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DISSERTATION ABSTRACT

Tiemo S. Landes

Doctor of Philosophy

Department of Physics

December 2022

Title: Nonlinear Light-Matter Interactions with Entangled Photons and Bright Squeezed

Vacuum

We investigate the role of time-frequency entanglement in nonlinear interactions

of both low- and high-gain broadband squeezed vacuum. Our work is motivated

by the large body of research proposing the use of time-frequency entanglement in

nonlinear spectroscopy, as well as reports of enhancements in two-photon absorption

e�ciencies 10 orders of magnitude larger than expected.

We theoretically investigate two-photon absorption, deriving a generalized form

capable of rigorously predicting e�ciencies for time-frequency entangled states. We

find good agreement between our theory and previously expected e�ciencies and

find no explanation for large enhancements reported elsewhere. Experimentally, we

replicate experiments that reported large enhancements, finding no evidence of en-

hancement beyond what is expected by theory.

We further develop an analytically tractable model for broadband squeezed vac-

uum valid at both high- and low-gain, which we apply to sum-frequency genera-

tion and two-photon absorption. Our model demonstrates the persistence of time-

frequency correlations at high gain and predicts the cross-over between scaling regimes

and absolute e�ciencies in agreement with previous calculations.

We verify key components of our theory experimentally using both low- and high-

gain squeezed vacuum. We demonstrate the persistence of time-frequency correlations

iv



at high-gain via dispersion sensitivity as well as direct measurement of coherence time

via time-delayed sum frequency generation. We confirm the cross-over between low-

and high-gain regimes via sum frequency generation. Finally, we confirm predictions

about two-photon absorption e�ciencies of high-gain squeezed vacuum, by direct

comparison to classical two-photon absorption.

This dissertation contains previously published and unpublished material.
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CHAPTER I

INTRODUCTION

Background and Motivation

The central question of this dissertation is, simply put, “How large is the en-

hancement of the two-photon absorption probability in molecules due to time-frequency

entanglement?” This question is of particular interest, because in recent years there

have been a number of experiments indicating the presence of enormous so-called

entangled two-photon absorption (ETPA) e�ciencies, many orders of magnitude

stronger than classical two-photon absorption (TPA). [1–8] The claimed e�ciencies

are much larger than can be expected from simple heuristic models, and attempts

to replicate some of these experiments have cast doubt on some of these claims [9–

12]. In an attempt to answer this question, we develop quantum mechanical models

for two-photon absorption and sum-frequency generation (SFG) driven by time-

frequency entangled photon pairs generated via spontaneous parametric down con-

version (SPDC), which are discussed in Chapter 2. We next attempt to observe

ETPA experimentally under carefully controlled and very favorable conditions, dis-

cussed in Chapter 3. In Chapter 4 we adapt our theory to the high-gain regime of

SPDC, sometimes referred to as bright squeezed vacuum (BSV). This allows us to

gain insight into the problem from the perspective of experimentally tractable con-

ditions. Chapter 5 details experimental verification of key predictions for the char-

acteristics of BSV as they’re relevant to the question of ETPA.

Taking a step back, it is worth giving a brief overview of the context in which

this question is being asked. In recent years, quantum optics has shifted from a

field in which novel phenomena are explained and observed to a field in which these

phenomena are increasingly used to create technologies which are only possible by
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utilizing the unexpected, counter-intuitive predictions of quantum mechanics. A

great demonstration of the prominence these technologies have gained is this year’s

Nobel Prize in physics, awarded to Alain Aspect[13–15], John F. Clauser[16], and

Anton Zeilinger[17–20] for pioneering work demonstrating violations of Bell’s in-

equalities. Their work violating Bell’s inequalities is fundamental to our under-

standing of quantum mechanics and the nature of entanglement and locality in

quantum systems. These properties are central to the fields of quantum comput-

ing, quantum information, quantum communication, and quantum metrology.

The work in this dissertation is motivated by quantum spectroscopy, which

falls under the umbrella of quantum metrology or quantum sensing. Quantum spec-

troscopy is an active field of research, with numerous proposals to utilize the time-

frequency correlations present in entangled photon pairs to enhance nonlinear spec-

troscopic methods[21–32]. In this dissertation we focus on two-photon absorption,

which is a process in which two photons from the optical field interact simulta-

neously with the same molecule, atom, or semiconductor bandgap, resulting in an

electronic excitation. The motivation to study TPA comes from the fact that both

photons need to interact simultaneously with the two-photon absorber within the

spectral linewidth of the transition, for which time-frequency entangled photons

seem well suited due to their ability to satisfy both conditions beyond what is pos-

sible classically.

Time-frequency entangled photons are generated via spontaneous parametric

down-conversion, in which one photon from the pump field is split into two photons

referred to as signal and idler, each with roughly half of the energy of the pump

photon. Because this process must conserve energy and momentum, certain degrees

of freedom of the down-converted photons are entangled. While we focus on time-

frequency entanglement, SPDC is also capable of generating entanglement between

polarization and momentum, and it is often an experimental necessity to carefully

2



control the design of the SPDC source to ensure entanglement only in the desired

degree(s) of freedom.

Before delving fully into the search for entangled two-photon absorption, it is

worth taking a quick aside to review other work I’ve done. Beside providing the

foundation for much of my understanding of the physics and experimental consid-

erations, these experiments provide a background for the evolution of the set of ex-

periments in our work.

Previous Projects

The motivation to explore entangled nonlinear interactions came from a pro-

posal to utilize time-frequency entangled photon pairs in order to increase the spec-

tral resolution of a particular type of 2-dimensional fluorescence spectroscopy[24].

In this proposal, entangled photon pairs in a Franson-type interferometer[33] were

recombined on a molecular sample, with both two-photon fluorescence and photon

coincidence transmission being monitored.

My work began doing phase-modulated interferometry with entangled photons

alongside Dr. Jonathan Lavoie, which has been published in Advanced Quantum

Technologies [34]. This work was intended as a precursor to the two-dimensional

spectroscopy proposed in [24]. This work demonstrated the ability to identify spe-

cific quantum pathways via phase-sensitive detection of phase-modulated photon-

counting experiments using an entangled photon source. It also demonstrated the

ability to find information encoded in those channels. The phase modulation tech-

nique and phase-sensitive measurement utilizing a lock-in amplifier was adapted

from methods employed in the Marcus lab [35–38]. In order to track the phase

inside the interferometer, we back-propagated a reference laser of a di↵erent fre-

quency through our interferometer. This allowed us to reduce the sampling require-

ments, enable phase-sensitive measurements, and passively stabilizing the measure-

3



ment, similar to the original configuration.

Subsequent work with Dr. Amr Tamimi, published in Optics Express [39], built

on these experiments to build a generalized photon-counting phase-tagging mea-

surement to replace the action of the lock-in amplifier in previous generations of

the experiment. This work was implemented using a Field-Programmable Gate Ar-

ray to generate ’phase-tags’ of the photon-detection events, based on a synchro-

nization signal derived from a reference waveform generated in the interferometer.

The ’phase-tags’ refer to the relative phase of the interferometer at the time of a

photon-detection event, which is used rather than an analog multiplication of the

signal in traditional phase-sensitive lock-in amplification schemes. One major ben-

efit of this work is the ability to synthesize sum and di↵erence frequencies from an

arbitrary number of reference frequencies, alongside arbitrary harmonics of the fun-

damental and synthesized frequencies.

The phase-tagging work has been built upon by Matthew Brown in Dr. Smith’s

lab to help implement proof-of-principle experiments demonstrating quantum ad-

vantage in the Gottesman protocol for optical very long baseline interferometry us-

ing distributed heralded single photons as the (non)-local oscillator [40]. Various

stabilization techniques based on the phase-modulation scheme and phase-tagging

have been investigated to overcome di�culties introduced via phase drift in the ex-

periment.

After these projects wrapped up, the next challenge involved detecting nonlin-

ear signatures driven by time-frequency entangled photon pairs in molecular sam-

ples in order to implement nonlinear spectroscopic methods. It became clear early

on that such experiments would prove di�cult, with the low interaction strength of

nonlinear interactions being the central issue. While we were able to observe fluo-

rescence from single-photon absorption of entangled-photons in Cyanine dyes, two-

photon absorption proved elusive both in resonant and non-resonant systems.

4



While the initial experiments were designed to produce entangled photons pairs

centered at 532 nm, this created complications detecting fluorescence from TPA

emitted in the ultraviolet (UV) end of the spectrum. Beyond this, the e�ciency

of generating entangled pairs was limited by the stability and strength of the UV

pump laser. The choice of nonlinear medium was also restricted due to the strong

absorption of UV light in many of the nonlinear crystals with the largest nonlinear

coe�cients.

These di�culties alongside nice experiments demonstrating sum-frequency gen-

eration (SFG) driven by entangled photons by Barak Dayan et al.[41], and reported

observation of entangled two-photon absorption in a similar system by Dmitry Tabakaev

[7], motivated a transition to a system in which the entangled photon pairs were

generated in the near infra-red(NIR) at 1064 nm. At the same time, a realization

that many of the interaction strengths reported elsewhere were orders of magnitude

stronger than heuristic arguments would indicate forced us to carefully evaluate

the theory behind two-photon absorption of arbitrary quantum states. This would

enable a full calculation of TPA rates of entangled photon pairs. Due to its theoret-

ical similarity to TPA and vastly increased interaction strength, we also used SFG

as a test system for understanding non-linear interactions with time-frequency en-

tangled photon pairs.

TPA is central to many of the technologies hoping to exploit time-frequency

entanglement for metrology, and scales with photon flux the same as other non-

linear two-photon interactions. Because of the controversy surrounding the magni-

tude of the e↵ect, our inability to observe the e↵ect, and its implications for other

quantum-enhanced metrology, observing and explaining this e↵ect became the fo-

cus of my research. The di�culties faced in observing such a two-photon signal, the

theoretical background, the insights gained, and the directions taken to overcome

these di�culties compose the heart of this dissertation.
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Where does the enhancement from ETPA come from?

Before delving deeper into the dissertation, it is worth taking some time to get

an intuitive understanding of the e↵ects that are claimed to result in the large en-

hancement of two-photon absorption probabilities.

While enhancement from ETPA can come from other degrees of freedom, the

primary considerations are the following: photon number correlations and time-

frequency entanglement.

Perhaps the most quantum feature is the e↵ect of number correlations. Since

entangled photons generated via SPDC are always emitted in pairs, there is an en-

hancement in pair probability over classical light of the same average flux. This is

most pronounced at low-flux. For a classical coherent light source with an average

flux of N̄ = " photons per pulse with " ⌧ 1, the probability of observing a pair

of photons in any given pulse is approximately "2/2, neglecting the possibility of

triplets etc. On the other hand, for an entangled pair source of the same average

flux, the probability of observing a pair in any given pulse is "/2 (again neglect-

ing higher order terms). This is because entangled photons are always emitted in

pairs. This leads to an enhancement in the probability of observing a pair of pho-

tons, PNE of:

PNE ⇡
"/2

"2/2
=

1

"
. (1.1)

This can be large for very weak sources, where " is much less than one. The

increased probability of seeing two photons in the same time-window can be read-

ily verified via coincidence counting experiments. Since two-photon absorption can

only occur when two photons are present, this also represents an enhancement of

the TPA probability.

For enhancement due to temporal correlation and frequency anti-correlation,

we can think of this in terms of two separate timescales present in the source of
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A B C

Figure 1.1. Intuitive model for ETPA enhancement. (A) shows the joint spec-
tral intensity of time-frequency entangled pairs, alongside the marginal and sum-
frequency distributions. The marginal bandwidth is broad, but simultaneously the
bandwidth of the sum of the two frequencies is narrow, due to the frequency anti-
correlations present in the entangled pairs. (B) Shows the case of sum-frequency
generation, in which signal and idler frequencies are converted to a narrowband
up-converted frequency. (C) shows the case of two-photon absorption of broad-band
time-frequency entangled photon pairs. The narrow spectral anti-correlations yield
e�cient overlap with a narrow final-state linewidth.

entangled photons. The first timescale is the duration of the pump generating the

pairs, and the second is the correlation time between the two photons, which is re-

lated to the spectral width by a modified Fourier relationship. An intuitive descrip-

tion in the frequency domain is given in Fig. 1.1. This picture can be quantified in

terms of the ratio of the correlation time to the duration of the pump. This leads

to a temporal enhancement of TPA e�ciency, TE due to the increased temporal

overlap of the pairs relative to the pump pulse:

TE ⇡
Tp

Te

, (1.2)

where Tp is the duration of the pump, and Te is the entanglement or correlation

time of the two photons, which quantifies how closely correlated in time the two

photons are, and is constrained by the marginal bandwidth of the down-converted

pairs, as discussed in more detail in the section on SPDC.
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Figure 1.2. Comparison of spectral overlap with a two-photon transition lineshape
(proportional to TPA e�ciency neglecting number enhancement) between classical
excitation and entangled photon pairs. This comparison is plotted as a ratio of
the spectral bandwidth of the excitation light �, to the spectral linewidth of the
two-photon absorber, �fg. Here, we assume Tc ⇡ 1/�, Te ⇡ 1/�B, Tp ⇡ 1/�N , and
⌧fg ⇡ 1/�fg. The e�ciency of ETPA for various values of �N are displayed. It is as-
sumed that �B � �N . For classical excitation, the e�ciency reaches an asymptotic
value as the bandwidth begins to exceed the TPA linewidth. For entangled pho-
tons, the e�ciency can increase arbitrarily, so long as the correlation width (�N)
is narrower than the TPA linewidth. QSE can be visualized as the ratio between
entangled photon pairs (EPP) and classical excitation with � = �B. It follows that
QSE = 1 for �B < �fg.
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While this ratio can be large for long-pulse and CW pumping schemes, in many

cases much of the e�ciency increase could be achieved classically by utilizing pulses

of shorter duration. For instance, we can compare the TPA e�ciency to a classi-

cal pulse with the same temporal envelope as the correlation time, (or equivalently

with a spectral bandwidth that matches the spectral bandwidth of the PDC). In

this case, the relevant comparison is to a classical pulse with Tc = Te. There is

still an opportunity for spectral enhancement in this case if the bandwidth of the

classical pulse is greater than the TPA linewidth. The scenario in which there is

significant spectral enhancement over a classical pulse with matching spectral band-

width is summarized in Fig. 1.2. In this scenario, the e�ciency of spectrally broad

classical excitation is reduced due to a reduction in resonant overlap with the TPA

lineshape. However, due to the tight spectral anti-correlation of the entangled pairs,

there is no loss in resonant overlap in the entangled case, despite being localized

tightly in time.

The calculation leading to this plot is discussed in detail in Chapter 2. When

the classical excitation light is broader than the TPA linewidth, there is decreased

resonant overlap with the TPA linewidth, which limits the attainable e�ciency of

the classical pulse. However, broad bandwidth entangled photons don’t su↵er from

this limitation, since their sum can be spectrally narrow. In this case, the quantum

spectral enhancement, QSE is:

QSE ⇡
⌧fg
Te

for ⌧fg > Te (1.3)

where ⌧fg is the inverse of the TPA linewidth. In this sense, the QSE = 1 for ⌧fg <

Te, since in this scenario classical excitation could have produced the same resulting

e�ciency.

While there can in theory be enhancement from other degrees of freedom (i.e.,
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polarization & space, which we briefly discuss in the section SPDC), these are in

general not controlled or implicated in these experiments. Spatial entanglement

in particular may play a significant role, if it leads to an interaction volume larger

than possible with a Gaussian beam. We discuss this briefly in Ch. 1, but a full

discussion of this is beyond the scope of this dissertation, and could be a future di-

rection to take this work. In our work, we assume tight focusing, in which the aper-

ture of the optical system ensures that further spatial correlations can be neglected.

Note on the Entangled Two-Photon Absorption Cross-Section, �e

Before moving on, it is worth taking some time to discuss the way interaction

strengths for electronic excitation is usually quantified. For absorption of a sin-

gle photon, the interaction strength for a single molecule and single photon can

be quantified via an absorption cross-section, �(1) which has units of [cm2]. For

strongly absorbing dyes, the absorption cross-section can be on the order of 10�16 cm2

[42]. Similarly, the interaction strength for two-photon absorption can be writ-

ten in terms of a two-photon absorption cross-section �(2) with units of GM =

10�50 [cm4][s]/[photon], named after Maria Göppert-Mayer who first predicted the

e↵ect in 1931[43]. This can be thought of as a cross-section divided by a photon-

flux density. Classically, the total absorption rate at a given frequency is propor-

tional to �(1)�+ �(2)�2 where � is the photon flux in units of [photons]/[cm2][s].

For entangled two-photon absorption, the TPA rate demonstrates both lin-

ear and a quadratic flux scaling. The scaling is predominantly quadratic at high

gain, while at low gain it is linear with incident photon flux. While these aren’t

inherently separate, they are often cited as such according to the heuristic equa-

tion introduced by [44], R = �e� + �r�2, where R is the rate of ETPA, � is the

entangled-pair flux, �r is the ‘random TPA cross-section’, and �e is the ‘entangled

two-photon absorption cross-section’. While this is a greatly simplified descrip-
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tion, it is nonetheless one that has gained significant traction in the community

interested in ETPA. It is worth noting, that unlike typical cross-sections, which are

specified by the absorbing sample itself, �e is dependent also on the entangled pair

source and the particular optical system in the experiment.

Despite this dependence on the experimental apparatus, the precedent has

been set within the community interested in ETPA that the e�ciency of ETPA is

reported in terms of �e[1, 2, 6, 7, 44]. This is somewhat unfortunate, because �e is

a function of several experimental parameters that a↵ect its magnitude, such as the

correlation time, Te, correlation area, Ae, dispersion, and losses in the system. Val-

ues for �e have been reported with disregard for these parameters, resulting in am-

biguity and leaving room for di↵erences in reported values due solely to controllable

experimental parameters. We have advocated for reporting quantum enhancements

to the TPA e�ciency rather than simply reporting �e. A recent proposal to report

the product, �e ⇤ Te ⇤ Ae [8], would have similar benefits while also facilitating com-

parisons to previous work in which the product can be inferred.

In contrast to �e, the classical two-photon absorption cross-section, �(2), is only

a function of the two-photon absorbing sample itself. It also requires knowledge of

the temporal and spatial properties of the excitation field to predict rates. Cru-

cially, the magnitude of the cross-section itself is entirely determined by the partic-

ular absorber and its preparation, but not on the optical system or source. While

the classical cross-section is implicitly still a function of excitation wavelength, the

wavelength dependence is itself a function of the particular absorber rather than

solely of the experimental apparatus, so its implicit inclusion in the quantity is well

justified.

Despite these considerations, I will refer to �e extensively throughout the dis-

sertation, both to facilitate discussion and comparison to other work, and because

it is decidedly less cumbersome than the full description. I will do my best to in-
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clude assumptions about experimental parameters when referencing �e.

Literature Review

Now that we understand the big picture, it is worth reviewing work done

previously and the state of research around the question.

Literature surrounding entangled two-photon absorption can be broadly

divided into experimental and theoretical work. Pioneering theoretical work on the

topic described the e↵ect in the 1990s. More recently, entangled photons have been

investigated in various theoretical spectroscopic configurations.

Notably, however, prior to our work there are few examples which critically

evaluate whether the enhancement from such sources is su�cient to yield feasible

molecular experiments, though the potential di�culty is sometimes mentioned. In

that sense, a major contribution of the work in this dissertation is a feasibility

study for such techniques, with due consideration given to low and high-gain

regimes of spontaneous parametric down-conversion.

Original Work

In 1985, Friberg, Hong, and Mandel [45] describe the first coincidence counting

experiment demonstrating the linear nature of coincidences from SPDC photons.

And in 1987 Janszky and Yushin describe the statistics of coherent, thermal, and

high gain squeezed light[46].

In 1989 J. Gea-Banacloche predicted linear intensity scaling of the squeezed

vacuum component of quadrature squeezed light [47]. And in 1990 nearly

simultaneous results from Javanainen and Gould [48], describe the same e↵ect in an

aptly named article, ‘Linear intensity dependence of a two-photon transition rate.’

The e↵ect is described in terms of correlations between down-converted photons in

an intuitive picture, which is in line with the way we tend to conceptualize the
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problem currently. In 1991 a similar e↵ect was proposed in interactions with a

three-level atom by Ficek and Drummond [49].

In 1997, Fei, Saleh, and Teich describe ‘Entanglement-Induced Two-Photon

Transparency’ in which destructive interference between signal and idler results in

decreased TPA probability. The heuristic equation,

R = �e�+ �r�
2, (1.4)

is introduced [44]. This is also the first use of the term ‘entangled two-photon

absorption cross-section.’ In the equation, � is the incident photon flux density, �e

is the aforementioned entangled two-photon absorption cross-section, and �r is the

classical two-photon absorption cross-section, which we will refer to as �(2)

throughout the dissertation. The estimate,

�e =
�r

2AeTe

, (1.5)

also stems from this work. This work also can be seen as one of the first proposals

to use entangled photons as a spectroscopic tool, which is currently a topic in which

there is significant active research. It is worth noting that the ‘induced two-photon

transparency’ can be understood as interference between signal and idler photons,

rather than a particular molecular e↵ect.

The first experimental demonstration of the TPA of squeezed light is from

Georgiades and Kimble in 1995 [50]. In the paper ‘Nonclassical Excitation for

Atoms in a Squeezed Vacuum,’ they demonstrate TPA of squeezed light using a

Cesium atom in a magnetic optical trap, pumped by a non-degenerate optical

parametric oscillator.
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Recent work

In the mid 2000s, Avi Pe‘er, Barak Dayan, Asher Friesem, and Yaron

Silberberg published a set of experiments which I consider the most thorough and

well-designed experiments relating to nonlinear interactions driven by parametric

down-conversion.

In their first experimental work on the topic, they demonstrate TPA in a

Rubidium vapor cell with non-degenerate non-collinear parametric down-conversion

generated by a 3 ns pump pulse centered at 516 nm in a low-finesse resonator on

the signal beam [51]. Signal and idler beams were centered at 870 nm and 1270 nm,

respectively. Each had a bandwidth of approximately 100 nm. In this work, they

demonstrate the sharp temporal correlation by adding a delay to the signal beam

via spatial light modulator (SLM). Additionally, by detuning the pump frequency,

they demonstrate the sharp temporal correlations.

This is one of the cleanest examples of TPA by source of parametric

down-conversion, exhibiting tight correlations in time and frequency. However,

several questions of interest were not answered. First, they did not quantify the

degree to which they remained in the low-gain regime, and they did observe

low-e�ciency incoherent TPA from their source when detuned from resonance.

However, no scaling information was included, and the presence of the oscillator

cavity complicates the analysis. Finally, no attempt was made to characterize the

e�ciency of the process in relation to classical TPA. This latter point is

complicated by the question of whether any resonant intermediate states were

driven due to the large bandwidth of the signal and idler beams.

In subsequent work utilizing a 532 nm CW pump laser driving Type-0,

degenerate, collinear SPDC in a PPKTP crystal, they demonstrate sum-frequency

generation (SFG) driven by the entangled pairs [41]. This SFG displays linear

dependence on entangled pair flux, as well as quadratic dependence on losses
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introduced between pair generation and up-conversion. The observation of both of

these e↵ects is crucial to verify that the observed e↵ect is the result of a non-linear

process driven by entangled photons. We have strongly advocated for this

demonstration in ETPA experiments.

In additional work on a similar experimental system, they demonstrate

two-photon interference by adding frequency-dependent delays using a spatial light

modulator[52].

Finally, independent theoretical work by Barak Dayan was published in 2007

describing a theoretical framework for nonlinear interactions driven by SPDC[53].

We verify many of the predictions from this work in Chapters 2 and 4. While this

work is thorough, it is left in terms that are not easily translated to simulations or

predictions for practical experiments.

ETPA of molecular solutions

Also in the mid 2000s, ETPA in molecular solutions was investigated. In

contrast to the work done by the Silberberg group, the magnitude of the observed

e↵ects did not have strong theoretical backing. Many of these results are also

lacking some experimental verification steps ruling out other linear-optical e↵ect.

For instance, with only a single exception, all of the experiments referenced in this

section lack verification of quadratic scaling.

The original work on molecular samples was conducted in 2006 by Lee and

Goodson at the University of Michigan [1]. In this work, they investigate TPA in a

prophyrin dendrimer H2TPP using Type-II down-converted photon pairs,

measuring �e ⇡ 10�17cm2. This measurement was conducted via di↵erential

transmission measurement, and it is assumed that no other linear source of loss is

present. They claim an entanglement area of 10�2 cm2, but don’t cite an

entanglement time which we can bound at 100 fs, which is the duration of their
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pump laser. While they claim a 31-order of magnitude enhancement over classical

TPA excitation, this claim is a comparison of an entangled-two-photon cross-section

(units cm2) to a standard two-photon cross-section (units cm4s), which lacks a clear

interpretation.

It is worth noting that, besides the possibility of linear e↵ects causing the

signal interpreted as ETPA, this experiment su↵ered from additional experimental

inconsistencies. For instance, the measured photon-counting rates: 1.3⇥ 107 cps in

a single channel, and 3.5⇥ 105 cps in coincidence between two channels, are a large

fraction of the repetition rate of their source, which is 8.2⇥ 107 Hz. At these rates

saturation and dead-time e↵ects at their detectors become significant. This can be

seen by the fact that a coherent state would be expected to produce a higher rate

of coincidence events than they observe between their entangled photons.

After this initial work in porphyrin dendrimers, subsequent work in thiophene

dendrimers, which have a naturally large classical TPA cross-sections increasing

from 20 GM to 2000 GM as the dendrimer number increases from 6T to 90T, was

conducted via transmission experiments[3]. The corresponding ETPA cross-sections

ranged from 1.3⇥ 10�17 cm2 to 5.9⇥ 10�18 cm2 In this work they measured up to

3⇥ 107 cps with 2.2⇥ 105 cps coincidences. This indicates a lower relative

coincidence rate than the previous experiment. The dead time for the APD module

they used (Perkin Elmer SPCM AQR), is 50 ns and they are indicated for use at

rates below 5⇥ 106 cps[54]. Notably, this dead time indicates that after each

detection event, the detectors are blind to the next 4 pulses of their experiment.

Experimental inconsistencies such as these are unfortunately a prominent

feature in the early work in this field. While recent experiments are more carefully

controlled, the inconsistencies in basic characterization of photon pair sources in

these early experiments suggests that caution should be used in interpreting their

results.
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Similar work is reported in [4], where spatial e↵ects are considered in

bisannulene, triannulene, and tetraannulene. In [55] separate molecules with large

classical two-photon cross-section, but no significant ETPA cross-section are

considered. In 2017, they report a fluorescence based experiment in which up to

2cps of fluorescence were measured in bisannulene[56].

Some of the di�culty in this field is due to the fact that the pioneering work

was done in complex molecular systems that were synthesized specifically for ETPA

experiments. This makes replication of these experiments extremely di�cult, and

would require expertise in both quantum optics and synthetic chemistry. Because of

this, it is worth noting that this work from 2017 also presents data on Zinc

tetraphenylporphyrin(ZnTPP), which is the first compound that we found

commercially readily available to be included in ETPA studies.

In 2017 Villabona-Monsalve et al. published the first work in the field outside

of the group from Michigan. They considered ETPA in ZnTPP and Rhodamine

B[6]. As with many of the transmission-based experiments, only linear intensity

scaling was verified. In this case, the linear intensity scaling was of the transmitted

coincidence-counts, however this su↵ers from the same issue as raw transmitted

events in which linear losses can result in a false signal. The experiment observed

strong inverse dependence of the cross-section on concentration, which was varied

over several orders of magnitude. The observed absorption rates varied little slowly

with these changes. The cross-sections ranged between 4⇥ 10�17 cm2 and

2⇥ 10�19 cm2 for ZnTPP and 4⇥ 10�18 cm2 and 2⇥ 10�20 cm2 for Rhodamine B.

For this experiment, pairs were generated by 404 nm CW diode laser in a 1 mm

BBO crystal focused and collimated by two 50 mm lenses, and the beam waist at

the sample was 61 µm. They estimate their entanglement time to be 17 fs.

In 2020, Varnavski and Goodson published work demonstrating a microscope

using a bis(styryl)benzene derivative, in which they successfully image a drop-cast
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film with fluorescence from entangled-photon pairs[5]. This was later applied to

biological samples [57]. These are some of the most convincing demonstrations of

the ETPA to date, and they rule out many e↵ects that could cause a false signal in

transmission-based experiments. The fluorescence based experiments still see

relative enhancements on the order of around 106 compared to classical excitation.

The rates of fluorescence in this experiment are large enough to easily validate

quadratic scaling, but this test was not included in the publications, which leaves

room for ambiguity about the nonlinear nature of the e↵ect.

A 2020 discussion of modeling ETPA for complex molecular systems, assumes

that ETPA is the inverse process of two-photon fluorescence[58]. The decay times

for the two-photon fluorescence transition are calculated to be exceedingly long,

and coupling to these transitions is predicted to be correspondingly large. While

this perspective is used to justify the many orders of magnitude enhancement seen

in their work, no concrete way to calculate expected rates from arbitrary quantum

states is described. A thorough discussion of the properties necessary to access such

interactions is also absent. In particular, no explanation for why classical states do

not couple to this transition is given.

Work in Rhodamine 6G was conducted by Tabakaev in 2020[7] and later

followed up in [8]. The first spatially filters the entangled photon pairs with 2 m of

single-mode fiber before focusing on the sample, which is located in an integrating

sphere. Counts were collected on a camera at an output port of the integrating

sphere. They report cross-sections of 1.9⇥ 10�21 cm2, 9.9⇥ 10�22 cm2 and

6.4⇥ 10�23 cm2 at 38 µM , 4.5 mM , and 110 mM concentrations respectively. For

their highest-concentration sample, they observed 4⇥ 106 counts from ETPA in

300 s, which corresponds to a rate 1.3⇥ 104 cps of detected fluorescence.

In this experiment, spatial correlations are erased due to spatial filtering in the

single-mode fiber and the beam is focused to a 60 µm waist in the sample cell.
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They estimate their ‘e↵ective’ flux by estimating the rate of pairs that arrive still

arriving within 140 fs original coherence time of the SPDC after fiber dispersion.

Estimating �e from parameters reported in their paper yields a value of

�est

e
= 2.8⇥ 10�33cm2, taking Te = 140 fs, and Ae = A0 = ⇡(60µm)2. This leaves

12 orders of magnitude unaccounted for.

In the subsequent work, they utilize a simplified setup without the fiber

filtering [8]. At 160 nW of power they measure 16⇥ 104 counts over 2⇥ 104 s, or

about 8 cps from fluorescence. This rate is approximately 1600 times lower than in

their previous experiment. Despite having significantly higher entangled pair rates

which are not filtered by a single-mode fiber, they estimate their ETPA

cross-section to be 5⇥ 10�22cm2 at 5mM. This is roughly half the cross-section

from their previous experiment, despite the large discrepancy in rates and

entanglement areas.

Crucially, this experiment is the only one to date to demonstrate quadratic

scaling in an ETPA experiment. It also observed similar spatial focusing e↵ects to

classical TPA measured via Z-scan. This fluorescence observed in this experiment

had very low rates, around 8 cps, which precluded further study of the detected

light. The experiment also reported an unexplained background signal of around 10

cps, measured in pure ethanol, which was subtracted from the ETPA rates in the

experiment. Regardless of the discrepancy in rates and cross-section measurement,

this experiment demonstrates quadratic scaling of their measured signal, and as

such constitutes the most carefully controlled experiment measuring ETPA to date.

Work Rebutting ETPA claims

As will be argued throughout this dissertation, there is good reason to question

the validity of the many of the results claiming extremely large values of �e. The

first publication calling into question the large enhancements was published by
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Parzuchowski et al. at NIST Boulder in 2020, [9], shortly thereafter our own

theoretical and experimental work was published [10, 59, 60]. Since then, several

other groups have published work calling the e↵ect into question.

In agreement with our theoretical work, theoretical work by Drago et al.

indicates smaller ETPA cross-sections than reported in non-resonant ETPA. It also

investigates ETPA with a resonant intermediate state, finding that in these

systems, one-photon e↵ects with the resonant state dominate any two-photon

interactions [61].

Work by Mikhaylov et al. (also at NIST Boulder) published in 2022

demonstrates that hot-band absorption can mimic some qualities of ETPA, such as

anti-stokes shifted fluorescence[62]. This suggests another linear e↵ect capable of

explaining apparent ETPA e↵ects, and demonstrate linear scaling of observed

fluorescence with classical excitation at low flux.

In 2022 Acquino et al. replicated the finding of reduced transmission of

entangled photon-pairs at 808 nm through solutions of ZnTPP and Rhodamine B.

However, they did not observe any dependence on delay between the entangled

photons, implicating a linear process in the transmission e↵ect [12].

Work Hickaman, Cushing et al. demonstrate a linear scattering e↵ect in

Rhodamine 6G much larger than classical TPA, which could be interpreted as a

cross-section on the order of 10�21 cm2 in linear transmission experiments [11].

Literature Summary

The above sections have described the current state of research in the field, and

the central ideas motivating research into them. While only a handful of groups

claim to have successfully measured ETPA, there is enough consistency in the rates

of ETPA reported in samples such as ZnTPP and Rhodamine B, to conclude that

there is some consistent e↵ect being measured [6, 12]. Anti-stokes shifted
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fluorescence microscopy utilizing entangled photons at ultra-low flux [5, 57] has also

been demonstrated. These indicate solid proof of a repeatable optical e↵ect

between the entangled photons and molecular sample. However, quadratic scaling

tests have not been reported on these demonstrations and linear e↵ects cannot be

ruled out.

Some plausible explanations such as hot-band absorption[62], and linear

scattering[11] have been proposed to explain the e↵ects typically attributed to

ETPA. Further, careful fluorescence experiments have not been able to replicate the

e↵ect in a large number of samples [9, 10]. Other groups have been able to replicate

the e↵ect in transmission-based experiments, but conclude that a linear e↵ect is

being observed due to insensitivity to delay between entangled photons[12].

Experimental tests an ultra-high flux of entangled photons have observed

quadratic scaling via fluorescence in Rhodamine 6G [8] and indicate similar spatial

focusing e↵ects to classical TPA measured via Z-scan.

Ultimately, there are many experiments with various experimental strengths

and weakness and no single explanation is likely to explain the e↵ects observed in

each one, especially considering the large discrepancy in entangled pair sources and

samples used. Because of this, significant ambiguity exists around the e↵ects being

measured. Certain experimental tests such as quadratic scaling verification have

been neglected in most work, further complicating matters.

Quantum Optics Basics

In order to discuss the theory behind entangled two-photon absorption, it is

first necessary to lay some groundwork in classical and quantum optics. The first

step of which is to write down the electromagnetic field[63]:

E(x, t) =
X

j=H,V

Z
dV

s
~!j

2c"0nj

uj(x, y)Aj(t)e
i(!jt�kjz) + c.c. (1.6)
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Here, we have summed over polarization states, H and V . The transverse

spatial modes are described by uj(x, y), and Aj is the temporal envelope of the

field. While the electromagentic field requires specification of the magnetic field as

well, for optical interactions, it is almost always su�cient to consider the electric

field alone. It is often convenient to write this in terms of frequency:

E(x, t) =
X

j=H,V

Z
d!

2⇡

Z
dV

s
~!j

2c"0nj

uj(x, y)Ãj(!)e
i(!j⌧�kjz) + c.c. (1.7)

In order to proceed, we need to quantize the electromagnetic field. In doing so,

quantum mechanical operators are related to the classical quantities, with quantum

operators denoted by hats: O ! Ô. Quantization of the field is typically

accomplished in terms of position and momentum quadratures as can be reviewed

in any quantum optics text. We skip this description and write the electric field

directly in terms of bosonic harmonic oscillator creation and annihilation operators,

â† and â†, which describe quantized excitations of the electric field in a given mode,

sometimes referred to as ‘photons’.

Ê(x, t)(+) =
X

j=H,V

Z
d!

2⇡

Z
dV

s
~!j

2c"0nj

uj(x, y)e
i(!j⌧�kjz)âj(!) (1.8)

The raising and lowering operators are convenient due to their simple

correspondence to the quantized electric field, and their relatively intuitive nature

in the number basis:

âj |n > 0i =
p
n |n� 1i

j
, â |0i = |0i

â†
j
|n+1i =

p
n |n+ 1i

j

h
âi, â

†
j

i
= �ij

Any state can be represented in this form, and here we consider the coherent
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state |↵i, which is an eigenstate of the number operator, â |↵i = ↵ |↵i, where the

average number of photons is hni = |↵|2. It can be written as:

|↵i = e�
|↵|2
2

1X

n=0

↵n

p
n!
|ni (1.9)

The probability of detecting n photons for a coherent state corresponds to a

Poisson distribution, peaked around hni: P (n) = |hn|↵i|2 = e�hni hni
n

n!
.

A pure state can be written as, | i. It is often convenient to consider mixed

states, for which the density matrix ⇢̂ is convenient. In some basis, it can be

written as:

⇢̂ =
X

i

pi | ii h i| (1.10)

where the individual terms pi are real and sum to 1. A pure state in this form

can be written as | i h |. The expectation value of an operator, Ô, for a given

state, ⇢̂, can be written as Tr(Ô⇢̂).

The expectation value of an operator hÔi, for a pure state, | i can be written

as h | Ô | i. For a mixed state, ⇢̂, this is written as hOi = Tr[⇢̂Ô] for a mixed

state, ⇢̂.

In order to do something useful with this, we need to consider the dynamics of

the system. This is often accomplished in the Heisenberg picture, where the state,

| i of the field is constant, while the operators Ô(t) are time-varying.

dÔ

dt
=

1

i~ [Ô, Ĥ] (1.11)

Where the Hamiltonian for the electric field in vacuum can be expressed as

Ĥ =
X

j

~!â†
j
(t)âj(t) (1.12)

where we have left out the factor of 1/2 representing the zero point energy. This
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yields operator equations of motion in vacuum:

dâj(t)

dt
= �i!âj(t)

dâ†
j
(t)

dt
= i!â†

j
(t)

(1.13)

Which immediately yield the temporal propagation of the state, âj(t) = âj(0)e�i!t

In the Schrödinger picture, operators are invariant and state evolve in time.

Where a state | (t)i evolves in time according to:

| (t)i = e�
i
~ Ĥt

| (0)i (1.14)

It is often su�cient to approximate this in the perturbative limit as:

| (t)i = | (0)i �
i

~Ĥt | (0)i+ ... (1.15)

Which is su�cient for weak interactions, but for higher order terms care must

be taken with considerations to time-ordering e↵ects.

Entanglement

An entangled state, generally, is one that cannot be expressed as the product

of separable states. For bipartite systems, a state can be defined in terms of a

Schmidt decomposition[64–66]:

 (!, !̃) =
X

n

p
�i�n(!) n(!̃), (1.16)

where an unentangled state is separable and can be written as

 (!, !̃) = �n(!) n(!̃). Some useful ways to quantify the entanglement of a pure

state are the entropy of entanglement, which can be defined as

S = �
P

n=1 �n log2 �n, the Schmidt number or cooperativity, K =
⇣P

n=0 �
2
n

⌘�1
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and the purity, p = Tr⇢̂s. It can be shown that p = 1/K.

While entanglement is much more di�cult to treat for mixed states[67], we’re

generally not concerned with quantum information theoretic quantification of

entanglement, as much as we’re interested in the specific benefits of time-frequency

entangled state generated via SPDC for nonlinear interactions, though these are

related via the number of temporal modes in the SPDC state.

Spontaneous Parametric Down Conversion

Spontaneous parametric down-conversion (SPDC) is the process by which

time-frequency entangled photons are generated. SPDC is a three-wave mixing

process, in which the pump field interacts with the signal and idler fields, via

nonlinear coupling in a (non-centrosymmetric) crystal with a �(2) nonlinearity. The

two down-converted fields are referred to as signal and idler for historical reasons.

The Hamiltonian of this interaction reads1:

Z
dtĤ(t) = �(2)

Z
dt

Z
dV Ê(+)

p
(x, t)Ê(�)

s
(x, t)Ê(�)

i
(x, t) + h.c. (1.17)

For a generalized squeezing we use this Hamiltonian for dynamics. For the low gain

case, we can use Eq. 1.15, and write the state generated via SPDC as:

| i
PDC

= |vaci �
i

~�
(2)

Z
dt

Z
dV Ê(+)

p
(x, t)Ê(�)

s
(x, t)Ê(�)

i
(x, t) |vaci (1.18)

Writing our field operators in terms of creation and annihilation operators:

1While strictly speaking we should quantize the D-field, the standard form used most often
uses the E-field and is correct up to an integer factor[68].
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Ê(+)(x, t) =
R

d!

2⇡

q
~!

2"0cn(!)
exp[i(k(!) · x)� !t)]â(!)

| i
PDC

= "

Z
d!p

2⇡

Z
d!s

2⇡

Z
d!i

2⇡

Z
dte�i(!p�!s�!i)t⇥

Z
dV exp[i�k(!p,!s,!s) · x]âp(!p)â

†
s
(!s)â

†
i
(!i) |vaci

(1.19)

The time integral enforces energy conservation:
R
dtei(!p�!s�!i)t = �(!p � !s � !i), and �k(!p,!s,!s) = k(!p)� k(!s)� k(!i)

determines phasematching. In the paraxial approximation, where the pump is

assumed to be a plane wave:

Z

V

dV exp
n
i�~k · ~r

o
=

Z

X

dxei�kxx

Z

Y

dyei�kyy

Z
L

0

dzei�kzz (1.20)

Which leads to
R
X
dxei�kxx ! �(�kx), and �kx = 0 ! k(s)

x = �k(i)
x , where we have

suppressed the frequency dependence. The same holds for y. For now, we focus on

the collinear configuration in which the further approximation k(i)
x = k(i)

y = 0 is

made. In this case, the phase-matching is determined by the phase-matching in the

z-component of the fields alone.

�(!p,!s,!i) =

Z
L

0

dz ei�kz(!p,!s,!i)z

L

2
sinc

⇣
�kz(!p,!s,!i)L/2

⌘
ei�kz(!p,!s,!i)

L
2

(1.21)

We can expand k(s)(!s) as k(!s) = k(!0) + k0(!s � !0) + k00/2(!s � !0)2, where

!0 = !p/2. We can then write �k = k(!p)� 2k(!0)� 2k00/2(!s � !0)2. Where the

k0 terms cancel. The k00 terms have been combined due to the fact that

!s + !p = 2!0. For perfect phase-matching, k(!p) = 2k(!0), and we can write:

�(!p,!s,!i) =
L

2
sinc

⇣
k00(!s � !0)

2L/2
⌘
eik

00(!s�!0)2
L
2 (1.22)
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Assuming the pump has a classical envelope function ↵(!), our state can then be

written as:

| i
PDC

= "

Z
d!s

2⇡

Z
d!i

2⇡
↵(!s + !i)�(!p,!s,!i)â

†
s
(!s)â

†
i
(!i) |vaci (1.23)

This state is in general not separable in time-frequency basis, and the temporal

and spectral correlation between signal and idler fields is one of the characteristics

entangled two-photon spectroscopy and ETPA are hoping to utilize. As noted in

[24, 27], a separable (unentangled) field obeys the condition that

�(! + !̃)�(⌧ � ⌧̃) � 1. However, this is not the case for non-separable states, such

as those generated via SPDC.

Spatial Considerations

If we don’t constrain ourselves to the collinear geometry, but keep our previous

approximations, then we have k(s)
x = �k(i)

x and k(s)
y = �k(i)

y . This yields a spatial

distribution symmetric around the pump beam.

Without thinking too hard about directionally varying refractive indices, we

note that |~k(s)
|
2 = (k(s)

x )2 + (k(s)
y )2 + (k(s)

z )2 and the same for ~k(i). This yields:

k(s)
z

=

q
|~k(s)|2 � ((k(s)

x )2 + (k(s)
y )2) ⇡ |~k(s)

|

 
1�

(k(s)
x )2 + (k(s)

y )2

2|~k(s)|2

!
(1.24)

Where the approximation holds for small angles. If we assume that the

phasematching is perfect (�kz = 0) for perfectly on-axis signal, idler and pump,

then for ~k(s) = (0, 0, k(s)
z ), �kz = 0 ! k(p)

z = k(s)
z + k(i)

z , and k(p)
z /2 = |~k(s)

| = |~k(i)
|.

Evaluating �kz under this condition yields:

�kz = k(p)
z

�
k(p)
z

2

 
1�

(k(s)
x )2 + (k(s)

y )2

(k(p)
z )2/2

!
�

k(p)
z

2

 
1�

(k(i)
x )2 + (k(i)

y )2

(k(p)
z )2/2

!
(1.25)
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Noting again that k(s)
x = �k(i)

x and k(s)
y = �k(i)

y yields:

�kz =
2

k(p)
z

�
(k(s)

x
)2 + (k(s)

y
)2
�

(1.26)

With these geometrical considerations in mind, we can re-evaluate Eq. 1.20 to yield

the k-vector distribution for perfectly degenerate PDC.

Z
L

0

dzei�kzz =

Z
L

0

dz exp

⇢
i
2

k(p)
z

�
(k(s)

x
)2 + (k(s)

y
)2
�
z

�

= exp

⇢
i
2L

2k(p)
z

�
(k(s)

x
)2 + (k(s)

y
)2
��

sinc

⇢
2L

2k(p)
z

�
(k(s)

x
)2 + (k(s)

y
)2
�� (1.27)

This yields a circularly symmetric sinc-shaped k-vector distribution. The

corresponding spatial correlation area is given by the 2-dimensional Fourier

transform of the momentum distribution, a discussion of the spatial correlations

can be found in [69]. This is similar to the time-frequency variables, in which the

correlation time is given by the Fourier transform of the spectral distribution.

Note on Spectral and Spatial Behavior with Initial Phase-Mismatch

We can modify Eq. 1.25 to accommodate imperfect collinear phasematching by

adding a phase o↵set term, k(p)
z � 2|~k(s)

| = �kz0 :

�kz = k(p)
z

� 2|~k(s)
|+

 
(k(s)

x )2 + (k(s)
y )2

|~k(s)|

!
= �kz0 +

 
(k(s)

x )2 + (k(s)
y )2

|~k(s)|

!
(1.28)

The k-vector distribution then looks like:

sinc2
(
L

2

 
�kz0 +

(k(s)
x )2 + (k(s)

y )2

|~k(s)|

!)
(1.29)

We can compare this to the dependence on the initial phase-mismatch for the
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frequency spectrum:

sinc2
⇢
L

2

✓
�k0 � 2

k00(!0)

2
(! � !0)

2

◆�
(1.30)

Notably, the sign between the two terms in Eqs. 1.29 and 1.30 are opposite of

one another, for a crystal with normal dispersion. This explains why raising the

temperature of a PPLN crystal makes the frequency spectrum more degenerate,

and why lowering the temperature of the PPLN crystal makes the angular spread

more ring-like. We use this ring-like SPDC mode for experiments with

distinguishable signal and idler.

Finally, we can get an intuition for the combined frequency-spatial behaviors

by making a crude approximation in which we combine the two and ignore the

frequency dependence of the angular k-vectors.

sinc2
(
L

2

 
(k(s)

x )2 + (k(s)
y )2

|~k(s)|
� 2

k00(!0)

2
(! � !0)

2

!)
(1.31)

This provides the intuition that more extreme frequency mismatches are

present on the outside of the PDC ring. As the ring shrinks into a spot and

disappears, the outside of the ring becomes the center, and so the center point gets

more extreme frequency mismatches. This agrees with expectations and

observations.

29



CHAPTER II

THEORY OF ETPA

Introduction

One major result of this thesis is the application of a general calculation for

non-resonant TPA of an arbitrary quantum state to the problem of ETPA. In this

chapter, we first review in brief the calculation of the TPA probability, following

closely the derivation in [70]. This TPA probability is applied to an entangled

two-photon state, in order to set rigorous bounds on the non-resonant ETPA

probability, as argued in [59, 60]. We also apply this calculation to a coherent state

to identify the regimes in which ETPA has the greatest possible benefit relative to

classical light. We then consider spatial e↵ects for dye molecules in solution, under

the assumption that the pairs propagate in a Gaussian beam. Finally, we consider

the e↵ects of inhomogeneous broadening of the TPA lineshape on the measurement.

The traditional approach, first developed by Maria Göppert-Mayer, uses

perturbation theory for state amplitudes and posits a density of molecular or

photonic states to arrive at the Fermi Golden Rule for the conventional

cross-section for TPA [43]. Accessible textbook treatments are given in the

quantum optics text by [71] and in the nonlinear optics text by [63]. When dealing

with short light pulses or light having time–frequency correlations, a more detailed

treatment is needed, and several such treatments have appeared, a few being Refs.

[28, 47, 48]

Quantum TPA

The calculation is carried out in the interaction picture where

⇢̂I(t) = Û †
0(t, t0)⇢̂(t)Û

†
0(t, t0), and satisfies @⇢̂I(t) = [ĤI(t), ⇢̂I(t)]. The density
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operator can be described perturbatively as ⇢̂I(t) = ⇢̂0 +
P1

n=1 ⇢̂
(n)
0 (t). The

interaction Hamiltonian for the interaction between the optical field and the

molecule is:

ĤI(t) = �d̂IÊI(t). (2.1)

The form of the interaction Hamiltonian, after application of the rotating wave

approximation (RWA) is: ĤI(t) = �d̂(�)
I

(t)Ê(+)
I

� d̂(+)
I

(t)Ê(�)
I

with,

d̂(�)
I (t) =

X

j,i>j

dij |ii hj| e
i(!i�!j)t,

d̂(+)
I (t) =

X

j,i<j

dij |ii hj| e
i(!i�!j)t.

(2.2)

where dij = hi| ~d · e� |ji are the electric dipole matrix elements. The

interaction-picture operators commute for di↵erent degrees of freedom commute at

all times.

The calculation assumes the molecule begins in the ground state. The density

operator prior to the interaction is the tensor product, ⇢0 = ⇢M
N

⇢F , of the

molecule and field density operators respectively. The first-order perturbative

solution to the state of the molecule at time t is:

⇢̂(1)
I
(t) =

1

i~

Z
t

�1
dt1

h
ĤI(t1), ⇢̂0

i
(2.3)

Higher orders can be calculated by iterated application of the perturbation.

The second order solution is the lowest order that can lead to a population in the

excited state and corresponds to single photon absorption. For this, the interaction

Hamiltonian is applied twice. The density operator can be written as:

⇢̂(2)
I
(t) =

✓
1

i~

◆2 Z t

�1
dt2

Z
t2

�1
dt1

h
ĤI(t2),

h
ĤI(t1), ⇢̂0

ii
(2.4)
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The same goes for higher-order interactions such as two-photon absorption. Of

interest for two-photon absorption is the fourth order solution:

⇢̂(4)
I
(t) =

✓
1

i~

◆4 Z t

�1
dt4

Z
t4

�1
dt3

Z
t3

�1
dt2

Z
t2

�1
dt1⇥

h
ĤI(t4),

h
ĤI(t3),

h
ĤI(t2),

h
ĤI(t1), ⇢̂0

iiii (2.5)

Given these building blocks, we can proceed to outline the case of single-photon

and two-photon absorption, respectively. For one-photon absorption, two

interactions lead to a population in the e state of the molecule. For two-photon

absorption, four interactions lead to a population in the f state of the molecule,

where virtual states or real intermediate states e, e0 serve as stepwise interactions in

the perturbative picture.

One-photon absorption

We first start by calculating one photon absorption. The population Pe in a

given excited state |ei resulting from one-photon absorption is equal to the

expectation value: P (2)
e = Tr(⇢̂(2)

I
(t) |ei he|). Where,

⇢̂(2)
I
(t) =

⇣ 1

i~

⌘2
Z

t

�1
dt2

Z
t2

�1
dt1[ĤI(t2), [ĤI(t1), ⇢0]] (2.6)

Since the molecule starts in the ground state, ⇢0 = |gi hg| ⇢̂F , the integrand can

be simplified by applying the trace operator within the integral. Noting that

⇢0 |ei he| = |ei he| ⇢0 = 0, all terms where ⇢0 is leading or trailing are zero. This

yields:

Tr
⇣
[ĤI(t2), [ĤI(t1), ⇢0]] |ei he|

⌘
=

Tr
⇣
�ĤI(t2)⇢̂0ĤI(t1) |ei he|� ĤI(t1)⇢̂0ĤI(t2) |ei he|

⌘ (2.7)

After application of the rotating wave approximation, the interaction

Hamiltonian is ĤI(t) ⇡ �d̂(
I
�)(t)Ê(+)

I
� d̂(+)

I
(t)Ê(�)

I
(t). The neglected terms will
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contribute small corrections to the final result, which are significant only when the

excitation is far from resonance. Using Eq. 2.2 for the dipole operators, we find for

the first term in Eq. 2.7,

ĤI (̂t2)⇢MĤI(t1) = d̂(�)
I

(t2)Ê
(+)
I

(t2) |gi hg| d̂
(+)
I

(t1)Ê
(�)
I

(t1)
X

i,j

digdgj |ii hj| e
i!igt2ei!gjt1 ⇥ Ê(+)

I
(t2)Ê

(�)
I

(t1),
(2.8)

where !ij = !i � !j. The second term in Eq. 2.7 is the same with t1 and t2

swapped. Hence, using permutation inside the trace, the identity, Tr(Â†) = Tr(Â)⇤,

and the initial state, ⇢̂0 = |gi hg|⌦ ⇢̂F , the trace over the molecule and field can be

written separably as:

TrM
⇣X

i

digdge |ii he| e
i!igt2ei!get1

⌘
⇥ TrF

⇣
Ê(+)

I
⇢̂F Ê

(�)
I

⌘
+ c.c. (2.9)

We can further write
D
Ê(�)

I
(t1)Ê

(+)
I

(t2)
E
= TrF

⇣
Ê(+)

I
⇢̂F Ê

(�)
I

⌘
, which is the

second-order field correlation function, related to g(1)(t1, t2), without normalization.

This leaves the population as:

P (2)
e

=
dgedeg
~2

Z 1

�1
dt2

Z 1

�1
dt1e

i!eg(t2�t1)
D
Ê(�)

I
(t1)Ê

(+)
I

(t2)
E
+ c.c. (2.10)

where we have evaluated the trace over the molecule. We can introduce dephasing

phenomenologically by taking ei!eg(t2�t1) ! e�(�eg�i!eg)(t2�t1) [70, 72–75]. In the

frequency domain, this simplifies to:

P (2)
e

=
1

~2L
2
0dgedeg

Z
d!

2⇡

⌦
â†(!)â(!)

↵

�eg � i(!eg � !)
+ c.c. (2.11)

This is proportional to the overlap of the spectrum of the photons with the

absorption line profile, and agrees with the standard calculation for coherent and
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thermal states.

Two-photon absorption

Moving on to the calculation for two-photon absorption, the fourth order

perturbative solution is needed, where the RWA has been applied preemptively to

the interaction Hamiltonian, keeping only d̂(±)Ê(⌥) terms, such that

V̂ (p)(t) = d̂(�p)Ê(p):

⇢̂(4)(t) =
1

~4
X

p,q,r,s

Z
t

�1
dt4

Z
t4

�1
dt3

Z
t3

�1
dt2

Z
t2

�1
dt1⇥

h
V̂ (s)(t4),

h
V̂ (r)(t3),

h
V̂ (q)(t2),

h
V̂ (p)(t1), ⇢̂0

iiii
,

(2.12)

The various polarization states permutations are included in the sum over

p, q, r, s = ± for simplicity. V̂ (+) raises the molecule and lowers the field. V̂ (�) does

the opposite. The solution has 16 terms contributing to the sum, many of which

can be neglected in most cases. Similar to before, we focus on interactions resulting

in a population, but now in the f state. We write this expectation as

Pf = Tr⇢̂(4) |fi hf |.

Given that the transition of interest is g ! f , the only terms resulting from the

nested commutators that are nonzero are those of the form, V̂ (+)V̂ (+)⇢̂0V̂ (�)V̂ (�),

identified as:

QDQC = TrMTrF
⇣
V̂ (+)(t4)V̂

(+)(t3)⇢̂0V̂
(�)(t2)V̂

(�)(t1)
⌘

QRP = TrMTrF
⇣
V̂ (+)(t4)V̂

(+)(t2)⇢̂0V̂
(�)(t1)V̂

(�)(t3)
⌘

QNRP = TrMTrF
⇣
V̂ (+)(t3)V̂

(+)(t2)⇢̂0V̂
(�)(t1)V̂

(�)(t4)
⌘

(2.13)

With

Pf =
1

~4
X

p,q,r,s

Z
t

�1
dt4

Z
t4

�1
dt3

Z
t3

�1
dt2

Z
t2

�1
dt1

X
QPATH (2.14)

With PATH = {DQC,RP,NRP}, referring to the specific time-ordering of
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the interaction. Because we are using the interaction picture, operators for the field

commute with those of the molecule. Thus, we can separate the correlation

functions into field and molecule portions, keeping in mind that ⇢̂M = |gi hg|. The

molecular correlation functions each take the form:

CM = Tr(d̂(�)d̂(�)⇢̂M d̂(+)d̂(+)
|fi hf |) with the appropriate time orderings for the

DQC, RP, and NRP terms.

Accounting for dephasing, the molecular correlation functions can be written

as[72–75]:

CDQC

M
=
X

e,e0

Mfee0g e�(�fe0�i!fe0 )re�(�fg�i!fg)se�(�eg�i!eg)⌧

CNRP

M
=
X

e,e0

Mfe0eg e�(�fe0�i!fe0 )re�(�ee0�i!ee0 )se�(�eg�i!eg)⌧

CRP

M
=
X

e,e0

Mfe0eg e�(�fe+i!fe)re�(�ee0�i!ee0 )se�(�eg�i!eg)⌧

(2.15)

as detailed in[70]. Here r = t4 � t3, s = t3 � t2, and ⌧ = t2 � t1, and

Mfee0g = dfe0de0gdgedef . The time variables track the time increases during disjoint

time intervals during which dephasing takes place, allowing the dephasing during

each interval to be considered separately. For each transition at frequency !ij, the

corresponding dephasing rate is �ij.

The field correlation functions take the form,

CF = Tr(Ê(+)(ta)Ê(+)(tb)⇢̂F Ê(�)(tc)Ê(�)(td)), again with the appropriate time

ordering. Via the cyclic permutation symmetry of the trace operation, this is

simply the expectation, hÊ(�)(tc)Ê(�)(td)Ê(+)(ta)Ê(+)(tb)i, for the state ⇢̂f , where

care must be taken to keep track of the proper time ordering.

It is worth noting that the four-field correlation function is the degree of

second-order temporal coherence, g(2) when normalized by

hÊ(�)(t1)Ê(+)(t1)ihÊ(�)(t2)Ê(+)(t2)i[71].

The population in the f state Pf = Tr(⇢̂(4) |fi hf |), can then be written in the
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form:

Pf =
1

~4
pathX

e,e0

Mfee0gR
path

e,e0 + c.c., (2.16)

where,

RDQC

e,e0 =

Z 1

0

dr

Z 1

0

ds

Z 1

0

d⌧e�(�fe0�i!fe0 )re�(�fg�i!fg)se�(�eg�i!eg)⌧⇥

D
Ê(�)(t1)Ê

(�)(t2)Ê
(+)(t4)Ê

(+)(t3)
E (2.17)

with analogous expressions for RP and NRP. It is worth noting that these

expressions are equivalent to those in [72–74], generalized to arbitrary quantum

fields.

These results are most easily applied in the frequency domain. Applying this

transformation yields:

RDQC

e,e0 =

Z 1

�1

d!0

2⇡

Z 1

�1

dd
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!

Z 1

�1
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(2.18)

For completeness, we also include RP and NRP terms:
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d!0
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Z 1
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d!0
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Z 1

�1
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(2.19)

These expressions are still quite general, allowing for resonant intermediate

states. While this is some sense concludes the calculation, it is useful to make a few

further approximations, and write things in terms that are more amenable to future
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calculations. We can substitute the field operator Ê(+)(!) = L0a(!), where

L0 =
q

~!0
2"0ncA0

. Where A0 is the e↵ective beam area at the molecule’s location.

This factor can be expressed in terms of a beam’s propagation for ensemble

calculations, which we describe later in this chapter. This substitutes the four field

correlation function with:

D
Ê(�)(!0)Ê(�)(! + !̃ � !0)Ê(+)(!)Ê(+)(!̃)

E
! L4

0

⌦
â†(!0)â†(! + !̃ � !0)â(!)â(!̃)

↵

(2.20)

O↵-Resonance Assumption

The case we are most interested in is the case in is the DQC pathway with no

resonant intermediate states, in which case we can simplify the above expressions

as:

RDQC

e,e0 =
L4
0

(�!fe0 + !0)(!eg � !0)
⇥

Z 1

�1

d!0

2⇡

Z 1

�1
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Z 1

�1

d!̃

2⇡

⌦
â†(!0)â†(! + !̃ � !0)â(!)â(!̃)

↵

�fg � i(!fg � (! + !̃))

(2.21)

It is worth taking a moment to relate this quantity to the conventional

two-photon absorption cross-section, �(2). In this case, the integral expression is

independent of the intermediate state pathways taken(e, e0), and the sum from

Eq.2.16 can be evaluated as

1

~4

✓
~!0

2"0ncA0

◆2 DQCX

e,e0

dfe0de0gdgedef
(�!fe0 + !0)(!eg � !0)

⇥ ... (2.22)

multiplied by the integral expression in Eq. 2.21. Where we have substituted L4
0

and Mfee0g. Noting that the traditional form of the two-photon absorption

cross-section is written as [63]:

�(2) =

✓
~!0

"0nc

◆2 1

2�fg

1

~4

�����
X

e,e0

dfedeg
(!eg � !0)

�����

2

(2.23)
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We can write the prefactor in Eq. 2.22 as �
(2)

�fg

2A2
0

, where it is worth noting that �(2)

is implicitly a function of �fg. Then Eq. 2.16 can be written as:

Pf =
�(2)�fg
2A2

0

Z
d!0
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Z
d!
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Z
d!̃

2⇡

⌦
â†(!0)â†(! + !̃ � !0)â(!)â(!̃)

↵

�fg � i(!fg � (! + !̃))
+ c.c. (2.24)

This is the central result from this calculation, which relates the classical

two-photon absorption cross-section to an overlap between the four-frequency

correlation function of an arbitrary input state with the lineshape of the final state,

under the assumption of non-resonant intermediate states, with dephasing

described via Kubo theory.

This equation can be put in a more useful form, by utilizing the change of

variables, z0 = !0
� !0, z = !̃ � !0, and x = ! + !̃ � 2!0. This yields:

Pf =
�(2)�fg
2A2

0

Z
dx

2⇡

1

�fg � i(!fg � 2!0 � x)
⇥

Z
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†(x� z0 � !0)â(x� z + !0)â(z + !0)
↵
+ c.c.

(2.25)

Where the z integrals can be shown to be real. Therefore, only the real part of the

Lorentzian, ( �fg

�
2
fg+(!fg�2!0�x)2

), contributes.

Gaussian Pulse TPA

It is worth applying this theory to a coherent state Gaussian pulse, |↵i of the

form: ↵(!) = ↵0

qp
2⇡
�

e�(!�!0)2/4�2
. Recalling that â(!) |↵i = ↵(!) |↵i, the average

number of photons can be written as N =
R

d!

2⇡ hâ
†(!)â(!)i =

R
d!

2⇡↵(!)
2 = |↵0|

2.

Utilizing Eq. 2.25, the probability can be written:

Pf =
�(2)�fg
2A2

0

Z
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2⇡

�fg
�2
fg

+ (!fg � 2!0 � x)2
⇥

����
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����
2

(2.26)
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The N2 dependence can be readily observed for this, verifying the expected

quadratic scaling relationship. The overlap integral can be evaluated, by noting the

integral over z serves as a convolution of the Gaussian envelope with itself,

resulting in another Gaussian. For details, see [70]. The resulting probability is:

Pf = N2�
(2)�fg
2A2

0

⇠(�fg/2�) (2.27)

where ⇠(z) = exp(z2)erfc(z), referred to as the scaled complimentary error function,

which is a special case of the Voigt distribution, which results from the convolution

of the Gaussian lineshape of the pulse with the Lorentzian shape of the absorption

line. See Fig.1.2 for the full behavior.

We can identify the two limiting behaviors. In the first, when the pulse is

spectrally narrow, the TPA probability increases linearly as the pulse broadens

spectrally. In the time domain, this can be understood as the interaction strength

scaling with the inverse duration of the pulse. However, once the spectral width of

the pulse surpasses the width of the absorption line, the benefit of shortening the

pulse is o↵set by reduced resonant overlap with the final state, and an asymptotic

e�ciency is reached in the short-pulse limit:

Pf =

8
>><

>>:

N2 �(2)

A
2
0

�p
⇡

(� ⌧ �fg)

N2 �
(2)

�fg

2A2
0

(� � �fg)

(2.28)

The latter region (�fg ⌧ �) is where the e↵ect of frequency correlations have

the most impact, and where the potential for quantum advantage in the sense of

Eq. 1.3 is greatest.
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Quantifying the Enhancement of Entangled Two-Photon

Absorption(Opex)

This section utilizes the general form of the probability of a TPA event, Eq.

2.24, to calculate the TPA probability for time-frequency entangled photon pairs.

Additionally, we use the TPA theory to derive bounds strict bounds on the TPA

e�ciency of an arbitrary time-frequency entangled state for a given spectral width.

This excludes the possibility of an exotic state leading to higher e�ciency than

expected. This section closely follows the work published in [59].

ETPA Calculation

In order to calculate the advantage of utilizing entangled photons, we apply the

two-photon state of time-frequency entangled photon pairs produced via Type-0

collinear SPDC, Eq. 2.33, to the theory developed in the previous section. In the

case where the pump is narrow, we can consider a simplified model of the

joint-spectral amplitude which is analytically tractable, without the need for

numerical simulations. We use this calculation to place bounds on the maximum

e�ciency of ETPA, and relate this calculation to the heuristic equation introduced

by [44] (Eq. 1.4):

Pf =
NEPP

A0
�e =

✓
NEPP

A0

◆
�(2)

A0Te

⇥ fEPP (2.29)

where NEPP < 1 is the mean number of photons in a pulse of entangled photons

with duration Tp. When intermediate-state populations can be neglected and TPA

proceeds only through coherent pathways, the probability for a molecule to

transition from the ground state g to the final state f driven by a pulsed field,

described by any pure state | i, can be rewritten from Eq. 2.24 as:

Pf =
�(2)

A2
0

Z
d!

2⇡

Z
d!̃

2⇡

Z
d!0

2⇡
L(!fg � ! � !̃)C(4)(!0,! + !̃ � !0,!, !̃), (2.30)
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where the frequency-domain field correlation function is:

C(4)(!a,!b,!c,!d) = h | â†(!a)â
†(!b)â(!c)â(!d) | i (2.31)

and the real part of the (peak-normalized L(0) = 1) homogeneously broadened TPA

transition is a Lorentzian line-shape, with width �fg:

L(!fg � ! � !̃) =
�2
fg

�2
fg

+ (!fg � ! � !̃)2
(2.32)

Collinear Type-0 or Type-I SPDC pumped by a pulse of finite duration can be

designed to occur in a single spatial-and-polarization mode, as described by:

| i =
p
1� "2 |vaci+ "

Z
d!

2⇡

Z
d!̃

2⇡
 (!, !̃)â†(!)â†(!̃) |vaci . (2.33)

For the current calculation, we neglect higher-order terms representing the

generation of multiple pairs. The case of few to many pairs per pulse is discussed in

later sections. The joint-spectral amplitude  (!, !̃) is determined by the spectrum

of the pump laser and the phase-matching properties of the nonlinear crystal. It is

square-normalized, such that
R

d!

2⇡

R
d!̃

2⇡ | (!, !̃)|
2 = 1. For Type-0 or Type-I SPDC,

the JSA is symmetric under exchange of variables:  (!, !̃) =  (!̃,!). The mean

number of photons in a pulse is NEPP = 2"2.

The field correlation function is evaluated as:

C(4)(!0,! + !̃ � !0,!, !̃) = 4"2 ⇤(!0,! + !̃ � !0) (!, !̃). (2.34)

The probability is maximized when the pump laser is resonant with the

two-photon transition !p = 2!0 = !fg. Under these assumptions, we can take a few

steps to simplify the equations. We start by inserting Eq.2.34 into Eq. 2.30 and
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Figure 2.1. The anti-diagonal projection K (x) of the two-photon amplitude
 (!, !̃), and the two-photon absorption profile L(x), assumed to be two-photon
resonant with the center frequency of the EPP light field. Also shown is the
‘marginal’ projection, M (!) = (1/2⇡)

R
d!̃

2⇡ | (!, !̃)|
2, which is the energy spec-

trum of the EPP and has bandwidth B.

include the same change of variables, used in 2.25, z = !̃ � !0, z0 = !0
� !0 and

x = ! + !̃ � 2!0:

Pf = 2

✓
NEPP

A0

◆
�(2)

A0

Z
dx

2⇡
L(x)|K (x)|

2 (2.35)

with,

K =

Z
dz

2⇡
 (!0 + z,! + x� z). (2.36)

Here, K represents the integrated amplitude for TPA at a particular two-photon

detuning x. A graphical interpretation is given in Fig. 2.1.

We define the spectral overlap factor, ⌘ as:

⌘ ⌘ 2

Z
dx

2⇡
L(x)|K (x)|

2 (2.37)
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Figure 2.2. Two-photon amplitude in frequency domain (!, !̃) and time do-
main �(t,�t). Diagonal and anti-diagonal frequency arguments are !D =
(! + !̃ � 2!0)/

p
2 and !A = (! � !̃)/

p
2. Diagonal and anti-diagonal time ar-

guments are ⌧ = t � t̃ and ⌧̃ = t + t̃/2. The entanglement time is approximated as
the inverse of the marginal bandwidth, B, of the EPP spectrum:Te = 1/B.

Comparison of Eq. 2.35 with 2.29 yields the relationship:

⌘ = fEPPTe (2.38)

Since reported values of �e have been 7� 10 orders of magnitude larger than

estimates would yield given the estimate �e =
�
(2)

A0Te
, it is worth investigating the

factor fEPP , which would need to be large to account for these discrepancies.

�e =
�(2)

A0Te

⇥ fEPP (2.39)

Given this comparison, we now calculate an upper bound on the

temporal-spectral enhancement possible given a simplified form of the JSA.

The form of the JSA that maximizes the spectral compression onto the

two-photon absorption line L(x) is narrow along the diagonal, and broad along the

anti-diagonal, which is exactly the form generated via Type-0 and Type-I SPDC

with a narrowband pump. In order to find an expression for the upper bound of the

integral, we assume the two-photon amplitude can be written in a factored form as
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the product of narrow and broad functions,  N(!) and  B(N) centered at !0,

oriented along the diagonals of the !, !̃ plane:

 (!, !̃) =  N(! + !̃ � 2!0) B

✓
! � !̃

2

◆
. (2.40)

Both functions are square-normalized in d!

2⇡ and  B(!) =  B(�!) has the

required symmetry. Under these assumptions, the spectral width  N(!) is

determined by the duration of the pump pulse and the  B(!) is determined by the

phase-matching function. The ratio of these two widths is a measure of the amount

of time-frequency entanglement in the EPP field [76]. The more elongated the

two-photon amplitude is, the higher the degree of entanglement. This model can be

a good approximation for Type-0, -I, or -II SPDC, depending on pulse durations

and phase-matching conditions.

The entanglement time can be evaluated under the optimal factorization

assumption. Defining di↵erence and sum times as ⌧ = t� t̃, ⌧̃ = (t� t̃)/2, the

2-dimensional Fourier transform of Eq.2.40 gives the joint temporal amplitude,

�(t, t̃):

�(t, t̃) =

Z
d!

2⇡

Z
d!̃

2⇡
 (!, !̃)e�i!(⌧̃+⌧/2e�i!̃(⌧̃�⌧/2)

= 'N(⌧̃)'B(⌧)

(2.41)

where 'N(⌧) and ')B(⌧) are Fourier transforms of  N(!) and  B(!)

respectively. Using a change to diagonal and anti-diagonal frequency variables,

x = ! + !̃ � 2!0, and y = (! � !̃)/2, we find:

'N(⌧̃) = e�i!0⌧̃

Z
dx

2⇡
 N(x)e

�ix⌧̃

'B(⌧) =

Z
dy

2⇡
 B(y)e

�iy⌧

(2.42)

We quantify the entanglement time Te as the ‘width’ of the di↵erence-time
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distribution |'N(⌧)|2, s illustrated in Fig. 2.2.

For this case we can evaluate K (x):

K (x) =  N(x)

Z
dz

2⇡
 B(z � x/2) (2.43)

The z-integral in this equation is independent of x since, it represents only a shift

of the center of the distribution, or the bounds of integration. Because of this, the

overlap, ⌘, between L(x) and K (x) becomes factorable into two separate terms:

⌘ = 2⌘N⌘B. With:

⌘N =

Z
dx

2⇡
L(x)| N(x)|

2

⌘B =

����
Z

dz

2⇡
 B(z)

����
(2.44)

The two quantities can be bounded from above. We start with ⌘N . Since

L(x)  1 everywhere and | N(x)|2 � 0 everywhere, we can establish the following

bound on ⌘N :

⌘N 

Z
dx

2⇡
| N(x)|

2 = 1. (2.45)

Where the bound of 1 stems from the fact that  N(x) is square-normalized in

dx

2⇡ . The condition that satisfies this bound is when  N(x) is much narrower than

L(x), yielding strong frequency anti-correlation, which is the case we’re most

interested in.

The other factor, ⌘B, is maximized when  B(z) is constant over the region over

which it is defined. This can be shown via the Cauchy-Schwarz inequality.

Given square-integrable functions, defined on a domain with the inner-product

norm, the Cauchy-Schwarz inequality holds. Let g and h be such functions on such

a domain, D. The inequality can be stated as:

����
Z

D

g(x)h⇤(x)dx

����
2



Z

D

|g(x)|2dx

Z

D

|h(x)|2dx. (2.46)

45



Where we note that equality can be achieved when g(x) = �h(x) for � 2 C.

This inequality can be straightforwardly applied to set a bound on ⌘B by

noting that  B(!) is square-normalized and restricted to a finite frequency range

[�!0,!0] for photons generated via SPDC. Then, considering some range, [�⌦,⌦],

outside of which  B(x) = 0, we can write for g(z) = 1,

⌘B ⌘

����
Z ⌦

�⌦

dx

2⇡
g(x) ⇤

B
(x)

����
2



Z ⌦

�⌦

dx

2⇡
|g(x)|2dx

Z ⌦

�⌦

dx

2⇡
| B(x)|

2. (2.47)

Noting that  B(x) is square-normalized, this bound can be stated:

⌘B 

Z ⌦

�⌦

dz

2⇡
1 =

2⌦

2⇡
. (2.48)

Beyond this, we can gather some insight into the form of  B(x) that saturates

this bound. Since the bound is saturated when  B(z) = �g(z) = �, and  B(z)

must be square-normalized, | B(z)|2 = |�|2 = ⇡/⌦ is maximal. In other words, a

rectangular spectral distribution over the region, [�⌦,⌦] maximizes the quantity ⌘B

with a value ⌘B = ⌦/⇡ ! ⌘max = 2⌦/⇡.

We can get an intuitive interpretation of this result from the time-domain

picture. We can consider ⌘B the modulus-square of the Fourier transform of  B(x),

evaluated at time 0. For the optimal case, the time-domain function is found to be:

'B(⌧) =

r
⌦

⇡
e�i!0⌧ sinc(⌦⌧) (2.49)

which is consistent with the bounds for ⌧ = 0. This can be thought of as

verification that ETPA is maximized if the pairs are correlated as tightly in time as

possible, which maximizes '(⌧ = 0).
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Together, Eq. 2.45 and Eq. 2.48 yield the bound,

⌘ = 2⌘N⌘B =
fEPP

Te


2⌦

⇡
(2.50)

Given the heuristic nature of Eq. 2.29, the precise value of fEPP will depend

on how the entanglement time Te is quantified. For cases of interest, 'B(⌧) is a

simple, smooth function peaked around ⌧ = 0. In this case we can use a convenient

definition for the bandwidth, B, and temporal duration, T of a Fourier-transform

pair, f(!) and f̃(!).

B =

Z
d!

2⇡

|f(!)|2

|f(!max|
2
=

1

|f(!max)|2

T =

Z
dt

2⇡

|f̃(t)|2

|f̃(tmax|
2
=

1

|f̃(tmax)|2

(2.51)

Under this definition of Te, for 'B(⌧max) = 'B(0), the bound is straightforward

with ⌘B = |'B(0)|2 = 1/Te, and fEPP  2. In principle, there can be cases in which

this definition is ill-posed, in which case detailed knowledge of the 'B(⌧) may be

necessary to predict the rate. However, this will always be constrained by the

bound described in Eq. 2.50. In practice, the entanglement time will be larger than

the lower bound Te � ⇡/⌦. Here we note that this parameterization of Te

corresponds to a value slightly larger than the FWHM of common functions2.

2Given a real, positive-definite, peak-normalized (i.e. F (!max) = G(tmax) = 1) functions F (!)
and G(t), we can define the bandwidths, B (in Hz) and T as:

B ⌘

Z
d!

2⇡
F (!)

T ⌘

Z
dtG(t)

(2.52)

These definitions have been used successfully in studies of spectral and temporal filtering of quan-
tum light [77]. They provide general approximations for the full-width for simple peak-normalized
functions such as Gaussians, Lorentzians, and sinc-squared functions, as illustrated in Table 1.

These definitions can be adapted to a square-normalized (complex) Fourier transform pair
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�e ⇡ 2
�(2)

A0Te

(2.54)

Comparison of EPP and coherent-state TPA

A comparison with classical TPA of a coherent state with the same flux and

cross-sectional area with a Gaussian temporal envelope of duration Tc is useful to

compare the e�ciencies of TPA and ETPA. This calculation yields a

flux-dependent quantum-enhancement factor, QEF under the assumption that the

classical pulse is spectrally narrower than the TPA linewidth:

QEF =
PEPP

F

P coh

F

⇡
1

N

✓
Tc

Te

◆
(2.55)

This QEF is an alternative way to report the benefit of ETPA, in contrast to

reporting an entangled two-photon absorption cross-section, �e. This QEF reduces

the ambiguity present in reporting �e values without careful consideration of the

experimental parameters under which it is measured.

The bounds on the TPA e�ciency, Eq. 2.50, alongside the estimates of the

TPA e�ciency, Eq. 2.54, provide of a solid theoretical backing for the argument

that large ETPA cross-sections cannot be explained by the solely by the e↵ects of

time-frequency entanglement of the interactions between the optical field and a

single molecule. Additional considerations such as NRP and RP pathways are

considered in [70]. In the next section, we consider ensemble e↵ects to understand

how inhomogeneous broadening and spatial propagation of a Gaussian beam e↵ect

the absolute rates of TPA and ETPA.

as follows:

B ⌘

Z
d!

2⇡

|f(!)|2

|f(!max)|2
=

1

|f(!max)|2

T ⌘

Z
dt

|f̃(t)|2

|f̃(tmax)|2
=

1

|f̃(tmax)|2

(2.53)
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TPA Gaussian Beam

Classical Gaussian-Beam TPA

So far, all of our calculations have assumed a single molecule illuminated by

some uniform field with cross-sectional area A0. However, this is not a good model

for realistic experimental configurations observing TPA. In particular, due to the

quadratic intensity dependence, a tight focus is desirable for e�cient TPA. It is

worth briefly considering the spatial properties of Gaussian beam propagation, and

the e↵ect on the number of TPA events can be expected.

We want to calculate the rate of TPA for a Gaussian beam going through some

two-photon absorber. For the classical calculation we use a simple model that the

rate of 1- and 2-photon absorption (spatial rate of flux attenuation) are propor-

tional to the concentration, C, cross-sections, �(i) and flux density, �(r,', z):

d�

dz
= �C�(1)�� C�(2)�2 (2.56)

To solve this we make the approximation that the pump beam is attenuated negli-

gibly, and assume there is no 1-photon component, setting �(1) = 0. So then:

TPA = �

Z
d�

dz
dz = C�(2)

Z
L/2

�L/2

�2(r,', z) (2.57)

For a Gaussian Beam of the form:

~E(r,', z) = E0~"
w0

w(z)
exp

✓
�r2

w(z)2

◆
exp

✓
�i(kz +

kr2

2R(z)
� (z))

◆
(2.58)

where ~" is the polarization vector, w is the Gaussian beam waist (radius), w0 is the

radius of the beam waist at its smallest point,  (z) is the Guoy phase, and E0 is

the magnitude of the electric field.
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The flux-density for this field can be written as:

�(r,', z) =
4�

2⇡w(z)2
exp

✓
�2r2

w(z)2

◆
(2.59)

where � is the total photon flux.

For this case the number of TPA events can be written:

TPA =

Z

R2

dA

Z
L/2

�L/2

C�(2)�2(r,', z)

=
16�2C�(2)

2⇡

Z
L/2

�L/2

dz
1

w(z)4

Z 1

0

rdr exp

✓
�4r2

w(z)2

◆ (2.60)

Noting that
R1
0 r exp (�r2/a) dr = a/2, the radial integral evaluates to:

Z 1

0

rdr exp

✓
�4r2

w(z)2

◆
=

1

2

w(z)2

4
(2.61)

With this Eq. 2.60 becomes:

�2C�(2)

⇡

Z
L/2

�L/2

dz
1

w(z)2
(2.62)

Now for a Gaussian beam, w(z)2 = w2
0(1 + z2/z2

r
), where zr is the Rayleigh range

and zr = ⇡w2
0n/�. We can evaluate the integral:

Z
L/2

�L/2

dz
1

w(z)2
=

1

w2
0

Z
L/2

�L/2

dz
1

1 + z2/z2
r

= 2
zr
w2

0

arctan

✓
L

2zr

◆ (2.63)

Which finally yields:

�2C�(2)

⇡
2
zr
w2

0

arctan

✓
L

2zr

◆
=

2�2C�(2)n

�
arctan

✓
L

2zr

◆
(2.64)

There are a couple of interesting things to note. The first is that this quantity
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is independent of w0 for L ! 1. This means that for classical TPA of an ideal

Gaussian beam, the focusing conditions do not directly a↵ect the ensemble rate

of TPA, given an arbitrarily long sample. Beyond this the vast majority of TPA

events occur close to the waist of the beam, which can be seen by comparing the

total possible TPA, proportional to arctan(1) = ⇡/2 with the TPA within the

range [�2zr, 2zr]: proportional to arctan(L=2zr
2zr

) = ⇡/4. Which is to say that half of

the total possible TPA for a Gaussian beam occurs in the interval [�2zr, 2zr]

Entangled Two-Photon Absorption

To calculate the spatial properties for ETPA in a single mode, we first need to

adapt our ETPA calculations to this problem. For TPA of a single molecule at a

specific location we had defined the electric field operator as:

~E(+)(t) =

r
~!

2"ncA0

Z
d!

2⇡
ĉ(!)e�i!t (2.65)

To generalize this to many molecules at many locations, we can write this in

terms of the spatial mode of the electric field explicitly:

~E(+)(t, ~x) =

r
~!
2"nc

Z
d!

2⇡
µ(~x)ĉ(!)e�i!t (2.66)

Where µ(~x) is the spatial mode of the entangled pairs, with
R
d~x |µ(~x)|2 = 1.

From here, we see that we can straightforwardly replace
q

1
A0

with µ(~x) for calcu-

lating the TPA probability of a molecule located at position ~x. Then adopting the

TPA probability from previous work yields:

P (~x) = �(2)�fg|µ(~x)|
4Re

Z
d!0

2⇡

Z
d!

2⇡

Z
d!̃

2⇡

⌦
c†(!0)c†(! + !̃ � !0)c(!)c(!̃)

↵

�fg � i(!fg � ! � !̃)
(2.67)

To calculate the expected number of events in a volume, we then integrate the
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probability multiplied with the concentration or number density, ⇢N .

TPA =

Z
dV ⇢N(~x)P (~x) /

Z
L/2

�L/2

dz

Z
dA|µ(r,', z)|4 (2.68)

If we take µ(r,', z) =
q

4
2⇡w(z)2 exp

⇣
�r

2

w(z)2

⌘
, and assume ⇢N = C to be a con-

stant concentration over the region [�L/2, L/2] then we can evaluate the total ex-

pected TPA as:

TPA /
4

⇡2

Z 2⇡

0

d'

Z
L/2

�L/2

1

w(z)4

Z 1

0

rdr exp

✓
�4r2

w(z)2

◆

=
4

⇡2
2⇡

Z
L/2

�L/2

1

w(z)4
1

2

w(z)2

4
=

1

⇡

Z
L/2

�L/2

1

w(z)2

=
2

⇡

zr
w2

0

arctan

✓
L

2zr

◆
=

2n

�
arctan

✓
L

2zr

◆
(2.69)

This leaves us with a total TPA rate of:

TPA = �(2)�fg
2n

�
arctan

✓
L

2zr

◆
⇥

Re

Z
d!0

2⇡

Z
d!

2⇡

Z
d!̃

2⇡

⌦
c†(!0)c†(! + !̃ � !0)c(!)c(!̃)

↵

�fg � i(!fg � ! � !̃)

(2.70)

From this we can see that as far as the spatial properties of ETPA in a single

spatial mode are concerned, such as those generated in a single-mode wave-guide,

the probability is the same as for classical excitation. For bulk SPDC sources where

spatial-spectral coupling is present alongside entanglement across spatial modes,

this description is insu�cient, and is a direction of further research due to the dif-

ficulty modeling the spatial-spectral coupling alongside beam propagation. In our

experiments we focus tightly in order to minimize such e↵ects.

Generalization to Many Molecules

In the theory for TPA, we wrote things down in terms of a single molecule ho-
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mogeneously broadened via Kubo dephasing theory. This accounts for linewidth

broadening via stochastic collisions, leading to the Lorentzian line shape we’re fa-

miliar with. However, a realistic treatment of many molecules in a solution must

take into account inhomogeneous broadening due to local environmental di↵erence

between many molecules. Here, we operate under the assumption that the pump is

much narrower than �fg, and that the marginal bandwidth is much broader than

�fg. For the following section we use the formalism developed in Chapter 4, which

is a more general case than low-gain SPDC, and reproduces the results exactly.

This yields the following formulas:

Pcoh =
�(2)T

A0

�2
fg

�2
fg

+ (!fg � 2!0)2

����
Z

d!

2⇡
f(!)g(!)

����
2

Pincoh = (1 + ⇠)
�(2)T

A0

Z
d!

2⇡

Z
d!̃

2⇡

�2
fg

�2
fg

+ (!fg � ! � !̃)2
|g(!)|2|g(!̃)|2.

(2.71)

We can model inhomogeneous broadening as a distribution of various final

state linewidths, !fg, with the center of the distribution noted !̄fg, which are dis-

tributed according to a Gaussian distribution with variance, �2
fg
. 3. Note that for

homogeneously broadened distributions, by definition !fg = !̄fg, whereas in inho-

mogeneously broadened distributions, !fg is integrated over.

P (!fg) =

s
2⇡

�2
fg

exp

 
�(!fg � !̄fg)2

2�2
fg

!
. (2.72)

Given this distribution of transition frequencies, we can include the probability of

having a given final-state transition frequency in our model. We’ll do this first for

3Note the normalization convention is
R

d!
2⇡P (!) = 1, for consistency in integrating over fre-

quency d!
2⇡
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the coherent contribution, then for the incoherent contribution:

P inhomog

coh
=

Z
d!fg

2⇡
P (!fg)Pcoh(!fg)

=
�(2)T

A0

����
Z

d!

2⇡
f(!)g(!)

����
2

⇥

s
2⇡

�2
fg

Z
d!fg

2⇡
exp

 
�(!fg � !̄fg)2

2�2
fg

!
�2
fg

�2
fg

+ (!fg � 2!0)2
.

(2.73)

In the coherent case, the convolution of the homogeneous and inhomogeneous

distributions is a simple weighting factor independent of the PDC parameters, un-

der the current approximations. This convolution has the following properties: for

�fg � �fg the TPA probability is reduced, since you have many instances where

!fg � 2!0 � �fg. In this case, the molecular linewidth is no longer overlapped with

the pump spectrum. In contrast, when �fg ⌧ �fg the probability is largely un-

changed, because all molecules fall in a regime where �2
fg
/(�2

fg
+ (!fg � 2!0)2) ⇡ 1.

For the incoherent contribution, the convolution is within the integral:

P inhomog

incoh
=

Z
d!fg

2⇡
P (!fg)Pincoh(!fg)

= (1 + ⇠)
�(2)T

A0

Z
d!

2⇡

Z
d!̃

2⇡
|g(!)|2|g(!̃)|2⇥

s
2⇡

�2
fg

Z
d!fg

2⇡
exp

 
�(!fg � !̄fg)2

2�2
fg

!
�2
fg

�2
fg

+ (!fg � ! � !̃)2
.

(2.74)

For the incoherent contribution, when �fg ⌧ �fg, the probability is largely

unchanged, as we would expect. On the other hand, if �fg � �fg there are now

two regimes to think about. If �fg is narrower than the marginal PDC bandwidth,

then the probability is again largely unchanged. However, if �fg is broader than the

marginal PDC bandwidth, the probability is again reduced since some molecules

will have a transition frequency that falls entirely outside the incoherent PDC band-

width.
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We recognize the Voigt profile, in Eq.2.734 and Eq.2.74:5. And will use this form

in the coming sections. E�cient modelling of the Voigt profile can also be accom-

plished via the Tepper-Garćıa function.6

V (2!0, �fg,�fg, !̄fg) =
1

⇡�fg

s
2⇡

�2
fg

Z
d!fg

2⇡
exp

 
�(!fg � !̄fg)2

2�2
fg

!
�2
fg

�2
fg

+ (!fg � 2!0)2

(2.75)

E↵ects of Broadening on Coherent Contribution

In some sense, the e↵ect of inhomogeneous broadening on the coherent con-

tribution is fairly simple, as can be seen in Fig 2.3. As mentioned above, for large

inhomogeneous broadening, �fg � �fg, the TPA probability is greatly reduced, and

for minimal inhomogeneous broadening, �fg ⌧ �fg the TPA probability is unaf-

fected.

However, in a real experiment, determining the homogeneous and inhomoge-

neous contribution to the linewidth is not trivial. For instance, if we estimate the

total linewidth as the quadrature sum of the inhomogeneous and homogeneous

linewidths, we can make predictions about the coherent contribution, holding �(2)

constant. As seen in Fig. 2.4, given the same total linewidth, the rate of TPA is

reduced as the portion of the linewidth due to inhomogeneous broadening is in-

creased.

An important caveat is that in the above scenario we held the cross-section,

�(2), constant. However, in our derivation, �(2) is dependent on the homogeneous

4Yielding:

P inhomog
coh =

�(2)T

A0

����
Z

d!

2⇡
f(!)g(!)

����
2

⇥ ⇡�fgV (2!0, �fg,�fg, !̄fg)

5And

P inhomog
incoh = (1 + ⇠)

�(2)T

A0

Z
d!

2⇡

Z
d!̃

2⇡
|g(!)|2|g(!̃)|2⇡�fgV (! + !̃, �fg,�fg, !̄fg)

6https://arxiv.org/pdf/astro-ph/0602124.pdf
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Figure 2.3. E↵ect of inhomogeneous broadening, as a function of �fg/�fg. We
see clearly for the case,�fg � �fg, the probability is strongly reduced, whereas for
�fg ⌧ �fg, the probability asymptotically approaches the case without inhomoge-
neous broadening.
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Figure 2.4. E↵ect of TPA probability for a given homogeneous linewidth, with

a total linewidth estimated by
q
�2
fg

+ �2
fg

without adjusting for the di↵erence in

�(2). Where 1 is the case with no inhomogeneous broadening �0 =
3
2⇡ THz.
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Figure 2.5. If the TPA cross-section is scaled by the homogeneous linewidth
in simulations, the prediction becomes that the dominant e↵ect is the e↵ective
linewidth to a good approximation

broadening, �fg, and in the canonical derivation this �fg is instead the density of

states. The definition of this a↵ects the prediction in the end relative to the TPA

cross-section

�(2) =
⇣ !0

~"nc

⌘2 1

2�fg

�����
X

e

defdge
!eg � !0

����� (2.76)

With this in mind, if we scale the TPA cross-section by the homogeneous linewidth,

then the result is independent of the make-up of homogeneous and inhomogeneous

broadening, and is (approximately) only a function of the measured linewidth, as

shown in Fig.2.5. In Fig.2.4 and Fig.2.5, we’ve used the quadrature sum to estimate

the Voigt width. This can be better estimated by: fV ⇡ 0.5346fL+
p
0.2166f 2

L + f 2
G.

7

Where fx are widths of the Voigt, Lorentzian, and Gaussian. This refinement has

no qualitative a↵ect on the conclusions.

Empirical Measurement

All of previous discussion has assumed that the true value of �(2) is known for

the transition of interest and that we’re making our predictions based on it. In real-

7Olivero, J. J.; R. L. Longbothum (February 1977). ”Empirical fits to the Voigt line width:
A brief review”. Journal of Quantitative Spectroscopy and Radiative Transfer. 17 (2): 233–236.
Bibcode:1977JQSRT..17..233O. doi:10.1016/0022-4073(77)90161-3. ISSN 0022-4073.
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ity, �(2) is an empirically determined quantity and is measured as a function of the

central frequency of the laser: �(2) = �(2)(!0).

In this section, rather than starting with theory based on homogeneous/inhomogeneous

linewidths, we assume the value of �(2) is determined via experiment, and adjust

our predictions accordingly.

Homogeneously Broadened

For the simplest case, in which �(2) is a single homogeneously broadened transition

(in the absence of inhomogeneous broadening) is measured with a monochromatic

laser, we can use Eq. 115 from [70]:

Pf = �(2)
�2
fg

�2
fg

+ (!fg � 2!0)2
1

A2
0

Z
dt|A(t)|4. (2.77)

In this case the frequency dependent �(2)(!0) can be written:

�(2)(!0) = �(2)
�2
fg

�2
fg

+ (!fg � 2!0)2
, (2.78)

which is the quantity we measure in the lab using a monochromatic source. We also

recognize this quantity as appearing in Eq. 2.71, and can rewrite Pcoh as:

Pcoh =
�(2)(!0)T

A0

����
Z

d!

2⇡
f(!)g(!)

����
2

(2.79)

We can carry out the same calculation for Pincoh, which yields:

Pincoh = (1 + ⇠)
�(2)(!0)T

A0

Z
d!

2⇡

Z
d!̃

2⇡

�2
fg

+ (!fg � 2!0)2

�2
fg

+ (!fg � ! � !̃)2
|g(!)|2|g(!̃)|2. (2.80)

Note that for !0 = !fg as is our usual assumption, nothing is changed.
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Inhomogeneously Broadened

Repeating this procedure for the inhomogeneously broadened case, we first note

that the measurement made by a monochromatic laser in this case corresponds to:

Pf = �(2)⇡�fgV (2!0, �fg,�fg, !̄fg)
1

A2
0

Z
dt|A(t)|4 (2.81)

Where now the measurement of �(2)
in
(!0) made in the lab is:

�(2)
in
(!0) = �(2)⇡�fgV (2!0, �fg,�fg,!fg). (2.82)

Comparing this against Eq. 2.73, we see that the relation to the quantity measured

via monochromatic measurement is the same as in Eq. 2.79.

P inhom

coh
=
�(2)
in
(!0)T

A0

����
Z

d!

2⇡
f(!)g(!)

����
2

(2.83)

and the predictions are the same regardless of any assumptions around the nature

of the linewidth, be it inhomogeneously broadened or not. The same holds for the

incoherent contribution.

P inhomog

incoh
= (1 + ⇠)

�(2)
in
(!0)T

A0

Z
d!

2⇡

Z
d!̃

2⇡
|g(!)|2|g(!̃)|2

V (! + !̃, �fg,�fg, !̄fg)

V (2!0, �fg,�fg, !̄fg)
.

(2.84)

Summary of Inhomogeneous Broadening

Two-photon absorption cross-sections are determined by empirical measure-

ments, in which the same homogeneous and inhomogeneous broadening is present

as in ETPA experiments. Because of this, the frequency dependent cross-section

will look the same in both experiments, and we can model the ETPA simply as a

homogeneously broadened experiment with linewidth matching the experimentally
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measured linewidth.

Conclusions

In this chapter, we presented a summary of the derivation of the TPA proba-

bility for an arbitrary quantum state. We apply this to a realistic model for nar-

rowband TPA, for which analytical approximations are tractable. Within this ap-

proximation, it is further possible to write down strict bounds for the ETPA proba-

bility of a single molecule.

We also provided rigorous description of the spatial distribution of two-photon

absorption of entangled photons in a single Gaussian beam mode. It is worth not-

ing that this is not in general the case for entangled pairs generated via bulk SPDC.

This is in an area where further work would be useful to more accurately deter-

mine ETPA cross-sections, but is beyond the scope of this dissertation. In our ex-

periments, we avoid this complication by focusing tightly such that this becomes a

good approximation, due to the limits of our optical system.

Finally, we discuss the contribution of homogeneous and inhomogeneously

broadening in realistic ETPA experiments, demonstrating that the distinction is

not crucial, assuming the cross-section is itself determined experimentally.

Given these calculations, we can estimate the rates of ETPA for a given sys-

tem, assuming the relevant physical parameters are known. These predictions argue

that the enhancement of the two-photon absorption cross-section is well approx-

imated by the heuristic formula for �e from first predicted by Fei [44]. Based on

these predictions, the reported ETPA cross-sections are many orders of magnitude

than can be explained by the perturbative treatment of TPA. Beyond this, these

bound predict that ETPA signals from typical experimental configurations should

be undetectable.
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The next chapter outlines experiments in which we attempt to experimentally

bound the ETPA cross-section by carefully designing an experiment in which sig-

nals of a given magnitude would be detectable. Based on the absence of a signal,

we can then determine an upper bound on the cross-section.
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CHAPTER III

EXPERIMENTAL BOUNDS ON ETPA IN R6G

Introduction

In this chapter, we set out to establish experimental bounds on the e�ciency

of ETPA given a carefully calibrated source of entangled photons and a well un-

derstood molecular dye. While we are unable to observe any signal with a bright

source of entangled photons, the absence of a signal with a calibrated detection

setup and source yields a bound on the ETPA cross-section. In addition to probing

TPA, we present experimental results comparing sum-frequency generation (SFG)

of entangled pairs and a CW diode laser. We use the same source and dispersion

control for both SFG and TPA experiments. The results, consistent with the the-

ory outlined in Ch 2, provide a limit on the quantum advantage in molecular TPA.

This chapter summarizes and expands on work published under the title, “Experi-

mental feasibility of molecular two-photon absorption with isolated time-frequency-

entangled photon pairs”, in Physical Review Research. [10]

Given the predictions for ETPA rates outlined in Ch. 2, signal rates are ex-

pected to be prohibitively low even for particularly well suited molecular dyes such

as Rhodamine 6G (R6G), which has excellent stability, high quantum e�ciency,

moderate two-photon absorption cross-section, and is highly soluble, allowing for

very high sample concentrations. The experiments described in this chapter were

motivated by a set of experiments conducted by Tabakeav et al., which observed

a signal attributed to ETPA without verification of quadratic scaling [39]. After

the experiments described in this chapter were published, more recent work from

Tabakeav et al. observed quadratic scaling in a similar experiment at seemingly re-

duced rates [8].
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The ETPA cross-sections for Rhodamine 6G pumped by 1064 nm entangled

photon pairs with bandwidth of 30 nm and 60 µm beam waist reported in [7] was

on the order of �e ⇡ 10�21 cm2. This disagrees strongly with estimates of �e from

the theoretical description developed in Ch. 2, which estimates it as �e = 2 �
(2)

A0Te
.

The TPA cross-section of R6G, 9 GM , and the parameters described in their exper-

iment, A0 = 1.13 ⇥ 10�4 cm2, and Te = 10�13 s, allows us to estimate an expected

ETPA cross-section of �e ⇡ 1.6 ⇥ 10�32 cm2 for the experimental configuration in

Tabakeav’s experiment.

Given the large discrepancies between reported and observed values, we set

out to replicate the experiments with R6G as a test system. In particular, our goal

was to control for dispersion, quadratic pair loss, and other linear e↵ects that could

mimic the observed signal. Quadratic scaling with pair loss is a detrimental e↵ect

that can lead to reduced strength of entangled two-photon interactions; however, it

is also a crucial tool for verifying the presence of a nonlinear, rather than linear, op-

tical interaction. As demonstrated nicely utilizing sum-frequency generation in [41],

evidence of a nonlinear interaction driven by entangled photons consists of linear

scaling in the pair rate and, crucially, quadratic scaling with attenuation or loss of

pairs.

Experiment

In this section we describe the experimental apparatus we used to bound the

e�ciency of ETPA. In our experiment, we find that the bound on TPA in Rho-

damine 6G by time-frequency entangled photon pairs is several orders of magnitude

below previously reported values. The upper bound we can place on the enhance-

ment is no more than 2 ⇥ 106 times greater than what is predicted by the theory.

For comparison, many ETPA results, including [7] exceed theoretical expectations

by a factor of 1010 or more.
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In what follows, we first describe the experimental setup and a study of TPA

scaling behavior of SFG with flux for both entangled pairs and classical light. We

then determine the expected TPA fluorescence signal from the molecular sample.

A comparison with the detection noise threshold allows us to establish an upper

bound on the enhancement of ETPA.

Experimental setup and overview

The experimental setup sketched in Fig. 3.1 has two parts: A light generation

block (panels a-b) and a detection block (c-e). A type-0 SPDC source, pumped by

a 532 nm CW laser provides time-frequency entangled photon pairs (EPP) cen-

tered around 1064 nm (panel a). In order to calibrate and align our collection ap-

paratus, we use a CW diode laser at 1064 nm (panel b). We use a continuous-wave

(CW) pumped SPDC source, as used in [7, 41]. The primary benefit to using a CW

pump to generate the entangled photons is that it maximizes the possible pair-

flux while remaining in the low-gain regime, while also maximizing the amount of

time-frequency entanglement attainable. A prism pulse compressor is employed to

compensate for second-order dispersion a↵ecting the photon pairs. Details on EPP

source and pulse compressor are described in subsequent sections.

In the first experiment (Fig. 3.1 panel c), we study SFG by isolated EPP to

confirm that all requirements for successful ETPA, i.e. dispersion compensation,

EPP collection, and focusing are met. This also helps constrain and calibrate ex-

pectations surrounding the e↵ective rates. In the second experiment (Fig. 3.1 panel

d), we carefully characterize and bound the pair flux in our focal volume, by cou-

pling into a single-mode fiber. The fiber coupled pairs are used to characterize the

pair rate and marginal spectrum of the PDC pairs. The diode laser is coupled into

the same fiber to ensure overlap between pairs and the alignment laser. Finally we

replace the fiber with our R6G sample (Fig. 3.1 panel e). This fiber coupling is de-
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Figure 3.1. For measurement of scaling behavior, either the entangled photon
pairs from a Lithium Niobate source (a), or coherent light from a diode laser (b)
are coupled through another Lithium Niobate crystal (c). The SFG is then coupled
into a single-mode fiber, which is connected to a single-photon detector. ND (Neu-
tral density) filters in front and behind the EPP source are used to compare scaling
behavior. Calibration of the fluorescence collection apparatus is performed by ob-
serving the two-photon absorption (e) from coherent light (b). We then replace the
molecular sample with a single mode fiber in the same place (d) to obtain a lower
bound on the number of photon pairs emitted by (a). PMT: Large-area photo mul-
tiplier tube, SP: Shortpass, BP: Bandpass

.
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Figure 3.2. SFG counts at 532 nm as a function of IR power for three cases:
EPP, where power is varied in the parametric down-conversion pump beam (open
circles), EPP, where power is varied after pair generation (open triangles) and
a quasi-coherent state from a diode laser (solid diamonds). We show functions
corresponding to linear (solid line) and quadratic scaling (dashed and dotted), re-
spectively. Each data point was averaged over 180 s and had its dark count rate
subtracted. Vertical and horizontal error bars represent shot noise and measure-
ment accuracy of the optical power meter, respectively.

signed such that the R6G sample can be inserted without a↵ecting the focusing

lens or prior optics, ensuring that the beam overlap is not a↵ected.

SFG as Confirmation and Scaling Behavior

In the first experiment (panel c in Fig. 3.1), we demonstrate SFG with iso-

lated entangled pairs, as well as with a CW reference laser. After passing through

the prism compressor the light is focused into a nonlinear crystal identical to the

one which generates the PDC pairs. After the crystal, light driving SFG is filtered

out by short-pass and band-pass filters. Light generated via SFG is coupled into a

single-mode fiber and detected on an avalanche photo-diode (APD).

The SFG experiment verifies both linear scaling with entangled-pair flux, as

well as quadratic scaling with direct attenuation of the pairs after the SPDC crys-

tal. This constitutes solid evidence of an entangled nonlinear interaction, and is a

replication of the experiment demonstrated in [41]. These results are displayed on

a log-log plot in Fig. 3.2 alongside the quadratic scaling of SFG driven by the CW

IR laser. Adjustment of the prism compressor to maximize the SFG rates allows us
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to optimize the dispersion compensation in the experiment to o↵set the dispersion

introduced by the optical elements.

While this experiment isn’t calibrated in terms of absolute pair flux, it never-

theless demonstrates an enhancement in SFG driven by entangled pairs over SFG

driven by CW light at the same optical powers. Comparison of the lowest data

point for both experiments demonstrates a similar SFG rate, with around 25 times

less optical power for entangled pairs than classical IR light. Extrapolating the

classical e�ciency to the 2 nW data point yields an expected SFG rate more than

500 times lower than that observed with the entangled pairs.

This constitutes a significant benefit of entangled pairs over CW excitation at

ultra-low flux, and is in agreeement with the enhancement expected from theory,

considering photon-number enhancement and time-frequency entanglement.

Bounds on TPA of Entangled Photon Pairs

After the entangled pair flux is calibrated—described in detail below—the fiber

is replaced with a 10mm-thick cuvette containing Rhodamine-6G in ethanol solu-

tion with a concentration of 2mM (Fig.3.1, panels d and e). The fiber assembly is

designed to be removed without a↵ecting the focusing lens or prior optics, ensur-

ing that alignment is una↵ected when the R6G sample is introduced. Fluorescence

emitted from the sample is focused by high-NA lens and collected on a large-area

photo-multiplier tube (PMT - Hamamatsu H7421-50 ) oriented at a 90-degree angle

from the incident light. Any scattered IR light is blocked using several short-pass

filters.

For completeness, we compared the performance of this geometry with a more

tightly focused backward-collection geometry with fluorescence imaged onto a pho-

ton counting avalanche photo-diode. While the detector e�ciency and signal-to-

noise ratio improved in this setup, the ability to establish a lower bound on the ef-
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Figure 3.3. Fluorescence count rates from laser-driven TPA in Rhodamine-6G.
Counts rates were averaged over 5 seconds, and for 1800s for the lowest point. Hor-
izontal error bars reflect measurement accuracy of the optical power meter, vertical
error bars represent shot noise. Fit exponent is 1.972 ± 0.001. The blue shaded area
corresponds to fluorescence flux levels below detection threshold.

fective pair rate bounds was diminished due to poor coupling into the SM fiber and

this setup was unable to provide tighter bounds on the e�ciency despite improved

detection.

To measure the rate of entangled pairs in the interaction volume, we place the

tip of a single-mode optical fiber (core diameter 4 µm Nufern 780HP) in place of

the Rhodamine sample (compare Fig. 3.1d). A 13mm-achromatic lens focuses the

beam into the sample/fiber in an epi-fluorescence geometry. While shorter focal

lengths can in theory increase collection e�ciency, we found this focal length pro-

vided a good compromise between collection e�ciency and coupling e�ciency into

the optical fiber. The fiber-coupled pairs are split probabilsitically via a 50:50 fiber

beam splitter (Thorlabs TW930R5A2 ). Coincidence detection events are measured

with two superconducting nanowire single-photon detectors, with 80% detection

e�ciency at 1064 nm. After correcting for detector e�ciency and auxiliary atten-

uation necessary to prevent detector saturation, the lower bound on the entangled

photon pair rate within the focal volume for our experiment is 2.0(±0.2) ⇥ 109 Hz,

measured at a pump power of 1W.
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Next, we replace the fiber with a cuvette containing a 2mM solution of Rhodamine-

6G. We found this concentration to yield maximum detected fluorescence from

laser-driven TPA in the 90� geometry. In order to enable measurements that are

insensitive to slow-time drifts in background counts, we introduce an optical chop-

per with 50% duty cycle in the beam path prior to the sample cell. Fluorescence

measurements constitute the di↵erence in accumulated counts between open and

shut time intervals. Reported rates are adjusted to reflect the 50% duty cycle.

Using a CW 1064 nm infrared laser we measure the TPA-induced fluorescence

count rate on the PMT. The results are shown in Fig. 3.3. The lowest IR power

at which we observed a signal was 50 µW . At this power the measured fluores-

cence rate was 0.7(±0.1) Hz, which we define as the detection threshold for this

setup. This detection threshold is in good agreement with the expected 3� detec-

tion threshold over the duration of the 1800s measurement, given the dark rate of

30 Hz and 50% duty cycle of the optical chopper.

Comparison of TPA rates and SFG rates observed with our classical reference

laser show that SFG measurements are possible at roughly 4000 times lower flux

than TPA with the current setup (10 Hz TPA count rate was observed at roughly

200 µW classical excitation, whereas 10 Hz SFG was observed at roughly 50 nW ).

Given that the expected enhancement of both nonlinear processes is predicted by

the same four-frequency correlation function [53] (see also Eq. 4.48), the relative

enhancement between the two is expected to be similar.

After calibrating our system with CW measurements, we repeated the same

measurement over 1800 s with 2.0(±0.2) ⇥ 109 entangled pairs per second (gener-

ated by 1 W CW pump power). This did not produce a measurement above our

detection threshold. While longer measurements were also conducted without ob-

serving signal, we based our upper bound on these parameters, since they represent

the lowest classical flux for which we have a corresponding measurement.
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In order to calculate bounds on the cross-section and enhancements from these

measurements we calibrate our detection setup using the classical TPA measure-

ment. We first extract the collection e�ciency ⌘col by fitting the TPA fluorescence

rates from Fig. 3.3 with a quadratic function TPA = a · F 2 of the flux, in pho-

tons/s, (converted from IR power by: F = P · �/hc ⌘ P/~! where P is optical IR

power, � is the laser wavelength, h is Planck’s constant and c is the vacuum speed

of light). The fit parameter a is related to the experimental parameters by:

TPAlaser = aF 2 =
C · �(2)

⇡
⌘col · ⌘det · � ·

Z
dz

w(z)2
F 2, (3.1)

where C denotes concentration, �(2) is the conventional TPA cross section, 9.4(±1.5)

GM [78], � = 0.8 is the fluorescence quantum yield, ⌘det = 10% is the detec-

tor quantum e�ciency, and w(z) is the beam waist along the optical axis. The z-

integral evaulated for a Gaussian beam evaluates to
R

dz

w(z)2 = ⇡
2
n

2� . The obtained

collection e�ciency is ⌘col = 1.9(±0.2)%, which is in reasonable agreement with

independent estimates for our setup. To account for the expected enhancement of

photon number correlations in EPP relative to classical, uncorrelated CW light,

we introduce a quantum enhancement factor QEF = B/F , where B = 10.6

THz denotes the marginal bandwidth of the entangled pairs (as measured by a

spectrometer) and F is twice the pair rate of 2.0(±0.2) ⇥ 109 Hz. This yields:

QEF = 2.7(±0.1)⇥ 103. Combining this QEF with Eq.3.1 gives us our TPA predic-

tion:

TPAEPP = QEF ⇥ TPAlaser = 3.5(±0.3)⇥ 10�7s�1. (3.2)

Since we were unable to observe a measureable signal, the ratio between de-

tection threshold and expected fluorescence rate bounds any unexplained quantum

enhancement (E(bound)). This ratio is:
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E(bound) <
0.7s�1

3.5⇥ 10�7
= 2.0(±0.7)⇥ 106 (3.3)

We can carry out the same analysis in terms of the ETPA cross-section, es-

timated as �e = 2�(2)/AeTe, with �(2) = 9GM [78], Te = 1/B = 94fs and

Ae = A0 = 1.26 ⇥ 10�7cm2, with the assumption that the entanglement area is

the size of the 4µm diameter fiber through which we confirm our pair flux, which

yields the estimate: �e = 1.5⇥ 10�29 cm28.

Estimating a count rate is slightly complicated in this framework because the

beam diameter is not constant for a tightly focused beam. Nevertheless we can esti-

mate this as:

TPA�e = F�eA0/2
C

⇡
⌘col · ⌘det · � ·

Z
dz

w(z)2
, (3.4)

Where �eA0 = 2�(2)/Te. The complication in the calculation is due to the

implicit area dependence within the z integral, which accounts for the change in

beam area along the z axis as the beam moves through the focus. This calculation

assumes that Ae = ⇡w(z)2 within the area of interest. This yields an expected

rate of 3.5 ⇥ 10�7Hz, which is exactly the rate estimated via the QEF. By setting

TPA�e = 0.7, which is our upper bound on the TPA rate and solving for �e we can

estimate our bound, which yields �e . 3⇥ 10�23cm2.

From the measurements presented we conclude that any enhancement of two-

photon absorption by time-frequency entangled photon pairs is orders of magni-

tude lower than previously reported. This supports our theoretical predictions in

described in Ch. 2[60, 79] that quantum enhancement is bounded by B/F , the ra-

tio of EPP bandwidth B to flux F . It also corroborates the independent results ob-

tained under di↵erent controlled experimental conditions by Parzuchowski et al. [9].

8We note that this corresponds to a larger estimate for �e than our comparison to Tabakeav’s
experiment due to the di↵erent focusing conditions. This is one of the major limitations of the use
of �e as discussed in Ch 2.
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While our experimental design can rule out some adverse factors that might dimin-

ish ETPA, we include a more complete discussion in the section, Adverse E↵ects, in

this chapter.

Flux Calibration and source characterization

In this section we elaborate on the measurement used to characterize and bound

the pair flux used in the previous section(panel d in Fig. 3.1). This is achieved by

optimizing the two-photon flux collected by a single-mode fiber (SMF) (Nufern

780HP) placed at the beam focus. The fiber-coupled pairs are split using a 50:50

fiber beam-splitter (Thorlabs TW930R5A2 ) and detected on superconducting nanowire

single-photon detectors (SNSPDs) with a quantum e�ciency of roughly 80% at

1064 nm (IDQuantique).

The fiber provides a small test volume to ensure that generated pairs are tightly

focused, with both arriving within the test volume. Because of this, coupling into

single-mode fiber provides a strict lower bound on entangled-pair flux within the

cross-section defined by the optical fiber. Additionally, coupling of the CW refer-

ence laser into the same single-mode fiber provides a stringent test of alignment

between the two beams at the location of the sample, ensuring proper collection ef-

ficiencies.

Since our setup is capable of generating pairs at rates much higher than can

measured using photon-counting detection, we characterize our pairs at low and

medium flux, and extrapolate these rates to the high flux case. In order to achieve

this we measure pairs over over a variety of pump power with subsequent attenua-

tion as necessary to avoid detector saturation. The number of pairs detected as a

function of pump power, after adjusting for the necessary attenuation, is shown in

Fig. 3.4, which we use to calibrate the pair-flux in our experiment. From this we

calculate a Klyshko e�ciency of ⌘K = 16(±2)%, at our sample location, and use
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Figure 3.4. Photon pair coincidence rate as a function of pump power. The
measured rate is adjusted for the attenuation needed to prevent detector satura-
tion (open circles). Each data point was averaged over 5 seconds. The solid line
represents an exponential fit to the linear regime (open circles), the exponent is
1.02± 0.01. Points at higher power were calculated using relative pair rate observed
in the linear regime. and the observed count rates (solid triangles).

this to estimate our pair rate by multiplying the single count rates with ⌘K [80],

in the high-flux regime where direct measurement of pair rate is no-longer possi-

ble. This is preferable to measuring optical power and making the assumption that

there are exclusively correlated pairs in the beam, which is unrealistic in the pres-

ence of any loss. Obtaining a lower bound for the number of pairs in this way al-

lows us to account for any losses in the optical path up to that point, such as reflec-

tion losses on metal mirrors, which would not be possible by inferring the pair rate

from measured power at the SPDC wavelength.

Above 1W of SPDC pump power we observe a deviation from linear scaling,

which we attribute to photorefraction (degradation of crystal properties by laser-

induced charge migration) in the SPDC crystal. Due to this 1W is the maximum

power we utilize in this experiment. At this power we measure 2.0 ⇥ 109 pairs per

second. At this rate, the average separation of two pairs is roughly 500 ps, 3 orders

of magnitude larger than their correlation time of 100 fs, as estimated from the

measured EPP bandwidth.

The SPDC source uses a periodically poled, 10-mm-long magnesium oxide–doped

lithium niobate (PPLN) bulk crystal (Covesion MSHG1064-1.0-1.0 ) with a poling
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Figure 3.5. Marginal spectrum of the entangled photon pairs at various crystal
temperatures. Spectra were measured on a 500-m-long dispersive fiber time-of-
flight spectrometer, after passing through a 70 nm bandpass filter centered around
1055 nm.

period of 6.9 µm and a phase-matching temperature of 340 K. The type-0 process

is pumped with CW light from a diode-pumped solid-state laser at 532 nm (Co-

herent Verdi V-5 ). The forward-propagating (collinear) part of the SPDC mode

is collimated with an achromatic lens with a focal length of 100 mm. After filter-

ing with a narrowband 1064 nm bandpass filter (Thorlabs FB1070-10 ), the spatial

beam properties of the SPDC, including collimation and copropagation with the

1064nm laser beam, are verified using a CCD camera at various distances from the

collection lens.

The emitted SPDC, centered around 1064 nm, was coupled into a fiber optic

beam-splitter (Thorlabs TW930R5A2 ), with one output sent directly to the super-

conducting nanowire single-photon detectors, and the other sent through 1000 m

of optical fiber (Nufern 780HP). The first output of the beam-splitter serves as a

clock-signal for measuring the arrival time distribution of the other output. The

frequency-dependent dispersion in the optical fiber acts to spread the pulse in time,

to operate as a time-of-flight spectrometer analogous to that in [81, 82].

Figure 3.5 shows measured marginal spectrum of the entangled pairs. The
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Figure 3.6. Schematic of the prism compressor. P1, P2, P3, P4: prisms in the
order the beam passes through them.

FWHM bandwidth extracted from a Gaussian fit is 40 nm (10.6 THz).

Dispersion compensation

Because of the broadband EPP spectrum, dispersion plays an important role

in this experiment. Even small amounts of dispersion in the PDC crystal, lenses,

and filters, which amount to roughly 4000 fs2, cause the photons within each pair

to lose temporal overlap. To avoid this, we compensate second-order dispersion in a

manner similar to the SFG experiments conducted by Dayan et al. [41]. Figure 3.6

shows a more detailed schematic of the employed prism compressor.

In the last step, the prism compressor is used to maximize the signal obtained

from SFG in the second crystal. SFG is the strongest at minimal dispersion. We

adjust it by changing the prism separation using the retroreflector at the secondary

fold. Around the maximum e�ciency, we verify that changing prism separation

and changing insertion of the second prism (which is inherently stable in terms of

alignment) give the same result. We then lock prism separation and insertion in

that position before performing all the experiments described in this chapter. Fur-

ther details can be found in [10]. In addition, we vary the compressor setting for

the ETPA experiment to account for the dipsersion from the SFG crystal, with no

change in outcome.
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Figure 3.7. Schematic of (a) the 90� collection geometry and (b) back-reflection
geometry. PMT: photomultiplier tube, SP: short-pass filter, APD avalanche photo-
diode.

Collection Geometry

We compared two di↵erent collection geometries for our experiments, summa-

rized in Fig. 3.7. The first utilized a large active area PMT, oriented at 90� to the

incoming beam. The second used a free-space APD in the epi-fluorescence geom-

etry, in which the focusing lens serves also as the collection lens for fluorescence

emitted in the backwards direction.

In the epi-fluorescence geometry, Fig. 3.7(b), backwards emitted fluorescence is

collected and collimated via the input focusing lens. A dichroic beam-splitter then

reflects the light from this setup to an APD, which had far superior dark count

rates and detection e�ciency to the PMT used in the 90� geometry.

However, we found that collection e�ciency was decreased and no significant

gain in signal collection could be achieved compared to the side collection geometry,

while backward collection was more sensitive to alignment. While collection e�-

ciency could be increased by use of a shorter focal length focusing lens, the result-

ing reduction in overlap with the SM fiber, reduced our ability to confidently bound

the pair-flux. The main advantage of this geometry is that fluorescence emitted

close to the facet of the cuvette can be detected, even in the presence of strong flu-

orescence reabsorption by the dye that would otherwise prevent detection on the

side. Nevertheless, the backwards geometry proved useful for studying concentra-

tion e↵ects. A secondary benefit to the 90� geometry was the relative insensitivity

to alignment, which served as a redundancy to ensure no ETPA signal was missed.
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Figure 3.8. Plots of (a) maximum collected TPA fluorescence as a function of con-
centration, (b) normalized TPA fluorescence intensity as a function of focal position
relative to the front face of the cuvette, and (c) decay of fluorescence intensity with
focal position, as quantified by a fit to an exponential decay e�x/L, where x is the
distance into the sample, shown with 95% confidence intervals. All measurements
are performed at 10 mW CW laser excitation.

Concentration Dependence

At low concentrations, the rate of TPA and collected fluorescence scales lin-

early with the concentration. At very high concentrations, however, various e↵ects

reduce the fluorescence rate. Fluorescence quenching due to particle aggregation

and fluorescence reabsorption are two such e↵ects that place practical limitations

on the concentration that can be utilized for e�cient fluorescence collection.

These e↵ects were investigated in the backwards collection geometry using a

high-NA short-focal-length (3 mm) aspheric lens (Thorlabs C330TME-B) and a free

space APD (CountBlue 10 ). The 3-mm lens serves as both the focusing lens for

the incident beam and the collection optic for the detection. The collimated TPA

fluorescence is reflected o↵ a dichroic beam-splitter and focused onto a free space

APD.
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This configuration reduces the e↵ect of reabsorption of fluorescence by the dye

by collecting at the front face of the sample volume and allows collection at concen-

trations limited mainly by aggregation quenching e↵ects. Despite this benefit, the

total collected TPA declines past a concentration of 20 mM , as seen in Fig. 3.8(a).

Figure 3.8(b) shows the normalized TPA fluorescence collected as the sample is

moved closer to the focusing lens. After a sharp increase, corresponding to the front

face of the sample overlapping the focal point, the collection e�ciency begins to

decrease. While e↵ects such as increasing optical aberrations with focus depth can

contribute to this e↵ect, the concentration dependence seen in Fig. 3.8(c) suggests

reabsorption or pump depletion in the Rhodamine 6G solution. Although pump de-

pletion from TPA alone is negligible, other e↵ects such as scatter or absorption may

contribute to pump depletion. Due to increased reabsorption in the side collection

geometry, 2 mM was close to optimal for that experiment. These results also indi-

cate that while further optimization in sample concentration and geometry could be

achieved, these e↵ects would not achieve orders of magnitude increases in sensitiv-

ity.

Detection

While other methods have been proposed [83, 84], two primary methods have

been used to detect ETPA: di↵erential transmission and fluorescence detection.

While both are in theory capable of detecting TPA, they have certain advantages

and disadvantages.

There are two primary disadvantages to experiments which attempt to detect

a decrease in transmitted photon flux: First, all sources of linear loss are present in

the signal, requiring careful calibration and validation to rule out non-TPA related
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signals. Second, shot-noise of the transmitted beam limits detection sensitivity.

SNRtransmission =
Tref � Tsampp

Var[Tref ] + Var[Tsamp]
(3.5)

Additionally, transmission experiments have typically utilized photon counting de-

tection, limiting the rate of pair detection to around 107 cps of entangled pairs.

Fluorescence detection on the other hand, is background free in the sense that

there is no inherent signal in the detection channel. Since detection can be sepa-

rated spatially from excitation by collection in the backwards direction or at 90�

to the beam. Additionally fluorescence from TPA without resonant intermediate

states is emitted at higher energy than the incident entangled photons, which can

be e�ciently filtered spectrally, and rules out most linear e↵ects.

Beyond this, in the case of fluorescence detection shot-noise of the source does

not impact the ability to measure a signal, which is limited only by the dark rate of

the experimental apparatus, and the rate of detected counts.

SNRfluorescence =
Rsignalp

Rsignal +Rdark

(3.6)

In contrast, the primary disadvantage to fluorescence detection is e�ciency.

While there are many considerations that a↵ect the detection e�ciency in a flu-

orescence experiment, the two most important are the quantum yield of the two-

photon absorbing molecule, and the optical collection geometry of the experiment.

The quantum yield of a molecule limits which molecules can be investigated, since

fluorescence detection is unsuitable for samples that decay non-radiatively.

Outside of this, the total system e�ciency can be quite low, and requires care-

ful consideration to optimize. Collection e�ciency in particular is limited by the

fact that the radiation is emitted isotropically, making collection di�cult. Collec-

tion e�ciencies above 10% are di�cult to achieve outside of microscopy systems
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utilizing high-NA oil-immersion objective lenses.

Despite the low collection e�ciency, the background-free detection and insensi-

tivity to most linear e↵ects makes fluorescence detection preferable to transmission

measurements, especially in cases where the number of absorbed photons is a small

fraction of the overall intensity. Additionally, the robustness to spurious signals is a

major benefit for measuring very weak signals, as is the case for ETPA.

Note on Chopped Measurements

We implemented a chopped measurement in order to rule out slow time drifts

in average photon rate for long-duration measurements. We insert a chopper wheel

into the PDC beam with a 50% duty cycle, which alternatively blocks and trans-

mits the EPP beam. The chopper derives a reference signal with an infrared sensor,

which ensures the state (open/closed) can be accurately monitored. This reference

signal is monitored on the same time-to-digital converted responsible for monitoring

the photon detection events. This reference signal is used to sort detection events

between open and closed channels.

Comparison between open and closed cycles of the optical chopper gives us a

dark-subtracted measurement of the rate, which is insensitive to any noise that is

not synchronized to the chopper frequency. The down-side to this method is the

50% duty cycle. Due to this, we only measure half the rate we would otherwise.

However, this measurement rules out any noise source, temperature dependent dark

rate, or other environmental drift that is not correlated to the chopper frequency.

This is critical to rule out spurious signals for measurements where the measured

signal is below the dark rate.

The measurement also enables very simple statistical analysis and allows accu-

rate characterization of variances in both signal and dark channel, since the arrival

times of the photons are recorded rather than just the integrated rates. This allows
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for construction of robust error rates and detection thresholds. In particular, we de-

fine our detection threshold as a 3� detection level. We assume that shot-noise on

the dark rate is �dark =
p
dark, which is validated by the error rates on the dark

channel. While the error rates for bright TPA can vary from this substantially, er-

ror is dominated by the dark rates in signal starved experiments for which this esti-

mate is su�cient.

To di↵erentiate our signal from noise, we subtract the accumulated counts on

our dark channel from the counts on our signal channel, TPA = Open � Closed.

Simple error propagation on this yields that �TPA =
q
�2
open

+ �2
closed

=
p
open+ closed.

Given a dark rate of 10 Hz, and a 10,000 second measurement, �TPA is 100
p
10,

and the detectable count rate di↵erence at a 3� confidence level would be 2 ⇥ 3 ⇥

100
p
10. Where the factor of two results from the 50% duty cycle. This translates

to 6
p
10/100 ⇡ 0.18 Hz. For 3 Hz dark rate. This improves to approximately 0.105

Hz 3�-detection threshold for a 10,000 second measurement.

Simply put, the detection threshold decreases as the square-root of the acqui-

sition time. So given a 50% duty cycle, D dark rate in Hz, and measurement dura-

tion, T, the n� detection threshold is:

2n
p
D

p
T

(3.7)

Then the 5� detection threshold for our best detector is 17.4 s1/2. After 100 sec-

onds the threshold is 1.74cps, and after 104 s, or slightly less than 3 hours, it is

0.174 cps.

Adverse E↵ects

Performing an experiment in the absence of a detectable signal is prone to

many pitfalls. Here we attempt to compile a comprehensive list of such pitfalls,

along with our attempts to anticipate and mitigate them. This list is in parts com-
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piled from Ref. [85] and [9] and amended with our own analysis of PDC experi-

ments.

Insu�cient spatial overlap - If focusing into the molecular sample is insu�-

ciently tight, or the waist is not inside the sample volume, there is a chance that

the two photons within a pair have poor spatial overlap. We address this by using

a single-mode fiber as a test volume for our actual photon flux. The pair rate is di-

rectly measured in coincidence.

Dispersion - Dispersion would cause the anti-correlated photons in a pair to

arrive at di↵erent times, and lose temporal overlap, preventing TPA. We estimate

the amount of dispersion from the specifications of all employed optics. This allows

us to design an appropriate prism compressor that compensates for second order

dispersion. We use the SFG experiment to verify successful dispersion compensa-

tion. The SMF experiment allows us to exclude any adverse e↵ects from alignment

caused by adjusting the amount of compression.

Competing single-photon processes - Scattering, pump light bleeding through

optical filters, single-photon absorption in the dye, solvent, optics or cuvette, just

to name a few, all share the same linear scaling behavior with loss. A linear signa-

ture alone is therefore not su�cient to verify that TPA is the dominant process. It

is therefore recommended to verify that TPA and fluorescence rates scale quadrati-

cally with pair attenuation, as demonstrated in our SFG experiment.

Linear loss - The e↵ect of linear loss on photon pairs is that either photon can

be lost probabilistically. Because of this, one cannot infer the average number of

pairs from the average number of photons, or optical power. It is therefore neces-

sary to directly measure the number of pairs in coincidence. By characterizing the

pair rate at the molecular sample, we have ensured that these losses are taken into

consideration.

Detector saturation - Any and all of the signals one may wish to observe here
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rely on a linear detector response. As the average duration between photon pairs

approaches the dead time of the detector, photons arriving in fast succession are

undercounted, and detector response to power becomes sublinear. Dead time of

common photon counting detectors are of the order of 50 ns for APDs, 10 ns for

PMTs, and as low as few nanoseconds for SNSPDs. Therefore, saturation e↵ects

usually start to appear at counts in excess of 107 Hz, and well below for coinci-

dences. We attenuate the PDC beam in order to avoid saturation, and then adjust

the measured coincidence rate for the amount of attenuation.

Insu�cient collection e�ciency - The most simple explanation for the absence

of a fluorescence signal this is insu�cient collection e�ciency, but is easily charac-

terized with classical TPA.

Asymmetric spectral detector response - Silicon-based detectors do not just suf-

fer from low quantum e�ciency near the optical band gap of 1100 nm, but it is

also high asymmetric. This biases detection around 1064 nm towards the short-

wavelength half of the PDC spectrum, causing the unfortunate situation where

using count rates to align fiber coupling is not an option. There are three reme-

dies: Use a narrowband spectral filter to align on th center of the spectrum, align

directly on coincidences using a fiber beam splitter and two detectors, or use a dif-

ferent sort of detector with a more uniform response. The latter is the case when

using nanowire detectors: In the range of 1000 � 1100 nm, their quantum e�ciency

only varies by few percent.

Reabsorption - Emission and absorption spectra of dyes such as Rhodamine

overlap slightly, causing some of the emitted fluorescence photons to be reabsorbed.

Higher dye concentration would increase the number of TPA events, but also in-

crease reabsorption of fluorescence photons. Using the fluorescence signal from clas-

sical TPA, we established that within the range of 0.2mmol/L to 20mmol/L, a con-

centration of 2mmol/L maximized detection for our collection geometry.
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Aggregation - Molecular dyes have a tendency to aggregate at high concentra-

tion. Aggregation can cause a number of e↵ects, including fluorescence quenching,

and shifting of the energy spectrum.

Conclusions

In this chapter, we set experimental bounds on the e�ciency of ETPA and at-

tempt to replicate experiments described in [7]. We demonstrate that our system is

capable of detecting TPA, and carefully characterized system e�ciency by calibra-

tion with classical TPA. We consider the many adverse e↵ects which could lead to

diminished ETPA signal. In order to demonstrate an entangled nonlinear interac-

tion, we present SFG of our down-converted light source, which proves the ability

of our experimental system to observe nonlinear e↵ects of su�cient magnitude, and

experiences the same benefits of time-frequency entanglement as TPA.

We are unable to observe any fluorescence from ETPA with our calibrated sys-

tem, bright source of entangled photons, and well-understood molecular dye. This

is in agreement with predictions from our theory described in Ch. 2 as well as ex-

periments from [9]. The upper bound we infer from our measurement is an ETPA

cross-section, �e . 3 ⇥ 10�23 cm2, which corresponds to a value not more than

2 ⇥ 106 times greater than what is predicted by the theory, accounting both for

photon-number and time-frequency enhancements. This is several order of magni-

tude below what was reported elsewhere. Since publication of the results presented

in this chapter, several other works have reported similar conclusions: [11, 12, 62].
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CHAPTER IV

TPA OF BSV

Introduction

In this chapter, we describe a simplified model of high-gain, pulsed squeezed

vacuum, which we refer to as bright squeezed vacuum (BSV). This chapter reviews

and expands on results published in Phys. Rev. A under the title, “Theory of Two-

Photon Absorption with Broadband Squeezed Vacuum”[86]. We apply this model

to predict TPA rates, joint spectral intensity (JSI) measurements and SFG of BSV.

The motivation behind this is to demonstrate an experimental system capable of

observing two-photon absorption of entangled photons, and to study whether this

informs on the e�ciency of a low-gain behavior of the same source. In Ch. 5, we

will utilize JSI and spectrally resolved SFG measurements at low and high gain to

validate this theoretical model.

The model we use assumes a CW pump in a single-mode nonlinear optical

waveguide, which generates squeezed vacuum in a single spatial mode valid for

both high and low gain. The squeezed vacuum is subsequently chopped into pulses.

This model has limitations especially in the regime of broadband, ultra-fast pulsed

lasers, however for narrowband pumped systems, in which the largest amount of

time-frequency entanglement is present, the model is realistic and describes the de-

sired features well.

This work reproduces many of the conclusions from previous work with bright

squeezed vacuum [53, 87, 88], in a simplified analytically tractable model. We relate

the predictions from this model to the heuristic equation cited by [44] (Eq. 1.4 in

Ch 1), and demonstrate the relationship to the degree of second order coherence,

which has been used to predict similar e↵ects.
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One central result from this study is that in the high-gain regime, the compo-

nent that describes time-frequency entangled photon pairs at low gain is amplified

with nearly the same magnitude as the component that describes interactions be-

tween uncorrelated pairs within the pulse. This indicates the potential for achieving

high spectral and temporal resolution at high gain.

TPA of Chopped CW Squeezed Light (Phys Rev. A)

The model we described in this chapter follows closely the derivation in [86],

which in turn expands on a model for squeezed light in a waveguide from [89].

While a full description of broadband squeezed vacuum in terms of two-mode

squeezing between Schmidt-modes can be found in [22, 90, 91], our model uses a

simplified narrowband approximation. The high-gain results agree with the model

used in [87]. A separate long-pulse model is presented in [53].

The primary benefit of considering a narrowband CW pump is the ability to

express the results analytically without need for numerical calculations. Having a

tractable model easily relatable to experimental parameters, is critical to the

e↵ective estimation of interaction strengths for various experiments, where a full

numerical approach is impractical. In order to simulate the temporal dynamics of

narrowband pulses of squeezed light, we model the e↵ect of a shutter that opens

and closes after a time T . We assume that the shutter acts instantaneously and the

time duration it is open for is long compared to the coherence time of the squeezed

light. The results are valid in both low- and high-gain regimes, and allow us to

understand quantitatively how the two regimes merge at moderate gain. The model

enables us to describe the transition between gain regimes and calculate a

cross-over between the two that agree with the heuristic equation of [44].

The Heisenberg-picture two-mode squeezing transformation for collinear type-0

or type-I phase-matching and crystal length z described in [89], which transforms
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the input field operators â(!) to output operators (
¯
!), is summarized as:

b̂(!) = f(!)â(!) + g(!)â†(2!0 � !). (4.1)

where,

f(!) = cosh[s(!)z]� i
�k(!)

2s(!)
sinh[s(!)z],

g(!) = i
�(!)

s(!)
sinh[s(!)z],

(4.2)

and �k(!) is the phase mismatch of wave numbers k(!)

�k(!) = kp � k(!)� k(2!0 � 2), (4.3)

This can be adapted to more rigorously model periodic poling as discussed in [86].

For collinear type-0 or type-1 the phase mismatch is approximated by

�k(!) ⇡ �k00, where k00 = @2[k(!)]/@!2 is the group-velocity dispersion. the

spectral gain coe�cient is denoted as

s(!) =
p
�2 ��k(!)2/4 ⇡

p
�2 � 2(! � !0)4, (4.4)

using the abbreviation  = k00/2. The gain coe�cient is � = (!0/c)�
(2)
0 Ep0, where

Ep0 is the strength of the pump field and �(2)
0 is the nonlinear coe�cient of the

crystal and assumed to be independent of frequency in the region of interest.

The symmetries, s(2!0 � !) = s(!), f(2!0 � !) = f(!), g(2!0 � !) = g(!) are

valid for type-0 and type-I phase-matching and are utilized in many subsequent

calculations.

We assume the initial state is the vacuum, and the low-gain results reproduce

the state derived in the Schrödinger picture in previous sections. This can be seen
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Figure 4.1. PDC spectra in the low- and high-gain regimes, with characteristic
widths w and b, respectively. In the low-gain regime, the spectrum is well approxi-
mated by sinc2[(!�!0)2] and w is defined by its first zero crossing. In the high-gain
regime, the spectrum is well approximated by a super-Gaussian as in Eq. 4.9, and
b is defined by the e�1 crossing. Crystal length z = 0.01 m. Low gain: �z = 10�4,
high gain: �z = 10.

by considering the spectrum of the squeezed vacuum state:

hvac| b̂†(!)b̂(!0) |vaci = S(!)2⇡�(! � !0), (4.5)

and

S(!) = |g(!)|2 = �2
����
sinh[s(!)z]

s(!)

����
2

(4.6)

Plots of the spectrum in low and high gain for our experimental setup are

given in Fig. 4.1 The total photon flux can be calculated by the integrated

spectrum. At low gain, the spectrum is constant in bandwidth and the flux is

proportional to |g(!0)|2. At high gain, the spectral width changes slowly with

intensity, but the approximation F / |g(!0)|2 can nevertheless be useful.

F =

Z
d!

2⇡
|g(!)|2 (4.7)
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For perfectly degenerate phasematching in the low-gain limit, (� ! 0), the

spectrum is sinc2-shaped and in the degenerate case its width can be parameterized

by the first zero-crossing w =
p
⇡/z(with units of (rad/s)). This FWHM is

⇡ 1.34w.

S(!) ⇡ (�z)2sinc2
h
(! � !0)

2z
i

(4.8)

In the high-gain limit (�z � 1) the spectrum becomes super-Gaussian, and in

the degenerate case its width can be parameterized by the width parameter

b = (�/2z)1/4 = (�z/⇡2)1/4w. The FWHM is ⇡ 1.82b.

S(!) ⇡
1

4
e2�z exp

✓
�
(! � !0)4

b4

◆
, (4.9)

The growth of the total intensity is approximately exponential in gain and in

medium length at high gain, altered slightly by the bandwidth factor b.

Temporal Gating

To model pulsed BSV, we multiply the field in the time domain by an

open-closed shutter function W̃ (t), which equals 1 inside the window [�T/2, T/2]

and zero otherwise. In the frequency domain W (!) = T sinc[!T/2]. In the

frequency domain this product acts as a convolution, which we apply to our

Heisenberg picture operators:

ĉ(!) =

Z
d!0

2⇡
W (! � !0)b̂(!0)

⇡ f(!)

Z
d!0

2⇡
W (! � !0)â(!0) + g(!)

Z
d!0

2⇡
W (! � !0)â†(2!0 � !0).

(4.10)

Since our assumption is that the chopped window is long compared to the

coherence time of our squeezed light, W (!) is narrow compared to f(!) and g(!),

and we can pull these out of the integral. It is worth noting that this model does

not take into account e↵ects that come from an ultrashort pulse in the form of
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increased overlap with the crystal’s phase-matching function, temporal pulse

walk-o↵, or other ultrafast e↵ects and is only valid in the limit of long pump pulses.

One limitation of this model even for long narrowband pump pulses is the presence

of nonuniform gain across the duration of more realistic Gaussian pulse envelopes.

This e↵ectively shortens the BSV pulse in time at high gain.

The form above motivates defining filtered creation and annihilation operators,

Â(!) =

Z
d!00

2⇡
W (! � !00)â(!00)

B̂(!) =

Z
d!00

2⇡
W (! � !00)â(2! � !00)

(4.11)

Because W (!) is symmetric, B̂(!) = Â(2!0 � !), and

ĉ(!) = f(!)Â(!) + g(!)Â†(2!0 � !) (4.12)

The e↵ect of this transformation is that the commutator of the filtered

operators is found to be spectrally and temporally broadened. Denoting it by

[Â(!), Â†(!̃)] ⌘ D(! � !̃), where

D(! � !̃) =

Z
d!0

2⇡
W (! � !0)W (!̃ � !0) = T sinc[(! � !̃)T/2] (4.13)

D(!) is normalized as D(0) = T , with
R

d!

2⇡D(! � !̃) = 1 and
R

d!

2⇡D(! � !̃)2 = T ,

and acts like a broadened delta function.

TPA of BSV

The TPA probability derived in Ch. 2 is valid for an arbitrary quantum state,

and we can apply it to the current case by noting that the initial state is the

vacuum, and replacing â(!) with the transformed operators ĉ(!). Recalling the

90



form of the TPA probability, can be written as:

Pf =
�(2)�fg
A2

0

Z
d!

2⇡

Z
d!̃

2⇡

Z
d!0

2⇡

C(4)(!0,! + !̃ � !0,!, !̃)

�fg � i(!fg � (! + !̃))
+ c.c. (4.14)

where C(4)(!a,!b,!c,!d) = hĉ†(!a)ĉ†(!b)ĉ(!c)ĉ(!d)i is the four frequency correlation

function. This is most easily evaluated by considering one half of the expression at

a time, with C(4) = h�|�i, and

|�i = ĉ(!)ĉ(!̃) |vaci =
⇣
f(!)g(!̃)Â(!)Â†(2!0 � !̃) +

g(!)g(!̃)Â†(2!0 � !)Â†(2!0 � !̃)
⌘
|vaci

(4.15)

This can be broken into two orthogonal states |�icoh and |�iincoh where

|�i = |�icoh + |�iincoh. The incoherent contribution can be read o↵ as:

|�iincoh = g(!)g(!̃)Â†(2!0 � !)Â†(2!0 � !̃) |vaci (4.16)

To evaluate the coherent term, we first note that Â(!) |vaci = 0 and

Â(!)Â†(2!0 � !̃) = D(2!0 � ! � !̃) + Â†(2!0 � !̃)Â(!). With this in mind, we can

then write:

|�icoh = f(!)g(!̃)Â(!)Â†(2!0 � !̃) |vaci

= f(!)g(!̃)D(2!0 � ! � !̃) |vaci
(4.17)

Paying close attention to the frequency variables, we can then write:

C(4)
coh

= g⇤(!0)f ⇤(! + !̃ � !0)f(!)g(!̃)D2(2!0 � ! � !̃) (4.18)

To calculate the coherent TPA probability, we evaluate the !̃ integral, treating

D2(2!0 � ! � !̃) inside the integral as a delta function (i.e., replacing ! + !̃ with

2!0), recalling that
R
D2(!) = T . We also use the symmetry f(2!0 � !) = f(!).

This yields:
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Pcoh ⇡
�(2)T�fg

A2
0

�fg
�2
fg

+ (!fg � 2!0)2

����
Z

d!

2⇡
f(!)g(!)

����
2

(4.19)

Here we note that the broadened delta function served to enforce spectral

compression along ! + !̃.

To evaluate the incoherent contribution, we note that after applying the

commutator several times and paying close attention to the frequency variables,
D
Â(!0)Â(! + !̃ � !0)Â†(!)Â†(!̃)

E
can be written as (D2(!̃ � !0) +D2(! � !0)).

This yields:

C(4)
incoh

= g⇤(!0)g⇤(! + !̃ � !0)g(!)g(!̃)
�
D2(!̃ � !0) +D2(! � !0)

�
(4.20)

Then, evaluating the !0 integral in Eq. 4.14 yields the incoherent TPA probability.

We note that for distinguishable photons such as those generated via Type-II

SPDC, the magnitude is half as large [86].

Pincoh ⇡ 2
�(2)�fgT

A2
0

Z
d!

2⇡

Z
d!̃

2⇡

�fg|g(!)|2|g(!̃)|2

�2
fg

+ (!fg � ! � !̃)2
(4.21)

From this result it is clear that the incoherent contribution does not benefit

from spectral compression, and for narrowband TPA linewidth �fg contributes

negligibly to the overall TPA rate. In contrast, when the TPA linewidth is broad,

the incoherent contribution is twice the overall magnitude of the coherent

contribution.

Inspecting these expressions, it is clear that Pincoh scales quadratically in the

photon flux |g(!)|4, regardless of the gain �. In contrast, the coherent contribution

exhibits two separate behaviors. In the low gain regime |f(!)| ⇡ 1, and the

coherent contribution Pcoh scales linearly in the photon flux |g(!)|2. In high-gain,

on the other hand, f(!) ⇡ g(!) and the coherent contribution also scales
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quadratically. While this is not a new result, it is one worth emphasizing. Because

the coherent contribution is amplified at the same rate as the incoherent

contributions in the high gain limit, the time-frequency correlated portion of the

beam is present in similar magnitude to the uncorrelated portion. If this were not

the case, the coherent contribution would be overwhelmed by the incoherent at high

gain, and not contribute meaningfully to the final TPA probability.

This feature is crucial to our ability to assess low-gain TPA rates from the

comparison of high-gain BSV and classical TPA. If there were contributions that

did not scale in this way, rather remaining linear throughout, we would not be able

to conclude much about those features by measurements at high gain.

It is worth noting that the coherent and incoherent contributions play similar

roles in sum-frequency generation, as studied theoretically and experimentally in

[51, 53, 92], and the presence of the narrow correlated peak in SFG at high gain is

due to this feature. If the coherent contribution weren’t amplified in a way that

preserved the temporal and spectral correlations, this feature would disappear at

high gain.

In Fig. 4.2 we show plots of the coherent and incoherent contributions to the

TPA probability using Eqs. 4.19, 4.21 and parameters closely modelling our

experiment. In the low-gain regime the excitation probability is independent of

pulse duration T for fixed N. That is because the entangled photons arrive in tight

pairs regardless of the arrival times of each pair.

Also plotted in Fig. 4.2 (as the red dashed line) is the prediction for excitation

by a quasi-monochromatic coherent state, using Eq. (112) from [70]. In this case,

the TPA probability is:

Pcoherent state =
�(2)

A2
0

✓
N

T

◆2

T (4.22)

Where F = N/T . Comparison to the coherent contribution at high gain Eq.

4.19 reveals that the e�ciency of BSV is equal to that of classical excitation for
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Figure 4.2. Predicted mean number of molecules excited by TPA per pulse for
a final-state TPA linewidth that is much narrower than the BSV bandwidth but
broader than the e↵ective PDC pump bandwidth, from Eq. 4.19]. Realistic ex-
perimental parameters are as follows: 10 µm e↵ective beam radius (assumed col-
limated), 1 cm cuvette, and 10 mmol concentration of molecules assumed to have
9 GM TPA cross-section. TPA probability per molecule is evaluated from Eq.
4.19], assuming that twice the squeezed-light center frequency is resonant with
the two-photon transition. In each case the solid blue curve is the coherent ETPA
contribution, the dashed yellow curve is the incoherent ETPA contribution, and
the dotted red line is “classical” coherent-state TPA with a quasi-monochromatic
pulse duration T that matches that of the laser that pumps PDC process. Panel (a)
shows a representative case. A transition in scaling from linear in photon number
to quadratic is apparent at N ⇡ 125, which corresponds to a mean occupation of
one photon per temporal mode. (b) shows the e↵ect of changes in the absorber’s
linewidth, which a↵ects only the incoherent contribution. (c) shows the e↵ect of
increasing the low-gain bandwidth parameter w of the squeezed light, varied by
varying the crystal length z. The TPA e�ciency of the coherent contribution is
increased in the low-gain regime and remains the same in the high-gain regime,
while the incoherent contribution decreases in e�ciency. (d) shows the e↵ect of
increasing the time window T . In the low-gain regime the coherent contribution
remains unchanged; however, the high-gain e�ciency is reduced by increasing T,
and the crossover to quadratic scaling occurs at a higher relative photon number.
Both incoherent and classical e�ciency are reduced.
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pulses of equal duration, T . This can be seen due to the fact that at high gain

f(!) = g(!), and both are real, in which case the square modulus of the integral in

Eq. 4.19 is simply F 2. A major conclusion of the present study is that after

consideration of the positive e↵ects of time-frequency correlations present at high

gain, TPA e�ciency when driven by the coherent portion of BSV is the same as

when it is driven by a classical pulse of the same intensity and pulse duration.

However, as noted above, if the molecule has a broad TPA linewidth, the

incoherent contribution is a significant portion of the TPA probability and total

e�ciency of BSV approaches a factor of 3 times as e�cient as coherent excitation of

the same duration for arbitrarily broad TPA linewidth. As noted in Ch 1, the

four-frequency correlation function is closely related to the degree of second order

coherence, g(2)(0). The 3-fold increase in BSV e�ciency over coherent excitation for

broad TPA resonances can be interpreted in the context of temporal fluctuations

given that g(2)(0) = 3 + 1/N̄ for squeezed vacuum, where N̄ is the number of modes

[46, 71, 93]. This can be approximated as N̄ = BT . A more complete discussion of

this correspondence is included in [86].

An important consideration in applying this theory to experimental results is

the cross-over between low and high gain. Knowing the high-gain e�ciency of a

setup and the flux at which the cross-over occurs is su�cient to predict rates at low

gain for the same experimental setup. From the discussion above, it can be inferred

that this should occur at around one photon per mode, but it is worthwhile to

derive this from our model.

In the low gain limit we can write the TPA probability as,

P low gain
coh

⇡
�(2)N

A2
0

3

4⇡
w (4.23)

where we approximated f(!) ⇡ 1, and evaluated the integral |
R

d!

2⇡ g(!)|
2. The
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incoherent contribution is negligible at low-gain. At high-gain, the coherent

contribution is simply given by Eq. 4.22. We can define the cross-over as the flux

when these two are equal:

�(2)N

A2
0

3

4⇡
w =

�(2)

A2
0

✓
N

T

◆2

T (4.24)

Solving for N yields:

Ncrossover =
3w

4⇡
T ⇡ BT ⇡ N̄ (4.25)

In agreement with the expectation, given the correspondence to the degree of

second order coherence, the cross-over occurs at roughly 1 photon per temporal

mode, BT . Where we have utilized the fact that the width parameter w is in rad/s

we note that 3/2⇥ w/2⇡ is a good approximation for B, the bandwidth in Hz.

It is worth noting that the dependence on the number of photons per temporal

modes BT can equivalently be expressed as F = 1/Te where Te = 1/B. In the CW

case, where the number of temporal modes of the pulse is not well-defined, this

interpretation is more clear.

Given this prediction, measurement of the TPA e�ciency at high gain

alongside experimental confirmation of this cross-over is su�cient to predict

low-gain ETPA e�ciencies. Before we move on to experimental implementation of

these experiments, it is worth reviewing predictions for other measurements which

we can carry out in order to validate our model.

Joint Spectral Measurements

As discussed in Ch 1, the Joint Spectral Intensity can be written in terms of

the four-frequency correlation function: JSI(!, !̃) =
⌦
ĉ†(!̃)ĉ†(!)ĉ(!)ĉ(!̃)

↵
. The

chopped model for BSV is described in the Heisenberg picture, and the initial state

is the vacuum. It is easiest to consider one half of the four-frequency correlation
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function at a time, with ĉ(!) = f(!)Â(!) + g(!)Â†(2!0 � !) from Eq. 4.12, and

recalling that Âi(!) |vaci = 0:

|�i = ĉ(!)ĉ(!̃) |vaci =
⇣
f(!)g(!̃)Â(!)Â†(2!0 � !̃) +

g(!)g(!̃)Â†(2!0 � !)Â†(2!0 � !̃)
⌘
|vaci

(4.26)

As before, this can be broken into two orthogonal states |�icoh and |�iincoh

where |�i = |�icoh + |�iincoh. The incoherent contribution can be read o↵ as:

|�iincoh = g(!)g(!̃)Â†(2!0 � !)Â†(2!0 � !̃) |vaci (4.27)

The coherent term, |�icoh can be written as, by recalling that Â(!)Â†(2!0 �

!̃) = D(2!0 � ! � !̃) + Â†(2!0 � !̃)Â(!), and Â(!) |vaci = 0

|�icoh = f(!)g(!̃)Â(!)Â†(2!0 � !̃) |vaci

= f(!)g(!̃)D(2!0 � ! � !̃) |vaci
(4.28)

The full JSI is the sum of the incoherent and coherent contributions, h�|�icoh+

h�|�iincoh. Where the coherent contribution forms an anti-diagonal line of the form:

h�|�icoh = |f(!)|2 |g(!̃)|2 T 2sinc2 ((2!0 � ! � !̃)T/2) (4.29)

The incoherent contribution is equal to: (where for short !0 = 2!0 � !)

h�|�iincoh = |g(!)|2 |g(!̃)|2
D
Â(!̃0)Â(!0)Â†(!0)Â†(!̃0)

E
(4.30)

We can simplify Â(!̃0)Â(!0)Â†(!0)Â†(!̃0) by applying the commutator several times,
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which yields:

h�|�iincoh = |g(!)|2 |g(!̃)|2 T 2
�
1 + sinc2((! � !̃)T/2)

 
(4.31)

This takes the form of an uncorrelated background with a diagonal ridge. The full

JSI reads:

JSI(!, !̃) = |f(!)|2 |g(!̃)|2 D2 (2!0 � ! � !̃)+

|g(!)|2|g(!̃)|2
⇣
D2(0) +D2(! � !̃)

⌘ (4.32)

A few features stand out. At low gain this reproduces the JSI we expect, with

tight correlations along the anti-diagonal since in this limit |f(!)| ⇡ 1 and |g(!)| ⌧

1. The limiting behavior at high gain, where f(!) ! g(!), is for each feature to

have the same relative height. Since they are summed together, the diagonal and

anti-diagonal features reach a relative height of 2, and the intersection reaches a

relative height of 3. Simulations can be seen with experimental data in Ch 5, Fig.

5.2.

Distinguishable PDC Joint Spectra

The same calculation can be repeated in the case of distinguishable pairs, such

as those generated via Type-II SPDC or generated via Type-0 SPDC in the spa-

tially distinguishable case. In this case, we introduce mode labels to our operators

as done in [86]:

ĉi(!) = f(!)Âi(!) + g(2!0 � !)Â†
j
(2!0 � !). (4.33)

And ĉj(!) is defined equivalently, with mode labels reversed. The form of the

JSI is slightly altered to accommodate the mode labels, JSIij(!, !̃) =
D
ĉ†
j
(!̃)ĉ†

i
(!)ĉi(!)ĉj(!̃)

E
.

The calculation proceeds as before with |�i
ij
= ĉi(!)ĉj(!̃) |vaci. The coherent con-

tribution is unchanged from the indistinguishable case outlined before:

|�icoh
ij

= f(!)g(!̃)Âi(!)Â
†
i
(2!0 � !̃) |vaci = f(!)g(!̃)D(2!0 � ! � !̃) |vaci (4.34)
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The incoherent contribution is slightly modified, due to the fact that distinguish-

able modes commute: [Ai(!), Aj(!)] = 0 for i 6= j. Because of this,
D
Âi(!̃0)Âj(!0)Â†

j
(!0)Â†

i
(!̃0)

E

factors into the product of
D
Âj(!0)Â†

j
(!0)

ED
Âi(!̃0)Â†

i
(!̃0)

E
. Applying the commuta-

tor to each of these yields: h�|�iincoh
ij

= D2(0) |g(!)|2 |g(!̃)|2, and the full JSI reads:

JSIsi(!, !̃) = |f(!)|2 |g(!̃)|2 D2 (2!0 � ! � !̃) + |g(!)|2|g(!̃)|2D2(0) (4.35)

Identical to the indistinguishable case, this reproduces the JSI we expect, with

tight correlations along the anti-diagonal. However, at high gain, the di↵use back-

ground term is still present with the same relative intensity, but the diagonal term

is absent. This is due to the distinguishability between the two channels, such that

no bunching in a given mode is present. Simulations and experimental data can be

seen in Ch 5, Fig. 5.4.

Same-Label Joint Spectra

We can also model the case in which we take a joint spectrum between coin-

cidences in the same channel, which we expect to be uncorrelated. A related e↵ect

can be seen in cross correlations between coincidences of separate sources in Type-

II PDC [94]. In the case, the JSI takes the form: JSIii(!, !̃) =
D
ĉ†
i
(!̃)ĉ†

i
(!)ĉi(!)ĉi(!̃)

E
,

with:

|�i
ii
=
⇣
f(!)Âi(!) + g(!)Â†

j
(2!0 � !)

⌘⇣
g(!̃)Â†

j
(2!0 � !̃)

⌘
|vaci (4.36)

In this case the coherent contribution vanishes, |�icoh
ii

= 0, since Âi(!), and Âj(2!0�

!̃) commute. The incoherent contribution is the same as it was in the indistinguish-

able calculation with: |�iincoh
ii

= g(!)g(!̃)Âj(!)Â
†
j
(2!0 � !̃) |vaci. The di↵use back-
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ground is present as well as the diagonal term.

JSIii(!, !̃) = |g(!)|2|g(!̃)|2
⇣
D2(0) +D2(! � !̃)

⌘
(4.37)

Unlike either of the previous cases, the JSI has no anti-diagonal feature, re-

flective of the fact that each photon’s frequency entangled pair is guaranteed to be

in the other channel. Because of this, there is no distinction between high and low

gain in relative intensities present in the JSI. The di↵use background term is still

present as well as the frequency bunching term which is observed along the diago-

nal. This is consistent with the fact that a signal or idler beam alone from SPDC is

thermal in nature.

Joint Spectrally Resolved Hong-Ou-Mandel Interference

Hong-Ou-Mandel (HOM) interference is a well studied two-photon interference

e↵ect. In the non-collinear configuration, we can measure the HOM interference

e↵ect as a function of wavelength and delay between signal and idler. To do so, we

model the recombination of signal and idler beams on a 50:50 beam-splitter, which

leads to the following operators in the two output arms:

d̂a(!) =
1
p
2

�
ei!⌧ ĉi(!) + ĉs(!)

�

d̂b(!) =
1
p
2

�
ei!⌧ ĉi(!)� ĉs(!)

� (4.38)

This can be straightforwardly modified for unequal splitting ratios and phase ef-

fects, as done in [34] for collinear, non-spectrally resolved experiments. As before,

we can write the JSI in terms of the four-frequency correlation function:

JSIHOM
dadb

(!, !̃) =
D
d̂†
a
(!̃)d̂†

b
(!)d̂b(!)d̂a(!̃)

E
(4.39)

We’ll focus on the case where da = db, which models the case in which the
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JSI is measured from coincidences in a single output port of the interferometer. As

before, we focus initially on the right half of the equation.

d̂b(!)d̂a(!̃) |vaci =
1

2

⇣
ei!c⌧ ĉi(!c) + ĉs(!c)

⌘⇣
ei!d⌧ ĉi(!d) + ĉs(!d)

⌘
|vaci

=
1

2

n
ei!c⌧ei!d⌧ ĉi(!c)ĉi(!d) |vaci

I + ei!c⌧ ĉi(!c)ĉs(!d) |vaci
II

+ei!d⌧ ĉs(!c)ĉi(!d) |vaci
III + ĉs(!c)ĉs(!d) |vaci

IV

o
(4.40)

This leaves us with four states that we recognize from previous calculations

multiplied by additional phase-factors, corresponding to delays in the interferome-

ter. Similar to the case analyzed in [34], we designate:

I = ei(!+!̃)⌧
|�i

ii
, II = ei!⌧ |�i

is
, III = ei!̃⌧ |�i

si
, IV = |�i

ss
(4.41)

Noting that II and III are the only non-orthogonal cross-terms, the full expression

becomes:

JSIHOM
dada

(!, !̃) =
1

4

n
|I|2 + |II|2 + |III|2 + |IV |

2 + II⇤III + III⇤II
o

(4.42)

We can write the self-terms, (|I|2 etc.), in terms of JSIs we had calculated previ-

ously:

|I|2 = JSIii, |II|2 = JSIis, |III|2 = JSIsi, |IV |
2 = JSIss (4.43)

The cross-terms can be evaluated as:

II ⇤ III = ei(!̃�!)⌧
h�|

is
|�i

si

III ⇤ II = e�i(!̃�!)⌧
h�|

si
|�i

is

(4.44)

Recalling that |�i can be broken up into coherent and incoherent contributions

we analyze these separately to evaluate the cross-terms. First, we note that the co-
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herent parts are equal: |�icoh
is

= |�icoh
si

= |�icoh. In contrast, the incoherent part can

be written as:

h�|incoh
is

|�iincoh
si

= |g(!)|2|g(!̃)|2
D
Âi(!̃

0)Âs(!
0)Â†

i
(!0)Â†

s
(!̃0)

E
=

= |g(!)|2|g(!̃)|2D2(! � !̃)

(4.45)

Since As and Ai, commute these can be factored again, with hÂs(!0)Â†
i
(!̃0)i =

D(! � !̃). Putting this all together leaves:

JSIHOM
dada

(!, !̃) =

(
1

2
|g(!)|2|f(!̃)|2

⇣
1 + cos((! � !̃)⌧)

⌘
D2(2!0 � ! � !0)+

|g(!)|2|g(!̃)|2
⇣
D2(0) +

1

2

⇣
1 + cos((! � !̃)⌧)

⌘
D2(! � !0)

⌘) (4.46)

We recognize this as the low-gain JSI with a diagonal cosine modulation across the

anti-diagonal. At high gain, the di↵use background grows in but is not modulated.

The anti-diagonal term / 1 + cos((! � !̃)⌧)D2(! � !0) is approximately constant in

magnitude for moderate delays.

Sum Frequency Generation

Having evaluated various forms of incoherent two-photon measurements, we

can now turn our attention to coherent nonlinear measurements. To model SFG,

the up-converted field in the perturbative approximation can be written as [53, 71,

94]:

d̂sfg(!3) ⇡ d̂(in)!3)� iL��(2)

Z
d!

2⇡
�(!,!3)ĉ(!)ĉ(!3 � !) (4.47)

where � ⇡
p
~2!3

0/16⇡"0c
3A0n(2!0)n(!0)2.

As always, we can write the spectrum of the final field in terms of the expec-

tation, SFG(!3) =
D
d̂†
sfg

(!3)d̂sfg(!3)
E
. Noting that the term d̂(in)(!3) evaluates to

zero when the input field (at the up-converted frequency) is the vacuum, this ex-
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pression can be written as:

SFG(!3) ⇡ (L��(2))2
Z

d!

2⇡

Z
d!0

2⇡
�⇤(!0,!3 � !0)�(!,!3 � !)⇥

⌦
ĉ†(!3 � !0)ĉ†(!0)ĉ(!)ĉ(!3 � !)

↵ (4.48)

We note the close correspondence with Eq. 2.249. Where the same four-frequency

correlation function (up to a change of variables) is found to determine the final

quantity. With the major di↵erences between the two being the fact that TPA is

not spectrally resolved, and the overlap function is determined by the molecular

resonances rather than the phase-matching of the SFG crystal.

Evaluating the four-frequency correlation function as before, we can write the

SFG spectrum in terms of coherent and incoherent parts. The coherent part is10:

SFGcoh(!3) = (L��(2))2D2(2!0 � !3)

����
Z

d!

2⇡
�(!,!3 � !)f(!)g(!3 � !)

����
2

(4.49)

9Which can be written under the change of variables, ! = !3 � !̃:

Pf =
�(2)�fg
2A2

0

Z
d!0

2⇡

Z
d!̃

2⇡

Z
d!3

2⇡

⌦
â†(!0)â†(!3 � !0)â(!3 � !̃)â(!̃)

↵

�fg � i(!fg � !3)
+ c.c.

10Where we have used:

ĉ(!)ĉ(!3 � !) |vaci = f(!)g(!3 � !)D(2!0 � !3) |vaci
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And the incoherent part is11:

2(L��(2))2
Z

d!

2⇡
|�(!,!3 � !)|2!|g(!)|2|g(!3 � !)|2 (4.50)

Where we have assumed the phase-matching function is symmetric in �(!, !̃) =

�(!̃,!). The end result being:

SFG(!3) ⇡ (L��(2))2D2(2!0 � !3)

����
Z

d!

2⇡
f(!3 � !)g(!)

����
2

+

2(L��(2))2
Z

d!

2⇡
|g(!)|2|g(!3 � !)|2

(4.51)

We recognize the coherent term as the narrow spike, and the incoherent term

as the broad background, as also described in [53]. The narrow spike corresponds

to the e↵ective spectral compression seen in the case of ETPA. From this it is clear

that the integrated SFG spectrum has the same form as the TPA probability up to

the phasematching/lineshape considerations. This correspondence was also recog-

nized by Dayan [53]. Moreover, in the spatially single-mode picture it is clear that

the cross-over point will be the same as for TPA since the equations governing the

interaction strengths are identical.

11Here we have used:

SFGincoh(!3) = (L��(2))2
Z

d!

2⇡

Z
d!0

2⇡
�⇤(!0,!3 � !0)�(!,!3 � !)⇥

g⇤(!0)g⇤(!3 � !0)g(!3 � !)g(!)
D
Â(2!0 � !0)Â(2!0 � !3 + !0)Â†(2!0 � !3 + !)Â†(2!0 � !)

E

As well as:
D
Â(2!0 � !0)Â(2!0 � !3 + !0)Â†(2!0 � !3 + !)Â†(2!0 � !)

E
= D2(!0

� !) +D2(!3 � !0
� !)
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The E↵ect of Dispersion

Up until now we have not treated dispersion, however dispersion represents

another probe of time-frequency correlations that we can access in the lab. We can

model dispersion by replacing ĉ(!) ! ĉ(!)eik
00
/2(!�!0)2 , and we can equivalently

make the same replacements for f(!) and g(!). Applying this to our equation for

the coherent BSV TPA probability, Eq. 4.19, we find:

Pcoh ⇡
�(2)T

A2
0

����
Z

d!

2⇡
f(!)g(!)eik

00(!�!0)2
���� (4.52)

which in general reduces the TPA e�ciency. For the incoherent BSV TPA probabil-

ity, Eq 4.21 on the other hand, the replacement yields:

Pcoh ⇡ 2
�(2)�fgT

A2
0

Z
d!

2⇡

Z
d!̃

2⇡

�fg
���g(!)eik00/2(!�!0)2

���
2 ���g(!̃)eik00/2(!�!0)2

���
2

�2
fg

+ (!fg � ! � !̃)2
(4.53)

which has no e↵ect on the TPA probability, since |g(!)eik
00
/2(!�!0)2 |

2 = |g(!)|2.

It is worth noting that this is only true within the limitations of the model. For

instance the time-of-flight measurements disperse the pulse across several nanosec-

onds, which would clearly reduce the TPA e�ciency of the incoherent contribution.

This contradiction stems from the approximations treating D(!) as a delta func-

tion. However, the model is valid for moderate amounts of dispersion resulting in a

temporal spread much less than the pulse duration.

We now turn our attention again to SFG, which can be written to include the

e↵ects of dispersion in terms of Eq. 4.51. To model broadband SFG phasematching,

we have assumed �(!,!3 � !) = 1:

SFG(!3) ⇡ (L���(2))2|D(2!0 � !3)|
2

����
Z

d!

2⇡
g(!)f(!)eik

00(!�!0)2
����
2

+

2(L���(2))2
Z

d!

2⇡

���g(!)eik
00
/2(!�!0)2

���
2 ���g(!3 � !)eik

00
/2(!3�!�!0)2

���
2

(4.54)
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Here we see that the broad pedestal, which corresponds to the incoherent term,

is una↵ected by dispersion. On the other hand, the e�ciency of the peak is sensi-

tive to dispersion. In general dispersion will reduce this e�ciency and dispersion

compensation can increase this e�ciency since the phase-matching function contain

dispersion from the SFG crystal itself.

Conclusions

In this chapter, we outline a simplified model of BSV for experiments in which

the pump is a narrowband pulse. Using this model, we predict TPA rates as well as

the outcomes of JSI measurements and spectrally resolved SFG. Within the approx-

imations made by this model, we verify the heuristic equations for TPA rate and

cross-over between linear and quadratic flux scaling for the case of SFG and TPA.

We also outline the relationship between the e�ciencies of TPA for BSV and classi-

cal excitation in the frequency domain, reproducing a known result in terms of the

second order coherence function g(2).

The results from this chapter outline how the correlations from entangled pho-

tons persist in the high-gain regime, in agreement with the work from Dayan [53].

One of the central implications of this result is that characterization in the high

gain regime is su�cient to predict low-gain e�ciencies if the cross-over point is

known, which can be readily approximated as N = B/F . Because of this, in lieu

of low-gain TPA results, we can validate whether our model is capable of predicting

the correct enhancement due to time-frequency correlation by comparing the mea-

sured high gain TPA e�ciency with that of classical TPA. Any further enhance-

ments would lead to greater e�ciencies at high gain and a disagreement between

these two e�ciencies.

Additionally, since the functional form of TPA and SFG are the same, and low-

gain SFG signals are readily observable, we can also test our prediction of the cross-
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over point in SFG. This is an important test for two reasons, the first is that the

cross-over point is a direct consequence of the enhancement due to time-frequency

entanglement. The second is that if there were some low gain enhancement not de-

scribed by our theory which continues to scale linearly for all gain values (i.e., is

not observable at high gain), this enhancement would nevertheless skew the loca-

tion of the cross-over point.

A secondary result is that since time-frequency correlated component of these

fields persists at high gain, high temporal and spectral resolution utilizing BSV is

achievable. This can be seen by the e↵ects of dispersion on the coherent spike in

the SFG spectrum, as well as by the direct measurement of the SFG spectrum,

when distinguishable signal and idler beams are delayed relative to one another

prior to up-conversion.

In Ch 6, we carry out experiments to validate this model and see good agree-

ment with each of these predictions.
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CHAPTER V

EXPERIMENTAL TPA OF BRIGHT SQUEEZED VACUUM

Introduction

In this chapter, we will apply the theoretical framework for two-photon absorp-

tion of low- and high-gain squeezed vacuum developed in the previous chapter to a

set of experiments designed to test some of the key predictions identified previously.

We demonstrate a first of its kind measurement of the joint-spectral intensities of

squeezed vacuum in the transition regime between low and high gain, for distin-

guishable and indistinguishable cases alongside spectrally resolved Hong-Ou-Mandel

interference.

While we are unable to observe TPA in the low-gain regime with our experi-

ment, we are able to confirm the previously known asymptotic e�ciency limit that

TPA driven by coherent and incoherent contribution of BSV is roughly three times

as e�cient as coherent excitation with the same pulse duration. This e↵ectively

limits the magnitude of the time-frequency enhancement.

We confirm that the crossover between linear and quadratic scaling occurs at

approximately 1 photon per mode by directly observing the cross-over in e�cient

sum-frequency-generation with narrowband phasematching. This places limits on

the e↵ect of photon-number and time-frequency enhancement in SFG.

Finally, we are able to confirm that the time-frequency correlations of interest

persist in high gain, albeit alongside incoherent background terms. We do this in

two ways. First, by varying the degree of dispersion compensation present prior to

spectrally resolved SFG we observe the detrimental e↵ect of quadratic phase on the

sharp correlated spike in the sum-frequency signal, while the broad incoherent sig-

nal remains constant. Separately, by varying the time-delay between non-collinear

108



signal and idler beams, we are able to demonstrate simultaneously high resolution

in both time and frequency. This is strong validation that utilizing BSV to probe

the e↵ect of these correlations on the TPA e�ciency is well motivated and remains

sensitive to correlation of this type.

Taken together, these results represent a solid understanding of the physics at

play and demonstrate that the predictions made in previous chapters agree with

the observable physics. Importantly, any major enhancement of TPA e�ciency due

to time-frequency entanglement not captured by our theory would be reported by

these experiments. The consistency between our experiment and theoretical pre-

diction is the strong evidence that the orders-of-magnitude ETPA enhancement

reported elsewhere cannot be explained by time-frequency enhancement of two-

photon absorption.

BSV ETPA

Many studies have investigated SPDC primarily in the low-gain regime, which

can be roughly defined as the regime in which the process produces one or fewer

photon pairs per temporal mode of the PDC process. In this chapter, we instead

investigate the high-gain regime, in which many photon pairs per temporal mode

exist, leading to parametric gain. In this regime, we demonstrate key features of

the joint spectral intensity between any two photons within the BSV pulse. We

present experimental verification of key features and predictions of the model pre-

sented in the previous chapter and [86].

Two-Photon Absorption was also measured at rates consistent with experimen-

tal bounds on entangled two-photon absorption (ETPA) set in [9, 10].

We probe the model by various distinct measurements. We first measure joint

spectral intensities (JSIs) in the low- and high-gain regimes for both distinguish-

able and indistinguishable signal and idler beams. Our model correctly predicts the
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relevant features of these measurements. We also use the distinguishable case to

measure spectrally resolved Hong-Ou-Mandel interference at low-gain.

We probe the temporal nature of the fields by investigating spectrally resolved

sum-frequency generation. Dispersion is utilized to probe the e↵ect of dispersion on

SFG e�ciency. Separately, temporal delays between signal and idler beams prior

to SFG probe both time and frequency correlations. We compare the e�ciency

of classical TPA and TPA driven by BSV, which agree well with predictions from

our model, a central result of our study. Finally, a high-e�ciency, narrowband SFG

crystal is used to measure the crossover between low-gain linear scaling and high-

gain quadratic scaling regimes.

The sum of these results is strong evidence that this model is useful for the

case of interest, where a narrowband pump drives broadband down-conversion with

a high degree of time-frequency entanglement in the absence of spatial entangle-

ment. Moreover, we provide strong evidence that the model provides a useful start-

ing point to assess the feasibility and expected rates of an ETPA experiment in the

absence of low-gain signal, by confirming high-gain e�ciencies relative to classical

TPA alongside confirmation of the low- to high-gain crossover rate in SFG.

Experimental Configurations

Squeezed vacuum was generated via Type-0 SPDC in a 10 mm Magnesium Ox-

ide Doped Periodically Polled Lithium Niobate (PPLN) crystal (Covesion MSHG1064-

1.0-1.0 ). The polling period was 6.93 µm, and the crystal temperature was set for

collinear and non-collinear phasematching as needed. Temperature was controlled

by a home-built oven and kept stable with closed-loop feedback control (Oxford In-

struments Mercury ITC ).

The pulsed pump laser is centered around a wavelength of 532 nm, and is ap-

proximately 8 ps in duration (Lumera Laser Hyper Rapid 50 ). The pump repetition
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rate was varied between 100 kHz and 10 MHz as needed between experiments.

Pump intensity was controlled via a set of neutral density filters with fine-tuning

accomplished by a variable attenuator comprised of a �/2 waveplate and polariz-

ing beam splitter, after which a second �/2 waveplate rotated polarization to the

correct (V ) polarization for the crystal phasematching conditions. Residual funda-

mental harmonic from the pump was filtered via shortpass and notch filter Thorlabs

FESH0750, Newport FF01-540/80-25.

The pump pulse was focused by a 500 mm lens to a beam waist with a ra-

dius of 75 µm inside the crystal. Both pump beam and SPDC were collimated by

a 200 mm lens with anti-reflection coating for both pump and SPDC frequencies

(Edmund Optics YAR-BBAR 33-213 ). The pump was blocked by a set of three

long-pass filters (Thorlabs FELH0900, FELH0850, FELH0750 ), the first of which

was angled slightly to direct the reflected beam onto a beam-dump.

JSI Measurement

The joint spectral intensity (JSI) was measured by time-of-flight (TOF) spec-

trometry, similar to that in [81, 82, 94]. The principle behind the TOF measure-

ment is to utilize the fact that light of di↵erent frequencies travels through disper-

sive media at di↵erent group velocity, as determined by the frequency-dependent

refractive index, n(!), of the material. Given su�cient dispersion, the frequency of

the light is mapped onto the time of arrival relative to some known time reference.

TOF measurements are typically used in photon-counting measurements, in which

the arrival time of single photons can be correlated to the laser clock.

In our experiment, the dispersion was generated via 500 m spools of single-

mode optical fiber (Nufern 780HP). Two 500 m fiber spools in series spread the

light from our PDC source out over approximately 6 ns. Our time-to-digital con-

verter (IDQuantique ID900 ) has 13 ps resolution. Our SNSPDs have a timing jitter
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on the order of 35 ps. In order to generate a su�ciently stable clock for the TOF

measurement, we derived a clock signal from a picko↵ of our pump laser, which was

coupled into a single mode fiber and detected on a photodiode (Thorlabs DET10A)

with 1.8 ns rising edge. The jitter was measured to be around 30 ps.

Frequency calibration of the TOF spectra was accomplished by inserting in-

terference filters with well known spectral properties at normal incidence into the

broadband SPDC beam at varying phasematching conditions. The sharp edges of

the interference provided several calibration points at which both time of arrival

and frequency were known. These calibration points were fit to a cubic polyno-

mial, and the resulting fit was used to calibrate further measurements. Due to the

spectrally flat response of the SNSPDs, no intensity calibration was needed. The

nonlinear mapping of frequency onto time-bins causes an e↵ective di↵erential in

frequency-bin width, however corrections due to this e↵ect are minor.

The full TOF measurement was achieved by sending the clock signal as well as

the counts from the SNSPDs to a time-to-digital converted, and recording coinci-

dence counts relative to the clock pulse. Measurement of both unheralded single-

channel spectra as well as joint spectra conditioned on coincidence events were

measured. For joint spectra a joint histogram of the coincidence events was gen-

erated with the frequency of one channel conditioned on the frequency of the other.

Experimental Results

Two cases were investigated; the first, which we refer to as the

non-distinguishable case, consists of Type-0 collinear SPDC. Down-converted pairs

were coupled into a Nufern HP780 single mode fiber, after which it passed through

two 500 m fiber spools for an e↵ective length of slightly over 1 km of dispersive

fiber. After the fiber spools the pairs were split via a broadband single-mode

beam-splitting fiber optimized for 1064 nm (Thorlabs TW1064R5F2B) and sent to
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two separate superconducting nanowire single-photon detectors (SNSPDs).

The second case we investigated, which we refer to as the distinguishable case,

was non-collinear Type-0 SPDC, achieved by lowering the temperature of the

SPDC crystal. The resulting change in the refractive index produces optimal

phase-matching for k-vectors which produces SPDC in a ‘ring-mode’, in which the

maximum of the spatial SPDC intensity distribution is ring-shaped. Correlated

pairs are generated on opposite sides of the ring of down-converted light due to

momentum conservation in the phase-matching considerations as described in Eq.

1.29. The flat edge of a D-shaped mirror was used to split the ring mode into signal

and idler beams, and the horizontal center of each beam was coupled into

single-mode fibers. Alignment was optimized by optimizing coincidences in the

low-gain regime in this configuration. This was split horizontally with a D-mirror

prior to coupling each half into separate SM fibers. These were each sent to one of

the two 500 m fiber spools and then coupled onto two SNSPDs.

In the distinguishable case two measurement configurations were used. The

first, as described above, looked at signal-idler pairs. The second, achieved by

inserting a 1064 nm beam-splitting fiber after the fiber spool in one arm, measured

joint spectra between photons from the same arm.

For the idler-idler JSI, one of the fibers from the distinguishable configuration

was split via a broadband single-mode beam-splitting fiber optimized for 1064 nm

and sent to two separate superconducting nanowire single-photon detectors

(SNSPDs).

When necessary, especially at high gain, neutral density filters were inserted to

reduce the rate of single events until the single-channel count rate was less than

100 kHz. This ensured that the TOF spectra were unbiased from pile-up artifacts.
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Figure 5.1. Diagram of experimental setup for collinear joint spectral intensity
measurements. After generation of squeezed vacuum, light is coupled into a single
mode fiber. And sent to time-of-flight spectrometer consisting of approximatley
1 km of optical fiber prior to being split on a 50/50 fiber beam-splitter and directed
to SNSPDs

Collinear (Indistinguishable) Joint Spectra

Fig. 5.3 shows the experimental configuration in the collinear geometry. The

SPDC was coupled into a single-mode fiber via 8 mm B-coated aspheric lens

(Thorlabs C240TMD-B). The SPDC was then sent through approximately two

500 m fiber spools in addition to 100 m in addition to about 100 m auxiliary fiber.

After the fiber spools the SPDC was split via a broadband single-mode

beam-splitting fiber optimized for 1064 nm (Thorlabs TW1064R5F2B) and sent to

two separate superconducting nanowire single-photon detectors (SNSPDs).

Measurements of the JSI were made at 500 kHz repetition rate, and acquired over

600 s each. The average pump power was varied from 6.25 µW to 5 µW . Prior to

being coupled into the single mode fiber the SPDC intensity was attenuated to

below 105 cps by neutral density filters to avoid detector saturation12.

Fig 5.2 shows the results of the collinear JSI measurement at varying gain. The

low-gain joint spectrum is in agreement with typical measurements of the type [9,

95], showing tight anti-diagonal frequency correlation. The width of the correlation

is limited by the jitter of the TOF measurement. At moderate gain, a di↵use

background term and diagonal correlated feature is visible at low relative intensity.

12Detector saturation skews the measurement, as the first pair is always recorded, and subse-
quent pairs are missed. The resulting spectrum is skewed to the red.
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Figure 5.2. Collinear Joint Spectral Intensities at varying gain with simulations.
a-c) Joint Spectral Measurements were taken with 6.25 µW , 400 µW , 5000 µW av-
erage pump power from low to high gain respectively. d-f) Simulated Joint Spetral
intensities. The resolution of the measurement is insu�cient to resolve the anti-
diagonal width, which is smeared across several bins due to timing jitter.
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At high gain, the intensity of the background term is large, and the diagonal

feature has the same intensity as the anti-diagonal.

These measurements are in good agreement with the theoretical predictions

from our model described in CH 4, Eq. 4.32. The corresponding predictions at low,

medium and high gain are also shown in Fig. 5.2, the predictions from the

simulations were broadened via convolution with a Gaussian kernel to account for

the a↵ect of timing jitter on the measurement. We note that the feature heights

don’t perfectly correspond to the the relative intensities predicted in the Eq. 4.32

due to the timing jitter. Because the narrow feature is spread across more bins

than it actually spans, the e↵ective intensity is reduced. Nevertheless, the relative

heights of the diagonal and anti-diagonal features are equal.

Since temporal correlations are averaged over in the JSI measurement there is

no large enhancement of the anti-diagonal feature relative to the background at

high gain. However, the presence of the feature does confirm that anti-diagonal

frequency correlation persists and that the coherent feature scales quadratically.

Similar measurement at high gain have been performed via cross-correlations

on a conventional grating-spectrometer by Maria Chekhova’s group [96, 97]. High

gain cross-correlations in frequency and momentum were also considered.

Non-collinear (Distinguishable) Joint Spectra

Fig. 5.3 shows the configuration for the non-collinear measurements. SPDC

was generated in a ring-mode by reducing the phase-matching temperature of the

crystal. The ring-mode is split vertically by a D-shaped mirror. Pairs along the

horizontal axis are coupled into two separate single-mode fibers, each of which are

coupled to separate 500 m fiber spools in addition to approximately 100 m of

auxiliary fiber before being directed to the SNSPDs. We note that the resolution of

the TOF measurement is reduced by about half due to the reduced fiber length.
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Figure 5.3. Diagram of experimental setup for non-collinear joint spectral inten-
sity measurements. Squeezed vacuum is generated in a ring-mode, by reducing the
phase matching temperature of the crystal. The ring-mode is split vertically by
a D-shaped mirror. Pairs along the horizontal axis are coupled into two separate
single-mode fibers, each of which are coupled to separate 500 m fiber spools before
being directed to the SNSPDs.

Coupling lenses, repetition rate, pump power etc, and rate attenuation were all

identical to those reported in the collinear configuration.

Fig. 5.4, shows experimental results and simulations for the non-collinear

configuration. The low gain JSI is nearly identical to the indistinguishable case, at

slightly reduced resolution. Both moderate and high gain demonstrate the presence

of the broad background. Notably the diagonal bunching term is absent in both

experimental and simulated data. Similar to the collinear case, the simulations are

convolved with a Gaussian kernel to simulate measurement jitter. To the best of

our knowledge this is the first measurement of its kind showing these e↵ects at low

and high gain in frequency.

Slight asymmetries in signal and idler can be observed in the experimental

data. This is due to slight imperfections in the alignment of the beams into the

single-mode fiber. In addition, the measured spectra are broader than predicted in

the simulation. This can be explained due to spectral-spatial coupling in the real

experiment which was not considered by the model, which treats phasematching

identically to the collinear case13.

13Strictly speaking the use of mode-labels for the non-collinear case is an abuse of notation,
since the modes are post-selected on and have identical phasematching consideration.
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Figure 5.4. Non-collinear joint spectral intensities at varying gain with simu-
lations. a-c) Measured Joint Spectral Measurements were taken with 6.25 µW ,
400 µW , 5000 µW average pump power from low to high gain respectively. d-f)
Simulated Joint Spetral intensities. The resolution of the measurement is insu�-
cient to resolve the anti-diagonal width, which is smeared across several bins due to
timing jitter.

Figure 5.5. Non-collinear joint spectral intensities on a single channel a) Mea-
sured Joint Spectral Intensity was taken at 5000 µW average pump power. b) Sim-
ulated Joint Spetral intensities. Simulation in The resolution of the measurement is
insu�cient to resolve the anti-diagonal width, which is smeared across several bins
due to timing jitter.
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Figure 5.6. Diagram of experimental setup for non-collinear joint spectrally re-
solved HOM interference. Squeezed vacuum is generated in a ring-mode, by reduc-
ing the phase matching temperature of the crystal. The ring-mode is split vertically
by a D-shaped mirror. Pairs along the horizontal axis are split into two arms. The
reference arm reflected o↵ a pair of mirrors before arriving at the free-space beam-
splitter. The delay are is reflected o↵ a pair of mirrors on a delay stage before
arriving at the other input port of the beamsplitter. The recombined beams are
coupled into a single mode fiber. And sent to time-of-flight spectrometer consisting
of approximatley 1 km of optical fiber prior to being split on a 50/50 fiber beam-
splitter and directed to SNSPDs.

For completeness, the same configuration shown in Fig. 5.3 was used to

measure the JSI of a single channel, by inserting a single-mode fiber beam-splitter

after the fiber spool of one arm and sending the output ports of this beamsplitter

to the SNSPDs. In this configuration only high-gain measurements were considered

since the coincidence rates on a single channel at low-gain are prohibitively low.

The high gain measurement, taken at 5000 µW average pump power is shown in

Fig. 4.37. The same spectral broadening visible in the distinguishable case is

present in this case. In agreement with theoretical description only the background

and diagonally correlated bunching term are visible.

HOM Interference

Fig. 5.6, shows the configuration for the spectrally resolved HOM experiment.

The same non-collinear configuration as in the distinguishable case is used, but

instead of being coupled into separate fibers, the two arms are recombined on a
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Figure 5.7. HOM interference, as a function of delay. The interference is Spec-
trally resolved at the indicated positions. While the HOM peak persists only for
80fs, the interference extends out much further.

50/50 beamsplitter (Thorlabs BSS11R14). The delay arm included a compensating

plate to account for the dispersion mismatch between the arms (Thorlabs

BCP45RP). The delay was scanned via computer controlled delay stage (Aerotek

ANT130L). After recombination on the beam-splitter the SPDC was coupled into a

single-mode fiber in the same configuration as the Indistinguishable JSI experiment.

HOM measurements were only conducted at low gain15.

The HOM experiment was conducted twice, both times in low-gain. Once with

200 nm steps, and once with 2 µm steps, which correspond to 1.3 fs and 13 fs of

delay respectively. Fig. 5.7 shows the results of the HOM experiment with 200 nm

step size. The bottom figure shows the integrated intensity of each measurement at

each delay, over a range of approximately 250 fs of delay. Above the integrated

trace a subset of the JSI measurements are highlighted above, with the

corresponding data-points indicated by circles on the integrated HOM trace.

The maximum of the integrated HOM interference can be seen to occur when

there is constructive interference across the entirety of the two-photon amplitude.

As the delay between the pairs is increased cosine interference fringes across the

14This is sold as a 30/70 beamsplitter, however for V-polarized light, the performance was
preferable to the 50/50 model from the same model family, and presented the best stock broad-
band 50/50 beamsplitter available.

15High gain measurements were also carried out, but the reduced contrast and prohibitively
long measurement times made the full experiment infeasible
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Figure 5.8. Joint spectrally resolved HOM interference. Data was generated by
taking a JSI measurement at each delay vaule.

anti-diagonal can be seen, in good agreement with the predicted cos[(! � !̃)⌧ ]

dependence predicted in Eq. 4.46. The integrated HOM trace shows good visibility

with the central interference maximum reaching nearly 2, which indicates perfect

bunching due to HOM interference. At large delays ⌧ � 50 fs, the integrated trace

no longer shows evidence of interference. However, the spectrally resolved

measurements clearly demonstrate the presence of interference fringes. The cosine

fringes across the measurement reduce the overall intensity by a factor of 1/2 once

more than two symmetric minima are present.

The experiment is repeated with 2 µm steps. Fig. 5.8 shows a 3-dimensionl

rendering of the results. The y-axis shows the the time delay, with each x-z slice

representing an individual JSI measurement at that delay. Here the cos[(! � !̃)⌧ ]

dependence is clearly seen in both dimensions. At a particular frequency di↵erence,
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Figure 5.9. HOM interference in terms of the frequency di↵erence. Gener-
ated from the same data as Fig. 5.8. The di↵erence of each detected coinci-
dence pair is histogramed. The shows very nice agreement with the prediction
of (1 + cos((! � !̃)⌧) dependence.

the fringes can be seen along the delay axis with frequency proportional to the time

di↵erence. Conversely at a given delay, fringes are seen along the

frequency-di↵erence axis. This demonstrates two-color HOM interference at

multiple frequencies simultaneously. While not visible in the diagram, interference

extends to the delay corresponding to the width of the pump pulse.

These measurements demonstrate that HOM interference occurs over the

entirety of the duration of the pump pulse, with oscillating components determined

by the frequency mismatch of the two interfering colors. The interference at the 0

frequency di↵erence recreates the integrated HOM interference for the pump pulse.

Fig. 5.9 shows the same results as Fig. 5.8, where only the frequency di↵erence

between each event was kept, rather than the full JSI. This demonstrates high

visibility for the individual fringes, and simplifies the picture.

In this section we demonstrate excellent agreement between model and the

behavior of our experiments in both low and high gain regimes. In the low gain
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Figure 5.10. Diagram of experimental setup for SFG characterization. The
collinear SPDC is passed through a 90� periscope prior to a singly folded prism
compressor using two 1 inch SF-11 prisms, the delay between the prisms is ad-
justable. The returning beam is picked o↵ after passing through the 90� periscope
a second time, and sent to SFG crystals. The resulting upconverted light is coupled
into a fiber and characterized. Slightly di↵erent configurations are used for spec-
trally resolved and narrowband SFG experiments described in the text.

regime in particular we show that the model predicts the spectral correlation well.

The model also predicts the relative intensities of various correlated and

uncorrelated contributions well.

Scaling

In order to probe the spectral-temporal correlations present at high gain, we

utilize SFG in two separate experiments. The first experiment uses a second

identical 10 mm PPLN crystal for narrowband phasematching. This enables us to

investigate only the coherent contribution and simulate a narrow molecular

resonance. In this configuration we probe the transition from low-to high gain for

the coherent contribution. The second experiment uses a short crystal to

investigate spectral correlations at high gain.

Fig. 5.10 shows the experimental configuration for both of these experiments.

The collinear SPDC is passed through a 90� periscope prior to a singly folded prism

compressor using two 1-inch SF-11 prisms. The delay between the prisms is

adjustable. The returning beam is picked o↵ after passing through the 90�

periscope a second time and sent to the SFG stage. For the narrowband

experiment, SPDC is focused into a second identical PPLN crystal by a 200 mm
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NIR AR-coated (B-coated) lens. The resulting upconverted light is collimated by a

200 mm visible AR-coated (A-coated) lens. The SPDC is blocked by two

interference filters (Thorlabs FESH0650, Semrock FF01-540/80-25 ) prior to being

coupled into single-mode fiber with 488nm cut-o↵ frequency and detected on an

APD (Laser-Components Count-10B).

In order to enable higher average powers at low relative squeezing gain, the

laser repetition rate was set to 10MHz for this experiment. Detection events from

the APD were measured on a time-to-digital converter (Qutools Qutau). In order to

enable ultra-low flux measurements, events were post-selected via software

time-gate with 2 ns window surrounding the arrival time. This resulted in a 50x

reduction in e↵ective dark rate, from 3Hz to 0.06 Hz. The software time-gate was

calibrated at high-gain with large count rates. SPDC power was measured via

coupling into multi-mode fiber and measurement on a fiber coupled power meter

(Thorlabs S150C ). While measurements were made below the stated minimum

power, linearity between the measured pump power and SPDC power in this regime

confirmed the measurements.

Fig. 5.11 shows the result of the experiment. The intensity of the SPDC was

altered over more than two-orders of magnitude. At low flux, corresponding to

10 pW -100 pW the scaling of the SFG rate is linear with the SPDC flux. Above

this the scaling transitions to quadratic. The data were fit to a linear quadratic

curve, indicated by the solid black line. The Dashed line corresponds to the linear

portion of the fit, and the dash-dotted line corresponds to the quadratic portion of

the fit. The fit was weighted by the inverse of the intensity to equalize the relative

errors. The cross-over between scaling regimes, seen as the intersection of the linear

and quadratic portion of the fit occurs at roughly 400 pW , which corresponds to

about 214 SPDC photons per pulse.

The number of modes in our state can be estimated as BT where B is the
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Figure 5.11. We demonstrate linear and quadratic scaling of SFG with PDC
power, when the pump is attenuated. The crossover point is near 400 pW at
10 MHz which corresponds to 214 photons per pulse, which is in good agreement
with single-mode predictions.

spectral bandwidth of the pulse in Hz, and T is the duration of the pulse. In our

experiment B is measured to be approximately 10 THz and the duration of our

pulse is about 8 ps. The resulting estimate is roughly 80 temporal modes. The

measured crossover agrees well with prediction, but is o↵ by a factor of roughly 2.5.

This is within the expectations given experimental uncertainties and

approximations given the mode estimate. Another source of disparity could be due

to the inherent spatial-spectral nature of our experiment.

The good agreement between the measured intensity of the crossover-point and

its prediction from our theory indicate that no major source of TPA e�ciency

enhancement not captured by our theory is present.

Spectrally Resolved SFG

Utilizing a slightly modified experimental configuration, we probe the

spectrally resolved SFG spectrum generated via BSV. To do this, the 200 mm
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Figure 5.12. Spectrally resolved SFG of collinear BSV, with varying degrees of
dispersion compensation. The distance between prisms was adjusted to optimize
the coherent spike in the SFG spectrum and could be measured in real-time.

lenses in Fig. 5.10 were replaced by 100 mm with the same AR-coatings as before.

The PPLN crystal was also replaced with a 0.7 mm BBO crystal, cut for SFG near

800 nm and angle-tuned to achieve the appropriate phase-matching conditions at

1064 nm. The resulting SFG phase-matching bandwidth was broad enough to

achieve reasonably e�cient phasematching across the entire SPDC bandwidth. The

single-mode fiber was replaced with a multi-mode fiber, and sent to a grating

spectrometer (Ocean Optics USB4F00977 ). The repetition rate was set to 100 kHz

for the remaining measurements.

Fig. 5.12 shows the result of adjusting the amount of dispersion compensation

in the prism compressor. As predicted in the previous chapter, the coherent peak is

sensitive to dispersion, whereas the incoherent pedestal is not. Dispersion

compensation could be monitored by the height of the peak and optimized in

real-time by adjusting the prism separation. The height of the peak is much greater

than the frequency correlations in the JSI would suggest. The enhancement of this

peak is an indication of the e↵ect of joint time-frequency correlations.

It is worth noting that the height and width of the peak are limited by the

resolution of the spectrometer which is about 2 nm, due to this the contrast of the
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Figure 5.13. Diagram of experimental setup for direct measurement of spectral-
temporal correlations. Non-collinear SPDC is recombined in a HOM configuration,
as in Fig. 5.7. After recombination on the beam-splitter, SPDC is sent through an
SFG setup. The resulting up-converted light is coupled into a single-mode fiber,
and sent to a high-resolution spectrometer.

peak in this measurement is strongly reduced. The width of the peak is expected to

reflect the spectrum of the pump pulse which we estimate as 0.4 nm, which is well

below the resolution of the spectrometer.

Subsequent dispersion optimized measurements replaced on a single-mode fiber

coupled high-resolution spectrometer demonstrate peak-to-pedestal ratios

approaching 80 were achieved (not shown), which is in good agreement with the

number of modes in the state (Horiba iHR 320, 1200g/mm). Due to the stringent

alignment requirements into single-mode fiber, the compressor position was not

modified in this configuration.

Direct measurement of spectral-temporal correlations

We also probe the e↵ect of temporal correlations directly in the noncollinear

configuration. Fig. 5.13 describes the experimental apparatus. After traversing the

same HOM interferometer used for the HOM experiments, the recombined beam is

sent through a broadband SFG setup, utilizing the same broadband phase-matching

configuration described previously, using a 0.7 mm BBO. After up-conversion, the

remaining SPDC light is blocked by interference filters (Thorlabs FESH0650,

Semrock FF01-540/80-25 ). The up-converted light is coupled into a single-mode
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Figure 5.14. Spectrally resolved SFG of BSV generated in the distinguishable
configuration, with temporal delay scanned between signal and idler beams.

fiber with 488 nm cut-o↵ frequency, and sent to a high-resolution spectrometer

(Horiba iHR 320, 1200g/mm).

We are able to measure the correlation time, in which the coherent

contribution is e�ciently up-converted, by delaying one arm relative to the other.

Fig. 5.14 shows the SFG spectrum when the delay is scanned. The time window in

which the coherent contribution is up-converted is around 200 fs in width. This is

longer than measured in the HOM experiment, which is to be expected since

dispersion is expected to broaden the temporal coherence. The frequency width is

around 0.3 THz, which is in good agreement with the width of the pump spectrum.

The product of these two is approximately 0.06, which is well below �⌫�t & 1,

which defines the Fourier relationship expected for separable two-photon states [24,

27].

It is worth noting that the FWHM width and the variance of the distribution
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Figure 5.15. Schematic of experimental apparatus for comparison of classical
TPA and TPA driven by BSV. To ensure spatial overlap and compare solely time-
frequency entanglement in a single Gaussian mode, both BSV and classical refer-
ence (not shown) are coupled into the same 5 mm optical fiber. The light driving
TPA is reflected o↵ a dichroic beam-splitter(DM: Thorlabs DMSP900 ), and fo-
cused onto the R6G sample cell via 3mm aspheric lens(Thorlabs C330TMD-B).
The sample cell consists of a standard 1 cm quartz cuvette, with 1 mm side width.
Fluorescence collected in the epi-fluorescence geometry is collimated in the back-
wards direction and passes through the DM, before passing through a filter stack
() and being coupled into a 50µm core multi-mode fiber, which is detected on a
fiber coupled APD(Laser-Components Count-10B). The output port of the SMF
filter is connectorized which allows for direct characterization of the light coupled
into the fiber. Alignment of BSV onto the fiber is accomplished by optimizing on
coincidences at low gain, for which JSIs are measured to ensure the correct spectral
characteristics of the transmitted BSV.

are strongly disparate, due to the narrow tall spike, and the broad background

distribution. In fact, while the spike enables both high time and frequency

resolution due to its strong relative contrast, the product of the widths of the

incoherent term is much greater than 1, since it is broad in both time and

frequency.

The vertical lines across the figure are fringes, which we attribute to imperfect

splitting of the two modes in the interferometer.

Comparison of BSV and Classical TPA

While SFG comparisons are convenient due to their relatively strong

interaction and mode-selectivity, experiments utilizing the molecular samples in

question are necessary to rule out unexpected dynamics in the TPA test system.
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While no ETPA fluorescence was observed in the low-gain regime, comparison of

BSV and classical excitation can be an indication if any residual enhancement not

predicted by the theory is present.

To test this, we measured the e�ciency of TPA driven by the approximately

10 ps duration, 1064 nm central wavelength pulsed pump laser and compared this

to the e�ciency of TPA driven by our BSV. Because the classical reference used the

same laser as is used to generate the pump which in turn generates the BSV,

perfect spectral agreement is guaranteed. Similarity between the duration of the

pulses is also ensured, however due to cascaded nonlinearities, the duration of the

BSV pulse was shorter in duration than the classical pulse. The SFG which creates

the 532 nm pump pulse shortens the pulse by a factor of
p
2, due to non-uniform

SFG conversion e�ciency across the pulse. After this, the nonuniform gain

generating BSV e↵ectively shortens the duration of the BSV pulse. The duration of

both BSV and classical pulses are measured via autocorrelation to account for

temporal e↵ects in the comparison.

Fig. 5.15 shows the experimental configuration used for the comparison. To

ensure di↵erences in spatial mode did not contribute to this measurement, we

filtered the BSV and classical laser light through the same short 5 mm long optical

fiber (Nufern 780HP). The short fiber was connectorized to enable direct

characterization of the coincidence rate and JSI of the coupled light. This ensures

that the correct spectrum and correlated pairs are coupled into the fiber prior to

the experiment. TPA is probed in the epi-fluorescence geometry. After reflection o↵

of a dichroic mirror (DM-Thorlabs DMSP900 ), the light is focused by a 3 mm

aspheric lens (Thorlabs C330TMD-B) onto the sample cell, which consists of a

standard 1 cm Quartz cuvette with 1 mm walls. The backwards-emitted

fluorescence is collimated and passes through the DM and a set of filter stacks prior

to being coupled into a 50 µm multi-mode optical fiber, and detected on an APD
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(Laser-Components Count-10B). TPA was verified by scaling measurements as well

as by confirmation of the fluorescence spectrum and lifetime of the detected light

for both TPA and BSV.

If the TPA dye had a narrow linewidth, such that only the coherent

contribution had significant overlap, we would expect the e�ciency of our classical

excitation to match precisely the excitation of our BSV light, as discussed in Ch 4.

However, due to the broad absorption linewidth of Rhodamine 6G, the incoherent

contribution has significant overlap, and the expected TPA e�ciency is between 1

and 3 times greater than for classical TPA, depending on the overlap between the

lineshape and the incoherent contribution, where an e�ciency of 3 is attained in

the limit of uniform TPA e�ciency across entire incoherent contribution and in the

absence of reduction of TPA e�ciency of the coherent contribution due to

dispersion.

The duration of the 1064 nm pulse was measured to be 9.2 ps via intensity

autocorrelation. The duration of the BSV pulse was measured to be 2.5 ps by the

same measurement. This yields an expected e�ciency increase of a factor of 3.6 due

to the di↵erence in pulse durations. Given this adjustment, the e�ciency of TPA

driven by BSV was 1.78 times as e�cient as the classical TPA. This is in

reasonable agreement with the factor of 3 considering the finite spectral absorption

bandwidth of Rhodamine 6G and the presence of dispersion in the optical fiber.

The duration of the BSV pulse was a↵ected by the presence of nonlinear gain

in the SPDC process at high gain. Because the pulse driving the BSV is Gaussian

rather than uniform, the gain is stronger at the peak of the pulse than the

shoulders. The e↵ect of this is to e↵ectively shorten the temporal envelope of the

BSV pulse. This is one of the major shortcomings of the chopped CW model of

BSV for realistic Gaussian pulses.

The relative similarity in e�ciency of TPA is in good agreement with
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Figure 5.16. Comparison of BSV TPA intensity and classical TPA reveals pure
quadratic scaling in attenuation prior to generation and post generation, as well as
a ratio of approximately 6.4 in raw e�ciency between the two. Both BSV and clas-
sical reference beam were coupled into the same 5 mm SM optical fiber (780HP)
with power measured after the fiber to ensure spatial mode matching, and evaluate
only frequency correlations. The Duration of the Pulsed 1064 nm pulse was mea-
sured to be 9.2 ps in duration via intensity autocorrelation. The duration of the
BSV pulse was measured to be 2.5 ps by the same measurement.
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theoretical predictions and rules out any significant enhancement in TPA by

time-frequency entangled pairs at high gain not captured by the theoretical

description.

These experiments are a good indication that no signal is expected at the

low-gain, especially after comparison with relative rates of SFG and TPA.

Nevertheless, we also conducted a second series of tests with both pulsed and CW

SPDC sources, where alignment was ensured via pulsed excitation in the high-gain

regime.

A slightly altered experimental configuration was used for these experiments.

No spatial mode-filtering was applied, and a 2 cm PPLN crystal was used to

increase rates and more closely align with the experiments described in [8]. In the

pulsed, high-gain regime at 100 kHz, TPA was readily observable. As expected,

quadratic scaling was observed as BSV intensity was decreased down to the

detection threshold. Similarly, increasing the repetition rate but keeping the

average power steady at 150 nW resulted in linear decrease in rates, consistent with

quadratic per-pulse scaling. At higher than 5 Mhz repetition rates, we were no

longer able to produce 150 nW , due to the decreased gain in the SPDC crystal.

We were able to generate about 150nW average SPDC power at 1W CW

excitation power. Using this source aligned to the BSV source and utilizing the

chopper setup described in Ch 3 we measured no observable signal. This

experimental apparatus had the benefit of lower dark rates, 3 Hz, and higher

detection e�ciencies than the experiment described in Ch 3, due to the use of the

APD rather than the PMT. No measured signal was observable over the course of

an 1800 s experiment. The absolute characterization of this experiment is still

outstanding, but to date we have not been able to replicate the results in [8],

despite lower noise rates and otherwise almost identical experimental

configurations.
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Conclusions

In this chapter, we validated many of the predictions from Ch 4 for both low-

and high-gain squeezed vacuum. Joint spectral intensity measurements were con-

ducted in both regimes, showing good agreement with the spectral correlations

predicted for the measurements. These measurements are to our knowledge the

first of their kind to utilize a TOF spectrometer to characterize broad-band bright

squeezed vacuum in both regimes and in collinear and non-collinear configurations.

HOM-interference in the non-collinear configuration at low-gain shows good agree-

ment with the predictions, and further validates the model for incoherent two-photon

measurements.

By directly observing the cross-over from linear to quadratic scaling of sum-

frequency-generation with incident SPDC flux, we confirm that the cross-over be-

tween linear and quadratic scaling occurs at an intensity of approximately 1 photon

per mode. This ensures that high-gain TPA e�ciency measurements can accurately

predict low-gain behavior, since the e�ciency can be accurately extrapolated.

Utilizing classical TPA alongside TPA driven by BSV, we are able to confirm

the previously known asymptotic e�ciency limit of TPA driven by BSV relative to

classical TPA to within a factor of 2. This e↵ectively limits the magnitude of the

time-frequency enhancements to the TPA e�ciency by entangled photons that scale

in the same manner as the frequency correlations present in SFG and JSI measure-

ments.

Finally, we are able to confirm that the time-frequency correlations of interest

persist in high gain, albeit alongside incoherent background terms. We first vary

the degree of dispersion compensation, in spectrally resolved measurements of SFG

driven by BSV. In doing so, we observe the detrimental e↵ect of quadratic phase on

the central spike of the SFG spectrum, which is driven by the coherent portion of
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the BSV beam. While doing so, the broad incoherent background of the SFG spec-

trum remains constant. Separately, by varying the time-delay between non-collinear

signal and idler beams, we are able to demonstrate time resolution down to 200 fs

in the central spike of around 0.3 THz in frequency. This corresponds to a time-

bandwidth product well below 1, demonstrating simultaneously high resolution in

both time and frequency. This is strong validation that utilizing BSV to probe the

e↵ect of these correlations is well motivated, and remains sensitive to correlation of

this type.

Taken together, these results demonstrate that the models we developed en-

capsulate the relevant physics to describe ETPA and the nonlinear e↵ects of time-

frequency correlations in BSV. Importantly, any major enhancement due to time-

frequency entanglement not captured by our theory would be reported by these

experiments. The consistency between our experiment and theoretical prediction

is the strongest evidence to date that the orders of magnitude ETPA enhancement

reported elsewhere is not due to time-frequency correlation, but rather another spu-

rious linear or nonlinear process.
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CHAPTER VI

SUMMARY AND CONCLUSION

Future Work

My hope from this work is to guide the further exploration and critical

evaluation of experimental work investigating time-frequency entangled photon

pairs for metrology. The results from other experimental groups, while lacking some

of the experimental verification steps we’d like to see, seem to unambiguously

indicate the presence of some as-of-yet fully explained phenomenon. Plausible

explanations include hot-band absorption [62] and other scattering phenomena [11].

However, even these do not fully explain the results seen in [7, 8]. Conversely, a

comparison to a broad classical pulse of similar bandwidth would also be instructive

to rule out frequency dependent e↵ects, which may be only visible due to the large

bandwidth of most PDC sources.

In particular, a standardized set of validation experiments for ETPA

measurements is desirable. Demonstration of both linear and quadratic scaling

should be a minimum for ETPA experiments. Especially such experiments claiming

ETPA cross-sections on the order of 10�18 cm2 should have ample SNR to

demonstrate the e↵ect over at least an order of magnitude of flux scaling. While

quadratic scaling alone does not unambiguously indicate ETPA, it at least indicates

some type of nonlinearity in the experiment.

Another impact I’d like to see from our work is an increased focus on proper

characterization of the source in experiments to enable better understanding of the

observed e↵ect, as well as more controlled comparisons across various

implementations of experiments. For instance, measuring an entangled two-photon

cross-section is not well grounded without thorough characterization of
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entanglement time and area. The latter includes an understanding of the classical

beam parameters, as well as the propagation of the spatial correlation along the

optical system. Another crucial piece is the standardization of reference samples for

the measured e↵ects. Due to the di�culty in synthesis of some of the molecular

systems used in [1–3] and others, experimental replication is limited to samples that

are commercially available or easily synthesized. Dyes such as Rhodamine 6G,

Rhodamine B, ZnTPP make good candidates.

Additional theoretical work examining possible nonlinear e↵ects not

encompassed by ETPA with larger interaction strengths would also be useful, in

line with the explorations conducted in [11, 98].

While some work has been done in atomic systems [50, 51], further work in

these simpler model systems would be instructive to the true ability of

time-frequency entanglement to enhance TPA rates in narrowband systems. One

di�culty in such systems is the presence of resonant intermediate states, so more

analysis into resonant intermediate states would likely need to be carried out.

Further investigation into the spatial propagation and whether an e↵ectively

increased focal volume plays a role in amplifying the measured signals above

expectation is also warranted. This is alluded to in the inclusion of the

entanglement area in the entangled two-photon absorption cross-section. However,

beyond careful characterization of the entanglement area at the focus of the beam,

the propagation of these correlations through the optical setup is important. The

reason for this is that in extended systems, there are many molecules or atoms

displaced in each spatial direction from the focus of the beam. Interaction strengths

for these are typically assumed to vary based on Gaussian beam propagation,

however the nature of the spatial correlations is more complex than this, and it is

unclear the degree to which spatial e↵ects could increase e↵ective nonlinear

interactions strengths averaged over an entire sample.
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Alongside study of such e↵ects for spatially multimode bulk SPDC sources, the

use of waveguide SPDC sources, which constrain the generation of time-frequency

entangled photons to a single nearly Gaussian spatial mode would aid the

characterization and control of ETPA experiments, ruling out spatial e↵ects in the

observed signals. This would rule out one major source of ambiguity between

experiments.

As indicated by our work utilizing bright squeezed vacuum, simultaneously

high temporal and spectral resolution is achievable using such a source. Further

theoretical investigations into the use of spectral-temporal correlation in high-gain

squeezed vacuum states for enhanced metrology and nonlinear spectroscopy are

warranted, since these overcome the primary limitation presented by the use of

time-frequency entangled photon pairs, while retaining some of the

spectral-temporal correlations present in the low-gain regime. In order for schemes

based around BSV to be successful, careful considerations into the nature of the

background signal is needed, since selectivity in either the detection, (e.g.,

spectrally resolved SFG), or in the probed interactions (e.g., narrow

phase-matching or TPA linewidth), is needed for high contrast measurements. In

the absence of these, the integrated magnitude of the incoherent signal is large

reducing the overall contrast of the desired coherent signal.

Final thoughts

While many questions still exist about the exact e↵ects observed in some of the

experiments discussed in this work, we have demonstrated a solid theoretical

framework capable of explaining the e↵ects that we have been able to observe.

These disagree in strength by many orders of magnitude with the e↵ects observed

elsewhere [5, 8]. Experimental validation of these models in our lab has shown that,

when in the observable regime, the magnitude of these interactions agrees well with
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our predictions. Similarly, e↵ects we expect to be unobservable are, indeed,

unobservable. A comparison to SFG with an interaction strength several

orders-of-magnitude larger than that of TPA, in which we are able to observe

time-frequency entanglement enhanced signals, further validates our theoretical

work.

Direct observation of TPA rates in BSV confirms our that our theoretical

description is able to predict the relative strength of TPA via classical excitation

and excitation by BSV. The presence of many orders of magnitude enhanced

entangled photon signals not predicted by our theory would alter this relationship.

So we take this agreement to indicate that the necessary dynamics have been

included in our model. Further experiments investigating the transition to the

low-gain regime in SFG convincingly demonstrate that the cross-over occurs at the

pair flux we would expect, further validating our model’s ability to predict the

magnitude of entangled two-photon interactions, since a transition to linear scaling

at high values would indicate a stronger interaction than predicted at low gain.

Finally, experiments utilizing SFG driven by BSV demonstrate that

time-frequency correlations persist at high-gain, in the presence of a background

term of similar magnitude. This indicates that careful experimental designs could

utilize the enhanced time-frequency resolution present in broadband BSV for

nonlinear spectroscopic techniques.
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dendrimers as entangled photon sensor materials”, Journal of the American

Chemical Society 131, PMID: 19123819, 973–979 (2009).
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