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In this dissertation we study the interaction of a single atom with a single 

mode of the electromagnetic field in an optical cavity. We emphasize strong coupling 

conditions, where the dipole coupling strength is larger than the dissipation rates of 

the cavity and the atom. 

By exciting the coupled atom and cavity mode with an external field, the 

excited-state spectroscopy of the coupled system is explored. Both quantum me­

chanical and semiclassical calculations are performed and their results are compared. 

In the limit of a weak driving field, both results show a two-peak ("vacuum" Rabi) 

spectrum. With increased strength of the driving field, differences are observed. 

The quantum calculation shows a multi-peak ( two "vacuum" Rabi peaks plus addi­

tional peaks) spectrum, while the semiclassical calculation does not. These additional 

peaks are produced by transitions between the excited states of the Jaynes-Cummings 
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Hamiltonian indicative of the quantum nature of the coupled atom-cavity-mode sys­

tem. 

Another feature showing the quantum character of the coupled system is that 

an optical cavity containing one atom behaves, to a good approximation, like a two­

state system when it is coherently excited on one of the "vacuum" Rabi resonances. It 

is shown that the cavity transmission exhibits the triplet Stark splitting of the Mollow 

spectrum. Quantum trajectory theory is used to study this two-state behavior. 

Finally, the generation of Schrodinger cat states (superpositions of coherent 

states) using the coupled system of the atom and cavity mode is explored. These 

states are observed by using temporal-mode-matched homodyne detection. Quantum 

trajectories enable us to understand how loss destroys the Schrodinger cat. 
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CHAPTER I 

INTRODUCTION 

The field of cavity quantum electrodynamics ( cavity QED) involves the study 

of atomic interactions with the electromagnetic field in a cavity. The earliest idea of 

cavity QED was pointed out by Purcell in 1946 (l]. He observed that the spontaneous 

emission rate from a two state system ( a nuclear magnetic moment) coupled to an 

electrical circuit can be greatly enhanced. More than twenty years later, Drexhage 

made the first experimental demonstration of the alteration of spontaneous emission 

rates due to the presence of boundaries [2]. He observed a suppressed fluorescent decay 

rate for a dye molecule located close to a dielectric surface. The first experimental 

proof of Purcell's prediction was done by Goy et al. in 1983 [3]. They performed the 

experiment with Rydberg atoms (Na atoms) in a niobium superconducting resonant 

cavity and observed enhanced atomic spontaneous emission. Early experiments in 

cavity QED were performed with Rydberg atoms interacting with a single mode of a 

microwave cavity [3, 4]. In the last few years there have been several experiments in 

which the alteration of spontaneous emission rates has been observed in the optical 

frequency domain [5, 6, 7]. 

The enhancement and suppression of atomic spontaneous emission due to the 

presence of a boundary can be explained by first order perturbation theory (Fermi's 

golden rule). This theory states that the spontaneous emission rate is proportional 
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to the density of modes into which the excited-state atom may emit. In the presence 

of a cavity the mode density changes , which leads to an alteration of the spontaneous 

emission rate. The altered emission rate depends on the following three rates: the 

cavity damping rate "-, the spontaneous emission rate , into continuum modes other 

than those of the cavity, and the atom-field coupling constant g, where g characterizes 

the oscillatory exchange of excitation between the atom and the field of the cavity. 

Experiments on the enhancement and inhibition of spontaneous emission are per­

formed in the regime of weak coupling "' » g2 
/"' » , . A nonperturbative atomic 

interaction with the cavity mode in the regime of strong coupling g » "- ,, has been 

investigated in recent years within the context of cavity QED [3, 4, 8, 9, 10, 11). 

Under these strong coupling conditions the photons emitted by the atom have a high 

probability to reabsorbed before they are dissipated. The nonperturbative interac­

tion can not be described from the viewpoint of the altered radiative process of the 

atom or cavity alone, but rather in terms of the dynamics of the composite atom-field 

entity. This composite atom-cavity system approaches the Jaynes-Cummings model 

of an atom coupled to a cavity mode with no dissipation [12). One signature of the 

composite structure is the so-called "vacuum" Rabi splitting, which is the splitting 

of the degenerate first excited state of the uncoupled system ( the atom in the ground 

state with one photon in the field, or the atom in the excited state with no photons in 

the field) due to the atom-cavity-mode interaction [13). The splitting of thes levels 

is ±g with one atom inside the cavity and ±-/Fig with N atoms inside the cavity. 
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"Vacuum" Rabi splitting is not an inherently quantum phenomenon and can also 

be understood from classical physics. It is essentially the normal mode splitting 

of coupled harmonic oscillators , one oscillator to describe the mean amplitude of 

the atomic polarization and the other to describe the mean amplitude of the single 

mode field inside the cavity. When an atom-cavity-mode system is weakly excited by 

coherent light the coupled harmonic oscillator picture comes very close to the physical 

reality [14, 15). It also explains the "additional vacuum-field Rabi splittings" reported 

by Agarwal [16) for a system driven by a field with a stochastic phase [17). It even 

explains the appearance of a doublet spectrum in spontaneous emission, in spite of 

the fact that an initially excited two-state atom is not, even approximately, a Lorentz 

oscillator. In this case it is the autocorrelation of the atomic polarization fluctuations 

that follows coupled harmonic oscillator dynamics, rather than the mean polarization 

amplitude itself [18). 

There is a simple reason for the success of the classical coupled harmonic oscillator 

picture in explaining "vacuum,, Rabi splitting. It is that the energy spectrum of the 

Jaynes-Cummings system is the same as that of coupled harmonic oscillators up to 

the first excited state. Thus, spectroscopic features that depend solely on transitions 

from the first excited state are indistinguishable between the two systems. But the 

systems are distinguished when we look at effects that involve transitions to higher 

excited states - for example, if we look at the intensity fluctuations observed in 

photon coincidence counting experiments [19, 11]. The systems are also distinguished 
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by direct spectroscopic measurement of transitions above the first excited state. For 

coupled harmonic oscillators the transition frequencies encountered at the first excited 

state are simply repeated, ad infinitum, at higher levels of excitation; the emission 

spectrum for coupled harmonic oscillators is characterized by a doublet at all levels 

of excitation. This is not so for the Jaynes-Cummings system. The level splittings 

for the Jaynes-Cummings Hamiltonian increase as the square root of the principal 

quantum number rather than in proportion to this number. Therefore , excitation 

above the first excited state introduces additional incommensurate frequencies into 

the emission spectrum. 

In the time domain the excited state splittings of an atom-cavity-mode system 

produce collapses and revivals of the semiclassical Rabi oscillations [20]. An exper­

iment using Rydberg atoms in a microwave cavity has shown clear evidence of such 

quasiperiodic dynamics [9]. However, there have been no direct observations in the 

frequency domain of transitions between the excited states of an atom-cavity-mode 

system. In the microwave region such observations face the difficulty of detecting very 

weak (few quanta per mode) fields . At optical frequencies the difficulty is in achiev­

ing a sufficiently large dipole coupling strength. Some progress in this direction has 

been made. The "vacuum" Rabi spectrum for a collection of N » 1 atoms was ob­

served in two experiments [14, 15], aided by the fact that the frequency splitting for 

many atoms is increased by the square root of the number of atoms. Very recently 

"vacuum" Rabi splitting was observed using a Cesium atomic beam with (N) ,...__, 1 
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atom interacting with the cavity mode ( (N) is th mean number of atoms) [11] . The 

challenge now is to observe transitions between the excited states of the composite 

system formed by a single atom strongly coupled to a resonant cavity mode. With the 

advent of laser cooling techniques and trap technology, it will be possible to perform 

quantum optical investigation on a single atom in the near future. In this thesis we 

investigate theoretically a single two-state atom strongly coupled to a single quantized 

mode of the electromagnetic field in an optical cavity in the strong coupling regime 

( atom-cavity-mode system). 

The first topic of the thesis is to describe some excited-state spectroscopy of the 

atom-cavity-mode system that can differentiate between the quantum and classical 

models. Chapters II - IV are covered under this topic. In these three chapters we 

will describe three ways to observe the excited-state spectroscopy of the atom-cavity­

mode system. The first is to inject laser light into an optical cavity containing a single 

two-state atom, and then to measure the intensity of the field transmitted from the 

cavity as a function of the frequency of the laser. This way of measuring transmis­

sion spectra follows the way in which measurements of the "vacuum" Rabi spectrum 

were made by Zhu et al. [15]. Calculations of such transmission spectra from both 

the QED and semiclassical theories are given in chapter II. The second is to mea­

sure the spectroscopic response of the atom-cavity-mode system to a cw pump laser 

plus weak , frequency tunable modulation. This way of observing excited-state spec­

troscopy exactly follows the way in which the nonlinear modulation spectrum of the 
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Jaynes-Cummings molecule was measured by Thompson et al. [21]. In chapter III we 

analyze a modulation spectroscopy scheme designed to reveal the first-to-second ex­

cited state transition of the Jaynes-Cummings model. We compare results of the QED 

and semiclassical calculations using parameters which are very close to those used in 

the experimental measurements [21]. We then identify and explain those features that 

distinguish the QED calculation from the semiclassical calculation. The final way to 

observe excited state transitions is to excite the strongly coupled atom and cavity 

mode system by broad-band chaotic light. The scattered, transmitted and reflected 

spectra corresponding to this way of measurement are calculated analytically and 

numerically in chapter IV. The analytical calculation of these spectra is based on the 

secular approximation which can be justified under strong coupling conditions. The 

excited-state spectra calculated in all these chapters do show the excited-state reso­

nances of the Jaynes-Cummings system and provide a clear signature of the quantum 

nature of the atom-cavity-mode system. 

Another feature showing the quantum character of the atom-cavity-mode system 

is two-state behavior of an optical cavity containing one atom. Indirectly, this too 

involves excited-state spectroscopy. Two-state behavior occurs because the energy 

levels of the coupled cavity mode and atom are unequally spaced, which, for suffi­

ciently strong coupling allows a two-state approximation to be made. The two-state 

behavior is studied using a new method - the quantum trajectory method (22, 23, 24). 

A stochastic wavefunction is introduced in this method to describe a source system 
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such as an atom-cavity-mode system. The stochastic wavefunction follows both the 

coherent quantum evolution of the system produced by the interaction between the 

atom and the cavity mode and incoherent evolution produced by atomic spontaneous 

emission and cavity loss. This new method provides a powerful computational tool; 

more importantly, it clarifies the physical interpretation. This method is reviewed in 

chapter V. 

Chapter VI discusses the two-state behavior. In this study, we consider an atom­

cavi ty-mode system driven by a laser. We tune the laser field to one of the "vacuum" 

Rabi resonances and observe the behavior of a single two-state system. In partic­

ular, we use the quantum trajectory method to show that the light transmitted by 

the cavity has the photoelectron counting statistics of resonance fluorescence and a 

Mollow-triplet spectrum for strong driving field intensities. 

The final topic of the thesis is a study of Schrodinger cat states analyzed using the 

quantum trajectory method. Schrodinger cat states are superpositions of macroscopic 

quantum states . The generation of Schrodinger cat states is an issue of considerable 

importance in the study of the relationship between quantum and classical physics. 

It is found that the observation of these states is very difficult. This is because 

quantum coherence is destroyed by dissipation in the problem on a very fast time 

scale. For example, for a coherent state with amplitude a an energy decay rate 2K is 

accompanied by a decay rate over short time intervals of 2K jaj 2 for the interferences 

[25, 26]. 
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In the field of optics, the interest in studying Schrodinger cat states began with 

a proposal for their generation by propagating a coherent state through a Kerr non­

linear medium and observation by homodyne detection [27]. Use of a parametric 

amplifier to generate the states was also proposed [28, 29]. These schemes suffer the 

same difficulties with dissipation. Both explicit photon loss and inefficient detection 

contribute to the problem. The technical difficulties this raises are extreme, even for 

states that contain only two or three photons. There are also proposals for generating 

optical Schrodinger cats using a single atom [30 , 31]. A number of these proposals 

involve the ideas of cavity QED [32, 33, 34]. Th scheme we describe is similar in 

some respects to earlier proposals, but there are differences. Most previous proposals 

use dispersion to generate a superposition of phase-shifted coherent states from an 

initial coherent state. The absorption and emission of photons is explicitly avoided 

due to the problem with dissipation. In contrast, we generate the superposition of 

coherent states from the vacuum state; the photons it contains are emitted from an 

atom driven on resonance. Then there is a difference in the way we observe the 

Schrodinger cat. The original homodyne detection idea has been abandoned by those 

working in cavity QED. This is because a Schrodinger cat that lives inside a cavity 

is not accessible [33]; the problem of suitable detectors for microwave fields is also 

raised [32]. We will use, essentially, the original homodyne detection idea to observe 

the Schrodinger cat as it leaks out of the cavity. 

Like everyone else, we find that photon loss is a practical difficulty. However, we 
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view the loss not just as something to be avoided, but as something first to be un­

derstood. By using the quantum trajectory approach we can see exactly how the loss 

destroys the quantum interference. The important thing we find is that, in principle, 

negative effects of the loss can be eliminated by adding a "spontaneous emission veto" 

while preparing the Schrodinger cat; in practice the effects of the loss can certainly 

be decreased. Most importantly, we find that the cavity loss involved in leaking a 

prepared Schrodinger cat out to an external detector does not necessarily destroy 

the detected interference pattern. The only requirement is that the local oscillator 

be temporally mode matched to the decaying signal. The generation of Schrodinger 

cat states and the observation of these states using temporal-mode-matched homo­

dyne detector are described in chapter VII (We note that our study will deal with 

few-photon cats , not truly macroscopic ones.). 



CHAPTER II 

COHERENT EXCITATION: TRANSMISSION SPECTROSCOPY 

The 'vacuum' Rabi spectrum shows the transitions between the first excited state 

and ground state of a coupled atom-cavity-mode system. This double-peaked spec­

trum has been observed in a number of experiments [11, 14, 15). There remains, 

however, some motivation for going beyond these experiments because they do not 

distinguish between the results of QED calculations and those of semiclassical calcu­

lations. Spectra that show features associated with the excited-state resonances of 

the coupled atom-cavity-mode system do distinguish between the QED theory and 

the semi classical theory. In chapters II - IV, we study the excited-state spectroscopy 

of this system. This chapter and chapter III consider coherent excitation of a coupled 

system of a single atom plus a single mode of the cavity field in the strong coupling 

regime. Chapter IV will consider incoherent excitation. In this chapter transmis­

sion spectra are presented. The standard semiclassical theory is reviewed and the 

corresponding QED theory is described. For increasing field strengths the spectra 

calculated from the semiclassical theory develop bistability on the 'vacuum' Rabi 

peaks. In contrast , the spectra calculated from the QED theory develop a series of 

multi-photon resonances. 
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2.1 Optical Bistability 

We consider an optical cavity, open at the sides, containing a single two-level 

atom. The atom is resonant with one mode of the cavity at frequency w0 . The 

cavity is illuminated by a coherent field with frequency W£. The system is depicted 

in Figure 2.1. In the rotating wave approximation, the semiclassical Maxwell-Bloch 

equations for the coupled atom-cavity-mode system can be written as (35] 

d(a~) 
dt 

(2.1) 

Here ( a') is the amplitude of the field inside the cavity, (a~) is the atomic polarization, 

and (az) is the atomic population difference; £ is the amplitude of the coherent 

driving field , , /2 and /'i, are the atomic linewidth and cavity linewidth (half-width at 

half-maximum) , respectively, and g is the atom-field coupling constant . The optical 

frequencies w0 and WL are very much larger than all the other rates, £ , g, 1 , K, in our 

system. To remove the fast time dependence in Eqs. (2.1) we make the transformation 

(2 .2) 

We then have the semiclassical Maxwell-Bloch equations for the coupled atom-cavity-

mode system in a frame rotating at the frequency WL 



d( a-) 
dt 

with ~ = w0 - W£. 
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(2.3) 

For weak driving fields we write (az) = -1 and the first two of Eqs. (2.3) reduce 

to 

dX 

dt 
-(K + i~)X + gY + £, 

dY 
dt = -(,/2 + i~)Y - gX, (2.4) 

with X H (a) and Y H (a_). These are coupled harmonic oscillator equations (36). 

The eigenvalues for these equations are ±ijg2 - (K - , /2)2 /4-i~-½(K+,/2), which 

shows the two normal mode frequencies of the oscillators. The semiclassical oscillator 

model based on Eqs . (2.4) has been used to explain experimental observations of 

"vacuum" Rabi splitting, eventhough the name "vacuum" Rabi splitting suggests a 

phenomenon with a quantum-mechanical origin. "Vacuum" Rabi splitting does not 

distinguish between the results of the QED calculations and those of the semi classical 

calculations; extension of the "vacuum" Rabi spectrum to strong driving fields will do 

this. The rest of this section presents the semiclassical results for such an extension. 

The QED calculations will be discussed in the next section. 

For a fixed amplitude of the driving field we calculate the intensity of the field 

transmitted by the cavity as a function of the detuning of the driving field from the 

resonance frequency of the atom and cavity mode. This way of calculating spectra 
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Figure 2.1. Schematic diagram of a single atom in a cavity driven by a coherent field . 



14 

follows one of the ways in which measurements of the "vacuum" Rabi spectrum were 

made [15, 37]. The calculations are performed by solving for the steady-state photon 

number l(a)ssl 2 inside the cavity using the Maxwell-Bloch Eqs. (2.3). The resulting 

relationship between l(a)ssl 2 and the driving field intensity £ 2 is the state equation 

of absorptive and dispersive optical bistability [38], which reads as 

nsat - I ( £ / K,) 2 

(2.5) 

where 8 = 26./1 is the detuning in units of the atomic linewidth, C = N g 2 
/,"' is the 

cooperativity parameter, and nsat = 1 2 /8g 2 is the saturation photon number. 

Eq. (2.5) shows optical bistability which comes from the combination of non-

linearity in the response of the atom together with the feedback inherent in the 

intracavity geometry. The nonlinearity of the atom results from a combination 

of intensity-dependent absorption and dispersion; the former entering in the term 

Feedback is provided by enclosing the atom in the cavity. Eq. (2.5) has received a 

great deal of attention in the past [38, 39, 40). In spite of this, our present study 

uncovers a previously unrecognized connection between bistability and the "vacuum" 

Rabi splitting. Figures 2.2 and 2.3 show the transmitted spectra calculated from 

Eq. (2.5). Here the transmitted spectrum means the amplitude of the field transmit­

ted by the cavity - proportional to I (a) ss I - as a function of the detuning of the driving 
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field 8. The three-dimensional pictures plot the spectra versus the amplitude of the 

driving field £. For weak driving fields the double-peaked "vacuum" Rabi spectrum 

is shown. When the intensity of the driving field is increased, however, the "vacuum" 

Rabi spectrum evolves into a one-peaked spectrum, passing through a bistable region 

along the way. The more familiar view of optical bistability is obtained by varying 

the optical field amplitude at a fixed frequency detuning , as shown by the S-shaped 

curve in the three-dimensional pictures. 

2.2 Multi-photon Transitions 

In the last section we treated the interaction between the atom and the cavity 

mode semiclassically. Under strong coupling conditions, however, an atom coupled to 

a mode of the cavity field is not just an atom in a cavity field. It is a composite atom­

cavity-mode structure, like a "molecule". In this case the semiclassical approximation 

cannot be justified. The interaction between the atom and cavity mode needs to be 

treated quantum mechanically. In this section we consider the quantum-mechanical 

treatment and make a comparison of the transmitted spectra with those of the semi­

classical calculations to see how the composite nature is revealed. The starting point 

of such calculations is from a microscopic model for the atom-cavity-mode system. In 

the rotating-wave and dipole approxjmations, the microscopjc model is given by the 

operator master equation (41 , 42, 43, 44] 
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where p' is the reduced density operator for the model system, and 

(2 .7) 

is the on resonance Jaynes-Cummings Hamiltonian [12] describing the interaction 

between the atom and the cavity mode; at and a are the field creation and annihilation 

operators for the cavity mode and satisfy the boson commutation relation [a, a tJ = 1, 

a+ and a_ are raising and lowering operators for the atom, obeying the pseudospin 

commutation relations [a+ , a_] = 2a2 , [a± , a2 ] = =fa±. The second term on the right­

hand side of Eq. (2.6) describes the interaction of the cavity mode with the injected 

laser field, the third describes spontaneous emission from the atom out the sides of 

the cavity, and the fourth describes loss through the cavity mirrors. 

The Jaynes-Cummings Hamiltonian (2. 7) defines the composite atom-cavity-mode 

system; the rest of the model is there to excite the system and provides the linewidths. 

The energy spectrum of the atom-cavity-mode system is defined by the eigenvalues 

of the Jaynes-Cummings Hamiltonian, with 

The corresponding eigenstates are 

-(l/2)nwo, 

n [ wo ( n - l / 2) + fog] , 

n [ Wo ( n - l / 2) - vn g] . 

jg) = IO)I-), 

(2.8) 
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In, u) (1//2)(In - 1)1+) + iln)I-)), (2 .9) 

In, l) (1/V2)(In - 1) I+) - ijn) 1-) ), 

where n = l, 2, . . .. Here I+) and I-) are the upper and lower atomic states, and 

jn) denotes the n photon Fock state of the field. States (2.9) have been referred 

to as dressed states [45). We will extensively use the dressed-state representation 

throughout this work. The one-photon transition frequencies (E1 ,u - Eg)/n = w0 + g 

and (E1 ,z - Eg)/n = w0 - g locate the peaks of the "vacuum" Rabi spectrum, which 

can be explained by both quantum-mechanical and semiclassical models. We will 

obtain spectra that show evidence of the multi-photon transitions which quantum 

mechanics is responsible for. 

We transform Eq. (2.6) to the interaction picture by defining p' = U pUt, where 

U = exp[-i(ata+&z/2)wLt]. We then obtain the master equation in a frame rotating 

at frequency WL 

p £p 

Before solving this master equation, let us see how the quantum-mechanical equations 

connect to the coupled harmonic oscillator model. From Eq. (2.10) the mean-value 

equations can be obtained, with 

d(a) 
dt = -( K: + i ~) (a) + g ( & - ) + £' 
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(2.11) 

For weak driving fields we may use the truncated basis IO) I-), IO) I+), I 1) I-), in 

which a= (IO)I-)) ((-1(11) and aza = -½ (IO)I-)) ((-1(11); then (aza) = -(a)/2 and 

the first two of Eqs. (2.11) reduce to Eqs. (2.4) with the correspondence X H (a), 

Y H (a_). Note that Eqs . (2.11) and (2.3) are also related, the latter following 

from the former after we factorize the averages of operator products. This is a good 

approximation for a many-atom system in which the quantum fluctuations are small, 

but not for a one-atom system where the quantum fluctuations are large [46). 

Now with respect to the recent experiments on "vacuum" Rabi splitting, the three 

sets of equations, (2.3), (2.4) and (2.11), have the following significance: Eqs. (2.4) 

model all the experiments [14, 37, 15) [the model based on linear dispersion theory [15] 

is the frequency-space version of Eqs. (2.4)]. For the experiments with many atoms 

[14, 15] the route to Eqs . (2.4) starts from Eqs. (2.3) rewritten as the many-atom 

version of the Maxwell Bloch equations 

d(a) 
dt 

d(J_) 
dt 

(2.12) 

where J+, J_, and Jz are collective operators describing a system of N atoms . For 
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weak driving fields we write (}z) = -N and the first two of Eqs. (2.12) reduce to 

Eqs. (2.4) with X +-+ (a), Y +-+ (J_)/ffe, g +-+ ffeg. For the experiment with one 

atom [37) the route to Eqs. (2.4) starts from Eqs. (2.11 ). Thus , the classical coupled 

oscillator model explains "vacuum" Rabi splitting as observed in these experiments 

so far, and at the level of the qualitative physics it does not distinguish between the 

QED and the semiclassical calculations. If, however, we consider the nonlinear regime 

( strong driving fields) the prediction of Eqs. (2.11) will disagree with that of Eqs. (2.3). 

The spectra calculated from the QED theory will not develop optical bistabili ty on 

the "vacuum" Rabi peaks as the semiclassical theory does. We demonstrate this in 

the following. 

Eqs. (2.11) do not form a closed set; in fact, they are part of an infinite set of 

equations. To obtain a closed set of equations we have to truncate the Fock-state 

basis. We truncated the Fock-state basis ( at n ~ 20) and solved the master equation 

in steady state by direct matrix inversion. The method is limited to relatively small 

photon numbers, but is adequate for making a comparison with the semiclassical 

results. Fig. 2.4 show the transmission spectrum of the QED calculation. The QED 

result is completely different from the bistable result obtained from the semiclassical 

theory. The absence of any evidence for bistability is not a surprise since there cannot 

be multiple solutions in a plot of the true mean photon number (In the semiclassical 

calculation, the fluctuations of the system have not been considered .). In fact the 

average over the two branches of solutions of the Maxwell-Bloch equations probably 
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lies close to the result of the QED calculation through most of the detuning range 

shown in Fig. 2.5, even very close to resonance where the upper branch of solutions 

is metastable [38]. The most notable difference in the QED result is the presence of 

additional resonances in between the "vacuum" Rabi peaks. These are multi-photon 

resonances caused by the absorption of two, three, or four photons at once. Fig. 2.6 

shows the transitions responsible for these resonances. The resonance frequencies can 

be calculated from Eqs. (2.8). They satisfy the condition (n = 1,2, ... ) 

nflWL,n = nwo(n - 1/2) ± n·vn,g + flWo/2 ⇒ WL ,n - Wo = ±g/yr,, (2.13) 

The formula WL,n - wo = ±g / fo matches the positions of the peaks in Fig. 2.4 very 

well. 

The one-photon resonances are the "vacuum" Rabi resonances that are mimicked 

by classical coupled harmonic oscillators. The higher resonances provide a clear sig­

nature of the quantum nature of the coupled atom and cavity mode. They cannot 

be reproduced by either classical or semiclassical coupled oscillator models. The po­

sitions of these resonances are determined by the level structure of the atom-cavity 

"molecule," a structure that can only be obtained by quantizing both the atom and 

the cavity mode. 

As mentioned above, the quantum-mechanical correspondance of bistability can­

not be evidenced in a plot of the mean photon number. Savage and Carmichael 

(47] have demonstrated that it may be evidenced by a bimodality in a plot of the 

time evolution for the probability distribution of the mean photon number. For a 
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saturation photon number nsat on the order of at least 1, they observed a distinctly 

bimodal distribution consistent with the semiclassical prediction of coexisting strong 

absorption, low photon number (unsaturated atom) , and weak absorption , high pho­

ton number (saturated atom) states. Of course, the two states identified with the two 

peaks in the photon number distribution are not strictly bistable at the level of quan­

tum noise. Bistability is a macroscopic phenomenon reached in the limit nsat ➔ oo. 

However , with increasing nsat, switching times become longer and the peaks of photon 

number distribution approaches to the semiclassical states. In the regime considered 

in this dissertation, the saturation photon number nsat is much smaller than unity. 

Thus, a bimodality cannot be seen in the probabilty distribution of the mean photon 

number; quantum fluctuations completely destroy the bistable behavior shown in the 

semiclassical results. 

Two final notes about Figure 2.5 are given here. First, on comparing Figs . 2.5( a) 

and 2.5(b) we see an incredible reduction in mean photon number in the QED result. 

The ratio g / K is rather extreme in the figure , but quite remarkable reductions also 

occur for more moderate ratios. Second, strong coupling conditions g >> K , 1 /2 are 

necessary for seeing multi-photon transitions clearly. 
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CHAPTER III 

COHERENT EXCITATION: MODULATION SPECTROSCOPY 

In the previous chapter we considered a coupled atom-cavity-mode system driven 

by a coherent field and studied the transmission spectra of such a system. We 

found that the semiclassical calculation exhibits bistable behavior and the quantum­

mechanical calculation shows completely different behavior - multi-photon transitions 

- under strong coupling conditions. Strong coupling conditions as extreme as those 

considered in the previous chapter, however, have not been realized in the current 

experiments at optical frequencies. The motivation of the study in this chapter is to 

observe the excited-state transition of the coupled system under the conditions that 

current experiments can realize. We study the spectroscopic response of the atom­

cavity-mode system to a cw coherent pump plus weak, frequency tunable modulation. 

We analyze a modulation spectroscopy scheme designed to reveal the first-to-second 

excited-state transition as proposed recently in a cavity QED experiment [21]. We 

perform both quantum-mechanical and semiclassical calculations of modulation spec­

tra using parameters which are very close to those realized in this experiment. Results 

of the QED and the semiclassical calculations are compared and those features that 

distinguish the QED calculation from the semiclassical calculation are identified and 

explained. Under extreme strong coupling conditions, analytic expressions for the 

spectra are obtained. 
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3.1 Modulation Spectroscopy Scheme 

We consider a coupled atom-cavity-mode system as before. But in this chapter 

the system we consider is driven by a weak, single sideband modulated optical field 

(pump field plus probe field) 

E(t) = [£ + £' exp(-ivt)] exp(-iwLt) + c.c., (3.1) 

where c.c. denotes the complex conjugate. The amplitude of the pump field is much 

larger than the amplitude of the probe field, £ » £', and the frequency of the pump 

field is tuned to the lower "vacuum" Rabi resonance WL = w0 - g. The strong pump 

field drives the coupled system up to the one of the first excited states, and then 

the weak probe field probes the transmission of the coupled system as a function of 

the modulation frequency v. Thus a fingerprint of the first-to-second excited-state 

transition is written on the modulation spectrum. 

We first describe the modulation spectroscopy scheme based on the QED theory, 

and then describe that based on the semiclassical theory. In the QED approach, our 

model system is described by the master equation (in a frame rotating at wL) 

p(t) = ,Cp(t) + ,C' p(t)' (3 .2) 

where ,Cp(t) is given by Eq. (2.10), and 

,C'p(t) = £' [atexp(-ivt) - aexp(i1;t), p(t)] (3.3) 

is due to the presence of the probe field. We write the density operator in the form 

p(t) = Pss + p'(t), ( 3.4) 
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where Pss satisfies 

Pss = LPss = 0. (3.5) 

From Eqs. (3.2), (3.4) and (3.5), we obtain 

(3.6) 

In the limit of very weak modulation, we can drop the term£' p'(t) and have 

p'(t) = £p'(t) + E'exp(-ivt)[at,Pss] + E'exp(ivt)[Pss,a]. (3.7) 

Since we only detect the transmitted field from the cavity with the same frequency 

as that of the input probe field, instead of solving Eq. (3. 7) we only need to solve the 

equation 

p'(t) = £p'(t) + E'exp(-ivt)[at, Pss]. (3.8) 

For fast computation, we consider a perturbation to the steady state which con­

tains all of the probe frequencies needed at once, i.e. we integrate exp( -ivt) with 

respect to the modulation frequency v and have 

p'(t) = £p'(t) + £'8(t)[at,pss], (3.9) 

Eq. (3.9) taken with the initial condition p'(O) = 0, is equivalent to the equation 

p'(t) = £p'(t), (3.10) 

with the initial condition 

(3.11) 



30 

The modulation spectrum of the transmitted cavity field is then given by the equation 

S(w) = I[: dtexp(iwt) (O,'(t){ , (3.12) 

where 

(a'(t)) = tr (ap'(t)) /£' (3.13) 

is the perturbation of the transmitted cavity field amplitude driven by £' , which can 

be calculated from Eqs. (3.10) and (3.11). 

Let us now describe the modulation spectroscopy scheme based on the semiclas­

sical theory. Our model system is described by the Maxwell-Bloch equations (in a 

frame rotating of WL) 

(a) -(K + i~)(a) + g(a_) + £ + E'exp(-ivt), 

-(K - i~)(at) + g(a+) + £ + E'exp(ivt), 

-(,/2 + i~)(a_) + g(a)(az), (3.14) 

(a.+) -(,/2 - i~)(a+) + g(at)(az), 

(&z) -,((az) + 1) - 2g((at)(a_) + (a)(a+)). 

Eqs. (3.14) can be written as the compact vector equation 

i = f(x) + £1exp(-ivt)e1 + £ 1exp(ivt)e2, (3.15) 
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with 

(a) 1 0 

(at) 0 1 

- (&_) - -x= e1 = 0 e2 = 0 (3.16) 

(&+) 0 0 

(&z) 0 0 

Let us write x in the form 

x = iss + i t, (3.17) 

where x ss satisfies 

(3.18) 

With Eqs. (3.17) and (3.18), Eq. (3.15) now reads as 

xt= 
( 

df ) -t ct ( · )- ct ( · )-
di X=X,, x +" exp -wt e1 +" exp wt e2 . (3.19) 

Here we have made a Taylor series expansion of /( Xss + xt) and kept only the first 

order term. This is because the perturbation from the steady state is very small due 

to very weak modulation. As mentioned in the· QED calculation, we only need one 

of the two frequency components; thus we only need to solve the equation 

xt= 
( 

d[ ) -t ct ( . )-dx .. _.. X + e, exp -wt e1. 
X-Xss 

(3.20) 
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We calculate the transmitted spectrum in the same way as in the QED approach. 

We integrate exp( -ivt) with respect to modulation frequency v and have 

(3.21) 

Eq. (3.21) is equivalent to the following equation 

x'= ( 
d f ) --, = M _., dx x x, 

x=xss 
(3.22) 

with initial condition x' ( 0) = £' e1 . Here we have defined the matrix 

-(ig+1':) 0 g 0 0 

0 ig - 1': 0 g 0 

M= g(az)ss 0 -(ig + , /2) 0 g( a) ss (3.23) 

0 g(az)ss 0 ig - ,/2 g(a);s 

-2g(a_);s -2g(a_)ss -2g(a);s -2g(a)ss ' 
From the solution of Eq. (3.22), the modulation spectrum of the transmitted cavity 

field can be calculated using Eq. (3.12). 

3.2 Numerical Results for Modulation Spectra 

Following the schemes we described in the last section, we have calculated mod-

ulation spectra numerically from both the QED and the semiclassical theories . The 
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parameters we have used here are very close to those realized in current experiments . 

We first show the result of the modulation spectrum calculated from the QED th -

ory. Fig. 3.1 shows how the spectrum changes as the intensity of the pump field is 

changed. For a very weak pump field, the spectrum exhibits a two-peaked structure 

corresponding to the familiar "vacuum" Rabi splitting. With increasing intensity of 

the pump field , Figs. 3.l(a) and 3.l(b) show that the intensity of the transmitted 

field at the lower "vacuum" Rabi resonance w - WL = 0 becomes lower than that at 

the upper "vacuum" Rabi resonance w - WL = 2g , and a new peak at the frequency 

w - WL = (2 - "2,)g appears in between the "vacuum" Rabi peaks. The new reso­

nance corresponds to the transition to the first excited state from the second excited 

states of the Jaynes-Cummings Hamiltonian (12 , l) ➔ 11, l) ). These features are due 

to the absorption of the pump field tuned to the lower "vacuum" Rabi resonanc . 

These resonances are illustrated in Fig. 3.2. In Figs. 3.l(c) , 3.l(d) and 3.l(e), as the 

intensity of the pump field is increased further , the intensity of the transmitted cavity 

field at frequency w - WL = (2 - "2,)g increases and a complicated structure appears 

around the lower "vacuum" Rabi resonance which comes from the pump-probe spec-

troscopy of a two-state transition , as done originally by Mallow [48]. ote that a 

doublet appears around the upper "vacuum' Rabi resonance. This is due to dynamic 

Stark splitting (shown in Fig. 3.2). When extremely strong coupling conditions are 

approached, the peaks in the spectrum are well separated compared to their widths 

(shown in Figs. 3.3 and 3.4). Fig. 3.4 shows us the clear structure around the lower 
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Figure 3.1. The modulation spectrum calculated from the QED theory for g / K = 12, 
2g/, = 5.6: (a) £/K = 0.5, (b) £/K = 1.0, (c) £/K = 1.5, (d) £/K = 2.0, (e) £/K = 4.0. 
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Figure 3.2. Energy-level diagram for an atom-cavity-mode system. The dashed lines 
show the dynamic Stark splitting induced by a laser tuned to the lower "vacuum" 
Rabi resonance. 
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Figure 3.3. The modulation spectrum calculated from the QED theory for g / K = 25, 
, / 2K = 1, and £ / K = 5. 
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Figure 3.4. The modulation spectrum calculated from the QED theory for g / K = 
100, 1 /2K = 1, and £ / K = 5. The spectrum around the lower "vacuum" Rabi 
resonance is blown up - the two curves (i) and (ii) in the upper right corner show the 
real and imaginary parts of the amplitude of the transmitted cavity field , respectively. 
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"vacuum" Rabi resonance, the doublet around the upper "vacuum" Rabi resonance, 

and the new resonance in between the "vacuum" Rabi resonance due to the first-

to-second excited-state transition. The spectrum around the lower "vacuum" Rabi 

resonance is blown up - the two curves in the upper right corner show the real and 

imaginary parts of the amplitude of the transmitted cavity field as a function of probe 

frequency, respectively. They exhibit the familiar structures shown in Mallow's paper 

[48]. 

For a very strong pump field, the spectrum has a one-peaked structure, with the 

peak located at the resonance frequency w0 of the cavity mode. This corresponds to 

the spectroscopic response of the empty cavity to a weak probe field. 

We now show the results of the modulation spectrum calculated from the semi­

classical theory. For comparison, Fig. 3.5 is plotted with the same parameters as 

Fig. 3.1. For a very weak pump field , the same two-peaked "vacuum" Rabi spectrum 

is obtained. But the spectrum changes dramatically with increasing the intensity of 

the pump field. Fig. 3.5 shows that the height of the left peak in the spectrum located 

around the lower "vacuum" Rabi resonance is always higher than that of the right 

peak around the upper "vacuum" Rabi resonance, and the new resonance in between 

the "vacuum" Rabi resonances never shows up. It also shows that the position of 

the peaks is moving as the intensity of the pump field is increased. This is due to 

the dispersion which comes from that the presence of the atom inside the cavity is 

accounted for by a nonlinear susceptibility. For a very strong pump field , the same 
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Figure 3.5. The modulation spectrum calculated from the semiclassical theory for 
g/K = 12, 2g/, = 5.6: (a) £/K = 0.5 , (b) E/K = 1.0, (c) E/K = 1.5, (d) E/K = 2.0, 
(e) £/ K = 4.0. 
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one-peaked spectrum is obtained. 

Those features that distinguish the QED calculation from the semiclassical calcula­

tion provide a clear signature of the quantum nature of the coupled atom-cavity-mode 

system. In the next two sections, we will show the analytical calculations from both 

the QED and the semiclassical theories. In general one can not calculate these modu­

lation spectra analytically. Under extremely strong coupling conditions, however, an 

analytical calculation is possible. 

3.3 Analytical Results of the QED Calculation 

To perform an analytical calculation, we consider very weak excitation and the 

extremely strong coupling condition g » K, 1 /2. This condition allows us to solve 

the master equation (3.10) using the secular approximation [45]. We make the trans­

formation 

p = exp(iHt/1i)p' exp(-iHt /1i) , (3.24) 

where 

(3.25) 

and drop all the oscillatory terms in the transformed master equation ( secular ap­

proximation). In the limit of very weak excitation we may use the truncated five 

dressed-state basis lg), 11, l), 11, u), 12, l), 12, u). In general there should be twenty­

five matrix elements of p for five-state basis. But here many of them are zero. The 
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non-zero matrix elements of p satisfy the following equations: 

(3 .26) 

Pl l -ap-1,l·,g + 2iDp-g, ';g 

where 

(3 .27) 

pg = (gjpjg), Pi,z = (1, ljpjl, l), PI,l;g = (1, llplg), Pg;l,l = (glpll, l), and we have used 

pg + Pl,l = O; 

(3.28) 

where P1,u;g = (1, ulplg); 

(3 .29) 

where /31 = ½(3K + ,/2), /32 = 2K + ,/2, P2,rJ;g = (2, 7JIPl9), P2,rJ;l,l (2, 7JIPl1, l), 

'T/ = u, l. We Fourier transform Eqs. (3.26) - (3.29) and obtain the following solutions 

by using Eqs. (3.24) and (3.25): 

P~,l;g(0)[2(a2 + !"22) - v2 
- 3iav] + 2iDp~(O)(a - iv) 

(a - iv)[2(a2 + 2D2 ) - v2 - 3iav] 

P~,u;g(O) 
[a - i(v - 2g)]' 

-inp;,rJ;g(O) + P;,rJ;l,l(0)[/31 + i(v - V2,71;1,l)] 

D2 + [/32 + i(v - V2,rJ;1,l)][f31 + i(v - V2,11;1,l)]' 

(3 .30) 
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where 1J = u, l, V2 ,l;l ,l = (2 - 0,)g , v2,u;l,l = (2 + 0,)g, and 

i(j) = g; 1, l; 1, u; 2, l; 2, u. (3.31) 

Here p~,j(O) may be calculated in terms of the steady state solution, Pss , of the master 

equation (3.10). As we know, under strong coupling conditions the coupled atom­

cavity-mode system behaves like a two-state system [49]. Thus , there are only four 

non-zero matrix elements of the steady state density operator Pss 

(3.32) 

where ( = 2(a2 + 202
). With Eqs. (3.32) and (3.11) , we find 

p~(O) = -.Jian/ (, P~ ,l;g(O) = iV2a2 
/ ( , 

P;,l;l ,l(O) (1 + V2)n2 
/( , P;,l ;g(O) = i(l + v'2)a0/(, 

P~,u;9 (0) -iV2(a2 + 0 2
)/(, P; ,u;9 (0) = i(l - V2)a0/( , 

P; ,u;l ,l(O) (1 - V2)n2 
/ (. (3.33) 

Now the perturbation of the transmitted cavity field amplitude may be expressed as 

(a'(t)) tr( ap')/ £' 

~P~ ,u;g(t) - ~P~,l;g(t) + G + ~) P; ,l;i.i{t) + G- ~) P;,u;l,i(t). 

(3.34) 

From Eq. (3 .12) the modulation spectrum is then written as 
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Using Eqs. (3.30), (3.33) and (3.35), we calculate S(v). Extremely strong coupling 

conditions assume that the peaks in the spectrum may be well separated. Thus, we 

have 

S(v = 0) 
1 2 a6 
2 IF1,1;g(v = O)I = 4(a2 + 2iV)4' 

S(v = 2g) 
1 2 ( a2 + !"12)2 
2 IF1,u;g(v = 2g)j = 4a2(a2 + 2iV)2' (3.36) 

S(v = V2 1-1 1) 
'' ' (

1 1 )
2 

F _ 2 _ (1 + v12) 4D4 (/J1 + a)2 

2 + v12 I 2,1;1,1(v - V2,1;1,1)I - 16(a2 + 2n2)2(n2 + fiifi2)2, 

These equations clearly show that a new peak appears in between the "vacuum" Rabi 

resonances, located at frequency v2,1;i ,1, and also that the peak located at frequency 

v2,u;l,l can hardly be seen because of the relatively small value of S(v = v2 ,u;i,t)-

The ratio of the intensity of the transmitted cavity field at the lower "vacuum" Rabi 

resonance to that at the upper "vacuum" Rabi resonance is 

(3.37) 

Eq. (3.37) indicates that the intensity of the transmitted cavity field at the lower 

"vacuum" Rabi resonance is lower than that at the upper "vacuum' Rabi resonance 

when the pump field is turned on. This agrees with Fig. 3.3. 
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3.4 Analytical Results of the Semiclassical Calculation 

We consider the extremely strong coupling conditions g » K, 1 /2, as described 

in the last section. Under these conditions we may obtain the solution to Eq. (3.22) 

by solving the eigenvalue problem 

Mx'=>.x' (3.38) 

or 

IM - >.II= 0. (3.39) 

The strong coupling conditions allow us to calculate the eigenvalues of Eq. (3.39) 

with the following two steps. We first neglect the K and , terms (i.e. set K = 1 = 0) 

in M and calculate the eigenvalue i We then include the K and , terms in M and 

calculate the correction )..' to the eigenvalue .t Thus, the eigenvalue ).. in Eq. (3 .38) 

may be written as 

(3.40) 

where ~ and )..' determine the location and linewidth of the peaks in the modulation 

spectrum, respectively. 

Let us now calculate i Setting K = 1 = 0 in M, we replace Eq. (3.39) by 

IM - ~II= 0, (3.41) 
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where 

-ig 0 g 0 0 

0 ig 0 g 0 

M g(az)ss 0 -ig 0 g( a) ss . (3.42) 

0 g(az)ss 0 ig g(a);s 

-2g(a-);s -2g(a_)ss -2g(a);s -2g(a)ss 0 

Here the steady state solutions (a)ss, (&_)ss and (az)ss to Eqs. (2.3) are 

with q = l(a)ssl• Substituting Eqs. (3.42) and (3.43) into Eq. (3.41), we then solve 

Eq. (3.41) and have 

~1 0, 

~2,3 [ l 
1/2 

=t=i 1 + 2q2 + 1/(1 + 2q2
) - 2J1 + q4 g, (3.44) 

For weak excitation, Eqs. (3.44) read as 

~1 = 0, ~2 ,3 = =t= i ~q2g, ~4 ,5 = =t=2ig. (3.45) 

When q ➔ 0, ~1,2,3 = 0 and ~4,5 = =t=2ig. These eigenvalues correspond to the familiar 

"vacuum" Rabi resonances. For strong excitation, Eqs. (3.44) read as 

(3.46) 
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These eigenvalues describe the atomic inversion, single cavity mode and atomic po-

larization. The analytical calculation agrees with the exact calculation shown in 

Fig. 3.6(b) very well. 

Let us now calculate the correction )i.' to the eigenvalue >.. Note that when we 

calculate>. in the above, we set "' = 1 = 0. Now we have to consider the contribution 

from the small non-zero"' and, terms to calculate the correction>.'. Thus, Eqs. (3.43) 

are replaced by 

(a)ss £(,/2 + ig)(l + 2q2)/w, (&_)ss = -g£/w, 

(3.4 7) 

where 

(3.48) 

Substituting Eqs. (3.47), (3.48) and (3.23) into Eq. (3.39), and then neglecting the 

second and higher order terms in A', "' and , , we find 

A/B, (3.49) 

B 

Here w0 , w1 , and w2 have been defined as 

(3.50) 
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Figure 3.6. Eigenvalues of Eq. (3.22) plotted as a function of (a)ss for g/ K = 12, 
2g / 1 = 5.6: (a) real part of the eigenvalues, (b) imaginary part of the eigenvalues. 
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Note that Eq. (3.49) is invalid in the limit of very weak excitation for i = 1, 2, 3 since 

in this limit ~2,3 ➔ ~1 = 0 ( see Fig. 3.6(b)). 

In this case, we need to keep all of the lowest dominant terms in ~, )/, K and , in 

Eq. (3.39). We then find 

(3.51) 

According to Eqs. (3.49), ,\~ and ,\~ are obtained as 

(3.52) 

From Eqs. (3.45), (3.51) and (3 .52), we have the eigenvalues in the limit of weak 

excitation, 

(3.53) 

To make a comparison with the QED calculation, we will construct the modulation 

spectrum in the limit of weak excitation. Let us write x in the form 

5 

x' = LYiexp(Ait), (3.54) 
i=l 

where Ai is given in Eqs. (3.53), and Yi is the coefficient vector. Substituting Eq. (3.54) 

into Eq. (3.22), we calculate Yi· We are only interested in the amplitude of the 

transmitted cavity field 

5 

(a'(t)) = I: aiexp(\t). (3.55) 
i=l 

Here the expression of ai is 

(1 + p3/ z*)/p1 + (1 + p3/p2)/ z 
2 [ ( 1 / Pi - 1 / p~) / P1 + ( 1 + P1 / P2) ( 1 / z* + l / z)] ' 
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(3.56) 

1/2, a5 = 0, 

where 

(3.57) 

z* is the conjugate of z. 

The modulation spectrum may now be calculated by substituting Eq. (3.55) into 

Eq. (3.12). It takes the form 

S(v) = a1 a2 a3 a4 

I 1

2 

iv - 1 + i(v - v1Jq2g) - a+ i(v + v1Jq2g) - a+ i(v - 2g) - a 
(3.58) 

In the limit of weak excitation ( q -+ 0), Eq. (3.58) describes a two-peaked spectrum, 

with the left peak slightly shifted from the position of the lower "vacuum" Rabi reso­

nance ( the shift depends on q2 g) and the right peak located at the upper "vacuum" 

Rabi resonance 2g. There is no evidence of the new peak in between the vacuum 

Rabi peaks. From Eq. (3.58) we calculate the ratio of the intensity of the left peak 

to that of the right peak as a function of q. We find the ratio is always larger than 

unity as q is increased which agrees with Fig. 3.5. 

Before we close this section, we give the modulation spectrum in the limit of very 
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strong excitation. From Eqs. (3.49), we have 

(3.59) 

Eqs. (3.51 ), (3.52) and (3.59) agree with the curves shown in Fig. 3.6( a) very well. 

Combining Eqs. (3.59) and (3.46), we obtain 

From these equations, the amplitude of the transmitted cavity field may be con­

structed as 

(a(t)) = exp[-(ig + K)t]. (3 .61) 

Thus, the corresponding modulation spectrum is given by 

(3.62) 

Eq. (3.62) describes a one-peaked spectrum with the location at g and a linewidth of 

K. The same result can be obtained from the QED theory. 
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CHAPTER IV 

INCOHERENT EXCITATION: SPECTROSCOPY 

In the previous two chapters we have studied the coherent excitation of an 

atom-cavity-mode system. This chapter concerns incoherent excitation of the sys­

tem. We calculate scattered, transmitted and reflected spectra for this system driven 

by broad-band chaotic light. We begin with an analytical calculation in the secular 

approximation. This gives useful expressions for linewidths and transition ampli­

tudes. But the secular approximation can be quite inaccurate for practical parameter 

values. We therefore also calculate the spectra numerically, without using the secular 

approximation. The results of the exact numerical calculations and the analytical 

calculations are compared. Prospects for experiments are discussed. 

4.1 Matrix Element Equations in the Secular Approximation 

We consider a coupled atom-cavity-mode system. The atom interacts with a 

field f a(t) entering through the side of the cavity, and the cavity mode interacts with 

the fields I\(t) and ft(t) entering through two partially transmitting mirrors. We 

model the fields by quantized white noise; fa(t) and t(t) have nonzero intensities 

that represent sources of broad-band chaotic light , and ft ( t) is a vacuum field. The 

system is depicted in Figure 4.1. The nonvanishing field correlation functions are 
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Figure 4.1. Schematic diagram of a single atom in a cavity driven by incoherent 
fields. 
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(r!(t)L(t')) ,M8(t-t'), 

(fa(t)f!(t')) ,(M + 1)8(t - t'), 

(r!(t)ri(t')) 2KiN 8( t - t'), (4 .1) 

(ri(t)r!(t')) 2Ki(N + 1)8(t - t'), 

(rt(t)r!(t')) 2KtD(t - t'), 

where r a(t), fi(t), and I't(t) have photon flux units,, is the cavity-inhibited linewidth 

(full-width at half-maximum) of the atom, and 2( Ki+ Kt) is the linewidth of the cavity 

mode. The intensities of the driving fields are determined by the parameters M and 

N; 1 M is the photon flux per atomic absorption cross-section for the field r a ( t) , 

and 2KiN is the photon flux coupled into the cavity mode from the field fi(t) . The 

white noise assumption is an approximation. In practice the spectra we calculate hold 

for driving-field bandwidths that are much greater than the widths of the computed 

spectra. 

Our model system is described by the master equation 

p (1/in) [irJc,P] + (,/2)(M + 1) (2a_pa+ - a+a_p- pa+&-) 

+(, /2)M(2a+pa_ - a_a+P - pa_a+) 

+[Ki(N + 1) + Kt](2apat - a tap - pat a) 

+KiN(2atpa - aatp - paat) , (4.2) 

where fIJc has been defined in Eq. (2. 7). We consider extremely strong coupling 
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conditions and make the transformation 

p = exp(iH1ct/n)pexp(-iH1ct/Ji) . (4.3) 

We then drop all oscillatory terms in the transformed master equation using the sec­

ular approximation [45]. Since we drop terms oscillating at frequencies ±2( vnTI -

-jn)g, this may not be a good approximation, even at moderate excitation levels. 

Nevertheless, it is useful to begin by obtaining analytical results; we will assess the 

accuracy of the secular approximation later on. In the secular approximation the 

diagonal matrix elements of p satisfy the rate equations 

( 4.4) 

Pn -2(,n,n-1 + /n,n+dPn + 2,n-1,n Pn-1 + 2,n+i,n Pn+i, n = 2,3, ... 

where p9 = (glplg) and Pn = (n, llpln, l) = (n, ulpln, u); the transition rates are 

19,l (, /2)M + KiN, 

11,g (,/2)(M + 1) + Ki(N + 1) + Kt, (4 .5) 

/n,n+l (,/4)M + (1,,i/2)N(2n + 1) , n = 1, 2, ... , 

/n,n-1 (,/4)(M + 1) + [(x:i/2)(N + 1) + (x:t/2)](2n - 1), n = 2,3, .... 

Note the symmetry between states labelled by u and by l which leads us to omit 

these labels on the diagonal matrix elements and transition rates. We will retain 

the u, l labels on the off-diagonal matrix elements, however, since the off-di agonal 
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matrix elements of p are replaced by matrix elements of correlation functions when 

we calculate spectra, and it is helpful if the correlation functions with different u, /­

labels are distinguished. Thus, we write the equations of motion for off-diagonal 

matrix elements as 

P2,ry;l,< (4.6) 

n = 2,3, .... 

Here PI ,ry;g = (1, 77lfilg), Pn+I,ry;n,t = (n + 1, 77lfiln, 0, and 77 and ~ are either u or l. 

Under the transformation ( 4.3) -the matrix elements of p are given by 

Pn = Pn, (4.7) 

and 

(4.8) 

where Ery (Ee)= +1, -1 for 77 (0 = u, l. 

4.2 Steady-State Solutions 

Because of the symmetry between states carrying the labels u and l we can add 

the populations (n, ujpjn, u) = Pn and (n , llpln, l) = Pn for n = l, 2, ... , so that Eqs. 

( 4.4) describe a one-dimensional array of states with transitions between neighboring 
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states. Such a configuration comes to a steady state in detailed balance [50]. We have 

(2,g,1 I tl,g) (pg) ss' 

2(Pn+i)ss n = 1, 2, .... (4.9) 

which gives the steady-state populations 

(4.10) 

with 
00 

2 L)Pn)ss + (pg)ss = 1. ( 4.11) 
n=l 

When Kt = 0 and M = N (all reservoirs at the same temperature) we obtain the 

expected thermal equilibrium distribution: 

1 ( N )n 
(Pn)ss= 1+2N l+N ' n = 1,2, .... (4.12) 

Note that if N is the mean thermal photon number at frequency w0 and tempera-

ture T, then N/(1 + N) = exp[-1iw0 /kBT]; also, the normalization obtained from 

Eq. ( 4.11) accounts for the fact that there are two states ( In, u) and In, l)) with en­

ergy En - E9 ~ n1iw0 , n = 1, 2, .... (The master equation ( 4.2) does not include the 

corrections needed to reach the exact thermal equilibrium, with the dipole interaction 

energy included - En - E9 = n1iw0 ± vn,1ig [51].) 

We will be interested primarily in conditions with either Mor N set to zero. Then 

the connection with thermal equilibrium holds in the following limiting cases: When 

M = 0 only the cavity is illuminated. Then, if Ki(N + 1) +Kt» ,/2 we have 

1 +Kt/Ki 
(pg)ss = l+Kt/Ki+2N' 
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n = 1,2, .... ( 4.13) 

This is the thermal equilibrium distribution (4.12) with N replaced by N/(1 +Ki/Kt)­

When N = 0 only the atom is illuminated. Then, if (,/2)(M + 1) » Ki+ Kt we 

recover the distribution ( 4.12) with N replaced by M. 

For general parameter values the distribution ( 4.10) is not exactly a thermal equi-

librium distribution. It is similar, however; (p9 )ss is always the largest probability, 

with (Pn)ss falling off monotonically with increasing n. Of course, in the secular ap­

proximation the off-diagonal matrix elements of pare all zero in steady state. Without 

the secular approximation they are not; we will see the consequences of this fact later 

on. 

4.3 Spectra 

In this section we calculate three spectra in the secula.r approximation: the spec-

trum of dipole scattering from the atom, the spectrum of the light transmitted by the 

cavity, and for the case where the cavity mode is driven, the spectrum of the light 

reflected by the cavitv. 

4.3.1 Spectrum of Atomic Dipole Scattering 

The spectrum of dipole scattering from the atom is given by the Fourier transform 

of the autocorrelation function of the atomic dipole operator [52]: 

(4.14) 



58 

where the normalization is such that the integral of Pa ( w) over all frequencies gives 

the probability for the atom to be in its excited state. In the secular approximation 

the dipole correlation function may be expanded in the dressed-state basis as 

( 4.15) 

Here 'T/ and~ are either ·u or l, and S9 TJ = jg)(l, 'T/I, SfrJ = In, e)(n + 1, 'T/I, n = l, 2, .... 

In general, nondiagonal terms (SJT/(0)5911 ,(T))ss and (S?J(O)Sf,TJ,(T))ss also appear in 

the expansion, but in the secular approximation these are all zero. 

Now according to the quantum regression theorem [53], the correlation functions 

on the right-hand side of Eq. ( 4.15) satisfy the same equations of motion as the off­

diagonal matrix elements of p, with the initial conditions (SJ
11
(0)S9TJ(O))ss = (p1 )ss, 

A t A 

(S?11 (0)St(O))ss = (Pn+i)ss, n = l, 2, .... Thus, from Eqs. (4.6), (4.7) and (4.8), we 

have 

n = l, 2, . . . ,(4.16) 

where 

(3 ,1,g/2 + ,1,2 + fg,1, 

,2,1 + /2,3 + ,1,2 + 11,g /2, ( 4.17) 

tn+l,n + tn+1,n+2 + tn,n+l + tn,n-1, n = 2,3, .... 
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The spectrum is then given by a sum of Lorentzians: 

00 

+ I:(Pn+t)ss(l/4) [L~u(w) + Lu(w) + Lfu(w) + L~i(w)] , (4.18) 

with 

and 

n=l 

(3 /1r 
L9 u ( w) = (3 2 + ( )2, w-w0 -g 

L1u(w) 

a~+(w-w0 -8;;,g)2 ' 

O'.n/7r 

n = 1, 2, ... , 

where we have defined 

(3 /1r 
Lgt(w) = (32 + (w - wo + g)2 ' 

8; = Vn+! ± fo. 

( 4.19) 

( 4.20) 

( 4.21) 

The first two Lorentzians in Eq. ( 4.18) give the "vacuum" Rabi peaks. They are 

produced by transitions to the ground state from the first excited states. In addition, 

for each of the higher excited states there are four Lorentzians produced by transitions 

between excited states - {In+ 1, u) or In+ 1, l)} ➔ {In, u) or In, l), for n = 1, 2, . ... 

4.3.2 Spectrum of Light Transmitted by the Cavity 

The light transmitted by the cavity mirrors is described by the quantized fields 

Et(t) = ft(tR) + Aa(tR) , ( 4.22) 
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where Er(t) and Et(t) have photon flux units, and tR denotes the retarded time. If 

the intensity of the light driving the cavity is zero (N = 0) these fields have the same 

spectrum. If it is not, the spectra are different; then we refer to Et(t) and Er(t) as the 

transmitted and reflected fields, respectively. 

The spectrum of the transmitted field is given by the Fourier transform of the 

autocorrelation function for the field amplitude: 

P, (w) = (2K,t1 (1/1r )Re 100 

(f,t (0)£, ( r)) 8S exp ( iwr) dr 

(l/1r )Re 100 

(a1 (O)<l( r ))ss exp( iwr )dr, ( 4.23) 

where the integral of Pt(w) over all frequencies gives the mean number of photons 

in the cavity. The vacuum field I't ( tR) does not contribute because the operators in 

Eq. ( 4.23) appear in normal order. We follow the calculational procedure that gave 

the spectrum of dipole scattering and, in the secular approximation, expand the field 

correlation function as 

( a 1(o)a( r)) ss = ~ D SJ.(o)S •• ( r) )ss + ~ f L c;,e(S;J (O)S;.( r)) ss' 

rJ n=I rJ,{ 

( 4.24) 

where 

n = 1,2, . . . , ( 4.25) 

with ErJ(Ee) = +1,-1 for 11(0 = u,l. Then, using Eqs. (4.16) we obtain a spectrum 

similar to Eq. ( 4.18): 

00 

n=I 

( 4.26) 
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The only difference is the appearance of the constants c;,e, which changes the relative 

heights of the spectral peaks . 

4.3.3 Spectrum of Light Reflected by the Cavity 

The spectrum of the reflected field is given by 

Pr(w) = (2K;J-1 (1/1r )Ref " ([r(0)1 Er( T ))ss exp ( iwr) dr, ( 4.27) 

where Er(t) = I\(tR)+Aa(tR) [the first of Eqs. (4.22)). Since I\(t) is not a vacuum 

field this spectrum is given by the sum four terms: The driving field I\ ( t) contributes 

the broad-band (white) background 

(2K;J-1 (1/1r)Re f " (f'j(O)f',(r))ss exp (iwr)dr = N, ( 4.28) 

the normalization gives units of photon number per unit bandwidth. To this back­

ground is added the transmitted spectrum Pt(w) and two interference terms given by 

Fourier transforms of the correlation functions [54] 

N ( [at ( o) , a ( T)]) ss T<O 

(~t1 (at(o)I\(T))ss = (l/2)N([at(o) , a(T)])ss T=O ( 4.29) 

0 T>O 

and 

0 T<O 

(~t1 (I'1(0)<1(T))ss = (1/2)N([at(o), a(T)])ss T=O ( 4.30) 

N ([a t(o) , a( T)]) T > 0. 
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One part of the commutator on the right-hand side of Eqs. ( 4.29) and ( 4.30) con­

tributes N Pt(w) - thus , altogether, we add (N + l)Pt(w) to the background spec-

trum ( 4.28). The other piece of the commutator involves 

(ll(r)ll1(0))ss = ~ L(Sg"(r)SJ"(O))ss +if L c;,e(Sf"(r)S;J(O))ss, 
TJ n=1 TJ,e 

( 4.31) 

which we have expanded, once again, in the secular approximation. Using the quan-

tum regression theorem, (S9TJ(T)SJTJ(O))ss and (Sf'f/(T)SlJ(O))ss are given by Eqs. (4.16), 

with (p1)ss and (Pn+1)ss replaced by (p9 )ss and (Pn)ss, respectively. Then , putting the 

four terms together, the spectrum of the reflected light is given by 

00 

n=1 

where 

n = 2,3, .... ( 4.33) 

Note that Eq. ( 4.32) reduces to Eq. ( 4.26) when N = 0. 

4.4 Discussion 

Examples of the spectra given by Eqs. (4.18), (4.26), and (4.32) are plotted as 

the dashed curves in Figs. 4.2 and 4.3. In Fig. 4.2 we plot spectra for the driven 

cavity, with M = 0 and N = 5; in Fig. 4.3 we plot spectra for the driven atom, 
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Figure 4.2. Spectra for driving field intensities N = 5 and M = 0, and 2g / 1 = 10, 
2K/1 = 0.1: (a) The spectrum of atomic dipole scattering, (b) the spectrum of the 
light transmitted by the cavity, and ( c) the spectrum of the light reflected by the 
cavity. The dashed curves are plotted from Eqs. (4.18), (4.26): and (4.32) which were 
derived using the secular approximation; the solid curves were cakulated numerically 
without the use of the secular approximation. 
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Figure 4.3. Spectra for driving field intensities N = 0 and M = 0.5, and 2g / 1 = 10, 
2K / 1 = 0.1: (a) The spectrum of atomic dipole scattering, and (b) the spectrum of 
the light transmitted by the cavity. The dashed curves are plotted from Eqs. ( 4.18), 
( 4.26), and ( 4.32) which were derived using the secular approximation; the solid curves 
were calculated numerically without the use of the secular approximation. 
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with N = 0 and M = 0.5. The ratio of the atomic and cavity linewidths is 10 : 1, 

and we have chosen intensities (N = 5 and M = 0.5) in the same ratio so that the 

steady-state populations ( 4.10) are similar for the driven cavity and the driven atom. 

All of the dashed curves in Figs. 4.2 and 4.3 show evidence of the excited state 

Jaynes-Cummings resonances. In addition to the prominent "vacuum" Rabi peaks at 

w-w0 = ±g, there are peaks at w-w0 = ±( v/2+ l)g and w-w0 = ±( v/2- l)g caused 

by transitions between the first and second excited states of the Jaynes-Cummings 

Hamiltonian. There are two important points about linewidths and transition ampli­

tudes that affect these spectra. First, for intensities N > 1 and M > 1, the widths 

an calculated from Eqs. ( 4.17) and ( 4.5) are significantly larger than the radiative 

widths of the atom and the cavity mode. The larger widths require a larger value of 

g to resolve the structure in the spectra. Thus , the observation of J aynes-Cummings 

resonances using excitation by incoherent light becomes more and more impractical 

as the intensity of the light is raised in order to reach higher and higher excited states. 

Since the width contributed to the excited states by the cavity mode also increases in 

proportion to the principle quantum number n, the cavity width is more damaging in 

this respect than the atomic width. It is for this reason that we have chosen a cavity 

width ten times smaller than the atomic width for the plots in Figs. 4.2 and 4.3. The 

second observation concerns the comparison between the transition amplitudes asso­

ciated with emission from the atom - the scattered spectrum, and from the cavity 



- the transmitted spectrum. These are 

(n,~18--ln + l,77) 

(n, ~laln + 1, 77) 

-(1 /2)( itd, 

(1/2)( vn + EeE77\in+l) . 
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(4.34) 

The squares of these amplitudes , multiplied by the steady-state population (Pn+I )ss, 

determine the coefficients of the Lorentzians in the spectra ( 4.18) and ( 4.26). We 

see that for the atomic dipole scattering the strength of the In + 1, u) ➔ In, u) and 

In + 1, l) ➔ In, l) transitions is the same as the strength of the In + 1, u) ➔ In, l) 

and In+ 1, l) ➔ In, u) transitions . But for the light transmitted by the cavity, the 

In+ l,u) ➔ ln,u) and In+ l,l) ➔ ln,l) transitions are stronger (tet 71 = +l) than 

the In+ 1, u) ➔ In, l) and In+ 1, l) ➔ In, u) transitions (t(E77 = -1). This is reflected 

in the comparison between Figs. 4.2( a) and 4.3( a) ( atomic dipole scattering) and 

Figs. 4.2(b) and 4.3(b) (light transmitted by the cavity); in Figs . 4.2(b) and 4.3(b) 

the peaks that appear in between the "vacuum" Rabi peaks are stronger than those 

that appear outside the "vacuum" Rabi peaks , while in Figs. 4.2(a) and 4.3(a) they 

are not. Adding to this the fact that the amplitudes (n, llaln+l, l) and (n, uialn+l, u) 

are larger than theamplitudes(n,llo--ln+l,l) and (n ulo--ln+l,u), we would predict 

that the most prominent new peaks would be seen between the "vacuum" Rabi peaks, 

at frequencies w - w0 = ±( v'2 - l)g , in the spectrum of the light transmitted by the 

cavity. This is what we find in Figs. 4.2 and 4.3. 

For the parameters used in Figs. 4.2 and 4.3 the spectral peaks caused by tran­

sitions from the second excited state to the first appear at 2(w - w0 )/ , = ±(J2 -
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1)(2g/,) = ±4.14 and 2(w - wo)/, = ±( v12 + 1)(2g/,) = ±24.14. The "vacuum" 

Rabi peaks appear at 2(w - w0 )/, = ±(2g/,) = ±10.00. Our use of the secular 

approximation assumes that all peaks are well separated compared to their widths. 

To check the validity of this approximation we can calculate the peak widths from 

Eqs. ( 4.17) and ( 4.5). The half-width of the "vacuum" Rabi peaks is given by 

/3 = (,/4)(4M + 1) + (Ki/2)(6N + 1) + Kt/2, ( 4.35) 

from which we obtain 2/3 /, = 1.55 for Fig. 4.2 and 2/3, = 1.30 for Fig. 4.3. The 

half-width a 1 for transitions from the second excited state to the first is given by 

( 4.36) 

from which we obtain 2ai/, = 2.2 and 2ai/, = 2.7 for Figs. 4.2 and 4.3, respectively. 

From these numbers, and from the figures themselves, it appears that the "vacuum" 

Rabi peaks and the two peaks falling between them are probably not sufficiently 

separated to justify the use of the secular approximation. For the smaller unresolved 

peaks caused by higher excited state transitions the situation is even worse; these 

transitions produce peaks that are both closer together and have larger widths. We 

have therefore also calculated the spectra numerically without making the secular 

approximation. These results are plotted as solid lines in Figs. 4.2 and 4.3. The 

differences between the solid and dashed lines are large near the center of the spectrum 

where the peaks are closest together and we would expect the secular approximation 

to be worst. It is good, however , to see that the additional resonances become more 
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prominent, not less, when the secular approximation is removed . The spectra of th 

light transmitted by the cavity [Figs. 4.2(b) and 4.3(b )] show substantial peaks in 

between the "vacuum" Rabi peaks, and corresponding absorption dips are present in 

the reflected spectrum [Fig. 4.3( c)). 

To check that , for large enough g, the spectra obtained with the secular ap­

proximation approach those obtained without this approximation, we plot both for 

2g / 1 = 300 in Fig. 4.4. On the whole the agreement is very good; although , near 

the center of the spectrum discernible differences still remain. This is because inco­

herent excitation produces a steady-state population distribution with a very long 

tail (almost thermal) . Many excited state transitions contribute to the spectrum, 

and the transmitted spectrum, in particular, is affected by strong In+ 1, u) ---+ In, u) 

and In+ 1, l) ---+ In, l) transitions , which become broader and broader as the level of 

excitation increases. For these high level transitions the secular approximation is not 

very good, even for the large value of g used in Fig. 4.4. 
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Figure 4.4. Spectra for driving field intensities N = 5 and Jvl = 0, and 2g /, = 300, 
2K/1 = 0.1: (a) The spectrum of atomic dipole scattering, (b) the spectrum of the 
light transmitted by the cavity, and ( c) the spectrum of the light reflected by the 
cavity. The dashed curves are plotted from Eqs. ( 4.18), ( 4.26) , and ( 4.32) which were 
derived using the secular approximation; the solid curves were calculated numerically 
without the use of the secular approximation. 
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CHAPTER V 

QUANTUM TRAJECTORY THEORY 

In the prev10us three chapters we have used the master equation approach 

to describe the dynamic evolution of a quantum mechanical source system. The 

next three chapters are going to deal with another approach, the quantum trajectory 

approach, which was developed very recently [22, 23, 24]. This new approach provides 

a new way of analyzing and thinking about the master equations that describe a 

photoemissive source. By considering an analogy with classical statistical physics one 

can understand the role of the new approach. In classical statistical physics, there 

are two approaches taken to describe the evolution of a system. The first uses a 

probability distribution and a Fokker-Planck equation which generates the evolution 

in time. The second uses an ensemble of noisy trajectories which is gen~rated by a 

set of stochastic differential equations. In quantum physics, the corresponding two 

approaches are the master equation approach and the quantum trajectory approach. 

The master equation is an equation for the density operator which is the quantum 

mechanical version of a probability distribution. The quantum trajectory can be 

considered as a quantum mechanical version of a stochastic trajectory. 

The quantum trajectory approach is built around the standard theory of photo­

electric detection and the master equation theory of a photoemissive source. The 

mathematical language used in the approach follows that of the theory of continu-
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ous quantum measurement[,55]. Since quantum trajectory theory combines the two 

theories, it relates the statistics of photoelectron emissions to a dynamical process 

involving photon emissions taking place at the source. In this approach a stochastic 

wavefunction describes the time-dependent state of the quantum mechanical source 

conditioned on a history of classical stochastic signals that appear at detectors mon­

itoring the source system. The stochastic wavefunction evolution generates the mea­

surement record, the numbers that appear in the laboratory. The parallel evolution of 

stochastic wavefunction and accompanying measurement record is called a quantum 

trajectory. Such a single trajectory gives a picture of what is going on in the source 

in a visible form. The master equation approach does not allow this concrete visual­

ization. Thus the quantum trajectory approach clarifies the physical interpretation. 

On the other hand, the quantum trajectory approach also provides a powerful 

computational method. We demonstrate this from the following two cases. First, 

when it is very hard or impossible to use the standard master equation method to 

deal with a large system, the quantum trajectory method may provide a way to 

solve the problem. This can be understood as follows.. Suppose that n is the total 

truncated states of the system needed in the problem. Generally, there are n 2 matrix 

elements of the density operator (A master equation describes a dynamic evolution of 

a density operator.). Thus, for 102 states there are 104 coupled differential equations 

which need to be solved by using the standard method. Some computers do not have 

enough memory to solve the 104 differential equations. In this situation the quantum 
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trajectory method perhaps can be used to solve the problem. This is because the 

quantum trajectory approach can be formulated in terms of wavefunction rather than 

density operator. For 102 states there are only 102 differential equations which need 

to be solved. Certainly most computers can handle this task. Second, even for some 

medium-size system which can fit the computer memory the quantum trajectory 

method may still have an advantage over the standard method in some cases. The 

reason is as follows. The connection between the conditioned wavefunction and the 

master equation is that an ensemble average, or time average, taken with respect to 

the conditioned wavefunction reproduces the results of a master equation calculation. 

Although the quantum trajectory method must solve many less equations than the 

standard method does, this advantage comes at the expense of taking an average over 

an ensemble of trajectories. In principle, to approach the results obtained from the 

standard method one must take an average over a large ensemble of trajectories, and 

This may require more computing time than the standard method does. In many 

cases, however, one does not necessarily need the results with very high accuracy to 

compare with the experimental results. Thus, only the average over a relatively small 

ensemble of trajectories is needed. This may lead to a less computing time needed in 

the quantum trajectory method compared to the standard method. 

The quantum trajectory approach was born more or less for the needs in the 

field of cavity QED. For some cavity QED problems the standard methods are either 

invalid or difficult to apply, but the quantum trajectory approach provides a new 
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and useful way to proceed. In the following two chapters we will use the quantum 

trajectory approach to solve two problems related to cavity QED. To prepare for 

that, in this chapter we describe the quantum trajectory approach for a cavity QED 

system. The master equation for this system is written in a similar form to Eq. (2.6). 

Here we write 

P (l/in )[if, p] + ~(2apat - a tap - pat a) 

+ (,/2)(2a-_pa-+ - a-+a--P - pa-+a--), (5 .1) 

where the form of if is to be specified for each example below. We hope to accom­

plish two things in this chapter. First, we will briefly review two types of quantum 

trajectories for the system modeled by Eq. (5.1), one constructed for direct photo­

electric detection and the other constructed for homodyne detection. Second, we will 

demonstrate through familiar examples that these trajectories can provide a pene­

trating view of the dynamics of a quantum source system, and that an average over 

an ensemble of trajectories reproduces the results of a master equation calculation. 

5.1 Direct Photoelectric Detection 

The quantum trajectory wavefunction is denoted by l7Pc (t)). The subscript c 

reminds us that this is a conditioned wavefunction. The fundamental connection 

with the master equation is given by the relation 

(5 .2) 



74 

where the overbar denotes an average over an ensemble of trajectories. Quantum 

trajectories have a physical interpretation derived from the theory of photoelectric 

detection. Imagine ideal detectors that record every photon lost , either as atomic 

fluorescence or by transmission through the cavity mirrors. The wavefunction l~c( t)) 

describes the state of the open system (the atom and cavity mode) at time t, condi­

tioned on a specific history of photoelectric pulses recorded at these detectors. The 

evolution of l~c( t)) is most simply given in terms of the unnormalized wavefunc­

tion l~c(t)), where l~c (t)) = l~c(t))//(~c(t)l~c (t)). We state the quantum trajectory 

equations corresponding to the master equation ( 5.1) as follows [56). The conditioned 

wavefunction satisfies a coherent evolution between photon emissions governed by a 

Schrodinger equation with non-Hermitian Hamiltonian , interrupted by instantaneous 

collapses at the times of the photon emissions: Between photon emissions we have 

the Schrodinger equation 

(5.3) 

Photon emissions occur at random times at a rate determined by l~c ( t)). Emission 

out the sides of the cavity occurs at the rate 

(5.4) 

and is accompanied by the wavefunction collapse 

(5.5) 
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The emission of a photon through the cavity mirrors occurs at the rate 

(5.6) 

and is accompanied by the collapse 

(5.7) 

Using a computer, sequences of collapses are readily simulated in a Monte-Carlo 

fashion while simultaneously integrating Eq. (5.3). In this way we produce realizations 

of the quantum trajectories !'We( t)). 

We now apply the quantum trajectory approach described above to the example 

of resonance fluorescence. This example is relatively simple so that we might solve the 

trajectory equation in the problem analytically. The master equation for resonance 

fluorescence [57] is 

(5.8) 

where 

(5.9) 

describes the interaction of a single two-state atom with an external coherent field 

(proportional to the Rabi frequency n) on resonance, and WA is a resonance frequency 

of the atom. Correspondingly, we have the Schrodinger equation for the conditioned 

wavefunction between photon emissions , with 

I ;/Jc J = ( 1 / i 1i ) [ Hr f - i 1i ( / / 2) (5 + (5 - ] I ;/Jc J • (5.10) 
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At the times of the photon emissions the wavefunction collapses according to Eq. (5.5). 

The rate for a photon emission is given by Eq. (5.4). 

Let us assume an initial state 

(5.11) 

where ll) denotes the lower state of the two-state atom. In the presence of the driving 

field the atom then evolves to a new state at time t 

l7Pc(t)) = cz(t)ll) + cu(t)lu), (5 .12) 

where lu) denotes the upper state of the two-state atom. The collapse (5.5) applies 

at the times of photon emissions. Thus, after each photon emission the atom is in its 

lower state. This indicates that the evolution between photon emissions always starts 

from the same initial state (5.11). In this way the atom continuously evolves from its 

lower state to a superposition state, and then makes a collapse and emits a photon. 

The evolution of the conditioned wavefunction is obviously governed by a stationary 

stochastic process. This is what one might expect to obtain by solving the master 

equation (5.8) (22]. 

From Eq. (5.10) we find that the unnormalized amplitudes cz(t) and cu(t) obey 

the equations 

i( WA/2)c1 + i(D/2)eiwAtcu, 

-(,/2 + iwA/2)cu + i(D/2)e-iwAtcz. (5.13) 
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These equations have the solutions 

(5.14) 

where 

(5.15) 

The rate for photon emission is then given by 

2 lcu ( t) 12 

I A = , I Cu ( t) I = / IC[ ( t) 12 + I Cu ( t) 12 . (5.16) 

Figure 5.1 shows two examples of quantum trajectories for resonance fluorescence 

in which the conditioned upper state probability (&+&-)c = lcu(t)l 2 is plotted. The 

vertical jumps occur at the times of the photon emissions. Every emission collapses 

the atom to its lower state - (cr+&-)c ➔ 0. The collapse is responsible for photon 

antibunching in resonance fluorescence. Photon antibunching means that it is im­

probable to see two photon emissions during any time interval that is short compared 

to the atomic lifetime. From these trajectories we can see exactly how the photon an-

tibunching happens in resonance fluorescence. After each photon emission the atom 

is certainly in its ground state. In order to be able to emit a second photon , the atom 

must first evolve back to the upper state, a process that takes an average time on the 

order of the Rabi frequency. For strong excitation Fig. 5.1 (b) shows a coherent Rabi 

oscillation between the emissions. The oscillation is caused by the dynamic Stark 

splitting due to the interaction of the atom with the strong driving field. 
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Figure 5.1. Sample quantum trajectories showing the conditioned upper state proba­
bility of the atom undergoing resonance fluorescence. ( a) Weak excitation, n/, = 0. 7; 
(b) strong excitation, fl/, = 3.5. 
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Let us now construct photon counting distributions and waiting time distributions 

from simulations like those illustrated in Fig. 5.1. We simply count the number of 

photon emissions for a certain counting time interval and then repeat the process 

for many such intervals. Thus we build up a histogram of the number of photon 

emissions occurring during the counting time - a histogram of the number of pho­

toelectron counts. By normalizing such a histogram we obtain the photoelectron 

counting distribution. In the same way the waiting time distribution w( T) can also 

be obtained from a histogram of the time intervals between successive photoelectron 

emissions. Figures 5.2 and 5.3 show two examples of such waiting time distributions 

obtained from simulations of Fig. 5.1. Notice that w(O) = 0 in these figures. This 

corresponds to photon antibunching in resonance fluorescence. A peaked distribution 

in Figures 5.2 and 5.3 reveals a tendency for photon emissions to occur at regularly 

spaced times. The insets in these figures show the waiting time distributions which 

were calculated analytically from the master equation approach in [57]. It can be seen 

that the agreement is very good. An ensemble average taken with respect to quantum 

trajectories does reproduce the results of a master equation calculation. It can also 

be seen that residual sampling fluctuations appear in the numerical simulations which 

are much like those expected in a laboratory experiment. 

The quantum trajectories we have described so far come from a decomposition 

of the master equation based on direct photoelectric detection. We call such a de­

composition an unraveling of the master equation. Other idealized measurements 
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give different unravelings, and quite different quantum trajectories. One example is 

homodyne detection. A quantum trajectory based on homodyne detection produces 

a continuous evolution of the conditioned wavefunction. Such a wavefunction will be 

described in the following section and will be used in chapter VII. 

5.2 Homodyne Detection 

In homodyne detection the field to be detected ( signal field) is combined at a 

beam splitter with a strong local oscillator field. The sum field then illuminates a 

photoelectric detector. The measurement record at the detector is a stochastic pho­

tocurrent. In a realistic homodyne measurement the amplitude of the local oscillator 

field is many orders of magnitude larger than that of the signal field. Therefore the 

stochastic photocurrent is composed of only three components: a d. c. component 

proportional to the photon flux of the local oscillator, a shot noise component pro­

portional to the square root of the local oscillator photon flux, and a component 

due to the interference of the local oscillator and signal fields, also proportional to 

the square root of the local oscillator photon flux. In balanced detection the cl. c. 

component is removed leaving only the shot noise and signal components [58]. 

The homodyne measurement record is still a counting process. It is not sensible, 

however, to proceed with direct counting trajectories as before. The reason for this 

is that the local oscillator photon flux is much larger than that of the signal so 

there is an extremely small change produced in the signal state by one collapse of 
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the combined system of signal plus local oscillator. Physically this means that a 

photoelectron emission probably corresponds to the annihilation of a local oscillator 

photon, with only a small probability that a photon was annihilated from the signal 

field. The sensible approach under these conditions is to take a continuous evolution 

limit. The two pieces of the quantum trajectory evolution, coherent plus collapse, can 

then be combined into a single stochastic Schrodinger equation for the conditioned 

wavefunction of the signal. In this case, the wavefunction is conditioned on the 

history of the stochastic photocurrent realized by an ideal homodyne detector rather 

than on a sequence of pulses seen in direct photoelectric detection. The quantum 

trajectories generated from this wavefunction also satisfy Eq. (5.2). We now state 

the quantum trajectory equations for the system modeled by Eq. (5.1) based on 

homodyne detection of the field transmitted through the cavity mirrors , still using 

direct photoelectric detection to track the fluorescence from the atom: 

In between atomic emissions the ( unnormalized) conditioned wavefunction satisfies 

the stochastic Schrodinger equation 

( 5.17) 

with 

(5 .18) 

where <jJ is the phase of the local oscillator andµ( t) is a Gaussian white noise associated 

with the local oscillator shot noise. As before, the atomic emissions occur randomly at 

the rater A(t) (Eq. 5.4), and each atomic emission is accompanied by a wavefunction 
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collapse (Eq. 5.5). The quantity ~(t) is related to the homodyne photocurrent J(t). 

For a broad detection bandwidth we write 

l(t) = Ge [1 + /rW)], (5.19) 

where e is the electronic charge, G is the gain, and f » 2K(-l,bc latal -l,bc ) is the local 

oscillator photon flux. 

The example we consider here to illustrate the homodyne detection trajectories is 

the degenerate parametric oscillator. This system includes two cavity modes coupled 

by a nonlinearity. One mode is a pump mode with frequency 2wc and the other is a 

subharmonic mode with frequency W e . The pump mode is driven by a classical field 

injected into the cavity. The output of the cavity is a source of the subharmonic. 

Here we are only interested in below threshold operation. In this case, the coupling 

between fluctuations in the pump mode and the subharmonic mode disappears so 

that we can obtain separate master equations for each of the modes. Thus we have 

the master equation for the subharmonic mode 

(5 .20) 

where 

(5.21) 

Here ,\ is the pump parameter which is proportional to the amplitude of the pump 

field. The stochastic Schrodinger equation corresponding to Eq. (5.20) is given by 

(5.22) 
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From Eqs.- (5.21) and (5.22) we can simulate quantum trajectories based on ho­

modyne detection for the degenerate parametric oscillator modeled by Eq. (5.20). 

Before doing this we simulate quantum trajectories based on direct photoelectric de­

tection for this system using Eqs . (5.6) , (5.7), (5.21) and (5.22) without the term 

proportional to ~(t) . We then compare the quantum trajectories based on direct 

photoelectric detection and those based on homodyne detection. 

Figure 5.4 shows a sample quantum trajectory for the conditioned mean photon 

number (ata)c = (7/Jclatal 7/Jc ) based on direct photoelectric detection. It is very sur­

prising that the trajectory shows not only a downwards jump as seen before, but also 

an upwards jump. We know that the jump occurs at the time of a photon emission. 

How can the photon emission cause the upwards jump in the conditioned mean pho­

ton number - how can the photon emission make the number of photons in the cavity 

increase? The explanation is as follows. The conditioned mean photon number is 

the mean of ata with respect to a state that is conditioned on the specific history of 

photon emissions and coherent evolutions along the trajectory. It is not an actual 

photon number out there in the cavity, but it propagates information and tells us 

what is going on in the source. For the degenerate parametric oscillator the photons 

are created in pairs inside the cavity. The observation of the first photon of a pair 

means the second is very likely immediately following the first. Thus when the first 

photon is emitted from the cavity the collapse increases the conditioned mean pho­

ton number and gives an upwards jump; this ensures that the second photon will be 
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Figure 5.4. Sample quantum trajectory based on direct photoelectric detection show­
ing the conditioned mean photon number for a degenerate parametric oscillator 
(DPO) operated 50% below threshold (). = 0.5). The pump light is turned on at 
t = 0. The Fock state basis is truncated at 10 photons. 
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emitted within a short time["' (2K:t1
] after the first. After the second photon of a 

pair has been emitted the collapse decreases the conditioned mean photon number 

( which in a few cavity lifetimes returns to its steady-state value) and gives a down­

wards jump; this ensures that no photon will be emitted for a long time compared to 

a cavity lifetime after a pair of photons has been emitted. 

A quite different trajectory is obtained by modeling homodyne detection. Fig. 5.5 

shows two sample quantum trajectories for the conditioned mean photon number for 

two different choices of the local oscillator phase. One choice corresponds to a mea­

surement of the unsqueezed quadrature X of the fluctuating field amplitude and the 

other corresponds to a measurement of the squeezed quadrature Y. Comparing these 

two trajectories with the trajectory shown in Fig. 5.4, we see that there is nothing 

alike between them. Even for the two trajectories themselves shown in Fig. 5.5 , qual­

itative differences can be seen: one shows much larger fluctuations than the other. 

However, in the mean there are no differences among all three of these trajectories. 

They are complementary unravelings of the quantum average tr[p(t)ata] (note that 

p( t) here is not the conditioned density operator): the time averages of all three 

trajectories give exactly the same results , for the mean photon number in the cavity. 

Fig. 5.6 shows two sample quantum trajectories for the fluctuating conditioned 

field amplitudes (~c l(ei<l>at + e-i<l> a)l ~c) based on homodyne detection. In contrast to 

this figure, the conditioned field amplitudes are zero at all times for the trajectories 

based on direct photoelectric detection. By comparing the quantum trajectories based 
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Figure 5.5. Sample quantum trajectories based on homodyne detection showing the 
conditioned mean photon number for a degenerate parametric oscillator (DPO) op­
erated 10% below threshold (,\ = 0.9). (a) (ata)c for X - quadrature (0 = 0); (b) 
(ata)c for Y - quadrature (0 = 1r /2). 
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on direct photoelectric detection and those based on homodyne detection, we see 

clearly that different measurements give different trajectories - different pictures of 

what is going on in the source, suited to help us understand different aspects of the 

physics. 
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Figure 5.6. Sample quantum trajectories based on homodyne detection showing the 
conditioned mean field quadrature amplitudes for a degenerate parametric oscillator 
(DPO) operated 30% below threshold (,\ = 0.7). (a) The Y amplitude for Y -
quadrature (0 = 1r/2); (b) the X amplitud for X - quadrature (0 = 0). 
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CHAPTER VI 

TWO-STATE BEHAVIOR 

In chapters II - IV, we have demonstrated the quantum nature of the sys­

tem formed by a coupled cavity mode and atom. This system can be viewed as a 

"molecule". In this chapter we consider direct excitation of the "molecule" resonances 

- we tune the driving field to one of the "vacuum" Rabi resonances. From the analogy 

with molecular spectroscopy, we then expect that for sufficiently large dipole coupling 

the atom-cavity "molecule" behaves as a two-state system. We will demonstrate this 

behavior in a computer experiment based on the quantum trajectory simulations de­

scribed in chapter V. In particular, we will show that the light transmitted by the 

cavity and the light emitted out the sides of the cavity by the atom have the photo­

electron counting statistics of resonance fluorescence and a Moll ow triplet spectrum 

for strong driving field intensities. 

6.1 Photoelectron Counting Statistics 

In chapter II we considered a strongly coupled atom and cavity mode driven by 

a coherent field. We studied the intensity of the field transmitted by the cavity as 

a function of the detuning of the driving field from the resonance frequency of the 

atom and cavity mode for a fixed amplitude of the driving field. Here we tune the 

coherent driving field to the lower "vacuum" Rabi resonance of the coupled system 
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(as illustrated in Fig. 6.1) - we fix the detuning ~ = g. Thus the master equation 

to describe the coupled system is the same as the equation (2.10) (in the interaction 

picture), but with the fixed detuning g. Therefore, the quantum trajectory equations 

(5.3) - (5.7) can be used here with the Hamiltonian (in the interaction picture) 

From what we learned about quantum trajectory theory in the previous chapter, 

we expect even a single quantum trajectory may show some features about the source 

system. Let us now see such a single trajectory, shown in Fig. 6.2, where we plot the 

conditioned averages that appear on the right-hand sides of Eqs. (5.4) and (5 .6). The 

quantum trajectory is simulated based on Eqs. (5.3)- (5.7) and Eq. (6.1). It shows 

a fast coherent modulation at the detuning frequency 2g from the upper "vacuum" 

Rabi resonance. It also shows an oscillation at a much lower frequency ( seen most 

clearly for 1.5 < Kt < 3.0). This is caused by the dynamic Stark splitting as depicted 

in Fig. 6.1 [59). The simplest model for this behavior is the two-state approximation 

iI - in(,/2)3-+a- - inKata 

-1i(£/v0)(l+ + L) - (i1i/2)(K + ,/2)i+L, (6.2) 

where Z+ = 11, l)(gl and L = (Z+f Eqs. (5.4)- (5.7) are now read with&_ -+ (l/-/2)L 

and a -+ ( -i / v'2)L. The Rabi frequency for this two-state system is v'2 £ which 

agrees quite well with the modulation frequency observed in Fig. 6.2. ote that this 

frequency is independent of the dipole coupling constant g. 
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Figure 6.1. Energy-level diagram showing the excitation of the lower "vacuum" Rabi 
resonance and the resulting dynamic Stark splitting. 
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Figure 6.2. Sample quantum trajectory for , / 2K = 1, g / K = 25, and E / K = 5. 
(a+&-)c and (ata)c are the conditioned upper state probability of the atom and the 
conditioned mean photon number inside the cavity, respectively. ◊ and + mark t he 
t imes of photon emissions from the atom and cavity, respectively. 
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The two-state approximation is not suitable for a quantitative study. For example, 

the modulation at frequency 2g is absent in the two-state approximation. Also in the 

two-state approximation every emission collapses the coupled system to its ground 

state - (&+a-)c ➔ 0, (a.ta)c ➔ O; this does not happen in Fig. 6.2 (although emissions 

from the atom do collapse the atom to its lower state - (a+ a_) c ➔ 0). 

Using a five-state basis, however, we can show that the two-state approximation is 

quantitatively good when the dipole coupling is sufficiently large. We solve Eqs. (5.3) 

and (6.1) in the five-state basis lg), 11, l) , 11 , u), 12, l) , and 12, u). We write the 

conditioned wavefunction in the form 

From Eqs. (5.3) , (6.1) and (6 .3), we find that the unnormalized amplitudes c9 (t), 

c1,z(t), c1,u(t), c2,1(t), and c2,u(t) obey the coupled equations 

c9 i(g/2)c9 + i(£/V2)(c1,l - c1,u), 

C1,l i(£/v'2)cg + i(g/2 - o:)c1,l + (J3c1,u - £1c2,1 + E2c2,u, 

C1,u -i(£/v'2)cg + (J3c1,l - (i3g/2 + o:)Z\,u + E2c2 ,l - E1c2 ,u, (6.4) 

C2,l £1c1,l - £2c1,u + [i( y'2 - 3/2)g - ,81]c2,l + (J3c2,u, 

C2,u = -£2c1,l + f1c1,u + (J3c2,l - [i( y'2 + 3/2)g + ,81]c2,u, 

where o: = (K + ,/2)/2, ,81 = (3K + ,/2)/2, ,83 = (K - ,/2)/2, £1 = (1 + vf2)£/2, and 

£2 = ( vf2 - 1 )£ /2. We make the transformation 

(i = g; 1,l; 1,u; 2,l; 2,u), (6.5) 



and have 

-i(£/V2)cg + /33C1,l - (i2g + a)c1,u + £2c2,l - £1c2,u 

£1 c1,l - £2c1 ,u + (i( h - 2)g - /31]c2,l + /33C2,u 
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(6 .6) 

From Eqs. (6.6) we see that for very large dipole coupling, it is a good approximation 

to drop the terms in c1,u, c2,t, and c2,u, since these terms oscillate at frequencies 

proportional to g. Thus a set of five coupled equations reduces to a pair of coupled 

equations 

c9 i( £ / V2)c1,z 

c1,1 = i(£/V2)c9 - ac\,z. (6.7) 

After transforming Eq. (5.13) into the interaction picture, we see that Eq. (6.7) is the 

same as Eq. (5.13) describing the resonance fluorescence of a two-state atom, with 

the correspondence .J2£ H n and a H 1 /2. The results that follow were obtained 

using a basis truncated at the six photon level. 

We check first whether the coupled cavity mode and atom saturates like a two­

state system. Figure 6.3 shows results for different dipole coupling strengths where 

we expect saturated steady-state averages(&+&-)= (ata) = 1/4 for the lg) ➔ 11 l) 

transition. These results were actually calculated by direct inversion of the standard 
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Figure 6.3. Approximate two-state saturation for , /2K = 1 and (i) g / K = 10, (ii) 
g/ K = 25, and (iii) g/ K = 100. 
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density matrix equation, but in our simulations time averaging conditioned averages 

produced the same answers. We see that two-state saturation occurs over a substantial 

range of £ / K for large values of g. Of course, it eventually breaks down as £ /"' 

continues to increase as two-photon transitions to the state 12, l) become important. 

We now use quantum trajectories to simulate photon counting measurements on 

the light transmitted by the cavity and the light emitted out the sides of the cavity by 

the atom. From the time intervals between photon emissions we obtain the waiting 

time distributions WA ( T) , we ( T) , and WAC ( T). These are the distributions of the time 

intervals between photons emitted by the atom, the cavity, and the atom or cavity, 

respectively. We also divide the total time into counting intervals of duration T and 

sum the photon emissions in each interval to obtain photon counting distributions. 

The results are shown in Figs. 6.4 and 6.5. 

Figure 6.4 shows the waiting time distributions and the photon counting distri­

bution PAc(n) for a weak driving field. The waiting time distributions show photon 

antibunching and the photon counting distribution is sub-Poissonian. These results 

are essentially those for resonance fluorescence [compare Fig. 5.2 in chapter VJ. The 

only departure is the less than perfect collapse to the ground state for photon emis­

sions from the cavity, evidenced by the fact that Wc(O) and WAc(O) are not zero. This 

is a consequence of the small probability for occupying states 11 , u) and 12, l). Figure 

6.5 shows the waiting time distributions for a strong driving field. Here the departure 

from a two-state cavity collapse is more obvious , and in addition , the modulation at 
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Figure 6.4. Results of simulated photon counting measurements for , /2K = 1, g / K = 
25, and £/ K = 1. The photon counting distribution PAc (n) is compared with a 
Poisson distribution ( dashed curve) with the same mean. 
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Figure 6.5. Results of simulated photon counting measurements for , /2K = 1, g / K = 
25, and £/K = 5. 
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frequency 2g is now in evidence. However , WAC ( T) still resembles the waiting time dis­

tribution for resonance fluorescence [compare Fig. 5.3 in chapter V). The oscillatjon 

in WAc ( T) provides a signature in the time domain of the dynamic Stark splitting. In 

the next section we will discuss this Stark splitting in the frequency domain through 

the optical spectrum of the coupled cavity mode and atom. 

6.2 Optical Spectrum 

In the last section we demonstrated two-stat behavior in simulated measure-

ments of the photoelectron waiting time distribution and the photoelectron counting 

distribution. Let us now see the two-state behavior exhibited in the optical spectrum. 

As we have seen in the last section, the dipole coupling must be quite large for the 

two-state approximation to be good , since the detunings from the states I 1, u) and 

12, l) are only 2g and (2 - -/2,)g , respectively. Nonetheless , the two-state approxima­

tion allows us to make reliable qualitative predictions. Thus , we expect the spectrum 

of the light transmitted by the cavity and the spectrum of the fluorescence from the 

atom to both be given by the same Mollow spectrum [60); for strong excitation they 

should both be a Mollow triplet. 

Figure 6.6 shows examples of these spectra calculated numerically ( without the 

two-state approximation) for a fixed amplitude of the driving field and different values 

of the dipole coupling constant. These spectra are calculated by traditional methods 

using the quantum regression theorem. For a large enough dipole coupling constant 
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-120 -60 0 60 120 

Figure 6.6. Incoherent spectrum of the light transmitted by the cavity, Sc(w), and 
radiated by the atom, SA(w). The plots are for ,/2"' = 1 and£/"'= 5: (a) g/"' = 10, 
(b) g /"' = 25, ( c) g /"' = 50. Each spectrum is normalized so that its integral with 
respect to w /"' is unity. 
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the expected Mollow triplet appears with a Rabi splitting ±\/12£, which is what is 

expected from the model (6.2) for the two-state system. We emphasize that this 

splitting is not derived from any combination of the energy level separations in the 

spectrum of the Jaynes-Cummings Hamiltonian for the coupled atom and cavity; it 

does not depend on g (other than through the requirement of strong dipole coupling) . 

Unlike the "vacuum" Rabi splitting itself, which is a result of the interaction between 

the atom and the cavity mode, the dynamic Stark splitting of the "vacuum" Rabi 

resonance is a result of the interaction between the classical driving field and the 

atom-cavity "molecule." It provides further clear evidence of the existence of the 

"molecule" as a single quantum entity. 

In the quantitative details our prediction of the same Mollow spectrum for the 

light transmitted by the cavity and the fluorescence from the atom is not born out 

in Fig. 6.6. The triplet components in the spectra are asymmetric and there are 

additional features centered at w - WL = ±2g. These departures from the Mollow 

spectrum occur because the two-state approximation is really rather inaccurate. They 

are very large for g / K, = 10, but become smaller as this ratio is increased. The features 

at w - WL = ±2g are due to population in the state 11 , u). The asymmetries are due 

to the near resonance of the 11, l) ➔ 12, l) transition; the symmetry is broken by the 

unequal detuning of 12, l) from the two dressed components of 11 , l) and the inequality 

of the matrix elements (2, llall, l) and (2, llo--11 , l). 

In the above we have used the traditional method to calcuiate optical spectra. 
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In the rest of this section, we will describe a new way to do so - we will use the 

quantum trajectory theory for cascaded open systems to simulate a measurement of 

the optical spectrum [61]. In the case here, spectral calculations can be done using 

either the traditional method or the quantum trajectory method. As we mentioned 

before, however, for a large system perhaps it is very hard or impossible to use the 

traditional method to calculate spectra, while the quantum trajectory method may 

provide an easy way to do this. Let us now see how to simulate a measurement of the 

optical spectrum using the quantum trajectory theory for cascaded open systems. 

We calculate the spectrum of the light transmitted by the cavity by injecting this 

light into a second, filter cavity, and simulating quantum trajectories for the coupled 

cavity and atom plus filter cavity. Figure 6. 7 illustrates the cascaded open systems. 

We denote the unnormalized conditioned wavefunction for the cascaded systems ( the 

coupled cavity and atom plus filter cavity) by l?f;c,r(t)) . According to the quantum 

trajectory theory for cascaded open systems, between photon emissions we have the 

Schrodinger equation (in the interaction picture): 

for the coupled cavity and atom (open system A), f-I satisfies Eq. (6.1), 2Ka and, are 

the linewidths (full widths at half maximum) of the cavity and the atom, respectively; 

for the filter cavity ( open system B), 2ry = 2( Kb + Kb') « 2Ka is the linewidth for the 

filter cavity, w = w - W£ is the detuning of the filter cavity from the driving field for 

system A, bt and b are boson creation and annihilation operators for the filter cavity 
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Figure 6.7. Open quantum system B (the filter cavity) cascades with a quantum 
system A ( the coupled cavity and atom). 
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mode. In Eq. (6.8), the first three terms describe system A alone, the fourth term is 

the coupling between A and B, the fifth term describes system B alone. 

In the limit TJ « "-a, the unnormalized conditioned state may be written as 

(6.9) 

where IO)F and ll)F are the vacuum and the one-photon states of the filter cavity, 

respectively. Thus, from the equation (6.8), we obtain a pair of equations - Eq. (5 .3) 

with fI satisfying Eq. (6.1) and the equation 

(6.10) 

For TJ « "-a, we can neglect the photon emission from the filter cavity ( open system 

B). Thus Eqs. (5.4) - (5 .7) are still satisfied. From Eqs. (5.3) - (5.7), (6 .1) and (6.10), 

we calculate the spectrum - the time-averaged conditioned mean photon number for 

the filter cavity ({;:(t)l~:(t))/('fc (t)l ;/;c(t)) , for different settings of the filter frequency 

w. Figure 6.8 shows the results of this simulation, which includes a contribution from 

filtered coherent light (not shown in Fig. 6.6). Again , the numerical simulation shows 

residual sampling fluctuations , much like experimental data. 
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Figure 6.8. Simulated measurement of the spectrum of the light transmitted by the 
cavity for ,/2K = 1, g/K = 25, and £/K = 5. 



CHAPTER VII 

SCHRODINGER CATS 
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The previous chapters investigated a single atom strongly coupled to a single 

quantized mode of the field in a cavity. The quantum nature of this atom-cavity-mode 

system was demonstrated. In this chapter we apply the atom-cavity "molecule" to a 

study of Schrodinger cat states. Again, the quantum trajectory method is used. We 

simulate the generation of Schrodinger cat states using quantum trajectories based 

on direct detection, and the observation of these states using trajectories based on 

temporal-mode-matched homodyne detection. The Schrodinger cat states are macro­

scopic superpositions of coherent states. Here the Schrodinger cats we generated are 

only few-photon cats. The signature of the Schrodinger cat state is an interference 

fringe in the marginal distribution measured by homodyne detection. This follows 

from the fact that the marginal distribution for any quadrature amplitude of the sig­

nal field is obtained by integrating the Wigner function , representing the quantum 

state of the field, over the conjugate variable [62 , 63 , 64). We first introduce the 

Wigner function. We then simulate the generation and homodyne detection of the 

Schrodinger cat states. We obtain the distribution of measurements using the homo­

dyne detection in a computer "experiment." This distribution shows the interference 

fringes that indicate the existence of the Schrodinger cat. 
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7.1 Wigner Function 

The Wigner function W( a, a*) of the complex amplitude a and its conjugate a * 

is defined as [ 65] 

(7.1) 

where Cw(z, z*) is a characteristic function 

Cw( z, z* ) 

(7.2) 

For the pure state 17P), the density operator can be written as p = j?j, )(?j, j. Thus , we 

have 

(7.3) 

The real and imaginary parts of a are x and y: 

x = (1/2)(a + a*), y = (1/2i )(a - a*), (7.4) 

which correspond to two quadrature amplitudes of the field . From Eq. (7.1) we express 

the Wigner function in terms of x and y (proportional to position and momentum 

variables, respectively) as 

W(x, y) = (l/1r2
) j_: du i: dv Cw( u + iv , u - iv )e- 2

i(ux- vy). (7.5) 

The Wigner function vV(x , y) may be viewed as a quantum mechanical analogue 

of a probability distribution. It is the quantum mechanical correspondence of the 
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classical joint probability distribution. The Wigner function W(x, y), for a pair of 

non-commuting variables x and y , can take negative values in some parts of its range. 

For this reason it is referred to as a quasiprobability distribution. 

Let us now consider a superposition of coherent states: 

(7.6) 

where 0 is an arbitrary phase. From equations (7.3) and (7.5) the Wigner function 

for the state (7.6) is obtained in the form 

Fig. 7.1 shows this distribution. The first two Gaussians on the right-hand side of 

Eq. (7. 7) can be produced by a statistical mixture of two coherent states in Eq. (7.6). 

They are represented by two bumps in Fig. 7.1. The third term on the right-hand side 

of Eq. (7. 7) is the interference term, associated with the quantum coherence between 

the two coherent states in Eq. (7.6). It is a Gaussian modulated by a cosine with a 

frequency of oscillation proportional to the amplitude of the field. 

7.2 Generation of Schrodinger Cats 

We consider a single three-level atom which is held stationary inside an optical 

cavity. Such a three-level atom is depicted in Fig. 7.2. We generate a Schrodinger cat 

- a superposition of coherent states - inside the cavity through two separate stages 

of duration T1 and T2 , respectively. In stage 1, the cavity mode, with frequency w0 , is 
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Figure 7.1. Wigner distribution for the superposition of coherent states. 
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Figure 7. 2. Energy levels of the three-level atom used to generate a Schrodinger cat 
state of the optical field. 
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coupled on resonance with the 1-) ➔ I+) transition of the atom which is driven from 

the side by an external coherent field. This generates a coherent state superposition 

in the cavity, entangled with the dressed states of the atom. At the end of stage 1 

the coherent field is turned off and the atom is d. c. Stark shifted out of resonance 

with the cavity. Stage 2 untangles the coherent state superposition from the dressed 

states of the atom. This is achieved by coherently driving the 1-) ➔ jU) transition 

and detecting a photon in fluorescence. The detection of fluorescence is necessary to 

set the phase of the Schrodinger cat and if no fluorescence is detected the trajectory 

is abandoned. 

Let us now simulate the evolution of the conditioned wavefunction for the coupled 

system of the atom and cavity mode. The evolution is governed by the following 

equations: For O < t ~ T 1 ( stage 1) the quantum trajectory is based on direct 

photoelectric detection. The Schrodinger equation between photon emissions is 

(7.8) 

with 

HA ( t) HA '-f:: ( A A t A A ) '-f:: (' ( A iwo t A - iwo t) 
1 = Jree + ing O'_a -O'+a +ine,O'_e -O'+e . (7.9) 

The free Hamiltonian is a non-Hermitian operator: 

(7.10) 

where t_ = 1-)(UI and t+ = IU)(-1. Photon emissions occur randomly at the rates 
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given by Eqs. (5.4) and (5.6) (The state IU) cannot be reached during stage 1 and 

there are no photon emissions from this state.) . 

In order to see how stage 1 generates a coherent state superposition entangled 

with the atom we first solve Eq. (7 .8) analytically in the limit g / £ ➔ 0. Here we 

assume that T 1 is so short ( compared to the cavity and atom lifetimes) that it is 

unlikely that a photon emission will occur. Thus by solving only Eq. (7.8) we obtain 

the conditioned wavefunction at time T1 . In the interaction picture, Hamiltonian H1 

can be written as 

(7 .11 ) 

where we have assumed that there are no emissions for stage 1. We define the dressed 

states of the atom by 

lu) 

ll) 

(l/v'2)(1+) + ii-)), 

(1/v'2)(1+) - ii-)), (7.12) 

where I+) and 1-) are the upper and lower atomic states. The dressed states are 

eigenstates of i!i£(6-_ - 6-+)- We then write 

where 

(-i/2)(dz + du - dt), 

(i/2)(dz + d1 - du), 

lu)(ll, d1 = ll)(ul, 

ju)(ul - ll)(lj. 

(7.13) 

(7.14) 
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Substituting from Eqs. (7.13) into Eq. (7.11): 

We expand the conditioned state as 

(7.16) 

then from Eqs. (7.8) and (7.15) we obtain 

l~u) = [-i£ - i(g/2)(at + a)]l~u) - i(g/2)(at - a)l~ z) , 

l~z) = [i£ + i(g/2)(at + a)]l~z) + i(g/2)(at - a)l ~u). (7.17) 

We make the transformation 

(7.18) 

and have 

l~u) = -i(g/2)(at + a)l ~u ) - i(g/2)e2i£\at - a)l ~z) , 

l~z) = i(g/2)(at + a)]l ~z) + i(g/2)e- 2i£\at - a)l~u)· (7.19) 

In the limit g/£ ➔ 0, we drop the oscillatory terms in Eqs. (7.19) using the secular 

approximation, and then have 

l~u) = -i(g/2)(at + a)l ~u ), 

l~z) = i(g/2)(at + a)l~z). 

The solutions to Eqs. (7.20) may be written as 

(7 .20) 
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For the initial state l~c(O)) = 1-)IO), we have 

l~i(O)) = (i/v'2)IO), (7.22) 

where IO) is the vacuum state. Both operators e-i(9 / 2 )(a t+ a)t and ei(g / 2 )(at+a)t in 

Eqs. (7 .21 ) are called the coherent state displacement operators [66). When they 

act on the vacuum state they perform displacements of the vacuum state to the 

coherent states I - igt/2) and ligt/2), respectively. Thus, we have 

l~u(t)) = (-i/-v'2)1- igt/2), l~i(t)) = (i/v12)ligt/2), (7.23) 

The conditioned wavefunction at time T 1 is obtained (in the interaction picture) : 

We transform Eq. (7.24) to the Schrodinger picture and have 

where 

( 1 / v12) ( e-i(wo/2h I+) + iei(wo/2)T1 I-)), 

(1 / v'2) ( e - i(wo/2)T1 I+) _ iei(wo/2)T1 I-)). (7.26) 

Equation (7.25) describes a coherent state superposition in the cavity, entangled with 

the dressed states of the atom. 

For 71 < t ~ 71 + 72 (stage 2) the quantum trajectory is still based on direct 

photoelectric detection, but the interaction Hamiltonian is changed. The Schrodinger 
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equation between photon emissions is now 

(7.27) 

where 

(7 .28) 

(We note that the 1-) ➔ I+) resonance frequency in Hfree has been changed by the 

d. c. Stark shift.) If r » ,, 2K the dominant rate for photon emissions is ru(t) = 

f(1c(t)lt+t-l1c(t)) which governs the fluorescence on the 1-) ➔ IU) transition of 

the atom. The first emitted photon sets the time T 1 + T2 . At this time the entangled 

state (7.25) is changed by the collapse l~c(t)) ➔ t-l~c(t)) into the product state 

(7.29) 

where we have used r » Eu and dropped some small terms. Equation (7.29) describes 

a coherent state superposition inside the cavity. A Schrodinger cat is now generated. 

7.3 Observation of Schrodinger Cat 

In the last section we have generated a Schrodinger cat , a coherent state super­

position in the cavity. Let us now see how to observe the cat. Figure 7 .3 illustrates 

the detection scheme we will use. The field inside the cavity is allowed to freely de­

cay, and the cavity output is combined with a strong local oscillator whose amplitude 

is decaying at the same rate. The phase of the local oscillator is set to 0 = 0 so 
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Detector 

B 

Figure 7.3. Model of the Schrodinger cat inside the cavity A seen by the detector in 
homodyne detection. The cavity B radiates a coherent local oscillator field. 
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we observe the interference fringe which is in quadrature to the displacement of the 

coherent states. We integrate the photocurrent to obtain one measured quantity for 

each trajectory. Over an ensemble of trajectories the distribution of measurements 

shows the interference pattern that reveals the existence of the Schrodinger cat. 

Now the quantum trajectory is based on homodyne detection. Notice that all of 

the quantum trajectories we have constructed so far are based on ideal detection, the 

conversion of photons to photoelectrons with unit efficiency. In the present case we 

need to consider the factor of nonunit efficiency. We generalize Eqs. (5.17) - (5.19) 

to detection with efficiency r; :::; 1. We model the cavity with two transmitted mirrors 

rather than one for unit efficiency. Then the photon loss rates for the cavity through 

the two mirrors are 2"'r; and 2"'(1-r; ), respectively. By modeling homodyne detection, 

we arrive at the stochastic Schrodinger equation 

with Ho = Hjr ee and 

vri ~ ( ~ C ( t) I ( e -i (wot- q>) at + e i (wot- q>) a) I~ C ( t) ) + µ rJ ( t) ' 

h ~ ( ~ C ( t) I ( e -i (wot- q>) at + e i (wot- q>) a) I~ C ( t)) + µ 1-'f) ( t) . ( 7. 31) 

µ,,.,(t) and µ1_,,,(t) are independent Gaussian white noise sources. Eqs. (5.17) and 

(5.18) can be obtained from Eqs. (7.30) and (7.31) for r; = 1. Now the quantity (rJ(t) 

is related to the homodyne photocurrent I,,.,( t) for efficiency r; , with 

(7 .32) 
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Note that Eq. (7.32) is obtained from Eq. (5.19) after the local oscillator photon flux 

/ is replaced by r;Je-2
"'\ thus, we assume that the local oscillator leaks out of a 

cavity identical to the one in which the Schrodinger cat is prepared. We integrate the 

photocurrent noise to obtain 

(7.33) 

where To is the duration for the Schrodinger cat to be observed. 

For each trajectory we obtain one number of XTJ. Over an ensemble of trajecto-

ries we build up the distribution of the quantity XTJ. This distribution is related to 

a marginal distribution of the Wigner function representing the state of the cavity 

mode before it begins to decay. It has been shown that for unit detection efficiency 

the distribution of XTJ is proportional to the marginal distribution obtained by inte­

grating (7 .7) over y [67) . Thus the interference pattern appearing in the distribution 

of XTJ reveals the existence of the Schrodinger cat. 

It is straightforward to calculate the marginal distribution of the Wigner function 

representing the state of the cavity mode in (7.29). This Wigner function can be 

obtained from Eq. (7. 7) by replacing b = -gTi/2 and 0 = £T1 . The interference term 

in Eq. (7. 7) indicates the quantum superposition of the state we generated inside the 

cavity. The marginal distribution W( x) is then obtained 

W(x) = 1: dyW(x,y) = fij;ie- 2
x

2
[l - cos2(2bx - 0)]. (7 .34) 

Figure 7.4 shows the distribution represented by Eq. (7.34) for b = 5 and 0 = l.71r. 

The marginal distribution gives us some idea about what the distribution of XTJ should 
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Figure 7.4. Marginal distribution obtained from Eq. (7.34) for b = 5, and 0 = l.71r. 
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look like. We then expect to see the interferenc pattern in the distribution of XT/. 

Let us now see the results of numerical simulations for this distribution. 

Figure 7.5 and 7.6 show results for the distribution of XT/ obtained from an en­

semble of 105 trajectories generated from Eqs. (7.8) - (7.10), (7.27) - (7.28), and 

(7.30) - (7.33). The quantity NT/(XT/) is the number of trajectories giving a result for 

the integrated photocurrent in the range XT/ to XT/ + 0.01. In Fig. 7.5 the detection 

efficiency is 95%. Two sets of results are shown: distributions (a), (b), and (c) are 

for a rv 2-photon Schrodinger cat; (cl), (e) , and (f) are for a rv 6-photon Schrodinger 

cat. Figs. 7.5(a) and 7.5(d) include the effects of photon loss during the preparation 

of the Schrodinger cat. For the chosen parameters the loss virtually destroys the 

interference. The negative effects of loss during the preparation stage can easily be 

understood. A single photon emission causes the conditioned wavefunction to col­

lapse according to Eqs. ( 5.5) and ( 5. 7). If the photon is emitted through the cavity 

mirrors, the operator a is applied to l~c( t)) at some time during the generation of the 

state (7.29). This changes the phase of the coherent state superposition by 7r (shifted 

the fringe in Fig. 7.4 by 1r ). Thus, if half the trajectories suffer just one photon loss 

from the cavity, the interferences for the phase-shifted and unshifted cats will cancel 

in the ensemble average. 

A photon lost in fluorescence has a similar effect; although, for a saturated atom 

the rate governing this loss does not increase with photon number. The collapse in 

this case projects the atom to its ground state. It is most likely to occur when the 
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Figure 7.5. Two sets of distributions of the integrated photocurrent for an ensemble 
of quantum trajectories generated by Eqs.(7.8)-(7.10), (7.26)-(7.27), and (7 .29)-(7.32) 
for different values of intracavity photon numbers: , /2K = 1.5, KT1 = 0.19, KTo = 3, 
'f/ = 0.95, and g/K = 15, £/K = 60 [(a), (b), (c)]; g/K = 25, £/K = 100 [(d), (e), (f)]. 
(a) and (d) include all trajectories; (b) and (e) exclude trajectories which suffered a 
photon loss through the cavity mirrors during the preparation time T 1 ; ( c) and (f) 
exclude trajectories which suffered a photon loss either through the cavity mirrors or 
by atomic fluorescence during the preparation time. 
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Figure 7.6. Two sets of distributions of the integrated photocurrent for an ensemble 
of quantum trajectories generated by Eqs.(7.8)-(7.10), (7.26)-(7.27), and (7.29)-(7.32) 
for different values of detection efficiencies: , /2K = ] .5, KT1 = 0.19, KTo = 3, g /"' = 
25, [jK = 100, and TJ = l.0 [(a), (b), (c)]; TJ = 0.9 [(d), (e), (f)]. (a) and (d) include all 
trajectories; (b) and ( e) exclude trajectories which suffered a photon loss through the 
cavity mirrors during the preparation time T 1 ; (c) and (f) exclude trajectories which 
suffered a photon loss either through the cavity mirrors or by atomic fluorescence 
during the preparation time. 
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atom is excited, and the excited to ground state collapse introduces a 1r phase shift 

in the Rabi oscillation of the atom. Again , if half the trajectories suffer a loss like 

this the quantum interference is washed out. 

In a computer experiment it is possible to eliminate the negative effects of loss by 

removing from the ensemble all those trajectories which suffer a photon loss during 

the preparation time T1 . Figs. 7 .5(b) and 7 .5( e) eliminate the effects of loss through 

the cavity mirrors; Figs. 7.5( c) and 7.5(f) eliminate the effects of loss both through 

the cavity mirrors and out the sides of the cavity. In principle the same thing can be 

done in the laboratory at the expense of a reduced data collection rate. Of course, in 

practice, for technical reasons it is impossible to detect every lost photon. However, 

if a significant percentage are detected, in particular , of the photons lost through the 

cavity mirrors, then the visibility of the quantum interference fringe will be greatly 

improved. The message in this is that Schrodinger cats may be seen so long as 

observations are made at the level of the very last quantum. Lost photons are no 

problem; but we must know that they are lost. 

In Fig. 7.6 we compare the two sets of distributions of Xri for the detection effi­

ciency of 100% and 90%. They clearly show that the appearance of quantum interfer­

ence is extraordinarily sensitive to the detection efficiency. This, again, emphasizes 

that the basic message is that every photon radiated by the coupled system of the 

atom and cavity mode must be observed. 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

We have studied the interaction of a single two-state atom with a single quantized 

mode of the electromagnetic field in an optical cavity. Our interest has been in strong 

coupling conditions where the dipole coupling between the atom and the cavity mode 

splits the first excited state of the Jaynes-Cummings Hamiltonian by an amount 

that is larger than its width. Under these conditions, we have found that the coupled 

system of the atom and the cavity mode is not just a single atom in an optical cavity. It 

is a new composite structure, an atom-cavity "molecule." We have explored quantum 

effects in the excited-state spectroscopy of the "molecule." We have demonstrated 

two-state behavior in the "molecule," and we have used the "molecule" to explore the 

generation and detection of Schrodinger cats. In both of these studies the quantum 

trajectory formulation was used. While many of our results concern effects that are 

too subtle to be seen in current experiments, we hope they will be observed in a new 

generation of experiments. One avenue that may realize the required conditions at 

optical frequencies involves the replacement of thermal atomic beams with cooled or 

trapped atoms (ions). 

In chapters II - IV we explored the spectroscopy of the coupled system of the atom 

and cavity mode driven by an external field. We presented three ways to observe the 

excited-state spectra for the coupled system driven either by coherent light or by 
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broadband chaotic light. All of the spectra calculated from the QED theory show 

peaks produced by transitions between the excited states of the Jaynes-Cummings 

Hamiltonian. These peaks are a clear signature of the quantum Hamiltonian govern­

ing the interaction between the atom and the cavity mode, and provide direct evidence 

of the composite structure of the coupled atom and cavity mode like a "molecule. " 

On the other hand, the "vacuum" Rabi peaks, taken on their own, are consistent with 

a classical, coupled harmonic oscillator interpretation of the interaction. 

Chapter II discussed the first way to observe the excited-state transitions. This 

1s to use coherent excitation and to observe transmission spectra. The transmis­

sion spectra calculated from semiclassical and QED theories were presented. In the 

limit of very weak fields, both calculations produce the same "vacuum" Rabi spec­

tra. But as the strength of the field is increased, it was seen that the semiclassical 

and QED calculations exhibit completely different behaviors. The spectra calculated 

from the semiclassical theory develop bistability on the "vacuum" Rabi peaks. The 

spectra calculated from the QED theory develop a series of additional resonances in 

between the "vacuum" Rabi peaks. These resonances have been explained in terms of 

multi-photon absorption. The positions of these resonances were calculated from the 

excited-state energies of the Jaynes-Cummings Hamiltonian; they were determined 

by the level structure of the atom-cavity "molecule." These resonances show a clear 

signature of the underlying quantized energy level structure of the coupled atom and 

cavity mode. 
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The second way to observe excited-state transitions is to measure modulation 

spectra for the coupled atom and cavity mode driven by coherent light. In chapter 

III we first analyzed a modulation spectroscopy scheme designed to reveal the first­

to-second excited-state transition. We then performed both QED and semiclassical 

calculations of the modulation spectra and compared the results of these calculations. 

As the strength of the pump field is increased, the features that distinguish the QED 

calculation from the semiclassical calculation were identified and explained. The 

QED calculation , again, shows the quantum nature of the coupled atom and cavity 

mode. The parameters we used in these calculations are very close to those realized 

in current experiments. We expect that the results we obtained here may be observed 

very soon. 

Under extremely strong coupling conditions (g » 1 2~) we were able to perform 

analytical calculations by using the secular approximation. For very weak fields we 

calculated the modulation spectra analytically from both the QED and semiclassical 

theories. The analytical results supported the earlier numerical results and help us 

to understand the physics. 

The third way to observe excited-state transitions is to use incoherent excitation. 

This was discussed in chapter IV. We calculated spectra for a coupled atom and cavity 

mode driven by broadband chaotic light. We calculated three kinds of spectra: the 

spectrum of the dipole scattering from the atom, the spectrum of the light transmitted 

by the cavity, and the spectrum of the light reflected by the cavity. All of the spectra 
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show peaks ( or absorption dips) at the incommensurate frequencies corresponding to 

transitions between the excited states of the Jaynes-Cummings Hamiltonian. These 

peaks provide a clear signature of the quantum character of the new system formed 

by a coupled atom and cavity mode. 

Extremely strong coupling conditions provide some justification for using the sec­

ular approximation. We therefore first obtained analytical results for the spectra in 

the secular approximation . The linewidths and transition amplitudes obtained in this 

approximation suggested that the most prominent departures from the two-peaked 

"vacuum" Rabi spectrum would appear in between the "vacuum" Rabi peaks in the 

spectrum of the light transmitted by the cavity. This was so for the spectra plotted 

from our analytical results. But for realistic dipole coupling strengths the accuracy 

of the secular approximation is in doubt. We therefore also calculated spectra nu­

merically without using the secular approximation. These calculations supported our 

earlier conclusions, and fortunately increased, rather than decreased, the size of the 

spectral features associated with excited state transitions. 

The quantum trajectory theory was reviewed in chapter V. It is a formulation of 

open quantum system dynamics in terms of stochastic wavefunctions. The wavefunc­

tions acquire physical meaning as the conditioned wavefunctions of a system whose 

output channels are monitored by ideal detectors; they are wavefunctions for the sys­

tem, conditioned on a particular history of signals seen at the detectors. The method 

brings ideas from quantum measurement theory together with the open-system theory 
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(master equations) and photoelectric detection theory familiar to people in quantum 

optics. Systems in cavity quantum electrodynamics are ideally suited to solution 

by the quantum trajectory method. We therefore presented quantum trajectory for­

mulations based on direct photoelectric detection and on homodyne detection for 

the cavity QED system. Two standard examples were used to illustrate the theory. 

While it is the ensemble average over trajectories that reproduces the usual quantum­

mechanical average, it was seen that even a single trajectory may show some features 

about the source system. Thus the quantum trajectory approach clarifies the physical 

interpretation. On the other hand, this approach also provides new computational 

tools. 

In chapter VI we demonstrated two-state behavior for an optical cavity contain­

ing one atom. Here we considered direct excitation of the atom-cavity "molecule" 

resonance - we tuned a coherent field to one of the "vacuum" Rabi resonances of 

the coupled atom and cavity mode. We observed that for sufficiently strong dipole 

coupling the "vacuum" Rabi resonances behave as approximate two-state resonances 

of an atom-cavity "molecule." We have shown that the atom-cavity "molecule" satu­

rates like a two-state system. We have also demonstrated two-state behavior in simu­

lated measurements of the photoelectron waiting-time distribution, the photoelectron 

counting distribution , and the optical spectrum; the atom-cavity "molecule" trans­

mits the antibunched and sub-Poissonian light of resonance fluorescence, and shows 

the triplet spectrum produced by the dynamic Stark effect. We used the quantum 
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trajectory approach in these simulations , and , in particular, developed a quantum 

trajectory formulation for simulating the measurement of the optical spectrum. 

The final chapter, chapter VII , explored the generation and detection of optical 

Schrodinger cats (few-photon cats). The quantum trajectory approach was used again 

here. We generated the Schrodinger cats inside an optical cavity using the coupled 

system of the atom and cavity mode. The Schrodinger cat states (superpositions of 

coherent states) are radiated into the cavity by the atom which is driven coherently. 

The quantum interference of the Schrodinger cats were observed by homodyning the 

freely decaying field radiated by the cavity using a local oscillator of fixed phase 

and matched exponential decay. Quantum trajectories enable us to understand how 

photon loss destroys the quantum interference. With this understanding we have 

shown that, in principle, the negative effects of loss ( other than those due to finite 

detection efficiency) can be avoided by adding a "spontaneous emission veto" while 

preparing the Schrodinger cat. 
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