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Abstract 

The mapping problem in message-passing parallel processors involves the assignment 
of tasks in a parallel computation to processors and the routing of inter-task messages 
along the links of the interconnection network. We have developed a unified set of 
software tools called OREGAMI for automatic and guided mapping of parallel compu­
tations to parallel architectures in order to achieve portability and maximal performance 
from parallel systems. Our tools include a description language which enables the pro­
grammer of parallel algorithms to specify information about the static and dynamic 
communication behavior of the computation to be mapped. This information is used 
by the mapping algorithms to assign tasks to processors and to route communication 
in the network topology. Two key features of our system are (a) the ability to take 
advantage of the regularity present in both the computation structure and the intercon­
nection network and (b) the desire to balance the user 's knowledge and intuition with 
the computational power of efficient combinatorial algorithms. 
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1 Introduction 

The mapping problem in message-passing parallel processors involves the assignment of tasks 
in a parallel computation to processors and the routing of inter-task messages along the 
links of the interconnection network. Most commercial parallel processing systems today 
rely on manual task assignment by the programmer and message routing that does not 
utilize information about the communication patterns of the computation. The goal of our 
research is automatic and guided mapping of parallel computations to parallel architectures 
in order to achieve portability and maximal performance from parallel software. 

We have developed a unified set of software tools for automatic mapping of parallel 
computations to parallel architectures. Our tools include a description language which 
enables the programmer of parallel algorithms to specify information about the static and 
dynamic communication behavior of the computation to be mapped. This information is 
used by our mapping algorithms to assign tasks to processors and to route communication in 
the network topology. Two key features of our system are (a) the ability to take ad vantage 
of the regularity present in both the computation structure and the interconnection network 
and (b) the desire to balance the user's knowledge and intuition with the computational 
power of efficient combinatorial algorithms. 

Fig 1 illustrates the components of the OREGAMI1 system for mapping parallel compu­
tations to parallel architectures. OREGAMI is designed for use in conjunction with parallel 
programming languages that support a communication model, such as OCCAM, C*, and 
C and Fortran with communication extensions. The underlying architecture is assumed to 
consist of homogeneous processors connected by some regular network topology. Systems 
such as the iPSC/2, NCUBE, and INMOS Transputer are well-known candidates for use 
with OREGAMI. Our software tools prototype is implemented in MacScheme and Think-C 
on a MacII using color displays for visualization of the mapping. 

OREGAMI has three main components: 
LaRCS (Language for Regular Communication Structures) is a language that allows 

the user to express ( a) the structure of the parallel computation graph using simple func­
tions, and (b) the dynamic communication behavior of the computation using phase expres­
sions (notationally similar to regular expressions). The LaRCS specification is program­
independent, i.e., it can be used in conjunction with many parallel programming languages 
to provide information about regularity to be found in the communication structure of the 
computation. LaRCS may be viewed as a notation for statically describing the communica­
tion behavior of a computation. The information in a LaRCS specification is used by the 
MAPPER and METRICS software. 

MAPPER, our mapping software is a library of graph theoretic and group theoretic 
algorithms which map the computation to the architecture. The specific algorithm that is 
invoked depends on the information provided by the LaRCS description, and falls into three 
classes. Many parallel algorithms have well known communication structures ( such as trees, 

1 For University of OREGon's contribution to the elegant symmetric structures (contractions) produced 
by oriGAMI paper folding. 
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hypercubes, etc.) and the programmer may simply state this. OREGAMI has a library 
of "canned" mappings for such computations, and generating it simply involves a lookup 
in a library. Other algorithms may have a regular structure of a particular kind (such as 
that corresponding to permutation groups), or are intended to be mapped to specific class 
of architectures. For such computations, OREGAMI uses specialized algorithms which are 
often extremely efficient (for the group theoretic mappings, this simply involves determining 
the factors of the order of the group). If no such regularity can be exploited, we perform the 
mapping in three steps - contraction, embedding, and routing, using efficient polynomial 
time heuristics. 

METRICS is an interactive graphics tool which displays the mapping along with a 
range of performance metrics reflecting load balancing, communication contention, and 
communication overhead. METRICS allows the user to focus on specific processors or links 
and provides the opportunity for manual modification of the mapping. 

The specific contributions of our work include 

• A new graph model for parallel computations that expresses both static and dynamic 
behavior of the computation. Our model integrates the static task graph model used 
for static task assignment and mapping [Sto77],[Bok87], [BS87] with the precedence 
constrained DAG model used in multiprocessor scheduling research [Cof76], [Pol88]. 

• The LaRCS description language and compiler which allows the user to specify both 
static and dynamic information about the parallel computation in a natural, high­
level, parametric notation, enabling the mapping algorithms to make optimal and 
near optimal task assignment and routing decisions. 

• An innovative approach to graph contraction using techniques from group theory. The 
group theoretic contraction algorithm can be used on node symmetric task graphs and 
runs in polynomial time. 

• Algorithms for contraction, embedding and routing using maximum weight matching 
and maximal matching algorithms. These algorithms produce optimal results under 
conditions exhibited by a wide range of parallel algorithms and run in polynomial 
time. 

This paper provides an overview of the OREGAMI mapping tools. Section 2 presents 
our graph model for parallel computations, basic definitions, and describes related research. 
Sections 3, 4, and 5 describe the three components of our system: the LaRCS descrip­
tion language and compiler, the MAPPER, with its contraction, embedding, and routing 
algorithms, and METRICS, the interactive user interface for display, analysis, and user 
modification of mappings. Section 6 discusses areas of on-going and future work on this 
project. 
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2 Definitions and Related Research 

We consider parallel computations which can be characterized as a static set of commu­
nicating tasks , i.e., we do not currently consider computations that dynamically spawn 
subtasks2 • Our graph model is designed to capture two types of regularity exhibited by 
parallel computations: ( a) regularity in the communication topology, i.e., which tasks com­
municate through message passing and (b) regularity in the execution and communication 
patterns over time which we call the algorithm's phase behavior. 

More precisely, we model the parallel computations as a weighted and colored directed 
graph G = (V, E1 , Ei, ... , Ee) in which each task ti is represented by a node Vi€V. Each 
edge set Ek , k = 1, ... , c corresponds to one communication phase of the computation and 
is conceptually assigned a unique color ( actual, physical colors are used by METRICS to 
display the phase behavior). Each directed edge eijlEk represents the fact that messages 
are sent from task ti to task tj during phase k of the computation. Weights on tasks nodes 
represent the (approximate) execution time of the corresponding task , and weights on the 
edges represent the message volume transmitted during the corresponding communication 
phase. These weights may be functions of the incident nodes and other parameters of the 
problem. However, if the graph is regular, its LaRCS description is very compact - an 
order of magnitude smaller than the size of the graph. We have found that a large number 
of practical problems exhibit such regularity. Moreover, for many such graphs there exist 
efficient mapping methods which exploit the regularity by reasoning with this compact 
notation rather than the entire graph. We present two such classes to support our claim. 

Our model of computation is also well-suited to the data parallel model of parallel 
computation( also called the Single Code Multiple Data, or SCMD model of parallelism). 
This school holds the view that the best way to program multicomputers is to distribute 
the data over the memories of the processors and have each processor execute the same 
program [HS86,Joh87). The OREGAMI system may be viewed as an attempt to map a 
data parallel program to a parallel architecture, using the compact LaRCS description to 
obtain the mapping efficiently. 

Fig 2a illustrates our task graph model for a parallel algorithm for t he n-body prob­
lem which was developed for the Caltech Cosmic Cube [Sei85). We will use this example 
throughout this paper to illustrate the OREGAMI system. 

The n-lxxly problem requires determining the equilibrium of n bodies in space under 
the action of a (gravitational, electrostatic, etc.) field. This is done iteratively by 

computing the net force exerted on each body by the others (given their "current" 

posit ion), updating its location based on this force, and repeating this until the 
forces are as close to zero as desired. The parallel algorithm presented by Seitz uses 

Newton's third law of motion to avoid duplication of effort in the force computation . 
It consists of n identical tasks, each one responsible for one body. The tasks are 

arranged in a ring and pass information about their accumulated forces to its neigh-

2 However, we do handle special instances of dynamic tasks, where the spawning pattern is predictable at 
compile time. 
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nbody(n) 
imports(s, compute!, compute2, msgsize); 
nodetypes body ; 
nodeattr nodesym; 
numnodes n; 
comtypes ring, chordal ; 
exectypes compute!, compute2 ; 
body{ 
numnodes n; 
labels - base 10 ; 
nodelabels (0 .. (n - 1)); 
comtypes ring, chordal ; 
} 
ring { 

} 

body(i) ⇒ body((i + l)mod n); 
volume = msgsize; 

chordal { 

} 

body(i) ⇒ body(i + (n + 1)/2)mod n); 
volume = msgsize; 

phase - exp: [(ring.compute I)~ .chordal. 
compute2]5 

end 
(b) 

Figure 2: The n-body problem: (a) The Task Graph, (b) LaRCS Description 

bor around the ring. After ( n - l )/2 steps, each task will have received information 
from half of its predecessors around the ring. Each task then acquires information 
about the remaining bodies by receiving a message from its chordal neighbor halfway 
around the ring. This is repeated to the desired degree of accuracy. 

The work presented here is also related to that of Berman and Snyder [BS87,Ber87) who 
also exploit regularity of communication behavior (by expressing it in terms of a context 
free grammar called an edge grammar). Bailey and Cuny [BC86) and Kaplan and Kaiser 
[KK) have used graph grammars to describe regular communication topology for purposes 
of mapping or in order to preserve structured code. LaRCS provides an alternative to 
these grammar-based approaches which we feel is easier for the programmer to use. The 
'canned' mappings described in Section 4 include graph embedding results from [FF82), 
[Ros88), [GH88]. For one class of regular computations, the mappings we present are similar 
to those used in systolic array synthesis [CS84,Che86,RF88). For arbitrary graphs, our 
mapping algorithms are similar to those of Stone [Sto77) and Bokhari [Bok87) because of 
their foundation in network flow algorithms. 

For the remainder of the paper, we will use the following terminology: 
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• Contraction is the partitioning of the vertices of the computation task graph into 
clusters such that the number of clusters is no more than the number of processors . 

• Embedding is the assignment of the clusters produced by contraction to processors , 
with at most one cluster per processor. 

• Routing is the assignment of each communication edge in the task graph to a path 
in the network. The route may involve one or more hops through the network. 

• Dilation of a communication edge in the task graph is the number of hops in the 
routing of that edge. Average dilation is the average over all communication edges 
in the task graph. 

3 LaRCS 

The LaRCS graph description language enables the programmer to describe the static and 
dynamic communication structure of the parallel algorithm in a compact and intuitive way. 
Static communication topology is expressed in LaRCS code by labeling task nodes and 
by representing communication edges as a simple function of the node labels . Dynamic 
communication behavior is represented by a phase expression which is similar to regular 
expressions. LaRCS code is much more space-efficient than an adjacency matrix since it 
allows parametric descriptions (i.e., size of the description is independent of the number 
of nodes in the task graph). LaRCS allows the user to conveniently express information 
about the regularity 3 of the task graph for use by MAPPER's algorithms, thus relieving the 
mapper of the burden of detecting meaningful regular patterns ( a computation which is NP­
hard in some cases). As discussed earlie·r, the LaRCS description is language-independent 
and can be used with a wide range of parallel programming languages by importing a few 
variables from the host language. 

Below, we illustrate the use of LaRCS to describe the n-body problem. The numbers 
below correspond to the numbered items in Fig 2b. A full discussion of LaRCS appears in 
[LRG+]. 

1. name of algorithm and parameters. The only parameter for the n-body problem is n , 
the number of bodies. 

2. imported variables from the algorithm source code 

3. node declaration 

For the n-body problem there is one nodetype declaration of type body. The nodes 
are labeled from O to n - l in decimal and the graph is nodesymmetric. Other 
LaRCS labeling schemes include binary, multi-dimensional numbering ( e.g. for arrays 
of processes), and parameterized numbering schemes. 

3 Our definition of regularity includes intuitive notions such as symmetry, parameterizability, recursive 
structures, and uniformity. 
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4. communication phase declarations 

A communication phase in LaRCS identifies a set of edges involved in synchronous 
message passing in the parallel computation. The communication phase declaration 
describes the edges in one phase of the task graph using intuitive functions . These 
functions may involve arithmetic expressions, for-loops, while-loops, imported param­
eters, and other LaRCS variables. 

The n-body problem has two communication phases: ring communication and chordal 
communication. Both communication types use the same node labeling scheme, and 
simple arithmetic expressions suffice to describe the ring and chordal edges: 

ring: i ~ ( i + 1) mod n 

chordal: i ~ (i + nf) mod n 

In general, it may be necessary to use multiple labeling schemes, one for each commu­
nication type. The user must then give the correspondence between the node labeling 
schemes. The communication volume is the amount of data sent in one message on the 
associated edge; it can be a parameterized arithmetic expression, or actual amount in 
bytes, or sizeof imported data structures. 

5. Execution phase and execution costs 

An execution phase corresponds to a body of code bracketed by two successive com­
munication phases. Execution costs for each execution phase are estimated by the 
user, the compiler, or derived from runtime monitoring of the computation. 

6. phase expression 

The phase expression describes the dynamic behavior of the computation in terms 
of its execution and communication phases. Phase expressions are a generalization 
of a simple notation that has been used to describe the compute-aggregate-broadcast 
paradigm [NS87]. For the n-body problem, the phase expression is given by: 

(( ring; computel) /\ nf )chordal; compute2) I\ s 

Phase expressions are defined recursively below where r and s are phase expressions. 

• € is a phase expression denoting an idle task. 

• a single communication phase or execution phase is a phase expression. 

• sequence: r;s is a phase expression which denotes sequential execution of the 
phases. 

• repetition: r /\expr is a phase expression denoting repeated execution of r a num­
ber of times specified by expression expr. expr can be an arithmetic expression, 
a logical expression, or a parameterized for loop. 
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• parallelism: r II s is a phase expression denoting parallel execution of phases r 
ands. 

The LaRCS compiler translates LaRCS code into a set of Scheme functions that are 
used by a generic library of functions called by MAPPER and METRICS. These generic 
functions are used to build the data structures needed for the mapping algorithms and for 
computing the mapping performance metrics. Some of the LaRCS output for then-body 
problem is shown in Fig 2c. LaRCS has been used to describe a wide variety of parallel 
algorithms including matrix multiplication, fast Fourier transform, topological sort, divide 
and conquer using binomial trees, simulated annealing, Jacobi iterative method for solving 
Laplace equations on a rectangle, successive over-relaxation iterative method, and perfect 
broadcast distributed voting. 

4 MAPPER 

MAPPER consists of a library of algorithms to perform contraction, embedding, and routing 
of the task graph. The current configuration of MAPPER is shown in Fig 3 and explained 
below. As our research continues, we plan to replace and augment the algorithms in the 
MAPPER library. MAPPER handles three classes of task graphs: 

4.1 Nameable Task Graphs 

These graphs can be described as belonging to a well-known graph family such as ring, 
mesh, hypercube, full binary tree, etc. In this case, contraction and embedding can often 
be accomplished in constant time by hashing on the name of the task graph and the name 
of the network topology to lookup a precomputed mapping. A number of researchers have 
contributed to the set of task graph/topology pairs for which "canned" contraction, em­
bedding, and/or layout can be achieved (see Fig 3). Our contribution to this group is an 
embedding of the binomial tree to the square mesh. In [LRG+ 89] we show that the binomial 
tree is ideally suited to the general class of parallel divide and conquer algorithms and show 
an embedding that has average dilation bounded by 1.2 for arbitrarily large binomial tree 
and mesh. We conjecture that this mapping is optimal with respect to average dilation. 

4.2 Computation Graphs with Regular Structure 

As mentioned earlier, many algorithms often have a very regular structure, and OREGAMI 
is intended to exploit this regularity. Regularity implies a computation whose communi­
cation structure can be parameterized in such a manner that a finite LaRCS program can 
describe arbitrarily large communication graphs. If a computation is regular, we can of­
ten determine efficient methods to optimally map it to certain target architectures. Such 
methods are efficient precisely because they the (compact) LaRCS program ( rather thatn 
the entire communication graph, which is an order of magnitude larger). Often these meth­
ods are 0(1) (i.e., independent of the size of the computation graph) or O(n). We will 
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now illustrate two classes of regular computations for which we have obtained such efficient 
mapping methods. 

4.2.1 Mapping Affine Recurrences to Systolic Arrays 

Systolic Arrays [KL80] are a class of fine-grain parallel architectures which consist of very 
simple, identical processors in a nearest-neighbor, planar interconnection (such as a mesh, 
a hexagon or a linear array). The processors operate in lock-step synchrony (although this 
is not essential) and the data values circulate through the array in a pipelined fashion. 

Recently there have been advances in "compiling" high-level algorithmic specifications to 
systolic arrays [RF88,FM85]. In much of this work, the initial specifications are expressed 
as systems of recurrence equations that have linear ( or affine) data dependencies, and a 
number of algorithms that perform the mapping efficiently are available. These methods 
are efficient precisely because they treat the data dependency of the algorithm as a function 
on the nodes of the graph. In order to use these algorithms in the OREGAMI system, the 
following syntactic checks must be performed on the LaRCS program. 

• Detect that the set of node labels can be embedded in an integer lattice space. This 
reduces to testing whether the node labels are tuples of integers, a simple syntactic 
check. 

• Detect that the set of node labels form a convex polytope in this lattice. This is also 
a simple syntactic check to see that the mnges of each of the integers used in the label 
sets are bounded by linear inequalities (the inequalities may involve the parameters 
of the LaRCS program). 

• Detect that the communication types in the body of the LaRCS program are affine 
functions. 

• Detect that the target architecture ia a systolic array or an MIMD mesh. In the latter 
case, many of the systolic array synthesis algorithms, together with the results on 
partitioning large systolic arrays for smaller sized hardware) can be used to perform 
the mappings. 

Since each of these tests are constant time compiler tests of the LaRCS program, the 
resulting mappings are very efficient. In fact many of the methods are used for signal 
processing type applications, where the entire computation graph may be infinite! 

4.2.2 Node Symmetric Task Graphs 

The second class of regular MAPPER algorithms are rooted in group theory and make use 
of Cayley's graphical representation of a group. The algorithm is applicable to task graphs, 
T, that are Cayley graphs, a subset of the node symmetric graphs. It is based on the 
fact that given certain conditions, the LaRCS communication functions T can be used to 
directly derive the generators of the underlying group G. Each quotient group of G will give 

10 



(b) 

node - labels(O .. 7) 
comml {task(i) ⇒ task((i + l)mod8)} 
comm2 {task(i) ⇒ task((i + 2)mod8)} 
comm3 {task(i) ⇒ task((i + 4)mod8)} 

(a) 

(c) 

Figure 4: Group Theoretic Contraction: (a) Fragment of LaRCS code showing the commu­
nication types, (b) its Task Graph, ( c) Contracted Task Graph 

rise to a Cayley graph that is a contraction of T with an identical number of nodes in each 
cluster, and with an identical number of messages of each communication type mapped to 
each edge so that embedding and routing is simplified. Hence the mapping problem reduces 
to determinig the subgroups of G. To illustrate the ideas, we will use the task graph of the 
8-node perfect broadcast algorithm, where 8 tasks must "elect a leader," as shown in Fig 4a. 

The first requirement is that each communication function is a bijection on the set of 
nodes X = 0, .. 7. In that case, we calculate the value of the communication function on 
each member qf X and write the associated permutations in cycle notation as follows. 

comml 

comm2 

comm3 

(01234567) 

(0246)(1357) 

(04)( 15 )(26)(37) 

meaning that comm2(0) = 2,comm2(2) = 4,comm2(4) = 6,comm2(6) = 0 and so on. The 
crucial point is that comm1, comm2 and comm3 can also be viewed as the set of generators 
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of a permutation group G that acts on X 4 • The set of generators of the group G gives rise 
_ to a unique Cayley graph CG, whose nodes correspond to elements of G and edges to the 

action of the generators on the elements, i.e. there is an edge from a to b if and only if 
there is a generator c so that ac = b. We can make use of the group G in the contraction of 
the task graph T when CG is isomorphic to T. This is the case precisely when the action 
of G is regular on X. We then have IGI = IXI and G is transitive on X, so G and X are 
in one-to-one correspondence, defined for each g E G, g +-+ g( x) for any fixed x E X. By 
convention, we let x be the smallest member of X. Since this should hold for any x E X, 
the cycles of g, g E G, should all be of equal length. Conversely, if IGI = IX I and all the 
elements of G have equal-length cycles, then CG is isomorphic to T. Hence, we compute 
the cycle notation of all the elements of G using the generators. This is the dominant part 
of the computation, and hence the time complexity of the algorithm is O(IXl2 ). For our 
example, we obtain the following. 

EO (0)(1 )(2)(3)( 4 )( 5 )( 6)(7) +-+ task0 

El (01234567) +--+ taskl 

E2 (0246)(1357) +--+ task2 

E3 (03614725) +--+ task3 

E4 (04 )(15 )(26)(37) +-+ task4 

ES (05274163) +-+ task5 

E6 = (0642)(1753) +--+ task6 

E7 (07654321) +-+ task7 

We see that IGI = 8 = IXI and all elements have equal-length cycles. The interested 
reader can check that T is isomorphic to CG by applying the generators to the elements 
and drawing the Cayley graph. The point to note now is that any normal subgroup H of 
G will yield a quotient group G / H where an element of G / H corresponds to a coset of 
G. Moreover, each coset is of the same size, and so the Cayley graph of G / H will be a 
contraction of T with an equal number of tasks in each cluster. We are primarily interested 
in contractions where the number of clusters is close to the number of nodes in the graph of 
our target architecture A, and where some communication between tasks is internalized in 
a cluster (this yields a uniform load balance). A corollary to Sylow's theorem tells us that 
if ITI/IAI is the power of a prime, then a contraction exists where the number of cosets (or 
clusters) is exactly IAI. A quotient group arising directly from a generator with cycle-length 
l, will yield a contraction that internalizes l messages ( or edges). In light of this, if we say 
A is a hypercube of 4 processors, for our example we have ITI/IAI = 8/4 = 21 and 2 is 
a prime, so a perfectly balanced contraction exists, and the subgroup { E0, E4} from the 
generator comm3 = (04)(15)(26)(37) yields a contraction where 2 messages are internalized 
in each cluster. This is the clustering shown in Fig 4c. 

4 By convention, we adopt left-to-right composition of functions, so that {123) composed with {13)(2) 
gives (12)(3). 
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Note that the input LaRCS program may not have a communication graph that is a 
Cayley graph and we will therefore have to detect whether the algorithm outlined above 
can be used to obtain a valid contraction. This can be done if we observe that, in general, 
G can have up to IXI! elements, but for our purposes we can halt the computation as soon 
as the number of elements in any cycle exceeds IXI, Also, if we encounter a subgroup that 
is not normal, its quotient Cayley graph does not correspond to a group, but can still be 
used to obtain a possible contraction. 

We are investigating other aspects of group theory that can be applied in this context. 
We would like to obtain syntactic chamcterizations that enable us to detect whether the 
communication functions yield a Cayley graph. This will enable us to avoid computation 
of the cycle notation, and improve the efficiency significantly. In addition, many interesting 
interconnection networks are themselves based on Cayley graphs that have an underlying 
group structure [AK89] and we expect this to be useful in the embedding and routing steps 
of the mapping. We are also studying how to extend this approach to graphs that are 
"almost" node symmetric. 

4.3 Contraction of Arbitrary Task Graphs 

Contraction for arbitrary task graphs is achieved by Algorithm MWM-Contract which uti­
lizes a O(EVlogV) maximum weighted matching algorithm to achieve symmetric contrac­
tion, where E is the number of edges and V the number of vertices in the task graph. By 
symmetric contraction we mean a contraction of the tasks in the task graph into clusters 
such that the total interprocessor communication is mininimized while satisfiying the load 
balancing constraint that the total number of tasks per processor be bounded by some 
constant B. 

When the number of tasks is less than or equal to twice the number of processors, the 
algorithm yields an optimal symmetric contraction. If the number of tasks is greater than 
twice the number of processors, a greedy heuristic is used in conjunction with the maximum 
weight matching algorithm to find suboptimal task clusters. The greedy heuristic converts 
the original task graph into a smaller graph which satisfies the property that the number of 
nodes is less than twice the number of processors. Then an optimal symmetric contraction 
can be found for this smaller graph, yielding a suboptimal contraction of the original task 
graph. An example (shown in Fig 5) illustrates the operation of Algorithm MWM-Contract 
on a system in which 12 tasks must be assigned to 3 processors under the load balancing 
constraint of at most B = 4 tasks per processor. The total IPC = 6 and happens to be 
optimal in this case, though optimality is not guaranteed. 

• First, the greedy heuristic merges tasks into clusters until number of clusters is less 
than or equal to two times the number of processors. In order to satisfy the load 
balancing constraint of B = 4 tasks per processor, the greedy heuristic ensures that 
no cluster size exceeds B /2 = 2 tasks. This is achieved by examining edges in the 
task graph in non-increasing order based on the edge weights. Initially, each edge 
connects individual tasks. After several passes of the heuristic, however, an edge 
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Figure 5: Contraction Example: 12-node task graph to a 3-processor architecture 
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connects cluster of tasks which have been merged in previous passes. When an edge 
is examined, the two clusters are merged if the total number of tasks in the resulting 
combined cluster does not exceed B /2. For example, in Fig 5b, the edge with weight 
15 does not result in merging because the combined cluster would have 4 tasks. 

The outcome of the greedy heuristic is a new graph in which each node is a cluster of 
tasks from the original task graph. A single edge between two clusters will represent 
the total communication between all the tasks in the two clusters and will thus have 
a weight equal to the sum of the weights on the corresponding edges from the original 
task graph. In addition, the new graph will satisfy two conditions: ( a) the number 
of nodes will be less than two times the number of processors and (b) the number of 
tasks within a cluster will be less than or equal to B /2. 

• The maximum weight matching algorithm is then invoked on the new graph to produce 
an optimal contraction of clusters to processors which minimizes the total IPC and 
satisfies the load balancing constraint B. 

Details of Algorithm MWM-Contraction, proofs of optimality, and simulation results can be 
found in [Lo88). After contraction, embedding is achieved by Algorithm NN-Embed which 
uses a greedy approach to place highly communicating clusters on adjacent neighbors in the 
network graph. 

4.4 Routing 

Routing for both node symmetric and arbitrary task graphs is accomplished using Algorithm 
MM-Route which uses communication phase information to route messages through the 
network in a way that minimizes link contention. Given a colored task graph, MM-Route 
uses a 0(1 X 121 Y I) maximal matching algorithm to evenly distribute the edges of a 

given color to the links of the interconnection network, where X and Y are defined below. 
Recall that the set of edges of a distinct color represent synchronous communication , i.e. a 
communication phase. Thus, the heuristic described below is invoked once for each distinct 
set of colored edges in the task graph. 

For example, suppose the 15-body problem is embedded on an 8-processor hypercube 
(Fig 6a, where nodes in the task graph are labeled with the LaRCS task numbers, and 
links in the network are numbered arbitrarily from 1 to 12). We_ discuss the operation of 
MM-Route for the chordal edges only; the same procedure would be invoked for the ring 
edges also. 

• In the chordal co{Ilmunication phase, task O sends to task 8, task 1 sends to task 9, etc. 
From a table of routing information for the 8-processor hypercube, we can determine 
the possible choices for the shortest routes: e.g., for messages from task O to task 8, 
possible routes are links 4 then 12, or links 9 then 8). 

• From this information, we construct a bi-partite graph G = (X, Y, E) where nodes 
in X represent chordal edges in the task graph, nodes in Y represent links in the 
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task-> task 

0 -> 8 
1 -> 9 
2 -> 10 

7 -> 0 

9 -> 2 

links 

4•12, 
4•12, 

10•6, 

4 

(b) 

Ca) 

9•8 
9•8 
2•11 

X: Chordal 
Communication 

Cc) Y: Links 

Figure 6: Routing: (a) Embedding of a 15-body problem on an 8-node hypercube, (b) 
Table of possible routes for the CHORDAL communication step, ( c) Bipartite graph for the 
routing the first hop 
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hypercube, and edges in E connect each edge node to the links that can serve as the 
first hop ( or only hop) in the possible routes from sender to receiver. Thus, in Fig6c, 
there is an edge from the node labeled (0-8) to the nodes labeled link 4 and link 9. 

• A maximal matching of size M in graph G selects a maximal set of M distinct links 
in the hypercube and assigns M distinct chordal edges to those links. li M f; I X I 
then some nodes in X are unassigned. G is then reconfigured by removing all nodes 
of X covered by the matching and all edges incident to those nodes, and repeating 
the call to the maximal matching algorithm. Since each call to the maximal matching 
algorithm selects a given link at most once, we have achieved a low level of link 
contention. 

• When all nodes in X are covered, a new graph is constructed for those chordal com­
munication edges that have a choice of routes for the second hop. Note that in many 
cases, selection of the link for the first hop determines the second hop link. 

5 METRICS 

METRICS displays the mapping produced automatically by MAPPER, analyzes the map­
ping according to a spectrum of performance criteria, and allows the user to inspect and 
modify the mapping. LaRCS and METRICS enrich the power of OREGAMI by teaming 
user insights and knowledge with the combinatorial optimization capabilities of the group 
and graph theory algorithms. Modifications to the mapping are made using click and drag 
mouse operations. The user can reassign tasks to processors or re-route communication 
edges, and METRICS will display the modified assignment and recompute performance 
metrics. The performance metrics currently computed by METRICS include: load balanc­
ing metrics (tasks per processor, total execution time per processor); link metrics ( dila­
tion, volume of communication , communication contention with respect to the phases); and 
metrics for the overall mapping ( completion time of the computation , total interprocessor 
communication). 

6 Ongoing and Future Work 

The three main areas for continuing work on the OREGAMI project include scheduling, 
improved algorithms for MAPPER, and the ability to handle dynamically spawned tasks. 

Scheduling: Many parallel algorithms can be characterized as synchronous in nature, 
i.e., they are designed to run lockstep through their execution and communication phases. 
Therefore, it is advantageous to be able to coordinate the scheduling of tasks across proces­
sors after they have been assigned by MAPPER. We plan to extend OREGAMI to include 
a means for specifying task synchrony sets across processors. A task synchrony set is a set 
of tasks, one on each processor, that should be executing at the same time. Identification 
of these synchrony sets can be used to refine the routing algorithm and to produce local 
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scheduling directives for each processor that ensure synchronous execution of the tasks in 
each set. The scheduling directives can be expressed in a notation similar to path expres­
sions [CH7 4] that specify the allowable ways to multiplex the tasks assigned to a given 
processor. 

Dynamically spawned tasks: OREGAMI currently is designed only for computa­
tions in which the number of tasks is static. We wish to extend our software to handle 
computations with dynamically spawned tasks when the spawning pattern is regular and 
predictable. For example, parallel divide and conquer algorithms dynamically spawn tasks 
based on the size of the problem instance; however, it is known a priori that the spawning 
pattern will produce a full binary tree. We plan to augment LaRCS with the capacity to 
describe regular spawning patterns, and to design task assignment and routing algorithms 
to accomodate dynamically growing parallel computations. 

Mapping algorithms: We will continue to augment the MAPPER library with new 
and improved algorithms for contraction, embedding, and routing. Some of the new ap­
proaches to mapping that we wish to investigate include algorithms that perform two or 
more of the mapping steps simultaneously; algorithms that consider migrating processes 
at run time in order to accomodate phase shifts ( as opposed to our current approach of 
finding one mapping that accomodates all the phases); and algorithms that avoid overspec­
ification of communication topologies for common parallel paradigms such as aggregate and 
broadcast. For example, many parallel algorithms use a specific tree topology to aggregate 
results when a variety of alternate communication topologies will suffice (any spanning tree 
or the perfect broadcast ring of [HF88]). We would like to automatically select the aggre­
gate topology that is 'compatible' with the communication topologies of other phases in 
the computation. Finally, we will continue to add to the library of 'canned' mappings for 
nameable task graphs. 

The two key goals of our research are to provide tools that ensure portability of parallel 
software and to achieve the performance potential of parallel processing. OREGAMI was 
designed to achieve these goals by offering efficient algorithms for contraction, embedding, 
and routing, and by utilizing the user's knowledge through LaRCS and METRICS. The 
OREGAMI project is currently beginning its second year of development in which we hope 
to continue to contribute towards the development of an effective and practical tool for the 
mapping of parallel algorithms to parallel architectures. 
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