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Although aging impacts everyone, individuals vary in pace and severity of age-related 

decline. Many long-lived primates, including humans, exhibit marked variation in aging patterns 

between males and females. We know that environment can influence the aging process, but it 

remains unknown how the environment shapes aging at the molecular level. The epigenome, 

responsive to biological and environmental changes, presents a unique opportunity to explore 

mechanisms that may influence aging. To better understand sex differences in the aging 

epigenome in the hippocampus and liver, two tissues responsive to age-related change, we 

characterized differential DNA methylation due to age in unmatched banked hippocampus 

(N=88; females=57) and liver (N=94; females=58) samples from rhesus macaques across the 

lifespan. We found the majority of age-associated sites are indeed sex-specific; only 3% of age-

associated sites are shared between sexes in the hippocampus and 21% of age-associated sites are 

shared in the liver. We found that differentially methylated sites (regardless of sex or tissue type) 

overwhelmingly become hypomethylated with increasing age, which is consistent with the 
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genomic hypomethylation hypothesis of aging. Ultimately, characterizing sex differences in how 

the epigenome changes with age across tissues will help identify how environmental factors 

interact with molecular mechanisms to shape variation in the rate of aging in long-lived primates.  
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Introduction  

No person is immune to aging, the gradual accumulation of wear and tear on our bodies 

that inevitably culminates in disease, degeneration, and death. It follows as no surprise that 

human civilizations have fantasized about slowing aging and evading death across centuries and 

cultures. In the Epic of Gilgamesh, a poem regarded as the oldest surviving piece of literature, 

the protagonist yearns for physical immortality. From the foundation of youth to anti-wrinkle 

treatments, the desire to evade aging continues to entice us. This is for good reason; aging is a 

risk factor that underlies many chronic conditions, including cancer, cardiovascular disease, and 

neurodegenerative disorders (Niccoli and Partridge, 2012). The push to understand patterns of 

normal aging and deviations from it will become increasingly relevant as the aging population 

grows. According to the CDC, the number of Americans that are 65 and older is projected to 

reach 98 million by 2040. With this influx of aging patients comes an increased burden on the 

healthcare system and individual families and their elderly loved ones. Identifying molecular 

targets will be important to implement relevant medical interventions and public health 

infrastructure. 

Although aging impacts everyone, individuals vary in pace and severity of age-related 

decline. Notably, there is marked variation in how aging presents between men and women. 

There are widely documented sex differences in incidence, prevalence, age at onset and severity 

of symptoms in age-related disease (Menger et al. 2010), however the mechanisms that underlie 

these differences remains unclear. One lens which has the potential to offer insight into the sex 

gap in aging is epigenetic changes. A better understanding of epigenetic differences in aging 

between sexes presents a promising avenue to explore the mechanisms that may contribute to 

variation in aging and longevity.  
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Sex Gap in Aging 

Women have been recorded to live longer than men across countries, generations, and 

cultures (Sampathkumar et al., 2020). Paradoxically, although women live longer, they exhibit a 

higher likelihood of age-related degenerative diseases than men (Fischer and Riddle, 2017). 

There are also widely documented sex differences in incidence, prevalence, age at onset and 

severity of symptoms in autoimmune, cardiovascular, and cancerous diseases (Menger et al. 

2010). Even after adjusting for survival, women are reported to suffer from higher rates of 

chronic lower respiratory diseases, Alzheimer’s, influenza, and pneumonia (Heron 2016). 

However, men suffer disproportionally from cardiovascular conditions, liver disease, and 

Parkinson’s (Ostan et al. 2016). The magnitude of differences is variable and is shared by 

complex interactions between biological and environmental factors, including social and cultural 

forces in humans. The survival gap likely reflects differences in gender roles and expectations; 

men tend to engage in riskier behaviors and more dangerous occupations, and are less likely to 

seek medical help, leading to delayed diagnoses and treatment (Oksuzyan et al. 2008; Luy and 

Wegner-Siegmundt 2015). The general pattern that females are longer-lived than males has been 

observed across human history and in most mammals, including primates (Austad and Fischer 

2016; Bronikowski et al. 2022; Lemaître et al. 2020), suggesting the importance of underlying 

biology.  
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Why is there a sex gap in aging? 

There are often five mechanistic theories attributed to sexual dimorphism in aging and 

longevity: a stronger immune response in females, the protective effect of estrogen, reduced 

hormone activity, the impact of a second X chromosome, and the influence of oxidative stress 

(Fischer and Riddle 2017). The two best described biological explanations for sex differences in 

aging trajectories are sex-chromosomal linked mechanisms and hormonal mechanisms (Hägg 

and Jylhävä 2021). Although not the focus of this project, sex differences in aging trajectories 

may be driven by mechanisms involving the sex chromosomes. Because mammalian females 

usually carry two X chromosomes, dosage compensation mechanisms evolved, leading to 

random X-chromosome inactivation, which represses an X chromosome early in development. 

Disease is thought to arise from dosage imbalance from X chromosome inactivation and 

consequently hormone imbalance downstream (Skuse et al. 2018).  

Hormonal differences may also be driven by mechanisms outside of the sex 

chromosomes. The most common groups of sex steroids are androgens (testosterone), which are 

mostly present in men, estrogen (estradiol, estrone, and estriol), and progestogens highly 

abundant in women.  Estrogen is thought to be protective against a wide variety of diseases, 

whereas testosterone seems to enhance the risk of disease progression (Clocchiatti et al. 2016; 

Ostan et al. 2016). Consistently, the risks of hypertension and developing Alzheimer’s disease, 

two major causes of death in females, are inversely correlated with estrogen production (Ostan et 

al. 2016; Pike 2017).  

Differentiating Between Sex and Gender 

This project focuses on sex differences rather than gender differences in aging, but it is 

important to note that both sex and gender contribute to disparate health outcomes. At the most 
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basic biological level, sex is defined by gamete size, while gender relates to the conceptions 

societally determined to belong to a sex category. However, this distinction is nuanced, and the 

terms are often interwoven. Biological sex is not a binary; even sex hormones and other 

biological markers associated with sex exist on a spectrum (Ritz and Greaves 2022). Statistically 

significant male-female comparisons are worthy to note, but do not necessarily mean that males 

and females function in fundamentally different ways. Understanding, accounting for, and 

addressing the interplay of sex and gender disparities in health is arguably one of the most 

interesting and important challenges in contemporary research.  

Presently, there is a relatively limited amount of information on how biological aging 

presents differently between sexes. This may be attributed to a long tradition of clinical trials that 

excluded women in sampling due to hormonal fluctuations and pregnancy regarded as 

confounding variables. In many instances, female bodies were assumed to operate in the same 

ways as male bodies, and findings from research conducted exclusively in men were often 

generalized to women (Hägg and Jylhävä 2021). Consequently, male-biased samples have 

informed the diagnosis, treatment, and prevention of chronic disease and lead to disparate quality 

of care and mortality outcomes between the sexes (Mauvais-Jarvis et al., 2020; Ritz and Greaves, 

2022). For example, for many decades, research on cardiovascular disease was largely male-

biased, resulting in risk calculations and clinical presentations that do not apply to women 

(Schenck-Gustafsson, 2009), who often present with different symptoms than men. Thus, a better 

understanding of the biological mechanisms that may drive differences in aging is crucial to 

effectively tackle variation age-related decline and diseases through an individualized approach.  
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Why do we age? 

To broach questions of variation in human aging, we must understand why aging occurs 

in the first place. From an evolutionary lens, aging doesn’t seem to make sense. Darwin’s theory 

of evolution by natural selection is premised on the idea that evolution acts to increase the fitness 

of species over time. Why would our bodies be shaped to give out and become increasingly 

vulnerable to disease with age? How do biological mechanisms drive human aging trajectories 

and age-related decline? We can explore why aging occurs from both an ultimate (evolutionary 

theories for why we age) and proximate (mechanistic theories for how we age) perspective. 

Evolutionary Explanations for Aging  

Most explanations revolve around the notion that natural selection favors reproductive 

success, not longevity. Past reproductive age, selection pressure weakens. As a result, alleles that 

impair health in later life are more likely to escape selection and accumulate in populations over 

the course of evolution, resulting in aging. (Medawar, 1952). This explanation has been widely 

acknowledged for many years, but the underlying evolutionary mechanism remains contested.  

Proposed by Sir Peter Medawar in 1952, the mutation accumulation theory suggests that 

aging may result from harmful mutations that do not present until later in life, because natural 

selection fails to eliminate them. This ties into the notion of the selection shadow, a “shadow” of 

time in which selective pressure becomes less strong. According to this theory, aging arises from 

a multiplicity of mutations that accrue over successive generations.  

The antagonistic pleiotropy model goes one step further and postulates that late-acting 

deleterious mutations are actively selected for, and do not just accumulate with chance. It rests 

on two assumptions: 1) a particular gene may influence several traits and 2) combined effects of 

genes may have opposite impacts on fitness. Aging is thus the genetic trade-off between early 
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life fitness and late-life mortality. The mutation accumulation theory and antagonistic pleiotropy 

model both fit the conventional paradigm is that aging is an inevitable byproduct of the 

evolutionary process. However, this countered by species that do not experience aging or 

senescence at all (Klimovich et al. 2018). Increasingly, the factors that drive aging and the 

variation in the shape and pace of the aging trajectory have been revealed to be dynamic and 

multifarious. 

Mechanistic Explanations for Variation in Aging 

At the proximate level, several evolutionarily conserved molecular and physiological 

mechanisms likely underlie the aging process and aging phenotypes. 

A general “wear and tear theory” suggests that DNA damage accumulates, and DNA repair 

mechanisms become less efficient over time. Aging can be assessed in various ways; the nine 

“hallmarks of aging” include genomic instability, telomeric alteration, epigenetic alterations, 

mitochondrial dysfunction, the loss of proteosasis, dysregulated nutrient sensing, stem cell 

exhaustion and altered cellular communication (López-Otín et al. 2013). These be classified into 

three categories: primary, antagonistic, or integrative. The primary hallmarks are defined as key 

factors causing cellular damage including genomic instability, telomere attrition, loss of 

proteostasis, and epigenetic alterations (López-Otín et al. 2013). During aging, there is a 

continuous increase of epigenetic changes, which might give rise to multiple age-related 

pathologies (Salameh et al. 2020).  

What is Epigenetics? 

In recent years, an epigenetics lens has been adopted to study aging via the interaction 

between our genes and the environment. Epigenetics, stemming from the word “epi”, meaning 

above, refers to the study of phenomena that cause changes to gene expression that are not 
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dependent on changes to the underlying DNA sequence. Unlike changes to the sequence of 

DNA, epigenetic changes can be responsive and reversible. A useful framing to understand this 

is to consider DNA as a book of life, a popular metaphor utilized by high school Biology 

teachers. DNA methylation, the most well-known epigenetic mechanism, involves the removal 

and addition of methyl groups to specific sites within the genome. These methyl groups function 

as punctuation marks, altering how the DNA is read. Changes in DNA methylation do not alter 

the sequence of DNA itself, as mutations do, but rather, amplify or quiet down how DNA is read. 

Through this process, gene activity can be regulated, and expressed in varying degrees.  

Epigenetics influences gene expression through chemical modifications of DNA or 

through the chromatin proteins that bind and interact with DNA. The most recognizable and 

well-researched forms of epigenetic modification are DNA methylation and histone 

modification. Usually, DNA methylation refers to the addition of a methyl (-CH3) group to the 

cytosine nucleotide of DNA (Schubeler, 2015). Methylation occurs at cytosine-guanine (CpG) 

dinucleotides and locations of methylation are often referred to as CpG sites. Differentially 

methylated refers to sites that undergo changes in methylation status. In this project, I will be 

referring to differentially methylated CpG sites that change with age.  

As a result of methylation, additional proteins may bind the region and cause the DNA to 

be so tightly packed that transcription cannot occur. This is known as “silencing” and is most 

common in promoter regions of the genome. Promoters, the best-characterized region in which 

DNA methylation occurs, denote where genes start and regulate the degree to which a particular 

gene is “turned on” or “turned off.” In general, in promoter regions, hypermethylation, a gain of 

methylation, is associated with gene silencing and hypomethylation, a loss of methylation, is 

associated with gene activation---although there are exceptions to this trend (Fernandez et al., 
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2012).  The end point of both DNA methylation processes usually results in long-term silencing 

or fine-tuning of gene expression in development and aging (Menger et al. 2010). However, 

methylation can have a variety of effects depending upon the genomic context in which it is 

found. DNA methylation can occur in both gene bodies and non-coding stretches of the genome, 

including in promoters, introns, exons, and intergenic regions. 

Epigenetic mechanisms can respond dynamically to environmental factors and behaviors. 

One of the first groundbreaking studies to explore the role of epigenetic mechanisms found that 

the amount of licking and grooming provided by a mother rat could produce differences in DNA 

methylation in her offspring that would persist into adulthood (Meaney and Szyf, 2005). Pups 

reared by low-licking mothers altered their stress responses of the rats for the rest of their lives. 

DNA methylation represents a unique opportunity to explore how behavior and environment “get 

under the skin” to influence health outcomes. Beginning to unravel the sources of variation our 

genomes may one day reveal ways in which they can be reversed. Pointed research may also 

uncover critical windows in development and aging and the relative influence of environmental 

factors. 

Inferring Biological Age 

Although small changes in CpG sites accrue with age, patterns of methylation with age 

are largely conserved across individuals. As a result, scientists can use DNA methylation data to 

infer biological age. Biological age, unlike chronological age, can account for interindividual 

variation in age-related changes and therefore provides a more comprehensive picture of health 

and aging. DNA methylation changes emerge early in life and variation in methylation 

accumulates with age, making it the gold standard biomarker of aging. In 2013, Horvath and 
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Hannum and colleagues independently published separate versions of the epigenetic clock 

model, which relies on DNA methylation data to quantify biological age.  

The epigenetic clock supposes the existence of conserved epigenetic changes that occur 

during aging and can infer chronological age to a high degree of precision (Horvath 2013; 

Hannum et al. 2013). Simultaneously, inter-individual variation accrues with age. Since the clock 

model was developed, epigenetic clocks have proven to be accurate predictors of chronological 

age in numerous species including humans (Perna et al. 2016; Marioni et al. 2015), mice 

(Thompson et al. 2018), and non-human primates (Anderson et al. 2021 for baboons, Goldman et 

al. 2022 for rhesus macaques). These clocks appear to be sensitive to a number of physiological, 

psychological, and environmental factors and capture variation in age-related decline. 

Accelerated epigenetic aging is associated with an increased vulnerability to mortality and age-

related disease (Chen et al. 2016; Zheng et al. 2016). DNA methylation, reflective of genetic 

mechanisms and environmental exposures, provides an avenue to explore the combined effect of 

underlying sex differences and social and cultural disparities.   

Sex Differences in Epigenetic Signatures 

A challenge of epigenetics research is that we know surprising little about sex-specific 

differences in aging. In many studies investigating the aging epigenome, male/female datasets 

are pooled together, and sex differences remain unexplored. Sex is regarded as confounding 

variable, rather than an area of interest. Although there are several methylation patterns that seem 

to be consistent with aging, there is no clear consensus in patterns regarding aging and the 

epigenome. The data from human DNA methylation studies suggest that alterations to the 

epigenome occur at a slower pace in females than in males; this gain/loss may occur at a greater 

rate in males than in females in some tissues, suggesting that this difference might contribute to 
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the different aging pattern seen in men and women (Austad and Fischer 2018). Previous studies 

in human cohorts using Hannum and Horvath’s epigenetic clocks report sex differences in 

biological aging that appear in adolescence (Simpkin et al. 2017) and increase with age 

(Kankaanpää et al. 2022). Human and non-human primate studies also have found that 

epigenetic aging may be accelerated in males (Horvath et al. 2016, Klein et al. 2019, Anderson et 

al. 2021). Genome-wide hypomethylation (loss of DNA methylation) in the autosomes as a 

hallmark of aging has been observed across multiple studies in humans (Marttila et al. 2015; 

Fernández et al. 2015; Li et al. 2017), but how this pattern tracks across sexes and tissues 

remains unclear. Many studies note that the role of the epigenome in shaping variation in aging 

between the sexes remains understudied and underscore its importance in future studies (Fischer 

et al., 2018; Deegan et al., 2019; Sampathkumar et al., 2020).  

Relevance of Macaque Model 

Developing relevant biomedical models of human aging has been a central focus of 

gerontology research for decades. Conventional organisms like yeast, worms, flies, mice have 

provided valuable insights but are limited by their distant evolutionary relatedness from humans 

(Chiou et al. 2020). Non-human primates are an intuitive alternative for their comparable 

anatomical, physiological, and life-history traits. Humans, like other primates, are characterized 

by life histories of reduced reproductive effort. This entails relatively late onset of reproduction, 

long lifespans, and low fertility (Jones 2011). Chimpanzees, our genetically closest primate 

relative, are subject to strict ethical regulation and been phased out from biomedical research in 

last decade (Colman 2018). Ongoing studies in wild chimpanzee populations offer valuable 

insight into how aging and disease are shaped by social and ecological factors (Emery Thompson 

et al. 2020). In a biomedical setting, high costs of care, extremely long lifespans, and the 
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endangered status of virtually all other great ape species inhibit their use as alternatives to 

chimpanzees (Chiou et al. 2020).   

Given these challenges, rhesus macaques have become the most widely used primate in 

biomedical research and have been used to construct major resources including high-quality 

genome assemblies. Rhesus macaques share 93% sequence similarity with humans (Gibbs et al. 

2007), and this similarity extends to numerous aspects of anatomy, physiology, neurology, 

endocrinology, immunology, and behavior. The rhesus macaque lifespan is approximately 3 

times shorter than that of humans, yet aging macaques recapitulate the human aging process and 

development of age-related disease (Roth et al. 2004). Externally, rhesus macaques share many 

hallmarks of aging with those exhibited in humans. Thinned, wrinkled skin on the face, hunched 

posture, and loss of muscle mass and overall frailty are characteristic in elderly rhesus macaques, 

mirroring the aging phenotypes that we see in humans (Simmons, 2016).  Rhesus macaques live 

approximately 25 years in captivity, although they may live up to 40 years (Chiou et al. 2020). 

One macaque year of life is roughly equivalent to three human years; a 10-year-old rhesus 

macaque is about 30-years in human equivalence (Colman 2018).  

Rhesus macaques also recapitulate sex differences in development and aging that make 

them useful proxies to disentangle sex variation in lifespan and healthspan. They display similar 

patterns of puberty, reproductive senescence, and menopause (Chiou et al. 2020). As in human 

females, wild female macaques demonstrate a slight survival advantage over their male 

counterparts (Kessler et al. 2015). As a result of shared aging trajectories, comparable sex 

patterns with age between humans and macaques may also present in the epigenome. An 

examination of aging signatures in blood revealed age-related DNA methylation changes are 
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shared between rhesus macaques and humans demonstrated a strong conservation of the aging 

trajectory between humans and macaques (Chiou et al. 2020).  

Rhesus macaque models also offer the potential to study aging in tissue types apart from 

blood, an opportunity restricted in humans due to ethical and logistical considerations. Many 

age-related methylation sites are conserved across different regions of the body, but there is 

distinct variation in the rate of aging between tissues, organs, and even sub-regions within organs 

(Seale et al. 2022). Epigenetic mechanisms have been implicated in producing differences that 

are responsible for the aging process of different tissues (Pagiatakis et al. 2021), but 

heterogeneity in aging across tissues remains underexplored. Rhesus macaques strike the balance 

between utility and applicability and serve as an ideal model for studying aging in the 

epigenome.  

Utility of a Two-Tissue Model 

Whole-blood samples are an accessible, established source for methylation-based 

predictors of biological age (Goldstein et al. 2021), but a more comprehensive picture of aging 

could be provided by looking at other tissue types. A growing body of studies suggests that aging 

is tissue-specific and occurs at distinct rates across organs and tissues (Levine et al. 2015). While 

blood is a sound choice for systemic assessments of health, certain tissues are better for targeted 

explorations. Epigenetic mechanisms have been implicated in producing differences that are 

responsible for the aging process of different tissues (Pagiatakis et al. 2021), but a model of 

epigenetic sex differences from a multi-tissue perspective remains underdeveloped.  

Hippocampus and liver tissue samples rhesus macaques offer a unique opportunity to 

explore how the aging epigenome may differ between sexes. The liver is an established indicator 

of metabolic function and whole-body health (Hahn et al. 2018) and may exhibit clinical signs of 
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dysfunction earlier than other tissues (Goldman et al. 2022). A recent study identified sex 

differences in molecular mechanisms of aging in the liver, specifically in cell cycle and cell 

senescence pathways that contribute to the development of aging-induced liver diseases (Lomas-

Soria et al. 2021). The hippocampus is useful to explore aging in the context of 

neurodegenerative disorders and aberrant brain-related pathology that accrues with age (O’Shea 

et al. 2016), a pattern that is also present in long-lived primates (Freire-Cobo et al. 2021). 

Hippocampus samples display sexually divergent methylation patterns in mice (Masser et al. 

2017) and humans (Choleris et al. 2017), but methylation patterns with age have yet to be 

characterized in a long-lived primate. Elucidating mechanisms that contribute to sex differences 

in a tissue-specific manner can reveal subtle, yet critical changes underlying age-related 

pathologies. 
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Project Description 

This project seeks to better understand sex differences in aging, using DNA methylation 

data collected from male and female rhesus macaques across their lifespans and across two tissue 

types. This will make a novel contribution to the epigenetics and gerontology fields, which lack a 

comprehensive picture of the landscape of differential methylation between the sexes with age. 

As aging does not occur uniformly through the body, looking at different tissues is necessary to 

characterize sex-associated methylation differences with aging. Assessing data from rhesus 

macaques will be a useful proxy for humans to understand normal aging trajectories between the 

sexes.  

Research Objectives and Hypotheses 

Broadly, this research was guided by an interest in the molecular mechanisms that shape 

variation in aging and longevity and why there are differences in aging trajectories between 

sexes. Sex differences in the epigenome remain under investigated, leaving a gap in our 

understanding of the mechanisms that shape variation in aging. Within this specific project, I 

sought to explore whether different patterns of aging between males and females were evident in 

the epigenome. Using previously generated liver and hippocampus datasets from rhesus 

macaques, I used bioinformatics techniques to characterize patterns of DNA methylation with 

age, highlighting differences observed between male and female samples. These larger questions 

will be targeted through the following specific questions and objectives:  

Are there detectable differences in the methylated sites that change with age between 

male and female datasets? Objective One: Test for differential methylation with age as a 

function of sex in two tissue types, the hippocampus and liver, that are implicated in aging and 

age-related disease and identify differentially methylated cytosines (DMCs). I hypothesize there 
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will be a difference in age-dependent methylation patterns between the sexes, with females 

experiencing a greater proportion of differential methylation with age. 

Where are sites that change with age for each sex dataset located in terms of genomic 

features?  Objective Two: Annotate sex-specific differentially methylated sites in terms of 

genomic features, e.g., whether a given site is in a promoter, exon, intron, 5’ UTR, or 3’ UTR. I 

hypothesize that a large proportion of differentially methylated sites will fall within promoter 

regions of the genome but that there will not be discernable difference between male and female 

datasets. That is, that genomic feature representation will not be variable between sexes.  

What biological processes and diseases are associated with the sites that change with 

age? Objective Three: Characterize age-associated sites shared and specific to male and 

female datasets in both tissue types. Following established theories of sex differences in aging, I 

hypothesize that differentially enriched pathways are associated with immune response and 

hormone regulation. Additionally, given increasing evidence that the epigenome is tissue 

specific, I hypothesize that enriched pathways for differentially methylated sites will be different 

in the hippocampus and liver. 
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Methods 

Sample Information   

The datasets used in this project were previously generated as part of a larger study on 

epigenetics and aging by PI Sterner and colleagues. I inherited these data from the dissertation 

projects of Dr. Elisabeth Goldman, a recent PhD in the Sterner Lab, and Tanner Anderson, a 

current PhD student in the Sterner Lab. Banked liver (N=96) and hippocampus (N=96) samples 

came from a population of rhesus macaques (Macaca mulatta) housed at the Oregon National 

Primate Research Center (ONPRC). Importantly, individuals differed between the two datasets 

(i.e., unmatched). Individuals were selected to represent both sexes and timepoints across the 

lifespan to capture trends in “normal” aging (Table 1). No individuals were younger than three 

years of age, excluding an important developmental period leading up to puberty in rhesus 

macaques. We removed 2 individuals from the liver dataset (N=94) due to missing datapoints. 

We removed 6 individuals from the hippocampus dataset due to choroid plexus tissue 

contamination, identified from the expression of specific choroid plexus marker genes. After 

performing principal component analysis (PCA) to visualize the overall structure of the data, we 

removed 2 additional individuals from the hippocampus dataset (N=88) that were extreme 

outliers. For the hippocampus samples, females ranged in age from 3.42 - 35.05 years (mean = 

17.3) whereas males ranged from 4.04 - 28.30 years (mean = 15.1 years). For the liver samples, 

females ranged in age from 3.3 to 32.01 years (mean = 14.96) and males ranged from 3.2 to 

33.09 years (mean = 15.8 years).  The ratio of females to males in both the brain and liver dataset 

was approximately 3:2.  

 Brain Liver 

N (Females) 88 (57) 94 (58) 
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Ages 3.5 – 35 years 3.2 – 33 years 

Human Age Equivalents ~9 – 105 years ~9 – 99 years 
Table 1: Age and Sex Distribution of Datasets 

RRBS Library Preparation and Sequencing 

DNA was isolated and quantified from the hippocampus and liver tissue samples at the 

ONPRC Primate Genetics Core using standard approaches. CpG methylation was measured 

using reduced representation bisulfite sequencing (RRBS), which targets specific regions that are 

likely to be methylated to maximize efficiency and avoid sequencing the entire genome (Gu et al. 

2011). RRBS requires a specialized library preparation. First, DNA is fragmented into smaller 

pieces by a restriction enzyme. Fragmented DNA ends are then repaired to generate blunt ends 

that can be bound by specific adaptor molecules that are necessary for amplification and 

sequencing. After the adaptor ligation, these fragments undergo bisulfite treatment, in which 

unmethylated cytosines are converted to uracil. This is a crucial step to differentiate between 

unmethylated and methylated sites in subsequent differential methylation analysis. Following 

bisulfite conversion, the DNA fragments are subjected to PCR amplification, in which a target 

DNA sequence of interest is duplicated many times over in order to selectively amplify a specific 

region. The resultant collection of gene fragments is referred to as an RRBS library. RRBS 

libraries were produced by the KCVI Epigenetics Consortium at Oregon Health and Sciences 

University (Carbone et al. 2019).  

Liver libraries underwent quality control by the University of Oregon’s Genomics and 

Cell Characterization Core Facility (GC3F) to assess their integrity and ensure they met required 

standards and sequenced on an Illumina HiSeq4000 with 75 base-pair read length. Hippocampus 

libraries were sequenced on a Novaseq S4 by OHSU’s Massively Parallel Sequencing Shared 

Resource (MPSSR).  
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Data Processing, Alignment, and Filtering 

Genomic DNA data was filtered and formatted by Dr. Elisabeth Goldman as part of her 

dissertation. Briefly, she used TrimGalore! to remove low-quality bases and FastQC and 

MultiQC as an additional quality check (Goldman et al. 2022). She then aligned trimmed reads 

to the rhesus macaque reference genome (Mmul10) after performing in silico bisulfite 

conversion of the reference genome using Bismark v0.19.0. Sites missing in more than 10% of 

samples were removed as well as all sites on sex chromosomes. Recent research suggests that 

normalizing methylation data with the sex chromosomes introduces a large technical bias to 

many autosomal CpGs (Wang et al. 2021). Twenty files, each corresponding to one autosome, 

were generated that included all the CpG sites located on a given chromosome and present in at 

least 90% of the samples. Sites were further filtered to remove low coverage regions (i.e., less 

than 10x median coverage) and exclude sites of constitutive methylation (i.e. where methylation 

does not vary across the lifespan, and thus the median is either below 10% or above 90%). 

As part of this project, I received training in bioinformatics (mainly in the programming 

language R) and in how to use statistical tools to analyze and visualize genomic data. I 

performed all subsequent analyses in R version 4.2.3 unless otherwise stated. I received 

processed data in the form of methylation count and total count matrices corresponding to the 

same sites for each sample, along with metadata files for each respective tissue that included 

information about the sex and age of each individual along with other identifiers. We performed 

principal component analysis (PCA) to visualize the overall structure of the data and detect any 

outliers or clustering based on batch or group status. The data were loaded into RStudio and 

processed through a secondary analysis to ensure sites of constitutive methylation and sites 

missing in more than 10% of the samples were excluded. We also generated a relatedness matrix 
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for samples within each tissue that represents the degree of relationality between each individual 

as a decimal between 0 and 1, and controls for relatedness as a variable that may influence 

similarity of methylation profiles. 

Differential Methylation Analyses 

To accomplish Objective 1, we used PQLseq (version 1.2.1), an R package that is 

designed for differential analysis of large-scale RNA sequencing data or Bisulfite sequencing 

data (Sun et al. 2021). PQLseq fits a Generalized Linear Mixed Model (GLMM) to identify sites 

that are differentially methylated (DMCs) as a function of age. To investigate sex-associated 

differences in sites that changed with age, we split males and females into two distinct datasets 

for each tissue type (i.e., male liver, male hippocampus, female liver, female hippocampus). 

Input data for PQLseq was formatted into a model matrix that included methylation count 

matrices (n = 276,840 sites for the hippocampus and n = 154,263 sites for the liver), mean 

centered ages of each sample, and a relatedness matrix. Mean-centered ages are calculated by 

subtracting the mean from each individual age value in the dataset as a representation of 

deviation from the mean. Using mean-centered ages helps mitigate multicollinearity, the 

presence of high correlations between predictor variables. After these files were prepared, they 

were transferred to the Talapas supercomputer, UO’s high performance cluster that performs 

operations much more quickly than a desktop computer. I used the PQLseq package on Talapas 

to run separate analyses for male and female datasets for each tissue type.  

PQLseq identified sites that were differentially methylated with age and formatted this 

output as an. RData file that could be loaded into RStudio for further examination. I found that 

re-analyses of these input datasets consistently identified the same CpG sites that were 

differentially methylated with age, ensuring the replicability of the PQLseq output. Additionally, 
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to explore how both datasets may be influenced by the female-biased ratio, I created smaller 

female datasets to match the number of males for each analysis. These datasets were 

representative of the age range of the entire dataset and included all the sites included previously. 

For the liver, I created a partition of 36 females and for the brain, I created a partition of 30 

females. To account for inter-individual variation, I created three different partitions for each 

tissue type comprised of the same number but different female individuals. I then ran these 

iterations through the same PQLseq analysis described previously. 

The PQLseq output included CpG sites that were differentially methylated with age as 

well as statistical identifiers including p-value and beta-value. Probabilities (p-values) were 

corrected for multiple testing using the Benjamini-Hochberg method of False Discovery Rate 

(FDR), implemented using the package q-value (v 2.26.0) (Storey, 2003). An FDR threshold is 

used to control the proportion of falsely identified differentially methylated sites among all sites 

that are identified as significant. For example, an FDR threshold < 0.1 corresponds to a 10% or 

lower expected proportion of false discoveries among the significant findings. I used an FDR 

threshold of < 0.1 for the brain and FDR < 0.001 for the liver based on previously used 

parameters for these tissues. 

We then characterized the direction of methylation change to determine whether sites lost 

methylation with age (i.e., became hypomethylated, corresponding to a negative beta value) or 

gained methylation with age (i.e. became hypermethylated, corresponding to positive beta value) 

(Table 2).  

 Direction of Methylation Beta-value 

Loss of Methylation Hypomethylation Negative 
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Gain of Methylation Hypermethylation Positive 

Table 2: Interpretation of beta-values to detect direction of methylation 

To visualize overlap between significant differentially methylated sites in males versus 

females, I used the RStudio package “ggVennDiagram” to generate Venn diagrams that 

showcase the number sites that are shared between the sexes and the number of sites that differ. 

This allowed us a quantitative comparison of age-associated differential methylation in female vs 

male samples.  

Characterization of Age-associated Sites 

Genomic Feature Annotation 

To gain more insight into the functional role of the significant age-associated sites 

identified in Objective 1, I identified which features they fell into within the genome (Objective 

2). I exported the results of the PQLseq analysis (sites with an FDR < 0.1 for the hippocampus 

and FDR < 0.001 for the liver) as a .bed file that included the chromosome and position then 

used the package ChIPSeeker to visualize genomic feature representation. I retrieved annotations 

for these sites using “org.Mmu.eg.db”, the genome wide annotation for rhesus macaques 

primarily based on mapping using Entrez Gene identifiers (Carlson et al. 2019). Using the 

“annotatePeak” function in ChIPSeeker with org.Mmu.eg.db” as the annotation package and (-

3000, 3000) as the region range, I created bar chart representations of where sites fell in terms of 

genomic features, including exons, introns, 5’UTR, 3’UTR, promoters, and distal intergenic 

regions. Sites were grouped by dataset (i.e., sex and tissue; n=4) and further split by direction of 

methylation.   
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Gene Ontology Analysis 

For Objective 3, I used the gProfiler web interface to conduct Gene Ontology (GO) and 

KEGG (Kyoto Encyclopedia of Genes and Genomes) to test the differentially methylated sites 

for enrichment against a custom background of all genes associated with the CpG sites included 

in each tissue dataset (n = 276,840 sites for the hippocampus and n = 154,263 sites for the liver). 

Ontology analysis enables us to determine if any genetic terms or pathways were significantly 

overrepresented in the sites that were differentially methylated in each dataset. As input, I used 

the chromosome and position (e.g., chr1: 12347) of all the sites that were identified in Objective 

1. I used all the sites that were differentially methylated in each sex dataset to detect if the same 

sites in both sexes had similar enrichment terms but opposite directions of methylation. gProfiler 

ties these sites to associated genes and leverages various databases to identify biological 

functions (ontologies) and their relationships to one other. GO has three major subontologies: 

Molecular Functions (MF), Biological Processes (BP), and Cellular Component (CC). It also 

employs statistical algorithms to assess the overrepresentation of specific functional categories, 

known as functional enrichment, compared to the background reference set. I used a Benjamin-

Hochberg false discovery rate (FDR) < 0.1 to adjust for the multiple hypothesis testing inherent 

in enrichment analysis. gProfiler yields a list of enriched terms, associated pathways, or 

biological pathways along with statistical significance. It also generates visualizations such as 

network diagrams to visualize the enriched functional categories.  
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Results 

To characterize sex differences in the aging epigenome, I first identified sites that were 

differentially methylated with age. Then, I found which sites were shared vs specific to each sex 

(Objective 1). From these sex-specific, age-associated sites, I also identified whether they lost or 

gained methylation with age. I found that 1) a large subset of age-associated sites is sex-

specific in both the hippocampus and liver datasets and 2) the majority of sites become 

hypomethylated with age. Then, I identified where these sites were located in terms of genomic 

features (Objective 2). I found that 3) in both tissue types and sexes, age-associated sites were 

located within and between genes (e.g., promoters, exons, introns, and distal intergenic 

regions). Finally, I determined if these sites were enriched for any GO terms or pathways 

(Objective 3). I found that 4) Age-associated sites were enriched for similar biological terms 

between sexes in the liver but different terms in the brain. 

No batch effects were present in either tissue dataset. 

 Prior to performing differential methylation analysis, I visualized the structure and 

clustering of methylation data for both tissue types using Principal Component Analysis (PCA). 

PCAs for both the hippocampus and liver did not display clustering that would indicate batch 

effects that would need to be corrected for prior to PQLseq analysis. The First Principal 

Component accounted for 20% of variation in the hippocampus methylation samples (Figure 1) 

and 43% of variation in the liver samples (Figure 2), but there was no evident clustering by age 

or sex in either tissue.  
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Figure 1: PCA of methylation counts in the hippocampus. Colored by age (left) and sex (right). 

 

 

Figure 2: PCA of methylation counts in the liver. Colored by age (left) and sex (right). 

A large subset of age-associated sites is sex-specific in both the hippocampus and liver 

datasets.  

In the hippocampus, I identified 1,336 sites in the female dataset (n = 58) and 473 sites in 

the male dataset (n = 30) that became differentially methylated with age (FDR < 0.1). A greater 

proportion of sites become differentially methylated with age in females. This remains true for 

different iterations of equalized sample sizes (n = 30 females; see Figure S1). Only 3% of age-

associated sites were shared between male and female datasets (Figure 3). 
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In the liver, I identified 4,483 sites in the female dataset (n = 58) and 2,959 sites in the 

male dataset (n = 36) that changed with age. Like in the hippocampus, a greater number of sites 

became differentially methylated with age in the female dataset (FDR < 0.001). However, this 

does not remain true for all partitions of equal sample sizes (n = 34 females; see Figure S2). 

Only 21% of age-associated sites were shared between the male and female datasets (Figure 3). 

 

 

 

 

 

 

Figure 3: Significant age-associated sites (Hippocampus FDR < 0.1; Liver FDR < 0.001) 

categorized by sites that are male-specific (turquoise), female-specific (pink), and shared (purple).  

 

The majority of age-associated sites become hypomethylated with age, regardless of sex 

and tissue type. 

A general loss in methylation with age was observed in both male and female datasets in 

the hippocampus and liver, following a pattern of global hypomethylation with age coupled with 

targeted hypermethylation in specific regions.  
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Figure 4: Trends of hypo and hypermethylation. Represents sex-specific, age-associated sites in the hippocampus 

(FDR > 0.1) and sex-specific, age-associated sites in the liver (FDR < 0.001) determined through beta-values. Pink 

represents female-specific sites, and turquoise represents male-specific sites. A lighter shade of the color represents 

a loss of methylation (hypomethylation) with age, while a darker shade represents a gain of methylation 

(hypermethylation) with age. 

 

Age-associated sites were located within and between genes in both tissue types and 

sexes. In both the male and female datasets in the hippocampus and liver, more than 25% of age-

associated sites fell within distal intergenic regions (i.e., stretches of DNA located between 

genes). A large proportion of sites in both tissues and sexes was also located in introns (non-

protein coding regions of the genome). Interestingly, in the hippocampus, only 8.6% of 

background sites fell within promoters, while 23.8% of hypomethylated age-associated sites in 

the female dataset annotated to promoters (Figure 3), indicating these sites were overrepresented 

in promoter regions. 
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Figure 

5: 

Functional characterization of sex-specific sites in the hippocampus. Each site is grouped into 

differentially methylated sites that are unique to each sex, and further divided by direction of 

methylation. “All CpGs” corresponds to the background of all input CpG sites for the 

hippocampus. 

In the liver, only 7.3% of all background sites were located within promoter regions, 

while 21.4% of sites in the hypomethylated male sites and 16.1% of sites in hypomethylated 

female sites were found in promoter regions (Figure 4). 
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Figure 6: Functional characterization of sex-specific sites in the liver. Each site is grouped into 

differentially methylated sites that are unique to each sex, and further divided by direction of 

methylation. “All CpGs” corresponds to the background of all input CpG sites for the liver. 

Age-associated sites were enriched for broad GO terms and pathways. 

Enrichment in the Hippocampus 

Functional profiling of sites in the male dataset in the hippocampus (identified in 

Objective 1 using an FDR < 0.1) revealed 17 enriched KEGG terms (FDR < 0.1 for gProfiler 

analysis) including: Hepatitis C, transcriptional misregulation in cancer, thyroid cancer, gastric 

cancer, and the thyroid hormone signaling pathway. There were also 300 enriched Human 

Phenotype (HP) terms associated with two age-associated sites that were specific to the male 

dataset (Table S1). Both sites became hypomethylated with age. 187 HP terms corresponded to a 

site on chromosome 7 and 215 terms corresponded to a site on chromosome 20, with 102 terms 

corresponding to both.  
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Table 4: GO terms for male sites in the hippocampus. Enriched terms for the male dataset in the hippocampus (FDR 

< 0.1), denoting the ontology database, corresponding function, term identifier, p-value, and chromosome source. 

The ontology databases include Kyoto Encyclopedia of Genes and Genomes (KEGG) and Human Physiology (HP). 

See Table S1 for enriched HP terms. 
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Figure 7: GO:MF diagram for male sites in the hippocampus. Molecular function context diagram for male 

sites in the hippocampus (FDR < 0.1), created by gProfiler using the approach described in Figure 5. Terms 

that share GO defined relation are grouped together, using manually curated GO resources to summarize 

results in the same connected component. Driver terms have a yellow background, significantly enriched 

terms are displayed with a colored border, and terms with a grey border provide a broader context and 

connect enriched terms to the root of the domain.  
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In the hippocampus, sites in the female dataset were enriched for 1 Biological Process 

(BP) term: vesicle-mediated transport in synapse and 4 Cellular Component (CC) terms: 

synapse, glutamatergic synapse, cell junction, and presynapse (Figure 6). There were no 

enriched KEGG terms or HP terms (FDR < 0.1) for the female brain dataset. 

Table 3: GO terms for sites in the female hippocampus. Enriched GO terms for female age-associated sites in the 

hippocampus. 
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Figure 8: GO:CC Context Diagram for female sites in hippocampus. Represents enriched Cellular 

Component terms for female sites in the hippocampus (FDR < 0.1) created by gProfiler.   

Enrichment in the Liver 

In the liver, sites in both sexes were enriched for KEGG term thyroid hormone synthesis. 

The sites in the male liver dataset were also enriched for the KEGG term glycosphingolipid 

biosynthesis. There 44 HP terms that were enriched, including male sexual dysfunction, urinary 

incontinence, amyloidosis, and hypotension. All enriched terms for the male dataset in the liver 

were associated with a site on chromosome 18 that became hypomethylated with age.  

This site in the female liver dataset also lost methylation with age yet was not enriched 

for any HP terms. The female liver dataset was enriched for only 1 KEGG term: thyroid 

hormone synthesis. The site associated with this term was also linked to DUOX1, a gene related 

to liver pathophysiology and previously found to be subject to epigenetic regulation.  
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Table 3: GO terms for male sites in liver. Corresponds to male sites in the liver (FDR < 0.1), denoting the ontology 

database, corresponding function, term identifier, p-value, and chromosome source. The ontology databases include 

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Human Physiology (HP), which uses gene orthology 

information from Ensembl to pair gene databases of other organisms to HP annotations of human genes.  
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Discussion 

In this project, I sought to characterize age-associated DNA methylation changes in male 

and female datasets of a long-lived primate to see if these patterns reflected sex divergence in 

aging and longevity.  I found that there were evident sex differences in the epigenome with age, 

and that most sites that changed with age were specific to each sex. When I explored these sites 

further, most sites lost methylation with age, across sex and tissue type. In both tissues, there 

were more age-associated sites in the male dataset that were linked to genes and consequently 

ontology terms. In the hippocampus, male and female sites were enriched for different ontology 

terms, suggesting that sex-specific sites of methylation may be associated with sex-dimorphic 

gene expression in the brain. In the liver, both sex datasets were enriched for thyroid hormone 

regulation. Overall, my findings suggest that differential methylation between sexes could 

contribute to variation in aging trajectories and disease vulnerability and re-affirms the need for 

further research into these differences. 

General Hypomethylation with Age Across Sexes 

Overall, my results support a trend of global hypomethylation with age, regardless of sex 

or tissue type. This conforms to the global hypomethylation hypothesis, which argues that a 

decrease in global DNA methylation is characteristic of aging (Pogribny and Vanyushin 2010). 

Patterns of loss of methylation appear to occur in most if not all tissues with age. However, 

current literature suggests that rather than being a direct product of mechanistic aging, an 

increase in errors with time results in more relaxed and consequently aberrant regulation of gene 

expression (Unnikrishnan et al. 2021).  
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More Differential Methylation with Age in Females 

In both tissues, there were more sites in the female datasets that became differentially 

methylated with age. In the hippocampus, I found that more sites change with age in the female 

dataset. In the liver, this finding is nuanced by the female-biased composition of these data (see 

Figure S2). However, studies in human cohorts have reported that females display higher levels 

of methylation overall (Liu et al. 2010, Hall et al. 2014, Yousefi et al. 2015) and that females 

often outpace males in the number CpG sites that lose and gain methylation with age (Grant et al. 

2022). However, other studies on sex differences in age-associated methylation in autosomes 

have found conflicting results. In a study of DNA methylation in human liver tissue, males 

displayed higher average genome-wide methylation in the autosomes, while females had a higher 

DNA methylation than males in X-chromosome sites (García-Calzón et al. 2018). Still others 

have found no significant difference in DNA methylation with age on autosomes between males 

and females (Zhang et al. 2018). My results suggest that a large fraction of CpG sites that change 

with age are sex-specific and may contribute to differential aging and disease phenotypes 

between sexes. 

Hypomethylation in Promoter Regions 

 In both the hippocampus and liver dataset, a greater proportion of hypomethylated sites 

mapped to promoter regions than in the background datasets. Decrease in methylation with age 

at promoters is consistent with previously established patterns in the aging epigenome (Gensous 

et al. 2017). In promoters, hypomethylation is associated with gene activation, while 

hypermethylation is associated with gene silencing (Bird 2002). A study on frailty and changes 

in DNA methylation found that a worsening in frailty status was associated with a significant 

decrease in genome-wide DNA methylation (Bellizzi et al. 2012). Interestingly, a similar study 

https://pubmed.ncbi.nlm.nih.gov/?term=Garc%C3%ADa-Calz%C3%B3n%20S%5BAuthor%5D
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found that subjects who presented lower levels of DNA methylation at promoter specific CpG 

sites had decreased odds of frailty (Collerton et al. 2014). Loss of methylation at promoters may 

contribute to phenotypic age-related decline, and this phenomenon could contribute to 

physiological decline with age in rhesus macaques. However, the causative nature of this 

relationship remains unclear. Frailty is associated with aging, but it is unknown whether DNA 

methylation functions to increase susceptibility to frailty with age. There were no differences 

between sexes in proportion of promoters or other genomic regions to suggest that patterns of 

genomic distribution in methylation may be sex-specific in either tissue. 

Differential Methylation in Intergenic Regions 

I found that a large proportion of DMCs in both tissue and sex datasets were located in 

distal intergenic regions of the genome, stretches of DNA that lie between genes and do not 

directly encode proteins. The effect of DNA methylation in regions outside of promoters remains 

poorly characterized, specifically in intergenic regions (Yan et al. 2016). However, increasingly 

evidence suggests that methylation at intergenic regions can regulate gene expression (Thomas et 

al. 2012, Lu et al. 2012, Schlesinger et al. 2013). Intergenic regions may contain many regulatory 

elements, such as enhancers, silencers, and noncoding RNAs, that may be impacted by DNA 

methylation (Reschke et al. 2014). Recent research suggests epigenetic control of enhancers, 

which facilitate regulation of gene expression by bringing distant regulatory elements in 

proximity to their target genes, alters neuronal functions and may be involved in age-related 

diseases like Alzheimer’s (Li et al. 2019). The role of epigenetic modifications and how they act 

as regulatory elements in intergenic regions at intergenic regions remains unclear and demands 

further investigation.  
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Tissue- and Sex-Specific Enrichment 

Based on preliminary findings, DMCs that are associated with enrichment terms may be 

specific to each sex and each tissue. In the brain, two sites that are not differentially methylated 

with age in the female dataset are associated with many HP terms in the male dataset. These sites 

fell on chromosome 20 and chromosome 7, and were associated with pathologies that 

disproportionally affect men, including gastric cancer and (National Cancer Institute) and 

Hepatitis C (Baden et al. 2014). In the liver, the specific site associated with all enriched HP 

terms was not differentially methylated with age in the female dataset. This site was located on 

chromosome 18 and was associated with several age- and sex-associated phenotypes, including 

male sexual dysfunction, urinary incontinence, stroke, and hypotension.  

Retinoic Acid Binding and Synaptic Plasticity 

 Male sites in the hippocampus that were associated with retinoic acid binding (Table 5) 

became hypomethylated with age. Retinoic acid contributes to a wide-ranging host of biological 

processes, but in the hippocampus is crucial for synaptic plasticity and adult neurogenesis, the 

process of generating functional neurons (Jacobs et al. 2006). GO terms involving synaptic 

activity were also enriched in the female liver dataset. Accumulation of errors in the epigenome 

during aging progression increases the risk for onset of age-related pathologies, such of those 

involving brain deterioration and neurodegeneration. The most common brain disorders affecting 

elderly individuals are those causing dementia through loss of synaptic plasticity, leading to 

memory impairment and defective learning capabilities (Salameh et al. 2020). A recent study in a 

human cohort suggests that hypomethylation of retinoic acid receptor related genes induce 

persisting neuropsychological consequences (Glad et al. 2017). Epigenetic regulation of retinoic 

acid binding and synaptic activity with age fits previously established findings, but further 
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research is needed to explore the differences between female and male datasets to see if they may 

account for differences in aging phenotypes.  

Thyroid Hormone Regulation 

A recurring ontology term across tissues and sexes was thyroid hormone regulation. It is 

well-known that the prevalence of thyroid disorders increases with age (Gesing 2015), and the 

enrichment of age-associated sites for thyroid hormone regulation suggests the epigenome could 

be a regulatory mechanism that contributes to susceptibility of thyroid diseases with age. 

According to the American Thyroid Association, women are five to eight times more likely to 

develop thyroid disease, suggesting that epigenetic regulation of thyroid hormones could be 

valuable to further explore in a sex-specific context. 

Previous studies examining sex differences in methylation have revealed enrichment 

among differentially expressed genes involved in hormone regulation in the brain and testis 

(McCartney et al. 2021), supporting the idea that epigenetic differences can regulate hormone 

differences that may account for sex-based differences in aging. One site that changed with age 

in the female liver dataset was associated with the DUOX1 gene, associated with liver 

pathophysiology across mammals (Ashtiwi et al. 2021). DUOX1 mediates the production of 

reactive oxygen species (ROS), which has been correlated with many diseases that tend to occur 

later in life (Ashtiwi et al. 2021). The epigenetic silencing of DUOX1 by hypermethylation of a 

promoter has been directly implicated in human liver cancer (Ling et al. 2014).  In this macaque 

dataset, I found the site associated with DUOX1 becomes hypomethylated with age, so the 

impact of this change remains unclear. 

The nature of ontological analysis for differentially methylated sites is inherently difficult 

to explore and interpret. Unlike gene expression data, DNA methylation does not correlate to 
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direct genes or pathways and its effects on gene regulation is much less straightforward. The role 

of DNA methylation on gene expression can vary depending on the genomic context and specific 

regulatory elements involved, which, as aforementioned, remains complex and in need of further 

characterization. As previous studies have noted, a lack of a standardized approach for 

determining sex-associated sites results in limited reproducibility between studies (Gatev et al. 

2021 and Grant et al. 2021). Particularly with ontology analysis, a uniform set of statistical 

parameters has not been defined. Here, I used a Benjamini Hochberg FDR cutoff of < 0.1 for 

both tissues in gProfiler analyses. 

Limitations 

Previous studies have predominantly focused on blood-based DNA methylation data 

from human cohorts, while this project focuses on hippocampus- and liver- based data and 

focuses on autosomes in rhesus macaques. Interestingly, some studies report the largest sex 

differences in age-associated DNA methylation in sex chromosomes compared to autosomes 

(McCartney et al. 2021). There is also a recent emergence of a trend towards hypermethylation 

for female specific CpG sites that change with age (Kananen et al. 2021, Li et al. 2021), but these 

studies included sex chromosomes and are thus not directly comparable to my project.  

Although the existence of sex differences in the epigenome is well-established, a robust 

and consistent characterization of these differences is still lacking. Comparisons between my 

results and results from the literature are complicated by the differing dataset composition and 

the lack of an established catalogue for exploring differentially methylation across species. 

Additionally, cross-comparisons are limited by a lack of comparable datasets, such as matched 

tissue type, model organism, and study demographics across studies. 
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Future Directions  

Epigenetic Drift 

As a next step, characterizing the variation in DNA patterns over lifespan and whether 

these patterns differ between sexes may illuminate other ways in which sex differences in aging 

are reflected in the epigenome. Future analyses could measure epigenetic drift, in which the 

epigenome accrues more inter-individual variation with age and becomes more prone to errors 

(Hernando-Herraez et al. 2019). Epigenetic drift is also referred to as entropy, the measure of 

disorder in a system. Epimutations, a measure of drift, are rare methylation changes that are 

specific for one or few individuals within a specific population. Epimutations have been found to 

increase with age and have been reported in cancer (Teschendorff et al. 2016) Variability, 

epimutations, and entropy of autosomal DNA methylation with age between sexes were assessed 

in Yusipov et al. 2020, but no detectable difference in epimutations were found. However, this 

discrepancy could be attributed to analytical approaches or cohort-specific effects, according to 

the authors. Further studies are necessary to determine if there may be sex-specific trends present 

in patterns of epigenetic drift.  

Region-Based Analysis 

Characterizing and annotating differentially methylated sites in terms of differentially 

methylated regions (DMRs) may reveal other differences between sex datasets and elucidate how 

differential methylation may contribute to dimorphism in aging phenotypes between males and 

females. DMR analysis takes into account neighboring CpG sites and identifies regions where 

the overall methylation levels are consistently different between groups. By considering multiple 

CpG sites within a region, DMR analysis provides a more robust and comprehensive assessment 

of differential methylation. It can capture coordinated changes in methylation patterns and 



 

49 
 

provide insights into functional genomic regions that are differentially regulated (Yousefi et al 

2015).  

Sex Chromosomes 

Future studies should also include DNA methylation data from sex chromosomes. 

Exploring DMCs within sex chromosomes in a tissue-specific context would be a novel 

contribution to the field of epigenetics, which often excludes the sex chromosomes in non-sex 

focused analyses. 

  

Matched Tissue Datasets 

Matched datasets would enable the comparison between tissues, which we avoided in this 

project due to the two tissue datasets coming from different individuals. However, cross-tissue 

comparisons would elucidate whether differences in DNA methylation between sexes are 

uniform or whether these differences present differently or to different degrees across tissues and 

organs. 
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Conclusions + Significance 

This project sought to focus on sex differences in aging through the lens of DNA 

methylation, recognized to capture the nuanced interplay of environment and biology and an 

important component of the aging process that may be a good target for quantifying biological 

age. Although sex differences have long been acknowledged in the field of epigenetics, only a 

small body of studies have examined sex-specific patterns of autosomal DNA methylation to 

elucidate the mechanisms that may reflect sex differences in aging and longevity. Previous 

studies have predominantly focused on blood-based DNA methylation data from human cohorts, 

so these findings contribute to an understanding of sex differences in the epigenome of a long-

lived primate from a unique, two-tissue approach. 

Additionally, this project capitalizes on a pre-existing data from rhesus macaques to 

perform novel analyses. Historically, few methylation datasets have been available for rhesus 

macaques. The representation of sexes and the breadth of the age range of these samples make 

this a valuable dataset for exploring patterns of epigenetic aging in a long-lived primate. It is 

important to integrate functional genomics and evolutionary theory to nuance our understanding 

of the aging process. Investigations into the epigenome of non-human primates like rhesus 

macaques can help elucidate theories of aging for long-lived primates, in contrast to short-lived 

organisms like mice.  

In this project, I learned how to use bioinformatics to analyze DNA methylation data and 

consider both the statistical and biological validity of different analyses. I found that 

hippocampus and liver tissue in rhesus macaques have sex-specific methylation profiles that 

change with age in the autosomes. Overall, these sites lose methylation with age, and are located 

predominantly in distal intergenic regions, where they may serve to regulate expression of genes 
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downstream. Differences in methylation regulate sexually divergent pathways that shape 

variation in aging and age-related outcomes in the sexes. This project may support the 

overarching hypothesis that sex differences in autosomal DNA methylation data may account for 

some of the sex differences seen in aging and age-associated disease prevalence, onset, and 

progression. However, further characterization and elucidation of underlying mechanisms is 

necessary. 

How can we manage aging? 

By characterizing the sex-specific DNA methylation changes that occur with age, 

researchers can better understand underlying mechanisms of aging and the development of 

interventions to promote healthy aging. Through projects like this one, we can pinpoint specific 

genomic regions and genes that may serve as molecular targets for anti-aging interventions. The 

field of biogerontology relies on a holistic, integrative approach to aging. These targets can 

include genes and gene regulation mechanisms that become dysregulated with age and disease. 

Uncovering the epigenetic variation that underlies vulnerability to morbidity and mortality is 

crucial to the development of treatment and management strategies. For example, epigenetic age 

acceleration was shown to be associated with Alzheimer’s Disease (AD) neuropathological 

markers such as neuritic plaques, diffuse plaques, and amyloid load in the prefrontal cortex 

(Levine et al. 2015b). Identifying epigenetic signatures of disease may aid in early detection and 

risk assessment in conditions like AD which lack diagnostic biomarkers. Interestingly, drug pro-

longevity interventions in mice have displayed sex-dimorphic responses, such as rapamycin 

treatment and metformin (Sampathkumar et al. 2020), further validating the need to conduct sex-

specific analyses in processes that govern aging, longevity, and morbidity. 
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Epigenetic insights extend beyond therapeutic interventions---they also support the 

importance of everyday habits to enhance aging and improve healthspan, which represents the 

number of quality years an individual enjoys, compared to lifespan. The epigenome demonstrates 

the ways in which the environment can “get under the skin” to shape variation in disease and 

mortality risk. Recent studies fuse nutrition with DNA methylation, demonstrating that healthy 

diets can restore dysregulated DNA methylation markers that accrue with age (Fitzgerald et al. 

2021). Blue zones, regions around the world known for having higher proportions of 

centenarians and lower rates of age-related disease, offer valuable insight into how environment 

and behaviors can promote longevity and well-being. These zones reveal the importance of diet, 

strong social bonds, and exercise. Diet plays a vital role in promoting healthy aging, and 

residents of blue zones set an example in a predominantly plant-based diet that is rich is whole 

foods, including fruits, vegetables, legumes, and whole grains. Reduction in processed foods and 

red meat consumption is associated with a lessened risk of heart disease, diabetes, and certain 

cancers. Additionally, blue zone residents typically consume fewer calories than average 

Americans. Mindful eating helps maintain health and reduce risk of chronic disease. Blue zones 

are also characterized by strong social bonds, which have been attributed to the longevity and 

vitality of their residents. Regular social interaction and support networks contribute to improved 

mental well-being, reduced stress levels, and a sense of purpose, all of which are crucial for 

healthy aging.  
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Appendix 

 

 

 
Figure S1: Age-associated sites for equalized sample sizes in the hippocampus. Represents the 

quantity of sites that change with age that are shared vs sex-specific in males (n = 31) and females 

(n = 30).  

 

Figure S2: Age-associated sites for equalized sample sizes in the liver. Represents the quantity of 

sites that change with age that are shared vs sex-specific in males (n = 36) and females (n = 36). 
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Table S1: HP terms enriched in the male liver. Human Phenotype terms in the age-associated male 

sites in the liver.  
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