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DISSERTATION ABSTRACT

Elliott Taylor Tsuyoshi Abe

Doctorate of Philosophy

Department of Biology

March 2023

Title: Representations of Active Vision

This dissertation focuses on the interplay between visual processing and

motor action during natural behaviors, which has previously been limited

due to technological constraints in experimental paradigms. However, recent

technological innovations have improved the data collection process, enabling a better

understanding of visual processing under naturalistic conditions. This dissertation

lays out the foundational experimental methods, data analysis, and theoretical

modeling to study visual processing during natural behaviors.

Chapter II of the dissertation establishes and characterizes how mice change

their gaze during prey capture behavior using a miniaturized camera system to

simultaneously record the eyes and head as the mice captured crickets. The study

finds that there are two types of eye movements during prey capture. The majority

of eye movements are compencatory, however there is a subset that shift the gaze of

the mouse and are initiated due to head movements in a ’saccade and fixate’ strategy.

Chapter III, expands upon the previous methods and records neural activity, eye

position, head orientation, and visual scene simultaneously while mice freely explore

an arena. The data is used to create a model to correct the visual scene for gaze

position, enabling the mapping of the first visual receptive fields in a free-moving
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animal. The study discovers neurons in the primary visual cortex that are tuned to

eye position and head orientation, with most cells integrating positional and visual

information through a multiplicative gain modulation mechanism.

Chapter IV explores mechanisms for computing higher-order visual representations,

like distance estimation, from predictions. The study creates a simulated environment

where an agent records visual scene, depth maps, and positional information while

navigating an arena. A deep convolutional recurrent neural network is trained on the

visual scene and tasked with predicting future visual input. Post-training, the study

is able to linearly decode the pixel-wise distance of the visual scene without explicit

distance information. This work establishes that predictive processing is a viable

mechanism for the visual system to learn to create higher-order visual representations

without explicit training.

This dissertation consists of previously published co-authored material.
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CHAPTER I

INTRODUCTION

The ability to learn, change, and grow is a fundamental aspect of life. By

interacting with the world around us, we can gather new information and experiences

helping us to adapt and improve. This process is essential for the development of

our individual and collective knowledge, as well as for the advancement of science

and technology. To transform information into knowledge, whether socially or

scientifically construed, we rely on observations, measurements, and theories to

interpret our surrounding environment. By weaving common patterns together, we

develop frameworks of understanding to help utilize the information we gather.

From a philosophical point of view, conceptual frameworks provide a structure

for organizing and understanding the vast amount of information and knowledge we

acquire through our interactions with the world. These frameworks help us make sense

of the world and connect seemingly disparate pieces of information into a coherent

whole. However, as we continue to learn and grow, our understanding of the world

can evolve and change. Eventually, this process leads to the limits of a conceptual

framework whereby an evolving complexity of new observations and ideas renders

the current framework outdated. In such instances, the previous framework breaks

down so the latest information can be incorporated into a new framework, better

able to explain and understand the world within an improved context of current

knowledge. This process of building, breaking down, expanding, and rebuilding is

not limited to the development of scientific knowledge, but also has a neurobiological

implementation.

From a neuroscience perspective, a conceptual framework can be quantified as

the development of an internal model of the environment. By interacting with and
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observing physical phenomena to understand the dynamics of the world, we can

build internal representations of the external world which can be combined, and

integrated, for decision-making, motor action, and behavior. For example, visual

navigation involves transducing light that hits the retina, a two-dimensional surface,

and transforming this information into a three-dimensional representation like a map

to navigate from location to location. By interacting with the environment, this map

can increase in depth and detail or can change due to unexpected observations.

How do observations about physical phenomena become abstract conceptual

representations that build an internal model of the world? One starting point for the

generation of an internal model begins by building abstractions of sensory information.

Vision is a fundamental sense animals can use to interact with the world at a distance.

By processing the visual environment, animals can make abstractions about the space

they live in to make decisions. Visual neuroscience has had remarkable success

in explaining phenomena by developing models where simple features of sensory

processing build into more complex representations (Hubel and Wiesel, 1962, 1959;

Manassi et al., 2013). The canonical model of visual processing postulates that higher-

order visual representations are built from stimulus responses of simple features that

are successively combined in a hierarchical manner (Niell, 2015; Niell and Scanziani,

2021) and are modulated by other activities like locomotion (Niell and Stryker,

2010) or prediction errors (Rao and Ballard, 1999). However, this model of visual

processing is still limited since most experimental results have relied upon unnatural

visual stimuli and restraining the movement of the animal by either anesthesia or

head fixation. Additionally, this mode of visual processing typically assumes static

visual input. During natural behavior, sensory information and motor action are

continually interdependent in a dynamic manner. For example, visual information is
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used to inform where and how to move, and self-motion is used to sample new visual

information.

Another area of visual processing that started to develop in the late 20th century

is active vision. Active vision refers to the ability of an organism or artificial system

to actively control its visual sensors to gather information (Blake and Yuille, 1992)

. In the field of visual neuroscience, researchers often use computational models to

represent and simulate active vision to better understand visual processing. These

models typically involve representing the visual sensors and their movements, as well

as the visual information that is gathered and processed by the system (Blake and

Yuille, 1992). Unlike previous models of visual processing, this framework presents

a unique opportunity to incorporate behavior within the capacity of the model.

However, until recently due to technological barriers, this area of research within

visual neuroscience has not been fully investigated. In recent years, the study of visual

processing during natural behavior has received new momentum with the advent of

new technologies like deep learning and neural networks. With new methods and

experimental observations, the field of visual neuroscience is undergoing a dramatic

expansion and conceptual paradigm shift from passive to active processing (Parker

et al., 2020). The expansion of our experimental knowledge requires a more complex

and comprehensive theoretical model of visual processing, accounting for not only

the visual processing but also the motor signals that generate interaction with the

environment.

Profound scientific progress occurs at the intersection and integration of

experimental and theoretical research. With the recent revolution of new technologies,

large datasets of complex data are being generated. As a result, there is a growing

need for close collaboration in experimental and theoretical research. Related to the
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development and evolution of conceptual frameworks, experimental and theoretical

research are two approaches to scientific inquiry that are often interdependent

and complementary. Experimental research involves collecting data and evidence

through controlled observations and experiments to test hypotheses and theories.

Theoretical research, on the other hand, involves developing and analyzing theoretical

models and frameworks to understand, explain and predict phenomena. These

different approaches work in combination to enrich our knowledge about a subject.

As a computational and theoretical neuroscientist, this dissertation integrates

and shows examples of collaborating closely with experimentalists to develop and

expand conceptual frameworks to generate knowledge about how the brain creates

representations of the environment during naturalistic visual behaviors.

This dissertation consists of three projects where I developed novel data analysis

models for eye tracking in freely behaving mice, a model of visual processing in freely

moving mice, and a normative model of visual processing for distance estimation.

In Chapter II, I will describe the collaborative effort to investigate how mice shift

their gaze during prey capture of crickets. This research laid the foundation to

interrogate what neurons in the primary visual cortex (V1) are responding to during

free movement. In Chapter III, I will describe a new experimental paradigm where

the visual scene and neural activity in V1 can be simultaneously recorded. With this

new methodology, I present a novel encoding model to show neurons in V1 respond

not only to visual information but also to positional information about the eyes and

head during free movement. I will further show that in most neurons, these two

signals are integrated through a nonlinear gain modulation mechanism. Finally, in

Chapter IV, I will present a new theoretical framework for learning higher-order visual

representations. Taken together, this research lays the foundation for an emerging
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paradigm shift to more closely integrate experimental and theoretical frameworks to

expand our understanding of visual processing during naturalistic behaviors. This

chapter concludes with the abstracts for Chapters II-IV.

1.1 Chapter II: Dynamics of gaze control during prey capture in freely

moving mice

Many studies of visual processing are conducted in constrained conditions such

as head- and gaze-fixation, and therefore less is known about how animals actively

acquire visual information in natural contexts. To determine how mice target their

gaze during natural behavior, we measured head and bilateral eye movements in

mice performing prey capture, an ethological behavior that engages vision. We

found that the majority of eye movements are compensatory for head movements,

thereby serving to stabilize the visual scene. During movement, however, periods

of stabilization are interspersed with non-compensatory saccades that abruptly shift

gaze position. Notably, these saccades do not preferentially target the prey location.

Rather, orienting movements are driven by the head, with the eyes following in

coordination to sequentially stabilize and recenter the gaze. These findings relate

eye movements in the mouse to other species, and provide a foundation for studying

active vision during ethological behaviors in the mouse.

1.2 Chapter III: Joint Coding of Visual Input and Eye/Head Position in

V1 of Freely Moving Mice

Visual input during natural behavior is highly dependent on movements of

the eyes and head, but how information about eye and head position is integrated

with visual processing during free movement is unknown, since visual physiology

is generally performed under head-fixation. To address this, we performed single-

unit electrophysiology in V1 of freely moving mice while simultaneously measuring
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the mouse’s eye position, head orientation, and the visual scene from the mouse’s

perspective. From these measures, we mapped spatiotemporal receptive fields during

free movement based on the gaze-corrected visual input. Furthermore, we found a

significant fraction of neurons tuned for eye and head position, and these signals were

integrated with visual responses through a multiplicative mechanism in the majority

of modulated neurons. These results provide new insight into coding in mouse V1,

and more generally provide a paradigm for performing visual physiology under natural

conditions, including active sensing and ethological behavior.

1.3 Chapter IV: Emergence of Distance Estimation in Predictive Neural

Networks

Vision allows the brain to form internal models of distant surroundings. These

representations are traditionally thought to arise from the bottom-up processing

of retinal input. However, when naturally behaving animals move through their

environment, and self-motion information is sent via efference copies into visual

cortex, this is combined with visual input to calculate objective information about

the surroundings. To probe such computations, and inspired by ongoing experiments

in mouse vision, we focused on monocular depth estimation through motion parallax,

where animals combine self-motion and visual signals to calculate absolute distances

to environmental objects. We simulated a camera-agent performing random walks in

a 3D environment and fed the recorded 2D camera frames into a multi-layer recurrent

neural network (RNN), which was trained to predict future frames. Accurate

prediction of future sensory inputs requires learning an internal model for the

dynamics of the agent and environment. These dynamics are best modeled in

terms of natural dynamical variables (such as 3D coordinates of objects), which

may not be explicit in the sensory inputs (such as 2D retinotopic inputs), but can
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be extracted from them. Therefore, we hypothesized that unsupervised predictive

learning results in an explicit representation of depth by providing self-motion signals

to the RNN, would further improve this representation. To test our hypothesis,

we trained linear readouts from neural activations in different layers of the trained

RNN to match ground-truth depth maps. We found that the RNN does indeed form

depth representations, without being explicitly tasked to do so. Moreover, depth

representations become more explicit and accurate in deeper layers of the network.

These results suggest internal representations of depth can arise from learning to

predict future monocular visual inputs and potentially, by integrating visual and self-

motion signals.
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CHAPTER II

DYNAMICS OF GAZE CONTROL DURING PREY CAPTURE IN FREELY

MOVING MICE

2.1 JOURNAL STYLE INFORMATION

Originally published as Michaiel, A. M., Abe, E. T. T., Niell, C. M. (2020).

Reproduced from eLife, 9, 1–18. https://doi.org/10.7554/elife.57458

2.2 AUTHOR CONTRIBUTIONS

Angie M Michaiel, Conceived the project, Developed methodology and designed

experiments, Analyzed data, Wrote the manuscript, Created figures; Elliott TT

Abe, Wrote camera calibration software, Contributed to data analysis, Manuscript

preparation; Cristopher M Niell, Conceived the project, Designed experiments,

Analyzed data, Wrote manuscript, Provided resources

2.3 INTRODUCTION

Across animal species, eye movements are used to acquire information about

the world and vary based on the particular goal (Yarbus, 1967). Mice, a common

model system to study visual processing due to their genetic accessibility, depend on

visual cues to successfully achieve goal-directed tasks in both artificial and ethological

freely-moving behavioral paradigms, such as the Morris water maze, nest building,

and prey capture; (MORRIS, 1981; Clark et al., 2006; Hoy et al., 2016). It is unclear,

however, how mice regulate their gaze to accomplish these goals. Previous studies in

both freely moving rats and mice have shown that eye movements largely serve to

compensate for head movements (Wallace et al., 2013; Payne and Raymond, 2017;

Meyer et al., 2018, 2020), consistent with the vestibulo-ocular reflex (VOR) present

in nearly all species (Straka et al., 2016). While such compensation can serve to

stabilize the visual scene during movement, it is not clear how this stabilization is
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integrated with the potential need to shift the gaze for behavioral goals, particularly

because mice lack a specialized central fovea in the retina, and also have laterally

facing eyes resulting in a relatively limited binocular field (roughly 40° as opposed to

135° in humans (Drager, 1978)). In addition, because eye movements are altered in

head-fixed configurations due to the lack of head movement (Payne and Raymond,

2017; Meyer et al., 2020), understanding the mechanisms of gaze control and active

visual search benefits from studies in freely moving behaviors.

Prey capture can serve as a useful paradigm for investigating visually guided

behavior. Recent studies have shown that mice use vision to accurately orient towards

and pursue cricket prey (Hoy et al., 2016), and have begun to uncover neural circuit

mechanisms that mediate both the associated sensory processing and motor output

(Hoy et al., 2019; Shang et al., 2019; Zhao et al., 2019; Han et al., 2017). Importantly,

prey capture also provides a context to investigate how mice actively acquire visual

information, as it entails identifying and tracking a localized and ethological sensory

input during freely moving behavior. Here, we asked whether mice utilize specific eye

movement strategies, such as regulating their gaze to maximize binocular overlap,

or actively targeting and tracking prey. Alternatively, or in addition, mice may use

directed head movements to target prey, with eye movements primarily serving a

compensatory role to stabilize the visual scene.

Predators typically have front-facing eyes which create a wide binocular field

through the overlap of the two monocular fields, allowing for depth perception and

accurate estimation of prey location (Carandini et al., 2005). Prey species, in contrast,

typically have laterally facing eyes, and as a result, have large monocular fields

spanning the periphery, which allow for reliable detection of approaching predators.

Though mice possess these characteristics of prey animals, they also act as predators
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in pursuing cricket prey (Hoy et al., 2016). How then do animals with laterally placed

eyes target prey directly in front of them, especially when these targets can rapidly

move in and out of the narrow binocular field? This could require the modulation of

the amount of binocular overlap, through directed lateral eye movements, to generate

a wider binocular field, such as in the case of cuttlefish (Feord et al., 2020), fish

(Bianco et al., 2011), many birds (Martin, 2009), and chameleons (Katz et al., 2015).

In fact, these animals specifically rotate their eyes nasally before striking prey, thereby

creating a larger binocular zone. However, it is unknown whether mice use a similar

strategy during prey capture. Alternatively, they may use coordinated head and eye

movements to stabilize a fixed size binocular field over the visual target.

Foveate species make eye movements that center objects of interest over the

retinal fovea, in order to use high acuity vision for complex visual search functions

including identifying and analyzing behaviorally relevant stimuli (Hayhoe and Ballard,

2005). Importantly, afoveate animals (those lacking a fovea) represent a majority

of vertebrate species, with only some species of birds, reptiles, and fish possessing

distinct foveae (Harkness and Bennet-Clark, 1978), and among mammals, only simian

primates possessing foveae (Walls, 1942). It remains unclear whether mice, an

afoveate mammalian species, actively control their gaze to target and track moving

visual targets using directed eye movements, or whether object localization is driven

by head movements. We therefore aimed to determine the oculomotor strategies that

allow for effective targeting of a discrete object, cricket prey, within the context of a

natural behavior.

Recent studies have demonstrated the use of head-mounted cameras to measure

eye movements in freely moving rodents (Wallace et al., 2013; Meyer et al., 2018;

?). Here, we used miniature cameras and an inertial measurement unit (IMU)
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to record head and bilateral eye movements while unrestrained mice performed a

visually guided and goal-directed task, approach and capture of live insect prey. We

compared the coordination of eye and head movements, as well as measurements

of gaze relative to the cricket prey during approach and non-approach epochs, to

determine the oculomotor strategies that mice use when localizing moving prey.

2.4 RESULTS

2.4.1 Tracking eye and head movements during prey capture

Food-restricted mice were habituated to hunt crickets in an experimental arena,

following the paradigm of (Hoy et al., 2016). To measure eye and head rotations

in all dimensions, mice were equipped with two reversibly attached, lateral head-

mounted cameras and an inertial measurement unit (IMU) board with an integrated

3-dimensional accelerometer and gyroscope (Figures 2.1A, 2.1B; Supplemental Movie

1). In addition, we recorded the behavior of experimental animals and the cricket prey

with an overhead camera to compute the relative position of the mouse and cricket,

as well as orientation of the head relative to the cricket. Following our previous

studies (Hoy et al., 2016, 2019), we defined approaches based on the kinematic criteria

that the mouse was oriented towards the cricket and actively moving towards it

(see Methods). Together, these recordings and analyses allowed us to synchronously

measure eye and head rotations along with cricket and mouse kinematics throughout

prey capture behavior (Figure 2.1C; Supplemental Movie 1). The cameras and IMU

did not affect overall mouse locomotor speed in the arena or total number of crickets

caught per 10-minute session (paired t-test, p=0.075; Figure 2.1D/E), suggesting that

placement of the cameras and IMU did not significantly impede movement or occlude

segments of the visual field required for successful prey capture behavior.
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2.4.2 Eye vergence is stabilized during approach periods

To determine whether mice make convergent eye movements to enhance binocular

overlap during approaches, we first characterized the coordination of bilateral eye

movements. We defined central eye position, i.e. 0°, as the average pupil location for

each eye, across the recording duration. Measurement of eye position revealed that

freely moving mice nearly constantly move their eyes, typically within a ± 20 degree

range (Figure 2.1C, 2.2A), as shown previously. Figure 2.2C shows example traces of

the horizontal position of the two eyes (top), along with running speed of the mouse

(bottom). As described previously (Payne and Raymond, 2017; Wallace et al., 2013;

Meyer et al., 2018) and analyzed below (Figure 2.3D), the eyes are generally stable

when the mouse is not moving. In addition, the raw traces reveal a pattern of eye

movement wherein rapid correlated movements of the two eyes are superimposed on

slower anti-correlated movements. The pattern of rapid congruent movements and

slower incongruent movements was also reflected in the time-lagged cross-correlation

of the change in horizontal position across the two eyes (Figure 2.2E), which was

positive at short time lags and negative at longer time lags.

Figure 2.1. (Next page) Tracking eye and head movements during prey capture. A)
Unrestrained mice hunted live crickets in a rectangular plexiglass arena (45x38x30 cm).
Using an overhead camera, we tracked the movement of the mouse and cricket. Example
image with overlaid tracks of the mouse (cyan). B) 3D printed holders house a miniature
camera, collimating lens, an IR LED, and an IMU, and are reversibly attached to implants
on the mouse’s head, with one camera aimed at each eye. C) Synchronized recordings of
measurements related to bilateral eye position, mouse position relative to cricket (distance
and azimuth), mouse speed, and head rotation in multiple dimensions (analysis here focuses
on yaw and pitch). D) Average mouse locomotor speed did not differ across experimental
and control experiments (no camera and IMU) for both non-approach and approach periods.
Individual dots represent the average velocity per trial. E) Average number of captures per
10 minute session did not differ between experimental and control sessions (control N=7
animals, 210 trials; cameras N=7 animals, 105 trials; two-sample t-test, p=0.075).
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We next calculated the vergence angle, which is the difference in the horizontal

position of the two eyes (Figure 2.2D). The range of vergence angles was broadly

distributed across negative (converged) and positive (diverged) values during non-

approach periods, but became more closely distributed around zero (neutral vergence)

during approaches (Figure 2.2F; paired t-test, p=1.9x10-13). This can be observed in

the individual trace of eye movements before, during, and after an approach (Figure
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2.2G, top), showing that while the eyes converge and diverge outside of approach

periods, they move in a more coordinated fashion during the approaches. Thus, mice

do not converge their eyes nasally to create a wider binocular field during approaches;

rather the eyes are more tightly aligned, but at a neutral vergence, during approaches

relative to non-approach periods.

Previous studies have demonstrated that eye vergence varies with head pitch

(Wallace et al., 2013; Meyer et al., 2018, 2020). As the head tilts downwards, the

eyes move outwards; based on the lateral position of the eyes, this serves to vertically

stabilize the visual scene relative to changes in head pitch (Wallace et al., 2013). We

therefore sought to determine whether the stabilization of horizontal eye vergence we

observed during approaches reflects corresponding changes in head pitch. Consistent

with previous studies, we also found eye vergence to covary with head pitch (Figure

2.2H), such that when the head was vertically centered, the eyes no longer converged

or diverged, but were aligned at a neutral vergence (i.e., no difference between the

angular positions across the two eyes, see schematic in Figure 2.2D).

Figure 2.2. (Next page) Eye position is more aligned across the two eyes during
approach periods. A) Example eye movement trajectory for right and left eyes for a
20 second segment, with points color-coded for time. B) Horizontal and vertical position
for right and left eyes during approach and non-approach times. N=7 animals, 105 trials,
805 time pts (non-approach), 105 time pts (approach), representing a random sample of
0.4% of non-approach and 1% of approach time points. C) Example trace of horizontal
eye positions (top) and running speed (bottom) for a 30 second segment. D) Schematic
demonstrating vergence eye movements. E) Cross correlation of horizontal eye position
across the two eyes for non-approach and approach periods. F) Histogram of vergence
during non-approach and approach. G) Example trace of horizontal eye position (top) and
head pitch (bottom) before, during, and after an approach. H) Scatter plot of head pitch
and eye vergence. As head pitch tilts downwards, the eyes move temporally to compensate
(as in schematic). N=7 animals, 105 trials, 1252 time points (non-approach), 123 time
points (approach), representing a sample of 0.7% of non-approach and 1.2% of approach
time points. I) Histogram of head pitch during approach and non-approach periods, across
all experiments.
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Strikingly, we found that while the relationship between head pitch and vergence

was maintained during approaches (Figure 2.2H), the distribution of head pitch was

more centered during approach periods (Figure 2.2H, 2.2I; paired t-test, p=1.5x10-

13), indicating a stabilization of the head in the vertical dimension. This can also be

seen in the example trace in Figure 2.2G, where the head pitch becomes maintained
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around zero during pursuit. These data show that the increased alignment of the

two eyes observed during approaches largely represents the stabilization of up/down

head rotation during active pursuit, consequently reducing the need for compensatory

vergence movements.

2.4.3 Coordinated horizontal eye movements are primarily compensatory

for horizontal head rotations

Next, we aimed to understand the relationship between horizontal head

movements (yaw) and horizontal eye movements during approach behavior. In order

to isolate the coordinated movement of the two eyes, removing the compensatory

changes in vergence described above, we averaged the horizontal position of the

two eyes for the remaining analyses (Figure 2.3A). Changes in head yaw and mean

horizontal eye position were strongly negatively correlated at zero time lag (Figure

2.3B), suggesting rapid compensation of head movements by eye movements, as

expected for VOR-stabilization of the visual scene. The distribution of head and

eye movements at zero lag (Figure 2.3C) shows that indeed changes in head yaw were

generally accompanied by opposing changes in horizontal eye position, represented

by the points along the negative diagonal axis. However, there was also a distinct

distribution of off-axis points, representing a proportion of non-compensatory eye

movements in which the eyes and head moved in the same direction (Figure 2.3C).

Many studies have reported a limited range (Niell and Stryker, 2010; Payne

and Raymond, 2017; Samonds et al., 2018; Stahl, 2004), consistent with the idea

that eye movements are generally driven by head movement. Correspondingly in the

freely moving context of the prey capture paradigm, we found greatly reduced eye

movements when the animals were stationary versus when the animals were running

(Figure 2.3D; Kolmogorov-Smirnov test, p=0.032).
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We next compared the distribution of mean eye position during approaches and

non-approach periods. In contrast to the stabilization of head pitch described above,

the distribution of head yaw velocities was not reduced during approaches as shown

(Figure 2.3E; paired t-test p=0.889), consistent with the fact that mice must move

their heads horizontally as they continuously orient to pursue prey. For both non-

approach and approach periods, eye position generally remained within a range less

than the size of the binocular zone (± 20 degrees; Figure 2.3F, paired t-test, p=0.044),

suggesting that the magnitude of eye movements would not shift the binocular zone to

an entirely new location. Comparison of horizontal eye velocity between non-approach

and approach epochs revealed that the eyes move with similar dynamics across both

behavioral periods (Figure 2.3G, panel 1; paired t-test, p=.072). Additionally, at

times when head yaw was not changing, horizontal eye position also did not change

(Figure 2.3G, panel 2; paired t-test, p=0.13). Together, these observations suggest

that most coordinated eye movements in the horizontal axis correspond to changes in

head yaw, and that the eyes do not scan the visual environment independent of head

movements or when stationary.

2.4.4 Non-compensatory saccades shift gaze position

Gaze position - the location the eyes are looking in the world - is a combination of

the position of the eyes and the orientation of the head. Compensatory eye movements

serve to prevent a shift in gaze, whereas non-compensatory eye movements (i.e.,

saccades) shift gaze to a new position. Although the vast majority of eye movements

are compensatory for head movements, as demonstrated by strong negative correlation

in Figure 2.3B/C, a significant number of movements are not compensatory, as seen by

the distribution of off-axis points in Figure 2.3C. These eye movements will therefore

shift the direction of the animal’s gaze relative to the environment. We next examined
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how eye movements, and particularly non-compensatory movements, contribute to the

direction of gaze during free exploration and prey capture. In particular, are these

gaze shifts directed at the target prey?

We segregated eye movements into compensatory versus gaze-shifting by setting

a fixed gaze velocity threshold of ±180 /sec, based on the gaze velocity distribution

(Figure 2.4A), which shows a transition between a large distribution around zero

Figure 2.3. Horizontal eye movements are mostly compensatory for yaw head
rotations. A) To remove the effect of non-conjugate changes in eye position (i.e. vergence
shifts), we compute the average angular position of the two eyes. B) Cross-correlation of
change in head yaw and horizontal eye position. C) Scatter plot of horizontal rotational
head velocity and horizontal eye velocity. N=7 animals, 105 trials, 3604 (non-approach) and
201 (approach) timepoints, representing 2% of non-approach and 2% of approach timepoints.
D) Distribution of horizontal eye position during stationary and running periods (defined
as times when mouse speed is greater than 1 cm/sec; Kolmogorov-Smirnov test, p=0.032).
E) Distribution of head angle velocity (paired t-test, p=0.889). F Distribution of mean
absolute eye position (paired t-test, p=0.044). G) Distribution of horizontal eye velocity
(paired t-test, p=0.072) and distribution of eye velocity when head yaw is not changing
(change in head yaw between ± 15 deg/sec; paired t-test, p=0.13; N=7 animals, 105 trials).
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(stabilized gaze) and a long tail of higher velocities (rapid gaze shifts). This also

provides a clear segregation in the joint distribution of eye and head velocity (Figure

2.4B), with a large number of compensatory gaze-stabilizing movements (black points)

where eye and head motion are anti-correlated, and much smaller population of gaze

shifts (red). This classification approach provides an alternative to standard primate

saccade detection (Andersen and Mountcastle, 1983; Stahl, 2004; Mathis et al., 2018),

which is often based on eye velocity rather than gaze velocity, since in the freely

moving condition, particularly in afoveate species, rapid gaze shifts (saccades) often

result from a combination of head and non-compensatory eye movements, rather than

eye movements alone (Land, 2006).

We next determined how compensatory and non-compensatory eye movements

contribute to the dynamics of gaze during ongoing behavior, by computing the

direction of gaze as the sum of eye position and head position. Strikingly, the

combination of compensatory and non-compensatory eye movements (Figure 2.4C,

top) with continuous change in head orientation (Figure 2.4C, middle) results in a

series of stable gaze positions interspersed with abrupt shifts (Figure 2.4C, bottom).

This pattern of gaze stabilization interspersed with rapid gaze-shifting movements,

known as “saccade-and-fixate,” is present across the animal kingdom and likely

represents a fundamental mechanism to facilitate visual processing during movement

(Land, 1999). These results demonstrate that the mouse oculomotor system also

engages this fundamental mechanism.

Durations of fixations between saccades showed wide variation, with a median of

230 ms (Figure 2.4D). To quantify the degree of stabilization achieved, we compared

the root mean square (RMS) deviation of gaze position and head yaw during

stabilization periods (Figure 2.4E). This revealed that the gaze is approximately
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three times less variable than the head (Figure 2.4F; median head=3.91 deg; median

gaze=1.58 deg; paired t-test; p=0), resulting in stabilization to within nearly 1 degree

over extended periods, even during active pursuit.

2.4.5 Targeting of gaze relative to cricket during pursuit

Saccade-and-fixate serves as an oculomotor strategy to sample and stabilize the

visual world during free movement. In primates, saccades are directed towards specific

targets of interest in the visual field. Is this true of the non-compensatory movements

Figure 2.4. Head movements and subsequent saccades target the cricket during
prey capture. A) Joint distributions of head yaw and horizontal eye velocity were clustered
into compensatory eye movements (black) and non-compensatory eye movements (red).
Clustering was done on all approach timepoints (N=10026). Points shown are a random
sample of 2005 points, 20% of total approach time points. B) Histograms of gaze velocity for
compensatory and saccade eye movement distributions, based on clustering shown in A. C)
Example traces of horizontal eye position, head yaw, and gaze demonstrate a saccade-and-
fixate pattern in gaze. D) Histogram of fixation duration; fixations N=8761, 105 trials. E)
Root Mean Squared (RMS) stabilization histograms for head yaw and gaze. F) Bar graphs
are medians of RMS stabilization distributions (median head=3.91 deg; median gaze=1.58
deg; paired t-test, p=0).
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in the mouse? In other words, do saccades directly target the cricket? To address this,

we next analyzed the dynamics of head and gaze movements relative to the cricket

position during hunting periods, to compare how accurately the direction of the gaze

and the head targeted the cricket during saccades. Figure 2.5A shows example traces

of head and eye dynamics across a pursuit period (see also Supplemental Movie 2).

Immediately before pursuit, the animal begins a large head turn towards the target,

thereby reducing the azimuth angle (head relative to cricket). This head turn is

accompanied by a non-compensatory eye movement in the same direction (Figure

2.5A, 3rd panel, see mean trace in black) that accelerates the shift in gaze. Then

during the pursuit, the eyes convert the continuous tracking of the head into a series

of stable locations of the gaze (black sections in Figure 2.5A, bottom). Note also

the locking of the relative position of the two eyes (Figure 2.5A, 3rd panel, blue and

purple), as described above in Figure 2.2.

To determine how head and eye movements target the prey, we computed

absolute value traces of head and gaze angle relative to cricket (head and gaze

azimuth), and aligned these to the onset of each non-compensatory saccadic eye

movement. The average of all traces during approaches revealed that saccades are

associated with a head turn towards the cricket, as shown by a decrease in the azimuth

angle (Figure 2.5B). Immediately preceding a saccade, the gaze is stabilized while the

head turns, and the saccade then abruptly shifts the gaze. Notably, following the

saccade, the azimuth of gaze is the same as the azimuth of the head, suggesting that

eye movements are not targeting the cricket more precisely, but simply ‘catching up’

with the head, by re-centering following a period of stabilization.

To further quantify this, we assessed the accuracy of the head and gaze

at targeting cricket position before and after saccades. Preceding saccades, the
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distribution of head angles was centered around the cricket, while the gaze less

accurately targeted and offset to the left or right (Figure 2.5C/5D top; paired t-test

p=2x10-5), due to compensatory stabilization. After the saccade, however, gaze and

head were equally targeted towards the cricket (Figure 2.5C/D bottom; p=0.4), as the

saccade recentered the eyes relative to the head and thereby the cricket. This pattern

Figure 2.5. Head angle tracks cricket position more accurately than gaze position.
A) Example traces of horizontal eye position, azimuth to cricket, head yaw, and gaze
demonstrate a saccade-and-fixate pattern in gaze before and during an approach period.
The head is pointed directly at the cricket when azimuth is 0°. Note the rapid decrease
in azimuth, head yaw, and mean horizontal eye position creating a saccade immediately
preceding the start of approach. B) Average head yaw and gaze around the time of saccade
as a function of azimuth to the cricket. Time = 0 is the saccade onset. C) Histograms
of head yaw and gaze position before and after saccades occur. D) Medians of yaw and
gaze distributions from C (paired t-test, ppre saccade=2x10-5; ppost saccade=0.4). E) Cross
correlation of azimuth and change in head yaw for non-approach and approach periods. F)
Cross correlation of azimuth and change in gaze for non-approach and approach periods.
N=105 trials, 7 animals.

22



of stabilizing the gaze and then saccading to recenter the gaze repeats whenever the

head turns until capture is successful (see Supplemental Movie 2).

Further supporting a strategy where the head guides targeting, with the eyes

following to compensate, we examined how both head and eye movements are

correlated with the cricket’s position. At short latencies, the change in head

angle relative to the location of the cricket was highly correlated (Figure 2.5E),

indicating that during pursuit the animal is rapidly reorienting its head towards the

cricket. However, the change in gaze with the azimuth instead showed only a weak

correlation because the eyes themselves are not always aligned with the azimuth due

to stabilization periods (Figure 2.5F). Together, these results suggest that in mice,

tracking of visual objects in freely moving contexts is mediated through directed head

movements, and corresponding eye movements that stabilize the gaze and periodically

update to recenter with the head as it turns.

2.5 DISCUSSION

Here we investigated the coordination of eye and head movements in mice during

a visually guided ethological behavior, prey capture, that requires the localization of

a specific point in the visual field. This work demonstrates that general principles

of coordinated eye and head movements, observed across species, are present in the

mouse. Additionally, we address the potential targeting of eye movements towards

behaviorally relevant visual stimuli, specifically the moving cricket prey. We find

that tracking is achieved through directed head movements that accurately target

the cricket prey, rather than directed, independent eye movements. Together, these

findings define how mice move their eyes to achieve an ethological behavior and

provide a foundation for studying active visually-guided behaviors in the mouse.
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One potential limitation of our eye tracking system is the 60Hz framerate of the

miniature cameras. This temporal resolution is significantly lower than traditional eye

tracking paradigms using videography or eye-coil systems in head-restrained humans,

non-human primates, and rodents (Payne and Raymond, 2017; Sakatani and Isa,

2007), though similar to recent video-based tracking in freely moving rodents (Meyer

et al., 2018, 2020) and humans (Mathis et al., 2018). We do not expect that this would

significantly alter our findings, as the basic parameters of eye movements (amplitude

and speed) that we found (Figures 2.2B, 2.3C, 2.3F) were similar to measurements

made in both head-fixed mice with high-speed videography (Sakatani and Isa, 2007)

and freely moving mice with a magnetic sensor (Payne and Raymond, 2017). However,

although we are able to detect peak velocities over 300°/sec, we may still be under-

estimating the peak velocity during saccades. Therefore increasing the temporal

resolution further could lead to more robust detection of rapid gaze shifts and would

potentially enhance classification of saccadic eye movements.

We found a pattern of gaze stabilization interspersed with abrupt, gaze-shifting

saccades during both non-approach and approach epochs. This oculomotor strategy

has been termed ‘saccade-and-fixate’ (reviewed in (Land, 1999)), and is present in

most visual animal species, from insects to primates, and was recently demonstrated

in mice (Meyer et al., 2020). In primates, gaze shifts can be purely driven by eye

movements, but in other species saccades generally correspond to non-compensatory

eye movements during head rotation, suggesting transient disengagement of VOR

mechanisms. These saccadic movements are present in invertebrates and both foveate

and non-foveate vertebrates (reviewed in (Land, 1999)), and work to both recenter

the eyes and relocate the position of gaze as animals turn. We found that these brief

congruent head and eye movements are interspersed with longer duration (median 200
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ms) periods of compensatory movements, which stabilize the gaze to within nearly 1

as the head continues to rotate. Together these eye movements function to create a

stable series of images on the retina even during rapid tracking of prey.

However, the saccade-and-fixate strategy raises the question of whether mice

actively target a specific relevant location with saccadic eye movements. We examined

this during periods of active pursuit to determine whether the eyes specifically target

the cricket, relative to head orientation. During pursuit, most saccades occur during

corrective head turns toward the cricket location. While saccades do bring the gaze

closer to the cricket, they do not do so more accurately than the head direction. In

fact, prior to the saccade, mice sacrifice centering of the gaze on the target to instead

achieve visual scene stability. The eyes then ‘catch up’ to the head as it is rotating

(Figure 2.5B/C). Thus, these eye movements serve to reset eye position with the head,

rather than targeting the cricket specifically. Combined with the fact that mice do

not make significant eye movements in the absence of head movements (Figure 2.3F),

this suggests that mice do not perform either directed eye saccades or smooth pursuit,

which are prominent features of primate vision. On the other hand, the fact that they

use a saccade-and-fixate strategy makes it clear that they are still actively controlling

their retinal input, despite low visual acuity and the common perception that mice

are not a highly visual species. Indeed, the saccade-and-fixate strategy makes mouse

vision consistent with the vast majority of species across the animal kingdom.

We also examined whether mice make specific vergence eye movements that

could serve to modulate the binocular zone, as in some other species with eyes

located laterally on the head. We find that rather than moving the eyes nasally

to expand the binocular zone, during approach toward the cricket the two eyes

become stably aligned, but at a neutral vergence angle that is neither con- verged or
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diverged (Figure 2E). While several species with laterally-placed eyes use convergent

eye movements during prey capture to create a wider binocular field (Feord et al.,

2020; Bianco et al., 2011; Martin, 2009; Katz et al., 2015), our results show that mice

do not utilize this strategy during prey capture. However, vergence eye movements in

rodents have previously been shown to compensate for head tilt (Wallace et al., 2013),

and correspondingly we find that during approach periods mice stabilize head tilt.

Thus, the stable relative alignment of the two eyes during approach likely reflects

stabilization of the head itself. These results suggest that the 40 degree binocular

zone is sufficient for tracking centrally located objects, as the eyes to not move to

expand this during approaches. This is consistent with previous work showing that

during active approach the mouse’s head is oriented within ±15 degrees relative to

the cricket (Hoy et al., 2016), meaning that even the resting binocular zone would

encompass the cricket. However, it remains to be determined whether mice actually

use binocular disparity for depth estimation during prey capture. A recent study

demonstrated that mouse V1 encodes binocular disparities spanning a range of 3–25

cm from the mouse’s head (Land, 2019), suggesting that disparity cues are available

at the typical distances during approach (interquartile range 14.6 cm to 27.6 cm).

Alternatively, mice may use retinal image size or other distance cues, or may simply

orient to the azimuthal position of the cricket regardless of distance.

The finding that mice do not specifically move their eyes to target a location

does not preclude the possibility that different regions of retinal space are specialized

for certain processing. In fact, as a result of targeting head movements, the cricket

prey is generally within the binocular zone during approach, so any mechanisms of

enhanced processing in the binocular zone or lateral retina would still be behaviorally

relevant. Anatomically, there is a gradient in density of different retinal ganglion
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cell types from medial to lateral retina (Bleckert et al., 2014). Likewise behavioral

studies have shown enhanced contrast detection when visual stimuli are located in

the binocular field, rather than the monocular fields (Speed et al., 2019). Based on

the results presented here, in mice these specializations are likely to be engaged by

head movements that localize stimuli in the binocular zone in front of the head, as

opposed to primates, which make directed eye movements to localize stimuli on the

fovea.

Together, the present findings suggest that orienting relative to visual cues

is driven by head movements rather than eye movements in the mouse. This is

consistent with the general finding that for animals with small heads it is more

efficient to move the head, whereas animals with large heads have adapted eye

movements for rapid shifts to overcome the inertia of the head (Land, 2019). From

the experimental perspective, this suggests that head angle alone is an appropriate

measure to determine which visual cues are important during study of visually guided,

goal-directed behaviors in the mouse. However, measurements of eye movements

will be essential for computing the precise visual input animals receive (i.e., the

retinal image) during ongoing freely moving behaviors, and how this visual input is

processed within visual areas of the brain. The saccade-and-fixate strategy generates

a series of stable visual images separated by abrupt changes in gaze that shift the

visual scene and location of objects on the retina. How then are these images,

interleaved with periods of motion blur, converted into a continuous coherent percept

that allows successful natural behaviors to occur? Anticipatory shifts in receptive

field location during saccades, as well as gaze position-tuned neural populations,

have been proposed as mechanisms in primates to maintain coherent percepts during

saccades, while corollary discharge, saccadic suppression, and visual masking have
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been proposed to inhibit perception of motion blur during rapid eye movements

(Higgins and Rayner, 2015; Wurtz, 2008). However, the mechanisms that might

mediate these, at the level of specific cell types and neural circuits, are poorly

understood. Studying these processes in the mouse will allow for investigation of

the neural circuit basis of these perceptual mechanisms through the application of

genetic tools and other circuit dissection approaches (Huberman and Niell, 2011;

Luo et al., 2008). Importantly, most of our visual perception occurs during active

exploration of the environment, where the combined dynamics of head and eye

movements create a dramatically different image processing challenge than typical

studies in stationary subjects viewing stimuli on a computer monitor. Examination

of these neural mechanisms will extend our understanding of how the brain performs

sensory processing in real-world conditions.

2.6 MATERIALS AND METHODS

2.6.1 Key Resource Table

Reagent type
(species) or
resource

Designation Source or
reference

Identifiers Additional
information

Strain, strain
background
(Mus
musculus)

C57Bl/6J JAX JAX: 000664 Wild type
animals

Software,
algorithm

Matlab Matlab Matlab
R2020a

Software,
algorithm

DeepLabCut Mathis et al.,
2018

Software,
algorithm

Bonsai Lopes et al.,
2015

Table 1. Chapter II: Key Resource Table
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2.6.2 Animals

All procedures were conducted in accordance with the guidelines of the National

Institutes of Health and were approved by the University of Oregon Institutional

Animal Care and Use Committee (protocol number 17–27). Animals used for this

study were wild-type (C57 Bl/6J) males and females (3 males and four females) aged

2–6 months.

2.6.3 Prey capture behavior

Prey capture experiments were performed following the general paradigm of (Hoy

et al., 2016). Mice readily catch crickets in the homecage without any training or

habituation, even on the first exposure to crickets. However, we perform a standard

habituation process to acclimate the mice to being handled by the experimenters,

hunting within the experimental arena, and wearing cameras and an IMU while

hunting. Following six 3 min sessions (over 1–2 days) of handling, the animals were

placed in the prey capture arena to explore with their cagemates. The duration of

this group habitu- ation was at least six 10 min sessions over 1–2 days. One cricket

(Rainbow mealworms, 5 week old) per mouse was placed in the arena with the mice

for the last half of the habituation sessions. For the subsequent habituation step,

the mice were placed in the arena alone with one cricket for 7–10 min. This step

was repeated for 2–3 training days (6–9 sessions) until most mice successfully caught

crick- ets within the 10 min period.

Animals were then habituated to head-fixation above a spherical Styrofoam

treadmill (Dombeck et al., 2007). Head fixation was only used to fit, calibrate,

and attach cameras before experiments. Cameras were then fitted to each mouse

(described below) and mice were habituated to wearing the cameras while walking

freely in the arena, which took 1–2 sessions lasting 10 min. After the animals were
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comfortable with free locomotion with cameras, they were habituated to hunting with

cameras attached. This took roughly one to two e hunting sessions of 10 min duration

for each mouse. The animals were then food deprived for a period of 12–18 hr and

then run in the prey capture assay for three 10 min sessions per data collection day.

Although animals will hunt crickets without food restriction, this allowed for more

trials within a defined experimental period.

The rectangular prey capture arena was a white arena of dimensions 38 x 45x30

cm Hoy et al. (2016). The arena was illuminated with a 15 Watt, 100 lumen

incandescent light bulb placed roughly one meter above the center of the arena to

mimic lux during dawn and dusk, times at which mice naturally hunt (Bailey and

Sperry, 1929). Video signal was recorded from above the arena using a CMOS camera

(Basler Ace, acA2000–165 umNIR, 30 Hz acquisition). Following the habituation

process, cameras were attached and mice were placed in the prey capture arena with

one cricket. Experimental animals captured and consumed the cricket before a new

cricket was placed in the arena. The experimenters removed any residual cricket

pieces in the arena before the addition of the next cricket. A typical mouse catches

and consumes between 3–5 crickets per 10 min session. Control experiments were

performed using the same methods, but with no cam- eras or IMU attached.

2.6.4 Surgical procedure

To allow for head-fixation during initial eye camera alignment, before the

habituation process mice were surgically implanted with a steel headplate, following

(Niell and Stryker, 2010). Animals were anesthetized with isoflurane (3% induction,

1.5%–2% maintenance, in O2) and body temperature was maintained at 37.5°C using

a feedback-controlled heating pad. Fascia was cleared from the surface of the skull

following scalp incision and a custom steel headplate was attached to the skull using
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Vetbond (3M) and dental acrylic. The headplate was placed near the back of the

skull, roughly 1 mm anterior of Lambda. A flat layer of dental acrylic was placed in

front of the headplate to allow for attachment of the camera connectors. Carprofen

(10 mg/kg) and lactated Ringer’s solution were administered subcutaneously and

animals were monitored for three days following surgery.

2.6.5 Camera assembly and head-mounting

To measure eye position, we used miniature cameras that could be reversibly

attached to the mouse’s head via a chronically implanted Millmax connector. The

cameras (1000 TVL Mini CCTV Camera; iSecurity101) were 5 x 6 x 6 mm with a

resolution of 480x640 pixels and a 78 degree viewing angle, and images were acquired

at 30Hz. Some of the cameras were supplied with a built in NIR blocking filter.

For these cameras, the lens was unscrewed and the glass IR filter removed with fine

forceps. A 200 Ohm resistor and 3mm IR LED were integrated onto the cameras for

uniform illumination of the eyes. Power, ground, and video cables were soldered with

lightweight 36 gauge FEP hookup wire (Cooner Wire; CZ 1174). A 6 mm diameter

collimating lens with a focal distance of 12 mm (Lilly Electronics) was inserted into

custom 3D printed housing and the cameras were then inserted and glued behind this

(see Figure 2.1 for schematic of design). The inner side of the arm of the camera

holder housed a male Mill-Max connector (Mill-Max Manufacturing Corp. 853-93-

100-10-001000) cut to 5mm (2 rows of 4 columns), used for reversible attachment

of the cameras to the implants of experimental animals. A custom IMU board

with integrated 3-dimensional accelerometer and gyroscopes (Rosco Technologies)

was attached to the top of one of the camera holders (see Figure 2.1B). The total

weight of the two cameras together, with the lenses, connectors, 3D printed holders,

and IMU was 2.6 grams. Camera assemblies were fitted onto the head by attaching
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them to corresponding female Mill-Max connectors. Cameras were located in the

far lateral periphery of the mouse’s visual field, roughly 100 degrees lateral of the

head midline and 40 degrees above the horizontal axis. When the camera was

appropriately focused on the eye, the female connectors were glued onto the acrylic

implant using cyanoacrylate adhesive (Loctite). Because the connectors were each

positioned during this initial procedure and permanently fixed in place, no adjustment

of camera alignment was needed for subsequent experimental days.

2.6.6 Mouse and cricket tracking

Video data with timestamps for the two eyes and overhead camera were acquired

at 30 frames per second using Bonsai (Lopes et al., 2015). We used DeepLabCut

(Mathis et al., 2018) for markerless estimation of mouse and cricket position from

overhead videos. For network training, we selected 8 points on the mouse head (nose,

two camera connectors, two IR LEDs, two ears, and center of the head between the

two ears), and two points for the cricket (head and body). Following estimation of

the selected points, analysis was performed with custom MATLAB scripts.

Position and angle of the head were computed by fitting the 8 measured points

on the head for each video frame to a defined mean geometry plus and x-y translation

and horizontal rotation. The head direction was defined as the angle of this rotation,

referenced to the line between the nose and center of the head. Following (Hoy et al.,

2016), we defined approaches as times at which the velocity of the mouse was greater

than 1 cm/sec, the azimuth of the mouse was between -45 and 45 degrees relative to

cricket location, and the distance to the cricket was decreasing at a rate greater than

10 cm/sec.

Analog voltage signals from the IMU were recorded using a LabJack U6 at 50Hz

sampling rate. Voltages from the accelerometer channels were median filtered with a
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window of 266.7 ms to remove rapid transients and converted to m/sec2, providing

angular head orientation. Voltages from the gyroscope channels were converted to

radians/sec without filtering, providing head rotation velocity.

2.6.7 Eye tracking and eye camera calibration

Video data with timestamps for the two eyes were acquired at 30fps using Bonsai.

The video data are delivered by the camera in NTSC format, an interlaced video

format in which two sequential images (acquired at 60fps) are interdigitated into

each frame on alternate horizontal lines. We there- fore de-interlaced the video in

order to restore the native 60fps resolution by separating out alter- nate lines of each

image. We then linearly downsampled the resolution along the horizontal axis by a

factor of two, to match spatial resolution in horizontal and vertical dimensions.

To track eye position, we used DeepLabCut (Mathis et al., 2018) to track eight

points along the edge of the pupil. The eight points were then fit to an ellipse

using the least-squares criterion. In order to convert pupil displacement into angular

rotation, which cannot be calibrated by directed fixation as in primates, we followed

the methods used in (Wallace et al., 2013). This approach is based on the principle

that when the eye is pointed directly at the camera axis, the pupil is circular, and as

the eye rotates, the circular shape flattens into an ellipse depending on the direction

and degree of angular rotation from the center of the camera axis. To calculate

the transformation of a circle along the camera axis to the ellipse fit, two pieces of

information are needed: the camera axis center position and the scale factor relating

pixels of displacement to angular rotation. To find the camera axis, we used the

constraint that the major axis of the pupil ellipse is perpendicular to the vector from

the pupil center to the camera axis center. This defines a set of linear equations for

all of the pupil observations with significant ellipticity, which are solved directly with
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a least-squares solution. Next, the scale factor was estimated based on the equation

defining how the ellipticity of the pupil changes with the corresponding shift from

the camera center in each video frame. Based on the camera center and scale factor

for each video, we calculated the affine transformation needed to transform the circle

to the ellipse fit of the pupil in each frame, and the angular displacement from the

camera axis was then used for subsequent analyses. Mathematical details of this

method are presented in (Wallace et al., 2013).

Following computation of kinematic variables (mouse, cricket, and eye

position/rotation), these values were linearly interpolated to a standard 30Hz

timestamp to account for differences in acquisition timing across the multiple cameras

and the IMU.

2.6.8 Quantification and Statistical Analyses

To cluster types of eye and head movements into compensatory and saccadic

movements, we fit data from joint distributions of eye and head velocity to a Gaussian

mixture model (Matlab). We used all recorded approach timepoints across animals

and experiments (N=7 animals, 105 trials, 10026 timepoints) for this clustering. Using

a model with three clusters revealed two compensatory groups (both clustering along

the negative diagonal, which we merged) and one non-compensatory, which was used

to define saccades for subsequent analysis. To determine periods when the animal was

moving versus stationary, head movement speed was median filtered across a window

of 500 ms and a threshold of 1cm/sec was applied..

Two-tailed paired t-tests or Wilcoxon Rank sum tests were used to compare data

between non-approach and approach epochs. For comparisons between experimental

and control groups, two-sample tests (Kolmogorov-Smirnov or two-sample two-tailed

t-test) were used. Significance was defined as p<0.05, although p-values are presented
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throughout. In all figures, error bars represent ± the standard error of the mean or

median, as appropriate.
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2.9 SUPPLEMENTAL MATERIAL

Supplemental Movie 1 Video of mouse performing prey capture with

reversibly attached eye cameras, demonstrating synchronized measurement of

bilateral pupil positions and mouse/cricket behavior. The direction of each eye is

superimposed on the head (purple and light blue lines) based on calculated pupil

position and head angle.

Supplemental Movie 2 Video of mouse performing prey capture, demonstrating

dynamics of head orienting (dark blue) and gaze direction (cyan). Note that

during head turns the gaze is transiently offset from the head angle vector, due to

compensatory eye movements, creating a stable image for the animal. Then, non-

compensatory saccades shift the gaze position such that it aligns with the head to

accurately target the cricket.
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2.10 BRIDGE TO CHAPTER III

In this chapter, we investigated the strategies which mice use to target their gaze

during prey capture. To study how visual processing occurs during natural behavior,

we first needed to establish how the eye and head movements occur and change the

visual field while mice are freely moving. We developed novel experimental and data

analysis methods to accurately track the eye, which laid the foundation for the study

of visual coding in freely moving mice. In Chapter III, we extend these methods to

record neural activity and the visual scene simultaneously, and connect the different

streams of information with a computational encoding model for the primary visual

cortex. By building upon methods defined in this chapter, we then also showed how

the integration of the neural activity, visual scene, and the eye/head position occurs

in V1.
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CHAPTER III

JOINT CODING OF VISUAL INPUT AND EYE/HEAD POSITION IN V1 OF

FREELY MOVING MICE

3.1 JOURNAL STYLE INFORMATION

Originally published as *Parker, P. R. L., *Abe, E. T. T., Leonard,

E. S. P., Martins, D. M., Niell, C. M. (2022). Reproduced from Neuron

https://doi.org/10.1016/j.neuron.2022.08.029

*Authors contributed equally

3.2 AUTHOR CONTRIBUTIONS

E.T.T.A., P.R.L.P., and C.M.N. conceived the project. E.T.T.A. led the design

and implementation of computational analysis, and P.R.L.P. led the design and

implementation of experiments. E.S.P.L. contributed to data collection. D.M.M.

contributed to data pre-processing. E.T.T.A. and P.R.L.P. generated figures.

E.T.T.A., P.R.L.P., and C.M.N. wrote the manuscript.

3.3 INTRODUCTION

A key aspect of natural behavior is movement through the environment, which

has profound impacts on the incoming sensory information (Gibson, 1979). In vision,

movements of the eyes and head due to locomotion and orienting transform the

visual scene in ways that are potentially both beneficial, by providing additional

visual cues, and detrimental, by introducing confounds due to self-movement. By

accounting for movement, the brain can therefore extract more complete and robust

information to guide visual perception and behavior. Accordingly, a number of studies

have demonstrated the impact of movement on activity in cortex (Parker et al.,

2020; Froudarakis et al., 2019; Busse et al., 2017). In head-fixed mice, locomotion

on a treadmill increases the gain of visual responses (Niell and Stryker, 2010) and
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modifies spatial integration (Ayaz et al., 2013) in V1, while passive rotation generates

vestibular signals (Bouvier et al., 2020; Vélez-Fort et al., 2018). Likewise, in freely

moving mice and rats, V1 neurons show robust responses to head and eye movements

and head orientation tuning (Guitchounts et al., 2020b,a; Meyer et al., 2018).

However, it is unknown how information about eye and head position is

integrated into visual processing during natural movement, since studies of visual

processing are generally performed during head-fixation to allow presentation of

controlled stimuli, while natural eye and head movements require a mouse to be freely

moving. Quantifying visual coding in freely moving animals requires determining the

visual input, which is no longer under the experimenter’s control and is dependent on

both the visual scene from the mouse’s perspective and its eye position. In addition,

natural scenes, particularly during free movement, pose difficulties for data analysis

since they contain strong spatial and temporal correlations and are not uniformly

sampled because they are under the animal’s control. Whether V1 receptive fields

show similar properties under freely moving and restrained conditions is a question

that goes back to the origins of cortical visual physiology (Hubel and Wiesel, 1962).

To address the experimental challenge, we combined high density silicon probe

recordings with miniature head-mounted cameras (Michaiel et al., 2020; Meyer et al.,

2018; Sattler and Wehr, 2021), with one camera aimed outwards to capture the visual

scene from the mouse’s perspective (“world camera”), and a second camera aimed at

the eye to measure pupil position (“eye camera”), as well as an inertial measurement

unit (IMU) to quantify head orientation. To address the data analysis challenge,

we implemented a paradigm to correct the world camera video based on measured

eye movements with a shifter network (Yates et al., 2021; Walker et al., 2019) and
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then use this as input to a generalized linear model (GLM) to predict neural activity

(Pillow et al., 2008).

Using this approach, we first quantified the visual encoding alone during free

movement, in terms of linear spatiotemporal receptive fields (RFs) from the GLM fit.

For many units, the RF measured during free movement is similar to the RF measured

with standard white noise stimuli during head-fixation within the same experiment,

providing confirmation of this approach. We then extended the encoding model to

incorporate eye position and head orientation, and found that these generally provide

a multiplicative gain on the visual response. Together, this work provides new insights

into the mechanisms of visual coding in V1 during natural movement, and opens the

door to studying the neural basis of behavior under ethological conditions.

3.4 RESULTS

3.4.1 A generalized linear model accurately estimates spatiotemporal

receptive fields during free movement

In order to study how visual processing in V1 incorporates self-motion, we

developed a system to perform visual physiology in freely moving mice (Figure 3.1A).

To estimate the visual input reaching the retina, a forward-facing world camera

recorded a portion (∼120 deg) of the visual scene available to the right eye. A

second miniature camera aimed at the right eye measured pupil position, and an

IMU tracked head orientation. Finally, a driveable linear silicon probe implanted

in left V1 recorded the activity of up to 100+ single units across layers. The same

neurons were first recorded under head-fixed conditions to perform white noise RF

mapping, and then under conditions of free movement (Figure 3.1B). Well isolated

units were highly stable across the two conditions (Figure S3.1 and Methods). Figure

3.1C and Video S3.1 show example data obtained using this system in a freely moving
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animal. Mice were allowed to explore a visually complex arena containing black

and white blocks (three-dimensional sparse noise), static white noise and oriented

gratings on the walls, and a monitor displaying moving spots. After several days of

habituation, mice were active for a majority of the time spent in the arena (82%),

with an average movement speed of 2.6 cm/s, which is comparable to other similar

studies (see Methods; (Juavinett et al., 2019; Meyer et al., 2018).

Figure 3.1. A) Schematic of recording preparation including 128-channel linear silicon
probe for electrophysiological recording in V1 (yellow), miniature cameras for recording
the mouse’s eye position (magenta) and visual scene (blue), and inertial measurement unit
for measuring head orientation (green). B) Experimental design: controlled visual stimuli
were first presented to the animal while head-fixed, then the same neurons were recorded
under conditions of free movement. C) Sample data from a fifteen second period during free
movement showing (from top) visual scene, horizontal and vertical eye position, head pitch
and roll, and a raster plot of over 100 units. Note that the animal began moving at ~4 secs,
accompanied by a shift in the dynamics of neural activity.
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To quantify visual coding during free movement, both the neural activity and the

corresponding visual input are needed. The world camera captures the visual scene

in a head-centric point of view, while the visual input needed is in a retinocentric

perspective. To tackle this problem, we used a shifter network to correct the world

camera video for eye movements (Walker et al., 2019; Yates et al., 2021). The shifter

network takes as input the horizontal (theta) and vertical (phi) eye angle, along

with the vertical head orientation (pitch) to approximate cyclotorsion (Wallace et al.,

2013), and outputs the affine transformation for horizontal and vertical translation

and rotation, respectively (Figure S3.2). We trained the shifter network and a

GLM end-to-end with a rectified linear activation function to determine the camera

correction parameters that best enable prediction of neural activity for each recording

session (Figure 3.2A). All GLM fits in this study were cross-validated using train-

test splits (see Methods for details). This analysis draws on the relatively large

numbers of simultaneously recorded units as it determines the best shift parameters by

maximizing fits across all neurons, thereby determining the general parameters of the

eye camera to world camera transformation rather than being tailored to individual

neurons.

The outputs of the shifter network (Figure S3.2A-C) show that it converts the

two axes of eye rotation (in degrees) into a continuous and approximately orthogonal

combination of horizontal and vertical shifts of the worldcam video (in pixels), as

expected to compensate for the alignment of the horizontal and vertical axes of the

eye and world cameras. These outputs were also consistent in cross-validation across

subsets of the data (coefficient of determination R2, dx=0.846, dy=0.792, dα=0.945;

Figure S2A-C). When the shifts were applied to the raw world camera video it had the

qualitative effect of stabilizing the visual scene in between rapid gaze shifts, as would
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be expected from the vestibulo-ocular reflex and “saccade-and-fixate” eye movement

pattern described previously in mice (Video S3.2; (Meyer et al., 2020; Michaiel et al.,

2020). We quantified this by computing the total horizontal and vertical displacement

of the raw and shifted world camera video based on image registration between

sequential frames. When corrected for eye position, continuous motion of the image

Figure 3.2. A) Schematic of processing pipeline. Visual and positional information is used
as input into the shifter network, which outputs parameters for an affine transformation of
the world-camera image. The transformed image frame is then used as the input to the
GLM network to predict neural activity. B) Four example freely moving spatiotemporal
visual receptive fields. Scale bar for RFs represents 10 degrees. C) Example actual and
predicted smoothed (2 s window) firing rates for unit 3 in B. D) Histogram of correlation
coefficients (cc) for the population of units recorded. Average cc shown as gray dashed line.
E) Example of a freely moving RF with the shifter network off (left) and on (right) at time
lag 0 ms. Colormap same as B. F) Scatter plot showing cc of predicted versus actual firing
rate for all units with the shifter network off vs on. Red point is the unit shown in E.
G) Example receptive field calculated via STA (left) versus GLM (right). H) Scatter plot
showing cc of predicted vs actual firing rate for all units, as calculated from STA or GLM.
Red point is the unit shown in G.
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is converted into the step-like pattern of saccade-and-fixate (Figure S3.2D) and the

image is stabilized to within 1 deg during the fixations (Figure S3.2E,F; (Michaiel

et al., 2020). This eye-corrected retinocentric image was then used as input for the

GLM network to predict neural activity in subsequent analysis.

We estimated spatiotemporal RFs during free movement using a GLM to predict

single-unit activity from the corrected world camera data. Single-unit RFs measured

during free movement had clear on and off sub-regions and a transient temporal

response (Figure 3.2B). To our knowledge, these are the first visual receptive fields

measured from a freely moving animal. It should be noted that the temporal

response is still broader than would be expected, which likely reflects the fact that

the GLM cannot fully account for strong temporal correlations in the visual input.

Furthermore, the GLM predicted the continuous time-varying firing rate of units

during free movement (Figure 3.2C). Across the population of neurons recorded

(N=268 units, 4 animals), neural activity predicted from the corrected world camera

data was correlated with the actual continuous firing rate (CC mean 0.28, max 0.69;

Figure 3.2D). These values are on par with those obtained from mapping V1 RFs in

awake and anesthetized head-fixed animals (Carandini et al., 2005).

To demonstrate the impact of correcting the visual input for eye movements,

we computed RFs from the raw, uncorrected world camera data. This resulted in

single-unit RFs becoming blurred, and reduced the ability to predict neural activity

(Figure 3.2E,F; shifter on vs. off p=8.17e-23, paired t-test). Nonetheless, it is notable

that the overall improvement was modest (mean increase in cc=0.06) and although

some units required the shifter network, many units maintained a similar ability to

predict firing rate even without the shifter. This is perhaps due to the large size

of receptive fields relative to the amplitude of eye movements in the mouse (see
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Discussion). To determine the relative benefit of the GLM approach relative to a

simpler reverse correlation spike-triggered average (Chichilnisky, 2001), we compared

receptive fields and ability to predict firing rate from these two methods (Figure 3.2G-

H). Receptive fields from the STA were much broader and appeared to reflect structure

from the environment (Figure 3.2G), as expected since the STA will not account for

spatiotemporal correlations in the input. Correspondingly, the STA performed much

worse than the GLM in predicting neural activity (Figure 3.2H; p=2e-93). Finally, as

an additional verification that the GLM method is able to accurately reconstruct RFs

from limited data and that natural scene statistics are not biasing the RF estimates,

we simulated neural activity based on Gabor RFs applied to the world camera data.

The results demonstrate that the GLM can reconstruct simulated RFs with high

accuracy, resulting in reconstructed RFs that are both qualitatively and quantitatively

similar to the original (Figure S3.2F,G).

3.4.2 Comparison of receptive fields measured under freely moving versus

head-fixed conditions

To determine whether RFs measured during free movement were comparable

to those measured using traditional visual physiology methods, we compared them

to RFs measured using a white noise stimulus under head-fixed conditions. The

large majority of units were active (mean rate >1Hz) during each of these conditions

(Figure 3.3A) and in each condition roughly half the units had a fit that significantly

predicted neural activity, with slightly more in freely moving (Figure 3.3A). Overall,

many neurons that had a clear white noise RF also had a clear RF from freely moving

data (Figure 3.3B), which closely matched in spatial location, polarity, and number of

sub-regions. To quantitatively compare RFs, we calculated the pixel-wise correlation

coefficient between them. To provide a baseline for this metric, we first performed
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a cross-validation test-retest by comparing the RFs from the first and second half

of each recording separately (Figure S3.3). The mean test-retest cc was 0.46 for

head-fixed and 0.58 and freely moving. We considered a unit to have a robust

test-retest RF if this pixel-wise cc was greater than 0.5 (Figure S3.3C), and then

evaluated the similarity of RFs for units that had robust fits in both conditions.

The distribution of correlation coefficients between head-fixed and freely moving RFs

for these units (Figure 3.3C) shows a strong correspondence for RFs across the two

conditions (Figure 3.3C; 74% of units had a significant cc versus shuffled data). Taken

together, these results show that for the units that had clearly defined RFs in both

conditions, RFs measured with freely moving visual physiology are similar to those

measured using traditional methods, despite the dramatically different visual input

and behavior between these two conditions.

3.4.3 V1 integrates visual and position signals

Studies in head-fixed mice have shown a major impact of locomotion and arousal

on activity in visual cortex (Busse et al., 2017; Niell and Stryker, 2010; Ayaz et al.,

2013; Vinck et al., 2015). However, the impact of postural variables such as head

Figure 3.3. A) Fraction of units that were active (>1 Hz firing rate) and that had significant
fits for predicting firing rate, in head-fixed and freely moving conditions. B) Example spatial
receptive fields measured during free movement (top) and using a white noise mapping
stimulus while head-fixed (bottom) at time lag 0 ms. Scale bar in top left is 10 deg. C)
Histogram of correlation coefficients between freely moving and head-fixed RFs. Black color
indicates units that fall outside two standard deviations of the shuffle distribution. Arrows
indicate locations in the distribution for example units in A.
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position and eye position are not easily studied in head-fixed conditions, particularly

since eye movements are closely coupled to head movement (Meyer et al., 2020;

Michaiel et al., 2020). We therefore sought to determine whether and how eye/head

position modulate V1 neural activity during free movement, based on measurement

of pupil position from the eye camera and head orientation from the IMU. Strikingly,

many single units showed tuning for eye position and/or head orientation, with 25%

(66/268) of units having a modulation index (MI = ratemax−ratemin

ratemax+ratemin
) greater than

0.33 for at least one position parameter, which equates to a two-fold change in firing

rate (Figure 3.4A-C). To determine whether single-unit activity was better explained

by visual input or eye/head position, we fit GLMs using either one as input. For

most units (189/268 units, 71%), firing rate was better explained by a visual model,

although the activity of some units was better explained by eye/head position (Figure

3.4D,E; 78/268 units, 29%). It should be noted that the units that were better fit

by position model might nonetheless be better described by a more elaborate visual

model.

To gain a qualitative understanding of how V1 neurons might combine visual

and position information, we plotted predicted firing rates from visual-only GLM

fits against the actual firing rates binned into quartiles based on eye/head position

(example in Figure 3.4F). While the data should lie on the unity line in the absence

of position modulation, additive integration would shift the entire curve up or down,

and multiplicative integration would cause a slope change. Across the population of

recorded neurons, many units showed evidence of gain modulation that tended to

appear more multiplicative than additive.

To directly quantify the integration of visual and eye/head position information,

and in particular to test whether this was additive or multiplicative, we trained two
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additional models: additive and multiplicative joint-encoding of visual and position

information. To train the joint fit of visual and position signals, we froze the

weights of the initial visual fits and trained positional weights that either added

to or multiplied the visual signal for each unit (Figure 3.4G). Incorporating eye

position and head orientation enables the model to more accurately predict large

changes in the firing rate (Figure 3.4H). The inclusion of positional information almost

universally improved predicted neural activity compared to visual fits alone (Figure

3.4I). For units that had a significant visual fit (cc > 0.22, cross-validated, N=173

units), incorporating positional information resulted in an average fractional increase

in correlation of 34% (0.07 average increase in cc). Multiplicatively combining visual

and positional signals generated predictions that more closely matched actual firing

rates than an additive combination in a majority of units (Figure 3.4J,K; p=0.0005,

Figure 3.4. A) Overlay of vertical eye angle (phi; gray) and the smoothed firing rate of
an example unit (black). B) Example tuning curve for head pitch. Colored points denote
the quartiles of phi corresponding to panel F. C) Scatter of the modulation indices for
eye position and head orientation (N=268 units, 4 animals). Numbers at top of the plot
represent the fraction of units with significant tuning. D) Same unit as A. Example trace of
smoothed firing rates from neural recordings and predictions from position-only and visual-
only fits. E) Scatter plot of cc for position-only and visual-only fits for all units. F) Gain
curve for the same unit in A and C. Modulation of the actual firing rates based on phi
indicated by color. G) Schematic of joint visual and position input training. H) Same unit
as A, C, and E. Smoothed traces of the firing rates from the data, additive and multiplicative
fits. I) Correlation coefficient for visual-only versus joint fits. Each point is one unit, color
coded for the joint fit that performed best. J) Comparison of additive and multiplicative
fits for each unit. Units characterized as multiplicative are to the right of the vertical dashed
line, while additive ones are to the left. Horizontal dashed line represents threshold set for
the visual fit, since in the absence of a predictive visual fit, a multiplicative modulation
will be similar to an additive modulation. K) Histogram of the difference in cc between
additive and multiplicative models. The visual threshold from I was applied to the data. L)
Explained variance (r2) for position only (pos), speed and pupil only (sp), visual only (vis),
multiplicative with eye/head position (mulpos), multiplicative with speed and pupil (mulsp),
and multiplicative with eye/head position, speed and pupil (mulall). M) The fraction of
contribution of the weights for multiplicative fits with eye/head position, speed (spd) and
pupil (pup). N) Same as M but summing together the contribution for eye/head position.
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one sample t-test ccmult−ccadd for units with significant visual-only fits versus gaussian

distribution with mean=0), suggesting visual and position signals in mouse V1 are

more often integrated nonlinearly, consistent with previous studies in primate visual

and parietal cortex (Andersen and Mountcastle, 1983; Morris and Krekelberg, 2019).

To further characterize the head and eye position modulations, we performed

additional experiments recording V1 activity during free movement in nearly total

darkness, followed by recording in the standard light condition. A significant fraction

of neurons were modulated by at least 2:1 in the dark (Figure S3.4A,B; dark: 17%,
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41/241; light: 31%, 75/241 units). Comparing the degree of modulation in the

light vs dark for individual units revealed that the degree of tuning often shifted

(Figure S3.4C), with some increasing their position tuning (consistent with an additive

modulation that has a proportionally larger effect in the absence of visual drive) and

others decreasing their position tuning (consistent with a multiplicative modulation

that is diminished in the absence of a visual signal to multiply). In addition, to

test whether position modulation might result from the abrupt transition from head-

fixed recordings to free movement, we compared the degree of modulation during

the first and second half of free movement sessions, and found no consistent change

(Figure S3.4D). Finally, to test whether there was a bias in tuning for specific

eye/head positions (e.g., upward versus downward pitch), we examined the weights

of the position fits, which showed distributions centered around zero (Figure S3.4E),

indicating that tuning for both directions was present for all position parameters,

across the population.

Many response properties have been shown to vary across the cell types and layers

of mouse V1 (Niell and Scanziani, 2021). Separating recorded units into putative

excitatory and inhibitory, based on spike waveform as performed previously (Niell and

Stryker, 2008), demonstrated that the visual fit performed better than than head/eye

position for putative excitatory neurons, while the contributions were roughly equal

for putative inhibitory cells (Figure S3.4F). This may be explained by the fact that

putative excitatory neurons in mouse V1 have more linear visual responses (Niell

and Stryker, 2008). We also examined whether the contribution of visual versus

position information varied by laminar depth, and found no clear dependence (Figure

S3.4G,H).
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Finally, we examined the role of two factors that are known to modulate activity

in mouse V1: locomotor speed and pupil diameter (Vinck et al., 2015; Niell and

Stryker, 2010; Reimer et al., 2014). It is important to note that our GLM analysis

excludes periods when the head is completely still, since that leads to dramatic

over-representation of specific visual inputs that presents a confound in fitting the

data. Therefore, the results presented above do not include the dramatic shift from

non-alert/stationary to alert/moving that has been extensively studied (McGinley

et al., 2015). Furthermore, changes in locomotor speed during free movement are

associated with other changes (e.g., optic flow) that do not (occur under head-fixed

locomotion, thus the model weights may represent other factors besides locomotion

per se. Nonetheless, we find that including speed and pupil in the fit does indeed

predict a part of the neural activity (Figure 3.4L). However this does not occlude

the contribution from head/eye position or visual input. Examination of the weights

in a joint fit of all parameters together demonstrates that although the contribution

of locomotor speed is greater than any one individual position parameter (Figure

3.4M), the summed weights of head/eye position parameters are still the largest

contribution (Figure 3.4N). It is also interesting to note that although head and

eye position are often strongly correlated in the mouse due to compensatory eye

movements (Michaiel et al., 2020; Meyer et al., 2020), the weights for each of these

parameters are roughly equal in the GLM fit that can account for these correlations

(Figure 3.4M), demonstrating that both head and eye may contribute independently

to coding in V1, in addition to known factors such as locomotion and arousal.

3.5 DISCUSSION

Nearly all studies of neural coding in vision have been performed in subjects that

are immobilized in some way, ranging from anesthesia to head and/or gaze fixation,
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which greatly limits the ability to study the visual processing that occurs as an animal

moves through its environment. One important component of natural movement is

the integration of the incoming visual information with one’s position relative to the

scene. In order to determine how individual neurons in mouse V1 respond to visual

input and eye/head position, we implemented an integrated experimental and model-

based data analysis approach to perform visual physiology in freely moving mice.

Using this approach, we demonstrate the ability to estimate spatiotemporal visual

receptive fields during free movement, show that individual neurons have diverse

tuning to head and eye position, and find that these signals are often combined

through a multiplicative interaction.

3.5.1 Integration of visual input and eye/head position

The ongoing activity of many units in V1 was modulated by both eye position

and head orientation, as demonstrated by empirical tuning curves (Figure 3.4B) and

model-based prediction of neural activity based on these parameters (Figure 3.4D).

Modulation of neural activity in V1 and other visual areas by eye position (Weyand

and Malpeli, 1993; Trotter and Celebrini, 1999; Rosenbluth and Allman, 2002; Durand

et al., 2010; Andersen and Mountcastle, 1983) and head orientation (Guitchounts

et al., 2020b; Brotchie et al., 1995) has been observed across rodents and primates,

and fMRI evidence suggests human V1 encodes eye position (Merriam et al., 2013).

Similar encoding of postural variables was also reported in posterior parietal cortex

and secondary motor cortex using a GLM-based approach (Mimica et al., 2018).

Many of the position-tuned units we observed were also visually responsive, with

clear spatiotemporal receptive fields.

In order to determine how these position signals were integrated with visual

input, we used the GLM model trained on visual input only and incorporated either
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an additive or multiplicative signal based on a linear model of the eye/head position

parameters. For neurons that had both a significant visual and position component,

we found that the majority were best described by a multiplicative combination.

This multiplicative modulation corresponds to a gain field, a fundamental basis of

neural computation (Salinas and Abbott, 1996; Salinas and Sejnowski, 2001). Gain

fields have been shown to serve a number of roles, including providing an effective

mechanism for coordinate transformations as they enable direct readout of additive

or subtractive combinations of input variables, such as the transformation from

retinotopic to egocentric position of a visual stimulus. Studies in head-fixed primates

have demonstrated gain fields for eye position (Morris and Krekelberg, 2019; Andersen

and Mountcastle, 1983; Salinas and Sejnowski, 2001) and head orientation (Brotchie

et al., 1995), and similar gain modulation for other factors such as attention (Salinas

and Abbott, 1997). The demonstration of gain modulation by eye/head position in

freely moving mice shows that this mechanism is engaged under natural conditions

with complex movement.

Given the presence of gain fields in mouse visual cortex, two immediate questions

arise: what are the sources of the position signals, and what are the cellular/circuit

mechanisms that give rise to the gain modulation? Regarding sources, evidence

suggests eye position signals arrive early in the visual system, perhaps even at

the level of the thalamic lateral geniculate nucleus (Lal and Friedlander, 1990),

while head orientation information could be conveyed through secondary motor

cortex (Guitchounts et al., 2020b) retrosplenial cortex (Vélez-Fort et al., 2018)

or from neck muscle afferents (Crowell et al., 1998). Regarding the mechanism,

multiplicative interactions have been suggested to arise from synaptic interactions

including active dendritic integration, recurrent network interactions, changes in
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input synchrony, balanced excitatory/inhibitory modulatory inputs, and classic

neuromodulators (Salinas and Abbott, 1996; Salinas and Sejnowski, 2001; Silver,

2010). Future research could take advantage of genetic methods available in mice to

determine the neural circuit mechanisms that implement this computation (O’Connor

et al., 2009; Niell and Scanziani, 2021; Luo et al., 2008).

This multiplicative interaction can also be viewed as a form of nonlinear mixed

selectivity, which has been shown to greatly expand the discriminative capacity of a

neural code (Rigotti et al., 2013; Nogueira et al., 2021). The implications of nonlinear

mixed selectivity have primarily been explored in the context of categorical variables,

rather than continuous variables as observed here. In this context it is interesting

to note that a significant number of units were nonetheless best described by an

additive interaction. In an additive interaction the two signals are linearly combined,

providing a factorized code where each signal can be read out independently. It may

be that having a fraction of neurons using this linear interaction provides flexibility by

which the visual input and position can be directly read out, along with the nonlinear

interaction that allows computations such as coordinate transformations.

3.5.2 Methodological considerations

We estimated the visual input to the retina based on two head-mounted cameras

– one to determine the visual scene from the mouse’s perspective, and one to determine

eye position and thereby correct the head-based visual scene to account for eye

movements. Incorporation of eye position to correct the visual scene significantly

improved the ability to estimate receptive fields and predict neural activity. Although

head-fixed mice only make infrequent eye movements, freely moving mice (and other

animals) make continual eye movements that both stabilize gaze by compensating for

head movements and shift the gaze via saccades (Michaiel et al., 2020; Meyer et al.,
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2020). As a result, eye position can vary over a range of ±30 degrees (theta std: 16.5

deg, phi std: 17.8 deg in this study). Indeed, without eye movement correction many

units did not have an estimated receptive field with predictive power (Figure 3.2F).

Nonetheless, it is notable that some units were robustly fit even without correction

– this likely reflects that fact that the eye is still within a central location a large

fraction of the time (63% of timepoints within ±15 deg for theta, phi) and typical

receptive fields in mouse V1 are on the order of 10-20 degrees (Niell and Stryker,

2008; Van den Bergh et al., 2010).

We estimated spatiotemporal receptive fields and predicted neural activity during

free movement using a GLM – a standard model-based approach in visual physiology

(Pillow et al. 2008). Despite its simplicity – it estimates the linear kernel of a

cell’s response – the GLM approach allowed us to estimate receptive fields in many

neurons (39% of freely moving RFs significantly matched head-fixed white-noise RFs).

These results are comparable to the fraction of units with defined STA receptive fields

measured in head-fixed mice (64% of simple cells, 34% of total population in (Niell and

Stryker, 2008); 49% of total population in (Bonin et al., 2011). The model fits were

also able to predict a significant amount of ongoing neural activity (cc mean=0.29,

max=0.73). Although this is still generally a small fraction of total activity, this

is in line with other studies (Carandini et al., 2005; de Vries et al., 2020) and likely

represents the role of additional visual features beyond a linear kernel, as well as other

non-visual factors that modulate neural activity (Musall et al., 2019; Stringer et al.,

2019; Niell and Stryker, 2010). A more elaborate model with nonlinear interactions

would likely do a better job of explaining activity in a larger fraction of units; indeed,

“complex” cells (Hubel and Wiesel, 1962) are not accurately described by a single

linear kernel. However, for this initial characterization of receptive fields in freely
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moving animals, we chose to use the GLM since it is a well-established method, it

is a convex optimization guaranteed to reach a unique solution, and the resulting

model is easily interpretable as a linear receptive field filter. The fact that even such

a simple model can capture many neurons’ responses both shows the robustness of

the experimental approach, and opens up the possibility for the use of more elaborate

and nonlinear models, such as multi-component (Butts, 2019) or deep neural networks

(Walker et al., 2019; Ukita et al., 2019; Bashivan et al., 2019). Implementation of such

models may require extensions to the experimental paradigm such as longer recording

times to fit a greater number of parameters.

3.5.3 Freely moving visual physiology

Visual neuroscience is dominated by the use of head-restrained paradigms, in

which the subject cannot move through the environment. As a result, many aspects

of how vision operates in the natural world remain unexplored (Parker et al., 2020;

Leopold and Park, 2020). Indeed, the importance of movement led psychologist J. J.

Gibson to consider the legs a component of the human visual system, and provided the

basis for his ecological approach to visual perception (Gibson, 1979). The methods

we developed here can be applied more broadly to enable a Gibsonian approach to

visual physiology that extends beyond features that are present in standard head-fixed

stimuli. While natural images and movies are increasingly used to probe responses

of visual neurons in head-fixed conditions, these are still dramatically different from

the visual input received during free movement through complex three-dimensional

environments. This includes cues resulting from self-motion during active vision,

such as motion parallax, loom, and optic flow that can provide information about the

three-dimensional layout of the environment, distance, object speed, and other latent
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variables. Performing visual physiology in a freely moving subject may facilitate the

study of the computations underlying these features.

Accordingly, a resurgent interest in natural behaviors (Juavinett et al., 2018;

Datta et al., 2019; Dennis et al., 2021; Miller et al., 2022) provides a variety of

contexts in which to study visual computations in the mouse. However, studies of

ethological visual behaviors typically rely on measurements of neural activity made

during head-fixation, rather than during the behavior itself (Hoy et al., 2019; Boone

et al., 2021). Freely moving visual physiology is a powerful approach that ultimately

can enable quantification of visual coding during ethological tasks to determine the

neural basis of natural behavior.
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3.8 STAR METHODS

3.8.1 Key Resource Table

Reagent or

Resource

Source Identifier

Deposited data:

Processed model

data

This paper link

Experimental

Models:

Organisms/Strains

Mouse:

C57BL/6J

Jackson Laboratories and

bred in-house

Strain code: 027

Software and

Algorithms

Python 3.8 https://www.python.org/ RRID: SCR_008394

Open Ephys

plugin-GUI

http://www.open-ephys.org/ link

Bonsai https://open-

ephys.org/bonsai

link

DeepLabCut (Mathis et al. 2018) link

Kornia (Riba et al., 2019) link

Data extraction

and analysis

code

This paper link
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https://github.com/kornia/kornia
https://doi.org/10.5281/zenodo.7008353


Reagent or

Resource

Source Identifier

PyTorch https://pytorch.org/ link

Other

Open Ephys

acquisition

board

Open Ephys link

Open Ephys I/O

board

Open Ephys link

P64-3 or P128-6

silicon probe

Diagnostic Biochips link

RHD SPI

interface cable,

6ft ultra-thin

Intan link

3-D printed

electrophysiology

drive

Yuta Senzai (UCSF) / in-

house design

custom

3-D printed

camera arm

In-house design custom

1000TVL NTSC

miniature

camera

iSecurity101 No longer available
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https://pytorch.org/
https://open-ephys.org/acq-board
https://open-ephys.org/acquisition-system/io-board-pcb
https://diagnosticbiochips.com/silicon-acute-chronic/
https://intantech.com/RHD_SPI_cables.html?tabSelect=RHDSPIcables


Reagent or

Resource

Source Identifier

BETAFPV

C01 miniature

camera

BETAFPV link

940nm 3mm IR

LED

Chanzon link

Animal head

tracking device

Rosco Technologies link

Mill-Max

connector

853-93-100-

10-001000

Digi-Key link

FEP hookup

wire 36 AWG

CZ1174

Cooner link

USB3HDCAP

USB3 video

capture device

Startech link

Dazzle DVD

recorder HD

Pinnacle link

Black Fly S

USB3 (BFS-U3-

16S2M-CS)

Teledyne FLIR link
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https://betafpv.com/products/c01-pro-micro-camera
https://www.amazon.com/Infrared-Lighting-Electronics-Components-Emitting/dp/B01BVEKXNC/
https://www.rosco.tech/products/animal-tracking
https://www.digikey.com/en/products/detail/mill-max-manufacturing-corp/853-93-100-10-001000/279662
https://www.coonerwire.com/micro-bare-copper-wire/
https://www.startech.com/en-us/audio-video-products/usb3hdcap
https://www.pinnaclesys.com/en/products/dazzle/dvd-recorder-hd/
https://www.flir.com/products/blackfly-s-usb3/?model=BFS-U3-16S2M-CS&vertical=machine+vision&segment=iis


Reagent or

Resource

Source Identifier

GW2780 OLED

monitor

BenQ link

GW2480 OLED

monitor

BenQ link

Mouse bungee

(Version 1)

Razer link

Unifast LC GC America link

DOWSIL 3-4680

silicone gel kit

Dow link

Table 2. Chapter III: Key Resource Table

3.8.2 Resource availability

3.8.2.1 Lead Contact

Further information and requests for resources should be directed to and fulfilled

by the lead contact, Dr. Cristopher M Niell (cniell@uoregon.edu).

3.8.2.2 Materials availability

This study did not generate new unique reagents.

3.8.2.3 Data and code availability

– All model data have been deposited at Data Dryad and are publicly available

as of the date of publication. The DOI is listed in the key resources table.

– All original code has been deposited at Zenodo and is publicly available as of

the date of publication. DOIs are listed in the key resources table.
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– Any additional information required to reanalyze the data reported in this work

paper is available from the Lead Contact upon request.

3.8.3 Experimental model and subject details

3.8.3.1 Animals

All procedures were conducted in accordance with the guidelines of the National

Institutes of Health and were approved by the University of Oregon Institutional

Animal Care and Use Committee. Three- to eight-month old adult mice (C57BL/6J,

Jackson Laboratories and bred in-house) were kept on a 12 h light/dark cycle. In

total, 4 female and 3 male mice were used for this study (head-fixed/freely moving:

2 females, 2 males; light/dark: 3 females, 2 males).

3.8.4 Method details

3.8.4.1 Surgery and habituation

Mice were initially implanted with a steel headplate over primary visual cortex

to allow for head-fixation and attachment of head-mounted experimental hardware.

After three days of recovery, widefield imaging (Wekselblatt et al., 2016) was

performed to help target the electrophysiology implant to the approximate center

of left monocular V1. A miniature connector (Mill-Max 853-93-100-10-001000) was

secured to the headplate to allow attachment of a camera arm (eye/world cameras

and IMU; (Michaiel et al., 2020)). In order to simulate the weight of the real

electrophysiology drive and camera system for habituation (6 g total), a ‘dummy’

system was glued to the headplate. Animals were handled by the experimenter for

several days before surgical procedures, and subsequently habituated (~45 min) to

the spherical treadmill and freely moving arena with hardware tethering attached for

several days before experiments.
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The electrophysiology implant was performed once animals moved comfortably

in the arena. A craniotomy was performed over V1, and a linear silicon probe (64

or 128 channels, Diagnostic Biochips P64-3 or P128-6) mounted in a custom 3D-

printed drive (Yuta Senzai, UCSF) was lowered into the brain using a stereotax to an

approximate tip depth of 750 µm from the pial surface. The surface of the craniotomy

was coated in artificial dura (Dow DOWSIL 3-4680) and the drive was secured to the

headplate using light-curable dental acrylic (Unifast LC). A second craniotomy was

performed above left frontal cortex, and a reference wire was inserted into the brain.

The opening was coated with a small amount of sterile ophthalmic ointment before

the wire was glued in place with cyanoacrylate. Animals recovered overnight and

experiments began the following day.

3.8.4.2 Hardware and recording

The camera arm was oriented approximately 90 deg to the right of the nose and

included an eye-facing camera (iSecurity101 1000TVL NTSC, 30 fps interlaced), an

infrared-LED to illuminate the eye (Chanzon, 3 mm diameter, 940 nm wavelength),

a wide-angle camera oriented toward the mouse’s point of view (BETAFPV C01, 30

fps interlaced) and an inertial measurement unit acquiring three-axis gyroscope and

accelerometer signals (Rosco Technologies; acquired 30 kHz, downsampled to 300 Hz

and interpolated to camera data). Fine gauge wire (Cooner, 36 AWG, #CZ1174CLR)

connected the IMU to its control box, and each of the cameras to a USB video

capture device (Pinnacle Dazzle or StarTech USB3HDCAP). A top-down camera

(FLIR Blackfly USB3, 60 fps) recorded the mouse in the arena. The electrophysiology

headstage (built into the silicon probe package) was connected to an OpenEphys

acquisition system via an ultra thin cable (Intan #C3216). The electrophysiology

cable was looped over a computer mouse bungee (Razer) to reduce the combined
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impact of the cable and implant. We first used the OpenEphys GUI (https://open-

ephys.org/gui) to assess the quality of the electrophysiology data, then recordings were

performed in Bonsai (Lopes et al., 2015) using custom workflows. System timestamps

were collected for all hardware devices and later used to align data streams through

interpolation.

During experiments, animals were first head-fixed on a spherical treadmill

to permit measurement of visual receptive fields using traditional methods, then

were transferred to an arena where they could freely explore. Recording duration

was approximately 45 minutes head-fixed, and 1hr freely moving. For head-fixed

experiments, a 27.5 in monitor (BenQ GW2780) was placed approximately 27.5 cm

from the mouse’s right eye. A contrast-modulated white noise stimulus (Niell and

Stryker, 2008) was presented for 15 min, followed by additional visual stimuli, and

the mouse was then moved to the arena. The arena was approximately 48 cm long

by 37 cm wide by 30 cm high. A 24 in monitor (BenQ GW2480) covered one wall of

the arena, while the other three walls were clear acrylic covering custom wallpaper

including black and white high- and low-spatial frequency gratings and white noise.

A moving black and white spots stimulus (Piscopo et al., 2013) played continuously

on the monitor while the mouse was in the arena. The floor was a gray silicone mat

(Gartful) and was densely covered with black and white Legos. Small pieces of tortilla

chips (Juanita’s) were lightly scattered around the arena to encourage foraging during

the recording, however animals were not water or food restricted.

3.8.4.3 Data preprocessing

Electrophysiology data were acquired at 30 kHz and bandpass filtered between

0.01 Hz and 7.5 kHz. Common-mode noise was removed by subtracting the median

across all channels at each timepoint. Spike sorting was performed using Kilosort 2.5
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(Steinmetz et al., 2021), and isolated single units were then selected using Phy2

(https://github.com/cortex-lab/phy) based on a number of parameters including

contamination (<10%), firing rate (mean >0.5 Hz across entire recording), waveform

shape, and autocorrelogram. Electrophysiology data for an entire session were

concatenated (head fixed stimulus presentation, freely moving period, or freely moving

light and dark) and any sessions with apparent drift across the recording periods

(based on Kilosort drift plots) were discarded. To check for drift between head-

fixed and freely moving recordings, we compared the mean waveforms and noise

level for each unit across the two conditions, based on a 2 ms window around the

identified spike times in bandpass-filtered data (800-8000Hz). An example mean

waveform, with its standard deviation across individual spike times, is shown in Figure

S1A. To determine whether the waveform changed, indicative of drift, we calculated

coefficient of determination (R2) between the two mean waveforms for each unit,

which confirms a high degree of stability as the waveforms are nearly identical across

conditions (Figure S1B). To determine whether the noise level changed, we computed

the standard deviation across spike occurrences within each condition, for each unit

(Figure S3.1C). There was no change in this metric between head-fixed and freely

moving, indicating that there was not a change in noise level that might disrupt spike

sorting in one condition specifically.

World and eye camera data were first deinterlaced to achieve 60 fps video.

The world camera frames were then undistorted using a checkerboard calibration

procedure (Python OpenCV), and downsampled to 30 by 40 pixels to reduce

dimensionality and approximate mouse visual acuity. In order to extract pupil

position from the eye video, eight points around the pupil were tracked with

DeepLabCut (Mathis et al. 2018). We then fit these eight points to an ellipse
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and computed pupil position in terms of angular rotation (Michaiel et al., 2020).

Sensor fusion analysis was performed on the IMU data (Jonny Saunders, University

of Oregon) to calculate pitch and roll of the head. Pitch and roll were then passed

through a median filter with window size 550 ms. All data streams were aligned to

50 ms bins through interpolation using system timestamps acquired in Bonsai.

3.8.4.4 GLM Training

For all model fits, the data were partitioned into 10% groups, and were randomly

sampled into cross-validation train and test sets (70%/30% split, respectively). Video

frames were cropped by 5 pixels on each side to remove edge artifacts. Initially, a

shifter network was trained on each recording session (see below) to estimate the

appropriate horizontal shift, vertical shift, and rotation of the world camera video

to correct for eye movements. The corrected eye camera data were then saved out

and used for training. Eye and head position were z-scored and zero-centered before

training and analysis. Four different networks were trained: 1) Eye position and head

orientation signals only, 2) Visual input only, 3) Additive interaction between position

and visual input, and 4) Multiplicative interaction between position and visual input.

Units with a mean firing rate below 1 Hz in either head-fixed or freely moving were

removed from the data set (17% of total units).

3.8.4.5 Network parameters

To train the model end-to-end and to speed up the computation we utilized the

graphical processing unit (GPU) and pyTorch because the GLM is equivalent to a

single-layer linear network. We then used a rectified linear activation function to

approximate non-zero firing rates. Utilizing the GPU decreased training time for the

model by multiple orders of magnitude (from over 500 hours down to 40 minutes for

the entire dataset). L1 and L2 regularization was applied to the spatiotemporal filters
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of the visual model. The Adam optimization algorithm (Kingma and Ba, 2014) was

used to update the parameters of the model to minimize prediction error. The loss

and gradient of each neuron were computed independently in parallel so the full model

represents the entire dataset. To account for the convergence of different parameters

at different speeds as well as to isolate parameters for regularization, parameter groups

were established within the optimizer with independent hyperparameters.

3.8.4.6 Shifter Network

In order to correct the world camera video for eye movements, we trained a shifter

network to convert eye position and torsion into an affine transformation of the image

at each time point. For each recording session, eye angle and head pitch (theta, phi,

and rho) were used as input into a feedforward network with a hidden layer of size

50, and output representing horizontal shift, vertical shift, and image rotation. The

output of the network was then used to perform a differentiable affine transformation

(Riba et al., 2019) to correct for eye movements. Head pitch was used as a proxy of eye

torsion (Wallace et al., 2013), and eye position was zero-centered based on the mean

position during the freely moving condition. The transformed image was then used as

input into the GLM network to predict the neural activity. The shifter network and

GLM were then trained together to minimize the error in predicted neural activity.

During the shifter training (2000 epochs) no L1 regularization was applied to ensure a

converged fit. Horizontal and vertical shift was capped at 20 pixels and rotation was

capped at 45 deg. The eye corrected videos were saved out to be used for the model

comparison training. The shifter network was trained on freely moving data, since

eye movements are greatly reduced during head-fixation, but was applied to both

head-fixed and freely moving data to align receptive fields across the two conditions.
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3.8.4.7 Tuning and gain curves

Tuning curves for eye and head position were generated by binning the firing

rates into quartiles so the density of each point is equal and then taking the average.

For each gain curve we collected the time points of the firing rates that were within

each quartile range for eye and head position, averaged the firing rates and then

compared them with the predicted firing rates from the visual-only model. Each

curve therefore represents how much each unit’s actual firing rate changed on average

when the mouse’s eye or head was in the corresponding position.

3.8.4.8 Position-only model fits

Eye and head position signals were used as input into a single-layer network

where the input dimension was four and the output dimension was the number of

neurons. No regularization was applied during training due to the small number of

parameters needed for the fitting. The learning rate for the weights and biases was

1e-3.

3.8.4.9 Visual-only model fits

Eye corrected world camera videos were used as input into the GLM network.

The weights from the shifter training for each neuron were used as the initialization

condition for the weights, while the mean firing rates of the neurons were used as

the initialization for the biases. Parameters for the model were fit over 10,000 epochs

with a learning rate of 1e-3. To prevent overfitting, a regularization sweep of 20 values

log-base 10 distributed between 0.001 to 100 was performed. The model weights with

the lowest test error were selected for each neuron.

3.8.4.10 Joint visual-position model fits

After the visual-only fits, the spatiotemporal weights and biases were frozen. A

position module was then added to the model for which the input was the eye and head
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position signals (see Figure 4G). The output of the visual module was then combined

with output of the position module in either an additive or multiplicative manner,

then sent through a ReLu nonlinearity to approximate firing rates. The parameters

for the position module were then updated with the Adam optimizer with learning

rate 1e-3.

3.8.4.11 Speed and pupil diameter fits

To test the contribution of the speed and pupil diameter, the data were first

z-scored and GLM fits were conducted with only speed and pupil, with eye/head

position only and with speed, pupil and eye/head position. All models were fit with

cross-validation with the same train/test split parameters as above. The explained

variance (r2) of the predicted and actual firing rate was calculated between these

models to show how these parameters contribute uniquely and sublinearly to the

GLM fits. Additionally, we trained the joint fits with eye/head position and speed

and pupil and calculated the total contribution of eye/head position versus speed and

pupil (Figure 4L-N).

3.8.4.12 Post-training analysis

To better assess the quality of fits, the actual and output firing rates were

smoothed with a boxcar filter with a 2 s window. The correlation coefficient (cc)

was then calculated between smoothed actual and predicted firing rates of the test

dataset. The modulation index of neural activity by position was calculated as the

(max-min)/(max+min) of each signal. In order to distinguish between additive and

multiplicative models (Figure 4J,K), a unit needs to have a good positional and visual

fit. As a result, units which had an cc value below 0.22, or did not improve with

incorporating position information were thresholded out for the final comparison.
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3.8.4.13 Simulated RF reconstruction

We tested the ability of our GLM approach to recover accurate receptive fields

using simulated data. Simulated RFs were created based on Gabor functions and

applied to the eye movement-corrected world camera video as a linear filter to generate

simulated neural activity, scaled to empirically match the firing rates of real neurons

with an average firing rate of 14 Hz. The output was then passed through a Poisson

process to generate binned spike counts. Using these simulated data, we then followed

the same analysis as for real data to fit a visual GLM model and estimate RFs, using

spatiotemporal weights set to zero for the initial conditions.

3.8.4.14 Test-retest analysis receptive fields

To assess how reliable the receptive fields were, we trained the GLM separately

on the first and second half of each recording session. We then took the receptive fields

that were mapped for each half and calculated the pixel-wise correlation coefficient

(Figure S3). A threshold of 0.5 cc was then used as a metric for stable RFs within

the same condition. The units that had a stable RF in both head-fixed and freely

moving conditions were then used for the analysis in Figure 3.

3.8.4.15 Shifter controls and change in visual scene

Similar to the test-retest for receptive fields, we trained the shifter network on

the first and second half of the data. Shifter matrices were created using a grid

of eye and head angles after training to see how the network responds to different

angles. The coefficient of determination (R2) was then calculated between the shifter

matrices of the first and second half (Figure S2A-C). To further quantify the effect of

the shifter network we used frame to frame image registration to measure the visual

stability of the world camera video. Displacement between consecutive images was

based on image registration performed with findTransformECC function in OpenCV.
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We computed the cumulative sum of shifts to get total displacement, then calculated

standard deviation in the fixation intervals following analysis in (Michaiel, Abe, and

Niell 2020).

3.8.4.16 Dark experiments and analysis

To eliminate all possible light within the arena, the entire behavioral enclosure

was sealed in light-blocking material (Thorlabs BK5), all potential light sources within

the enclosure were removed, and the room lights were turned off. Animals were first

recorded in the dark (~20 min), then the arena lights and wall stimulus monitor were

turned on (~20 min). As a result of the dark conditions, the pupil dilated beyond the

margins of the eyelids, which made eye tracking infeasible. To counteract this, prior

to the experiment, one drop of 2% Pilocarpine HCl Ophthalmic Solution was applied

to the animal’s right eye to restrict the pupil to a size similar to that seen in the light.

Once the pupil was restricted enough for tracking in the dark (~3 min) the animal

was moved into the dark arena for recording, until the effects of the Pilocarpine wore

off (~20 min), at which time the light recording began. Tuning curves for eye and

head position were generated using the same method as in the light by binning the

firing rates into quartiles so the density of each point is equal and then taking the

average.

3.8.5 Quantification and statistical analysis

For shuffle distributions, we randomly shuffled spike times within the cross-

validated train and test sets and then performed the same GLM training procedure.

We defined significant values as two standard deviations away from the mean of the

shuffle distribution. For paired t-tests, we first averaged across units within a session,

then performed the test across sessions.
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3.8.6 Additional Resources

3.8.6.1 Figures

Some figure panels were generated using Biorender.com.

3.8.7 Supplemental Figures and Videos

Figure 3.5. A) Top: Average spike waveform for one example unit in freely moving
recording. Shaded region is one standard deviation. Bottom: Same unit as top but for
head-fixed recording of the same unit in the same session. B) Histogram of coefficient of
determination (R2) between units of freely moving and head-fixed recordings. C) Average
standard deviation across 2 ms around spikes for freely moving (FM) and head-fixed (HF)
recordings.
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Figure 3.6. A) 2-d heat map of horizontal shift for values of theta and phi for first half (top)
and second half (bottom) of example recording. B) Same as A but for the vertical shift of
the image. C) Rotation of the image as a function of head pitch for the first half (top) and
second half (bottom) of the recording. D) Image registration horizontal displacements for
shifted and raw world camera video. E) Bar plot showing the average horizontal stability
of visual angle for compensatory eye movements. F) Same as E but for vertical shifts. (***:
p-value<0.0013) G) Simulated (left) and reconstructed (right) receptive fields with three
sub-regions. Same training procedure as Figure 2A. H) Histogram of correlation coefficients
between simulated and reconstructed RFs. The gray dashed line represents the mean of the
distribution.
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Figure 3.7. A) Three example receptive fields mapped in the first (left) and second (right)
half of a head fixed recording. Correlation coefficient (cc) given is the pixel-wise cc of
the receptive fields. B) Same as A but for freely moving recording. C) Histogram of cc
of receptive fields for first versus second half of recording for head-fixed (gray) and freely
moving (red) conditions. Dashed lines indicate the mean of the distribution. D) Bar plot
showing the fraction of units that have a significant cc between the first and second half of
the recordings (cc>0.5).
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Figure 3.8. A-D) Columns correspond to analyses for theta, phi, pitch and roll respectively.
A) Histograms of modulation index for single units recorded during free movement in
the light. B) Same as A but recorded during free movement in darkness. C) Scatter
plot comparison of light and dark modulation index for each unit. D) Modulation index
calculated for first half and second half of the freely moving experiments in the light. E)
Distribution of weights for position only GLM fit for eye/head position. F) Correlation
coefficient (cc) of predicted versus actual firing rate for visual and position fits split by
putative excitatory and inhibitory units. Error bars indicate standard error (***: p-
value<0.001, between excitatory visual and position fits). G) Correlation coefficient as
a function of depth from layer 5 for position fits (>0 deeper, <0 shallower). H) Same as G
but for visual fits.
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Supplemental Video 1: Sample experimental data from a fifteen second period

during free movement. Relates to Figure 1.

Supplemental Video 2: Example of raw (left) and shifter network-corrected

(right) world camera video from a single experiment. Relates to Figure 2.

3.9 BRIDGE TO CHAPTER IV

In this chapter, we investigated how V1 encodes information in the primary

visual cortex. We mapped the first freely moving visual receptive fields using a

novel experimental paradigm that capture the visual scene, neural activity, and the

eye/head position. Our analysis and model show single neurons mainly encode visual

information, but can be modulated by eye and head position and the integration

of these signals mostly occurs via nonlinear gain modulation. In Chapter IV, I

investigated how the mechanisms of higher-order visual representations can develop

without explicit training in a deep neural network. By tasking a network to predict

future visual information, representations of distance were shown to naturally form by

transforming the two-dimensional inputs to form a three-dimensional representation

of the environment. This theoretical modeling creates the foundation to bridge new

interactions between experimental and theoretical research in natural visual behavior.
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CHAPTER IV

EMERGENCE OF DEPTH REPRESENTATIONS IN PREDICTIVE NEURAL

NETWORKS

4.1 AUTHOR CONTRIBUTIONS

The following chapter highlights research done with Yashar Ahmadian during

his tenure at the University of Oregon and before he accepted a new position at

Cambridge University. Unpublished material with Philip Parker, Yashar Ahmadian,

and Cristopher Niell. E.T.T.A., Y.A., and C.M.N. contributed to the conception of

this study. P.R.L.P. helped with the discussion about biological plausibility; E.T.T.A.

designed, created, and implemented training of the model.

4.2 INTRODUCTION

To enable complex behaviors, the brain must extract useful representations of

the environment from sensory inputs. For example, higher stages of the visual system

encode variables relevant for guiding behavior that are not explicitly available in

sensory input. Traditionally, such “actionable latent variables” were thought to be

encoded strictly through visual processing, with neural representations becoming

progressively more abstract as information ascends a hierarchy of cortical areas

(Felleman and Van Essen, 1991; Hubel and Wiesel, 1959). However, during natural

behavior, self-motion is strategically used to obtain new sensory input. In this

process motor and positional information is sent to visual cortex where they are

combined with visual input. Recent findings show how motor activity strongly and

intricately modulates visual cortical responses (Guitchounts et al., 2020b; Musall

et al., 2019; Niell and Stryker, 2010; Parker et al., 2022a; Stringer et al., 2019).

However, understanding the function of these modulations remains a key area for

future research in systems neuroscience.
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In this study, we leveraged theoretical modeling inspired by an ethologically

relevant distance estimation task in mice, where mice utilize self-motion to estimate

the distance to objects in the environment (Parker et al., 2022b). Almost all animals

with a visual system rely on motion parallax as a depth cue (de la Malla et al.,

2016; Ferris, 1972; Kral, 2003), where points in the visual field closer to the observer

move more than points at a further distance. Other depth cues such as binocular

disparity can also be used for distance estimation, however, the focus of this study

is on self-motion with motion parallax. Classical studies have shown rodents require

their visual cortex to use motion parallax by performing characteristic head ‘bobbing’

to judge and jump the distance to a platform (Carey et al., 1990; Legg and Lambert,

1990). However, there has been a lack of theoretical modeling on the potential role

of cortical visual-motor integration in depth estimation from motion parallax.

To model a visual scene in a controlled experiment, we built a simulated

environment, initially using DeepMind Lab (Beattie et al., 2016), then with Unity

to simulate a mouse locomoting around an environment. Within these simulations, a

camera agent records the first-person point-of-view of the visual scene while moving

in an arena with obstacles. The visual information is then used as input into a

convolutional recurrent neural network (RNN) trained to predict future visual input

(Lotter et al., 2018; Straka et al., 2020). Post-training, we were able to linearly

decode the distance information from the neural activity. Interestingly, deeper layers

where the representation was more abstract showed a stronger correlation with the

ground-truth depth information. Although this research was initially inspired by the

integration of visual-motor information, the bulk of the following work will focus on

building complex representations with predictive processing, with the integration of

motor information left for future study.
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4.3 RESULTS

4.3.1 Simulations of freely moving mice in a virtual environment

Within the virtual environment (square arenas with diverse visual features) first

in Deepmind Lab (Beattie et al., 2016) and then in Unity, the camera recorded first-

person visual scene as the agent explored the arena by randomly sampling a location

within the arena and then navigated to that location. For simplicity, the agent was

constrained to only move forward while smoothly rotating in the horizontal plane

(Figure 1). From these simulations, three data sequences were obtained: the 2D

visual scenes captured by the camera agent, the corresponding 2D depth maps, and

the motor commands generating the agent’s trajectory. The visual scene was then

used as input to the RNN, while the ground-truth depth maps were only used post-

training to assess depth representations in the trained network.

4.3.2 A predictive neural network naturally creates a representation of

distance

Figure 4.1. A) Example sequence of frames of the first-person visual scene (top) and depth
maps (bottom) recorded by the camera agent. B) Top view of the virtual arena overlayed
with the trajectory of movement taken by the camera agent. The current position shown in
A is indicated by the red dot.
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Figure 4.2. A) The first-person camera
agent records video frames which then become
input to the predictive network. Each layer
consists of convolutional recurrent units and
receives feedforward and feedback signals at
every timestep. The network is trained with
backpropagation through time by minimizing
pixel-wise prediction and the actual next
frame. Post-training the activations of units
are collected and used to decode the distance.

In recent years, predictive processing

has been proposed as a useful framework

for understanding the dynamic interactions

between the motor and sensory systems

(Keller Mrsic-Flogel, 2018). Inspired

by this approach, we utilized a deep

learning network to build a normative

model of primary visual cortex (V1),

based on the assumption of predictive

processing. Predicting how projections

of environmental objects on the retina

move due to self-motion requires knowledge

of an object’s distance. Thus, tasking

downstream networks simply to predict

future visual inputs, without tasking

them explicitly to estimate distance,

can potentially shape those networks so

they encode an explicit representation of

depth (in addition to other latent variables).

We built a multi-layer convolutional RNN as a normative model of visual

processing. Unsupervised predictive learning (UPL) was used to train the RNN,

i.e., we optimized the RNN’s connection weights to minimize its error in predicting

future visual inputs (Lotter et al., 2018; Straka et al., 2020). The full network

consists of stacked recurrent convolutional layers, with feedforward connections

sending prediction errors to higher layers and feedback connections relaying top-
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down modulation (Figure 2). Each recurrent layer provides an output prediction

for the inputs from the previous layer, which is then used to determine the accuracy

of the prediction during training. The loss function is defined as the mean absolute

error between the predicted input and the actual input, minimized by stochastic

gradient descent. At the pixel layer, this loss measures the mismatch between the

next incoming video frame as predicted by the first layer of the RNN.

First, we visually verified the network is predicting by time aligning the predicted

video frames and the real video frames (Figure 3A). Intuitively, if the network can

accurately predict the dynamics of the visual scene such as objects moving relative to

each other, then there must be a representation of distances. To quantify the accuracy

of the predictions, the pixel-wise mean square error (MSE) between the predicted and

actual video frame separated by time ∆t was calculated. The minimum error occurred

at ∆t=1, signifying the network does not simply use the previous frame as a prediction

for the next frame (Figure 3B).

Figure 4.3. A) Three example frames of the actual (top) and predicted (bottom) visual
scene time aligned. Predictions visually match the actual incoming frame. B) Plot of the
mean square error (MSE) between each frame and the prediction separated by ∆t. The
minimum occurs at ∆t=1 meaning the network is making a prediction into the future and
not just using the previous frame as a prediction.
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To assess how readily and explicitly depth is represented in different layers of

the trained RNN, the distance was decoded from each layer’s neural activations using

linear readouts (which are decoders with minimal complexity). Readouts were trained

(post RNN training), by cross-validated convolutional ridge regression given ground-

truth depth maps and RNN activations on a test dataset. Each layer of neurons was

used to reconstruct the corresponding part of visual space in a pixel-wise manner.

Reconstructions of the depth maps can be seen as increasing in accuracy with higher

layers, up until layer 3 (Figure 4A). When taking the center pixel reconstruction

across time and comparing this with the actual distance, the model shows a strong

correspondence with the ground-truth distance. The r2 (coefficient of determination)

of this regression was used to assess the accuracy of depth representation. Our

Figure 4.4. A) Comparison of depth maps reconstructed from layer activations with actual
depth frame. B) Trace of center pixel (green star) across time for each layer. C) Histograms
of the r2 values between each layer’s pixel reconstruction and the ground truth distance.
Y-axis depict count of pixel r2 values. D) Scatter plot of the average r2 values for each
layer.
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analysis shows the RNN does indeed form depth representations, without being

explicitly tasked to do so (Figure 4). Finally, using the linear decoder, we find that

the representation of distance strengthens in deeper layers (Figure 4D). The non-

monotonic increase in the representation of distance is likely due to the max pooling

operation between the layers of the predictive network. The representation of visual

space is compressed in higher layers, and this combined with the convolutional design

of the linear decoder results in low resolution reconstructions with the same neurons

reconstructing larger parts of the pixel space.

In summary, we developed a virtual environment for simulating freely moving

exploration with a first-person point-of-view camera and a multi-layer RNN trained

by UPL which can successfully extract explicit representations of higher-level

dynamical variables. These variables are only implicitly represented in the visual

input, supporting the hypothesis predictive processing may be an effective and

efficient method to build representations of the environment during natural behavior.

Unfortunately, the incorporation of motor information is left to future work.

4.4 DISCUSSION

Historically, from anesthesia to head fixation, visual neuroscience has been

constrained to require precise control over the movements and visual input a animal is

viewing. Recent work in the Niell lab has made strides in studying visual processing

under more natural movement conditions (Parker et al., 2022b,a, 2020). However,

these studies are still limited to low-level sensory processing. In this work, we

developed a virtual environment as a reconstruction of freely moving mice in a

naturalistic arena as a way to bridge experiment and theoretical work to investigate

how higher-order visual representations are formed. Additionally, we show how a

network trained to predict future visual input without explicit training on higher-
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order representations can naturally develop these higher-order representations, such

as with distance.

4.4.1 Using Predictions to Understand the World

Predictive coding has been a well-established normative model for visual

processing of low level representations (Jiang and Rao, 2022; Rao et al., 2022; Rao

and Ballard, 1999; Rao and Jiang, 2022). However, large-scale testing of higher-

order representations, features of the visual scene that are not explicit in the low

level details, has not been studied. For example, through either development or

experience, animals intuitively build a three-dimensional sense of how to engage

with the environment from two-dimensional projections of light on the retina. What

mechanisms might be employed to build this intuition? Previous studies connecting

machine learning with visual neuroscience have relied on existing datasets of static

images in a head-fixed paradigm (Yamins et al., 2014). Other research has shown

predictive learning as a powerful mechanism to develop place fields given the correct

information (Recanatesi et al., 2021). Additionally, deep learning networks trained

to explicitly reconstruct depth maps with either supervised or unsupervised learning

(Kuznietsov et al., 2017; Masoumian et al., 2022; Wang et al., 2018; Zhao et al., 2020)

have had remarkable success in specific conditions. Interestingly, there is a significant

increase in the accuracy of the depth maps when there is a separate component to

estimate changes in the pose position of the camera. This is reminiscent of how

motor commands can be combined with the visual input, although these networks

were all tasked to explicitly represent depth. In our work, we show how simply

making predictions about future incoming visual input is sufficient to generate a

representation of depth. More generally, active sensing by minimizing the error
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between predictions about future sensory input may be an efficient mechanism to

learn a world model. (Rao et al., 2022).

4.4.2 Future Work

Up until this point, the processing of the predictive network has relied solely on

visual input. The next step would be to incorporate the motor commands recorded by

the camera agent by performing a systematic search across layers to see where motor

commands would be most effective. Intuitively, incorporating motor commands at the

lowest layer would give the network computational power to transform information

into a coordinate system that can easily be combined with visual representations.

With the integration of visual and motor representations, the network would have

everything needed to predict the changing scene due to self-motion and thus, be able

to generate more accurate predictions. Additionally, this would also yield a more

accurate depth representation that is linearly decodable. A final control for the depth

representations would also be to train an autoencoder to reconstruct information at

the current time step. Then after training test if the latent representation of the

autoencoder contains information about the depth map.

An additional expansion of this model would be to extend the temporal prediction

beyond one timestep. Currently, the hierarchical nature of the existing network results

in each layer’s activations being explicitly dependent on the previous timestep during

the forward pass of the model. To address this, instead of predicting the pixel-

level representations, an alternative approach would be to predict the future latent

representations (Han et al., 2019; van den Oord et al., 2018) whereby an encoder

would compress the representations for an RNN to make predictions on. With this

architecture, various learning mechanisms from contrastive predictive coding (van
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den Oord et al., 2018) to dynamic predictive coding (Jiang and Rao, 2022) can be

implemented.

An exciting future direction would be to combine the experimental work from

the Niell lab with theoretical modeling. Recent developments in deep learning have

enabled the construction of 3D models by simply using a camera application called

PolyCam. With this app, a 3D model of the arena can be created and directly

imported into Unity. During experiments, the location of the mouse’s head and

body are recorded and can be placed in the 3D model. Then, Unity ground-truth

depth maps can be calculated and correlated with neural activity as the mouse is

freely exploring. Additional latent variables could also easily be extracted from the

3D virtual model such as optic flow, foreground/background, and object identity.

Taken together, this system would represent a rich framework for investigating visual

processing in freely moving mice.

4.5 MATERIALS AND METHODS

4.5.1 Unity Simulations

The virtual environment was a square arena with classical visual stimuli on the

walls, such as orientated gratings. On initialization, cubes with a black and white

grid pattern were randomly placed in the arena. A random location within the arena

was selected and the NavMeshAgent was used to navigate to the selected location.

The agent recorded the visual scene, depth maps, as well as the position and velocity.

Trials lasted 100 seconds and were recorded at 100 frames per second. A total of 300

trials with different random seeds were used in the training set, while 100 different

trials were used in the test set.
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4.5.2 Network Parameters

The predictive network consisted of four convolutional gated recurrent unit

(GRU) layers of size (32 channels, 64 x 64 pixels), (64,32,32), (128,16,16), and (256, 8,

8) respectively. Max pooling and upsampling occurred between layers for feedforward

and feedback connections. The network was trained using the mean absolute error

between the image frame prediction and the actual next frame. Training consisted

of 200 epochs (full run-throughs of the training dataset) with a batch size of 32.

Weights were optimized using the Adam optimizer, and a learning rate scheduler

with an initial learning rate of 0.001 and decreased the learning rate by a factor of 2

every 50 epochs.

4.5.3 Linear Decoding

For linear decoding, the activations of each layer were recorded in response to

the test dataset and z scored. For each layer, a convolutional window of size [15, 8, 4,

2] was used to choose which neurons in each layer contributed to predicting the pixel

depth. Every two pixels in the depth map were predicted using independent ridge

regression models with the corresponding neurons and alpha=0.1. This decoding was

cross-validated with a train/test split of 0.75/0.25 with the test dataset. Models were

trained using the high-performance computing cluster Talapas at the University of

Oregon.
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