp, F_M_Precip, and O_J Precip:CO2. The three possibly spurious 

relationships are between site annual precipitation and J_S precip, J_S temp, and F_M Temp: 

CO2. Results from this analysis show us that tree-ring sensitivity to O_J Precip  and F_M Precip  

is positive for all sites and decreases as annual precipitation increases across sites. However, the 

resultant coefficients, or sensitivity to F_M Temp is negative at drier sites and positive at wetter 

sites, with increasing sensitivity as annual precipitation increases. This indicates that annual tree-

ring width of WJ trees are negatively impacted by warmer spring temperatures at drier sites, but 

positively impacted by warmer spring temperatures at wetter sites. The only non-spurious 

relationship that contains a climate variable * CO2 interaction is the positive relationship 

between O_J Precip:CO2 coefficients and annual precipitation. The coefficient term for O_J 

Precip:CO2 is negative for 12 of 13 sites and increases (becomes less negative) as annual 

precipitation increases across sites. This indicates that as CO2 concentrations have increased, the 

decrease in sensitivity to O_J precipitation is more pronounced at more arid sites than at less arid 

sites. Additionally, there may be positive relationship between sensitivity to J_S prrecipitation 

and annual precipitation, along with J_S Temp and annual precipitation.  Their also may be a 

negative relationship between F_M Temperature :CO2 and annual precipitation, with a decrease 

in sensitivity to F_M Temp as CO2 has increased at both more arid and less arid sites (figure 10).   

Representation of our Regional Model in Western Juniper Climate-Space: 

To explore how well the site locations used in this study represent the climate-space 

occupied by WJW (Figure 1B), we developed a permutation model that accounts for three 

factors: 1) the area of a convex hull created by the locations of our sites in climate-space, 2) the 

evenness of the distributions of our sites in climate- space, and 3) the proximity to areas of high-

density WJW locations in climate-space (Figure 6). For this analysis, we define climate space as 

a two-dimensional plane of annual precipitation and annual temperature (Figure 1B). The 

precipitation range of climate space occupied by WJW is 208mm to 900mm with a mean value 

of 414mm. Mean annual temperature ranges from 3.96 Co to 12.15 Co with a mean value of 7.59 

Co. Our sites had a mean Area Score percentile of 0.736 (SD=0.043), a mean Dispersal Score 

percentile of 0.6811 (SD=0.044) and a mean Heat Score percentile of 0.6209 (SD=0.05). When 
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these three factors were composited and compared to the scores of the composite scores of 100 

subsamples 100 times, our results show us that our sites our in the 93.91 (SD=2.63) percentile of 

representativeness of 13 site plot locations. 

Discussion  

Here we provide evidence for this non-stationarity of climate-juniper-woodland 

relationships. Global CO2 concentrations have increased by 38% over the course of this study 

(333ppm in 1895 to 404 ppm in 2016). Our analysis of WJ tree-rings show that this CO2 rise has 

resulted in temporal non-stationarity in WJ growth and climate relationships at both a site a 

regional level. We identified shifts in juniper tree growth sensitivity to climate and CO2 over 

space and time which supports our overarching hypothesis that predictable trends in tree growth 

emerge as a result of interactions between climate (seasonal and annual), atmospheric CO2 

levels, and site conditions.  

Specifically, we find support to hypothesis 1a) and 1b) that WJ tree ring growth will have 

a positive response to precipitation and a negative response to summer temperature at a site level 

and that models including CO2 climate interactions will have a better fit and more predictive 

power than models that do not include that interaction (table 3, figure 7).We also find support for 

hypothesis 2a) and 2b) that at the regional level WJ tree growth will have a positive response to 

precipitation and a negative response to summer temperature with models having a better fit and 

more predictive power when CO2 climate interactions were included (figure 8). Finally, we 

found partial support for h3a) and h3b) We did discover patterns of WJ tree ring sensitivity 

varying across a climate gradient of annual precipitation, with a greater reduction in sensitivity at 

drier sites at elevated CO2 levels. However, no such patterns we detected for across a climate 

gradient of annual temperature (figure 10).In summary, we show that tree-ring growth models 

have a better fit and more predictive power when CO22 * climate variable interactions are 

included.  

Even though the number of site locations in this study (n=13) was limited, by taking an 

exploratory analytical approach to WJ growth responses across geographic and climatic space we 

are able to recognize and reflect on several noticeable geographic and climatic patterns, that 

should prove useful in producing future hypotheses and informing future research avenues. 
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Additionally, our permutation model for assessing representativeness of site locations within 

environmental space could provide a framework for assessing existing research networks or for 

selecting future sampling locations. Furthermore, investigating the impact of increased 

atmospheric CO2 on tree-ring growth climate relations should be applied to a wider range of 

ecosystems with an emphasis on exploring patterns of differential change in sensitivity across the 

climate space of the ecosystem or species of interest.  

Site Specific Responses: 

When examining the adjusted r-squared values from the individual site models we see, 

for 11 of the 13 sites, that tree-ring growth is better explained when CO2 * climate variable 

interactions are included in the models. No sites however, had models that provided more 

explanatory power when CO2 x climate variable interactions were not included.  The sites 

NV518, OR006, and ID006 have the same adjusted r-squared values for both models with and 

without CO2 * climate variable interactions. This is because the dredge function selected the 

same explanatory variables for each model set and these models did not include CO2 * climate 

variable interactions for these sites. However, this may be an artifact of the temporal limitations 

of those data sets and/or related to an actual climate tree-ring relationship. Sites OR006 and 

ID006 only have tree-ring data that extends to 1982, and 1984 respectively; and NV518 and 

OR006 have the highest and second highest annual precipitation for all sites in this study. It 

seems reasonable to hypothesize that the explanatory value of CO2 * climate variable 

interactions would be greater in more recently sampled sites, and also in more arid sites. The 

results from our individual site models, along with our regional model analysis provide further 

evidence that CO2 increases impacting the relationships between WJ tree-ring growth and 

climate relationships.  

Regional Responses: 

Our regional model provides insight about how climate variables aggregated into three 4-

month “seasons” affect tree-ring growth for WJ trees. Previous studies have identified that 

precipitation from the previous October to the current year June to be the strongest predictor 

variable for WJ tree-ring growth and that summer temperature can have a negative impact on WJ 

tree-ring growth (Soulé and Knapp, 2019; Knutson and Pike, 2008). When we convert the 
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coefficients for each of the precipitation variables into the proportion of the sum of these 

coefficients, we see that 50% of the explanation due to precipitation is due to O_J precipitation 

(coefficient=0.15), 30% is due to F_M precipitation (coefficient= 0.09) and 20% is due to J_S 

precipitation (coefficient= 0.06). These proportions of the sum of precipitation coefficients are 

similar to the percentages of precipitation for those same three 4-month seasons; with O_J 

precipitation at 45% of the total, F_M precipitation at 38% of the total and J_S precipitation at 

17% of the total. O_J and J_S  both have coefficient percentages that are slightly higher than  

total precipitation percentages ( 50% vs 45% and 20% vs 17%) and F_M has a the opposite with 

a coefficient percentage that is slightly lower than its precipitation percentage (30% and 38%). 

This could mean that precipitation in the O_J season and the J_S season play a more important 

role in WJ tree-ring formation and growth that F_M precipitation when compared to the 

proportion of precipitation in each of those seasons.  

Additionally, when we examine the CO2 * climate variables interactions from our 

regional model and recent climate trends, we see that the climate for this region is changing, and 

the relationship between climate and tree-ring growth is also changing. Included in the regional 

model are three CO2 * climate variables interaction terms, CO2 * F_M_precip, CO2 * 

J_S_precip, and CO2 * O_J_precip. The inclusion of these CO2 * climate variable interaction 

terms means that the relationship between WJ tree-ring growth and these climate variables has 

changed as CO2 has increased over the last century. Specifically, the negative coefficients for 

CO2 * J_S_precip, and CO2 * O_J_precip means that tree-ring growth in WJ trees have been 

becoming less sensitive to J_S precipitation, and less sensitive to O_J precipitation. Conversely, 

the positive coefficient for CO2 * F_M_precipitation implies that WJ tree-ring growth has 

become more sensitive to F_M precipitation since 1896.  

Since F_M_precipitation has decreased significantly by 0.82 mm per year over the last 30 

years, this decrease could be the cause of the perceived increase in tree-ring sensitivity to 

F_M_precipitation that we see in our model, via a positive F_M_precipitation * CO2 interaction 

term. However, the decrease in tree-ring sensitivity to O_J_precipitation and J_S_precipitation as 

CO2 increases occurred while O_J_precipitation did not change significantly and 

J_S_precipitation decreased significantly, supporting the hypothesis that increased atmospheric 
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CO2 increases drought tolerance in WJ trees due to an increase in intrinsic water use efficiency 

(iWUE).   

Patterns of Sensitivity Across Regional Climate Gradients: 

The results from our post hoc data exploration of pattern of sensitivity across regional 

climate gradients support our hypothesis 3a) -that the sensitivity of WJ trees to climate variables 

varies across a climate gradient- and hypothesis 3b) that the impact of elevated CO2 will 

decrease WJ tree-ring sensitivity to climate variables to a greater degree at drier than at wetter 

sites. Our findings from hypothesis 3a) are similar to phenomena that have been observed in 

adjacent ecosystems (Adler et al., 2018; Kleinhesselink & Adler, 2018; Klesse et al., 2020; 

Renwick et al., 2018). The meta-analyses conducted by Kleinhesselink and Adler (2018), and 

Renwick et al (2018) observed the responses of big sagebrush (Artemisia tridentata) to 

interannual climate variation from 1994-2006 at over 100 study plots. Big sagebrush is a woody 

perennial shrub that occupies the interspace of WJW, and dominates the plant communities 

directly downslope of WJW. 

Based on our post hoc data exploration of tree-ring sensitivities organized along climate 

gradients, and similar findings from Kleinhesselink and Adler (2018) we can postulate how 

climate variation might impact relative production of these often competing and interacting plant 

species where they co-occur.  Where we found that WJ tree-ring growth was most sensitive to 

precipitation variables with several significant trends of sensitivity when sites were organized 

along an axis of annual precipitation, we found no significant trends of sensitivity when 

organized along an axis of annual temperature. However, according to Kleinhesselink and Adler 

(2018), big sagebrush foliage cover was most sensitive to growing season temperatures, with a 

positive response to warmer than average years at colder sites and a negative response to warmer 

than average years at hot sites. The inflection point for the impact of temperature on big 

sagebrush growth was at a mean annual temperature of 10 degrees Celsius, a mean annual 

temperature higher than any of our sites. Since J_S Temperature, and F_M Temperature, both 

have negative impact on WJ tree-ring growth at arid sites, but a positive impact at less arid sites 

(figure 10), perhaps, where WJ and big sagebrush coexist, warmer than average years might 

favor increased sagebrush growth with negative impacts on WJ growth at arid sites, and positive 

impacts on WJ growth at less arid sites. Meaning that increasing temperatures might favor big 
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sagebrush over WJ at more arid locations, but perhaps not at less arid locations. The study by 

Kleinhesselink and Alder (2018) did not explicitly address the impacts of increasing CO2 levels 

on the sensitivities of big sagebrush to climate, their study years were relatively recent (1994-

2006) but we do not know if and in what direction increased CO2 has and/or will shift big 

sagebrush climate sensitivities.  

Representation of our Regional Model in Western Juniper Climate-Space: 

In order for dendrochronology to be useful in producing accurate projections of future 

tree and woodland function and distribution there is a need to focus on the spatial 

representativeness tree-ring sampling networks (Babst et al., 2018), specifically the spatial 

representativeness within  n-dimesional hypervolume that represents niche space (Perret & Fox, 

2022). Perret and Fox (2022) examined the coverage of niche space for 64 conifer species 

between a geographic sampling grid and a niche space grid and discovered that a niche grid 

covers more area of a specie’s niche space than a geographic grid.  

However, Perret and Fox (2022), only assessed spatial coverage via one metric, minimum 

convex polygon. Our permutation model considers three metrics of spatial coverage: area 

covered, evenness of site distribution, and proximity of sites to densely populated areas of 

climate space.  We believe our permutation model could provide future researchers with avenues 

of exploration in the refinement of such niche representation models. In addition, our method for 

exploring this problem might prove helpful in the selection of sampling site areas used to 

augment an existing sampling network, where the formation of a site network gridded in niche 

space may not be feasible.  

Results from our permutation model provide evidence that the locations of sites in this 

study represent the climate-space of WJW better than 93% ±2.63% of 13 hypothetical sites 

selected randomly from WJW climate-space. Although this score provides evidence that the site 

locations from this study represent the climate space of WJW well, based on our three selected 

metrics (Area, Dispersal, and Density) several lines of inquiry remain to be explored related to 

our model of representativeness of climate-space. Firstly, a network of tree-ring site locations 

should attempt to represent more than just climate-space and should move beyond a two-

dimensional climate bi-plot for score evaluation (Klesse et al., 2018). Ideally, our 

representativeness model could expand its score evaluations into an n-dimensional 
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climate/ecological/management hyper-space, that accounts for variables such as: land use history 

and ownership; edaphic properties like soil type and parent material; plant community 

composition; geomorphic properties like, elevation, slope, aspect, and topographic wetness 

index; disturbance and fire history, and stand age, and stand structure. This would make our 

permutation model transcend the representation of climate-space to the representation of meta-

ecological hyper-space. Beyond the inclusion of meta-ecological variables, our permutation 

model would then need to be calibrated using a network of existing tree-ring studies that contains 

enough study sites to determine what variables and spatial metrics create correlation between 

tree-ring growth models constructed from the entire data set and a subsample of sites.  

Inclusion in Subsequent Future Projection Models: 

Efforts over the last decade to model future extent and abundance of WJW and adjacent 

ecosystems can show a high level of uncertainty, and inconsistency; with Creutzburg et al. 

(2015) predicting WJW expanding from three to five-fold in area over the 21st century in central 

and eastern Oregon. In contrast, Zimmer et al (2021), and Gibson (2011), predict widespread 

declines in WJ vegetation over the same time period and region.  Inclusion of our findings in 

subsequent future projection models should reduce this uncertainty, because from what we have 

gathered recent models either do not account for the impacts of increased CO2 on WJ climate 

relations (Creutzburg et al., 2015) or do not account for the idiosyncratic responses of WJW to 

climate changes because of the broad vegetation categories of Dynamic Global Vegetation 

Models (Jiang et al., 2013; Notaro et al., 2012; Rehfeldt et al., 2012; Zimmer et al., 2021). 

Declining of CO2 Stimulation of Tree Growth and Broader Implications: 

How WJW will respond in the future depends greatly on future management, disturbance 

regimes, climate scenarios, and the impact and persistence of the CO2 fertilization effect. There 

is high confidence that drought and fire prone weather will continue to increase in Western North 

America under future climate scenarios (IPCC 2021). Fire regimes and both patterns of 

precipitation and temperature are two mitigating factors of WJW distributions at both large and 

small spatiotemporal scales (Miller, 2019), however recent increases in temperature and 

decreases in precipitation have not had the negative impacts on WJ tree-ring growth as one 

would expect compared to the historical records, perhaps due to a reduction in drought 
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sensitivity due to an increase in iWUE due to an increase in atmospheric CO2 levels, as 

evidenced by our study. The temporal persistence, and spatial patterns of the potential drought 

mitigating effect of increased atmospheric CO2 levels is still uncertain. It is generally agreed 

upon that the CO2 fertilization effect will vary across biomes (Charney et al., 2016; Donohue et 

al., 2013), be limited by nutrients related to edaphic properties (Norby et al., 2010), and 

eventually be overtaken by a continued decreased precipitation or increased temperatures 

(Sperkich et al., 2020; Charney et al. 2016). Results from our study will help to elucidate some 

of these questions. 

 However, we recommend that similar analysis be applied to all existing tree-ring data 

sets.  It has been predicted that the drought mitigating effect of increased atmospheric CO2 will 

be greater in arid ecosystems (Donohue et al. 2013), additionally from our study we see a similar 

pattern with in the WJW ecosystem. As seen by our permutation model for the representation of 

the sites from our study within the climate space of WJW, our study site locations do good job of 

representing said climate space in an expansive, inclusive, and evenly distributed manner. 

However, it has been noted that models derived exclusively from dendrochronological studies 

can be biased towards more sensitive trees (Babst et al., 2018; Brienen et al., 2012; Klesse et al., 

2018). Therefor, it would be beneficial to sample additional sites that allow for a sampling 

regime that goes beyond climate-space representation to a more meta-ecological representation 

of WJW. Additionally, sampling younger trees would help quantify the impacts of climate 

variables and CO2 interactions on younger vs older trees, and perhaps capture non-linear 

relationships between climate and CO2 level interactions (Andreson-Texera et al. 2021). 
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CHAPTER III 

CLIMATE TREE-RING GROWTH RELATIONSHIPS OF 

WESTERN JUNIPER AND PONDEROSA PINE TREES IN 

CHEWAUCAN RIVER BASIN. 

Introduction 

The western juniper (Juniperus occidentalis ) Woodlands (WJW) that occupy large 

portions of eastern Oregon are a highly dynamic ecosystem expanding in area by nearly six-fold 

over the last century (Azuma et al., 2005). Although numerous studies have assessed the impacts 

that factors such as overgrazing and reduction of fire have had on this expansion (Miller et al 

2008; Johnson and Miller 2008; Eddleman et al 1994; Burkhardt and Tisdale 1976), there have 

been notably fewer studies regarding the role climate and rising CO2 levels played on the growth 

rates on juniper trees in connection with spatiotemporal shifts in juniper populations (Miller et al 

2021). This knowledge gap has hindered our ability to make predictions about the future of this 

system, especially under expected changes in climate sensitivity of western juniper tree-ring 

growth under rising atmospheric CO2. Addressing this knowledge gap is the central motivation 

of this study.   

Global meta-analyses show a clear effect of increased atmospheric CO2 levels on tree-

ring growth for many dominant tree species (Peñuelas et al 2011), in some cases attributed to a 

physiological shift in intrinsic water use efficiency (iWUE) ranging from ~10 to 60% over the 

past ~50 years (Silva & Anand, 2013) . Those same studies revealed large variation in tree 

growth responses to climate variability ranging to ~-30% to +45% in Mediterranean systems. In 

other words, changes in tree growth rates do not always correspond with increased iWUE, likely 

due to other environmental factors like nutrient limitation. Although, as seen in Zuidema et al. 

(2020) and Chapter 2 of this dissertation, changes in atmospheric CO2 concentrations can impact 

the sensitivity of trees to seasonal fluctuations in temperature and precipitation variables. Here, 

we explore this concept by quantifying changes in sensitivity of juniper tree-rings to 

precipitation and temperature over the last century at sites in the Chewaucan River Basin of 

central, southern Oregon (Figure 1). To the best of our knowledge, our study region and target 
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species have not been previously included in previous analyses of this kind, so we provide a 

novel contribution quantifying tree-ring sensitivity of both western juniper and (previously 

studied) Pinus ponderosa trees to climate and atmospheric CO2 levels. Specifically, we 1) 

explore and refine empirical measurements and statistical modeling efforts set forth in chapter 

two, 2) provide a new data set for both intra and inter chapter model validation and 3) quantify 

the tree-ring sensitivity of the two species occupying the same geographic and climatic space, 

albeit at differing ends of their realized climatic niches (i.e. across a topographic gradient 

representative of in their respective distribution ranges). It is our hope that the information 

provided here will be of use in future research focused on ecological forecasting, under future 

climate scenarios, in semi-arid ecosystems of the Great Basin and beyond.  

In addition, by refining our understanding of western juniper climate relations we hope to 

reduce uncertainty of forecasting models aimed at understanding the future distributions and 

abundances of semi-arid ecosystems of the great basin as seen in Creutzberg et al. (2015) and 

Halofsky et al (2013), because forecasting models play an important role in policy that can 

impact these ecosystems at vast scales as seen in the Oregon sage-grouse action plan (Sage-

Grouse Conservation Partnership, 2015) 

A major impact of the expansion of the western juniper woodlands in terms of land 

management actions was the implementation of the Sage Grouse Initiative (SGI). The greater 

sage grouse (Centrocercus urophasianus) was designated as a candidate species for possible 

listing under the Endangered Species Act in March of 2010. In response, the Natural Resource 

Conservation Service (NRCS) launched the SGI in an attempt to proactively conserve sage 

grouse habitat in order to prevent its listing as an endangered species. As of 2018, $760,000,000 

was invested by the NRCS and private interest groups in an effort to conserve approximately 3.2 

million ha across the American West. One of these conservation practices included removal, or 

“treatment,” of 163,995 ha of conifers woodlands. Approximately half of these conifer 

treatments were conducted in Oregon (NRCS, 2018). 

 Although, there is scientific evidence that the encroachment of juniper woodlands does 

have negative impacts on the survival of sage grouse (Coates et al., 2017; Bates et al., 2017, 

Boyd et al. 2017), the way in which the removal juniper woodlands affect other wildlife species 

is only now beginning to be understood (Bombaci and Pejchar, 2016). In addition, a study from 
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Dittel et al. (2018) found evidence of increased recruitment of juniper seedlings under juniper 

skeletons in recently treated areas, bringing into question the long-term efficacy of such 

treatments. In 2015, it was deemed that the greater sage grouse does not face the risk of 

extinction now or in the foreseeable future, and it was not listed under the Endangered Species 

Act. Ideally results from this study will be used to inform the next generation of projection 

models that will influence future policy and management actions aimed at conservation, fuels 

management and maximizing natural climate solutions regarding carbon sequestration.  

Methods 

Study Site:  

We sampled juniper and pine trees at 12 plot locations across a topographic gradient in 

the Chewaucan River Basin, located near the town of Paisley in central, southern Oregon (Figure 

1).  The town of Paisley Oregon is a Bsk cool semi-arid climate according to the Köppen climate 

classification system. As one heads southwest into the Chewaucan river basin annual 

precipitation increases and annual temperature decreases as elevation increases. Paisley has an 

annual average precipitation of 257 mm per year with an average annual temperature of 9 

degrees Celsius. Our site locations were all located off of county highway 2-08, and according to 

PRISM data have a 30 year normal of 579mm in precipitation and 5.5 degrees Celsius (Figures 2 

and 3). The wooded portions of the Chewaucan river basin are dominated by ponderosa pine, 

with interspersed lodgepole pine, white fire, aspen, western juniper, mountain hemlock and 

sagebrush dominated meadows. The Chewaucan river basin could be considered the ecotone 

between cool dry montane forest and the cool semi-arid sagebrush steppe ecosystem to the east, 

and also represents some of the cooler wetter conditions of western juniper woodlands and 

conversely some of the drier portions of the range of ponderosa pine (McGowan 2003). Our 

study site being located at opposing ends of our study species’ climate spaces allows us to 

explore the impacts of recent climate change on ecotonal climatic dynamics. 
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Figure 1- Map of study location and site locations. Purple dots represent locations where only ponderosa 
pine trees were sampled. Green dots represent locations where only western juniper trees were sampled. 
Brown dots represent locations where both ponderosa pine and western juniper tree were sampled. 
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Figure 2- Annual variation of Temperature by three 4-month “seasons” derived from PRISM climate data 
for our site in the Chewaucan River Basin, Oregon. The thicker line represents a smoothing spline and the 
grey bar represents standard error.  

 

Figure 3- Annual variation of precipitation by three 4-month “seasons” derived from PRISM climate data 
for our site in the Chewaucan River Basin, Oregon. The thicker line represents a smoothing spline and the 
grey bar represents standard error. 

 

 

 



 62 

Tree-Ring Collection and Processing: 

All Tree cores were collected in the summer of 2017. A total of 63 tree cores were 

collected for this study (20 pine, 43 juniper) from 12 different plots throughout the Chewaucan 

river water shed (Figure 1). Plots were all located in areas with a southern to western aspect. 

Tree cores were collected with an increment borer at approximately 1.35 meters. Tree cores were 

mounted on wooden core mounts and sanded with sandpaper with increasing grit counts until a 

grit count of 1600 was achieved, cores were smooth and individual cell structure was visible 

under a microscope. Cores were then scanned, and tree-ring widths were measured digitally 

using imagej software.  Prior to analysis several preprocessing steps are required for tree-ring 

data. These preprocessing procedures are necessary to account for the ontogenetic effect of tree 

age on ring width, and the inherent serial correlation of tree-ring widths (Speer, 2010; Cook 

1985). As trees age and grow, the circumference of their trunk increases, therefore accumulation 

of the same amount of cross-sectional trunk area (Basal Area) will naturally produce thinner and 

thinner rings (Speer, 2010). To account for this ontogenetic effect, we standardized each tree-

ring series by fitting a modified negative exponent, resulting in a tree-ring series in ring width 

index (RWI) instead of mm, these detrended series all having a mean of 1 (Figure4, Figure 5).  

 

Figure 4- Raw tree-ring widths for western juniper tree in the Chewaucan River Basin.  
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Figure 5- Ring width index for western juniper trees in the Chewaucan River Basin from 1896 to 2017 

Additionally, tree-rings series often exhibit serial autocorrelation, meaning that the size 

of a tree-ring is dependent on the sized on the immediate previous rings. This is due to stored 

polysaccharides of previous growth (Cook 1985). To remove this serial autocorrelation the ring-

width-indices were filtered through autoregressive standardization (ARSTAN). This double 

detrending method acts a compromise that removes the age-related growth trends and reduces 

the interdependence of serial autocorrelation, while retaining tree-ring climatic sensitivity (Cook 

1985). 

Climate data and Tree-Ring Width Over Time: 

Climate data was acquired from the PRISM data group (PRISM) at a monthly temporal 

resolution and a spatial resolution of 4km. Monthly climate data was then aggregated into three 

4-month seasons: the previous year’s October to the current year’s January (Fall), the current 

year’s February to the current year’s May (Spring) and the current year’s June to the current 

year’s September (Summer).  Climate data was then standardized within season to a mean of 0 

and a SD of 1, to allow for easy comparison of inter and intra seasonal impact of climate on tree-
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ring growth. Additionally, we constructed graphs of tree-ring growth at the site and individual 

tree level per species to aid in visually assessing patterns and congruency of tree-ring growth 

over time within and between study species.  

Tree-Ring Response to Climate and Increasing Atmospheric CO2 Levels: 

To gain inference how western juniper and ponderosa pine tree-rings respond to 

seasonally resolute climate variables in the Chewaucan river basin, as atmospheric CO2 has 

increased, we constructed two sets linear models for each species using standardized tree-ring 

width as the response variable and  either climate variables or climate variables and climate 

variable * CO2 interactions as predictor viable. Raw tree-rings were standardized to relative ring 

width (RWI) using a modified negative exponent via the detrend function from the dplR function 

in R (Bunn et al., 2022).We used global CO2 averages from the Mauna Loa Observatory, located 

in Hawaii, USA. Models were created using the lm function from the stats package (Bartoń, 

2022 ). In order to determine the most parsimonious model for each species and with or without 

CO2 interactions we used the dredge function from the MuMln package stats package (Bartoń, 

2022). The dredge function is an automated method for model selection and calculates the AIC 

score of all possible models from all possible combinations of predictor variables (Bartoń, 2022). 

The model with the lowest AIC score is considered the most parsimonious, meaning the simplest 

model with the greatest explanatory predictive power. Once the most parsimonious models were 

selected per species and CO2 interaction type (with and without CO2 interactions) we evaluated 

what model had the most predictive power by comparing the adjusted R squared values per 

model.  

Model Validation: 

In order to validate our models for western juniper and ponderosa pine tree-ring growth 

developed with the dredge function (both with and without CO2 climate interactions), we then 

performed a k-folds cross validation. This method is performed by randomly assigning each year 

in our data set to one of 5 subsets, to be used for training the model and for model validation. 

These subsets constitute the “folds”. One of the folds is then withheld from the analysis, and the 

model is fit on the remain k-1 (for our study k=5 and k-1 =4) folds. We then calculate the model 

fit on the withheld validation data set (Tredennick et al. 2021). This process is then repeated until 
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each fold is used as the validation set. Model fit is then determined using the following metrices: 

Root mean squared error (RMSE), Rsquared, and Mean Absolute Error (MAE). When evaluating 

model fit with these metrics it is important to note that with RMSE, lower scores indicate greater 

predictive power of the model; with Rsquared, a higher score indicates greater predictive power 

of the model; and with MAE, a lower score indicates greater predictive power of the model 

(Tredennick et al. 2021). 

In addition to validating our tree-ring growth models from the Chewaucan river basin by 

testing the model via k-folds cross validation. We also utilized the data set from this chapter to 

assess the regional western juniper growth model from the preceding chapter. Our regional 

model was generated using thirteen previous western juniper dendrochronological data sets from 

Oregon, Idaho, Nevada, and California. We then used the regional model to predict tree-ring 

growth based on the PRISM climate data from the Chewaucan river basin and assess the model 

by comparing the observed vs predicted values, via Multiple R-squared and root mean squared 

error.  

Quantifying Interactions Among Multiple Drivers: 

Several factors lead us to explore including long-term precipitation trends in our models. 

1) Prolonged periods of below average precipitation can result in reduced ground water; 2) 

western juniper trees rely on both fine surface and deep lateral roots for water accumulation; 3) 

the long-term pattern of precipitation (particularly in October-January) matches the overall 

temporal pattern of RWI in western juniper trees,  and ;4) our models that relied strictly on single 

year precipitation measurements failed to capture larger scale up-swings and down-swings in 

western juniper RWI, particularly in the time period around the 1930’s, a time on widespread 

drought. Therefore, we explored how including a long-term precipitation trend would influence 

our model composition and fit. First to create a predictor variable we transformed October-

January precipitation with a loess function with an alpha level of 0.75. A loess function in a local 

polynomial regression, that fits a smooth curve between two variables, in this case October-

January precipitation and year. This smoothed precipitation variable was then scaled to have a 

mean of zero and a standard deviation of 1. This scaling was done to correspond with the scaling 

done for every possible predictor value in our model.  
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Results 

Raw Tree Rings: 

Mean raw tree-ring width for western juniper trees in our study site ranged from 0.01 to 

3.1 mm. With a mean raw ring width for all trees and all years of 1.14 mm. The age of oldest 

tree-ring for western juniper per core ranged from 60 years to 272 years, however several of our 

oldest western juniper trees contained core rot, so age of establishment for older trees was often 

indeterminable. Mean raw tree-ring width for Ponderosa Pine trees in our study site ranges from 

0.004 to 6.91 mm, with a mean raw tree-ring width of 1.44 mm. 

Models of RWI with and without CO2 Interactions: 

For both western juniper and ponderosa pine, linear models that included climate*CO2 

interactions produced better fit and more predictive power by all metrics. For western juniper our 

model with CO2 climate interactions compared to our model without CO2 climate interactions 

had a lower RMSE (0.27 vs 0.36), higher R-squared value (0.36 vs 0.14) and lower MAE (0.21 

vs 0.25) (Tables 1&3). The same pattern is apparent when examining the model fit metrices for 

ponderosa pine (RMSE= 0.26 vs 0.27; R-squared= 0.26 vs 0.21; MAE= 0.211 vs 0.213) (Tables 

2 & 3) (Figures 6 & 7). 

 

Figure 6- Observed (black) and Predicted (red) values for western juniper growth autoregressive 
standardized ring width index from years 1896-2016 Rsquared=0.386.  
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Figure 7- Observed (black) and Predicted (red) values for Ponderosa Pine growth autoregressive 
standardized ring width index from years 1896-2016, Rsquared=0.297. 

 

For western juniper, three coefficients were included in the model with the highest 

adjusted r-squared value and therefore most predictive power; these include the sum of 

precipitation from the previous year’s October to the current year’s January, atmospheric CO2 

levels, and the interaction of CO2 and the sum of precipitation from the previous year’s October 

to the current year’s January. October through January precipitation had a positive impact of 

western juniper tree-ring growth, atmospheric CO2 levels had a negative impact, and the negative 

coefficient of the interaction term between CO2 and October through January precipitation means 

that according to our model, at our site western juniper tree-ring growth is becoming less 

sensitive to October through January precipitation as CO2 has increased over the last century 

(Table 1). 
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Table 1- Results from the dredge derived most parsimonious ARS tree-ring width index (RWI) models 
with no CO2*Climate interactions (No Interactions) and with CO2*Climate interactions (Yes Interactions) 
for Western Juniper trees in the Chewaucan River Basin in southern, central Oregon. For each interaction 
type the model with the lowest AIC value was selected, and then R-squared values to compare what 
model produced a better fit, and therefore more predictive power.  

 

 

 

For Ponderosa Pine four coefficients were included in the model with the highest r-

squared values, the model with climate*CO2 interactions. These variables were: atmospheric 

CO2; June through September mean temperature, the previous year’s October through the current 

year’s January’s precipitation and the interaction between CO2 and June through September 

mean temperature. June through September mean temperature had a negative impact on 

Ponderosa Pine tree-ring growth.  Ponderosa pine tree-ring growth was positively impacted by 

October through January precipitation. Additionally, the positive coefficient of CO2 and June 

through September mean temperature indicates that ponderosa pine are becoming less sensitive 

to June through September mean temperatures as CO2 has increased over the last century (Table 

2). 
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Table 2 Results from the dredge derived most parsimonious ARS tree-ring width index (RWI) models 
with no CO2*Climate interactions (No Interactions) and with CO2*Climate interactions (Yes 
Interactions) for Ponderosa Pine trees in the Chewaucan River Basin in southern, central Oregon. For 
each interaction type the model with the lowest AIC value was selected, and then R-squared values to 
compare what model produced a better fit, and therefore more predictive power. 

 

 

Comparison of Species by Basal Area Increment: 

Tree-ring studies that exclusively rely on ring width index may fail to recognize growth 

trends and patterns that are evident in Basal Area Increment (BAI) curves (Johnson and Abrams 

2016). This is because detrending raw tree-ring widths to ring-width index (RWI), via 

mathematical functions (e.g a smoothing spline, a modified negative exponent) by design remove 

a tree’s natural biological growth trend. Therefore, exploring BAI can be of particular 

importance when comparing across species and climatic conditions (Johnson and Abrams 2016). 

When we investigate the BAI growth curves and ring width index of both western juniper and 

ponderosa pine, we see patterns of similarity and difference (Figure 8, Figure 9). For both 

species we see a basal area growth pattern that follows a sigmoidal curve, with a relatively 

shallow rate of growth followed by steep rate of growth and then a shallow rate of growth typical 

of most tree species. At a finer temporal scale both species also show oscillations in basal area 

growth rates indicating sensitivity to climate with considerable amounts of inter and intra species 

common growth variation. However, by 2010 ponderosa pine is increasing in basal area on 
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average by about twice as much basal area per year than western juniper, approximately 20 cm 

squared compared to 10 cm squared respectively.  

 

Figure 8- Basal area increase for western juniper and ponderosa pine trees in the Chewaucan River Basin, 
Oregon.  

 

Figure 9- Ring Width Index for western juniper and ponderosa pine trees in the Chewaucan River Basin 
in Oregon.  

 

 



 71 

 

Model Validation: 

Results from our k-folds cross-validation of western juniper and ponderosa pine tree-ring growth 

indicate the same results metrics derived from the AIC value of the dredged models, that 

including CO2 and Climate interactions improves the fit and predictive power of our models 

(Table 3) For both western juniper and ponderosa pine, models that included CO2 and climate 

interactions had lower RMSE, higher R-squared values and lower MAE.  

Table 3- Results from K-fold cross validation by species from the dredge derived models illustrated in 
table 1 and table 2 

 

 

 

Chewaucan River Basin Western Juniper Tree-Ting Growth Model Compared to 

Regional Model: 

Our site-specific model for the Chewaucan River Basin Western Juniper is much simpler than 

the regional model produced in chapter 2 based on 13 western juniper sites. However, the 

regional model performed well when implemented with our site specific data for this chapter, 

with a Multiple R-squared and Adjusted R-squared of 0.389 and 0.3461 respectively. The AIC of 

the regional model and the Chewaucan data set was 46.57, compared to 37.29, due to the greater 

parsimony of our local model. 
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Table 4. - Results from the dredge derived most parsimonious ARS tree-ring width index (RWI) models 
with no CO2*Climate interactions (No Interactions) and with CO2*Climate interactions (Yes Interactions) 
for Western Juniper trees in the Chewaucan River Basin in southern, central Oregon. These models 
include an alpha=0.75 smoothed spline of October-January precipitation as a predictor value.  For each 
interaction type the model with the lowest AIC value was selected, and then R-squared values to compare 
what model produced a better fit, and therefore more predictive power. 

 

 

 

Inclusion of Long-Term Precipitation Trend: 

When we included a long-term October-January precipitation trend as a predictor variable we 

produced the best fitting model in this study (table 4), with a Rsquared value of 0.67, with nearly 

twice the Rsquared value of 0.37 from our earlier modeling efforts for western juniper at this 

site. Comparing graphs of predicted vs observed values for the model with only annually resolute 

(figure 7) vs long-term precipitation values (figure 10) it is evident that visually that including a 

long-term climate trend improves model performance.  
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Figure 10- Observed (black) and Predicted (red) values for western juniper growth autoregressive 
standardized ring width index from years 1896-2016 with the inclusion of a long-term precipitation value 
as a predictor value, Rsquared=0.67. 

 

Discussion 

We discovered several important findings in this chapter. We provided further evidence 

that both western juniper and ponderosa pine tree-ring growth is modeled with more predictive 

power when CO2 and Climate interaction are included in said model; adding to our theory that 

trees in semi-arid ecosystems are becoming more drought tolerant due to a CO2 induced increase 

in iWUE. Additionally, we discovered that although western juniper and ponderosa pine 

exhibited similar standardized tree-ring growth in the Chewaucan River Basin from 1896-2017, 

the seasonally resolute specifics of their climate drivers are not identical. Ponderosa pine were 

equally sensitive to precipitation and temperature, whereas precipitation was the main climate 

driver of western juniper tree-ring growth. Similarities and differences between our study species 
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growth patterns is also evident when investigating their growth over time in regards to their 

increase in basal area, with ponderosa pine adding on average nearly double that of Western 

Juniper over the course of this study.  

The challenges facing those that aim to project future distributions of plant communities 

in semi-arid ecosystems are immense. Therefore, projections of the future production, function, 

and distributions of WJW are inconclusive; partially due to limited research on the topic, and 

specifically hindered by a lack of knowledge on: the relationships between tree-growth, range 

expansion, climate sensitivity, disturbance events, atmospheric CO2, and uncertainty between 

future climate scenarios. Studies that aim to project future distributions of vegetation types must 

rely on assumptions to fill in knowledge gaps and simplifications of known concepts in order to 

function (Kerns, et al. 2018; Halofskey et al 2013; Creutzberg et al 2015). Kerns et al. (2018) 

holistically examined the results of several previous modeling efforts, paleo-records, autecology, 

and local knowledge to derive their conclusion that they are uncertain if western juniper will 

expand or contract in the Blue Mountains of Oregon under future climate scenarios. Creutzberg 

et al. (2015) and Halofsky et al (2013) relied on model linkage of state-and-transition models, 

dynamic global vegetation models, and future climate scenarios to determine that western juniper 

woodlands may or may not rapidly increase in area and then decline (Halofsky et al 2013) ; or 

may or may not continue to expand in area but at a slower pace than in the 20th century 

(Creutzberg et al. 2015). Both Halofsky et al. (2013) and Creutzberg et al. (2015) applied their 

modeling efforts to the same study area in central Oregon of approximately 1 million ha in size. 

Additionally, Creutzberg et al. (2015) did not incorporate the impacts of increased atmospheric 

CO2 on plant growth in their model, or the impacts of changing climate variables on western 

juniper growth dynamics.  

Halofsky et al (2013), did incorporate atmospheric CO2 levels regarding plant growth by 

reducing the moisture constraint on plant growth, however this effect was implemented evenly 

for all species and was not geographically explicit. Additional studies are needed to provide 

further understanding of the impacts of climate and elevated CO2 on multiple competing species 

within an area of interest in order to reduce the uncertainty of future distribution dynamics and 

these studies need to account for differential responses across space and time. I do not intend on 

criticizing the efforts of these past model based studies, but to emphasize the importance that 
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quantifying the impacts of increased CO2 on western juniper woodlands climate sensitivity could 

play in future modeling efforts. Furthermore, understanding the degree in which increased 

atmospheric CO2 impacts trees’ responses to climate variables under future climate scenarios is a 

recognized missing puzzle piece regarding future forest forecasting efforts, and is of particular 

importance in water-limited forests (Charney et al. 2016). 

Another important way to test the likelihood of future climate scenarios on ecosystems is 

through multi-model comparisons. As long as the models compared have independent 

assumptions and parameters, this approach can help increase confidence of predicted outcomes 

and identify areas of uncertainty (Renwick et al., 2017).  Renwick et al. (2017) tested four 

models that drew from different sources of information: spatial correlations, temporal 

correlations, and mechanistic representations of key processes (a seedling survival model and a 

dynamic global vegetation model [DGVM]) in order to improve our understanding of (1) how 

climate change will likely affect the persistence and abundance of big sagebrush (Atremisia 

tridentata) across its geographic range. They determined that big sagebrush is more sensitive to 

changes in temperature than precipitation, that the choice of model is the largest source of 

uncertainty in future projections, and that sagebrush is likely to increase in performance at the 

cooler end of its climatic range and decrease in performance at the warmer end of its’ climatic 

range. According to Renwick et al. (2017) all sagebrush in Oregon falls within the cooler end of 

its climatic range. One might assume that the increase in performance of sagebrush might act to 

inhibit the performance and range of western juniper, however sagebrush often act as a shelter 

for western juniper seedlings (Soulé et al. 2004). Therefor as temperatures increase, the 

improved future performance of sagebrush may in fact positively impact the future of western 

juniper expansion into the sagebrush dominated ecosystems of eastern Oregon.   

Although this study was relegated to one site, combining these findings with meta-

analysis and future In Situ measurements could then be combined into a data set large enough to 

perform a study the explores geographic patterns of multi-species performance and 

demographics under future scenarios. Once applied at a vast enough spatial and temporal scale 

understanding the differential responses of two very important tree species in terms of economics 

and ecology in eastern Oregon will help inform land management actions aimed at conservation, 

fuels management and/or timber production. If the current paradigm of wide scale western 
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juniper treatment is the goal, land managers may be able to work in tandem with future 

projection models to maximize WJW reduction at large time scales by focusing reduction 

treatments in areas where WJW are predicted to continue to expand and by foregoing areas 

where WJW are predicted to die off naturally. If fuels reduction is the primary goal, management 

actions may want to focus on both sides of the spectrum of future WJW performance, treating 

areas of predicted increases and decreases in performance, thus preemptively eliminating areas 

of predicted increased fuels from WJW expansion and preemptively eliminating areas of 

potential catastrophic fires due to large quantities of fuels accumulation due to drought induced 

tree death. Furthermore, we may be observing a larger scale elevational shift in WJW realized 

niche and allowing this shift to occur in a more “hands off” approach needs to be considered 

particularly in relations to carbon sequestration and storage as untreated WJW have been show to 

contain over 5 times the above ground carbon stocks as areas treated with juniper removal 

(Abdallah et al. 2019). All though as emphasized by Abdallah et al. (2019), further research is 

needed to understand the impacts of western juniper expansion and subsequent treatment on 

belowground carbon pools.  

The more information we gather regarding western juniper and adjacent species climate 

and atmospheric CO2 relations and interactions, the less uncertainty we can generate regarding 

the future performance and ranges of these species and ecosystem. Ideally this uncertainty will 

become reduced enough that land managers will be able to confidently make large scale, yet 

specific actions based on multiple and perhaps seemingly conflicting goals that will result in a 

swath desired outcomes with an overall success that is greater than the sum of the individual 

parts.  
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CHAPTER IV 

COMPARISON OF EVALUATIONS OF WESTERN JUNIPER 

TREE-RING CLIMATE SENSITIVITY BETWEEN MIXED 

EFFECTS MODELS ANS BOOTSTRAPPED MOVING WINDOW 

CORRELATION AND RESPONSE FUNCTIONS 

Introduction 

One common way to asses changes in tree-ring sensitivity to climate variables is through 

the use of bootstrapped moving window correlation and response functions  e.g. Árvai et al 

(2018); Bozkurt et al., (2021); Carrer and Urbinati, (2006); Lebourgeois et al., (2012); 

Marcinkowski et al., (2015); Wang et al., (2016) and others. These functions examine how tree-

rings have responded overtime to climate variables via a moving time frame window (Guiot, 

1991).  For the time window of analysis of a given size the relationships between tree-rings and 

climate are quantified as regression coefficients (from here on referred to as sensitivity), then the 

earliest year of the window is removed and a succeeding year is added, then that process is 

repeated over the entire temporal period of interest. Usually, these analyses are conducted to 

examine how tree-ring climate relationships have or have not changed over time. Alternatively, 

we conducted mixed-effects models (MEMs) in chapter II and chapter III of this dissertation to 

explore a similar concept; how tree-ring climate relationships have changed as atmospheric CO2 

has increased over the last century. Our method of analysis from chapter II and chapter III was 

selected because MEMs allow for the testing of multiple and interacting explanatory variables at 

the same time (Zuidema et al 2020) and the explicitly produced mathematical parameters from 

such an analysis appear to be useful in climate impact modeling under future climate scenarios 

(Charney et al 2016; Lindner et al 2014). Therefore, we deem it prudent to compare our more 

novel regional climate sensitivity models from chapter II with this more commonly used 

approach. In addition, generally our understanding of complex ecological issues are better 

understood with ensembles of models each that draw attention to differing issues at hand, our 

models from chapter II and chapter III examined how western juniper tree-ring climate 

sensitivity changed in relation to atmospheric CO2 concentration. Models from this chapter will 
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explore how moving windows of tree-ring response to climate have changed over time, perhaps 

elucidating linear and non-linear trends and patterns. Hopefully the analysis from this chapter 

will further validate the findings from the precedent two chapters by expressing a similar 

phenomenon (non-stationarity in tree-ring climate sensitivity) across different model types 

(Lisciandra and Korbmacher 2021), and act as a “bridge” that links the relatively common 

moving window correlation and response function analyses with our previously executed more 

novel approach and explanation, allowing for further interpolation of our theory  that increased 

atmospheric  CO2 influences tree-ring climate relations across species, biomes, and geographic 

space and time.                                                                                                                                                                                                                        

In order to achieve the goals of this chapter we conducted three main steps 1) we 

generated a response and correlation function analysis for each of our sites. 2) We fitted linear 

models to the outputs of our first moving-window response functions for the time periods of pre 

1955 and post 1955.  3) We compared the results of our inter-chapter modeling efforts.  

Methods 

Details on study site locations and data acquisition are detailed in chapter II of this dissertation.  

Using the dcc function from the treeclim package in the r programing language we generated 

bootstrapped responses of detrended tree-ring growth to climate variables (Zang & Biondi, 

2014). This function resamples the response of our tree-rings to climate by resampling from our 

data set 1,000 times for each time window. Our window size was set to 15 years. Climate 

variables included both monthly precipitation and mean temperature value for three 4-month 

“seasons”, the previous October to the current January (Fall/Winter), February to May 

(Winter/Spring) and June to September (Summer). The results of such an analysis are coefficient 

values that represent the sensitivity of tree-ring growth to each climate variable. 

Secondly, we conducted linear regression models using the mean correlation coefficient 

from our response function as our response variable and year as our predictor variable. This 

analysis was conducted twice per site, because we subdivided our years into to sets, pre-CO2 

fertilization and post -CO2 fertilization (pre 1955 and post 1955) the general period that CO2 

enhancement has been proposed to have stated (Kienast &Luxmoore 1988, Graumlich 1991). A 

difference in slopes of these regression line between pre and post 1955 represents a change in 
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sensitivity. This change in slope was determined from the results of an analysis of variance tests 

(ANOVA) on each climate variable for each site. A significant interaction term between year and 

CO2 fertilization category (per 1955 and post 1955) represented a significant difference in 

climate sensitivity.   Types of changes in tree-ring sensitivity can be classified into a general 

biplot either positive (a positive coefficient of response to a given climate variable) or negative 

sensitivity (a negative coefficient of response to a given climate variable)  and either increasing 

(diverging from a zero coefficient of response to a given climate variable) or decreasing 

sensitivity (converging on the zero coefficient of response  to a given climate variable) (Figure 

1). 

 

Figure 1.- Four hypothesized changes in sensitivity trends. Tree-ring sensitivity to various climate 
variables could hypothetically change in four-way A) Tree-rings could respond positively to a climate 
variable and become increasingly sensitive to that variable post 1955. B) Tree-rings could respond 
negatively to a climate variable and then become increasingly sensitive to that variable post 1955. C) 
Tree-rings could respond negatively to a climate variable and then become less sensitive to that variable 
post 1955, and D) tree-rings could respond positively towards a climate variable and then become less 
sensitive towards that variable post 1955.  
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 When examining the outcomes of this analysis (figures 2-13) we identified several 

instances of what we are calling paradoxical changes in sensitivity mostly resulting in potential 

false positives. For instance, sensitivity to Winter/Spring temperature for OR009 shows a change 

in sensitivity pre and post 1955, but the regression lines both straddle the zero coefficient line but 

the mean sensitivity between those periods does not appear to be different in a linear fashion 

(Figure 10). However, we can also observe the opposite as in Winter/Spring temperature of 

CA095 where the means in sensitivity appear clearly different, with the signs of the coefficients 

abruptly changing from positive to negative around the 1955 mark, but the slopes of the 

regression lines not being significantly different (Figure 7). 

 

Figure 2- OR092 bootstrapped 15 year moving window response of western juniper tree-ring growth 
(solid black line) to three 4-month climate variables (Fall/Winter= previous year’s October to current 
year’s January, Winter/Spring= February to May, Summer= June to September) for temperature and 
precipitation. Solid gold and blue lines represent linear regression lines for time periods pre and post 
1955. Dotted black line represents the zero line of the y-axis.   
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Figure 3-  OR093 bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 4- OR 095 bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 5- OR089 bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 6- OR094 bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 7- CA095 bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 8- ID006, bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 9- CA517 bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 10- OR009 Bootstrapped 15 year moving window response of western juniper tree-ring 
growth (solid black line) to three 4-month climate variables (Fall/Winter= previous year’s 
October to current year’s January, Winter/Spring= February to May, Summer= June to 
September) for temperature and precipitation. Solid gold and blue lines represent linear 
regression lines for time periods pre and post 1955. Dotted black line represents the zero line of 
the y-axis.   
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Figure 11- CA675 bootstrapped 15 year moving window response of western juniper tree-ring growth 
(solid black line) to three 4-month climate variables (Fall/Winter= previous year’s October to current 
year’s January, Winter/Spring= February to May, Summer= June to September) for temperature and 
precipitation. Solid gold and blue lines represent linear regression lines for time periods pre and post 
1955. Dotted black line represents the zero line of the y-axis.   
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Figure 12- OR006 bootstrapped 15 year moving window response of western juniper tree-ring growth 
(solid black line) to three 4-month climate variables (Fall/Winter= previous year’s October to current 
year’s January, Winter/Spring= February to May, Summer= June to September) for temperature and 
precipitation. Solid gold and blue lines represent linear regression lines for time periods pre and post 
1955. Dotted black line represents the zero line of the y-axis.   
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Figure 13- NV518 bootstrapped 15 year moving window response of western juniper tree-ring growth 
(solid black line) to three 4-month climate variables (Fall/Winter= previous year’s October to current 
year’s January, Winter/Spring= February to May, Summer= June to September) for temperature and 
precipitation. Solid gold and blue lines represent linear regression lines for time periods pre and post 
1955. Dotted black line represents the zero line of the y-axis 
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Results  

Results from Bootstrapped Moving Window Response Functions: 

Our bootstrapped moving window response functions showed a high level of variation in 

tree-ring response to climate over time for all our sites and for all climate seasons (figures 2-14). 

Correlation of response coefficients between sites was high for all climate season with a mean 

Pearson’s correlation coefficient of 0.594. The Winter/Fall season had the highest correlation of 

sensitivity between sites of 0.763, followed by Winter/Spring temperature, Summer temperature, 

Summer precipitation, Fall/Winter Temperature, and finally Winter/Spring precipitation 

(Pearson’s correlation = 0.707,0.560, 0.540, 0.520, an d0.449)  

Results from Linear Models: 

Agreement in changes in tree-ring sensitivity to climate variables was mixed across sites 

and climate variables. The most agreement in sensitivity trends across sites was with Fall/Winter 

precipitation. Ten of 13 sites showed a significant decrease in tree-ring sensitivity to Fall/Winter 

precipitation post 1955. Winter/Spring precipitation had significant differences in tree-ring 

sensitivity trends at 9 of 13 sites, with six of those nine sites showing an increase in tree-ring 

sensitivity to Winter/Spring precipitation post 1955, and three of those nine sites showing a 

decrease in tree-ring sensitivity to Winter/Spring precipitation post 1955. Seven sites showed a 

significant change in tree-ring sensitivity to Summer precipitation, with all seven sites showing 

decreases in tree-ring sensitivity to Summer precipitation post 1955 (table 1). Additionally, 

CA006 had a significantly lower mean tree-ring sensitivity to Summer precipitation post 1955, 

but with an insignificant difference in sensitivity trend line (Figure CA006, Table CA006).  

Significant changes in tree-ring sensitivity to temperature were less prevalent than 

changes in sensitivity to precipitation, however there was a greater degree of agreement in terms 

of direction of change in sensitivity, with all significant results indicating decrease in sensitivity 

to temperature post 1955 (table 1). Change in sensitivity to Fall/Winter temperature contained 

four significant values with one of them (site NV518 deemed paradoxical in nature). For 

Winter/Spring temperature there were six significant changes in tree-ring sensitivity post 1955 

with one of them (site OR009) deemed paradoxical. Finally, for changes in sensitivity to 
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Summer temperatures there were seven significant changes in trends, however two of them (sites 

OR089 and NV518) appear paradoxical in nature.  

Comparison with Regional Model from Chapter 2: 

Our regional model from chapter 2 indicated three significant changes in western juniper 

tree-ring sensitivity to climate variables as atmospheric carbon dioxide has increased over the 

last century. They are a decrease in sensitivity to Fall/Winter precipitation, an increase in 

sensitivity to Winter/Spring precipitation, and a decrease in sensitivity to Summer precipitation. 

Although there may be some incongruency with comparing the site level responses from the site 

level analyses from this chapter with the regional level responses from chapter 2, it is worth 

noting that 22 of the 39 site level responses for precipitation are in agreement with the regional 

model a rate of 56% (table 1). One aspect that makes comparing site level responses particularly 

difficult is that in chapter 2 we used a dredge function to determine the most parsimonious site 

level and regional level models, and therefore it might be useful to recalculate the analysis of 

chapter 2 including all climate variables and then compare signs of sensitivity changes.  

Table 1. P-values of changes in tree-ring sensitivity to climate variables; October to January precipitation 
(OJP), October to January temperature (OJT) February to March precipitation (FMP), February to March 
temperature (FMT), June to September precipitation (JSP), and June to September temperature (JST) for 
all 13 sites. P-values less than 0.05 are in bold, arrows indicate direction of sensitivity change, down 
arrows represent reductions in sensitivity, up arrows indicate increases in sensitivity, an “X” represents 
paradoxical sensitivity shifts.  

 



 97 

 

Discussion  

Key findings from this chapter are that linear trends in bootstrapped moving window 

response and correlation functions agree with findings from our mixed effects models from 

chapters 2 and 3. We have further evidence that the climate sensitivity of western juniper tree-

rings have changed over the last century when compared before and after the hypothesized time 

period of atmospheric carbon dioxide induced increase in intrinsic water use efficiency and 

drought tolerance (~1955). Our results show decreases in sensitivity to Fall/Winter precipitation 

at 10/13 or 77% of our sites. With sensitivity to Winter/Spring precipitation increasing at 46% of 

our sites, and sensitivity to Summer precipitation decreasing also at 46% (albeit no the exact 

same sites). Additionally, the bootstrapped moving window analysis from this study indicated 

several trends in reduction of western juniper tree-ring response (sensitivity) to temperature that 

were not evident from our analysis in chapters 2 and 3. We observed changes in western juniper 

tree-ring sensitivity to at least one temperature season in 10 out of 13 of our study sites with only 

4 out of 13 sites showing reductions in sensitivity to temperature in our analysis from chapter 2. 

However, overall the major findings from this chapter and chapters 2 and 3 are in agreement 

with each other. This begs the question of how our findings from this chapter relate to similarly 

methodological studies from around the world, and can our hypothesis; that these changes in 

tree-ring sensitivity are due to increased intrinsic water use efficiency be transferred to the results 

from such studies? 

In a limited analysis of recent similar studies we found results that are both congruent 

(showing changes in tree-ring responses to climate over time) and  not so (showing stability in 

tree-ring climate relations). The non-stationarity we observed is similar to that seen in study by 

Marcinkowski et al (2015) on the response of mountain hemlock (Tsuga mertensiana) to climate 

variability in the North Cascade Range in Washington state, whereas correlations with between 

tree-ring growth and winter precipitation became weaker over time. Additionally, Marcinkowski 

et al (2015) observed an increase in correlations between spring and summer temperatures and 

tree-ring growth with their study species.  
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Carrier and Urbinati (2006) found that European larch (Larix decidua) in the Alps of northern 

Italy were nonstationary, particularly with the most influential climate variable regarding tree-

ring growth, June temperature. They observed a sharp increase then marked decrease in tree-ring 

growth climate correlation centered around the 1860-1959 analysis window. 

In a five species (Pinus nigra, P. sylvestris, P. uncinata, Abies alba, Fagus sylvatica) 

analysis in the Mediterranean mountains, Lebourgeois et al. (2011) observed non-stationarity in 

tree-ring growth climate relationships from 1910-2004 for all species. Additionally, they 

observed that tree-ring growth response to climate varied across altitudes and climate regimes, 

and across species based on eco- physiological  traits. Notably, they generally observed 

decreasing trends of correlation with precipitation and increasing trends of correlation with 

temperature around the 1930-1980 fifty year moving window, that would center around the 1955 

proposed demarcation of enhanced water use efficiency due to increased concentration 

atmospheric carbon dioxide (Kienast &Luxmoore 1988, Graumlich 1991). However not all 

studies we explored showed such non-stationarity. 

Bozkurt et al (2021) showed a stationary response to precipitation and a decrease in 

correlation between Scotts pine (Pinus sylvestris) from 1930-2013 in the Anatolian peninsula.  

Árvai et al. (2018) observed a stationary response of pedunculated oak (Quercus robur L.) in 

Eastern Hungary to precipitation  over the past century and the response to temperature has 

changed from a positive relationship with dormant season temperature switching to a negative 

relationship in about the mid 20th century, indicating an increase in drought sensitivity for their 

study species in their study area. 

These are only a small subset of such bootstrapped moving window tree-ring responses to 

climate studies that have been conducted, and although large scale multi-species 

dendrochronological meta analysis are becoming prevalent in the literature (Bast et al. 2018; 

Bauwe et al. 2016; Charney et al. 2016; Gedalof and Berg 2010; Klesse et al. 2020) to the best of 

our knowledge none have applied an analysis of changes in tree-ring sensitivity at a global scale, 

or attempted to summarize the entirety of results from bootstrapped moving window correlation 

and response functions. Of the previously cited studies,  Gedalof and Berg (2010) is the most 

ambitious in terms of scope, analyzing over 2,000 sites, however, they did not directly test for 

changes in sensitivity of tree-rings to climate over time, but for an increasingly positive bias of 
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residuals overtime, with a climate grid of 250 km and  on a time period of analysis that started in 

1950 very close to when hypothesized CO2 is thought to have begun. Although we commend the 

geographic scope of their analysis we propose that a decade of advancement in analytical 

methods, enhancement of resolution of climatic variables, a greater time frame of analysis and 

recent data acquisition warrants additional studies at a global scale.  
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CHAPTER V 

CONCLUSIONS 

 

  

Western juniper woodlands (WJW) are a highly dynamic ecosystem at multiple spatial 

and temporal scales. Prehistoric climate drivers of landscape positioning of WJW are understood 

as such: expansion in its range at lower and upper elevations during generally wetter conditions; 

tree-cover decline at its upper elevational range during generally colder conditions; and/or retreat 

upslope during generally hotter and dryer conditions (Mehringer & Wigand, 1987; Miller & 

Wigand, 1994). However, since the late 19th century, western juniper woodlands have expanded 

in area by nearly six-fold, primarily through down slope advance and infill, and currently occupy 

~3.6 million ha as of 2021 (The Gymnosperm Database, 2021; Azuma et al., 2005). This recent 

expansion is often attributed to reduction in fire frequency due to a reduction in fine fuels due to 

overgrazing by domestic livestock(Miller et al 2008; Johnson and Miller 2008; Eddleman et al 

1994; Burkhardt and Tisdale 1976). However, more recent studies have attributed some of this 

expansion over the last century to climate and atmospheric CO2 induced reduction in drought 

response via the CO2 fertilization effect(Soulé et al., 2004; Soulé & Knapp, 2019). Indeed, 

studies in other ecosystems highlight the importance of accounting for the recent rise in 

atmospheric CO2 when quantifying the dynamics of tree-ring climate relationships and the 

implications such findings could have on dynamic global vegetation models (Zuideman et al. 

2020). Recent linked projection models aimed at quantifying the future dynamics and 

distributions of WJW are highly uncertain and incongruent (Creutzburg et al., 2015; Gibson, 

2011; Zimmer et al., 2021). If we hope to manage these WJW effectively from a long-term 

perspective, we need to reduce this uncertainty through the refinement of our understanding of 

western juniper climate relations, when explicitly accounting for recent increases in atmospheric 



 102 

CO2, which my dissertation sought to address. Using in situ measurements and by levering past 

studies through meta-analysis we applied mixed effects models, linear models, and bootstrapped 

moving window response and correlation functions to quantify how precipitation and 

temperature variables impact western juniper tree-ring growth, and how the impacts of climate 

on tree-ring growth has changed across time and space.  

Chapter II explores the relationships of western juniper tree-ring growth with three 4-

month precipitation and temperature seasons and atmospheric CO2 levels. This study leverages 

13 previous dendrochronological studies from the International Tree-Ring Database across the 

best available representation of the geographic and climatic range of western juniper woodlands. 

By comparing multiple linear regression and mixed-effects models with and without CO2 climate 

interactions, we were able to determine that the inclusion CO2 as a predictor variable improved 

the predictive and inferential power of our models, providing further evidence that increased CO2 

has reduced the impact, i.e sensitivity, of precipitation and temperature on western juniper tree-

ring growth. In addition, we observed several patterns of the climate sensitivity and changes in 

climate sensitivity of western juniper across the climate-space of western juniper woodlands. 

Whereas, generally more arid sites were more sensitive to October to January precipitation than 

less arid sites, and that more arid sites were experiencing a greater reduction in climate 

sensitivity as atmospheric CO2 has increased over the last century. In addition, we quantified the 

representation of our 13 study sites within the climate space of western juniper woodlands using 

a novel permutation model.  

Chapter III is used to validate our findings from Chapter II by testing our theories and 

models on tree-ring samples collected from both western juniper and ponderosa pine trees in the 

Chewaucan river basin located in southern central Oregon in the summer of 2017. Results from 

Chapter III provide evidence for our theory that increased atmospheric CO2 have impacted the 

tree-ring growth climate relations of both studied tree species. Both western juniper and 

ponderosa pine tree rings were positively impacted by October-January precipitation, and 

negatively impacted by June-September temperature. However, results from our models 

highlighted the differences in western juniper and ponderosa pine tree-ring climate relationships, 

with western juniper tree-ring growth being more responsive to October-January precipitation 

than ponderosa pine; and ponderosa pine tree-ring growth being more response to June-
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September temperate than western juniper. Furthermore, western juniper showed a reduction in 

precipitation sensitivity and ponderosa pine showed a reduction in temperature sensitivity as 

atmospheric CO2 increased over time. In addition, we discovered that including a long-term 

precipitation variable improved the predictive power of our tree-ring climate growth models.  

Results from this chapter will improve future projection models aimed at accounting for 

differential future climate impacts on competing tree species within the same study area.  

Chapter IV continues with the theme of model validation by comparing the results from 

our relatively novel (regarding changes in tree-ring climate relationships) mixed effects models 

from Chapter II with the more commonly used method for assessing tree-ring climate 

stationarity; the bootstrapped moving window response and correlation model.  By comparing 

and contrasting trends between results from bootstrapped moving window response and 

correlation models and mixed effects models from Chapter II we were able to provide evidence 

of linkage, through shared trends, between the more commonly used bootstrapped moving 

window response and correlation models and our mixed effects models that explicitly contained 

atmospheric CO2 as a predictor variable. We found that there was general agreement between 

model types and that the linear trends of bootstrapped moving window response and correlation 

model coefficients produced results that indicated changes in western juniper temperature 

sensitivity, in addition to the changes in western juniper precipitation sensitivity produced by the 

mixed effects models in Chapter II. Results from this chapter provide some evidence on the 

mechanisms behind changes in non-stationarity that has been observed but not explicitly tested at 

other sites/studies via bootstrapped moving window response and correlation models. 

Western juniper woodlands are of great concern for land managers in the American West 

because of their expansion in to grass and shrub dominated rangelands. The findings from this 

dissertation will be useful for land mangers specifically if the findings can be incorporated into 

future modeling efforts aimed at determining dynamics and distributions of western juniper 

woodlands and adjacent ecosystems and plant community types. Understanding that CO2 has and 

likely will continue to alter the relationships between WJW and climate should be considered 

with future projections modeling efforts, because these types of models are used to inform policy 

and land management actions. Furthermore, the findings from this dissertation could be used to 

inform scientist working in other semi-arid ecosystems around the world on how to 1) test for 
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non-stationarity in climate relationships for their species of interest, 2) inform on why 

investigating such dynamics are important, and 3) inform on where to locate future study site 

locations via out premutation model.  

Not only do we need to continue to move towards scientifically informed land 

management practices, we also need to move towards management informed scientific practices. 

Land managers are often faced with making decisions based on both limited certainty and limited 

resources. Liebig’s law of the minimum, that plant growth is dictated not by the total resources 

available, but by the scarcest resource, is often acknowledged regarding the limitations of CO2 

fertilization and enhanced tree-ring growth. At a certain point the enhanced drought tolerance 

afforded by increased atmospheric CO2 will no longer mitigate changes in climate or be limited 

by nutrient availability related to edaphic properties. The same concept could be applied to 

proposed land management actions and scientific research. Regarding scientific research, how 

important are theoretical findings with no seemingly practical application and vise versa. That 

being said, just because “pure” science might not seem to have a direct or immediate application 

does not mean its importance should be discounted. The impact of more “pure” scientific 

research could be considered analogous to the impact of the spline-smoothed precipitation 

predictor variable from Chapter III, whereas tree-ring growth is impacted by decadal and intra-

annual climate variables, so is there a time delay in the practical application of more “pure” or 

theoretical scientific findings. Conversely, the greater global impacts of more applied science 

should also not be taken for granted, especially when considering the impacts of widespread 

management actions, based directly on that applied science, that alter ecosystem structure and 

function on a scale as seen under the Sage-Grouse Initiative.  

On a somewhat related note I can’t help but consider the vast amount of scientific 

knowledge that could be gained via the collection of scientific samples during widespread 

management actions i.e juniper treatment, as those perpetrated during the implementation of the 

Sage-Grouse initiative.  

 One example of managers, land-use practitioners, and scientist working in tandem to 

achieve a shared goal, is through the clipping and analysis of the wings of harvested sage-grouse. 

This practice has been used to tract genetics and in epidemiologic research and has been lauded 

as an overwhelming success (Vold, 2021). If a similar practice of citizen science-based sample 
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acquisition could be implemented regarding tree-ring research the outcome could result in a vast 

improvement in our spatial coverage of sites sampled. Let us consider the 160,000 ha of confers 

treated by 2018 by the sage-grouse initiative. With a hypothetical average density of 75 western 

juniper per ha, that could mean as many as 12 million juniper trees cut in the process. For the 

sake of this argument, let us assume there is an average of 20 trees per dendrochronological 

study and there were 13 dendrochronological studies utilized in the meta-analysis from Chapter 

II and Chapter IV. If even one cookie (tree stem cross-section) was cut and turned in from every 

50,000 juniper trees removed under that program, the amount of data we would have regarding 

western tree-rings would be at least doubled.  

 The most obvious future work that should be conducted would be the collection of 

additional western juniper tree-rings particularly from sites located in the more extreme portions 

of WJW climates space e.g. with annual temperature values greater than 9 degrees Celsius and 

less than 400 mm annual precipitation, and from areas with less than 6 degrees Celsius annual 

temperature. This would allow for further refinement of models regarding the changes in climate 

sensitivity of WJW as atmospheric CO2 levels have increased. Testing our permutation model on 

a validation tree-ring set with more available data sets would also be a direction of further 

research. Furthermore the, geospatial patterns from this of climate sensitivity dynamics could be 

incorporated in future projection models. Results from this dissertation could be incorporated 

with other studies to produce a product aimed at identifying WJW areas that are likely to be 

more or less resilient to climate change to be used in selecting areas for intense treatment aimed 

at fuels reduction or conservation, or areas of likely high carbon sequestration.  
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APPENDIX A 

SUPPLEMENTARY MATERIAL FROM CHAPTER II 

Supplementary Figures 

 

Figure S2.1.- Climograph for site OR092 derived from PRISM climate data from the  years 
1895-2017. Blue line represents mean monthly precipitation in millimeters.  Redline represents 
mean monthly temperature in degrees Celsius. Red dotted area represents the dry period. Cyan 
colored bars under monthly abbreviations represent periods when frost can occur. 



 108 

 

Figure S2.2.- Climograph for site OR093 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.3.- Climograph for site OR095 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.4.- Climograph for site OR089 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.5.- Climograph for site OR094 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.6.- Climograph for site CA095 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.7.- Climograph for site ID006 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.8.- Climograph for site CA517 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.9.- Climograph for site OR063 derived from PRISM climate data from the  years 1895-2017. 
Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.10.- Climograph for site OR009 derived from PRISM climate data from the  years 1895-
2017. Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.11.- Climograph for site CA675 for years 1895-2017. Blue line represents mean monthly 
precipitation in millimeters.  Redline represents mean monthly temperature in degrees Celsius. Red dotted 
area represents the dry period. Cyan colored bars under monthly abbreviations represent periods when 
frost can occur. 
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Figure S2.12.- Climograph for site OR006 derived from PRISM climate data from the  years 1895-
2017. Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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Figure S2.13.- Climograph for site NV518 derived from PRISM climate data from the  years 1895-
2017. Blue line represents mean monthly precipitation in millimeters.  Redline represents mean monthly 
temperature in degrees Celsius. Red dotted area represents the dry period. Cyan colored bars under 
monthly abbreviations represent periods when frost can occur. 
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APPENDIX B 

SUPPLEMENTARY MATERIAL FROM CHAPTER IV 

Table S4.1.- ANVOVA tables for site OR092. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
OR092 
 
JSP 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.1337 0.13365   5.058 0.0268 * 
CO2fert       1 0.0217 0.02173   0.822 0.3668   
Year:CO2fert  1 0.0281 0.02809   1.063 0.3051   
Residuals    97 2.5632 0.02643  
                 
JST 
 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0159  0.0159   0.907    0.343     
CO2fert       1 0.3408  0.3408  19.440 2.68e-05 *** 
Year:CO2fert  1 0.0071  0.0071   0.404    0.527     
Residuals    97 1.7002  0.0175                      
 
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.9350  0.9350  43.380 2.33e-09 *** 
CO2fert       1 0.0335  0.0335   1.554 0.215583     
Year:CO2fert  1 0.3005  0.3005  13.943 0.000318 *** 
Residuals    97 2.0906  0.0216    
                   
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0514  0.0514   2.509 0.116421     
CO2fert       1 0.4423  0.4423  21.580 1.07e-05 *** 
Year:CO2fert  1 0.2426  0.2426  11.835 0.000859 *** 
Residuals    97 1.9880  0.0205 
                      
OJP 
             Df Sum Sq Mean Sq F value  Pr(>F)     
Year          1 0.1269  0.1269   7.835 0.00618 **  
CO2fert       1 0.0039  0.0039   0.243 0.62349     
Year:CO2fert  1 0.8433  0.8433  52.057 1.2e-10 *** 
Residuals    97 1.5714  0.0162   
                   
OJT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1424 0.14244   8.601 0.004191 **  
CO2fert       1 0.2211 0.22109  13.351 0.000419 *** 
Year:CO2fert  1 0.0372 0.03724   2.249 0.136950     
Residuals    97 1.6063 0.01656                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.2.- ANVOVA tables for site OR093. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
OR093 
 
JSP 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.1337 0.13365   5.058 0.0268 * 
CO2fert       1 0.0217 0.02173   0.822 0.3668   
Year:CO2fert  1 0.0281 0.02809   1.063 0.3051   
Residuals    97 2.5632 0.02643                  
JST 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.2648 0.26483   9.724 0.00239 ** 
CO2fert       1 0.0666 0.06662   2.446 0.12107    
Year:CO2fert  1 0.0196 0.01963   0.721 0.39798    
Residuals    97 2.6419 0.02724                    
 
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.9350  0.9350  43.380 2.33e-09 *** 
CO2fert       1 0.0335  0.0335   1.554 0.215583     
Year:CO2fert  1 0.3005  0.3005  13.943 0.000318 *** 
Residuals    97 2.0906  0.0216     
                  
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0514  0.0514   2.509 0.116421     
CO2fert       1 0.4423  0.4423  21.580 1.07e-05 *** 
Year:CO2fert  1 0.2426  0.2426  11.835 0.000859 *** 
Residuals    97 1.9880  0.0205  
                     
OJP 
             Df Sum Sq Mean Sq F value  Pr(>F)     
Year          1 0.1269  0.1269   7.835 0.00618 **  
CO2fert       1 0.0039  0.0039   0.243 0.62349     
Year:CO2fert  1 0.8433  0.8433  52.057 1.2e-10 *** 
Residuals    97 1.5714  0.0162  
                    
OJT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1424 0.14244   8.601 0.004191 **  
CO2fert       1 0.2211 0.22109  13.351 0.000419 *** 
Year:CO2fert  1 0.0372 0.03724   2.249 0.136950     
Residuals    97 1.6063 0.01656                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.3.- ANVOVA tables for site OR095. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
OR095 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0676  0.0676   2.991  0.08691 .   
CO2fert       1 0.1753  0.1753   7.760  0.00642 **  
Year:CO2fert  1 0.4827  0.4827  21.363 1.17e-05 *** 
Residuals    97 2.1916  0.0226      
                 
JST 
             Df Sum Sq Mean Sq F value  Pr(>F)     
Year          1 0.1124 0.11236   4.930 0.02873 *   
CO2fert       1 0.3008 0.30081  13.198 0.00045 *** 
Year:CO2fert  1 0.0882 0.08816   3.868 0.05207 .   
Residuals    97 2.2108 0.02279  
                    
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.5329  0.5329   29.41 4.29e-07 *** 
CO2fert       1 0.3873  0.3873   21.38 1.17e-05 *** 
Year:CO2fert  1 0.1972  0.1972   10.88  0.00136 **  
Residuals    97 1.7577  0.0181  
                     
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0138  0.0138   0.679   0.4121     
CO2fert       1 0.4691  0.4691  23.004 5.84e-06 *** 
Year:CO2fert  1 0.0862  0.0862   4.226   0.0425 *   
Residuals    97 1.9779  0.0204     
                  
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0002  0.0002   0.009    0.923     
CO2fert       1 0.1098  0.1098   4.334    0.040 *   
Year:CO2fert  1 1.5694  1.5694  61.932 5.07e-12 *** 
Residuals    97 2.4580  0.0253  
                     
OJT 
             Df Sum Sq Mean Sq F value  Pr(>F)     
Year          1 0.3467  0.3467  19.901 2.2e-05 *** 
CO2fert       1 0.1500  0.1500   8.610 0.00417 **  
Year:CO2fert  1 0.0810  0.0810   4.648 0.03357 *   
Residuals    97 1.6901  0.0174                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.4.- ANVOVA tables for site OR089. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
OR089 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.5452  0.5452   71.72 7.54e-13 *** 
CO2fert       1 0.1264  0.1264   16.62 0.000104 *** 
Year:CO2fert  1 0.0926  0.0926   12.18 0.000776 *** 
Residuals    83 0.6310  0.0076                      
 
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.2373  0.2373   9.087  0.00341 **  
CO2fert       1 0.0028  0.0028   0.107  0.74385     
Year:CO2fert  1 0.5476  0.5476  20.966 1.63e-05 *** 
Residuals    83 2.1676  0.0261                      
FMP 
 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1303  0.1303   11.92 0.000876 *** 
CO2fert       1 0.4582  0.4582   41.94 6.27e-09 *** 
Year:CO2fert  1 0.1642  0.1642   15.03 0.000211 *** 
Residuals    83 0.9068  0.0109  
                     
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0705  0.0705   3.418 0.068055 .   
CO2fert       1 0.3400  0.3400  16.475 0.000111 *** 
Year:CO2fert  1 0.0025  0.0025   0.120 0.729474     
Residuals    83 1.7127  0.0206                      
 
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.7898  0.7898   71.19 8.73e-13 *** 
CO2fert       1 0.1483  0.1483   13.37 0.000448 *** 
Year:CO2fert  1 0.5333  0.5333   48.07 8.25e-10 *** 
Residuals    83 0.9208  0.0111   
                    
OJT 
 
             Df Sum Sq Mean Sq F value  Pr(>F)     
Year          1 0.4862  0.4862  51.459 2.8e-10 *** 
CO2fert       1 0.0175  0.0175   1.855   0.177     
Year:CO2fert  1 0.0507  0.0507   5.365   0.023 *   
Residuals    83 0.7842  0.0094                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.5.- ANVOVA tables for site OR094. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
OR094 
 
 
JSP 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0599 0.05988   2.801 0.0974 . 
CO2fert       1 0.1215 0.12153   5.684 0.0191 * 
Year:CO2fert  1 0.0598 0.05981   2.797 0.0977 . 
Residuals    97 2.0741 0.02138   
                
JST 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0409 0.04087   1.919 0.1691   
CO2fert       1 0.1278 0.12781   6.002 0.0161 * 
Year:CO2fert  1 0.0586 0.05861   2.752 0.1003   
Residuals    97 2.0655 0.02129   
                
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0105 0.01045   0.474 0.492613     
CO2fert       1 0.2986 0.29855  13.548 0.000382 *** 
Year:CO2fert  1 0.2822 0.28216  12.804 0.000542 *** 
Residuals    97 2.1375 0.02204  
                     
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0113  0.0113   0.432    0.513     
CO2fert       1 0.5563  0.5563  21.199 1.26e-05 *** 
Year:CO2fert  1 0.0391  0.0391   1.491    0.225     
Residuals    97 2.5456  0.0262   
                    
OJP 
 
             Df Sum Sq Mean Sq F value Pr(>F)     
Year          1 0.0438  0.0438   4.661 0.0333 *   
CO2fert       1 0.0030  0.0030   0.318 0.5739     
Year:CO2fert  1 1.3770  1.3770 146.607 <2e-16 *** 
Residuals    97 0.9111  0.0094   
                  
OJT 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.1246 0.12462   4.118 0.0452 * 
CO2fert       1 0.1843 0.18426   6.088 0.0154 * 
Year:CO2fert  1 0.0905 0.09046   2.989 0.0870 . 
Residuals    97 2.9358 0.03027                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.6.- ANVOVA tables for site CA095. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
CA095 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0019  0.0019   0.192   0.6629     
CO2fert       1 0.0711  0.0711   7.119   0.0095 **  
Year:CO2fert  1 0.3460  0.3460  34.654 1.29e-07 *** 
Residuals    69 0.6890  0.0100  
                     
JST 
 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.2360  0.2360   15.24 0.000217 *** 
CO2fert       1 0.7090  0.7090   45.78 3.52e-09 *** 
Year:CO2fert  1 0.3902  0.3902   25.20 3.87e-06 *** 
Residuals    69 1.0685  0.0155    
                   
FMP 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0369 0.03687   5.230 0.0253 * 
CO2fert       1 0.0366 0.03658   5.188 0.0259 * 
Year:CO2fert  1 0.0080 0.00803   1.139 0.2896   
Residuals    69 0.4865 0.00705  
                 
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.3023 0.30226  31.473 3.89e-07 *** 
CO2fert       1 0.0717 0.07168   7.464  0.00799 **  
Year:CO2fert  1 0.0273 0.02732   2.845  0.09617 .   
Residuals    69 0.6627 0.00960   
                    
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 1.0632  1.0632  49.049 1.31e-09 *** 
CO2fert       1 0.0060  0.0060   0.278    0.600     
Year:CO2fert  1 0.0167  0.0167   0.772    0.383     
Residuals    69 1.4956  0.0217     
                  
OJT 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.0441 0.04405   2.754 0.10155    
CO2fert       1 0.1609 0.16087  10.058 0.00226 ** 
Year:CO2fert  1 0.0436 0.04359   2.725 0.10332    
Residuals    69 1.1036 0.01599                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.7.- ANVOVA tables for site ID006. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
 
 
ID006 
 
JSP 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.0000 0.00001   0.001 0.97938    
CO2fert       1 0.0031 0.00305   0.174 0.67761    
Year:CO2fert  1 0.1313 0.13129   7.497 0.00781 ** 
Residuals    71 1.2434 0.01751   
                  
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1767 0.17666  11.794 0.000996 *** 
CO2fert       1 0.0227 0.02271   1.516 0.222270     
Year:CO2fert  1 0.0415 0.04151   2.771 0.100365     
Residuals    71 1.0634 0.01498   
                    
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 1.0044  1.0044  151.17  < 2e-16 *** 
CO2fert       1 0.2491  0.2491   37.49 4.55e-08 *** 
Year:CO2fert  1 0.7287  0.7287  109.67 4.78e-16 *** 
Residuals    71 0.4717  0.0066  
                     
FMT 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0477 0.04767   4.459 0.0382 * 
CO2fert       1 0.0553 0.05535   5.178 0.0259 * 
Year:CO2fert  1 0.0678 0.06784   6.346 0.0140 * 
Residuals    71 0.7590 0.01069   
                
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.5038  0.5038   16.66 0.000115 *** 
CO2fert       1 0.4054  0.4054   13.41 0.000479 *** 
Year:CO2fert  1 0.5931  0.5931   19.62 3.36e-05 *** 
Residuals    71 2.1466  0.0302  
                     
OJT 
             Df Sum Sq Mean Sq F value  Pr(>F)     
Year          1 0.9392  0.9392 144.371 < 2e-16 *** 
CO2fert       1 0.3741  0.3741  57.501 9.9e-11 *** 
Year:CO2fert  1 0.0152  0.0152   2.336   0.131     
Residuals    71 0.4619  0.0065                     
--- 
Signif. codes:  0 â€˜***â€™ 0.001 â€˜**â€™ 0.01 â€˜*â€™ 0.05 â€˜.â€™ 0.1 
â€˜ â€™ 1 
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Table S4.8.- ANVOVA tables for site CA517. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
 
CA517 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 1.0661  1.0661 110.632 7.96e-16 *** 
CO2fert       1 0.0012  0.0012   0.129     0.72     
Year:CO2fert  1 0.2821  0.2821  29.270 9.10e-07 *** 
Residuals    67 0.6456  0.0096   
                    
JST 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.0248 0.02476   2.514 0.11754    
CO2fert       1 0.0021 0.00209   0.212 0.64656    
Year:CO2fert  1 0.1153 0.11533  11.710 0.00106 ** 
Residuals    67 0.6599 0.00985   
                  
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0771  0.0771   12.36 0.000793 *** 
CO2fert       1 0.5146  0.5146   82.45 2.75e-13 *** 
Year:CO2fert  1 0.1324  0.1324   21.21 1.89e-05 *** 
Residuals    67 0.4182  0.0062   
                    
FMT 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.0552 0.05525   3.100 0.08287 .  
CO2fert       1 0.1776 0.17762   9.966 0.00239 ** 
Year:CO2fert  1 0.0037 0.00374   0.210 0.64833    
Residuals    67 1.1941 0.01782  
                   
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.2754 0.27540  14.670 0.000285 *** 
CO2fert       1 0.0225 0.02247   1.197 0.277825     
Year:CO2fert  1 0.1834 0.18338   9.769 0.002624 **  
Residuals    67 1.2577 0.01877   
                    
OJT 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.2907 0.29071   7.661 0.00729 ** 
CO2fert       1 0.1702 0.17017   4.485 0.03792 *  
Year:CO2fert  1 0.0668 0.06678   1.760 0.18916    
Residuals    67 2.5424 0.03795                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.9.- ANVOVA tables for site OR063. Climate abbreviations for composite climate variables are 
as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
OR063 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.2061 0.20608  12.586 0.000636 *** 
CO2fert       1 0.0874 0.08744   5.340 0.023258 *   
Year:CO2fert  1 0.0350 0.03496   2.135 0.147621     
Residuals    85 1.3918 0.01637  
                     
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0000  0.0000   0.001    0.977     
CO2fert       1 0.5196  0.5196  60.863 1.42e-11 *** 
Year:CO2fert  1 0.7904  0.7904  92.592 2.97e-15 *** 
Residuals    85 0.7256  0.0085                      
 
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.3670  0.3670   46.89 1.10e-09 *** 
CO2fert       1 0.3306  0.3306   42.24 5.24e-09 *** 
Year:CO2fert  1 0.1121  0.1121   14.32 0.000286 *** 
Residuals    85 0.6652  0.0078  
                     
FMT 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.1052 0.10519   4.357 0.0398 * 
CO2fert       1 0.0483 0.04826   1.999 0.1610   
Year:CO2fert  1 0.1423 0.14229   5.894 0.0173 * 
Residuals    85 2.0519 0.02414    
               
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0033  0.0033   0.130    0.719     
CO2fert       1 0.0542  0.0542   2.157    0.146     
Year:CO2fert  1 1.4696  1.4696  58.488 2.88e-11 *** 
Residuals    85 2.1357  0.0251                      
 
OJT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.5271  0.5271   28.49  7.7e-07 *** 
CO2fert       1 0.2855  0.2855   15.43 0.000173 *** 
Year:CO2fert  1 0.0490  0.0490    2.65 0.107251     
Residuals    85 1.5725  0.0185                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
 
 



 129 

 
 
 
 

Table S4.10.- ANVOVA tables for site OR009. Climate abbreviations for composite climate variables 
are as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
OR009 
 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0683 0.06831   8.954  0.00384 **  
CO2fert       1 0.2963 0.29629  38.837 3.18e-08 *** 
Year:CO2fert  1 0.0495 0.04946   6.483  0.01313 *   
Residuals    69 0.5264 0.00763   
                    
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0014  0.0014   0.085  0.77210     
CO2fert       1 0.7502  0.7502  45.613 3.71e-09 *** 
Year:CO2fert  1 0.1572  0.1572   9.558  0.00287 **  
Residuals    69 1.1349  0.0164    
                   
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 1.1736  1.1736 101.579 3.38e-15 *** 
CO2fert       1 0.3091  0.3091  26.758 2.15e-06 *** 
Year:CO2fert  1 0.0298  0.0298   2.576    0.113     
Residuals    69 0.7972  0.0116   
                    
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1217  0.1217   8.034  0.00602 **  
CO2fert       1 0.0323  0.0323   2.135  0.14847     
Year:CO2fert  1 0.3390  0.3390  22.382 1.15e-05 *** 
Residuals    69 1.0451  0.0151    
                   
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.3725  0.3725  13.835 0.000403 *** 
CO2fert       1 0.0542  0.0542   2.012 0.160555     
Year:CO2fert  1 0.0753  0.0753   2.797 0.098955 .   
Residuals    69 1.8581  0.0269                      
 
OJT 
 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.3049 0.30487  16.986 0.000103 *** 
CO2fert       1 0.0365 0.03647   2.032 0.158548     
Year:CO2fert  1 0.0436 0.04355   2.427 0.123859     
Residuals    69 1.2384 0.01795                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S.4.11.- ANVOVA tables for site CA675. Climate abbreviations for composite climate variables 
are as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
 
CA675 
 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.5227  0.5227  25.379 2.18e-06 *** 
CO2fert       1 0.0825  0.0825   4.007  0.04811 *   
Year:CO2fert  1 0.2081  0.2081  10.104  0.00199 **  
Residuals    97 1.9977  0.0206    
                   
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.3858  0.3858  23.718 4.33e-06 *** 
CO2fert       1 0.1380  0.1380   8.485 0.004445 **  
Year:CO2fert  1 0.2171  0.2171  13.351 0.000419 *** 
Residuals    97 1.5777  0.0163                      
 
FMP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 1.5770  1.5770 138.688  < 2e-16 *** 
CO2fert       1 0.5723  0.5723  50.333 2.13e-10 *** 
Year:CO2fert  1 0.0017  0.0017   0.153    0.696     
Residuals    97 1.1029  0.0114      
                 
FMT 
             Df Sum Sq Mean Sq F value Pr(>F)    
Year          1 0.2027 0.20270   7.216 0.0085 ** 
CO2fert       1 0.0028 0.00277   0.099 0.7543    
Year:CO2fert  1 0.0401 0.04013   1.428 0.2349    
Residuals    97 2.7250 0.02809     
               
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.0001  0.0001   0.004   0.9482     
CO2fert       1 0.1354  0.1354   5.768   0.0182 *   
Year:CO2fert  1 0.8686  0.8686  36.998 2.35e-08 *** 
Residuals    97 2.2774  0.0235     
                  
OJT 
 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.0090 0.00903   0.397 0.52997    
CO2fert       1 0.0606 0.06059   2.665 0.10581    
Year:CO2fert  1 0.1792 0.17916   7.881 0.00604 ** 
Residuals    97 2.2052 0.02273                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.12.- ANVOVA tables for site OR006. Climate abbreviations for composite climate variables 
are as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
 
 
OR006 
JSP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.4314  0.4314   34.87  1.2e-07 *** 
CO2fert       1 0.1976  0.1976   15.97 0.000159 *** 
Year:CO2fert  1 0.0000  0.0000    0.00 0.990969     
Residuals    69 0.8535  0.0124                      
 
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1978  0.1978   8.667  0.00441 **  
CO2fert       1 0.8176  0.8176  35.828 8.65e-08 *** 
Year:CO2fert  1 0.0030  0.0030   0.131  0.71894     
Residuals    69 1.5746  0.0228                      
 
FMP 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0766 0.07664   3.272 0.0748 . 
CO2fert       1 0.0031 0.00309   0.132 0.7177   
Year:CO2fert  1 0.0931 0.09311   3.976 0.0501 . 
Residuals    69 1.6160 0.02342                  
FMT 
             Df Sum Sq Mean Sq F value  Pr(>F)    
Year          1 0.3373  0.3373   8.796 0.00414 ** 
CO2fert       1 0.0532  0.0532   1.388 0.24276    
Year:CO2fert  1 0.0000  0.0000   0.001 0.97337    
Residuals    69 2.6461  0.0383    
                 
OJP 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.4283  0.4283  17.047 0.000101 *** 
CO2fert       1 0.2858  0.2858  11.374 0.001224 **  
Year:CO2fert  1 0.1843  0.1843   7.335 0.008518 **  
Residuals    69 1.7337  0.0251                      
 
OJT 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0111 0.01107   1.162 0.2848   
CO2fert       1 0.0267 0.02668   2.799 0.0988 . 
Year:CO2fert  1 0.0126 0.01261   1.324 0.2539   
Residuals    69 0.6575 0.00953                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S4.13.- ANVOVA tables for site NV518. Climate abbreviations for composite climate variables 
are as follows: June through September precipitation (JSP), June through September temperature (JST), 
February through March precipitation (FMP), February through March temperature (FMT), previous 
October through current January precipitation (OJP), previous October through current January 
temperature (OJT).  
 
NV518 
 
JSP  
            Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.5462  0.5462  26.840 1.47e-06 *** 
CO2fert       1 0.0430  0.0430   2.114    0.150     
Year:CO2fert  1 0.0000  0.0000   0.002    0.964     
Residuals    85 1.7297  0.0203                      
--- 
 
JST 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.3638  0.3638  17.094 8.31e-05 *** 
CO2fert       1 0.0136  0.0136   0.637    0.427     
Year:CO2fert  1 0.5710  0.5710  26.827 1.47e-06 *** 
Residuals    85 1.8091  0.0213                      
--- 
 
FMP 
             Df Sum Sq Mean Sq F value Pr(>F)     
Year          1 2.1462  2.1462 128.008 <2e-16 *** 
CO2fert       1 0.0024  0.0024   0.140 0.7088     
Year:CO2fert  1 0.0983  0.0983   5.865 0.0176 *   
Residuals    85 1.4251  0.0168                    
 
FMT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.8355  0.8355  54.903 8.60e-11 *** 
CO2fert       1 0.2591  0.2591  17.025 8.57e-05 *** 
Year:CO2fert  1 0.0510  0.0510   3.348   0.0708 .   
Residuals    85 1.2936  0.0152                      
--- 
 
OJP 
             Df Sum Sq Mean Sq F value Pr(>F)   
Year          1 0.0602 0.06019   1.913  0.170   
CO2fert       1 0.0346 0.03458   1.099  0.297   
Year:CO2fert  1 0.1831 0.18314   5.821  0.018 * 
Residuals    85 2.6743 0.03146                  
--- 
 
 
OJT 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Year          1 0.1722  0.1722  10.271   0.0019 **  
CO2fert       1 0.8279  0.8279  49.378 4.91e-10 *** 
Year:CO2fert  1 0.1300  0.1300   7.756   0.0066 **  
Residuals    85 1.4251  0.0168                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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