
Algorithms for
Permutation Groups
and Cayley Networks

Kenneth D. Blaha

CIS-TR-89-14
September 6, 1989

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

lll

An Abstract of the Dissertation of

Kenneth D. Illaha for the degree of Doctor of Philosophy

in the Department of Computer and Information Science to be taken August 1989

Title: ALGORITHMS FOR PERMUTATION GROUPS AND CAYLEY NETWORKS

Approved:
Dr. Eugene M. Luks

Dases, subgroup towers and strong generating sets (SGSs) have pJaycd a key rolC'

in the development of algorithms for permutation groups. We analyze the computational

complexity of several problems involving bases and SGSs, and we use subgroup towers

and SGSs to construct dense networks with practical routing schemes.

Given generators for G :S Sym(n), we prove that the problem of computing a

minimum base for C is NP-hard. In fact, the problem is NP-hard for cyclic groups and

elementary abelian groups. However for abelian groups with orbits of size less than 8, a

polynomial time algorithm is presented for computing minimum bases.

For arbitrary permutation groups a greedy aJgorithm for approximating minimum

bases is investigated. We prove that if G :S Sym(n) with a minimum base of size k, then

the greedy algorithm produces a base of size D(k log log n).

We show that the decision analogs to tl1e following two algebraic probJems arc

LOGSPACE-completc for P: computing a greedy base for C :S Sym(n) , and "sifting"

a E G through an arbitrary SGS for C. In contrast , we prove that for any polynomial

subgroup tower of a soJvable group one can find an SGS for which sifting is in NC.

Decause of their inherent symmetry Cayley graphs are an attractive model for par­

allel processing networks . Unfortunately, Jerrurn has shown that computing a. minimal

route for an arbitrary Cayley graph is PSPACE-complete.

IV

We use subgroup towers and SGSs to construct Cayley networks with "failsoft"

routing algorithms, and we adapt Valiant's permutation routing algorithm to run on the

directed Cayley networks. Normal towers are used to define Cayley graphs and routing

algorithms that perform well, as long no more than d-1 processors fail (d the degree of the

graph). For several Cayley network families we exhibit a universal broadcast algorithm

that runs in optimal time.

These same techniques are used to analyze nonsymmetric networks. In particular,

we prove that Leland and Solomon's moebius graph is isomorphic to a quotient Cayley

graph. This information is used to efficiently compute minimum routes and determine the

diameter of the moebius graph.

VITA

NAME OF THE AUTHOR: Kenneth D. Illaha

PLACE OF DIRTH: New Prague, Minnesota

DATE OF IllRTH: October 5, 1954

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
University of Minnesota at Morris

DEGREES AWARDED:

Doctor of Philosophy, 1989, University of Oregon
Master of Science, 1984, University of Oregon
Master of Science, 1981, University of Oregon
Ilachelor of Arts, 1978, University of Minnesota at Morris

AREAS OF SPECIAL INTEREST:

Algebraic Algorithms, Ca.yley Graphs and Multiprocessor Networks

PROFESSIONAL EXPERIENCE:

Graduate Researcher, Department of Computer and Information Scienrc,
University of Oregon, 1988-89

Graduate Research Assistant, Department of Computer and Information Science,
University of Oregon, 1985-88

Graduate Teaching Fellow, Department of Computer and Information Science,
University of Oregon, 1983-8.S

V

VJ

AWARDS AND HONORS:

Tektronix Fellowship Award, 1988-89

PUBLICATIONS:

DLA HA, IC Minimum bases for permutation groups: The greedy approximation.
Tech. Rep. CIS-TR-86-16, University of Oregon, 1986.

DLAHA, IC Finding a minimum base for permutation groups is NP-hard.
In Congressus Numerantium (1987), vol. 58, pp. 141- 150.

VII

ACKNOWLEDGEMENTS

First and foremost I wish to express my sincere gratitude to my adviser, Eugene M.

Luks. Ilis tutelage, insight and intuition have been invaluable. I also wish to thank the

other members of my committee, William :t\1. Kantor, Andrzej Proskurowski and Chris B.

Wilson. Special thanks to Dill for all the advice he has given me over th(' years, and to

Laszlo llabai for his contribution to the proof of Proposition 2.G.

I cannot offer adequate words of thanks to my wife, Darbara, for her hours with

this manuscript. I am indebted to Dave Meyer for his help in preparinµ; this document.

Finally, I wish to thank the faculty, staff and colleagues in the CIS dcpartme11t who J1av<'

made my stay here at the University a pleasant experience.

Vlll

DEDICATION

To my family

TABLE OF CONTENTS

Chapter

I.

II.

III.

IV.

V.

VI.

INTRODUCTION

Motivation and Overview
Definitions and Background
Mathematical Tools . .
The Greedy Algorithm ...

MINIMUM IlASES FOR PERMUTATION GROUPS

Finding Minimum Ilases is NP-hard
Finding Minimum Bases for Abelian Groups with Small Orbits .

SHARP IlOUNDS FOR BASES

A Sharp Bound for Nonredundant Bases
A Sharp Bound for Greedy Bases
Another Greedy Heuristic

P-COMPLETE ALGEBRAIC PROBLEMS

Greedy Bases and Independent Sets .
Factoring with an SGS is P-complete

ROUTING ON CAYLEY NETWORKS .

Failsoft Routing on SGS Cayley Networks.
Permutation Routing on Cayley Networks

UNIVERSAL IlROADCAST ...

Background and Methodology
Universal Broadcast in Cayley Networks
Universal Broadcast Schemes and Wreath Products

VII. AN ALGEBRAIC ANALYSIS OF THE MOEBIUS GRAPH

The Moebius Graph and Algebraic Tools
An Optimal Routing Algorithm for the Moebius Graph

IX

Page

1

1
6

8

10

13

13
16

24

24

25
28

32

33
36

42

42
46

53

53
5G
65

72

73
77

The Diameter of the Moebius Graph

VIII. SUMMARY AND FUTURE WORK.

X

84

93

BIIlLIOGRAPHY 97

xi

LIST OF TABLES

Table Page

1. Generators for the Subgroup Chain 12

2. Orbit Structure 12

3. For n Odd and pr(v1) = pr(v2) 85

4. For n Odd and pr(v1) f. pr(v2) 85

5. For n Even and pr(v1) f. pr(v2) 8G

G. For n Even and pr(v1) = pr(v2) 86

7. Characteristic Vectors for n = 12 . 90

8. Characteristic Vectors for n = 14 . 91

9. Characteristic Vectors for n = 16 + 4m 92

10. Characteristic Vectors for n = 18 + 4m 92

1

CHAPTER I

INTRODUCTION

Motivation and Overview

Over the last thirty years there has been considerable effort focused on the devel­

opment of algorithms for permutation groups. Since the size of a permutation group G

on n points can be exponential in n, it is usually necessary to specify the group by a

set of generators. Fortunately, a generating set of size 0(n) exists for every permutation

group G ::; Sym(n). Given such a succinct representation for G the question arises as to

whether we can find efficient solutions to basic queries about the group. Using a base and

strong generating set (SGS) Sims devised a method of storing the group that satisfies the

following properties:

(a) it uses no more than a poly(n) (polynomial in n) space

(b) given any g E Sym(n) we can determine in poly(n) time if g E G

(c) we can run through the elements of G one at a time without repetitions

The base is used to define a subgroup tower G = G0 ~ G1 ~ G2 ~ • . • ~ Gk = {id},

and the subgroup tower is used to define an SGS [41). Once an SGS for the group is known

membership can be determined easily by "sifting" through the coset representatives (a

complete description of the sifting process is given in the next section). Although Sims

described a practical algorithm for computing an SGS, it was not until 1980 [20) that a

version of Sims' algorithm was proved to run in polynomial time O(n6).

Shortly after that, Knuth suggested a clever implementation of Sims' algorithm

that he analyzed to run in O(n5 loglog n) time [26). Using Ilabai's result [3), which gives a

linear limit on the length of subgroup chains in Sym(n), this bound was later improved to

O(n5). Subsequently, Jerrum described an algorithm for computing a base and SGS with

2

running time O(n5) [25]. Jerrum's algorithm also reduced the number of strong generators

from 0(n 2) to 0(n).

A careful analysis of Jerrum's algorithm shows that the running time is O(n3 k2
) [6],

where k is the size of the base produced by the algorithm. One can show that the same

bound holds for Knuth's algorithm.

The size of the base not only affects the running time of algorithms that use a base

and SGS, but in many cases determines the space needed to work within the group. This

follows from the observation that every permutation in G is uniquely determined by its

action on a base B. By focusing our attention on B, we can save a considerable amount

of space and time when computing bases and SGSs for subgroups of G.

These savings are particularly important when the base is significantly smaller than

the degree. Cannon points out that excluding the alternating group, permutation rep­

resentations of simple groups have this property [9]. For example, Held 's group (order

4,030,387,200) has a permutation representation of degree 2058, but the group has a base

of size 8. Large group theory packages, such as CAYLEY, rely on small bases to manipu­

late such groups efficiently.

The size of a base is not a group invariant and, as we shall see, may vary by as much

as a log n factor. Thus, the question arises as to whether we can find efficient algorithms

to compute "small" bases. Cameron considered a greedy algorithm for computing small

bases as early as 1982 [8]. The Greedy approach is simply to pick a point bi that will

force the subgroup Gi to be as small as possible. Since IGi I = !G~-11 , where r is the size

of the Gi-1-orbit of bi, we see that the Greedy algorithm picks a point bi from a largest

ai-1-orbit.

This Greedy algorithm was independently discovered and implemented in a paper

on symmetry and backtracking [7]. At that time Finkelstein posed the question as to

whether or not the Greedy algorithm always computed a minimum bases [19]. In Chapter

II we prove that the minimum base problem is NP-hard. The construction in the proof of

this result is used to build groups for which the Greedy algorithm fails to find a minimum

base. We also show that under certain restrictions the minimum base problem is solvable

3

in polynomial time, but not by the Greedy algorithm.

Under the assumption that P;eNP we know that there is no polynomial time solution

to the minimum base problem. It is natural to ask if the Greedy algorithm is a good

approximation heuristic. In Chapter III we answer this question by comparing the size of

a Greedy base to the size of a largest nonredundant base, and to the size of a minimum

base. We also compare the Greedy algorithm to another heuristic that has been suggested

for finding small bases.

So far our discussion has focused on sequential algorithms for permutation groups.

McKenzie and Cook were among the first to study parallel algorithms for permutation

groups [37]. They showed that for abelian groups, the fundamental problem of group

membership (Is g E G?) is in NC. They also conjectured that the membership problem

is P-complete (complete for P with respect to logspace reductions) for arbitrary groups,

and hence not likely to be in NC.

This conjecture was based on the following observations. First, the sifting process

used in membership testing seems inherently sequential. Second, the tower of subgroups

generated by a base may have length linear in n. It was later shown through a series

of papers, [35), [34) and [4), that membership is, in fact, in NC. owever, the tower of

subgroups used to perform the sifting was quite different from the tower produced by a

base.

As a consequence of this work it was shown that a base and SGS could be constructed

in NC, but the parallel sifting problem remained open [4). In Chapter IV we address this

problem. We show that there exists a base and SGS for which the sifting problem is

P-hard. In contrast to this result, we show that for solvable groups and polynomial

subgroup towers one can always find an SGS for which sifting is in NC. In this chapter we

also answer the following question, " Is there a parallel algorithm for computing Greedy

bases?" We show that it is highly unlikely that such an algorithm exists by proving that

the deterministic Greedy base problem is P-complete.

In the second part of this dissertation we show how towers of subgroups and SGSs

can be used to study parallel processing networks. The interconnection topology of a

4

multiprocessor network is usually modeled as a graph where vertices represent processing

elements and edges correspond to communication lines. Three (static) parameters that

are often considered when evaluating these networks are: the diameter k, the degree d and

the number of vertices N(d, k) with respect to a fixed value of d and k. We say that a

graph is dense if N (d, k) is large. The upper bound for N (d, k) is called the Moore bound

and is given by the formula d + d(d- 1) + d(d-1)2 + · · • + d(d-1)k-l _ It is known that the

Moore bound is not obtainable, except for a few small values of k and d [5]. The degree

is an important parameter since it is a measure of the amount of hardware needed by the

architecture. The diameter is important since message delay is proportional to it; and we

would like the overhead incurred by message delay small in comparison to the advantage

gained from parallel computation.

Other factors such as routing, congestion, regularity, fault tolerance and symmetry,

to mention a few, are also important. Networks like the Chordal Ring, presented by Arden

and Lee [2] in 1981, and the Cosmic Cube, produced by the Intel Corporation, realized the

importance of these other factors. Both of these networks are not only moderately dense,

but are also accompanied by a "failsoft" routing algorithm. A routing algorithm is failsoft

if it is possible to route around a faulty processor (vertex) with little or no degradation

in message delay. The Moebius graph [30), developed in 1982 by Leland and Solomon,

is a degree three network which also has a routing algorithm and is more dense then the

Chordal Ring or the Cosmic Cube.

Most of the networks suggested in the last ten years (e.g., [1], [46], (15], (16], (30), (29],

(38], (39], and (40]) share some common characteristics. They are all regular, symmetric,

and are families of graphs with an underlying structure. In 1985 Carlsson, Cruthirds,

Sexton and Wright observed that both the Cube and the Cube-connected cycles (CCC)

could be viewed as Cayley graphs (10] and (12]. A Cayley graph r = (G, W) is a graph

where the vertex set G is a finite group. The edge set is determined by the set of generates

W for the group. Two vertices g, h E G are adjacent if and only if gw = h, where w is an

element of the generating set W. Note that the graph is directed, regular and symmetric.

5

Since then it has been noted that many of the families of regular graphs mentioned

above may be viewed as Cayley graphs [11]. Thus there was a common thread that

linked these networks together. Carlsson, Cruthirds, Sexton and Wright used the algebraic

structure of the Cayley graph to generalize the CCC and produce new graphs that were

more dense then any known to date. Not only were these graphs dense, but since they were

Cayley graphs, they were symmetric and the authors believed they would have the same

desirable properties that the other networks possessed. Although the authors believed

that a good routing algorithm for these graphs should exist, none was presented. The

question is, how does one take advantage of the underlying group structure to find good

routing algorithms?

The problem of finding a minimum route on a Cayley graph is related to the problem

of finding a minimal length generating sequence (MLGS) (smallest word in the generators)

of an arbitrary group element. Goldreich and Even showed that MLGS is NP-hard [17].

Since then Jerrum has shown that it is PSPACE-complete [24). Consequently, it would

be unreasonable to attempt to solve the routing problem for an arbitrary group and an

arbitrary set of generators.

Thus not only is the choice of the group important when constructing Cayley graphs,

but the choice of generators is a critical consideration. In Chapter V we show how SGSs

can be used to construct Cayley graphs with failsoft routing algorithms, and how Valiant's

permutation routing algorithm (44] can be adapted to run on the directed Caylcy networks.

We also show how normal towers can be used to define Cayley graphs and routing algo­

rithms that perform well, as long as no more than d - l processors fail. We conclude this

section with several examples of Cayley networks. In one of the examples the underlying

group is a Sylow-2 subgroup of the symmetric group on n elements (n a power of two) . In

this case the generators are chosen with great care so that sifting could be applied. Also,

techniques from Jerrum [25) are used to reduce the size of the generating set without

significantly increasing the diameter of the Cayley graph.

In Chapter VI we extend Faber's work on universal broadcast schemes [18]. In

particular, we show how certain Cayley networks constructed from SGSs can perform uni-

6

versal broadcast in optimal time. We obtain these optimal results with Cayley graphs

constructed from abelian groups and Sylow-2 subgroups. We also answer the question

stated by Faber as to whether every quotient Cayley graph can perform universal broad­

casts in optimal time.

We denote a quotient Cayley graph (QCG) by f(G, II, W). The graph has vertex

set equal to the right cosets of JI in G, and two vertices II g, H h are connected if and only

if Jlh = Hgw for some w E W. Intuitively the QCG, r(G,J/, W) is constructed from the

Cayley graph f(G, W) by merging all vertices that lie in the same coset into one vertex.

A number of the networks previously mentioned, such as the Moebius and Shuffie­

exchange, are not symmetric. Hence, these graphs cannot be viewed as Cayley graphs.

It has been pointed out that some of these graphs can be realized a.s QCGs. In Chapter

VII we show that a network is isomorphic to a QCG if and only if it satisfies a certain

"labeling" property (defined later). We use this result to show that the Moebius graph

can be realized as a QCG.

Using this isomorphism we answer two open problems concerning the Moebius graph.

First, we give an efficient algorithm for computing optimal routes on the Moebius graph.

Second, we use the optimal routing algorithm to find the diameter of the graph. To prove

that our routing algorithm is optimal we map the routing problem on the Moebius graph

to an equivalent problem on a larger Cayley graph. The problem is then solved on the

Cayley graph and mapped back to the Moebius graph.

Definitions and Background

We assume a basic familiarity with what is commonly called "complexity theory",

such as can be found in [23) and [21). Throughout this dissertation we write "log" for log2

and "In" for loge. The symbols Z and Zm denote the integers and integers modulo m,

respectively.

The group of all permutations of an n-element set n is denoted Sym(n), or Sym(n)

if the specific set is irrelevant. We write !GI for the order of G and JI ~ G if II is a

subgroup of G. The index, IG: III , of II in G is the integer equal to !GI/IHI.

7

If JI ~ G, then we define an equivalence relation on Gin which two elements g, h E G

are equivalent if and only if gh- 1 E JI. The equivalence classes of G under this relation

are called the cosets of JI in G. We say that g is a coset representative of the (right) coset

Jig= {hglh E JI}. A set U ~ G of size IG: HI is a complete set of coset representatives

of JI in G if every element in G is equivalent to a (unique) element in the set. We say

that JI is normal in G, H ~ G, if Hg= gH for all g E G.

By the degree of G f; { id} we mean the number of points moved by G. Let w E n,
then we call {w9 lg EG} the G-orbit of w. We say that .6. ~ n is fixed by G if .6.9 = .6. for

all g E G. Each g E G induces a permutation on ~, which we denote by gt:i.. We call the

totality of the gA 's formed for all g E G the constituent, GA, of G on .6..

For A ~ n, we define the set GA = {g E GjVa E A, a9 = a}, called the

point-wise set stabilizer of A. If A consists of a single point, a, then we write GA = G 0 •

For any abstract group 11, we define the homomorphism n : JI --t Sym(JI) such that

R(h) acts on H via right multiplication. That is, for each "point" x E JI, x'R(h) = xh. We

call R(II) the right regular representation of JI. For additional background information

on permutation groups see either [36], or [47].

The following definitions are due to Sims and may be found in [42]. A base for G

is a sequence of points B = b1 , b2, ... , bk, bi E n, such that the only element in G fixing

all of the bi is the identity. We say that base B has ~ k, and we denote the size of a

smallest base for G by M(G). The tower of subgroups

where Gi = G {bi , .. ,,bi}, 1 ~ i ~ k is called the chain of stabilizers of G relative to B. We

call a base nonredundant if each of the inclusions Gi-t ~ Gi is proper.

This tower has three characteristics that are essential for computational purposes.

First, the tower has length no more than n - l. Second, IGi-l : Gil is polynomial in n

for 1 ~ i ~ k (infact, IGi-I : Gil ~ n - i + 1). Any subgroup tower satisfying this second

condition is called polynomial. Third, given g E G we can determine in linear time if

8

g E Gi, 1 ~ i ~ k.

It is these three properties that allow us to compute an SGS for G relative to B in

polynomial time. An SGS is a subset S of G such that ci-l is generated by Sn ci-l,

1 ~ i ~ k. An SGS of particular interest to us is comprised of coset representatives,

Vi of Gi in Gi-l such that id E Vi for 1 ~ i ~ k. Unless otherwise stated we shall

always assume that an SGS is of the form V = Uf=1 Vi. This particular SGS is of interest

because every element g E G can be written uniquely as g = UkUk-1 ·••u1, where Ui E Vi.

Moreover, this factorization can be realized in O (k 2) time by "sifting" g through the coset

representatives.

The first step in the sifting process is to find a u 1 E V1 such that gu11 fixes 1 (i.e.,

gu1
1 E G 1). Next we find u2 E V2 such that gu1

1 u2
2 fixes 2. Continuing in this manner

we find g = UkUk-1 · · • u1 where Ui E Vi. If we store the inverses of the SGS and use the

appropriate data structure we can find Ui E Vi in 0(k) time. Thus the time needed to sift

g is 0(k2). This sifting technique will be used to perform routing on the Cayley networks.

We should point out that the membership problem is solved by sifting. Suppose

that we are given a E Sym(n) and we wish to know, " Is a E G?" Then we sift a through

the SGS for G relative to B. If at some stage of the sifting process we cannot find a

Ui E ui such that gul 1 Uz 1
.•• u; 1 E Gi' then we know that (j ~ G. 0 bserve that we must

check that gu1
1 u2

1
• • • u"j; 1 = id; thus the time needed to solve the membership problem,

given the SGS, is 0(nk).

Mathematical Tools

The following 3 facts are used in the paper; proofs of these statements may be found

in either [36) or [47].

Fact 1.1 Let G ~ Sym(n) and w E n. If r is the size of the G-orbit of w, then IG: Gwl = r.

Th.ct 1.2 Let G be a finite group and g E G. Then 'R(G) is isomorphic to G ('R(G) ~ G)

and 'R(G)9 = {id}.

9

Thct 1.3 If G ~ Sym(n), and B = b1,b2, ... ,bk is a base for G, then (by Lagrange's

Theorem) IGI = IG0 : G1 IIG1 : G2 I ... 1ck-l : Gkl.

Lemma 1.4 Given G = (u) ~ Sym(n) and base B = b1,b2, ... ,bk, define Ti to be the size

of the G-orbit (cycle of u) containing bi. Then cm = (ur) where T = Lem{ T1, T2, .•. , Tm},

1 ~ m ~ k.

Proof: cm = (ui) {::} j is the smallest positive integer such that ui fixes b1, ... , bm.

Ilut ui fixes bi {::} ri divides j. D

We shall use the following construction in Chapters II, III and IV. Let X be a fixed

finite set, and {uxlx E X} a fixed set of generators for the group (Z2)1XI. For Y ~ X

define G(Y) = (uxlx E Y).

The right regular action n : G(Y) ---.Sym(G(Y)) is extended to an action 'Ry :

G(X) ---.Sym(G(Y)) in which { uxlx E X \ Y} act trivially. Suppose now that C is a

collection of subsets of X. Let ne =Uvee G(Y) (the disjoint union of the sets G(Y),

Y E C). Then the nv for Y E C, induce an action ne : G(X) ---.Sym(ne), where

wnc(u) = wny(u) if w E G(Y). Note that, if X = Uvee Y, then 'Re is faithful. The reader

may wish to examine the example given at the end of this chapter.

Now, given Z ~ X we let Ge(Z) denote the permutation group ne(G(Z)). We use

the next two lemmas to analyze bases of Ge(Z).

Lemma 1.5 Let Z ~ X, YE C and w E G(Y), then Ge(Z)w = Ge(Z \ Y).

Proof: Ge(Z)w = n({u E G(Z)lwnc(u) = w} = n((uxlx E z \ Y)).

The first equality follows from the definition of point stabilizer and the second from

Fact 1.2. D

Lemma 1.6 Let W = Y n Z, where Z ~ X, and Y E C. Then the set G(Y) has IG(Y) :

G(W)I Ge(Z)-orbits each of size IG(W)I.

Proof: Let JJ ~ L, and R : JI ---. Sym(L) be a homomorphism such that H acts on

L via right multiplication (i.e. , [R(h) = lh). Then the R(H)-orbits are the left cosets (/JI)

of H in L. To finish the proof note that G(W) ::s; G(Y), and that the action of Gc(Z) on

G(Y) is exactly the action of R(G(W)) on G(Y). □

The Greedy Algorithm

We find a Greedy base for a permutation group G by repeatedly picking bi from a

largest orbit of Gi-l. Since !Gil = IG~-
1
I, where r is the size of the Gi- 1-orbit of bi, we see

that the Greedy heuristic selects a point bi that forces !Gil to be as small as possible.

A naive implementation of the Greedy heuristic using Knuth's algorithm would

result in a running time of 0(k'k 2n 3), where k' is the size of the Greedy base, n the

degree, and k the size of the base produced by Knuth's algorithm. In [7, pages 17 and 19),

it was observed that Jerrum's algorithm could be modified to include the Greedy heuristic

without increasing the asymptotic rnnning time of the algorithm.

Below we outline Jerrum's algorithm [25] for computing a base and strong generating

set, and explain how the algorithm can be modified to include the Greedy heuristic. The

input to Jerrum's algorithm is a group G ::s; Sym({1, 2, ... , n}) specified by generators.

The output of the algorithm is the base B = l, 2, ... , n and a data structure that contains

a strong generating set for G.

Jerrum's Algorithm:

(1) For i = 1 to n do

(1.1) Using generators for Gi-I compute a set of coset representatives

for Gi in Gi-t

(1.2) Update the data structure

(1.3) Compute a set of 0(n2) Schreier generators for Gi

(1.4) Reduce the Schreier generators to a set of 0(n) generators

for Gi

We need only a slight modification to include the Greedy heuristic in Jerrum's

algorithm.

J errum 's Algorithm with the Greedy Heuristic:

(1) i = 1

(2) While Gi-l f; id do begin

(2.1) Pick a point bi from a largest Gi- 1-orbit

(2.2) Using generators for Gi-I compute a set of coset representatives

for Gi in Gi-l

(2.3) Update the data structure

(2.4) Compute a set of O(n2) Schreier generators for Gi

(2.5) Reduce the Schreier generators to a set of 0(n) generators

for Gi

(2.6) i = i + 1

11

The running time of this algorithm is dominated by step (2.5). Thus, Jerrum's algo­

rithm may be modified to include the Greedy heuristic without increasing the asymptotic

running time of the algorithm.

We conclude this section with an example that serves two functions. First, it gives

the reader a concrete example of how the set X and the collection C of subsets of X

are used to construct the permutation group Gc(X). Second, it shows that the Greedy

algorithm fails to find a minimum base for the group Gc(X).

Example 1.1 Let X = {a,b,c,d,e,J}, Y1 = {a,b}, Y2 = {c,d}, Y3 = {e,f}, and Y4 =
{ a, c, e}. Let C = {Y1, Y2, Y3, Y4}. Following the construction outlined above we define the

following elementary abelian 2-groups: G(X) = (a xix E X), G(Y1) = (aa, ab), G(Y2) =
(ac, ad), G(Y3) = (ae, a J), G(Y4) = (aa, ac, ae),

Recall that nc is the disjoint union of the G(Y;) i = 1, 2, 3, 4, and

The monomorphism Re : G(X)--. Sym(f2c) maps the generators of G(X) to genera­

tors of Gc(X): Rc(aa) = (aa,id,id,aa), Rc(ab) = (ab,id,id,id), Rc(ac) = (id,ac,id,ac),

Rc(ad) = (id,ad,id,id), Rc(ae) = (id,id,ae,ae), 'Rc(a1) = (id,id,a1,id).

12

Let G = Ge(X), then G is a permutation group of degree 20, and IGI = 64. Let

B = b1 , b2 , b3 , b4 be a sequence of points from De, such that bi E G(Yi), 1 ~ i ~ 4. Let

G = G0 2: GI 2: G2 2: G3 2: G4 be the chain of stabilizers of G relative to B. V sing

Remark 1.5 we display, in Table 1, generators for each subgroup in the chain.

Table 1: Generators for the Subgroup Chain

Fixed Points Group Generators
none cu = Re((aa, ab, ac, ad, ae, a f))

b1 GI= 'Rc((ab,ad,aJ))
b1b2 G2 = Re ((ad, a J))

b1b2b3 G3 = Re ((a J))
bI b2b3b4 G4 = {id}

Since G4 = { id} we know that B is a base for G. Furthermore, since we know the

generators for each group in the chain, we can use Fact 1.2 and Remark 1.6 to exhibit, in

Table 2, the orbit structure of each group in the chain.

Table 2: Orbit Structure

Group Orbit Structure
co G(YI) G(Y2) G(Y3) G(Y4)
Gl { 1, ab}{ a a, a a ab} {1, ad}{ ac, a cad} {l,a1 }{ae,aeaf} trivial
c2 trivial {1, ad}{ ac, a cad} {l,a1 }{ae,aeaf} trivial
G3 trivial trivial {1,af }{ae,aeaf} trivial
G4 trivial trivial trivial trivial

Any base for G produced by the Greedy Algorithm must begin with a point b1 E

G(Y4), since G(Y4) is the largest G-orbit. The reader may verify that the base B is one

that the Greedy Algorithm could produce. In fact, it is not hard to see that the Greedy

Algorithm will al ways produce a base for G of size 4. A minimum base for G has size 3

and consists of one point from each of the 3 sets G(YI) , G(Y2) and G(Y3).

13

CHAPTER II

MINIMUM BASES FOR PERMUTATION GROUPS

We demonstrated, in Example 1.1, that the Greedy algorithm fails to find a mini­

mum base. In the first section of this chapter we prove that the minimum base problem

is, in fact, NP-hard. The corresponding decision problem of determining whether there

exists a base of size at most N (for a given positive integer N) is NP-complete. Moreover,

the problem remains NP-complete even if we restrict G to be either a cycUc group or an

elementary abelian group with orbits size no more than 8.

We prove, in the next section, that for abelian groups this bound on the size of the

orbits is sharp. That is, if G is an abelian group with orbits of size less than 8, then we can

find a minimum base for G in polynomial time. Our algorithm uses Lovasz's result [31),

in which a maximum matching of a linear 2-polymatroid is found, in polynomial time, to

handle abelian semisimple groups with orbits of size 4 and 6.

Finding Minimum Bases is NP-hard

We prove that the minimum base problem is NP-hard by showing that the cor­

responding decision problem is NP-complete. The decision problem small base (SD) is

defined as follows:

SB Input: G ~ Sym(n) given by generators and a positive integer N ~ n.

Question: Does there exist a base for G of size no more than N?

We show that even when the group G is restricted to cycUc groups or elementary

abelian groups, the SB problem is NP-complete. It is not difficult to show that the SD

problem is in NP. Guess a base for G, B = b1, b2, ... , bk, and check that k ~ N. Then use

your favorite algorithm (Sims, Knuth, or Jerrum) to verify that B is a base for G.

14

To show that SB is complete for NP we describe a polynomial time reduction of

exact cover by 3-sets (X3C) to SB (21]. We denote an instance of X3C by (Y, M), where

Y is a finite set of order 3q and M is a collection of 3-element subsets of Y. The question

is, "Does M contain a subcollection M' such that every element of Y is contained in

exactly one member of M'?".

Theorem 2.1 SB is NP-complete even if G is constrained to be a cyclic group.

Proof: It suffices to show that X3C reduces to SB, where the group constructed for

the SB problem is a cyclic group. Let (Y, M) be an instance of X3C with IY I = 3q and

IAfl = r. We may assume, without loss of generality, that each y E Y is contained in at least

one m E M. Let P = {p1 , p2 , ••• , p3q} be the set of the first 3q primes. Define f : Y ~ P

such that f is injective. For each 3-set m = {x,y,z} EM let Sm= f(x)f(y)f(z).

Let n = I;meMSm, and construct a E Sym(n) with cycle decomposition consisting

of r disjoint Sm-cycles Cm, m E M. Then we create an instance of SB, with G = (a) and

N = q. This is a polynomial time reduction, since the prime number theorem implies n is

0(r(q log q)3).

Suppose B = b1,b2,•• .,bk is a base for G, where bi is a point in cycle Cmi, and

k ~ q. Let s = Lem{ Sm 1 , Sm2 , ••• , Sm"}, then by Lemma 1.4 B is a base for G if and only

ifs = P1P2 · · · P3q (IGI = P1P2 · · · P3q). Since each Sm is a product of exactly 3 primes it

follows that s = IGI if and only if k = q and the smj are all relatively prime, 1 ~ i ~ k.

However, the smi are relatively prime if and only if the sets m 1 , m 2 , ..• , mk are disjoint.

Thus, B = b1, b2, ... , bk is a base for G with k ~ q if and only if k = q and 3-sets

m1, m2, ... , mk cover Y. □

We can apply the construction in the NP-completeness proof to build cyclic groups

for which the Greedy Algorithm fails to find a minimum base. In fact, we can use the

failure of the "greedy approach" for Exact Two Cover to generate groups for which the

Greedy Algorithm always fails. Exact Two Cover (also known as the complete matching

problem for graphs) is solvable in polynomial time using non-greedy methods e.g., (27].

15

Example 2.2 Let (Y, M) be an instance of Exact Two Cover where Y = { a, b, c, d} and M

contains the 2-sets: { b, d}, { b, c} and { a, d}. If we mimic the construction in the proof of

Theorem 2.1 and map a, b, c, d to the primes 2,3,5,7 respectively, then the permutation a

will have cycle decomposition consisting of 3 disjoint cycles of sizes 21, 15 and 14.

Using Lemma 1.4 one checks that a minimum base for G = (a) is comprised of

one point from the cycle of size 15 and one point from the cycle of size 14. The Greedy

algorithm starts by fixing a point b in the G-orbit of size 21. The group Gb = (a21) has

10 nontrivial orbits, 3 of size 5 and 7 of size 2. The Greedy algorithm selects two more

points; first, a point in an orbit of size 5 is fixed, and then a point in an orbit of size 2.

Thus, the Greedy algorithm will always produces a base of size 3.

Of course it is quite easy to construct cyclic groups of smaller order and degree for

which the Greedy algorithm fails. In fact, we can find examples that involve only two

primes.

Example 2.3 Let G be the cyclic group generated by

a = (1, 2, ... , 8)(9, 10, ... , 17)(18, 19, ... , 29).

The Greedy algorithm first fixes a point, say b = 18, in the G-orbit of size 12. By Lemma

1.4 Gb = (a12). Now Gb has 4 orbits of size 2 and 3 orbits of size 3. Next the Greedy

algorithm fixes a point in a 3-orbit, and then a point in an orbit of size 2 resulting in a

Greedy base of size 3. A minimum base for G has size 2 (e.g., B = l, 9).

In the above reduction of X3C to SD the size of the orbits of the cyclic group

increased, as the problem size of X3C increased. One might wonder if it is possible to

solve the SB problem efficiently for groups that are restricted to have bounded orbits.

Theorem 2.2 suggests that this is not the case.

Theorem 2.2 SB is NP-complete even if G is constrained to be an elementary abelian

2-group with orbits of size 8.

16

Proof: Let (Y, M) be an instance of X3C with IYI = 3q. We assume, without loss of

generality, that each y E Y is contained in at least one m E M. Now we use the notation

outlined in section 2.1 to define the group G M(Y) ~ Sym(nM). Recall that G M(Y) is

generated by the set {'R(aJ.')IY E Y}, and nM =UmeM G(m).

Let G = (n(a J.') I y E Y), and N = q be our instance of SB. This is a polynomial time

reduction, since l!1MI = SIMI and there are only IYI generators. Let B = b1,b2, ... ,bk

(k ~ q) be a sequence of points with bi E G(mi). Define sets Yo= Y, and Yi= (Yi-1 \ mi)

for 1 ~ i ~ k. Then by Lemma 1.5 we have Gi = GM(Yi) for 1 ~ i ~ k.

By definition, B is a base for G if and only if Gk = 1, and Gk = 1 if and only if

Yk = 0. Since each m E M has cardinality 3, it follows that Yk = 0 if and only if k = q,

and the mi are disjoint, 1 ::; i ::; k. Thus, B is a base for G with k ~ q if and only if k = q

and m 1 , m 2 , ••. , mk cover Y. □

Remark 2.3 We can use an analogous proof to show that the statement of Theorem 2.2

holds if we replace 2 with any fixed prime p, and 8 with p3 •

Finding Minimum Bases for Abelian Groups with Small Orbits

In the preceding section we saw that the problem of finding a minimum base remains

NP-hard even if we restrict ourselves to elementary abelian 2-groups with orbits of size no

more than 8. We now show that for abelian groups this bound on the size of the orbits is

sharp. That is, if G is an abelian permutation group with orbits of size less than 8, then

we can find a minimum base for G in polynomial time. For convenience let us call this

problem AM B1.

The algorithm is divided into four principal stages. In each stage we focus our

attention on a subgroup II ~ G that satisfies the following two properties. First, we can

compute a minimum base for II in polynomial time. Second, any minimum base B for II

can be extended to a minimum for G. We then replace G with JJ B and begin the next

phase of the algorithm. The following is an outline of the algorithm. The input to the

algorithm is an instance G of AM B7 specified by generators.

Algorithm AM B1:

(1) Find a minimum base B 1 for the subgroup of G that

fixes all the points in orbits of size 5 and 7

(2) Find a minimum base B 2 for the Frattini subgroup of G B 1

(3) Find a minimum base B3 for (GB 1BJA, where~

is the union of all G Bi B 2 -or bi ts of size 4 and 6

(4) Find a minimum base for G B 1 B 2 B 3

17

The following proposition describes how step (1) of the algorithm is accomplished,

and proves that the base we find can be extended to a minimum base for G.

Proposition 2.4 In polynomial time we may reduce any instance of AM B1 to the problem

of finding a minimum base for an abelian permutation group G', where all of the G'-orbits

have size 2,3,4 or 6.

Proof: Let G = (~) be an instance of AM B 7 • Let ~ 1 be the union of all the

G-orbits of size 7, let ~2 be the union of all the G-orbits of size 5, and let ~3 be the

union of the remaining G-orbits. Then by the fundamental theorem of abelian groups,

G = cA 1 x cA2 x GA3 • By raising the generators of G to the appropriate power we find

generators for the groups GAi, i = 1, 2, 3.

cA2 = (¢421¢ E ~)

GA3 = (¢351¢ E ~)

Observe that B is a minimum base for G if and only if B n ~i is a minimum base

for GAi 1 ~ i ~ 3. Thus, to compute a minimum base for G it will suffice to compute a

minimum base for each GAi, i = 1, 2, 3.

The groups GA 1 and GA 2 are elementary abelian p-groups (pa prime) with orbits

of size p. By Facts 1.1 and 1.3 any nonredundant base for these groups is a minimum

18

base. Hence we may use the Greedy algorithm to compute a minimum base for Gt:,. 1 and

ct:>. 2 • Note that we can compute a minimum base for GA 1 and GA 2 without computing

generators for the two subgroups. To find the desired base it suffices to run the Greedy

algorithm on the generators for G and focus our "attention" only on the points in the set

~1 U~2- D

The following proposition is helpful in verifying the correctness of steps (2) and

(3) of the algorithm AM B 7 • Loosely speaking, the proposition shows that we can ignore

orbits of prime size.

Proposition 2.5 In polynomial time we may reduce any instance of AM B1 to the problem

of finding a minimum base for an abelian permutation group G', where all of the G'-orbits

have size 4 or 6.

Proof: Let G = (<P) be an instance of AM B7 • By Proposition 2.4 we may assume,

without loss of generality, that all of the G-orbits have size 2,3,4 or 6. Let ~ 1 be the union

of all the G-orbits of size 4 and 6. Let ~ 2 be the union of all the G-orbits of size 2 and 3.

Let IGI = 2"3t and let G = Go 2'.: G1 2'.: · • · 2'.: Gk = {1} be the chain of stabilizers of

G relative to base B = b1,b2, ... ,bk. Ifwe define IC {1,2, ... ,k} such that [Gi-t: Gi] is

nonprime if and only if i E J, then k = s + t - IJI. To minimize k we must maximize the

size of the set J. It follows from Fact 1.1 that III is completely determined by the group

GA 1 • Hence, any minimum base for GA 1 can be extended (by the Greedy algorithm) to a

minimum base for G. D

Proposition 2.6 In polynomial time we may reduce any instance of AM B7 to the problem

of finding a minimum base for a semisimple abelian permutation group G', where all of

the G'-orbits have size 4 or 6.

Proof: Let G = (<P) be an instance of AM B7 • By Proposition 2.4 and Proposition

2.5 we may assume, without loss of generality, that all of the G-orbits have size 4 or 6. If

0 is a C-orbit, then the constituent c0 is isomorphic to either Z2 x Z2 , Z4 or Z6 • Let ~ 1

be the union of all the C-orbits of size 4 such that c0 '.:::'. Z4 , and let ~ 2 be the union of

19

all the remaining G-orbits. By the fundamental theorem of abelian groups we know that

there exists integers r,s and t such that G ~ (Z4Y x (Z2)" x (Z3)f.

The function F : G ..__. G defined by F(h) = h6 is a homomorphism since G is

abelian. The group F(G) is called the Frattini subgroup of G. Note that F(G) ~ G61 ,

and F(G) ~ (Z2Y-

Any minimum base for G must contain r points from ~ 1 that constitute a base for

F(G). The first step of the reduction is to find r points B = b1, b2, ... br such that B is a

base for F(G). This can be accomplished by running the Greedy algorithm on F(G), or

by running the Greedy algorithm on the group G61 and selecting the first r points that

are fixed by the algorithm. The base B that we obtain for F(G) is by no means unique.

To finish the proof we must prove that any minimum base for F(G) can be extended to a

minimum base for G.

It will suffice to show that if B and B' are two minimum bases for F(G), then

M(GB) = M(GB,)- The groups GB and GB, are abelian semisimple (since they con­

tain no elements of order 4), and both groups have order 2"3t. Hence, each group

is isomorphic to (Z2) 8 X (Z3)t. If we could prove that GB = GB, we would be

done. Unfortunately this statement is not true. Consider, for example, the group

((1,2,3,4)(5,6, 7,8), (1,2,3,4)(5,8, 7,6)) and let B =land B' = 5. Instead we prove a

weaker statement that is sufficient to imply that M(GB) = M(GB,).

By the proof of Proposition 2.5 we know that M(GB) is completely determined by

the action of the group on the GB-orbits of size 4 and 6. All of the GB-orbits in ~ 1 have

size 2 or less. Thus M(GB) is determined by the action of GB on ~ 2 • A similar argument

holds for GB'. To finish the proof we need only show that G~ 2 = G~;

Note that both F(G) n GB and F(G) n GB, are trivial. Thus, we may conclude

that both](= F(G) x GB and K' = F(G) x GB, are subgroups of G. Both groups are

elementary abelian and IKI = IK'I = 2r+.,3t. Thus it follows that A. = ker(F) = K'.

Finally F(G) ~ G61 implies that Gi 2 = ker(F)62 = G~;, as desired. o

Proposition 2.4 and proposition 2.6 describe the first two steps of the algorithm.

Moreover they prove that any partial base constructed by the execution of the first two

20

steps of the algorithm can be extended to a minimum base. The third step of the algorithm

uses Lovasz's result for finding a maximum matching of a 2-polymatroid.

The polymatroid matching problem (also known as the matroid parity and the

matchoid problem) is a generalization of the maximum matching problem for graphs and

the matroid intersection problem. Lovasz proved that the polymatroid problem is poly­

nomially unsolvable in general but solvable in polynomial time for linear matroids (31].

In a subsequent paper Lovasz generalized his algorithm to handle a larger class of

polymatroids [32]. We shall need the generalized matching algorithm to perform step 3.

The following definitions and remarks are taken from the later paper.

Let S be a finite set and f an integer valued function defined on the subsets of S

such that

J(C/J) = 0

X ~ Y⇒J(X) ~ f(Y)

J(X u Y) + f(X n Y) ~ f(X) + f(Y).

The pair (S,f) is called a polymatroid. If f (x) ~ k for x E S, then we call (S,f) a

k-polymatroid. In this paper we assume that all polymatroids are 2-polymatroids. If the

elements of S are subsets of a linear space and the function f(X) is the dimension of the

space spanned by the elements in X, then we call (S, f) a linfilu: polymatroid.

A subset X ~ Sis called a matching if f(X) = 2IXI. We say that X ~ Sis a circuit

if J(X) = 2IXI -1 and for every x EX we have f(X - {x}) = 2IXI -1. We call X ~ S

a double circuit if f(X) = 2IXI - 2 and for every x EX we have f(X - {x}) = 2IXI - 3.

Every double circuit has a unique partition X = X 1 U • • • U Xm (m 2:'.: 2), such that

X - Xi is a circuit for 1 ~ i ~ m and these are all the circuits contained in X. We

call this partition the principal partition of the double circuit X. The double circuit is

trivial if m = 2. We say that the "projection" (S, f') compresses the double circuit X if

f'(X - Xi)= f(X - Xi) - l for 1 ~ i ~ m.

If (S, f) is a linear 2-polymatroid in the linear space L, and X is a nontrivial double

21

circuit in (S, r), then there is a vector v E L, v f. 0 which is contained in the linear

span of each circuit X - Xi. Projecting everything onto a hyperplane complementary

to p, we get a projection compressing X. Lovasz points out that the only step of the

maximum matching algorithm for linear 2-polymatroids that does not generalize to all

2-polymatroids is the construction of the projection described above [32, page 212].

To perform step (3) of the minimum base algorithm we construct a 2-polymatroid

(S, f), where Sis a collection of subsets taken from a direct product of two linear spaces.

The following lemma proves that we can find a maximum matching for (S, f) in polynomial

time using Lovasz's algorithm.

Lemma 2. 7 Let L = (Z2Y x (Z3)". Let f be the integer valued function defined on the

subsets of L such that, J(X) = r1 + s1 if and only if (X) ~ (Z2Y1 X (Z3)"1 •

Let S be a collection of two element subsets of L such that f(x) = 2, for each x ES.

Then (S,f) is a 2-polymatroid, and a maximum matching for (S,f) can be found using

Lovasz's algorithm.

Proof: It may be convenient to think of L as the direct product of two vector spaces

and to view the elements of L as (s + r)-tuples. It is a simple exercise to check that (S, f)

is a 2-polymatroid. Let D C S be a nontrivial double circuit with principal partition

{D1 ,D2, ... ,Dm} and define Ki= D- Di for 1 ~ i ~ m.

To verify that a maximum matching can be found using Lovasz's algorithm we must

prove that we can find a nontrivial element of K 1 n K 2 n • • • n Km in polynomial time.

Using the principal partition for D, we can compute in polynomial time a set of generators

for K1 n K2 n · · · n Km.

To complete the proof we must guarantee that the intersection is nontrivial whenever

the double circuit is nontrivial. Lovasz uses an induction argument to prove that K 1 n

K2 n · · · n Km is nonempty when the 2-polymatroid is linear [33, Lemma 11.3.3]. This

same proof may be used for (S, f) by simply replacing each occurrence of the word, "dim"

with the letter "f". □

22

Theorem 2.8 Let G = (<I>) be an instance of AM B1. We can compute a minimum base

for G in polynomial time.

Proof: By Propositions 2.4-2.6 we may assume, without loss of generality, that all

the G-orbits have size 4 or 6 and that G:: (Z2Y x (Z3)''. For each G-orbit Oi, 1 ~ i ~ t,

we know that c0 , is isomorphic to either Z2 X Z2 or Z2 x Z3. View each element g E G

as a 2t-tuple (i.e., g = (g1,92,. ·•92t) where 9i E Z2 or 9i E Z3).

Let <l> = { </>1, </>2, ... , <Pm}, and define Oi = <l>r and f3i = </>; for 1 ~ i ~ m. Then

{ai,/3ill ~ i ~ m} is a generating set for G, such that (odl ~ i ~ m) = (Z2Y and

(/3ill ~ i ~ m) = (Z3)".

Define A be the 2m X 2t matrix with rows 01, 02, ... O'.m, /31, /32, ... f3m. Let xi be the

i th column of matrix A, l ~ i ~ 2t. Then each Xi is a 2m-tuple with Xi E (Z2r X (Z3r.

Let Xi= {x2i-1 ,x 2i} for 1 ~ i ~ t, and let S = {X1 , ••. ,Xt}- Define the function

J on the subsets of S such that f(Y) = r1 + s1 if and only if (Y) = (Z2Y1 x (Z3)-'1 •

By Lemma 2.7 we know that (S, f) is a 2-polymatroid and that we can find a maximum

matching for (S, f) in polynomial time.

Observe that,

X = {Xiii EI} is a matching for (S,J) if and only if IliEIG0
• ~ G. (II.I)

Let X = {Xiii E I} be a maximum matching for (S,J). For each i E J select a point

bi E Oi, and let B be the partial base for G comprised of the points bi. Since X is a

maximum matching it follows that all the GB-orbits have size 2 or 3. We can use the

Greedy algorithm to extend B to a nonredundant base for G of sizes+ r - IJI.
To finish the proof it will suffice to prove that M (G) = s + r - III. Suppose that

there exists a base A= a1,a2, ... ,ak for G, such that k < s+r-111. Let Gi = G{ai, ... ,a.}

for 1 ~ i ~ k, and define J so that [Gj-I : Gj] is non prime if and only if j E J.

Then k < s + r - III implies that Ill > IJI. If aj E o; for j E J, then IljEJGo,, ~ G

([Gj-1 : Gj] is nonprime). By (II.1) this implies that {Xj'IJ E J} is a matching for (S,J)

and this contradicts the fact that {Xiii E J} is a maximum matching. □

23

Remark 2.9 Let G be an abelian permutation group for which all the orbits have size a

prime or a product of two primes; then we can find a minimum base for G in polynomial

time.

Proof: For any G-orbit 0, we know that the constituent G0 is abelian and transitive.

Thus, G0 is regular and jG0 I = IO j. We can modify Propositions 2.4 and 2.5 so that the

orbits of prime order can be ignored. Proposition 2.6 is essentially the same except that

F(G) is abelian semisimple (the F(G)-orbits have prime order). We generalize Lemma

2.7 to handle polymatroids (S,f), where Sis a direct product of (possibly more than two)

linear spaces. □

Remark 2.10 The problem of finding a maximum matching of a linear 2-polymatroid over

the field G F(p) is polynomial time equivalent to the problem of finding a minimum base

for an abelian semisimple group G with orbits of size p2 •

Proof: One direction of the remark is proved by Theorem 2.8. To prove the other

direction we assume, without loss of generality, that the linear 2-polymatroid (S,f) is

specified by the columns of am x 2r matrix Mover the field GF(p). Mimicking the proof

of Theorem 2.8 we use the rows of matrix At[to generate a group G with r orbits of size

p2
• The remark follows from equation ILL □

24

CHAPTER III

SHARP BOUNDS FOR BASES

We now know that the Greedy Algorithm cannot be used to solve the minimum

base problem. In fact, unless P=NP there is no polynomial time solution to the minimum

base problem. It is natural to ask whether the Greedy Algorithm is a good approximation

heuristic for computing a small base. To answer this question we give, in the first section,

a sharp bound for the size of a nonredundant base. This bound may then be compared to

the result found in section 2, a sharp bound for the size of a greedy base.

In the last section we analyze a second greedy heuristic for approximating a min­

imum base. In some cases the new greedy heuristic outperforms our original Greedy

algorithm. In other cases the old Greedy algorithm produces a smaller base than the new

algorithm. To compare the two algorithms we consider the worst case performance of

each.

A Sham Bonnd for Nonredundant Bases

Ilabai has pointed out that the variation in size between two nonredundant bases

for a group G ~Sym(n) can be no more than a factor of log n [2).

Lemma 3.1 Let G ~ Sym(n), and let r be the size of any nonredundant base for G, then

r ~ M (G) log n.

Proof: Fact 1.1 and Fact 1.3 imply that 2r ~ IGI ~ nM(G). □

The fact that this bound is sharp is a consequence of the following lemma.

Lemma 3.2 Fix k 2: 1, then for any n 2: 8k2 there exists G ~ Sym(n) such that

o M (G) = k , and

25

o G has a nonredundant base of size at least ½M(G)log n.

Proof: Suppose that n ~ 8k2 , and that r is the integer maximal with respect to

k2r + 2rk ~ n. Define X = { 1, 2, ... , rk}, Xi = { r(i - 1) + 1, ... , ir}, and Yi = {j} for

1 ~ i ~ k, 1 ~ j ~ rk. Let C = {X1, ... ,Xk,Y1, ... ,Yrk},

Using the notation from Chapter I we define G = Gc(X) ~ Sym(f2c). Then G ~

(Z2Y\ and lf2cl = k2r + 2rk.

Since a largest G-orbit has size 2r and IGI = 2kr it follows from Facts 1.1 and 1.3 that

a minimum base for G must have size at least k. Let A= a1, a2, ... ak where ai E G(Xi),

then by Lemma 1.5 it follows that A is a minimum base for G.

Now we show that the group G has a nonredundant base of size at least ½k log n.

Let B = b1, b2, ... , brk where bj E G(Yj), and let G = G0 ~ G1 ~ · · · ~ erk be the chain

of stabilizers of G relative to B. By Lemma 1.5 we have Gi = Gc(X \ {1, 2, ... , i}), and

it follows that B is a nonredundant base for G. The size of B is rk ~ ½k log n, since

k2r+2 ~ n ~ 8k2 • D

If Bis any nonredundant base G ~ Sym(n), then M(G) ~ IBI ~ M(G)logn. We

know that there exist groups that have nonredundant bases as large as M (G) log n. In

the next section we show that if Bis a greedy base for G, then IBI is closer to M(G) than

to M(G) log n.

A Sharp Bound for Greedy Bases

In contrast to the log n indeterminacy of an arbitrary nonredundant base we show

that a greedy base is within a log log n factor of optimal.

Lemma 3.3 If G ~Sym(n) has a base of size k, then there exists a G-orbit of size at least
l

IGlk.

Proof: Follows from Fact 1.1 and Fact 1.3. D

Theorem 3.4 If G ~Sym(n), then any greedy base for G has size no more than

r M(G)loglognl + M(G).

26

Proof: Let B = b1 ,b2, ... ,bm be a greedy base for G, and G = G° ~ G1 ~ • • • ~

cm = { id} be the chain of stabilizers of G relative to B. First we show that

(III.2)

The statement holds trivially when i = 0. Assuming the statement is true for i, we show

that it is true for i + 1. Since M(Gi) :s; M(G) it follows from Lemma 3.3 that Gi must

have an orbit of size at least !Gil~. Since bi+t was chosen via the Greedy Algorithm

we know that IGi : Gi+1 I is the size of a largest Gi_orbit. Thus IGi : Gi+t I ~ IGilt/M(G),

and this implies that 1Gi+1 1 :s; IGil(M(G)-t)/M(G) :s; IGl((M(G)-t)/M(G))i+i.

We observe next that

(III.3)

To see this, note that M(G) ~ log~ for M(G) ~ 2. So, i = r M(G)log ~(lgJ7 implies

IGl((M(G)-t)/M(G))i :s; 2M(G), which, by (III.2), implies !Gil :s; 2M(G).

If the group Gi has order less than or equal to 2M(G) then the size of any nonredun­

dant base for Gi is at most M(G). Now, combining (III.3) with the fact that the Greedy

Algorithm produces a nonredundant base, we have

m :$ r M(G)log ~iiil + M(G).

By Lemma 3.3 we haven~ IGI M~G), implying log IGI :s; M(G) log n and the result

follows. □

In proving the bound is sharp we use the following technical lemma.

Lemma 3.5 Let r, k be two positive integers such that T ~ k ~ 2. Define To = T and

Ti= Ti-I - lTi-i/kJ - 1 for i 2'.: 1. If;= l(k/2)(log(T + k) - log(k + l))J, then T~ 2'.: 1.

27

Proof: Define so = r and Si = Si-1 - a;;;1 - 1 for i 2: 1. By a straightforward

inductive argument, we have Si ~ Ti and Si = (1 - ½)ir - k(1 - (1 - ½)i) for i 2: 0. Then

. log(r + k) - log (k + l)
Si 2: 1 ¢} i ~ k ·

log k-1

The result follows since ! ~ ~
1

1 . D
ogr::i

Theorem 3.6 Fix k 2: 2, then for any n 2: 24k
2
+7k+7 there exists G ~Sym(n) such that

o M(G) = k, and

o Every greedy base for G has size at least ¼ M (G) log log n.

Proof: Suppose that n 2: 24k
2
+7k+7, and that r is the largest integer such that

k2r + 2r+k+I ~ n. Let X be a set of order rk. The set Xis partitioned into k sets of order

r, A 1,o, A2,o, ... , Ak,O· We now recursively define sets Ai,i for 1 ~ i ~ k, and 1 ~ j ~ 1

(1 defined later) as follows: Ai,j is a subset of Ai,j-l created by removing l IA;·t11J + 1

elements from Ai,j-1• The elements removed from the k sets Ai,j-1,A2,j-I,··· ,Ak,j-I are

placed in a set B1. Note that IB11 > IAi,j-11• Let,= l(k/2)(log(r + k) - log(k + l))J.

The value of I was computed in Lemma 3.5 to insure that IAi,j I 2: 1 for all values of i and

J. Let C = {A1,o, ... , Ak,o, B1, ... , B-y}.

Once again we use the notation from Chapter I to define G = Gc(X) ~ Sym(nc).

Recall that G ~ (Z2Y\ and 1nc1 = k2r + 218 11 + 21 8 21 + ... + 218 -rl.

Consider the sequence of points A = a1 , a2, ... , ak where ai E G(Ai,o). Since
-k

X =Ui=I Ai,o, it follows from Lemma 1.5 that A is a base for G. Moreover, any sub-

collection C' of C that covers X (i.e., X = LJYEC' Y) must contain all the Ai,o, 1 ~ i ~ k.

It follows that A is a minimum base for G.

Next we show that the Greedy Algorithm must select B = b1 , b2 , ••• , b-y as a partial

base for G, where b1 E G(B1). It suffices to show that G(B1) is the largest c1- 1-orbit.

Dy Lemma 1.5 we have ci-I = Gc(X\ Ji:: B1) = Gc(U~=J Ai,1-i).

Now using Lemma 1.6 we see that the points in G(Ai,o) are partitioned into c1- 1-

orbits of size 2IA,,,- 1 I for 1 ~ i ~ k. The action of c1- 1 on points G(Bi) is trivial if

28

1 ~ i ~ j - 1 and transitive if j ~ i ~ ,. Thus Uj is in a ci- 1-orbit of size 21B,I, and this

is the largest Gi- 1-orbit.

So far we have shown that G has a minimum base of size k, and that the Greedy

Algorithm produces a base of size at least , . To finish the proof we note that , ~

¼M(G)logr and r ~ ½logn. D

Another Greedy Heuristic

A student at Oxford, Tracey Maund, suggested a different greedy heuristic for com­

puting small bases. Instead of fixing a point whose stabilizer has the smallest order (i.e.,

a point in a largest orbit), choose a point whose stabilizer has the largest number of orbits

(including trivial orbits). To avoid any confusion, call the new greedy algorithm Greedy2

and the original greedy algorithm Greedyl.

Definition 3. 7 For any permutation group G define a function p from G into the natural

numbers such that p(G) is equal to the number of G-orbits.

We can modify Jerrum's algorithm to compute a Greedy2 base for G ~ Sym(n) in

O(n5
) time. First , note that if JI ~ G and b, b' are in the same JI-orbit, then p(Gb) =

p(Gb,). Thus, in each iteration of Jerrum's algorithm it will suffice to consider just one

point b from each Gi- 1-orbit. For each b we compute a set of Schreier generators for ct- 1

and select the b that maximizes p(ct-1
). It takes 0(n4) time to select bi , and hence the

Greedy2 algorithm runs in O(n5) time.

It was observed that in several cases the Greedy2 algorithm produced a smaller base

than the Greedy! algorithm. In particular, if we consider Sym(m) acting on the set of

pairs of { 1, 2, ... , m}, then for m sufficiently large a Greedy2 base for G is smaller than a

Greedy! base for G [8].

We can, in fact, use a construction similar to the one found in the proof of Theorem

2.2 to manufacture groups for which any Greedy2 base is larger than any Greedy! base

and groups for which any Greedy2 base is smaller than any Greedy! base. The following

two examples illust rate this point.

29

Example 3.4 Let X = {x1,x2,xa,Y1,Y2}, Y1 = {x1,x2,x3}, Y2 = {y1,Y2}, and Y3 = Y4 =
Y5 = {x1,yi}. Define C = {Y1,Y2,Ya,Y4,Ys}, and let G = Gc(X). Recall that G ~ (Z2)5,

• 5

and that flc =Ui=l G(Yi).

Since each G(Yi) is a G-orbit it follows from Fact 1.1 that any base for G must have

size at least 2. Using Lemma 1.5 and Lemma 1.6 we see that B = b1, b2, where bi E G(~)

for i = 1, 2 is a Greedyl base for G.

On the other hand the Greedy2 algorithm will always start by fixing a point in

either G(Y3) , G(Y4) or G(Ys), resulting in a base of size 3.

Example 3.5 Let X = {x1,x2,x3,Y1,Y2,Y3}, Y1 = {x1,x2,x3}, and let Y2 = ·· · = Y1 =
{x1, yt}. Define Ys = Yg = Y10 = {x2, Y2}, and Y11 = {x3, Ya} . Let C = {Y1, Y2, ... Y11}

and let G = Gc(X).
•k

Then flc =Ui=l G(Yi), and each G(~) is a G-orbit. Using Lemma 1.5 one checks

that B = b1 , b2, ba is a minimum base for G, where b1 E G(Y2), b2 E G(Ys) and b3 E G(Y11).

Moreover, the Greedy2 algorithm will always construct a base of size 3.

In contrast, the Greedyl algorithm will start by fixing a point in the G-orbit G(Y1),

and thus construct a base of size 4.

We know that specific examples cannot be used to compare the two greedy heuristics.

Instead, we shall use the worst case performance as a means of comparison. We already

have a sharp bound for the worst case performance of the Greedyl algorithm. What we

need now is a sharp bound for the worse case performance of the Greedy2 algorithm.

Unfortunately, we are unable to fin<l such a bound. In lieu of a sharp bound, we show

that for n sufficiently large there exists G ~ Sym(n) such that, any Greedy2 base for G

is arbitrarily close to the upper bound O(M(G)logn).

Theorem 3.8 Fix k ~ 2 and O < i < l. Let N be the smallest integer for which (log N)(~

log log N. For any integer n ~ max(N, 22"+
1

) there exists G ~ Sym(n) such that

o M(G) = k , and

o Every Greedy2 base for G has size at least ¼M(G)(logn)1- t .

30

Proof: Let n ~ max(N, 22"+
1

) and let r be the integer maximal with respect to

k2r + 2r+l l~J ~ n, where c = r~~;l. Let X be a set of order rk, and partition X into k

sets, A 1 , A2, ... , Ak each of sizer.

Define sets Bi,l, 1 ~ i ~ l~J, so that, Bi,1 contains exactly c elements from each of

the Aj (IBi,I I = ck), and so that all the Bi,1 are disjoint. Let Bi,j = Bi,1 for 1 ~ i ~ l ~J
and 2 ~ j ~ 2r-ck+I, and define

Using notation from Chapter I we let G = Gc(X). Recall that G ~ Sym(f2c) and

that G ~ (Z2Yk.

First we observe that G ~ Sym(n), since lf2cl = k2r + 2r+I l~J. Next we show

that M(G) = k. To see this consider the sequence of points A = a 1 , a2, ... , ak where
. k

ai E G(Ai). Since X =Ui=l Ai, it follows from Lemma 1.5 that A is a base for G.

Furthermore, since all of the G-orbits have size no more than 2r, Facts 1.1 and 1.3 imply

that A is a minimum base for G.

To finish the proof we must show that condition (2) holds. Consider the sequence
. 2r-ck+l

B = b1 , b2, ... , bl ;J, where bi EUj=I G(Bi,j). Let G 0 > G1 > · · · > Gl~J be the chain

of stabilizers of G relative B (B is not necessarily a base for G). By Lemma 1.5 and

Lemma 1.6 we have,

where m = n - l!1cl, 1 ~ i ~ l~J and a E G(Aj) for 1 ~ j ~ k.

To prove that B is a partial Greedy2 base we must show that p(G~- 1) < p(ct~ 1
).

Observe that 22"+
1 ~ n ~ 22r implies that 2 ~ c. Since 2 ~ c it follows that 2r ~

(l~J - (i - l))2r-ck+l+c, and this implies that p(G~- 1) < p(Gtt). Furthermore, by the

construction of the Bi,j we may conclude that any Greedy2 base for G will have size at

31

least l ~J.
To finish the proof we must prove that l~J 2: !M(G)log n 1-c. Note that r :s; log n <

2r implies that ½(lognt(Iogn)1
-f <rand that logr :s; loglogn. Now the result follows

from the fact that N :s; n and k :s; log r. □

Theorem 3.4 and Theorem 3.8 allow us to compare the worst case performance of

algorithms Greedyl and Greedy2.

32

CHAPTER IV

P-COMPLETE ALGEBRAIC PROBLEMS

We say that a decision problem is in NC if there exists a PRAM algorithm for the

problem that runs in time O((lognY3) using O(nc2) processors for constants c1 and c2 [14].

A decision problem A is logspace reducible to a decision problem B, if there is a function

f, computable by a logspace Turing machine, that satisfies the property that x E A if and

only if f(x) EB.

A decision problem in P is P-complete if every decision problem in P is logspace

reducible to it. Note that logspace reducibility is transitive, and has the following two

properties. First, if A is logspace reducible to B and Bis in NC, then A is in NC. Second,

if A is logspace reducible to B and A is P-complete, then B is P-complete (provided that

Bis in P).

Every decision problem in NC lies in P. A fundamental problem in complexity

theory is whether P=NC. If this were the case it would mean that every problem in

P is parallelizable (i.e., can be solved efficiently in parallel). Under the assumption that

P#NC, a statement which most computer scientists believe to be true, we would like to

identify the problems that are in NC and the problems that are in P\NC.
I

To show that a problem is in NC it suffices to describe a PRAM algorithm for

the problem that runs in polylog time and uses no more than a polynomial number of

processors. To show that a problem is in P\NC (assuming that P#NC) we reduce a P­

complete problem to it. The standard P-complete problem used for this purpose is the

Monotone Circuit Value Problem (MCVP).

MCVP Input: A set of boolean functions go, g1 , ... , 9n, where g0 = 0, g1 = 1

and for 2 _::; i _::; n, 9i is equal to either 9j I\ 9k or gj V 9k,

33

where j, k < i.

Question: Does 9n = 1?

In this chapter we prove that the two algebraic problems, deterministic greedy base

and factoring (both described later), are P-complete. This is done by reducing a restricted

version of the P-complete problem, greedy independent set (GIS), to our algebraic prob­

lems. We sketch Cook's proof that GIS is P-complete, and point out why the restricted

version of the problem remains P-complete. We conclude the chapter with a PRAM

algorithm that proves that factoring is in NC for solvable groups.

Greedy Bases and Independent Sets

Let f(V, E) be a graph with vertex set V and edge set E. A subset W ~ Vis called

an independent set of vertices in r(V, E), if for all w1 , w2 E W , (w 1 , w2) ~ E.

There is a natural greedy algorithm for constructing a maximal independent set of

vertices in f(V, E). Given a linear ordering of the vertex set V, the greedy algorithm

repeatedly picks the smallest vertex from V that is not adjacent to a previously selected

vertex. The corresponding decision problem, greedy independent set, is defined as follows:

GIS Input: Graph f(V, E) where V is linearly ordered.

Question: Is the last vertex in the ordering part of the greedy maximal

independent set?

Proposition 4.1 [Cook] The GIS problem is P-complete.

Proof: The GIS problem is clearly in P. To prove the problem is complete we sketch

Cook's logspace reduction of MCVP to GIS.

Let 90,91, .. • 9n be an instance of the MCVP. We construct a graph f(V, E) with

vertex set V = { vo, V1, . .. , Vn} U { wo, W1, •.• , Wn}. We order the vertices so that Vi and Wi

precede Vj and Wj, whenever i < j. The ordering of Vi relative to Wi is determined by the

gate 9i · Let wo precede Vo and let V1 precede w 1 . For any i, 2 ~ i ~ n, Wi precedes Vi if

34

9i = 9J V 9k, and Vi precedes Wi if 9i = 9J I\ 9k• This gives us a linear ordering of the set

V.

The edge set, E, is equal to E1 U E2 U £3, where

E1 = {(vi, Wi)IO ~ i ~ n},

E2 {(wi,Vj),(wi,vk)l2 ~ i ~ nandgi = 9j V gk} and

E3 {(vi,w1),(vi,wk)l2 ~ i ~ nandgi = 9i /\gk}.

Note that the construction of f(V, E) from the instance of the MCVP can be per­

formed by a logspace algorithm. A simple induction argument shows that Vi is in the

greedy independent set for f(V, E) if and only if 9i = 1, and Wi is in the greedy indepen­

dent set for f(V, E) if and only if 9i = 0. □

Remark 4.2 Let f(V, E) be an instance of the GIS problem where the linear ordering of V

is vo < v1 < · · • < Vn. The GIS problem remains P-complete even if we restrict ourselves

to instances in which the following conditions a.re true. We assume that (v0, v1) E E and

we assume that Vi, 2 ~ i ~ n, is connected to exactly two vertices that are smaller than

itself.

Proof: It suffices to note that the following changes can be made to the reduction

of MCVP to GIS. First, we may assume without loss of generality, that if 9i = 9j V 9k

(or Yi = Yi I\ 9k) and 2 ~ i ~ n, then j -:/ k. Second, we may eliminate node vo from

the construction of f(V, E), and we may add edge (w0 , wi) to E. All the nodes in the set

X = { Vi, wil2 ~ i ~ n} are connected to either 1 or 2 nodes smaller than themselves. For

any node x E X connected to only 1 node smaller than itself, add the edge (x, w1) to E.

D

To define a greedy base decision problem it is necessary to modify the Greedy

(base) Algorithm so that it is deterministic. During the ith step of the original algorithm

we have a choice of picking any point from any largest Gi- 1-orbit. We can eliminate this

nondeterminism by ordering the points and insisting that we always pick the smallest

35

eligible point.

Let us call this the deterministic greedy (base) algorithm. With respect to this

algorithm we can talk about "the" greedy base for a group. Note that with respect to

the original Greedy Algorithm there could be an exponential number of greedy bases for

a group. We define the deterministic greedy base (DGB) problem as follows:

DGB Input:

Question:

A generating set for G::; Sym(f2), a linear ordering of n
and a fixed w E n.

Is w part of the greedy base for G?

Lemma 4.3 The DGB problem is P-complete.

Proof: Since the deterministic greedy base is unique we know that the DGil problem

is in P. To prove that the problem is P-complete it will suffice to show that there is a

logspace reduction of GIS to DGB.

Let f(V, E) be an instance of GIS with linear ordering v0 < v1 < · · · < Vn. By

Remark 4.2 we may assume, without loss of generality, that (v0 , vi) E E and that each Vi,

2 ::; i ::; n, is connected to exactly two smaller vertices.

Let X = { Vo, V1, ... , Vn} U { W1, W2, ••• Wn} and let wi = { Wi, vi} for 1 ::; i ::; n.

Define Yo = Y1 = { vo, w1, vi} and for i, 2 ::; i ::; n, let ~ = {Vi, Vj, Vk}, where Vj, Vk are

the two unique vertices less than Vi that are connected to Vi.

Let C = {Wi, Yjll::; i::; n, 0::; j::; n} and let G = Gc(X)::; Sym(f2c). Recall that

nc is the disjoint union of the sets G(Wi) and G(Yj), 1 ::; i ::; n, 0 ::; j ::; n, and that G is

generated by the permutations {'Rc(ax)lx EX}.

Order the elements in each set G(Wi) and G(Yj), 1 ::; i::; n, 0::; j ::; n arbitrarily.

We will extend this to a linear ordering on fie by ordering the sets so that,

Let bi be the smallest point in G(Yi). We define an instance of the DGil problem

where G = (R.c(ax)lx EX), and the ordering of the set is defined as above. We wish to

36

know if bn E flc is in the deterministic greedy base.

Since G has degree 4n + B(n + 1) and is specified by 2n + 1 generators, it follows

that this instance of DGB can be constructed from r(V, E) by an algorithm that uses

no more than O(log n) space. To finish the proof we must show that Vn is in the greedy

independent set if and only if bn is in the deterministic greedy base.

Let B' be the set of points selected by the deterministic greedy base algorithm, and

let V' be the greedy independent set. We shall prove by induction on i, 0 ~ i ~ n that

Vi E V' if and only if bi E B'.

Clearly the hypothesis is true for i = 0 and i = L Assume the statement is true for

all i, 1 < i < m, and let Vj and Vk be the two vertices less than Vm that are connected to

Vm, Then Vm E V' if and only if Vj <t V' and vk <t V'. By the induction hypothesis this

implies that vm E V' if and only if bj <t B' and bk <t B'. Note that bi <t B' and bk <t B'

implies that bm E B', since IG(Ym)I = 8 and IG(Wm)I = IG(Wj)I = IG(Wk)I = 4. If bi

or bk is in B' then the set G(W m) guarantees that bi <t B'. Thus, Vm E V' if and only if

bm EB'. □

Factoring with an SGS is P-complete

We now turn our attention to the factoring problem. Given a base and an SGS for

G ~ Sym(n), can we factor (i.e., sift) g E Gin parallel through the SGS? This was stated

as an open problem in [4). We show that such an algorithm exists if and only if P=NC.

We define the factoring problem as follows:

FAC Input: An SGS, U = U7= 1 Ui, for G ~ Sym(n) relative to a base

B = b1, b2, ... bk, An element g E G, and u E Uk,

Question: Does g = UkUk-l • • · u1 where Ui E Ui and Uk = u?

Lemma 4.4 FAC is P-complete.

Proof: Since sifting takes 0(nk) time it follows that FAC is in P. To show that FAC

is P-complete we describe a logspace reduction of GIS to FAC.

37

Let f(V, E) be an instance of GIS, with linear ordering v1 < v2 < · · · < Vn• We

may assume, without loss of generality, that (v1 , v2) E E and that each Vi, 2 ~ i ~ n, is

connected to exactly two vertices less than itself.

Let G < Sym(3n) generated by the 3-cycles {(3i-2, 3i-1,3i)ll ~ i ~ n}. We view

each element g E G an an n-tuple g = (g1 , 92, ... , 9n), where 9i is equal to either 0, I or 2

(i.e., 9i is equal to either id, (3i - 2, 3i - 1, 3i) or (3i - 2, 3i, 3i - 1)).

Let B = 3, 6, ... , 3n and G i = {(0, ... , 0, 9i+ 1 , ..• , 9n) lg j E { 0, I, 2}, i + 1 ~ j ~ n}.

Then G = G0 > G 1 > • • • > an = { id} is the chain of stabilizers of G relative to B.

We define a set ofcoset representatives Ui = {ai,.Bi,,i} for Gi in ci-l, 1 ~ i ~ n,

as follows. Set Oi = id, .Bi = (0, ... , 0, 9i, 0, ... , 0) 9i = I and 1'i = (h1, h2 , · · ·, hn), where

l
2 if j = i

hj= = i<jand(vi,Vj)EE

0 otherwise.

Clearly U = LJ7= 1 Ui is an SGS for G relative to B, and the set U can be constructed

from f(V, E) by an algorithm that uses no more than O(log n) space. To complete the

construction we define g = (2, 2, ... , 2) E G and u = (0, 0, ... , 0, 2) E Un,

Let V' be the greedy maximal independent set for f(V, E). It suffices to show that

Vn E V' if and only if g = UnUn-1 • • • U1, where Ui E ui and U = Un.

Fix m, 2 < m ~ n, and suppose that g = Un Un-I··· u1 and Vj, Vk are the two unique

vertices less than Vm that are connected to Vm. Let

then by the definition of the SGS, U, it follows that

hm = 2 if and only if Uj :/: 1 j and Uk :/: 1'k· (IV .4)

38

We prove by induction on i, 1 ~ i ~ n that Vi E V' if and only if Ui = "Yi• The

hypothesis holds for i = 1 and i = 2. Assume that the statement is true for all i, 1 < i < m.

Let Vj,Vk be the two vertices less than Vm for which (vm,Vj),(vm,vk) EE. Then Vm EV'

if and only if Vj ft V' and Vk ft V'. From the induction hypothesis it follows that Vm E V' if

and only if Uj -:/; ,j and Uk -:/; "Yk· Thus, by equation IV.4 Vm E V' if and only if Um = "Ym•

D

In the proof of Lemma 4.4 the group constructed for FAC was isomorphic to (Z3t.

We can find an SGS for this group relative to B for which factoring can be performed

in NC (e.g., powers of the standard "vector space" basis). We will call such an SGS

NC-efficient. If we assume that P -:/; NC, then from the above discussion it follows that

some SGSs are NC-efficient and some are not. This brings up the question as to when

there exists an NC-efficient SGS for fixed subgroup towers. Theorem 4.7 gives a partial

answer to this question.

Proposition 4.5 Let H ~ G and let N be a group that is normalized by G (i.e., gN = Ng

for all g E G). Let A = { a1, a 2, ... , am} be a complete set of coset representatives for H N

in GN, such that ai E G 1 ~ i ~ m. If B = {b1, b2, ... , bk} is a complete set of coset

representatives of H n N in G n N, then AB = { abla E A, b E B} is a complete set of

coset representatives of JI in G.

Proof: First observe that [G: H] = [GN : H N][G n N : H n N]. Thus, it will suffice

to show that if a1, a2 E A, b1, b2 E B and a1 b1 H = a2b2H, then a1 = a2 and b1 = b2.

Since b1,b2 EN, a1b1H = a2b2II implies that a1 = a2. Thus b1JJ = b21I, and this

implies that b11 b2 E JJ. D

Definition 4.6 A power-commutator basis (PCB) for a group G is an ordered sequence

(b1,P1), .. . ,(bm,Pm), bi E G, Pi> 1 an integer, 1 ~ i ~ m, such that:

(a) each g E G is uniquely expressible in "canonical form" b? • • • b~m,

0 ~ ei < Pi, 0 ~ i ~ m

(b) for each pair of integers i,j, 1 ~ i < j ~ m, the canonical expression for

the commutator [bj, bi] satisfies e1 = e2 = · · · ei = 0

(c) for each integer i, 1 ~ i ~ m, the canonical expression for the element

b~1 also satisfies e1 = e2 = · · · = ei = 0 t

39

Theorem 4.7 Suppose G ~ Sym(n) is solvable and we are given generators for each sub­

group in the polynomial tower G = G0 ~ G 1 ~ · · · ~ Gm = {id}, then we can find an

NC-efficient SGS for the tower.

Proof: Using machinery established in [35] we can compute, in NC, a PCil for a

normal tower G =No> N1 > ··· > Nk = {id}, such that k is O((logn)2) and Nj-1

modulo Nj is abelian semisimple, 1 ~ j ~ k.

Throughout this proof we view Nj-l / Nj as a direct product of vector spaces, and

we shall refer to the Nj-1 / Nj as vector spaces.

Luks and McKenzie introduce the notion of a "structure forest" and develop linear

algebra techniques needed to find, in NC, the following:

(a) a homomorphism ~j : Nj-1 -+ Sym(A), such that IAI is polynomial inn

and the ker~ i = Ni, l ~ j ~ k

(b) (PCD) elements in Nj-1 that map to a basis of ~j(Nj-t)

Using the vector space representation, ~j(Nj-t) = Nj-i/Nj, we solve, in NC, the

factoring problem modulo Nj, The elements we find in 'Pj(Nj-t) are then pulled back to

inverse images in G. Next, we describe how the normal tower is used to "slice up" the

groups in the tower G =Go~ G1 ~ ···~Gm = {id}.

Using results from [4] generators for llj =(Gin Nj-t)Nj can be found in NC. Note

that this gives us a tower of subspaces for each j, 1 ~ j ~ k,

(IV.5)

Moreover, we can find in NC sets q, 1 ~ i ~ m, 1 ~ j ~ k, such that ~j(r~ u •. • u ff)

is a basis for ~j(IIj- 1
).

40

By taking appropriate powers (and products) of the elements in q we obtain a

set r/, such that { q> i (,) I, E rii} is a complete set of coset representatives of q> i (Hj) in

q>j(Ilj- 1
), 1 5 i 5 m, 1 5 j 5 k. By Proposition 4.5 the set ~i = r~i · · · r~ is a complete

set of coset representatives of Gi in Gi-1, and the set ~i is computable in NC.

Thus, every element g E G can be written uniquely, as g = 61 ···Om, where Oi E ~i.

For any fixed j, 1 5 j 5 k,

N 1 1 2 2 m mN 9 j-1 = 11 ···,j-111 ···,j-1 ... ,1 ···,j-1 j-1,

where,! E r:i 1 ~ i ~ m, 1 ~ s ~ j-1 and bdlj = ,~ ·· ·,j_1Hj.

To corn pu te the Oi I ~ i ~ m we sift g through the subspace towers IV .5 defined

above for 1 5 j 5 k. Each one of the k sifts is in NC, and each one will produce elements

,J · · ·,f. Since k has poly(logn) size the entire sifting procedure will be in NC.

We proceed by induction on j, 1 5 j ~ k. Let us assume that we have sifted g to

acquire the equation,

N 1 1 2 2 m mN g j-1=11·•·1j-111° 00 lj-l 000 ll 000 /j-1 j-1·

If we let Di = ,f · · · ,j_1 for 1 ~ i ~ m, then p = (01 • · · om)- 1g E Nj-l• Since

q>j(Nj_ 1) is a vector space we can, in parallel, express q>j(P) in terms of a basis and pull

back the basis elements to elements in Nj-l •

For reasons that will become apparent later in the proof we shall not use the basis

q> j(r} LJ • • • LJ rr). Instead, we define ii = {'Y(0
i+l •"Om)-l I, E q}, and the corresponding

set i'i = {'Y(0 i+ 1 •••
0 m)-

1 j, E ri}- Note that q>j(I'i u · · · u I'm) is a basis for q>j{Hj).

Using the basis q>j(I' 1 U • • • U I'm) for q>j(Nj-t) we find, in NC, Vi E i'i, such

that pNj = V1 · · · VmNj. This implies that gNj = 01 ···Om V1 · · · Vm Nj. Thus we have

gNj = 0111 · · · Om1mNj, where 'Yi E r:i as desired. D

Corollary 4.8 Given a base B for the solvable group G < Sym(n) we can find an NC­

efficient SGS for G with respect to B.

41

Proof: By (4] we can find, in NC, generators for each group in the chain of stabilizers

of G with respect to B. □

42

CHAPTER V

ROUTING ON CAYLEY NETWORKS

In this chapter we construct effective interconnection schemes for multiprocessor

networks using Cayley graphs and SGSs. In section 1 we describe a fa.ilsoft routing algo­

rithm for these graphs based on the "sifting" procedure described earlier. We also show

how normal towers can be used to define Cayley graphs and routing algorithms that per­

form well, as long as no more than d - l processors fail. In the second section we modify

Valiant's permutation routing algorithm to run on these Cayley networks. We conclude

this section with several concrete examples. In one of the examples the underlying group

is a Sylow-2 subgroup of the symmetric group on n elements (n=power of two). In this

case the generators are chosen with great care so that sifting could be applied. Also,

techniques from Jerrum [25] are used to reduce the size of the generating set without

increasing significantly the routing diameter of the Cayley graph.

Failsoft Routing on SGS Cayley Networks

Let G = Go :S G1 :S · · · :S Gk= {id} be a subgroup tower for G :S Sym(n). Recall

that any SGS U = U7= 1 Ui for the tower has id E Ui, for 1 ~ i ~ k. We shall assume that

all SGSs are effective. By this we mean that sifting, through the SGS, can be performed

in 0(kn) time. In particular, for g E G we can compute its unique representation as a

product ukuk-I · · · u 1, Ui E Ui, in O(kn) time. In fact, we can sift g E Gin O(k2) time by

storing u- 1 instead of u E U.

Definition 5.1 Let G :S Sym(n) and let U = U7=t Ui be an SGS for G with respect to

the tower G = Go :S G1 ~ • · · ~ Gk = {id}. The directed Cayley graph for the SGS

is f(G,W), where W = U \ {id}. The generating set for the undirected Cayley graph ,

43

r(G, W'), includes all the inverses of W (i.e., W' = WU w- 1
).

To compute a route from the vertex 9 1 to the vertex 92 in f(G,W) we sift 911
92

through the SGS. This gives us the equation,

From the equation it follows that there is a path from 91 to 92 of the form,

(V.6)

Note that some of the Ui, 1 ~ i ~ k, could be the identity. In this case we ignore the edges

~ (i.e., these edges do not exist in the graph). So the actual length of the path is k - III,

where Ui = id if and only if i E J.

If we sift 9;191 we obtain the equation,

-1 -1 -1 ij
91 V1 V2 ••• V k = 92' Vi E i.

For the undirected Cayley graph this gives us a second path from 91 to 92,

(V.7)

Note that any sequence of edges labels w1 w2 ···Wm may be interpreted as a path

in f(G, W), starting at vertex 9 E G and ending at vertex 9w1 w2 ·•·Wm. Throughout the

remainder of this chapter paths are described as sequences of edge labels.

Theorem 5.2 Let f(G, W) be the undirected Cayley graph constructed from an SGS for

the tower G = Go ~ G1 ~ · · · ~ Gk = {id}. Then there is an efficient algorithm for

computing two disjoint paths of length no more than k between any two vertices in the

graph.

44

Proof: Given nodes 91 and 92 in the graph we can use the sift procedure to compute

paths (V.6) and (V.7) in O(nk) time (in some cases O(k2
) time). Let Pi be a prefix of

UkUk-1 • • • u1, Ui E Ui, and let P2 be a prefix of v11v21
• • • vj;- 1

, Vi E Ui, To prove that

paths (V.6) and (V.7) are disjoint it will suffice to prove that if Pi = P2, then 91Pi = 92.

Let i be the smallest integer such that Ui -:/ id, and let j be the smallest integer

such that Vj-:/ id. Then i is the smallest integer such that 9 11
92 E Gi-1, and 91192 ¢ Gi,

But 911
92 E Gi-1, and 911

92 ¢ Gi if and only if 92191 E Gi-1 and 921
91 ¢ Gi, and it

follows that i = j.
Let m, t be minimal such that UkUk-1 ···Um = v11 v21

· • • v;- 1 We may assume,

without loss of generality, that i $ m, t $ k. Since vi = id for 1 $ l < i we have

- 1 - 1 - 1 d .J. 'd . 1· th t . s· .d " UkUk-1 ···Um = vi vi+I · · · vt , an Vi -,- i Imp Ies a m = i. Ince u1 = i ior

1 :S l < i it follows that 91 UkUk-1 ···Um = 92· D

The above routing algorithm gives us the ability to route around one faulty proces­

sor. We can improve the fault tolerance of the Cayley network by using a SGS that is

derived from a normal subgroup tower. In fact, we can create a Cayley graph that has

maximal connectivity.

Theorem 5.3 Let r (G, W) be the directed Cayley graph constructed from an SGS for the

normal tower G = G0 ~ G1 ~ • • • ~Gk= {id}. Then there is an efficient algorithm for

computing IWI disjoint paths between any two vertices in the graph. Moreover, all of the

paths have length no more than k + 1.

Proof: Because each Gi ~ G we may view the Ui as both right and left coset

representatives of Gi in Gi-1, 1 :Si :S k. Let 91 (source) and 92 (destination) be any two

nodes in the graph (i.e., 91 ,92 E G). We shall exhibit IWI node independent paths from

91 to 92· Since the graph is symmetric we shall assume, without loss of generality, that

91 = id. This is accomplished by replacing 91 with the id, and replacing 92 with 91192 .

If we view the Ui as left coset representatives, then each element 9 E G can be

written uniquely as g = u1 u2 ···Uk, where Ui E Ui, for 1 :S i :S k. In particular, let

e1 e2 · · • ek = 92 be the result of a sift of 92 ·

45

If u E Ui, then g21ue1e2 · · · ei-1 E Gi-1• We use this fact to define the one-to-one

function 1Pi : ui -+ ui. For Ui E ui define VJi(u) to be the unique element in ui satisfying

the equation,

Define ,i : Ui -+ Gi so that ,i(u) is the unique element in Gi satisfying the equation,

Consider the following !WI equations, all of which are equal to 92,

(V.8)

If we replace ,i(u) with the sift of ,i(u), then we can view the sequence of edges labels in

(V.8) as a path from 91 to 92 (91 = id). To complete the proof it will suffice to prove that

each path has length at most k + l, and that all of the paths are disjoint.

First, let us observe that all of the paths have length no more than k + l. Since

,i(u) E Gi a sift of ,i(u) produces a word in W of length at most k - i. Thus, all of these

paths described above have length no more than k + l.
Let Pi be a prefix of the path u,i(u)e1e2·••ei-11Pi(u), and let P2 be a prefix of

the path ,i(w)e1 e2 • • • ei-t VJi(w), where u, w E W. As in the proof of Theorem 5.2 it will

suffice to show that P1 = P2 implies that P1 = 92 ·

We start by proving that the two paths u,i(u)e1e2··•ei-11Pi(u), and

,i(w)e1 e2 • .. ei-1 VJi(w), are disjoint if u, w E Ui \ { id} and u -:j: w. First note that it

is impossible for a prefix of u,i(u) to equal a prefix of w,i(w), because these elements are

in different Gi cosets. Let s, t be minimal such that,

(V.9)

46

In order for the elements to be in the same Gi-1 coset it must be the case that s = t. But

then equation (V .9) implies that wGi = uGi, and this is a contradiction.

Finally, let us consider two strings of the form, u,i(u)e1 e2 · · · ei-1 "Pi(u) and

w,i(w)e1e2 • • • ei-l"Pi(w), where u E Ui \ {id}, w E Uj \ {id}, and i < j. Because u,i(u)

and w,j(w) are in different Gi cosets, we can use the same argument as above to prove

that no prefix of u,i(u)e1 e2 · · · ei-1 is equal to a prefix of W 1j(w)e1 e2 · · · ei-1 ·

Now suppose that there exists 1 $ t $ i - 1 and i $ s $ j such that

u,i(u)e1 e2 ···et = w,j(w)e1 e2 · · · e3 • This implies that u,i(u)e1 e2 ···et E Gi92, and thus,

u,i(u)e1e2 ·•·et= 92 (et+l = · ·•ei-1 = "Pi(u) = id). D

Permutation Routing on Cayley Networks

Until now we have only considered the problem of point-to-point routing on Cayley

networks. In this section we consider the fundamental problem of permutation routing,

also known as the packet routing and the parallel communication. There are two reasons

why this problem plays a central role in the design of general purpose multiprocessor

networks. First, permutation routing is used as a metric to measure the time needed to

distribute information in networks. Second, the solution to this problem is an impor­

tant ingredient in the simulation of "idealistic" computers (CRCW PRAM) by "realistic"

distributed networks.

The following definitions are borrowed from Valiant and Brebner's classic paper

on parallel communication (45]. The permutation routing problem is defined as follows.

Initially each vertex (processor) possesses a message or package targeted for some vertex

in the network. It is assumed that each vertex is the origin of a message and t hat each

vertex is the destination of one message. For practical reasons it is necessary to be able

to realize partial permutations; in this case, some subset of the vertex set sends messages

and no processor receives more than one message. In fact, the routing scheme we describe

solves the more general partial h-relation problem. Initially there are at most h messages

at any node, and no destination receives more than h messages. For all of these problems

we would like to route the messages using the fewest number of steps and with as little

47

congestion as possible. A vertex may transmit more than one message at a time, but only

one message may travel on an edge in a given time step. Collisions occur when two or

more messages wish to traverse the same edge at the same time. When this happens one

of the messages is sent, and the other messages are forced to wait on a queue.

An initialized scheme is a pair (f ,JC), where r is a regular directed graph. The

initial conditions, IC, specify how the packets and their destinations are distributed at

time zero. We assume that each processor sends h messages and receives h messages.

A routing scheme for (r, IC) is oblivious if the route of each message depends only

on the source and destination, and is not effected by the routes of the other messages. If

e is an edge in r then traff(e) is the expected number of distinct messages that pass along

e. We say that the routing scheme is symmetric if traff(e1)=traff(e2) for all edges e1 , e2

in r.
We say that a scheme is nonrepeating if whenever two messages take paths e1 e2 • • • er

and ei e~ • • · e~ in which ei = ej and e1 = e~, then it is the case that l - i = m - j and

for all p (i ~ p ~ l) ep = e~+j-i· In other words, once two routes diverge they remain

separated.

Valiant described a simple two-phase routing scheme for the 2-ary m-cube that with

high probability runs in 0(m) time [44]. A more general proof of the algorithm, together

with a permutation routing scheme for shuffle graphs and grid graphs, was given by Valiant

and Brebner in [45). In the first phase of the algorithm messages are sent to random vertices

in the graph. In the second phase the messages are routed to their correct destination .

Their proof that the algorithm is successful, with overwhelming probability, relies on the

fact that each phase of the algorithm is oblivious, nonrepeating, and symmetric.

We show that Valiant's routing scheme is an effective algorithm for solving the

partial h-relation problem on any directed Cayley network constructed from an SGS. To

accomplish the first phase of the algorithm we have each message in the network select at

random Ui E Ui, for 1 ~ i ~ k. A message at node s is then sent to node sukuk-l • • • u1

along the path described by the edge labels ui, In the second phase of the algorithm

we route each message to its final destination using the point-to-point routing algorithm

48

described in section 1. All the messages execute the above algorithm simultaneously as

fast as the queues allow.

Note that the algorithm is oblivious, since the routes described for the messages

depend only on their initial position and final destination (and some random information).

We also observe that each phase of the algorithm is nonrepeating. To see this, suppose

that two messages originating at vertices s and s' follow routes e1 e2 ···er and e~ e; · · · e~,

respectively. If ei = e1 and e1 = e~, then it follows that £(ei) = f(ei) where f(e) denotes

the label of edge e (i.e., f((g,gw)) = w). In fact, we have f(ei) .. •f(et) = f (ej) .. • f (e~),

and by the uniqueness of the representations, UkUk-t · · · u1 (Ui E Ui), it follows that

k - i = m - j and for all p (i ~ p ~ k) l(ep) = f(e~+j-J· We may conclude that

ep = e~+j-i, for i ~ p ~ k.

If the routing scheme were symmetric we could use Valiant and Brebner 's result to

prove that the algorithm runs to completion in O(k) time with high probability. Unfor­

tunately, the scheme is not symmetric. However, we can prove a weaker condition that is

sufficient to show that the routing scheme is successful with enormous probability.

Let e be an edge in r, then traff(e)= 1ji1 if and only if £(e) E Ui for 1 ~ i ~ k.

To see this, let e = (g,gui), and note that any message that passes through e in one

phase of the scheme must originate at a vertex g', such that g = g'ukuk-l · · · Ui+l for

Uj E U j , i + l ~ j ~ k. There are h(IUkl · · · IUi+il) such messages; each has a probability

of (IUkl · · · IUi+il)- 1 of reaching g. Each message that reaches g has a probability of~

of traversing e. Thus, traff(e)= ruJ if and only if£(e) E Ui for 1 ~ i ~ k.

We use this fact together with the following facts, which can be found in [45], to

prove our main result.

Fact 5.4 Let e1e2 • · • e~ be a directed path in the graph r. If there are at most m messages

that enter and leave this path during a phase of the routing scheme, then for any arbitrary

queuing discipline no message is delayed by more than m - 1.

Fact 5.5 Consider N independent Bernoulli trials each with probability p of success. The

probability that at least m of the trials succeed is denoted by B(m, N, p). If we have N

49

independent Poisson trials with respective probabilities Pt, P2, ... , PN where "Ef": 1Pi = Np,

and if m 2: Np+ 1 is an integer, then the probability of at least m successes is at most

B(m,N,p).

Fact 5.6 If m 2: Np is an integer then,

B(N) < (!::f.I!.)m(N-Np)N-m m, ,P - m N-m
~ (ti,!reN-m

(e = 2.71 ···).

Fact 5.4 follows from the observation that the routing scheme is nonrepeating.

Fact 5.5 is a Theorem of Hoeffding (22]. The first inequality in Fact 5.6 is due to Chernoff

(13], and the second follows from the inequality (1 + ~r < ec.

Theorem 5.7 Let f(G, W) be the directed Cayley graph constructed from an SGS for

the tower G = Go ~ G1 ~ · · · ~ Gk = { id} where the coset representatives are Ui for

1 ~ i ~ k. Let a = (IU1 I+ IU2I + · · · + IUkl)- 1
, and let (r, JC) be any initialized scheme.

Then the probability that some message is delayed by v or more, in one phase of the

permutation routing scheme described above, is

provided that v > ha + 1.

Proof: We say that a message M intersects some edge e in r(G, W) in a run of the

scheme if its route contains the edge e. Consider some fixed route R : ekek-l • • · e1, where

f(ei) E Ui. Let PM be the probability that message M intersects at least one edge of route

R. Let PMi denote the probability that message M intersects edge ei. Then ,

EMPM ~ EMPM1 + EMPM2 + ""' + EMPMk

~ Ef =I traff(ei)

~ ha.

50

Now suppose that R is the route taken by some particular message M' (in one phase)

for some run of the scheme. Then of the remaining hi GI - 1 messages the expected number

whose paths intersect R is less than ho. Thus, we have hlGI independent Poisson trials

with probabilities summing to less than ho (we added one dummy trial with probability

zero of success). Note that independence is guaranteed by obliviousness. By Fact 5.5 and

5.6 the probability of v successes is bounded by

(V.10)

provided that v > ho + 1.

Thus, for any message M', (e~a)" is an upper bound for the probability that v other

messages intersect with the route of M'. Fact 5.4 implies that the probabili ty that the

message is delayed by v or more is bounded by (e:a)". To finish the proof we multiply

this quantity by the number of messages in the initialized scheme. D

Valiant and Brebner point out that this routing scheme can be used to solve the

partial h-relation problem. Imagine that we start with an initial scheme in which w of the

original hlGI packets are removed. This is equivalent to starting with the initial condition

that is specified by a partial h-relation. To prove this more general result we need only

modify the proof of Theorem 5.7 so that w + 1 dummy Poisson trials are added instead

of one. Thus, equation (V.10) still holds for a partial h-relation and the remainder of the

proof is unchanged.

In Examples 5.6 and 5. 7 Theorem 5. 7 is used to examine the effectiveness of the

randomized routing scheme on two different Cayley networks. In the first example we

construct a Cayley network in which all of the Ui have different sizes. In the second

example we consider the other extreme, where all the Ui have the same size.

Example 5.6 Let U be an SGS for the tower Sym(n) = G0 ~ G 1 ~ • • • ~ en-I = { id},

where Gi = G{ 1,2, ... ,i}· Then !Vil = n - i + l, I:= n - 1 and a= ¼ + n2_ 1 + · · · + ½- If

h = 1 and v = e(n - l), then the probability that a message is delayed by at least e(n - l)

51

(in one phase of the routing scheme) is no more than,

Example 5.7 Let Gh be the automorphism group of a complete binary tree of height h. La­

bel the internal nodes of the tree from top to bottom and from left to right, v1, v2, ... , v 2h_1

(i.e., v1 is the root of the tree and v2h_ 1 is the parent of the rightmost leaf). Let 9i E G h be

the automorphism that flips the subtrees of node Vi, and define Gi = (9i+1, · · · g2h_1) . Let

f(Gh, W) be the directed Cayley graph constructed from an SGS for the subgroup tower,

Go > G1 > .. · G2L 1 = {id}. Note that Ui = {id,gi} and the graph has d = k = 2h - 1,

and a= k½. If h = l and v = ek, then by Theorem 5.7 the probability that a message is

delayed by at least vis no more than,

If we are only interested in point-to-point routing, then it is possible to create Cayley

networks that are more dense than the ones presented above. In fact, in many cases it

is possible to reduce the size of the SGS (and hence the degree of the network) by a

significant amount and still compute routes (via sift) of a reasonable length. For example,

if we replace the SGS in example 5.6 with Jerrum's generators for Sym(n), then we can

reduce the degree of the graph by a factor of n and increase the routing diameter by only

a factor of 2. The same technique can be used to decrease the degree of the Cayley graph

constructed in Example 5.7.

Example 5.8 Consider the tower Sym(n) = G0 2: G 1 2: ... 2: cn-l = {id}, where

Gi = G{1,2, ... ,i}· Let Ui be a set of coset representatives for Gi in Gi-l, and let W =

{(1,2),(2,3), ... ,(n,n-1)}. For any u E Ui there exist w1 ,w2 E W such that Giu =

Giw1w2, 1 ~ i < n - l. Thus the Cayley graph f(Sym(n), W) has degreed= n and

a routing diameter of k = 2(n - 2) + 1. Note that the routing is done via a sift where

elements of Ui are realized as a product of no more than two elements from W.

52

Example 5.9 As before let Gh be the automorphism group of a complete binary tree of

height h and let Vi, 9i and Gi be defined as in Example 5.7. Consider the directed Cayley

graph f(Gh, W'), where W' = {gili a power of 2}. In other words, we select the left-most

generator from each level of the tree. This reduces the degree of the Cayley network from

2h - 1 to h and increases the routing diameter by only a factor of 4. To see this, let

R(h) denote the routing diameter of the network r(G h, W'). It is not difficult to see that

R(O) = 1 and that R(h) = 2R(h - 1) + 3 for h ~ l. Solving the recurrence relation we

have R(h) = 2h+2 - 3.

53

CHAPTER VI

UNIVERSAL BROADCAST

This chapter is an extension of Faber's work on universal broadcast schemes. The

first section contains the definitions and methodology used in [18) to obtain an optimal

universal broadcast in the d-cube. In the second section we modify several of the defini­

tions, and prove that it is possible to perform a universal broadcast, in optimal time, in a

number of Cayley networks. We also answer the question, asked in [18), as to whether or

not there exists an optimal universal broadcast scheme for every QCG. In the last section

we descibe an optimal universal broadcast in several Cayley networks whose groups are

wreath products.

Background and Methodology

A directed Cayley graph r(G, W) models a multiprocessor network that in one time

step may:

(a) use all edges (lines) in parallel

(b) send at most one message per edge

(c) store, retrieve, and operate on data

We say that a processor g E G broadcasts a message in r(G, W), if g sends the

message to all the other processors in the network.

Definition 6.1 A task graph Tis a sequence of edges { eili E J} of a graph r, each with an

associated direction, labeled by positive integers (called times) t(ei), satisfying:

(a) t(ei) < t(ej) implies that ei < ej (see below) or ei,ej incomparable

(b) t(ei) = t(ej) implies that i = j or ei,ej incomparable

54

Definition 6.2 We say that the edges ei, ej satisfy ei < ej if and only if there is a directed

path in T beginning with ei and ending with ej, We say ei and ej are incomparable if

neither ei < ej nor ej < ei,

The time for a task graph T is r = maxie1t(ei). Faber uses a task graph to model

the broadcast of a message from one processor to the rest of the network. The time step

in which the message is passed between two processors is given by the function t.

Definition 6.3 A communication graph C is a collection of task graphs having the property

that no edge in C can have a given (time) label more than once.

A universal broadcast is a communication graph consisting of a broadcast from each

processor. The time for a communication graph is r(C) = maxrecr(T). The requirement

that no edge in C is given the same time label more than once guarantees that no collisions

occur in message passing.

Each broadcast requires the use of at least IGI - 1 edges. Since the total number

of edges in the graph is IGIIWI, it follows that the time needed to complete a universal

broadcast is,

Definition 6.4 Let Sr(g) denote the set of all vertices in the graph a distance of r away

from g.

Definition 6.5 A regular ordering of f(G, W) is an indexing of the vertex set

{go,91,••·91Gl-d such that:

(a) go= { id}

(b) if 9i E Sr(9o) and i ~ j then Vi E Sr(9o)

(c) fix a ~ 0 and consider a set of elements in G of the form 9ad+ i, l ~ j ~ d

then there exists w1, w2, ... , Wd E vV, all different , such that

55

The regular ordering is used to define a task graph, Tid, with edges (9i,, 9ad+j) as

defined above in (c). The time assigned to edge (9i,,9ad+j) is a+ 1. This task graph

defines a broadcast from processor id to the rest of the network.

The broadcast Tid is used as a template to define a broadcast T9 , for every g E G.

The graph automorphism A9 : G ~ G, defined by A9 (g') = gg' , is used in conjunction

with Tid to construct T9 • Let T9 = A9 (Tid) denote the subgraph off(G, W) with vertex

set G and edge set ETg = {(gv,gvw)l(v, vw) E Erid}. The function t9 is defined so that

t9 ((gv, gvw)) = tid((v, vw)).

Using condition (c) and the fact that the graph automorphism A9 preserves edge

labels (i.e., t(e) = t(Ag(e)) and l(e) = l(Ag(e))) Faber proves that C = {A9 (Tid)lg E G}

is a universal broadcast in f(G, W) .

Lemma 6.6 [Faber) Let Tid be a task graph constructed from a regular ordering off(G, W)

and let C = {A9 (Tid)lg E G}. Then C describes an optimal universal broadcast in

f(G, W).

Proof: Each T9 , g E G, defines a broadcast from processor g to the rest of the Cayley

network, and each broadcast takes time r",ti1}1. To finish the proof we must show that

no edge in C is labeled with the same time more than once.

Suppose that there exists an edge e in both T9 and Th, g, h E G, such that t9 (e) =
th (e). By the construction of T9 and Th we know that there exists edges (v, vw), (v', v' w')

in Tid such that,

This implies that w = £(e) = w', since A9 and Ah preserve the edge label £(e). By

condition (c) of the regular ordering and the fact that tg(e) = th(e) it follows that v9 = vh.

Thus, g = h and there is only one message passed along edge e at time tg(e). D

Theorem 6.7 (Faber] The time for a universal broadcast in ad-cube is r'2di1)1.

Proof: A proof of this result may be found in [18]. We give an alternate proof in

the next section. D

56

Universal Broadcast in Ca.yley Networks

In this section we relax the definition of a regular ordering by leaving out condition

(b), and we replace the notion of a task graph with that of a broadcast tree.

Definition 6.8 A regular ordering of f(G, W) is an indexing of the vertex set

{go, 91, ... YIGl-d such that,

(a) Yo= {id}

(b) for any set of vertices foad+ j I 1 $ j $ d, a ~ 0} there exists a set

{Yi, 11 $ j $ d} with ij < ad+ 1 and 9i,Wj = 9ad+j

Through the remainder of this chapter we shall use the new definition of regular ordering.

Definition 6.9 A broadcast tree for processor gin f(G, W) is a labeled spanning tree, T9 ,

that satisfies the following properties. The root of the tree is g and all other nodes have

indegree 1. Each edge e in T9 is labeled with a positive integer tg(e), called time, and for

every path starting at g,

e1 e2 e3 e.,
9 ---;,. 91 --+ 92 --+ .•• --+ gt,'

We shall use the technique described in section 1 to find a universal broadcast

scheme for several Cayley networks. That is, given f(G, W) we attempt to find a regular

ordering for the network. The regular ordering is used to build a broadcast tree Tid, and

the broadcast tree is used to define a universal broadcast C = {A9 (Tid)lg E G}. Recall

that the time labels on the edges in T9 are defined by t9 (A 9 (e)) = tid(e).

We should point out that it is condition (b) of the regular ordering that allows us

to use the automorphisms A9 and the broadcast tree Tid to describe an optimal universal

broadcast in f(G, W). The following lemma indicates the significants of condition (b) in

the methodology used above.

Lemma 6.10 Let Tid be a broadcast tree for processor id in the Cayley network f(G, W),

and let C = {A9 (Tid)lg E G} be the communication graph described above. Then C

57

defines a universal broadcast on r if and only if l(e1) # l(e2) whenever tid(e1) = tid(e2)

(e1 , e2 distinct edges in Tid)-

Proof: The proof of Lemma 6.6 shows that if£(e1) # l(e2) for all edges e1, e2 in Tid

with the same time label, then C is a universal broadcast in r.
To prove that this condition is necessary, let us assume that there exist distinct

edges e1, e2 in Tid such that tid(e1) = tid(e2) and l(e1) = l(e2) = w. Then there exist

distinct vertices g, h E G, such that e1 = (g, gw) and e2 = (h, hw). The broadcast tree

Thg-1 contains the edge e2 = Ahg-1 (e1) and th9 -1 (e2) = tid(e2), This will cause a collision

on edge e2 when the messages broadcast from processors id and hg- 1 both try to cross e2

at time tid(e2), D

Let W = { w1, w2, ... , wd}, G = (W) and (wd+I) = Zq, Given a regular ordering,

{ id,g1, ... , 91a1-d, for f(G, W) we shall describe a regular ordering for f(JI, Y), where

JI= Gx (wd+i) and Y = {(w,id)lw E W}u{(id,wd+l)}. This will be done by organizing

the elements of JI into blocks, Bi, of size d + 1. A typical block will have the form,

Bi = [a1, a2, ... , ad+1], where aj E JI \ { id} and there exists bj ELJl<i B, with bjWj = ai,

for 1 ~ j ~ d + 1. The first block is Bo = [(w1, id), (w2 , id), ... , (id, wd+t)].

If we can partition JI \ { id} into f l~I!~ 1 l blocks (the last block may have less than

d + 1 elements in it), then we have defined a regular ordering for f(JI, Y).

The following notation will be used in our discussion. Let p = l IG~-l J and let

r = (IGI - 1) mod d. Note that IGI - 1 = pd+ r. We denote the element (g, w~+l) E JI

by gi, o ~ j ~ q - 1.

We describe a procedure, Level(s, m, i, z), that accepts as input the nonnegative

integers s, m, i, and z with O ~ p - s < d and i < q - 1. The procedure Level will

t t bl k fi th i i i d i+I i+I i+l . cons rue oc s or e processors 9sd+l ,9sd+2 , ••• ,9IGl-t an 9md+I ,9md+2 , ••• ,9nd m

f(JI, Y). It is assumed that the processors (G x {id})w~+l, 0 ~ j ~ i - 1, 9L9~, ... ,9:d

d i+l i+l i+l h al d b . d . bl ck B B B an 90 ,g1 , ••• ,gmd ave rea y een orgamze mto o ·s 0 , 1 , ... , · z-I•

Procedure Level(s, m, i, z):

(* assume O ~ p - s < d, 0 ~ m and i < q - 1 *)

(1) If p - s = r - 1, then

(* assumes> m and n = m + l ~ p *)

(1.1) For j : = 0 to r - 2 do

B [g i i i i+ 1]
z+j := (a+j)d+l ,Y(a+j)d+2' · · · ,Y(a+j)d+d,9md+j+1

() B [g i i i+ 1 i+I i+I]
1.2 z+r-1 := pd+l' · · • ,9pd+r,Ymd+r+1' · · · ,gmd+d,gmd+r

(1.3) n := m+ 1

(2) If O ~ p - s < r - 1, then

(2.1) x := r-1-(p-s)

(* assume s > m + x and n = m + x + 1 ~ p *)

(2.2) For j := 0 to p - s - 1 do

Bz+j := [9(a+j)d+I ,Yta+j)d+2' · · · ,g(a+j)d+d'g(!~x)d+j+1]

(2.3) For j := 0 to x - 1 do

B . ,_ [i+l i+I i+l]
z+p-a+J ·- Y(m+j)d+I' · · · 'Y(m+j)d+d' Y(m+x)d+r-x+j

() B [g i i i+1 i+l i+l]
2.4 z+r-1 := pd+1,··•,9pd+r'9(m+x)d+r+1'"""'g(m+x)d+d'g(m+x)d+r

(2.5) n := m + x + l

(3) If r - l < p - s < d, then

(3.1) x := d - (p - s - r) + m

(* assume s > m, s + r > x and n = x + l ~ p *)

(3.2) For j := 0 to r - l do

B . ,_ [i i i i+l]
z+J ·- 9(a+j)d+1 ,9(a+j)d+2' · · · ,g(a+j)d+d,gmd+j+l

(3.3) For j := 0 to p - s - r - l do

Bz+r+j := l[gta+r+j)d+l, · · · ,Y(a+r+j)d+d'g~ttj+1]

(3 4) B . [i i i+l i+l i+I]
· z+p-a ·= 9pd+1,···,Ypd+r'9md+r+l''"''gmd+d'gxd+p-a-r-1

(3.5) For j := 1 to d-(p- s - r)- l do

Bz+p-a+j := [g(!i~j)d+l, · · ·, Yt!~j)d+d' g~t~p-a-r+i+l]

(3.6) n := x + l

58

Lemma 6.11 If processors (G x {id})w~+l' 0 < J < i - 1, gLg;, ... ,g~d and

i+l i+l i+l h b · d · t bl k B B d h d" . r 1 g0 ,g1 , ••• ,Ymd ave een orgamze mo oc s o ... z-1 an t e con 1t10ns 10 -

59

lowing lines (1), (2.1) and (3.1) are satisfied, then procedure Level organizes processors

i i i d i+ i i+ i i+i . t bl k
9ad+1' 9ad+2' .. · ,91Gl-1 an 9md+l ,9md+2' .. · ,9nd lil O OC s.

Proof: We must show that for each new block Bi = [a1 , ••• ad+d defined by proce­

dure Level there exists bj EUl<i Bi with bjWj = ai, l ::; j ::; d + l. The first d elements in

each block are organized with respect to the regular ordering given for f(G, W). Thus, it

will suffice to show that there exists b EUl<i B1 with bwd+I = ad+I. One checks that the

bounds on m and x given after lines (1), (2.1) and (3.1) insure that this requirement is

met. Note that n :::; p guarantees that the indices are defined (i.e., not too large). D

Lemma 6.12 Let W = {w1,w2, ... , wd}, G = (W) and (wd+1) = Z2. If {id,91, ... ,9101-d

is a regular ordering for f(G, W) and p - l > d 2'.'. 2, then we can construct a regular

ordering for f(JI,Y), where H = G x (wd+1) and Y = {(w,id)lw E W} U {(id,wd+ 1)}.

Proof: Let m = l '?1 J and let s = md + 1. The first s blocks are Bj =
[9Jd+I, ... , 9Jd+d' g]], 0 ::; j :::; md. At this point we call Level(s, m, 0, md + 1).

Recall that the following preconditions must be satisfied for procedure Level to

operate correctly:

() o o o d 1 1 1 · d · bl k a processors g1, 92 , ••• , g.,d an g0, g1, ... , 9md are orgamze mto oc s

(b) o:::; p - s < d

(c) if p - s = r - l thens> m and n = m + l::; p

(d) if O ::; p - s < r - 1 then m + r - 1 < p and m + r + s ::; 2p

(e) if r - 1 < p - s < d thens> m, d + m < p and d + r + s + m + l ::; 2p

Condition (a) is satisfied by blocks Bo, ... , Bmd, and condition (b) follows from the

definitions of sand m. To prove that conditions (c), (d) and (e) hold it suffices to show

that p > d+m. Note that p(d-1) > d2 -1, since p > d+l (hypothesis). Thus, p > d+~

and the result follows. When procedure Level is finished we will have organized into blocks

the elements 91,92, ... ,glGl-1 and 95,g}, ... ,g~d·

There are IGI - (nd + l) elements left in JI\ { id} that have not been processed into

blocks. Let p = llGl-d~;+1)J, let z = l~l:~d and let y = (IGI - (nd + 1)) mod d + l. We

60

build p more (full) blocks Bz+i = [g(n+i)d+l' ... ,g(n+i)d+d'glGI-I-i], where O ~ j ~ p-1.

If y -:/ 0 the last block is Bz+p = (g(n+p)d+I, ... , 9(n+p)d+y' f, • • •, f]. D

In the proof of Lemma 6.12 the generators w1 , ... , Wd are used to process the

elements in the coset G x { id}. The procedure Level is used to prepare the coset

(G x { id})wd+ 1 for processing by the generators w1 , ... , wd. The next procedure uses this

strategy to find a regular ordering when there are more than two cosets (i.e., (wd+i) = Zq

and q ~ 3).

Procedure Process(p, d, q):

(1) n := O; i := O; Zi := 0

(2) While i < q - l do

i i i+I (2.1) Bzi = [gnd+I, .. · ,9nd+d,9o]

(2.2) m := l e-(~+I) J

(2.3) s := md + n + l
(2.4) For j := 1 to md do

. . '+I
Bz,+i = (.g(n+j)d+I, · · · ,g(n+i)d+d,gj]

(2.5) Level(s, m, i, Zi + md + 1)

(2.6) i := i + 1

(2. 7) n :=value returned from Level

(2 8) ilGl+nd
. Zi := d+I

(3) p = l lGl-d~:+1) J
(4) _ (q-I)IGl+nd

Zq-1 - d+I

(5) y = (IGl-(nd+ 1)) mod d+ l

(6) For j := 0 top - 1 do

(6 1) B [q-I q-I q-1]
• Zq-1 +i = g(n+j)d+I' · · · '9(n+j)d+d' glGl-1-j

(7) BZq-1+,,[ol:~p)d+1, • • • ,ol:~p)d+y' €, • • •, f]

Lemma 6.13 Let W = { W1, w2, ... , wd}, G = (W) and (wd+I) = Zq, If we have a regular

ordering, {id,g1, ... ,9101-d, for f(G, W), 2 ~ d < p- land 3 ~ q, then we can construct

a regular ordering for f(JI,Y), where II = G x (wd+i) and Y = {(w,id)lw E W} u

61

Proof: The proof is analogous to the proof of Lemma 6.12. One checks that before

each call to procedure Level the following preconditions are satisfied:

() 1 t (G { .d}) i o < · < · l i i i d i+I i+I i+l a eemen s X i wd+I' _J _ i- ,91,92,···,9•d an 9o ,91 ,···,9md

are organized into blocks

(b) o ~ p- s < d

(c) if p - s = r - 1 thens> m and n = m + l ~ p

(d) if O ~ p - s < r - 1 then m + r - l < p and m + r + s :;; 2p

(e) if r - l < p - s < d then s > m, d + m < p and d + r + s + m + l :;; 2p D

Lemma 6.14 Let w1 = (a,id) and w2 = (id,/3) be generators for JJ = Zq, x Zq, There is

a regular ordering for the Cayley network f(H, { w1 , w2 }).

Proof: Observe that there is a unique regular ordering for f((w1), { wi}). If we

make two slight modifications to procedure Process, then the procedure can be used to

define a regular ordering for f(H, { w1, w2}). First, we leave out line (2.4) (i.e., skip the

call to procedure Level). Second, we replace line (2.7) with "n:=m". The procedure call,

Process(q'-1,1,q), will result in a regular ordering of f(JI,{w1,w2}). D

Lemma 6.15 Let L = (w1, ... , Wd, Wd+i) be an abelian group. Let G = (w1, ... , wd) and

let L/G = Zq, q 2: 2. Let T1 be a broadcast tree for processor id in f(J/, Y), where

II = G X (a), Y = {(w, id)lw E { w1, ... , wd}} U {(id, a)} and a is a generator for Zq, Let

T2 be the broadcast tree obtained by replacing, edges of T1 labeled a with edges labeled

Wd+I and nodes labeled (g, ai) with gw~+1, 0 ~ i < q. Then T2 is a broadcast tree, in

f(L, { w1, ... , wd+I}), for processor id.

Proof: We need only check that all of the nodes in T2 are distinct. If gw~+ 1 = g'w~+I,

then i = j since q is the smallest integer for which w~+l E G. Thus g = g' and we are

done. D

62

Theorem 6.16 Let G = (w1 , w2, ... , wd) be an abelian group, and let Gi =
(w1 , w2, ... , Wi). If Gi < Gi+t for 1 ~ i < d, then we can find a regular ordering for

f(G, W).

Proof: Using Lemmas 6.12-6.15 we can extend a regular ordering for f(Gi, Wi) to a

regular ordering for r(Gi+t, Wi+I). The only cases not covered by the Lemmas are:

Case 1 i = d = 2 and I G i I < 9,

Case 2 i = d = 3 and IGi I < 16,

Case 3 i = d = 4 and IGil < 25,

Case 4 i = d = 5 and IGi I < 36.

Using Lemma 6.15 it suffices to check that there is a regular ordering for the following

Cayley networks:

(a) r(G1 = Z2 X Z2 X Zq,{w11,w12,W13})

(b) r(G2 = Z2 x Z3 x Zq,{w21,w22,w23})

(c) r(G3 = Z2 X Z4 X Zq,{W31,W32,W33})

(d) r(G4 = Z2 x Z2 x Z2 x Zq,{w41,w42,w43,w44})

(e) f(Gs = Z2 x Z2 X Z3 X Zq,{ws1,ws2,ws3,w54})

(f) r(G6 = Z2 X Z2 X Z2 X Z2 X Zq, { W6t, W62, W63, W64, W6s})

(g) r (G1 = Z2 x Z2 x Z2 x Z3 x Zq, { w11 , wn, w73, w14, w1s})

(h) r(Gs = Z2 X Z2 X Z2 X Z2 X Z2 X Zq, { Wst, Ws2, Wg3, Wg4, Wg5, Ws6})

The set {Wit, ... , wirJ, 1 ~ i ~ 8, is the canonical set of generators for the group Gi. □

Corollary 6.17 The time for a universal broadcast in ad-cube is r(2d; 1)1.

Corollary 6.18 Let G be a finite abelian group with G = (W). If we can order the elements

of W so that Wi ft. (w1 , w2 , ••• Wi-l), then we can find a regular ordering for r(G, W).

Note that in Theorem 6.16 we required that the generating set for G satisfy the

property that Wi+t ft. Gi. The next example shows that without this condition one can

63

construct Cayley networks that cannot be regularly ordered. This answers the question

posed by Faber as to whether or not every QCG can be regularly ordered.

Example 6.10 Let G = Z2n and let W = {l, n, n + 1}, then the Cayley network f(G, W)

has diameter n - l. Since a broadcast will need at least n - l time steps, there is no

regular ordering of the Cayley network when n ~ 5.

We conclude this section with a result that shows that an optimal universal broadcast

exists for any Cayley network, f(G, W), where G is a cyclic group and each w E Wis a

generator for G.

We say that a path

in f(G, W) is aw-path if l(ei) = w for 1 ~ i ~ s.

Lemma 6.19 Let f(G, W) be a Cayley network where G is a cyclic group and each w E W

is a generator for G. If G =XU Y, {T1, T2 , ••• , Tm} = R ~ Wand m ~ IYI, then there

exists x1, . .. , Xm E X and distinct Yt, ... , Ym E Y, such that XiTi = Yi for 1 ~ i ~ m.

Proof: We give a constructive proof that uses induction on m = IRI to find the Xi

and Yi for 1 ~ i ~ m. Since each w E W is a generator, the statement holds for IRI = 1.

Suppose the lemma is true for IRI ~ m and we have found x 1 , ••• , Xm E X and distinct

YI,·· ,,Ym E Y, such that XiTi = Yi for 1 ~ i ~ m. Let {y1, .. •,Ym} = Y' and let

be a To-path from X to Y \ Y', where To E W \ {T1, ... , Tm}, If this path has length 1,

then we are done. If the path has length s > l, then we replace the path with an To-path

from X to Y \ Y' of length at most s - 1.

The procedure we describe for computing the new To-path has the property that

after the k th step either an T0-path of length at most s - l is found or the following

conditions are true:

64

(1) XiTi = Yi, 1 5 i 5 m,

(2) Yi+1 Ti = Y, O 5 i 5 k,

(3) XiTi-1 = Yi+l, 1 5 i 5 k.

We assume, without loss of generality, that all of the Yi,, 1 5 j 5 s - 1, are distinct

elements in Y' and that Y•i-i = Y1. Thus, Y1 To = y and the three conditions are true for

k = 0. Assuming that the conditious hold for k = j - 1 we outline the /h step of the

procedure.

Case 1: (j odd) If XiTi-1 = z E Y \ Y', then replace

Xj-JTi-1 = Yj-1 with XiTi-1 = z,

Xi-3Ti-3 = Yj-3 with Xj-2Ti-3 = Yi-1,

X2T2 = Y2 with x3r2 = y4.

This leaves the element Y2 unused. Now we move Y2 out of Y', and we have the To-path

x1 To = Y2 of length 1 from X to Y \ Y'.

If XiTi-I = x EX, then xri = y and we replace

XiTi = Yi with xri = y,

x i-2Ti-2 = Yi-2 with x i-1 Ti-2 = Yi,

x1 r1 = Y1 with x2r1 = y3.

This leaves Y1 free and we can move Y1 out of Y'. Observe that there is an r0-path from

X to Y \ Y' of length s - 1.

Case 2: (j even) If XiTi-l = z E Y \ Y', then we replace

Xi-ITi-1 = Yi-1 with XiTj-1 = z,

x j-3Ti-3 = Yi-3 with x j-2Ti-3 = Yi-I,

x1 T1 = Y1 with x 2r 1 = y3.

We can move Yt out of Y' resulting in an To-path of length s - 1.

If XjTj-1 = x EX then we have xrj = y and we replace

65

Xiri = Yj with xri = Y,

Xi-2Ti-2 = Yi-2 with Xi-lri-2 = Yi,

X2r2 = Y2 with X3T2 = Y4·

Hence y2 is unused and we have the ro-path x1 ro = Y2 from X to Y \ Y'.

Otherwise x iTj-l E Y' \ {Y1, .. . Yi} , and we may order the elements, with indices

greater than j, so that Xiri-1 = Yi+1·

To finish the proof observe that for j = m condition (2) guarantees that XmTm-1 r/:.

Y'. □

Corollary 6.20 Let G be a finite cyclic group and let W ~ G such that G = (w), for all

w E W. Then we can find a regular ordering for r(G, W). Moreover, any separating set

for the graph must have size at least IWI.

Universal Broadcast Schemes and Wreath Products

Let G ~ Sym(A) generated by W = {w1 , ... ,wd}, and let AU A 1 denote the

disjoint union of two copies of A. Let a be the permutation that interchanges each a E A

with it counterpart in A 1 . We extend each w E W to a permutation on A LJ A 1 , such

that w acts trivially on A1 . Then the wreath of G by Z2 , G l Z2 , is the subgroup of

Sym(A U A1) generated by WU {a}.

Given a regular ordering for r(G, W), we have shown how to construct a regular

ordering for r(JJ,Y), where JI= G x (w') and Y = {(w,id)lw E W} U {(id, w')}). In this

section we describe a process for constructing a regular ordering for r(G l Z2 , W U {a}).

The following facts about G l Z2 are needed:

(a) IG l Z2I = IGl 22

(b) G x G <l G l Z2

(c) G l Z2 = G x G LJ a(G x G)

Thus , each element in G l Z2 can be written uniquely as a product ae(g1 , g2), where

66

e E {O, 1} and (91 ,92) E G x G. For further information on wreath products we refer the

reader to (36].

Our earlier results relied on the fact that the generator, (id, w'), commuted with

the generators {(w, id)lw E W}. The generator o does not have this property. We have,

instead, the following equation,

(VI.11)

Let {go, 91, ... , 9101-d be a regular ordering for r(G, W), and recall that p = l IG~-l J
and r = (IGI - 1) mod d. We will use the regular ordering for f(G, W) and the generators

w1 , .•• , Wd to process the cosets G x { id} of G l Z2 • Hence, for some fixed g E G the

w1, ... , Wd will access, in a single step, elements ae(9ad+i, 9), ... , ae(9ad+d, 9), 0 ~ a ~ p-1

and e E {O, 1}. We denote this block of d elements by oe(D0 ,9) (note that Da is a block

from the regular ordering of G).

The generator o will process the elements ae(id,9), 9 E G and e E {O, 1}. The last

r elements in each coset G x { id} of G l Z2 , except for the cosets with representatives

(id,id), a(id,id), (id,9pd+1), (id,9pd+2), ... ,(id,9pd+r), are also processed by o.

As before, the major obstacle is the ordering of the last r elements in each coset

G x { id} of G l Z2 • Procedure Level handled this problem for the regular ordering of

f(G x Z9 ,Y). For the Cayley network f(G l Z2,{w1, ... ,wd,a}) the sets Rand R' are

used to manage these elements. For 9,91 E G let (R,g) = {(gpd+1,9), ... ,(9pd+r,9)} and

let R' = {a(9r+1,9'), ... ,o(gr+1,91
)},

The procedures Accessl and Access2 describe the order in which the generators

w1 , ••• , Wd and o process the elements of G l Z2. In both procedures, r' = 0 if r = 0 and

r' = 1 if r > 0.

Procedure Accessl:

(*The order in which w1, ••. , wd process elements of G l Z2 .*)

Step 1

(*process the blocks of G x { id}*)

(1. 1) For i = 0 to p - l do

(D;, id)

Step 2 If r' = 1 then

(*complete the coset G x { id}*)

(2.1) (R,id)

(2.2) o:(R',g1)

Step 3

Step 4

Step 5

Step 6

Step 7

(*process the blocks of o:(G x {id})*)

(3.1) For i = 0 to p - I do

o:(Di, id)

If r' = 1 then

(*complete the coset o:(G X {id})*)

(4.1) o:(R,id)

(4.2) o:(R',g2)

(*allow generator o: to finish { id} x G and o:({ id} x G)*)

(5.1) For j := 1 to pd do

(Do,9i)

(5.2) For j := 1 to IGI + r - 2p - 2r'

(D1,9i)

(*process cosets (id,gpd+i)(G X {id}), ... ,(id,gpd+r)(G x {id})*)

(6.1) For j := 1 to r do

(6.1.1) For i = 0 top - l do

(Di,9pd+i)

(6.1.2) (R,9pd+j)

(6.1.3) o:(R',9i+2r')

67

Step 8

Step 9

(*process cosets o(id, 9pd+1)(G X {id}), ... , o(id, 9pd+r)(G x {id})*)

(7.1) For j := 1 to r do

(7.1.1) For i = 0 top- l do

o(Di, 9pd+j)

(*process remaining blocks in G x G*)

(8.1) For j := IGI + r - 2p - 2r' + 1 to pd do

(D1 ,gi)

(8.2) For i = 2 top - 1 do

(8.2.1) For j := 1 to pd do

(Di,9j)

(*process remaining blocks in o(G x G)*)

(9.1) For j := pd down tor+ 2r' + 1 do

(9.1.1) For i := 0 top - 1 do

o(Di,9i)

(9.2) For j := r + 2r' down to 1 do

(9.2.1) For i = 1 to p - 1 do

o(Di,9i)

Procedure Access 2:

(*The order in which o processes the elements of G l Z2 • *)

Step A

(*process elements in o({ id} x G)*)

(*coincides with step 1, step 2 and one move of step 3 [i := OJ*)

(A.1) For j = 0 to p + r' do

o(id,gi)

Step D

(*process elements in { id} x G*)

68

(*coincides with step 3 [i := 1 top - 1) and step 4*)

(B.1) For j = 1 to p - l + r' do

(id,gi)

Step C

(*process the remaining elements in { id} x G and o({ id} x G)*)

(*coincides with step 5*)

Step D

(C.1) For j = p + r' to IGI - 1 do

(id,gi)

(C.2) For j = p + r' + 1 to IGI - 1 do

o(id,gi)

If r' = 1 then

(*complete unfinished part of R' blocks started in steps 2, 4 and 6*)

(*coincides with step 6*)

Step E

(D .1) For j = 1 to r + 2 do

(D.1.1) For i := 1 tor do

o:(gi, 9i)

If r' = 1 then

(*process the last r elements in cosets o:(id, g)(G x {id})*)

(*step 6 has started by this time*)

(E.l) For j = 1 to pd+ r do

Step F If r' = 1

(E.1.1) For i :=pd+ l to pd+ r do

o:(gi,9j)

(*process the last r elements in cosets (id,g)(G x {id})*)

(*step 7 has started by this time *)

(F.l) For j = 1 to pd do

(F.1.1) For i :=pd+ l to pd+ r do

(gi,9j)

69

Step G

(*process cosets o:(id, y)(G x { id}) in the opposite order of step 9*)

(*step 8 has started by this time*)

(G.1) For j = 1 tor+ 2r' do

(G.1.1) For i := pd down to d + 1 do

o:(yi,Yi)

(G.2) For j = r + 2r' + 1 to pd do

(G.2.1) For i := pd down to 1 do

o:(yi, Yi)

70

Theorem 6.21 Let G ~ Sym(A) generated by W = { w1, ... , wd}, and let G l Z2 =
(w1 , ... ,wd,o:), o: defined as above. If we have a regular ordering, {id,y1, .. ,,ylGl-d,

for f(G, W), and

(a) > + l + d-r(r+2) p _ r IGI

(b) IGI + r 2: 2p + 2r'

(c) p2:2

then we can construct a regular ordering for f(G l Z2 , { w1 , ••• , wd, o:}).

Proof: Procedures Accessl and Access2 describe a regular ordering of G l Z2 if the

elements accessed at any given time step can be reached, by the generators, from elements

that have already been processed. If this is true, then condition (b) of definition 6.8 is

satisfied.

First observe that by the time step 5 is completed all of the elements in { id} x G

and o:({ id} x G) have been processed by o:. Thus, the only steps in Accessl that we need

worry about are (2.2), (4.2), and (5.1). Steps (2.2) and (4.2) are not a problem, since

p 2: 2. Since step B in procedure Access2 is completed before step (5.1) is started, it

follows that the elements defined in this step are part of a regular ordering.

Equation (VI.11) implies that the generator o: can access the element o:e(Yi, Yi) E

G l Z2 if and only if the element o:e+I (gj, 9i) has been processed in a previous step.

71

All the elements processed in step A meet this criterion. The elements processed

by a in Step B are part of a regular ordering, since step B is not started until the first

move of step 3 is finished. Step C presents no problem, since it is not started until after

the cosets G x { id} and a(G x {id}) are processed.

Condition (b) gaurantees step (5.1) has finished, before step D is started. Step E

is not a problem, since step 6 starts processing elements by the time it begins. Likewise

step 7 has started processing elements by the time step F is started.

Condition (a) gaurantees that step F runs to completion. In step G we have forced

a to process the unordered elements of a(G X G) in the opposite order that the generators

w1, .•. , Wd are working. Thus, at some point in time the two procedures will converge on

a set of elements of G l Z2 of size at most d. These can then be handled by a subset of the

generators w1, .•. , Wd. □

Corollary 6.22 We can construct a regular ordering for f(Zq l Z2,{w1,a}), where w1 is a

generator for Zq and q ~ 2.

Proof: Note that p = q - 1, r = 0 and d = 1. If q ~ 3, then p ~ 2 and generator w1

can follow the steps outlined in procedure Access!. Every element processed by w1 , after

the first step, is multiplied by the generator a. The case q = 2 is a simple exercise. D

Corollary 6.23 We can construct a regular ordering for r(lk Z2, { a 1 , • •• , ak}), where the

O'.i, 1 ~ i ~ k, are the canonical generators defined above.

Proof: We use Corollary 6.23 to define a regular ordering for r(Z2 l Z2, {a1 ,a2}).

Then given a regular ordering for f(liZ2 ,{a1 , ..• ,ai}), i ~ 2, Theorem 6.21 is used to

define a regular ordering for f(li+I Z2 , { a 1 , •.• , O'.i+i}). D

72

CHAPTER VII

AN ALGEBRAIC ANALYSIS OF THE MOEBIUS GRAPH

Leland and Solomon introduced a family of trivalent graphs, called Moebius graphs,

which had a diameter that was 25% smaller than any family of trivalent graphs previously

defined. Because of its small diameter and degree the Moebius graph was proposed as an

effective interconnection scheme for multiprocessor networks [30]. The authors suggested,

for future research, two open problems concerning the Moebius graph. First, find an

efficient algorithm for computing optimal (shortest) paths for the Moebius graph. Second,

determine the exact diameter of the Moebius graph.

In this chapter we use algebraic techniques to analyze the Moebius graph, and solve

the two problems stated above. We reduce the graph theory problem of routing, to the

algebraic problem of computing generating sequences. This reduction follows from the

observation that the Moebius graph is isomorphic to a quotient Cayley graph (QCG).

In the past ad hoc methods have been used to show that specific nonsymmetric

networks, such as the de Bruijn and Shuffle-exchange, can be viewed as QCGs. We state

a more general result which says that a graph is isomorphic to a QGC if and only if it

satisfies the "labeling" property. Given a "labeling" for the graph, this result not only

identifies the graph as an QCG, but it describes the groups needed to define the QCG

and an isomorphism between the graphs. We use these groups to guide the development

of our routing algorithm and to prove that the algorithm is correct.

In the first section we present background information about the Moebius graph

and prove that the graph is isomorphic to to an QCG. We also introduce the notation and

the algebraic tools needed in later sections. The second section contains a description of

the optimal routing algorithm and a proof of correctness. In the last section we determine

the exact diameter of the Moebius graph.

73

The Moebius Graph and Al~ebraic Tools

Notation:

o Let O = (0, 0, ... , 0) and let 1 = (1, 1, ... , 1)

o For v E (Z2?, let pr(v) = wt(v) mod 2

o Let J ~ {0, 2, ... , n - 1}, then we call v E (Z2t the characteristic vector for J if

Vj = 1 if and only if j E J

Definition 7.1 For any integer n 2: 2 let Mn(V, E) denote the Moebius graph of order n.

The graph has V = (Z2t, and E = {(v, v")lv E V and s E {p, p- 1, 8}}, where p and 8 are

defined by the equations,

(xn-l,··•,x1,xo)P = (xn-2,··•,xo,xn_i), and

(xn-1, ... ,x1,xo)6 = (xn-1, ... ,x2,x1,xo).

A "path" vo, v1, .. . , Vm starting at vertex vo and ending at vertex Vm is denoted by

a sequence of edge labels P = P1P2 ···Pm, Pi E {p, p-1, 6}, such that, Vi = vf~ 1 . Using

this notation, Leland and Solomon described a routing algorithm that constructed paths

of the form:

(a) 9oP91P · · · 9n-1

(b) P9oP91 · · · P9n-t

where 9i E {id,8}.

They proved that any two vertices in Mn(V, E) could be connected by a path of

type either (a) or (b) in which 9i = id for at least l~J values of i. Thus, the diameter of

Mn(V, E) was bounded above by l 32n J.
Their algorithm had two shortcomings. First, it could not find a path of length less

than n - 1. As a consequence, a message sent to an adjacent vertex would have to pass

74

through at least n - 2 other processors in the network. This would result in unnecessary

communication delay and overhead. Also, the routing algorithm failed to use edges labeled

p- 1 • This increases the probability of congestion on the other two communication lines.

Our communication scheme solves these problems by computing optimal routes.

The first step in developing the algorithm is the observation that the Moebius graph is

isomorphic to an QCG.

Definition 7.2 Let G be a finite group generated by H and W, where H ~ G and W ~

G. The quotient Cayley graph f(G,H, W) has vertex set {J/gjg E G}, and edge set

{(Hg,Hgw)lg E G, w E W}.

When defining families of graphs, such as Mn(V, E), one typically specifies the edges

by a set of functions (e.g., {p, 6}). In these cases the following lemma can be a useful

characterization of QCGs.

Lemma 7.3 A connected directed graph f(V, E) is isomorphic to a Quotient Cayley graph

if and only if there exists a set of permutations, S ~ Sym(V) such that E = {(v, v")ls E

S, v EV}.

Proof: Suppose 4> : V -+ { JI gjg E G} is an isomorphism between f(V, E) and

f(G, H, W). For each w E W define a permutation Sw E Sym(V), where v"w =

4>-1 (4>(v)w). Let S = {swlw E W}, then E = 4>- 1({(Hg,llgw)lw E W} = {(v,v"w)jw E

W}.

Suppose S ~ Sym(V) such that E = {(v, v")ls E S, v E V}. Let G denote the

subgroup of S ym(V) generated by S, and let JI = G v for some fixed v E V. We know

that G is transitive on V since f(V, E) is connected. Thus, for each w E V there exists

g E G such that v 9 = w. There is a natural one-to-one correspondence between V and the

right cosets of II in G, namely 4>(v9) =Hg.This bijection is well defined since Hg= Ilh

if and only if v 9 = vh. Moreover, 4> is an isomorphism between f(G,JJ,S) and f(V,E),

since 4>(E) = 4>({(v9 ,v9")lg E G, s ES})= ({(1/g,Hgs)lg E G, s ES}). D

Remark 7.4 The isomorphism 4> preserves the edge labels. This fact will be used to reduce

the routing problem on f(V, E) to the problem of finding generating sequences for elements

75

of e.

Since p, 8 E Sym(V) it follows from the proof of Lemma 7.3 that Mn(V, E) is iso­

morphic to r(en, Hn, W), where W = {p, 8}, and Hn = G"2.. We denote the isomorphism
0

--g
between Mn(V,E) and r(an,nn, W) by the function ~(v) = llng, where 0 = v.

The first thing we must do is decide on a reasonable representation for an. If we

were to represent a permutation g E en as a product of disjoint cyclics, we would need

0(n2n) space to store g. Instead, we will view an as a subgroup of the Affine group A of

(z2r, where

A= {(N,v)IN is an n X n invertible matrix, and VE (Z2r}.

For (N, v) E A and x E (Z2t the action of (N, v) on xis defined by the equation, x(N,v) =
xN + v. The product of two elements (N, v), (L, w) E A is (N, v)(L, w) = (NL, vL + w) .

This representation allows us to store each g E en in 0(n) space.

If we let I be the n x n identity matrix and let

0 0 0 0 1

1 0 0 0 0

M= 0 1 0 0 0

0 0 0 1 0

then the permutations p, p- 1 , and b can be viewed as elements of A, where

p = (M,(0,···,0,l)),

p- 1 = (M- 1 , (1, 0, • • •, 0)), and

b = (I,(o, .. . ,0,1,1)).

Definition 7.5 For 0 _:s; i _:s; n - l let 8i = p-ib/. Then 8i = (I,w) where Wj = 0 unless

j = i + l mod nor j = i mod n. Note that b0 = b, and

(VII.12)

76

Convention: Throughout the remainder of the chapter we interpret the subscripts of o

modulo n.

Remark 7 .6 Let J(n be the group generated by the set { Ci IO ~ i ~ n - l}. Then J(n <l en

and J(n = {(I,v)lpr(v) = 0}. The group](n is isomorphic to (Z2r- 1 , and any n - l

elements from the set {cilO ~ i ~ n - 1} form a basis for J(n. Since TI?;a1<\ = (I, 0), it

follows that every element k E J(n can be written in exactly two ways as a product of

elements from { OilO ~ i ~ n - l}. We shall say that V E (z2r is a characteristic vector of

kif k = Ilvi=IOi. If vis a characteristic vector of k, then the complement of v (v+ 1) is

the other characteristic vector for k.

Claim 7.7 Let G ~ A defined by,

e = { {(Mi, v) IO ~ i ~ n - l, v E (Z2 t} if n ~ 3 and odd

{(Mi,v)IO ~ i ~ n - l, v E (Z2t, pr(v) = i mod 2} if n ~ 2 and even

then en= e.

Moreover, if n is odd then each g E en can be written uniquely as a product, rk,

where r E (p) and k E J(n. If n is even then g E en can be written in exactly two ways

as a product, rk, where r E (p) and k E J(n.

Proof: Note that Kn ~ en ~ e. Since Kn <l en, it follows that (p)Kn is a sub-

group Of e n When n 1·s odd we have l(P) 7i,.nl l(P}l!K"I 2n2"-
1 1e1 Wl1en n 1·s even • .n. = l(p)nK"I = -1- = ·

I () T. -"' n I ~ 2n2n-l 1e1 p .i~ = ~ = -2- = . D

It is a simple exercise to check that Jln and <P(v) are the following:

lln = { {(M-i, o)IO ~ i ~ n - 1}

{(Mi, O)li = 0,2,4 , · · · n - 2}

if n ~ 3 and odd

n even.

l
Hn(J,v)

4>(v)= lln(I,v)

Jln(M, V)

if n ~ 3 and odd

n even and pr(v) = 0

n even and pr(v) = 1

77

Viewing the Moebius graph as an QCG has already given us some valuable infor­

mation about the family of Moebius graphs. In particular, it points out the we are really

dealing with two separate families, one for odd values of n, and one for even values of n.

An Optimal Routing Algorithm for the Moebius Gra.ph

In this section we reduce the problem of routing on the Moe bi us graph to the problem

of finding a minimum generating sequence (with respect to {p,p-1 ,b}) for g E en. Let

v1 , v2 be two vertices from the Moebius graph Mn(V, E). Recall that a sequence of edge

labels P = P1P2·"Pm, Pi E {p,p-1 ,b}, describes a path from v1 to v2 if and only if

vf1
P2 .. ·Pm = v2. Since <52 = 1 we may assume that every path in Mn(V, E) has the form

pe 0 +1 bpe 0 <5 • • • bpe1 , where the ei are integers and nonzero if 2 ~ i ~ a. The length of the

path is a + ~r~l lei,. Note that a corresponds to the number of b edges traversed and

~f~i1 leil to the number of p and p- 1 traversed.

Let OP(v1,v2) denote an optimal path from v1 to v2 in Mn(V,E), and let MeS(9)

denote a minimum generating sequence for 9 E en. The algorithm OptimalRoute reduces

the problem of computing an optimal route to the problem of finding minimum generating

sequence. The input to the algorithm is a pair of vertices from the Moebius graph and the

order, n, of the graph. The algorithm returns OP, an optimal path between the vertices.

Procedure OptimalPath(v1 ,v2,n,OP):

(1) Compute 91 such that Iln91 = 4>(v1)

(2) Compute 92 such that Jln92 = 4>(v2)

(3) OP:= MeS(91192)

(4) For h E Jln \ {1} do

(4.1) Path:=MeS(g11 hg2)

(4.2) If !Path! < IOPI then Path:=OP

(5) Return (0 P)

78

Claim 7.8 Let T(g) represent the time needed to compute a minimum generating sequence

for g E en. Given v1 , v2 E Mn(V, E) the algorithm OptimalPath finds a shortest path

between the vertices in 0(nT(g)) time.

Proof: The time bound is correct since the running time of algorithm OptimalPath

is dominated by the "for loop", and IHnl .$ n.

To prove correctness, recall that the isomorphisim <I> between .Mn(V, E) and

I'(en, lln, W) preserves edge labels. Thus, P = P1P2 ···Pr is an optimal path from v1

to v2 in the Moebius graph if and only if (1Jngi)p1p2 ···Pr = llng2, and no word of length

less than m maps Jfng1 to Jfng2 • We may conclude that any word of minimum length in

the set {MeS(g11hg2)1h E lln} corresponds to a shortest path from v1 to v2, □

We shall now outline the strategy that is used to find a minimum generating sequence

for g E en. Suppose MeS(g) = pe0 +1 cpe 0 s ... spe 1 , then using equation (VII.12) we may

rewrite gas, g = pd Cea··· Cci, where d = I;f1/ei, and Cj = r;{: 1ei (mod n), for 1 .$ j .$ a.

Let v be the characteristic vector of the set { Cj I 1 .$ j .$}. Given d and v a minimum

generating sequence for g can be constructed using a procedure called QueueWalk.

Of course we are still left with the problem of computing d and v, for g E en. We

shall show that when n is odd there is only one possible choice for d and therefore, only

two possible choices for the vector v (the two vectors will be compliments of each other).

When n is even there will be only two possible options for d, and for each value of d

there will be two possibilities for v. Our algorithm for computing a minimum generating

sequence will call the procedure QueueWalk with all the possible values of d and v, and

take the smallest generating sequence found.

The procedure QueueWalk accepts as input a vector V E (z2r and an integer d.

The procedure returns a sequence D = d1, d2, ... , dm and a sequence T = t1 , t2, . .. , twt(v)

that satisfy the following conditions:

(a) di E {1,-1}, and O ~ t1 < t2 < ... < twt(v) ~ m

(b) v., = 1 if and only if for some 1 ~ lj ~ wt(v), ~:~1di = s mod n

(c) ~~1di = d

(d) if D' and T' are two sequences satisfying properties 1-3, then IDI ~ ID'I

79

Informally, we may think of v as a circular queue of size n, where cell s of the queue

is "marked" if and only if v., = 1. A "walk" on the queue consists of a sequence of steps

in either the clockwise (positive) direction, or the counterclockwise (negative) direction.

The procedure Queue Walk finds a shortest walk, D = d1, d2, ... , dm, that starts at cell

zero, visits every marked cell of the queue, and terminates a distance ldl away from the

start position in the direction ~- The length of the walk is m, and the ti indicate the

time at which a marked cell is visited. Note that once a walk is described it is a simple

exercise to compute the sequence T in time m.

Procedure Queue Walk(v, d, D, T) :

(1) If ldl ~ n, then

(1.1) di:=~forl~i~ldl

(*m = ldl*)
(1.2) Compute T satisfying condition (b) above

(1.3) Return(D, T).

(2) If O ~ d < n, then

(2.1) Find a largest block of zeros, (s, t), between [d + 1, n - l]

(*the block of zeros has size E = t - 8 - l *)

(2.2) 8 1 := n - t s2 := 8 - d

(2.3) di := -1 for 1 ~ i ~ s 1

di := 1 for 81 + l ~ i ~ 281 + s

di := -1 for 2s1 + s + l ~ i ~ 281 + s + s2

(*m = d + 2(n - d - l - E)*)

(2.4) Compute T satisfying condition (b) above

(2.5) Return(D, T).

(3) If -n < d < 0, then

(3.1) Find a largest block of zeros, (s, t), between [1, n - ldl - l]

(*the block of zeros has size E = t - s - l *)

(3.2) s1 := n - t s2 := n - ldl - t

(3.3) di := 1 for 1 ~ i ~ s

di := -1 for s + l ~ i ~ 28 + 81

di := 1 for 2s + s1 + l ~ i ~ 28 + 81 + s2

(*m = ldl + 2(n - ldl - l - E)*)

(3.4) Compute T satisfying condition (b) above

(3.5) Return(D, T)

80

Claim 7.9 The procedure QueueWalk terminates in O(n + ldl) time and the sequence

D = d1 ,d2 , •.• ,dm constructed by the procedure satisfies conditions (a)-(d).

Proof: We shall assume that the vector v is given as an array indexed from O to

n - l. The proof consists of the following three cases.

Case I (ldl 2: n). The walk specified by the procedure visits every cell, and any walk

satisfying E~1 di = d must oflength at least ldl. Computing T given Dis straightforward.

Case II (0 ~ d < n). In line (2.1) of the procedure we find a largest block of

consecutive zeros in array v between cell d + l and cell n - l (inclusive). We denote this

block by (s, t) (i.e., the block starts at cell 8 + l and ends at cell t - l). One checks that

the total time needed to execute lines (2.1) through (2.5) is 0(n).

To show that the procedure functions correctly we note that the walk specified by

the procedure visits all the cells of the queue except cells s + l to t - l, which are not

marked. Condition (c) is satisfied since ~~1 di = -s1 +s1 + s-s2 = d. We shall prove that

any walk of shorter length cannot satisfy properties (a)-(c). Just suppose C = c1 , c2 , .•• , c1

is a walk that satisfies properties (a)-(c) That is, P1 2'. ~{= 1ci, for 1 ~ j ~ l. Let P2 be

a smallest partial sum of the C. Then l ~ 2IP2 I + 2A - d, and l < m implies that

A - P2 < n. Thus, the walk defined by C does not visit cells P1 + 1 to n + P2 - l,

implying that the cells are not marked. However, l < m implies that t - s < n + P2 - Pi,

81

and this implies that (s,t) is not a largest block of zeros.

Case III (-n < d < 0) The proof of this case is analogous to the proof of Case II. □

The following claim constructs a generating sequence for g E en using the procedure

QueueWalk. The claim proves that with the appropriate input QueueWalk can be used

to find a minimum generating sequence for g.

Q.aim 7.10 Let g E Gn, and suppose g = pdk. Let v be a characteristic vector for k

and let D = d1, d2, ... , dm, T = t1, t2, ... , ta (wt(v) = a) be the result of a call to

Queue Walk(v, d, D, T). Define P1 = d1 + · · · + dt 1 , Pi+l = dti+I + · · · + dti+i for 1 ~ i < a,

and Pa+l = dta + ... + dm, then pP0 +1 cpP0 c ·••cpPl is a generating sequence for g.

Moreover, if MGS(g) = pe 0 +1 cpe 0 s .. ·Ope1 , where d = E':Ilei, and Vs= 1 if and

only if there exist j such that Ef=1 ei = s mod n, then pP0 +1 8pP0 8 · • • 8pP1 is a minimum

generating sequence for g.

Proof: First, observe that Ei=tPi = s mod n if and only if Vs = 1. Now using

identity (VII.12) we have pdk = pP0 +1 8pP0 8 • • • 8pP1 • To finish the proof it will suffice to

show that Efii11Pil = Efilleil• Since pe 0 +1 8pe 0 8 · · · 8pe1 is a minimum generating sequence

for g it follows that Ef~} lei I ~ Efil IPi I- Just suppose Ef~} IPi I > Efil lei I; then we could

use the the ei to define a walk of length Efil leil < m for v and d. But by Claim 7.9 such

a walk cannot exist. D

Corollary 7.11 (a) If g = pdk, and v is the characteristic vector of k, then there exists a

generating sequence for g of size

I
wt(v) + ldl if ldl ~ n

wt(v) + d + 2(n - d - l - E) if 0 ~ d < n

wt(v) + ldl + 2(n - ldl - 1 - E) -n < d < 0.

Recall that E = t - s - 1 (Eis defined in QueueWalk).

(b) If MGS(g) = pe 0 +1 8pe 0 0 · .. spe1 , then -n ~ Efilei ~ n. This follows from the

fact that p 2n = (I, O).

82

The procedure MinGenSeqOdd computes a minimum generating sequence for g E

en when n is odd. It accepts as input an element g and an integer n. The procedure

Queue Walk is used to construct a generating sequence as described in Claim 7.10.

Procedure MinGenSeqOdd(g = (Mi,v),n,mgs):

(*We assume that n is odd, and O ~ i ~ n - 1 *)

(1) If i = 0 and pr(v) = O, then (g = p0k)

(1.l)d := 0

(1.2)k := g

(2) If i = 0 and pr(v) = 1, then (g = p-nk)

(2.1) d := n

(2.2) k := png

(3) If ii- 0 and pr(v) = i mod 2, then (g = pik)

(3.1) d := i

(3.2) k := p-ig

(4) If i :/- 0 and pr(v) :/- i mod 2, then (g = pi-n k)

(4.l)d := i - n

(4.2) k := pn-ig

(5) Compute the v and v', the two characteristic vectors fork

(6) QueueWalk(v,d,D,T)

(7) QueueWalk(v',d,D',T')

(8) If IDI + ITI < ID'I + IT'I

then use D and T to compute MeS(g)

else use D' and T' to compute MeS(g)

(9) Return (mgs := MeS(g))

Theorem 7.12 Procedure MinGenSeqOdd computes a minimum generating sequence for

g = (Mi, v) E en in 0(n) time, for odd values of n.

Proof: The time needed to perform any of the first 5 statements is 0(n). Statements

(6) and (7) take time 0(n + ldl) and Id! ~ n. If we compute Me S(g) as described in

83

Claim 7.10, then statement (8) takes time 0(n).

To finish the proof we must prove that the algorithm computes a minimum gener­

ating sequence for g. Suppose MeS(g) = pe 0 +1 6pe 0 6•··6pe1 , and Cj = 'Ei=1ei mod n, for

1 ~ j ~ a. By Corollary 7.11 and Claim 7.7 we have d = 'Ef1lei, and it follows that either

v or v' is the characteristic vector for k = IIJ= 1 hcj. The proof follows from Claim 7.10. D

The procedure for computing a minimum generating sequence for g E en when n

is even is analogous to the previous procedure. The only difference is that now there are

two possible choices ford (Claim 7.7).

Procedure MinGenSeqEven(g = (Mi, v), n, mgs):

(*We shall assume that n is even, and O ~ i ~ n - 1 *)

(1) k1 := p-ig (g = pik1)

(2) k2 := Pn-ig (g = /-nk2)

(3) Compute v1 and vL the characteristic vectors for k1

(4) Compute v2 and v~, the characteristic vectors for k 2

(5) QueueWalk(v1,i,D1,Ti)

(6) Queue Walk(v~, i, D~, T{)

(7) Queue Walk(v2, i - n, D2, T2)

(8) Queue Walk(v~, i - n, D~, T~)

(9) IflD~l+IT{l<ID1l+IT1I

then set D1 := D~ and T1 := T{

(10) If ID~I + IT~I < ID2I + IT2I

then set D2 := D~ and T2 := T~

(11) If ID1 I+ IT1 I < ID2I + IT2I
then use D1 and T1 to compute MeS(g)

else use D2 and T2 to compute MeS(g)

(12) Return (mgs := MeS(g))

Theorem 7.13 Procedure MinGenSeqEven computes a minimum generating sequence for

g = (Mi,v) E en in O(n) time for even values ofn.

84

Proof: By the proof of Claim 7.7 we know that for even values of n each g E en can

be written in exactly two ways as a product of the form rk, where r E (p), and k E J(n.

This is done in the first two lines of the procedure. The rest of the proof is analogous to

the proof of Theorem 7 .12. D

Remark 7.14 The algorithm outlined above for finding a shortest path between two nodes

in the Moebius graph is by no means optimal. There are a number of ways that one can

improve the running time of the algorithm. For example, since the characteristic vectors

(v and v') of k are complements of each other, one can modify the procedure Queue Walk

so that it searches simultaneously for a largest block of consecutive "zeros" in v and v'.

This will eliminate half of the calls to Queue Walk.

The procedure OptimalPath makes n (n/2) calls to MinGenSeqOdd (MinGenSe­

qEven). As a result there are n elements from](n that one must compute. Once one

of the elements is obtained, the other n - l elements can be found using Tables 3-6. Of

course, these modifications do not change the asymptotic running time, O(n2), of the

algorithm OptimalPath.

Tables 3-6 illustrate the relations between the n elements in](n that must be found

to compute an optimal path from v1 to v2 in Mn(V, E). The following notation is used

to define the dependencies. Let 9 1 = 4>(vi), 92 = 4>(v2), and define k so that (M2 , O)k =
911(M2 , 0)91 . We denote p-ikpi, by k(i). Note that if k = IIjEJDj, then by equation

(VII.12) k(i) = IIjEJDj+i·

The Diameter of the Moebins Graph

Leland and Solomon established an upper bound of l 32n J for the Moebius graph of

order n. They also proved (by computer search) that the actual diameter of the Mn(V, E)

was f 32n l - 2, for 2 ~ n ~ 11. In this section we prove that the diameter of the Moebius

graph Mn (V, E) is f 32n l - 2 when n is odd, and 3;1 - 1 when n is even and greater than

10. Throughout the remainder of this chapter we shall use the notation from Tables 3-6.

Table 3: For n Odd and pr(vi) = pr(v2)

For n Odd and pr(vi) = pr(v2)
Elements in en Dependencies

911(1, O)92 = p0 ko

91 1(M 2
' 0)92 = p

2 k2

91 1(M4, O)g2 = p4
k4

911(Mn-4' 0)92
-l(Mn-2 -O) 91 ' 92

= pn-lkn-1

= P1-nk1

= p3-nk3

=
--

bok(0)ko

b2k<2> k2

On-3k(n-3) kn-3

bn-1 k(n-l) kn-1

01 k(l) k1

On-6k(n-6) kn-6

On-4k(n-4) kn-4
J: k(n-2)k Un-2 n-2

Table 4: For n Odd and pr(Vt) :/= pr(v2)

For n Odd and pr(vi) :/= pr(v2)

=
=

=
=
--

Elements in en Dependencies

911(1, 1)92
g-;1(M 3

, O)g2
g11(M5

, 0)92

= p1 k1

= p3
k3

= p5ks

=
--

p-3 kn-3

p-lkn-1

01 k(l) k1

b3k(3)k3

J: 4k(n-4)k Un- n-4

On-2k(n-2) kn-2

bok<0>ko

J: k(n-s)k Un-5 n-5

On-3k(n-3) kn-3

On-1 k(n-l) kn-1

--
--

=
=
--

=
--
--

85

Table 5: For n Even and pr(v1) -:/= pr(v2)

For n Even and pr(v1) -:/= pr(v2)
Elements in en Dependencies

911(M0 ,0)92 = p1k1

91 1(M2 ,O)92 = p3 k3 c51k{l)k1 = k3

911
(Mn- 4

, 0)92
-l(Mn-2 -0)

91 ' 92

= pn-lkn-1

= pl-nk1-n

= p3 -nk3-n

i: k(n-3)k Un-3 n-3
I: k(n-l)k Un-1 n-1

c51k(l)k1-n

c5n-3k(n-3) k_5

c5n-3k(n-3) k_3
I: k(n-l)k Un-1 -1

Table 6: For n Even and pr(v1) = pr(v2)

For n Even and pr(v1) = pr(v2)

=
--
--

=
--
--

Elements in en Dependencies

911 (M0
, 0)92 = p0 ko

911(M 2' O)g2 = p2k2

911(Mn- 2 , 0)92

91 1(M 0
, 0)92

91
1 (M2, 0)92

-l(Mn-4 -0)
91 ' 92

- l (Mn-2 -0)
91 ' 92

=
--

=

pn-2kn-2

P-nk_n

p2-nk2-n

= p-4k_4

= p-2k_2

i: k(n-4)k Un-4 n-4

c5n-2k(n- 2) kn-2

c5ok(0) k_n

c5n-6k(n-6) k_6

Dn-4k(n-4) k_4

Dn-2k(n- 2) k_2

=

=

--

--
--

86

87

Lemma 7.15 If n is odd and v1 and v2 are two vertices from the Mn(V, E), then there

exists a path between the vertices of length no more than r 32n l - 2.

Proof: Let <I>(vi) = Hn91 and <I>(v2) = Hn92. By the definition of <I> we have

91 = (I,v1) and 92 = (I,v2). It will suffice (by claim 7.8) to prove that there exists

h E nn such that 9";-1 h92 has a generating sequence of length no more than r 32n l - 2.

Case I (pr(v1) = pr(v2)) Let g11(.Mn-I, 0)92 = pn-Ikn-1 (notation from Table 3).

By Remark 7.6 we know that there exists a characteristic vector, v, for kn-I such that

wt(v) ~ rn l - 1. Now, by Corollary 7 .11 we have,

1 3n
IMGS(pn- kn-i)I ~ wt(v) + n - 1 + 2(0) ~ r 2 l - 2.

Casell(pr(vi)-:/; pr(v2)) Let 911(.Mn- 2, O)g2 = pn-2kn-2• Ily Remark 7.6 we know

that there exists a characteristic vector, V for kn-2, such that Vn-1 = 0. If the wt(v) ~ r~ l,
then

2 3n
IMGS(pn- kn-2)1 ~ wt(v) + n - 2 + 2(0) ~ r 2 l - 2.

On the other hand if wt(V) > r~ l' then let v' be the complement of V. We know

that v' is a characteristic vector of kn-2 and wt(v') ~ r~ l - 2. Thus,

D

Theorem 7.16 If n is odd then the diameter of Mn(V, E) is 13
2nl - 2.

Proof: Let v1 = (0, 1, 0, 1, 0, ... , 0, 1, 0) and let v2 = (1, 0, 1, 0, 1, ... , 1, 0, 1, 0, 0). If

<I>(v1) = 11ng1 and <I>(v2) = lln92, then by the definition of<I>, 91 = (I,v1) and 92 = (J,v2).

Ily Lemma 7.15 and Claim 7.8 it suffices to show that IMGS(g1 1 hg2)I ~ 13tl - 2, for all

h E lln.

Since pr(vi) = pr(v2) we have for O ~ i ~ n - l, (I, v1)(Mi, O)(I, v2) = pdkd, where

d = i if i is even, and d = i - n if i is odd (d must be even). Solving for kd we find

88

kd = (I, (1, 1, ... , 1, 1, 0)). Let v and v' be the characteristic vectors of kd, where Vj = 0 if

and only if j = 0 mod 2, and v; = 0 if and only if j = 1 mod 2.

By Corollary 7.11 we have,

if o ~ d < n

-n < d < 0.

Next we observe that if ldl = n - l, then E = O, otherwise E = l. D

Fact 7.17 Let v E (Z2 t, then (J, v + vMi) E Kn. Moreover, if i, n are both even and

(I, v + vMi) = IIjEJbj, then IJI is even.

Proof: Theproofisbyinductiononwt(v). Letv=(xn-l,··•,xo). Ifthewt(v)=0,

then J = 0 or J = { 0, 1, ... n - l}. If wt(v) = 1 and x s = l, then J = { s, s + l, ... , s + i- l}

or J is equal to the complement of this set (relative to {O, 1, ... n - 1}). Suppose that

wt(v) ~ 2. Let v = u + w, where wt(u) < wt(v), and let wt(w) < wt(v). Define J1 and

J2, so that (J, u + uMi) = IIjEJi bj, and (J, w + wMi) = IIjEhbj. Then (I, v + vMi) =

IljEJi6J2 8j, and we have J = J1D.J2 (D. stands for symmetric difference). By induction

we may assume that IJ1 I and IJ2I are even, and thus, !JI is even. D

Lemma 7.18 Let n be even, and let v1 and v2 be two vertices in the Moebius graph

Mn(V,E). If pr(v1) ¢ pr(v2), then there exists a path between the vertices of length no

more than 3;1 - 2.

Proof: We assume, without loss of generality, that pr(v1) = 0 and pr(v2) = 1. Let

91 = (I, v1) and 92 = (M, v2). It will suffice to show that there exists h E Jln, such that

911 h92 has a generating sequence of length no more than 3
2n - 2. Let 911(Mn- 2, 0)92 =

pn-lkn-1, and let V be a characteristic vector of kn-1 such that wt(v) ~ r If wt(v) -:p ¥
then we have, via Corollary 7.11,

89

On the other hand if wt(v) =~'then consider g11(1, O)g2 = p1-nkl-n• By Table 5

we have,

k - ~ k(n-l)k
1-n - Un-1 n-1 ·

Let w be the characteristic vector for k1-n and recall that k = (I, v1 + v1M2). Using Fact

7.17 we conclude that the wt(w) -:f. ~- Without loss of generality we may assume that

wt(v) <~and

□

Lemma 7.19 Let n be even, and let v1 and v2 be two vertices in the Moebius graph

Mn(V, E). If pr(v1) = pr(v2), then there exists a path between the vertices of length no

more than 3
; - 1.

Proof: Let II(v1) = Hn91 and II(v2) = lln92. If pr(v1) = pr(v2) = 0, then g1

(I, vi) and 92 = (I, v2). If pr(v1) = pr(v2) = 1, then 91 = (M, v1) and 92 = (M, v2). It

will suffice to show that there exists h E lln, such that 911 h92 has a generating sequence

of length no more than 3
2n - 1. Let 911(1, O)g2 = p-nk_n, and let v be a characteristic

vector of k_n such that wt(v) ~ ~. If wt(v) -:f. ~ then we have,

If the wt(v) =~'then we consider the element g11(M2, O)g2 = p2-nk2_n, and let

w be a characteristic vector of k2-n• As before, we use Table 6 and Fact 7.17 to prove

that wt(w) -:f. ~ (k2-n = bok(0)k_n). So we may assume that wt(w) ~ ~-1; and it follows

that,

□

Theorem 7.20 Let n be an even integer greater than 10. Then the diameter of Mn(V, E)

is 32n - l.

90

Proof: By Lemma 7.18 and Lemma 7.19 it will suffice to exhibit v1, v2 E V such

that dist(v1 ,v2) = 3;. Let 91 = <I>(v1), 92 = <I>(v2); we shall show that each word in the

set {MGS(g11h92)1h E Jln} has length at least 3
2n - 1. Recall that we are using notation

from Table 6. In particular, k = (I, v1M 2 + v1), and the elements in J(n that we are

interested in are k_n, k2_n, ... , kn-2• The proof will consist of 4 cases.

Case I (n = 12) Let v1 = 05 17 and let v2 = 001000101101. One checks, by brute

force, that dist(v1 , v2) = 32n - 1. For the reader's convenience we have listed in Table 7 the

characteristic vectors for k_ 12 , k_10 , ... , k10 • The following facts were used to construct

the Table: k = 6061, k-12 = 61061646361 bo, and kj+2 =· kjb1+j • Now using Corollary 7.11

Table 7: Characteristic Vectors for n = 12

kj Characteristic vector for kj

k-12 010010011011
k_10 010000011011
k_s 011000011011
k_6 111000011011
k_4 111000011001

k-2 111000010001
ko 111000110001
k2 111010110001
k4 110010110001
k6 010010110001
ks 010010110011
k10 010010111011

one checks that dist(v1 , v2) = 17.

Case II (n = 14) Let v1 = 06 18
, and let v2 = 00010011011100. Now one may check,

by brute force, that dist(v1,v2) = 3;1 - 1. Note that k = bobs, k_ 14 = 812810898785 84 82

and that kj+2 = kj8s+j • We use this information to build Table 8. Once again Corollary

7 .11 can be used to verify that dist(v1 , v2) = 20.

For the last two cases we shall find v1 , v2 E V so that any characteristic vector Vj

for kj satisfies the following properties:

91

Table 8: Characteristic Vectors for n = 14

ki Characteristic vector for k1
k_14 01011010110100

k-12 01011110110100

k-10 01001110110100
k_s 00001110110100
k_6 00001110110101
k_4 00001110110001
k_2 00001110100001
ko 00001111100001

k2 00001011100001
k4 00011011100001

k6 01011011100001
ks 01011011100000

k10 01011011100100

k12 01011011110100

(a) wt (v j) 2: ~ - 1

(b) no string of digits in Vj has length more than 5

By Corollary 7.11 we conclude that IMGS(p-7 kj)I 2: 3
2n - 1 whenever l}I ~ n - 12.

Thus, we need only check (by hand) that IMGS(p-1 kj)I 2: 3
2n - 1 for j = n - 10, n -

8, ... ,n - 2,n,2 - n, ... ,10 - n.

Case III (n = 16 + 4m) Let V1 = on-s1s, and let V2 = 00101100(1010r11011100.

Note that k = bobs, kj+2 = kjbs+j, and the characteristic vector for k_n is /;;_n =
10110001(0011ro1001011. It is a simple (but tedious) task to check that proper­

ties (a) and (b) hold. Now Corollary 7.11 and Table 9 may be used to check that

IMGS(plkj)I 2: 3
2n for the remaining 11 values in question.

Case IV (n = 18 + 4m) Let V1 = os1n-s , and let V2 = 001011001100(1010r101100.

Note that k = bn-sbs, kj+2 = kjOj-s, and the characteristic vector for k_n is

010011101011(1001r100100. Now Corollary 7.11 and Table 10 may be used to to finish

the proof. D

92

Table 9: Characteristic Vectors for n = 16 + 4m

kj Characteristic vector for kj
k_n 10110001(0011ro1001011

k2-n 1011000?(001 ?ro1001011

k4-n l0ll0?0?(0?l?)mo1001011

k6-n 101 ?0?0?(0? 1?ro1001011

ks-n 1 ?1 ?0?0?(0?l ?ro1001011

k10-n 1 ?1 ?0?0?(0?l ?)m0100101?

kn-10 11110001(0011 rooo11110

kn-8 10110001(0011 rooo11110

kn-6 10110001(0011rooo11111

kn-4 10110001(0011 rooo11011

kn-2 10110001(0011roooo1011

Table 10: Characteristic Vectors for n = 18 + 4m

ki Characteristic vector for kj
k_n 010011101011(1001)m100100
k2-n 010011111011(1001)m100100
k4-n 010010111011(1001)m100100
k6-n 010110111011(1001)m100100
ks-n 000110111011(1001)m100100
k10-n 000110111011(1001)m100101

kn-10 010011101110(l?0?)ml?0?0?

kn-B 010011101110(l?0?)ml?0?00

kn-6 010011101110(l?0l)m1?0100
kn-4 010011101110(1001)m100100
kn-2 010011101111(1001)m100100

CHAPTER VIII

SUMMARY AND FUTURE WORK

In this dissertation we have focused our attention on bases, SGSs and subgroup

towers for permutation groups. \Ve investigated both the sequential and parallel corn­

plex.i ty of several algebraic problems involving bases and SGSs. We have also shown how

subgroup towers and SGSs can be used to design dense interconnection networks that arc•

accompanied by efficient routing algorithms.

Ill Chapter lI we answered in the negative the question asked by Finkelstein as to

whether or not the Greedyl algorithm always computes a minimum base. In fact, we

proved that the problem of computing a minimum base for G S Sym(n) is NP-hard.

Moreover, the problem remains NP-hard even if we restrict G to be an abelian group with

orbits of size no more than 8.

For abelian groups with orbits of size 7 or less we described a polynomial tinH'

algorithm for computing minimum bases. Thus, for abelian groups this bound on the sizC'

of the orbits is sharp. The computational complexity of computing minimum bases for

arbitrary groups with orbits of size less than 8 remains open. We have preliminary results

that reduce this problem to the cases where the orbits have size 4, G and 7.

Ill Chapter III we examined the problem of approx.imating minimum bases for per­

mutation groups. \Ve observed that it was possible for G s Sym(n) to have a 1101m'­

dundant base of size ½M(G)logn. In contrast, the Greedyl algorithm alwa.ys produces a

base of size no more than fM(G)loglognl + M(G). We went on to prove that, up to a

constant , this bound on the size of a Greedyl base is sharp. That is, for any n sufficiently

large therC' exists G S Sym(n), such that every Greedyl base for C has size at least

}M(G')loglogn.
,) .

\VC' examined a second greedy algorithm, Greedy2, for constructing small bases.

94

Although this algorithm works well in a number of cases we proved that its worst case

performance approaches the upper bound O(M(G)log n). In particular, we showed that

for fixed c, 0 < c < l, and for any n sufficiently large, there exists G :S Sym(n) such that

every Grcedy2 base for G has size at least !M(G)(logn)1
-(.

The approximation algorithm with the best worst case performance that we know

of is the Greedyl algorithm. Of course, there are other natural greedy heristics that

one could consider. For example, we could pick a point that minimizes the number of

nontrivial G-orbits. We do not anticipate some other greedy algorithm having a better

worst case performance than Greedyl. To improve on the Greedy} algorithm we believe

it will be necessary to take into account the structure of the groups involved.

The question is still open as to whether or not a "good" parallel algorithm exists

for approximating minimum bases. In Chapter IV we proved that DGil is P-complcte.

This implies that it is unlikely that a parallel version of the Greedyl algorithm exists.

In this chapter we also examined FAC, the problem of factoring in parallel an element

g E G through a given SGS for G. The question, "Is FAC E NC?", was stated as an

open problem in [4]. Under the assumption that P -/= NC we answer this question in the

negative by proving that FAC is P-complete. The final result in Chapter IV showed that

one could find, in parallel, an NC-efficient SGS for any polynomial tower of a solvable

group. Can this result be extended to a larger class of groups?

In Chapters V, VI and VII we applied the algebraic techniques developed for pcr­

mu tation groups to the study of interconnection networks. Our emphasis was not only on

the construction of Caylcy networks but also on the routing algorithms that arc needed

to utilize the networks. It was in the development of efficient failsoft routing algorithms

that subgroup towers and SGSs palyed a key role.

In Chapter V we proved that any undirected SGS Cayley network has a failsoft

routing algorithm for computing two disjoint paths between any two nodes in the network.

\Ve showed that for a directed SGS Cayley network f(G, lV) , constructed from a normal

subgroup tower, it was possible to find !WI disjoint path s between any two nodes.

Ju this chapter we also showed how Valiant 's permutation routing algorithm could be'

adapted to run on directed SGS Caylcy networks. In fact, the algorithm solves the partial

permutation routing problem. This is one of three subroutines needed in the simula,tion

of idealistic (PRAM) computers by realistic (multiprocessor network) computers [43, page'

227]. The other two subroutines are sorting and distribution. One of the problems we arc

working on now is an efficient sorting algorithm for SGS Caylcy networks. \Ve hope to

show that the SGS Cayley networks can use a modified version of odd-even merge sort .

There arc two other questions concerning permutation routing that warrant further

investigation. First, Pippenger has described a network in which a variant of Valiant's

algorithm performs permutation routing and uses bounded queues [3]. Can this algorithm

be adapted to SGS Cayley networks? Second, Leighton, Maggs and Rao have described

an off-line algorithm that cli min ates the probabilistic mm pone11 t of perm 11 ta.tio11 rou ti 11p,

[2 (._]. Is there an on-line version of this algorithm that will ru11 011 SGS Ca.yky 11C'tworks?

111 Chapter VI we extended Faber's work on universal broadcast schemes. \Ve proved

that it is possible to find an optimal universal broadcast algorithm for a number of Cayley

networks. In particular, we showed that if there is an optimal univcrsa,l broadcast for

f(C, l-V) and l 17~~11 J - 1 > IWI > 2, then there is an optimal universal broadcast for

f(Jl,Y), where 11 = G X (wd+1) and Y = {(w,id)lw E W} U {(id,wd+i)} (l(wd+ 1)1 2: 2).

As a consequence of thi s result we provcJ that if G is an abclia11 group and \ V =

{ w 1 , w-i, .. . , wk} is a generating set for C such that Wi ~ (w 1 , w2 , ... Wi-l), J < i ~ k, the11

the time 1wedcd for a universal broadcast in f(G , W) is 117'1
1~1

11. This yields a,11 altcrna.tc'

proof of Vabcr 's result that the time for a universal broadcast i11 a d-culH' is 1(2"; ')l •
\\c also proved that an optimal universal broadcast ca11 be found for th(' Cayky

network f(G, lV) , where C = lk Z2 and lV is the cano11icaJ set of minima.I generators

defined in Example 5.9. Recently we described a universal broadcast that runs i11 tim<'

I 1~ 1
\:-/ l on the Caylcy network f(G, W'), where C = lk Z 2 and W' is the cano11ical set.

of generators defined in Example [J.7. \,Ve would like to extend these results to other

nonabelian Cayley networks.

In Chapter VII we use d QCGs to analyze nonsymmetric networks. Our first result

\\'a.c; a. useful characterizatio11 of Q CG . \Ye proved that a connected directed ~raph is

96

isomorphic to a QCG if and only if it satisfies a labeling property. This result was used

to prove that the Moebius graph is isomorphic to a QCG. The QCG was used to describe

an efficient minimum routing algorithm for the Moebius graph and to determine the true

diameter of the graph.

The groups that defined the QCG played a key role in solving these two open prob­

lems. Not only did the groups guide the development of our minimum routing algorithm,

but they also played an important role in proving that the algorithm was correct.

97

DIDLIOGRAPJIY

[l] ARDEN, D., A D LEE, H. Analysis of Chordal Ring networks. IEEE Trans. Electron.
Compul. C-30 (Apr. 1981), 291- 301.

[2] DABAI, L. On the order of uniprimitive permutation groups. Annals of Math. 113

(1981), 553- 56 .

[3] BABA I , L. On the length of subgroup chains in the symmetric group. Comrnunications
in Algebra 14 (19 6), 1729- 1736.

[4] BABA!, L., LUKS, E., AND SERESS, A. Permutation groups i11 NC. l11 JJro<·ccdings of
the 19th Annual A CM Symposium on Theory of Computing (1987), vol. 19, pp. 409-

420.

[5] DANNA!, E., AND ITO , T. On finite Moore graphs. Journal of Fae. Sci. Univ. Tokyo
20 (1973), 191-208.

[6] DROWN, C., FINKELSTEIN, L., AND PURDOM, P. Efficient implementation of Jer­
rum 's algorithm for permutation groups. Pre-print.

[7] DROWN, C., FINKELSTEIN, L., AND PURDOM, P. Backtrack searching in the pres­
ence of symmetry. Tech. Rep. NU-CCS-87-2, Northeastern University, 1987.

[] CAM ERON, P. Personal correspondence to K. D. Dlaha.

[9] CANNON, J. A computational toolkit for finite permutation groups. In J>mrccdings
of Rutgers Group Theory, 1983-1984 (1984), pp. 1- 18.

[10] CARLSSO , G., CRUTHIRDS, J., SEXTON, II., AND WRIGHT, C. Int('rrom1ectio11
networks based on a generaJization of Cu be-connected cycles. IEEE Tnms. on Com­
pul. C-34 No. 8 (Aug. 19 5), 769- 722.

[11] CARLSSON, G. , FELLOWS, M., SEXTON, 11., AND vVn.IGIIT, . Group theory as a11
organizing principle in parallel processing. Pre-print.

[12] CARLSSON, G., SEXTON, II., AND Wn.IGIIT, C. Cayley networks an<l generalized
Cu be-connected cycles. Pre-print.

[13] CHER on, II. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Math. Stal. 23 (19.S2), 493- .S07.

98

(14) CooK, S. A. A taxonomy of problems with fast parallel algorithms. Information
and Control 64 (1985), 2- 22.

(15) DAWES, IL, AND MEIJER, H. Arc-minimal digraphs of specified diameter. Pre-print.

(16) DOTY, K. cw design for dense processor interconnection networks. Trans. Electron.
Comput. C-33 No. S (1984), 447- 450.

(17) EVEN, S., AND GoLDREICII, 0. The minimal-length generating sequence problem
is NP-hard. Journal of Algorithms 2 (1980), 311- 313.

[18) FABER, V. Global communication algorithms for hypercubes and other Cayley coset
graphs. Pre-print.

[19] FINKELSTEIN, L. Personal correspondence to E. M. Luks.

[20] FURST, M., IloPCROFT, J., AND LUKS, E. M. Polynomial-time algorithms for per­
mutation groups. In Proceedings 21st Annual Symposium on Foundations of Com­
puter Science (1980), vol. 21, pp. 36- 41.

[21) GAREY, M. TL, AND JOHNSON, D.S. Computers and Intractability: A Guide to the
Theory of N P-completcness. Freeman, San Francisco, 1979.

[22) HoEFFDING, W. On the distribution of the number of successes in independent trials.
Annals of Math. Stat. 27 (1956), 713- 721.

(23) IloPCROFT , J., AND ULLMAN, J. lntroduclion to Automata Theory, Languages, and
Computation. Addison-Wesley Pub. Co., Menlo Park, Calif., 1979.

[2'1] J ERRU M, M. The complexity of finding minimal-length generating sequence. Tech.
Rep. CRS-139-83, Univ. of Edinburgh, 1983.

(25) J EH.RUM, M. A compact representation for permutation group. Journal of A lgorithms
7 (19 G), G0- 7 .

[2G) I< NUTH, D. Efficient representation of perm groups. Pre-print.

[27) LAWLER, E. L. Combinatorial Optimization: Networks and Matroids. Holt Rinehart
and Winston , New York, 1976.

[2) LEIGHTON, T., MAGGS, Il., AND RAO, S. Universal packet routing algorithms. In
Pmce dings 29th Annual Symposium on Foundations of Computer Science (19),
vol. 29, pp. 25G- 2G9.

[29) LELAND, W. Density and reliability of interconnection topologies for multicomputers.
Tech. Rep. S-Tlt-478, Univ. of Wisconsin-Madison, 1982.

[30) LELAND , \\. ,A D SOLOMON, 1. Dense trivalent graphs for processor interconnec­
tion. 7hms. Electron. Comput. C-31 No 3 (1982), 219- 222.

99

[31) LOVASZ, L. The matroid matching problem. ln Proceedings of thr Conferrnrc on
Algebraic .Methods in Graph Theory (197).

[32) Lov ASZ, L. Matroi<l matching and some applications. Journal of Com bin. Throry
Ser. 13 28 (1980), 20 - 23G.

[33) LOVASZ, L., AND PLUMMER, M. Matching Theory. North-Holland, Amsterdam,

19 6.

[34) LUKS, E. Parallel algorithms for permutation groups and graph isomorphism. In
Proceedings 27th Annual Symposium on Foundations of Computer Science (19 6),
vol. 27, pp. 292- 302.

[35) LUKS, E., AND McKENZIE, P. Fast parallel computation with permutation groups.
In Proceedings 26th Annual Symposium on Foundations of Computer Scirnce (1985),
vol. 26, pp. 505- 514.

[36] HALL, M., JR. The Theory of Groups. Macmillan, New York, 19.S~).

[:~7] McKE zrn, P., AND CooK, S. Th' para.lie! complexity of abelia.11 pN11111tation
group problems. Tech. Rep. o. 181-85, Dept. of Computer ScieIH'<', University of
Toronto, 1985.

[3] PIPPENGER, Parallel communication with limited buffers. Tech. Rep. , IO 1
Research Laboratory, San Jose, Calif., 19 4.

[39) PREPARATA, F., AND VUILLEMIN, J. The Cube-connected cycles: A versatile net­
work for parallel computation. Commun. Ass. Compul. Mach. 24 (19l 0), :w0- 309.

[40) SEITZ, C. The CosmicCubc. Commun. of the ACAi 28 (198.S), 22- J;L

[41) SIMS, C . Computational methods in the study of permutation groups.]11 'ompula­
lional Pmblcms in Abstract Algebra (1970), J. Leech, Ed., PergarnoI1 Press, pp. 1G9-
1 3.

[42) SIMS, C. Determining the conjugacy classes of a permutatio11 group. 111 Computers
in Algebra and Number Theory (1970), G. Dirkhoff and J. M. 1Iall , Eds., vol. '1,
pp. 191 - 19.S.

['13) ULLMA , J. Coniputational Aspects of VLSI. Computer Science Press, Hock\'illc,
Maryland, 19 '.t.

[44) VALIANT, L. A scheme for fast parallel communication. SIAM Journal of Compul.
11 (1982), 3.S0- 361.

['1.S] YALIA T, L., AND DREHNI::lt, G . Universal schemes for parallel communiratio11. 111

h·occcdings of th 13th Annual A CM Symposium on Theo1·y of Computing (19, 1),
vol. 1:3, pp. 2G3- 277.

100

[46) VON CoNTA, C. Torus and other networks as communication networks with up to
some hundred points. Trans. Electron. Compul. 7 (1983), 657- 666.

[47) \VIELANDT, II. Finite Permutation Groups. Academic Press, New York-London,
1961.

