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DISSERTATION ABSTRACT

Amir Pouran Ben Veyseh

Doctor of Philosophy

Department of Computer Science

June 2023

Title: Structure-based Models for Neural Information Extraction

Information Extraction (IE) is one of the important fields in Natural

Language Processing. IE models can be exploited to obtain meaningful information

from raw text and provide them in a structured format which can be used for

downstream applications such as question answering. An IE system consists of

several tasks including entity recognition, relation extraction, and event detection,

to name a few. Among all recent advanced deep learning models proposed for IE

tasks, one of the potential directions to improve performance is to incorporate

structural information. Structural information refers to encoding any interactions

between different parts of the input text. This information is helpful to overcome

long distances between related words or sentences. In this dissertation, we

study novel deep learning models that integrate structural information into the

representation learning process. In particular, three major categories, i.e., existing

structures, inferred structure at the sample level, and inferred structure at dataset

levels are studied in this dissertation. We finally showcase the novel application of

structure-based models for the less-explored setting of cross-lingual IE.

This dissertation includes both previously published and co-authored

material.
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CHAPTER I

INTRODUCTION

Information Extraction (IE) is one of the important fields of natural

language processing (NLP) with the primary goal of creating structured knowledge

from unstructured text. In more than two decades, IE has gained a lot of attention

and many new tasks and models have been proposed. Moreover, with the

proliferation of deep learning and neural nets in recent years, the advanced deep

models have brought about a surge in the performance of IE models. Among others,

some of the existing deep models resort to structure-based modeling whose goal is

to exploit the structure of the text (i.e., interactions of different parts of the text)

or external structures (e.g., a knowledge base). In this Chapter, we will review the

structure-based deep models proposed for various IE tasks and also other related

NLP tasks. Finally, we will discuss the limitations of the existing models and the

potential for future work. 1

1.1 Structural Data for Information Extraction

Textual materials such as books and websites are still one of the major

sources of information in human societies. In the Big Data era and with the

expansion of the world wide web and social networks in recent years, the amount of

available textual data has also increased substantially. While on the one hand the

sheer size of these resources provides valuable information about many topics, on

the other hand, it hinders efficient information look-up. To address this limitation,

one possible solution is to store the information in pre-defined structures (i.e.,

knowledge bases) so it can be quickly retrieved. Since converting the information

1The next Chapters of this dissertation contain materials from published and co-authored
papers. We acknowledge all co-authors, Franck Dernoncourt, Quan Tran, Varun Manjunatha,
Lidan Wang, Rajiv Jain, Doo Soon Kim, Walter Chang, My Thai, Dejing Dou, Javid Ebrahimi,
and Thien Huu Nguyen.
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available in textual resources into structured knowledge bases is tedious and

the KB could quickly get obsolete, automatic approaches to extract structured

information from free text is necessary. These automatic approaches are called

Information Extraction (IE) methods and consist of several tasks including: 1)

Identifying the real-world entities (e.g., person, company, and dates) that have

been mentioned in text (i.e., Named Entity Recognition) Lample, Ballesteros,

Subramanian, Kawakami, and Dyer (2016); Mikheev, Moens, and Grover (1999);

Nadeau and Sekine (2007), 2) Assigning unique identity (e.g., entity IDs in a

knowledge base) to the entity mentions in text (i.e., Entity Linking) Hachey,

Radford, Nothman, Honnibal, and Curran (2013); T. Lin, Etzioni, et al. (2012);

X. Liu et al. (2013), 3) Finding all expressions (e.g., proper nouns and pronouns)

that refer to the same entity (i.e., Co-reference Resolution) Lee, He, Lewis,

and Zettlemoyer (2017); Ng and Cardie (2002); Raghunathan et al. (2010) 4)

Detecting the semantic relationships between entities that are specified in text

(e.g., ownership and marriage) (i.e., Relation Extraction) Y. Lin, Shen, Liu, Luan,

and Sun (2016); Mintz, Bills, Snow, and Jurafsky (2009); Zelenko, Aone, and

Richardella (2003) and 5) Finding information about incidents referred to in text

(e.g., divorce and attack); this information might answer questions like “who did

what to whom?” (i.e., Event Extraction) Ahn (2006); T. H. Nguyen, Cho, and

Grishman (2016); Ritter, Etzioni, and Clark (2012).

In more than the last two decades, extensive research has been conducted to

design effective methods for each of the aforementioned IE tasks. These techniques

range from rule-based methods Eftimov, Koroušić Seljak, and Korošec (2017), to

feature-based models G. Zhou, Su, Zhang, and Zhang (2005a) and recent advanced

deep learning models Rao, Marcu, Knight, and Daumé III (2017). As it has been
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shown in other NLP tasks including text summarization Mani, Bloedorn, and Gates

(1998), document classification Y. Zhang, Yu, et al. (2020), question answering Qiu

et al. (2019) and machine translation Ma, Tamura, Utiyama, Sumita, and Zhao

(2019), incorporating the existing structures into deep models for IE could improve

their performance. The employed structure could either refer to syntactic structure,

e.g., dependency tree Bunescu and Mooney (2005), semantic structure, e.g., entity

similarity graph Min, Shi, Grishman, and Lin (2012), or external structures (e.g.,

knowledge base) Z. Fang et al. (2020). In this Chapter, we study techniques that

employ structure-based modeling to improve performance on various IE tasks. In

addition, we review the application of text structure in other related NLP tasks.

Finally, we discuss their limitations and the possible directions for future work.

1.2 Named Entity Recognition

Named entity recognition (NER) is the first task in the information

extraction pipeline and it aims to identify words or phrases that refer to people,

organizations, locations, etc. This task has been extensively studied in the more

than last two decades. Approaches for this task extend from the unsupervised rule-

based methods Collins and Singer (1999), to the supervised feature engineering

G. Zhou and Su (2002) and the advanced deep learning models Dernoncourt, Lee,

and Szolovits (2017). Two sub-tasks for this problem should be solved:

– Named entity recognition: The first step for NER is to identify the sub-

sequences of the input text that refer to real-world entities. For instance, in

the input text Kabul is controlled by President Abdol Mosharaf’s government,

which Taleban is fighting to overthrow, the model should identify the phrases

Kabul, Abdol Mosharaf and Taleban as the named entity mentions.
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– Named entity classification: The next step for NER is to classify the

recognized named entity mentions to one of the pre-defined types. For

instance, in the aforementioned example, the model should be able to classify

Kabul as Location, Abdol Mosharaf as Person and Taleban as Miscellaneous.

Most of the existing models address the two tasks simultaneously. However,

some of the prior work proposes a different model for each task. For instance,

Collins and Singer (1999) introduced a new rule-based model to predict the named

entity type using the spelling of the name and the context in which it appears.

The spelling rule might use some look-up tables or predefined patterns (e.g., the

existence of Mr indicates the type Person). On the other hand, the contextual

rules could refer to dependencies between a type and some indicative words in the

surroundings of the named entity (e.g., president in the above example). Similar

rules have been used in a subsequent work G. Zhou and Su (2002), however, in

G. Zhou and Su (2002) authors employed Hidden Markov Model (HMM) to

simultaneously identify the named entity mentions and their types. The HMM

model is able to consider the previous tags and also the features of the current

word to predict its label.

While the feature-based models have gained some improvements on NER,

the state-of-the-art models are now employing deep learning models. NER models

can benefit from the pre-trained word embeddings T. H. Nguyen, Sil, Dinu, and

Florian (2016) and the non-linearity of the deep learning-based models J. Li,

Sun, Han, and Li (2020). More interestingly, these models could also incorporate

structural information resulting in better performance on NER Aguilar and Solorio

(2019); Jie and Lu (2019); J. Yu, Bohnet, and Poesio (2020). The structure could

refer to the syntactic parse tree. In Jie and Lu (2019), authors show that a deep
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model enhanced with the dependency tree could have two advantages: 1) The

syntactic connection between the words is indicative of the entity type, 2) the long-

dependencies captured from the dependency tree could improve the representation

of the words for the NER task. In this work, the authors proposed an LSTM-CRF

model to capture this information. More specifically, the representation of the

words to the LSTM model is enhanced with the representation of their parents and

the dependency relation between them. Afterward, the interaction between the

parent and its child is models via an interaction function (e.g., dot product or a

feed-forward neural net) over the corresponding hidden states of the parent and

children from the LSTM layer. In another recent work Aguilar and Solorio (2019),

authors propose to encode the syntactic structure using Tree-LSTM. Furthermore,

they introduce local and global attention. The local attention highlights important

words with respect to the current word that is being evaluated. On the other hand,

global attention emphasizes the important words of the sentence without restricting

the attention to the current word.

1.3 Entity Linking

Entity linking (EL) is the task of identifying the corresponding entities in

a knowledge base (KB) for every entity mention in the text. For instance, in the

given example Michael Jordan has recently signed a new contract with his new club.

He will be the first goalkeeper of the Rangers for two years., there are two entity

mentions: 1) Michael Jordan and 2) Rangers. Both of these entity mentions could

refer to multiple entities (e.g., Michael Jordan could refer to the English goalkeeper,

American football offensive lineman or American former professional basketball

player and the Rangers could refer to the entities Rangers football club in South

Africa, an association football club from Glasgow or Rangers football club in New
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Zealand). The correct mapping between the entity mentions and the entities in the

KB depends on the context and the relation between entities in the KB.

As KBs are structured, this task inherently benefits from encoding the

structure (here, structure mainly refers to the relationships between entities in

the KB). While several feature-based models have been proposed for EL Ji and

Grishman (2011); Khalife and Vazirgiannis (2018); Veyseh (2016), the state-of-the-

art performances are achieved using deep learning models Z. Fang et al. (2019);

L. Wu, Petroni, Josifoski, Riedel, and Zettlemoyer (2019); Yamada and Shindo

(2019). Most of the existing work breaks down EL into two sub-tasks Sevgili,

Shelmanov, Arkhipov, Panchenko, and Biemann (2020):

– Candidate Generation: Using string similarity or descriptions available in

KB, a list of candidate entities is generated Sevgili et al. (2020). For instance,

for the given example, the model compares the similarity between the entity

mention Rangers and the entities in the KB to extract the list of Rangers

football club in South Africa, an association football club from Glasgow or

Rangers football club in New Zealand. Authors in P. Le and Titov (2019);

Zwicklbauer, Seifert, and Granitzer (2016) use a simple string-match to find

the list of entities. Others might use the aliases for the KB entities computed

from the knowledge base metadata (e.g., redirect pages in Wikipedia) Z. Fang

et al. (2019) or pre-calculated prior probabilities (e.g., computed from

mention-link count statistics) Ganea and Hofmann (2017)

– Entity Ranking: Based on the consistency between the context of the entity

mention and the representations of the entities, the candidate entities are

ranked to choose the entity with the highest score Sevgili et al. (2020).

For instance, in the given example, the model will choose the entity an
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association football club from Glasgow as the most likely entity among the

extracted list of possible entities for the entity mention Rangers

For the second sub-task, to represent the entities and encode their

similarities with the entity mentions in the text, KB structure and the relationship

between different entity mentions in the text could be helpful and the recent

work has shown that deep graph architectures are able to efficiently encode this

information Z. Fang et al. (2020); J. Wu et al. (2020). One of the early works that

applied graph convolution network (GCN) for entity linking is Cao, Hou, Li, and

Liu (2018). They employed GCN to model the coherency between the candidate

entities. In order to handle the large number of entities in the KB, they proposed

to apply GCN only on the subset of entities extracted in the first phase (i.e.,

candidate generation). In another work, authors in Z. Fang et al. (2020) proposed a

graph attention network to attend to the previous and next entity mentions in the

text to encode the sequential inter-dependencies between the entity mentions in the

text. Authors in J. Wu et al. (2020) propose to dynamically compute and refine the

graph structure to model the dependencies between entities. The dynamic graph

computation has been shown to be effective for other related tasks too Nan, Guo,

Sekulic, and Lu (2020). In this method, the representation of the nodes is used to

compute the structure of the graph for the next iteration of the graph convolution

network.

1.4 Coreference Resolution

Coreference resolution (CR) is a fundamental task of IE whose goal is to

identify different entity mentions in the document that refer to the same entity.

For instance, in the example ”I voted for Nader because he was most aligned with

my values,” Sara said, there are three entity mentions for the person Sara (i.e., I,
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my and Sara) and two entity mentions for the person Nader (i.e., Nader and he).

A CR model should be able to find the chain of entity mentions for the entities

Sara and Nader.This task is crucial for many downstream applications including

Relating Extraction and Question Answering.

According to Stylianou and Vlahavas (2019), traditional methods for CR can

be categorized into four categories:

– Mention-pair: This method determines if a pair of mentions refer to the same

thing. This method employs the features of the two mentions and performs a

binary classification Soon, Ng, and Lim (2001).

– Mention-ranking: In this category, models collectively consider all mentions to

resolve a specific mention. More specifically, for each mention, all candidate

antecedents are ranked and the one with the highest score is selected to be

chained to the current mention Rahman and Ng (2009).

– Entity-based methods: Models of this category employ clustering techniques

to decide if two clusters of mentions should be merged or not Ratinov and

Roth (2012).

– Latent structure models: These models create a hierarchy of the mentions to

collectively cluster them Björkelund and Kuhn (2014). The major difference

between entity-based and latent structure models is that, contrary to the

former which employs agglomerative clustering, in the latter, the clusters are

created in a tree-like structure.

Similar techniques have been also employed in deep learning models Clark

and Manning (2016); Lee, He, and Zettlemoyer (2018); Wiseman, Rush, Shieber,
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and Weston (2015). In addition, some deep learning models formulate this task

as question answering W. Wu, Wang, Yuan, Wu, and Li (2020) or they use

reinforcement learning to perform this task Fei, Li, Li, and Li (2019). While the

traditional methods have proven the importance of text structure (i.e., dependency

tree) for this task Björkelund and Kuhn (2014); Lappin and Leass (1994), only

recently syntactical structure has been used in deep models K. Fang and Jian

(2019). Authors in K. Fang and Jian (2019) proposed to use the syntactic structure

of the sentence for Chinese coreference resolution. The syntactic structure has

three purposes in this work: (1) To filter out unlikely entity mentions. More

specifically, they keep only those candidate entity mentions (i.e., spans of words)

that are represented by a node in the syntactic tree; (2) To represent the context.

In particular, the syntactic tree traverse is employed to gather the syntax-based

context for each entity mention (i.e. node in the syntactic tree); (3) Encode

structural features (e.g., degree of the node or its siblings).

1.5 Relation Extraction

Relation extraction (RE) is the task of identifying the semantic relation

between entity mentions in the text. For instance, in the given example Some Arab

countries also want to play a role in the stable operation in Iraq but are reluctant

to send troops because of political, religious and ethnic considerations, the official

said, a relationship of Organization-Affiliation is mentioned between entities Arab

countries and troops. An RE model should be able to extract the relationship

between different entity mentions or decide whether or not the entities of interest

are in a relation.

This task has been extensively studied and several settings for that have

been proposed including single-sentence, document-level, distantly supervised,
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end-to-end, and cross-domain. In this survey, we first review the most important

existing works and datasets for each of these settings of RE. Afterward, we provide

details on the existing structure-aware deep RE models.

1.5.1 Single-sentence. In this setting, the input to the model will be

only one sentence consisting of at least two entity mentions. The goal is to predict

the relation type between every pair of entity mentions in the input sentence. For

this setting, the major existing datasets include ACE Doddington et al. (2004),

TACRED Y. Zhang, Zhong, Chen, Angeli, and Manning (2017) and SemEval

2010 Task 8 Hendrickx et al. (2009). The ACE dataset is a series of datasets,

i.e. ACE 2003, ACE 2004, ACE 2005, ACE 2007, and ACE 2008, released by

NIST for the entity, relation, and event extraction. The SemEval 2010 Task 8

dataset provides 8,853 instances for 9 relation types. The relations in the SemEval

dataset is directed meaning that the total number of relations will be 18 plus one

special relation (i.e., Other) for entities that are not in a relation. The corpus

to be annotated for the SemEval dataset is obtained via a pattern-based search

for each relation type from the Web. Despite the vast application of these two

datasets for sentence-level relation extraction, there are at least two limitations

in them. First, these datasets cover a limited number of relation types (i.e., 19

relations in SemEval and 24 relations in ACE 2003 and 2004 datasets). This small

number of relations will not represent the challenges in a real-world application of

RE. Second, the common issue in both ACE and SemEval datasets is that these

datasets are relatively small for data-hungry deep learning models. In other words,

this small size prevents the models from more effective feature extractions from

the data. To address this limitation, authors in Y. Zhang et al. (2017) proposed

a new large-scaled sentence-level relation extraction dataset, i.e., TACRED. This
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dataset contains 106,264 examples (both positive (i.e., examples in which the two

entities are in a relation) and negative (i.e., examples in which the entity are not

in a relation)) in 42 relation types. The annotation is conducted over the TAC

KBP evaluations from 2009 to 2015. The annotation refers to the relations between

organizations, people, and locations.

The traditional methods for sentence-level relation extraction use feature-

based and statistical models Bunescu and Mooney (2005); Chan and Roth (2010);

Sun, Grishman, and Sekine (2011); G. Zhou, Su, Zhang, and Zhang (2005b). The

major limitation of the feature-based models is that it requires extensive feature

engineering efforts and domain knowledge to find the effective patterns for the

relation mentions. Moreover, these models cannot generalize well to unseen data.

To address these limitations, deep learning models are employed for RE and they

have gained considerable attention from the community M. Nguyen and Nguyen

(2018b); T. H. Nguyen and Grishman (2015c, 2015a, 2016); L. Wang, Cao, de

Melo, and Liu (2016); D. Zeng, Liu, Lai, Zhou, and Zhao (2014); Y. Zhang et al.

(2017); P. Zhou et al. (2016). Using deep architectures, e.g., Convolutional Neural

Net (CNN) and Long Short-Term Memory (LSTM), along with the background

knowledge provided via word embeddings, deep models reached the state-of-the-art

performance on different datasets. In addition, some of the deep models embrace

the findings of the feature-based models to improve RE performance. For instance,

using dependency trees in deep learning models has been shown to be effective

for deep learning-based RE models. Y. Liu et al. (2015); Miwa and Bansal (2016);

Xu et al. (2015a); Y. Zhang, Qi, and Manning (2018). For this purpose, graph

neural networks (GNN) could be employed to model the dependency structure.

Y. Zhang et al. (2018) proposed one of the early GNN-based models for RE. One of
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the major challenges to employ the dependency tree in a deep model is that neural

models operating directly on parse trees are usually difficult to parallelize and

thus computationally inefficient Y. Zhang et al. (2018). To address this issue, the

prior work pruned the dependency tree to keep only the words on the shortest

dependency path (SDP) between the two entity mentions in the dependency

tree. However, such simplification will result in loss of information as some of

the words off the path could be also important. To address this issue, Y. Zhang

et al. (2018) proposed to use graph convolution networks (GCN) Kipf and Welling

(2016). GCNs are able to efficiently encode the graph structures with the parameter

sharing. In order to improve the performance, Y. Zhang et al. (2018) also proposed

to prune the dependency tree along with the SDP up to a pre-defined distance

between the off-the-path and on-the-path words. Their evaluations of TACRED

dataset prove the effectiveness of this method.

1.5.2 Document-level. In this category of RE models, the input

to the system is a document consisting of multiple entities. Entity mentions

might appear in one sentence or across multiple sentences in the given document.

In general, the relation mentions in documents could be categorized into two

groups: 1) Intra-sentence relations: If both entity mentions that are in relation are

mentioned in the same sentence, the relation between them is an intra-sentence

relation; 2) Inter-sentence relations: In this category, the two entity mentions

appear in different sentences across the document. For instantce, in the given

document Elias Brown (May 9, 1793– July 7, 1857) was a U.S. Representative

from Maryland. Born near Baltimore, Maryland, Brown attended the common

schools. He died near Baltimore, Maryland, and is interred in a private cemetery

near Eldersburg, Maryland., the relation between the entity U.S. and Maryland
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is COUNTRY and the relation between the entity Maryland and Baltimore is

LOCATED IN. As both relations can be inferred from the immediate sentence

in which the entities appear, the two mentioned relations are intra-sentence

relations. On the other hand, the relation between the entity Baltimore and U.S. is

COUNTRY that should be inferred from the different sentences in which the entity

mentions appear. Thus, this relation is of type inter-sentence relations.

While there are some domain-specific J. Li et al. (2016) or distantly

supervised N. Peng, Poon, Quirk, Toutanova, and Yih (2017); Quirk and Poon

(2016) document-level relation extraction datasets, the only large scale manually

labeled document-level relation extraction dataset available is provided by Yao et

al. (2019). This dataset, called DocRED, contains 56,354 relation facts and 132,357

entity annotations across 5,053 Wikipedia documents. Among all relation facts,

40.7% of them are inter-sentence relations which require inference in document

level.

The major challenge for document level relation extraction is to infer the

long range dependencies between the entities across sentences. To deal with this

issue, most of the existing work propose to employ structure-based modeling.

More specifically, a structure that could represent the dependencies between

different parts of the document is constructed, either using some heuristics

S. Zeng, Xu, Chang, and Li (2020) or it is learned by a trainable component

Nan et al. (2020). In order to infer a task specific structure for document-level

RE, authors in Christopoulou, Miwa, and Ananiadou (2019) proposed to infer

the document structure from the representations of its edges. More specifically,

they first create a dense graph whose vertices are the entity mentions, sentences

and the entities (i.e., the people, organizations, etc that have been mentioned in
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the document). The entity mentions are represented using their corresponding

hidden states of a bi-directional LSTM (BiLSTM) network. The sentence and the

entity representations are computed by pooling the representations of all words

or mentions of them, respectively. Afterwards, the representations of edges of

the graph are obtained using the representation of their heads and tails. Finally,

to compute the representations for longer paths (e.g., paths consisting of two

edges), a feed forward neural net is employed to combine the representations of

all edges in that path. The path representation between the two entity mentions of

interest is used to predict the relation. While this work proposed a method to infer

the structure-based entity mentions relations, it fails to dynamically update the

representations of the nodes, including the entity mentions themselves. To address

this issue, authors in Nan et al. (2020) proposed a structure inference mechanism

to dynamically and consecutively update the node representation and the graph

structure, in turn. More specifically, after obtaining the representations of the

nodes2, the weights of all edges in the dense graph are computed from the head

and tail representation of the edge. Afterwards, a GCN layer is employed to update

the node representations. Using the updated representation of the nodes, a new

set of weights for edges of the graph is computed. This process is repeated for N

times. Finally, the representation of the two entity mentions are used for relation

prediction.

Most recently, authors in D. Wang, Hu, Cao, and Sun (2020) proposed

another saturate-based document-level relation extraction model. In the proposed

approach, authors first construct a set of nodes based on the sentences, entities,

and mentions. Afterwards, similar to prior work, they connect the nodes based

2in this work, entity mentions, the words on the SDP between every pair of entity mentions
and the entities themselves serve as the nodes of the graph
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on some heuristics (e..g, if a mention is hosted by a sentence there would be

connection between the corresponding sentence node and the mention node).

Using the obtained global graph and a GCN model, authors update the initial

representations of the nodes which are obtained from a sequence-based encoder.

In the next step, the representations of the nodes are updated using multi-head

self-attention component. This component could capture the semantic dependencies

between the extracted nodes, i.e., sentences, mentions and entities. Finally, by

concatenating the representations obtained from the GCN layer and the self-

attention layer for the two entities of interest, the final representation vector is

constructed and it is consumed by a logistic regression classifier to predict the

semantic relations between the two entity mentions in the document.

1.5.3 Distantly Supervised. One of the major challenges for RE

is that collecting training data is expensive. Thus, the exiting datasets are quite

small, specifically for data-hungry deep models. One remedy to this issue could

be to use distantly supervised (DS) datasets. In this setting, some heuristics are

employed to collect examples for pre-defined relation sets. In the seminal work

Mintz et al. (2009), authors employed the relations between entities in Freebase

knowledge base and an unlabeled corpus to extract examples for each relation.

For instance, consider the two entities Steve Jobs and Apple. Suppose that the

relation between this two entity mention in the KB is Works At. Based on the

method proposed by Mintz et al. (2009), one could extract examples for relation

Works At by extracting all sentences in a large corpus (e.g., Wikipedia) that

contains mentions for both entities Steve Jobs and Apple

While the distantly supervised RE dataset could extend the size of training

sets, they also introduce noisy examples. More specifically, sentences that contain
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both entities of interest but do not mention the supposed relation between entities

are incorrectly labeled. This examples are indeed the false positives. Due to this

problem, a distantly supervised RE model should be able to deal with the noisy

example which might be extracted in this process. To this end, several techniques

are proposed to exclude or rectify the incorrectly labeled samples in the training

data. Some of the prior works exploit reinforcement learning (RL) to identify the

incorrectly labeled samples. Feng, Huang, Zhao, Yang, and Zhu (2018) introduced

a two-module RE model. The first module is an instance selector which identifies

the instances with incorrect labels and filter them out. The second module is a

relation classification model which use the input training data to learn the RE

task. The reward for the instance selector is computed using the performance of the

second component on the evaluation set. In a similar approach, Qin, Xu, and Wang

Qin, Xu, and Wang (2018) proposed to employ RL to denoise the training data.

However, in their method, instead of excluding the noisy samples, they suggested

to change the label of the false positives to None, indicating there is no relation

between the two entity mentions in the sentence.

One issue with the RL-based approaches is that they make a hard decision

to either exclude or change the label of noisy samples. In other words, during the

training of the relation classifier, the hard labels of the noisy samples might be

detrimental for the training process. In order to alleviate the effect of the incorrect

hard labels, T. Liu, Wang, Chang, and Sui (2017) introduced a soft-label multi-

instance learning method for relation extraction with noisy training samples. In

this method, all samples of a pair of entity mentions hi and tj are grouped into the

set < hi, tj > consisting of c sentences S = {x1, x2, . . . , xc}. The set < hi, tj >

could be represented either by only one of the sentences in S or an attention-based
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pooling of the sentences. Afterwards, to obtain the label for the set < hi, ht >,

instead of using the one-hot Li,j vector label obtained from the distantly supervised

dataset, they proposed to learn a dense vector L̄i,j from the bag representation and

the one-hot vector Li,j. The soft label L̄i,j will be used in the next epoch by the

relation classifier as the gold label for the set < hi, tj >.

For the distantly supervised relation extraction setting, the structure-

based modeling has been also shown to be effective. The graph-based models

employed for DS relation extraction encode the structure of the knowledge graph.

More specifically, the structure of the knowledge base is employed to model the

interaction between the entities, thereby, denoise the samples for every pair of

entity mentions. For instance, authors in Hu et al. (2019) proposed to employ the

knowledge graph structure to learn an embedding vector for each relation type.

More specifically, using the graph encoding method proposed by Bordes, Usunier,

Garcia-Duran, Weston, and Yakhnenko (2013), they learn the representation of

the head (h), tail (t) and relation (r) of the triples < h, r, t > in the knowledge

graph. Afterwards, using the representation of the relations in the training set, an

attention score is computed for each sentence in the training set. The attention-

based representation of the sentences are employed by the relation classifier.

In addition to the application of the graph structure for denoising the

samples in DS datasets, some researchers have employed graph structure to learn

the dependencies between relations predicted for an entity pair (e1, e2) from a set

of sentences S = {s1, s2, . . . , sn}. Two relation are dependent on each other, if the

existence of one infer the existence of another. Note that it would be a directed

dependency. For instance, President of between a person and a country could also

induce the relation Lives in between the person and the country. To encode this

17



dependency, authors in Shang, Huang, Sun, and Mao (2020) proposed to build

a graph structure where the nodes are the relation types and the edges could

represent the dependencies between them. During training the model is optimized

to learn a dependency relation graph for every pair of entities that could represent

the gold relations between the two entity.

1.5.4 End-to-end. Relation extraction is the task of identifying the

relations between entity mentions in text. To this end, the entity mentions should

be first identified. While a pipeline approach identifies the entities and relations

in separate stages, the major limitation is that the errors in the entity recognition

stage could be propagated to the relation extraction stage. In order to prevent this

error propagation, an end-to-end (E2E) RE model jointly recognizes the entity

mentions and the the relation between them in a given text snippet.

While the sentence-level relation extraction datasets (e.g., ACE or SemEval

2010 Task 8) could be used to train and evaluate an E2E RE model Miwa and

Bansal (2016), for this setting, most of the recent work report the performance of

the models on NYT Miwa and Bansal (2016) and WebNLG Gardent, Shimorina,

Narayan, and Perez-Beltrachini (2017) datasets. NYT was originally proposed to

address the high level of noise in the datasets prepared by the distant supervision

technique Mintz et al. (2009). To this end, they proposed a semi-supervised method

to extract relation tipples (i.e., (entity1,relation,entity2)) from New York Times

using the Freebase as the knowledge base. WebNLG is a corpus created using a

natural language generation (NLG) framework operated on the DBpedia knowledge

base.

Although prior work for E2E RE employed feature-engineering methods

T.-V. T. Nguyen and Moschitti (2011), recent deep models are proved to achieve
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the state-of-the-art results for this task Miwa and Bansal (2016). Moreover, in the

recent work T.-J. Fu, Li, and Ma (2019), authors have shown that the structure-

based modeling could improve the performance of an E2E RE system. In particular,

two graph structures are employed in this work: (1) The syntactic tree of the

sentence is employed by a graph convolution network (GCN) to enrich word

representations The syntax-enriched word representations are employed to predict

the entities and also the relation types between words; (2) A full-graph consisting

of the words as the nodes and the pair-wise relations between words as the edges

is created. In this graph, the edges (i.e., relations) that are predicted in the first

stage (i.e., using the dependency based GCN) are emphasized by giving more

attention weights to them. The main purpose of this graph is to encode the relation

dependencies between words. Specifically, for those relations that share an entity

(e.g., the head entity), the dependency between them could be encoded by the GCN

layer to infer the direct relation between the other entities (e.g. the tail entities).

For instance, if the triples (BarackObama,LiveIn, WhiteHouse) and (WhiteHouse,

PresidentialPalace, UnitedStates) are predicted in the first stage, the second stage

employ GCN to infer the third triple (BarackObama, PresidentOf, UnitedStates).

In addition, in order to predict multiple relations between every pair of entities,

authors proposed to use a threshold in which every relation type r between the

pair of words w1 and w2 (i.e., two predicted entity mentions), predicted in the

second phase, will be included in the final model’s prediction to create the triple

(w1, r, w2).

1.5.5 Cross-domain. While the aforementioned settings suppose

that the training and the evaluation data come from the same domain, it could not

be guaranteed in all scenarios. For those cases that the RE model is trained and
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evaluated in different domains, a cross-domain RE system is required. The main

challenge of such a setting is that the features that are useful during training might

not be relevant or helpful in the evaluation phase. To train and evaluate models

in this setting, the ACE 2005 datasets is widely used. In this dataset, there are

6 different domains, i.e., (bc, bn, cts, nw, un, and wl), covering text from news,

conversations and web blogs. Cross-domain models are trained on one of these

domains (e.g., news) and are evaluated on the other domains (e..g, conversations

and web blogs). Similar to the other settings, for cross-domain RE, prior work

started to employ feature-based models M. Yu, Gormley, and Dredze (2015).

However, deep models are proved to be more effective for this setting T. H. Nguyen

and Grishman (2016). Until recently, the graph-based deep model have not been

explored for this task. Recently, Veyseh, Nguyen, and Dou (2019) have shown

that the structure of the text (e.g., dependency tree) could be used to improve the

performance for cross-domain RE. Also, in the recent work Veyseh, Dernoncourt,

Thai, Dou, and Nguyen (2020), they have employed deep learning to infer the

structure of the text without using off-the-shelf parsers. More specifically, they

propose to employ two deep architectures, i.e., ordered-neuron LSTM Shen, Tan,

Sordoni, and Courville (2018) and self-attention mechanism Vaswani et al. (2017a),

to infer two views of structure of the input sentence. Afterwards, by exploiting a

neural-based mutual information estimator Belghazi et al. (2018), they increased

the consistency between two structural views. Their evaluation on ACE 2005

dataset show that this techniques achieves the state-of-the-art results for cross-

domain relation extraction.
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1.6 Event Extraction

Event extraction is the task of identifying real word incidents mentioned in

text such as attack, divorce, or birth. According to the ACE annotation guidelines,

an event is described as something that happens and change the state of an entity.

For instance, the sentence Ames recruited her as an informant in 1983, then

married her two years later, implies that the marriage status of Ames is changed so

it refers to an event of marriage. According to ACE annotation guidelines, every

event mention consist of two components:

– Trigger: This is the word or phrase which most clearly express the occurrence

of the event. It could be a verb, noun or adjective. For instance, in the

sentence John robert bond was born in England, the verb born is the event

trigger which indicates the occurance of the event BE-BORN. Note that each

event trigger evokes a specific incident known as event type.

– Argument: Those entities that are participants of the event and their states

are changed due to the occurrence of the event are considered as the event

argument. In addition to the event participants, the other attributes of the

event, e.g., time or location of the event, are also considered as the event

arguments. For instance, in the sentence The man accused of killing seven

people near Boston on Tuesday got his guns in Massachusetts, there is an

event mention of Kill. The trigger word for this event is killing and the

arguments of this event are man, seven people, Boston and Tuesday. It

is worth noting that each argument takes a specific role in the event. For

instance, in the given example, the role of the argument seven people is victim

and the role of the argument Boston is place.
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Type Sub-Types

Life Be-Born, Marry, Divorce, Injure, Die
Movement Transport
Contact Meet, Phone-write
Conflict Attack, Demonstrate
Business Merge-Organization, Declare-Bankruptcy, Start-Org, End-Org
Transaction Transfer-Money, Transfer-Ownership
Personnel Elect, Start-Position, End-Position, Nominate
Justice Arrest-Jail, Execute, Pardon, Release-Parole, Fine,

Convict, Charge-Indict, Trial-Hearing, Acquit, Sentence, Sue, Extradite, Appeal

Table 1. Event Types and Sub-Types in ACE 2005 Xiang and Wang (2019)

The task of identifying the trigger and its type is known as Event Detection

(ED) and the task of identifying the event arguments and their roles is known as

Event Argument Extraction (EAE). For each of this tasks there is a wealth of prior

work extending from feature-based models Ahn (2006); Hong et al. (2011a); Ji and

Grishman (2008); Q. Li, Ji, and Huang (2013); Liao and Grishman (2010a, 2010b);

McClosky, Surdeanu, and Manning (2011); Miwa, Thompson, Korkontzelos, and

Ananiadou (2014); Patwardhan and Riloff (2009); Riedel and McCallum (2011);

B. Yang and Mitchell (2016a) to advanced deep learning systems Y. Chen, Xu,

Liu, Zeng, and Zhao (2015); T. M. Nguyen and Nguyen (2019a); Sha, Qian, Chang,

and Sui (2018); S. Yang, Feng, Qiao, Kan, and Li (2019); J. Zhang, Qin, Zhang,

Liu, and Ji (2019); Y. Zhang, Xu, et al. (2020). While most of the prior work

consider sentence-level event extraction, some recent work has also introduced

event extraction in document level Ebner, Xia, Culkin, Rawlins, and Van Durme

(2019). Moreover, in addition to the text-based event extraction, there are some

recent work that attempt to extract event mentions from multiple modalities (e.g.,

text and image) M. Li, Zareian, et al. (2020); T. Zhang et al. (2017). Furthermore,

some prior work consider the open event extraction which aims to extract the event

triggers without the assumption of a pre-defined domain (i.e., ontology of event
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Domain Proportion

Newswire 20%
Broadcast News 20%
Broadcast Conversations 15%
Weblog 15%
Usenet News Group 15%
Conversational Telephone Speech 15%

Table 2. Domain Statistics of the English portion of the ACE 2005 Xiang and
Wang (2019)

types) Naik and Rosé (2020); Sims, Park, and Bamman (2019a); R. Wang, Zhou,

and He (2019). Event extraction systems could be employed in knowledge base

construction, question answering, and text summarization. In this section, we will

review the important existing work and their major advantages and limitations. In

the reviews of the models, we emphasize the application of text structure for event

detection and event argument extraction.

1.6.1 Datasets. The most popular dataset among event extraction

researches is ACE 2005 dataset. It has annotations for 599 documents with

6,000 labels for events Xiang and Wang (2019). The events are annotated with

8 types and 33 sub-types. Table 24 shows the event types and sub-types in ACE

2005 dataset. Docuemnts annotated for ACE 2005 are in English, Arabic and

Chinese from six different domains, i.e., Newswire, Broadcast News, Broadcast

Conversations, Weblog, Usenet News Group, and Conversational Telephone Speech.

Table 2 shows the statistics of each of these domains in English section of ACE

2005 dataset.

In addition to ACE 2005 dataset, there are other datasets that are exploited

by event extraction works:
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CASIE CySecED

# event types 5 30
# positive examples 8,470 8,014
# negative examples 240,682 282,220
# sentences per document (average) 16.69 24.94

Table 3. Statistics for CASIE and CySecED. Negative examples refer to non-
trigger words while positive examples are the annotated trigger words for the event
types of interest Hieu Man Duc Trong (2020).

– TAC-KBP: introduced by Linguistic Data Consortium (LDC) “Rich Ere

Annotation Guidelines Overview” (2016), provides annotations for 360

documents with 9 event types and 38 event sub-types.

– LitBank: This dataset annotates 100 English literary texts. It includes

annotations for both entities and event triggers. Unlike ACE, LitBanck does

not provide event types for the triggers.

– TimeBank: This dataset, provided by LDC Pustejovsky et al. (2003), includes

annotations for events, times, and temporal relation between event mentions.

Similar to LitBank, this dataset also does not provide types of the event

triggers.

– Domain-Specific Datasets: In addition to the general-domain event

annotation, some datasets focus on domain-specific datasets. BioNLP-ST

is a collection of event mention annotations from various corpora including

GENIA event corpus, BioInfer corpus, Gene regulation event corpus, GeneReg

corpus and PPI corpora Nédellec et al. (2013); Vanegas, Matos, González, and

Oliveira (2015); Xiang and Wang (2019). Another domain that has gained

attention for event extraction is cyber-security domain. In this domain, event

are categorized into four general topics: (1) Discover: Events referring to
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identification of a vulnerability in a system, (2) Patch: Events mentioning the

fixes of a known vulnerability, (3) Attack: Exploitation of a vulnerability to

impact the system and (4) Impact: consequences of an attack on a system

Hieu Man Duc Trong (2020). For cyber-security domain, CySecED Hieu Man

Duc Trong (2020) and CASIE Satyapanich, Ferraro, and Finin (2020a) are

the largest datasets available. The statistics of these datasets are provided in

Table 3.

– Multi-modal Event Extraction: In additon to text-based event extraction,

some recent work proposed a new dataset for extracting events from both

textual and visual data M. Li, Zareian, et al. (2020).

1.6.2 Feature-based Models. Early work on event extraction has

employed feature engineering for event extraction from text. In the early stages

of event extraction research, Riloff and Shoen Riloff and Shoen (1995), proposed

a pattern-based EE system. In their system, the syntactic parse of the sentence

is employed to extract general patterns for event mentions. For instance, in the

sentence World trade center was bombed by terrorists, identifying the subject

(i.e., Wordl trade center), verb phrase (i.e., was bombed) and prepositional phrase

(i.e., by terrorists) could lead to the event patterns [x] was bombed and bombed

by [y] to identify the attack event and its arguments in text Xiang and Wang

(2019). Based on the statistics of the patterns in the corpus, the high confident

patterns are selected to be used in evaluation phase. Later in the following years,

feature-based models employed statistical models such as nearest neighbors Ahn

(2006), maximum-entropy learner Z. Chen and Ji (2009b), support vector machine

Saha, Majumder, Hasanuzzaman, and Ekbal (2011), and conditional random field

Majumder and Ekbal (2015).These models employ the lexical forms of the words,
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the syntactic parse (e.g., the POS tag, the parent or children of the word in the

dependency tree, or the label of the dependency edges), synonyms of the words,

and the event or entity type Xiang and Wang (2019). For a complete review of

these methods, refer to the survey provided by Xiang and Wang (2019).

1.6.3 Deep Models. Despite all progress obtained from more effective

features employed in statistical models, the major limitations of feature-based

systems is that these models are not able to incorporate background knowledge and

also to infer new useful patterns from the training data. Deep learning addresses

these limitations by utilizing the word embeddings pre-trained on large corpus

and also by exploiting deep architectures to induce effective patterns from the

training data. Due to these advantages, the recent event extraction systems employ

deep learning Y. Chen et al. (2015); T. M. Nguyen and Nguyen (2019a); Sha

et al. (2018); S. Yang et al. (2019); J. Zhang et al. (2019); Y. Zhang, Xu, et al.

(2020). Some of the deep models exploit sequence-based architectures Sha et al.

(2018), convolutional neural networks (CNN) Björne and Salakoski (2018), or recent

transformer-based models Ahmad, Peng, and Chang (2020).

In addition to the deep architectures and background knowledge, some

recent models attempted to incorporate the interaction between event types

W. Li, Cheng, He, Wang, and Jin (2019) or argument roles X. Wang, Wang, et

al. (2019) using hierarchy-based modeling. For instance, authors in X. Wang, Wang,

et al. (2019), proposed to encode the hierarchy of event argument types using

neural module network (NMN) Andreas, Rohrbach, Darrell, and Klein (2016). In

particular, the hierarchy of the event argument types are employed to capture the

dependency between related argument roles. For instance, in the sentence Steve

Jobs sold Pixar to Disney in 2006, identifying the role of the entity Steve Jobs as
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Seller and its hierarchical dependency with role Buyer (i.e., considering the fact

that both Seller and Buyer are entities of type Person or Organization) could

help the model to predict the role of the entity disney as Buyer. To encode this

hierarchical information, authors proposed to train separate attention functions for

each type which could be applied to the input sentence to obtain type-dependent

repression of the input text. The aggregation of type-dependent representations of

all possible types of an entity is used in the final classifier to predict the role of the

entity.

1.6.4 Graph-based Models. The structure-based modeling has two

applications for event extraction: 1) Text Representation and 2) Event Graph. In

this section, we study each of them in details

1.6.4.1 Text Representation. The syntax or semantic based

structures of the sentence might be employed by deep models to encode the

interactions between the words, thereby improving the performance of event

detection or event argument extraction. For instance, authors in Amir Pouran

Ben Veyseh (2020) proposed to infer the task-specific syntactic and semantic

structure of the input sentence using deep architectures. Specifically, the syntactic

structure is induced by feeding the pair of dependency-based distance of the

words to the trigger/argument into a feed forward neural net. The output of

the feed forward neural net are employed as the entries of the syntax-based

adjacency matrix. To infer the semantic structure of the input text, authors

propose to employ self-attention mechanism Vaswani et al. (2017a). Finally, for

efficient combination of the syntactic and semantic structures, graph transformer

network (GTN) Yun, Jeong, Kim, Kang, and Kim (2019) is employed. GTN uses

convolution operation to combine the structures and also encode the heterogeneous
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paths by multiplying the adjacency matrix of all structures. One limitation of

the GTN architecture is that it could result in overfitting to the training data

due to the increased number of parameters for combining the structures. In order

to alleviate this issue, authors in Amir Pouran Ben Veyseh (2020) proposed to

employ information bottleneck technique. Specifically, they decrease the mutual

information between the input and output of the GTN, treating this network as

information bottleneck. This technique could prevents the model from memorizing

patterns specific to the training data.

In another work, authors in D. Li, Huang, Ji, and Han (2019) proposed to

employ Tree-LSTM to encode the dependency tree of the input text. Tree-LSTM is

a version of LSTM with the key difference that at each time step, the hidden states

of the Tree-LSTM neurons are updated using the representation of the current

word and the hidden states of all of its children in the input tree structure. In

addition to the dependency tree encoded by Tree-LSTM, authors also proposed to

encode the external knowledge encoded in a domain-specific knowledge base (KB)

using gating mechanism added to the Tree-LSTM update rules. More specifically,

firstly, for each entity in the input text, their types and descriptions are obtained

from the knowledge base. Next, the entity type and description are represented

using randomly-initialized embedding of their words. Note that these embeddings

will be fine-tuned during training. Afterwards, using the pooled representation of

the entity type and description, a new gate vector is computed. The gate vector

will be employed in the Tree-LSTM to control how much information should be

transferred from the children to the parent node at each time step.

Although the Tree-LSTM or GCN architectures employed in the above

mentioned works are effective to capture the structure of the input text, the
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performance of these models will degrade by increasing the number of layers.

This limitation prevent the model from encoding longer dependencies in the

graph structure. To overcome this issue, authors in Yan, Jin, Meng, Guo, and

Cheng (2019a) proposed to encode multi-order graph structure. More specifically,

they compute the graph-based representation of the input text by employing the

dependency tree adjacency matrix A, the second order of the adjacency matrix A2

and the third-order of the adjacency matrix A3. The aforementioned adjacency

matrices will be encoded using graph attention network (GAT) which is a variant of

GCN. The representation obtained for each order will be aggregated using attention

function atop the proposed GATs.

Another issue with prior work is that they utilize dependency tree for event

extraction while ignoring the dependency relation type between words. More

specifically, the dependency tree is encoded using a binary adjacency matrix in

which an entry is set to 1 if there is a dependency edge between the corresponding

words, otherwise the entry is set to zero. To solve this limitation, in the proposed

mode by Cui et al. (2020), authors suggest to model the structure of the sentence

by encoding the dependency relations between words. More specifically, instead of

using a binary adjacency matrix to encode the dependency tree, authors employ the

tensor E of the dimension n × n × p whose entry Ei,j is a vector of size p, i.e., the

total number of dependency relations in the dependency tree. Moreover, each edge

in the dependency tree is represented with a randomly initialized vector. The words

of the sentence are also encoded by the high-dimensional vectors obtained from a

BiLSTM network. Next, to update the word representations, each channel of the

adjacency tensor E is employed by a GCN layer to aggregate the representations

of the neighbor nodes and connecting edges with the respect to the relation type
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corresponding to the selected channel. Finally, using the updated representations

of the nodes and the previous state of the edge vectors, the representation of

each edge is updated using a feed forward neural net. By stacking of L layers

of GCN and feed forward net to update the word representations and the edge

representation, respectively, the final representation of the words is obtained.

Finally, a feed forward classifier consumes the representations of the words to

predict the event triggers.

1.6.4.2 Event Graph. A document might includes several event

mentions. These events could have temporal, hierarchical or causal relations with

each other. To construct the event graphs, prior works takes two major steps: (1)

Event mention detection which identifies the events in the document, (2) Event-

Event relation extraction which aims to predict the causal or temporal relations

between events.

Recently, event-event relation extraction has gained more attention. For

instance, authors in H. Wang, Chen, Zhang, and Roth (2020b) proposed joint

model for simultaneously predicting the temporal and causal relations between

event pairs using contextualized word embeddings and common sense knowledge

injection. In particular, to pre-train a model for common sense knowledge injection,

they propose to construct a set of positive and negative samples for event-event

relations from two knowledge base ConceptNet and TemProb. Specifically, they

extract 30,000 triples from these knowledge bases and annotate them using the

relation specified between them in the knowledge base. They also construct another

set of 30,000 triples in which there is no relation between the head and the tail

based on the knowledge base facts. Afterwards, in a contrast learning framework,

they train a multi-layer perception to distinguish the triples in which there is a
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relation between them from the ones that are irrelevant to each other (i.e., with no

relation between the head and the tail). Finally, during training of the event-event

relation extraction model, the activations obtained from the pre-trained common

sense knowledge network is employed as extra features to be concatenated with the

features extracted for the input event-event paris. To obtain the event-event pair

representations, the input document is first encoded by a pre-trained contextualized

language model. Afterwards, the representations of the words in the document are

concatenated with their POS tag embedding and are fed into a bi-directional LSTM

(Bi-LSTM) model. Next, using the representation of the event triggers obtained

from the Bi-LSTM layer and the features obtained by the pre-trained common

sense knowledge network, the temporal and causal relations between every pair

of events is predicted. The main advantage for joint temporal and causal relation

extraction is that it could learn the features from one task that are indicative for

the other task too.

In addition to temporal and causal relations between events, they might

share their arguments and the arguments could have relations with each other too.

These relations between events and their arguments could be encoded using graph

structure. Identifying this graph could be helpful to recognize the co-occurring

events and arguments for event extraction. Due to the importance of this task,

recently it has gained attention M. Li, Zeng, et al. (2020); H. Wang, Chen, Zhang,

and Roth (2020a) Specifically, authors in M. Li, Zeng, et al. (2020) proposed a

language-model-based approach to construct the event graph between every pair

of events from all documents in a corpus. In particular, they propose to find all

possible connections between a pair of events using their mentions in multiple

documents. Note that connection between two events refer to any path between the
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events in the event graph that includes one or multiple arguments. After finding

all possible connections, a language model (i.e., BERT model), pre-trained on

the paths in the training set, predicts the importance of all found connections in

test set. Finally, those connections that are above a threshold are selected to be

used in the final event graph constructed for the two events of interest. Note that

to predict the importance of a connection using the pre-trained language-model,

authors propose to compute two types scores:

– Coherence and salience: This score evaluates the degree to which the

candidate path is consistent with the two event types. For instance, the

path Attack, attacker, GPE, agent, Transport should have high score with

respect to coherence as it appears in the training data. To train the pre-train

language-model to give high score to coherent paths, authors propose to

train the BERT model in an autoregressive fashion (i.e., given the previous

elements of a path, the model predicts the next element)

– Path co-occurrence: For a pair of events, some paths are more common and

they frequently co-occur with each other. In order to train the language-

model to give higher scores to the co-occurring paths, authors employ a

contrasting learning objective. Specifically, they propose to construct an input

sequence consisting of two paths for the BERT language model. If two paths

belong to the same event graph, the input is labeled as positive, otherwise it

is labeled as negative sample.

While the approach proposed by authors in M. Li, Zeng, et al. (2020)

achieves promising results on construing the event graph, due to the breaking

down of the event graph into paths, this model fail to capture any graph-level
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interactions between edges and nodes in the event graph. As such, a potential

direction for future work is to apply deep graph models to encode the event graph.

1.7 Disseration Outline

Given the importance of structure-based models for deep learning-based

IE models, in this dissertation, we will study the novel methods of integrating

structural information into deep learning models for IE. In particular, in Chapter 2,

we discuss a novel mechanism to incorporate a diverse set of structural information

for IE. Next, in Chapter 3, we study how task-specific structures can be inferred

to improve IE performance. Moreover, we demonstrate novel methods to ensure

consistency among all inferred structures. Afterward, in Chapter 4, we analyze

structural information that is inferred beyond sample text and provide a view over

all data points in a batch of data. Finally, the last Chapter provides a detailed

case study in which structural information is helpful to overcome challenges in a

less-explored IE setting, i.e., cross-lingual event extraction.
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CHAPTER II

EXPLOITING DIVERSE STRUCTURES FOR INFORMATION EXTRACTION

This Chapter contains materials from the following published paper:

“Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Tran, Varun Manjunatha,

Lidan Wang, Rajiv Jain, Doo Soon Kim, Walter Chang, and Thien Huu Nguyen.

‘Inducing rich interaction structures between words for document-level

event argument extraction.’ In Advances in Knowledge Discovery and Data

Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14,

2021, Proceedings, Part II, pp. 703-715. Cham: Springer International Publishing,

2021.”. In this publication, the experiments were entirely done by the author of

this dissertation, Amir Pouran Ben Veyseh. The other co-authors provided feedback

regarding the experiments and results. Amir wrote the entire paper and Dr. Thien

Huu Nguyen provided editorial feedback for this paper.

In this chapter we study how the existing structures can be exploited to

improve the performance of IE models. In particular, these structures are obtained

from pre-trained general-purpose parsers. As discussed in the previous Chapter,

prior works has shownd the effectiveness of the syntactic or semantic structures

for IE. However, an effective method to combine various types of structures has

not been studied. Concretely, a model to efficiently combine structure-based

information for the downstream application is missing. In this Chapter, we study

a novel method to combine syntactic, semantic, and external knowledge structures

for the task of Event Argument Extraction (EAE) which is a sub-task of Event

Extraction (EE).

Event Extraction (EE) is an important and challenging task in Information

Exaction (IE) that aims to identify instances of events (i.e., change of states
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of real-world entities) in text. To this end, two subtasks should be solved: (1)

Event Detection (ED) to recognize event-triggering expressions (verbal predicates

or nominalizations, called event triggers/mentions), and (2) Event Argument

Extraction (EAE) to identify entity mentions that are involved in events (event

participants and spatio-temporal attributes, collectively known as event arguments).

This work focuses on EAE, a relatively less-explored task for EE (compared to

ED). Technically speaking, our EAE task takes as inputs an event trigger and an

argument candidate (entity mention), seeking to predict the role that the argument

candidate plays in the event mention associated with the trigger. A well performing

EAE system will benefit various downstream applications such as Knowledge Base

Construction and Question Answering.

Most of the recent work on EAE employs deep learning models to achieve

state-of-the-art performance X. Wang, Wang, et al. (2019). Unfortunately, these

models are often restricted to sentence-level EAE where event triggers and

arguments appear in the same sentence. In real world scenarios, arguments of

an event might have been presented in sentences other than the sentence that

hosts the event trigger in the input document. For instance, in the EE dataset of

the DARPA AIDA program (phase 1)1, 38% of arguments has been shown to be

outside the sentences containing the corresponding triggers, i.e., in the document-

level context Ebner, Xia, Culkin, Rawlins, and Van Durme (2020). As such, it is

of paramount importance to develop models that can extract arguments of event

mentions over the entire documents to provide a more complete view of information

for events in documents.

1https://tac.nist.gov/2019/SM-KBP/data.html
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A major challenge in document-level EAE involves long document context

that hinders the ability of models to effectively identify important context words

(among long word sequences) and link them to event triggers and arguments for

role prediction. Recently, a promising approach to address this document context

modeling issue has been explored for other related tasks in IE Nan et al. (2020);

Sahu, Christopoulou, Miwa, and Ananiadou (2019); Thayaparan, Valentino,

Schlegel, and Freitas (2019) where document structures (i.e., direct interactions

between parts of documents) are employed to facilitate the connections and

reasoning between important context words for a prediction problem.

Thus, one simple solution towards utilizing document structures for EAE

is to exert one of the existing document-level models that has been designed for

other related tasks. However, in this work, we show that such prior models have

critical constraints that should be addressed to better serve EAE. As such, the

existing document-level models have only exploited some (typically one) specific

types of information/heuristics to form the edges in document structures, thus

failing to leverage a diversity of useful information to enrich document structures

in EAE. This is unfortunate as multiple information sources are often required

simultaneously to capture necessary interaction information between nodes/words

and improve the coverage/performance for EAE models. For instance, consider the

following document: “The foundation said that immediately following the Haitian

earthquake, the Embassy of Algeria provided an unsolicited lump-sum fund to the

foundation’s relief plan. This was a one-time, specific donation to help Haiti and

it had donated twice to the Clinton Foundation before.”. In this two-sentence

document, an EAE system needs to recognize the entity mention “Embassy of

Algeria” as an argument (of role Giver) for the event mention associated with
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the trigger word “donated”. To perform this reasoning, the models can utilize the

coreference link between “Embassy of Algeria” and the pronoun “it” (i.e., discourse

information) that can be directly connected with the trigger word “donated” via

an edge in the syntactic dependency tree of the second sentence. Alternatively,

if the coreference link cannot be obtained (e.g., due to errors in the coreference

resolution systems), EAE models can rely on the close semantic similarity between

“donated” and “provided an unsolicited lump-sum fund” that can be further linked

to “Embassy of Algeria” via a dependency edge in the first sentence. As such,

document-level models might need to jointly capture the information from syntax,

semantic, and discourse structures to sufficiently encode necessary interactions

between words for EAE.

Motivated by this intuition, we propose to combine different information

sources to generate effective document structures for our EAE problem, focusing

on the knowledge from syntax (i.e., dependency trees), discourse (i.e., coreference

links), and semantic similarity. Importantly, for the semantic similarity, in addition

to using contextualized representation vectors to compute interaction scores

between words as in prior work Nan et al. (2020), we propose to further leverage

external knowledge bases to enrich document structures for EAE. As such, we link

the words in the documents to the entries in some external knowledge bases and

exploit the entry similarity in such knowledge bases to obtain word similarity scores

for the structures. To our knowledge, this is the first work to employ external

knowledge bases to compute document structures for an IE task in the literature.

Given various document structures, how can we effectively combine

these structures for EAE? Our main principle for this goal is motivated from

the running example where the role reasoning process for the event trigger and
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argument candidate involves a sequence of interactions with multiple other words,

possibly using different types of information at each interaction step, e.g., syntax,

discourse or semantic information (called heterogeneous interaction types). To

this end, we propose to employ Graph Transformer Networks (GTN) Yun et al.

(2019) to facilitate the implementation of this multi-hop heterogeneous reasoning

idea. More specifically, GTNs fulfill the multi-hop heterogeneous reasoning by

multiplying weighted sums of different initial document structures to generate rich

combined structures. Finally, the resulting combined structures will be used to

learn representation vectors for EAE based on graph convolutional networks (GCN).

To our knowledge, this is also the first work that introduces GTN and GCN for

document structure computation and representation learning in document-level

EAE.

We evaluate the proposed model on two benchmark datasets; one for

document-level EAE Ebner et al. (2020) and one for the closely related task of

implicit semantic role labeling. Our experiments demonstrate the effectiveness of

the proposed model, establishing new state-of-the-art results on both benchmark

datasets.

2.1 Model

We formulate document-level EAE as a multi-class classification problem.

The input to the models is a document D = w1, w2, . . . , wN which consists of

multiple sentences, i.e., Si’s. To be comparable with previous work Ebner et

al. (2020), we also use a golden event trigger, i.e., the t-th word of D (wt), and

an argument candidate, i.e., the a-th word of D (wa), as the inputs (wt and wa

can occur in different sentences). The goal of EAE is to predict the role of the

argument candidate wa in the event evoked by wt. Here, the role might be None,
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indicating that wa is not a participant in the event mention wt. Our model for EAE

involve three major components: (i) Document Encoder to transform the words

in D into high dimensional vectors, (ii) Structure Generation to generate initial

document structures for EAE, and (iii) Structure Combination to combine the

structures and learn representation vectors for role prediction. We provide details

for these components below.

2.1.1 Document Encoder. In the first step, we transform each word

wi ∈ D into a representation vector xi that is the concatenation of the following

two vectors:

(i) The pre-trained word embedding of wi: Here, we consider both non-

contextualized embeddings, i.e., GloVe and contextualized embeddings, i.e., BERT

in the experiments. In particular, for BERT, as wi might be split into multiple

word-pieces, we use the average of the hidden vectors for the word-pieces of wi in

the last layer as the word embedding vector for wi. Following Ebner et al. (2020),

we employ the BERTbase version that divides D into segments of 512 word-pieces to

be encoded separately. In our experiments, we fix the parameters of the BERTbase.

(ii) The position embeddings of wi: These vectors are obtained by looking

up the relative distances between wi and the trigger and argument words (i.e., i− t

and i − a respectively) in a position embedding table. This table is initialized

randomly and updated in the training process. Position embedding vectors are

important as they notify the model about the positions of the trigger and argument

words.

Given the vector sequence X = x1, x2, . . . , xN to represent the words in

D, we further send it to a bidirectional long short-term memory network (LSTM)

to generate a more abstract vector sequence H = h1, h2, . . . , hN . Here, hi is the
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hidden vector for wi that is obtained by concatenating the corresponding forward

and backward hidden vectors from the bidirectional LSTM. We will use the hidden

vectors in H as the inputs for the next computation. Note that we do not include

the sentence boundary information of D into the hidden vectors H so far as it will

be addressed in our document structures later.

2.1.2 Structure Generation. The goal of this section is to generate

initial document structures that will be combined to learn representation vectors

for document-level EAE in the next step. Formally, a document structure in our

work involves an interaction graph G = {N , E} between the words in D, i.e., N =

{wi|wi ∈ D}. As such, the document structure G can be represented via a real-

valued adjacency matrix A = {aij}i,j=1..N where the value/score aij reflects the

importance (or the level of interaction) of wj for the representation computation

of wi for EAE. As presented in the introduction, we simultaneously consider three

types of information to form the edges E (or compute the interaction scores aij) in

this work, including syntax, semantics, and discourse. We describe initial document

structures based on these information types in the following.

Syntax-based Structures: The motivation for this type of document structures

is based on sentence-level EAE where dependency parsing trees of input sentences

have been used to reveal important context, i.e., via shortest dependency paths

to connect event triggers and arguments, and guide the interaction modeling

between words for argument role prediction. As such, we expect dependency

trees for sentences in D can also be exploited to provide useful information for

document structures for EAE. In particular, we propose to leverage dependency

relations/connections between pairs of words in D to compute the interaction scores

adepij in the syntax-based document structure Adep = {adepij }i,j=1..N for D. Here,
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two words are more important to each other for representation learning if they are

connected in dependency tress. To this end, we first obtain the dependency tree

Ti for each sentence Si in D using an off-the-shelf dependency parser2. Afterward,

to connect the dependency trees Ti for the sentences, following Gupta, Rajaram,

Schütze, and Runkler (2019), we create a link between the root node of a tree Ti

for Si with the root node of the tree Ti+1 for the subsequent sentence Si+1. The

resulting graph with linked trees Ti is denoted by TD. In the next step, motivated

by shortest dependency paths in sentence-level EAE, we retrieve the shortest path

PD between the nodes for wt and wa in TD. Finally, we compute the interaction

score adepij by setting it to 1 if (wi, wj) or (wj, wi) is an edge in PD, and 0 otherwise.

Semantic-based Structures: These document structures aim to evaluate the

interaction scores in the structures based on the semantic similarity between words

(i.e., two words are more important for the representation learning of each other

if they are more semantically related). As such, we consider two complementary

approaches to capture the semantics of the words in D for semantic-based structure

generation, i.e., contextual semantics and knowledge-based semantics.

First, in contextual semantics, we seek to reveal the semantic of a word

via the context in which it appears. This suggests the use of the contextualized

representation vectors hi ∈ H (obtained from the LSTM model) to capture

contextual semantics for the words wi ∈ D and produce the contextual semantic-

based document structure Acontext = {acontextij }i,j=1..N for D. Accordingly, to

compute the semantic-based interaction score acontextij for wi and wj, we employ

2We use the Stanford Core NLP Toolkit to parse the sentences in this work.
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the normalized similarity score between their contextualized representation vectors:

ki = Ukhi, qi = Uqhi

acontextij = exp(kiqj)/
∑

v=1..N

exp(kiqv)
(2.1)

where Uk and Uq are trainable weight matrices, and the biases are omitted in this

work for brevity.

Second, in knowledge-based semantics, our goal is to employ the external

knowledge of the words from knowledge bases to capture their semantics. We

expect that such external knowledge can provide a complementary source of

information for the contextual semantics of the words (i.e., external knowledge

vs internal context), thereby enriching the document structures for D. To this end,

we propose to utilize WordNet, a rich knowledge base for word meanings, to obtain

external knowledge for the words in D. Essentially, WordNet involves a network

that connects word meanings (i.e., synsets) according to various semantic relations

(e.g., synonyms, hyponyms). Each node/synset in WordNet is associated with a

textual glossary to provide expert definition about the corresponding meaning.

Our first step to generate knowledge-based document structures for D is to

map each word wi ∈ D to a synset node Mi in WordNet that can be done with a

Word Sense Disambiguation (WSD) tool. In this work, we use WordNet 3.0 and

the state-of-the-art BERT-based WSD tool in Blevins and Zettlemoyer (2020) to

perform such word-synset mapping. Afterward, to determine knowledge-based

interaction scores between two words wi and wj in D, we can leverage the similarity

scores between the two linked synset nodes Mi and Mj in WordNet. As such, to

leverage the rich information embedded in the synset nodes Mi, we introduce two

versions of knowledge-based document structures for D based on the glossaries of

the synset nodes and the hierarchy structure in WordNet:
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(1) The glossary-based structure Agloss = {aglossij }i,j=1..N : Here, for each word

wi ∈ D, we first retrieve the glossary GMi from the corresponding linked node Mi

in WordNet (GMi can be seen as a sequence of words). A representation vector

VMi is then computed to capture the semantic information in GMi, by applying

the max-pooling operation over the pre-trained GloVe embeddings of the words in

GMi. Finally, the glossary-based interaction score aglossij for wi and wj is estimated

via the similarity between the glossary representations VMi and VMj (with the

consine similarity): aglossij = cosine(VMi, V Mj).

(2) The WordNet hierarchy-based structure Astruct = {astructij }i,j=1..N :

The interaction score astructij for wi and wj in this case relies on the structure-

based similarity of the linked synset nodes Mi and Mj in WordNet. Accordingly,

we employ the Lin similarity measure for the synset nodes in WordNet for this

purpose: astructij =
2∗IC(LCS(Mi,Mj))

IC(Mi)+IC(Mj)
where IC and LCS represent the information

content of the synset nodes and the least common subsumer of the two synsets in

the WordNet hierarchy (most specific ancestor node), respectively.

Discourse-based Structures: Besides the typical lengths of the input texts,

a key difference between document-level and sentence-level EAE involves the

presence of multiple sentences in document-level EAE where discourse information

(i.e., where the sentences span and how they relate to each other) is helpful

to understand the input documents. The goal of this part is to leverage such

discourse structures to provide complementary information for the syntax-

and semantic-based document structures for EAE. To this end, we propose to

exploit two following types of discourse information to generate discourse-based

document structures for EAE: (1) the sentence boundary-based document structure

Asent = {asentij }i,j=1..N : This document structure concerns the same sentence
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information of the words in D. The intuition is that two words in the same

sentence would involve more useful information for the representation computation

of each other than those in different sentences. To implement this intuition, we

compute Asent by setting the sentence boundary-based score asentij to 1 if wi and wj

appear in the same sentence in D and 0 otherwise; and (2) the coreference-based

document structure Acoref = {acorefij }i,j=1..N : Instead of considering within-sentence

information as in Asent, this document structure exploits relations/connections

between sentences (cross-sentence information) in D. To this end, we consider

two sentences in D as being related if they contain entity mentions that refer to

the same entity in D (coreference information)3. Given such a relation between

sentences, we consider two words in D to be more relevant to each other if they

appear in related sentences. To this end, for the coreference-based structure, acorefij

is set to 1 if wi and wj appear in different, but related sentences; and 0 otherwise.

2.1.3 Structure Combination. Up to this point, we

have generated six different document structures for D (i.e., A =

[Adep, Acontext, Agloss, Astruct, Asent, Acoref ]). As these document structures are based

on complementary types of information (called structure types), this section aims

to combine them to generate richer document structures for EAE. Our key intuition

to achieve such a combination is to note that each importance score avij in one

of the structures Av
ij (v ∈ V = {dep, context, gloss, struct, sent, coref}) only

considers the direct interaction between the two involving words wi and wj (i.e.,

not including any other words) according to one specific information type v. As

motivated in the introduction, we expect each importance score in the combined

structures to further condition on interactions with other important context words

3We use the Stanford Core NLP Toolkit to determine the coreference of entity mentions.
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in D (i.e., in addition to the two involving words) where each interaction between

a pair of words can flexibly use any of the six structure types (multi-hop and

heterogeneous-type reasoning). To this end, we propose to use Graph Transformer

Networks (GTN)Yun et al. (2019) to enable such a multi-hop and heterogeneous-

type reasoning in the structure combination for EAE.

In particular, to enable multi-hop reasoning paths at different lengths, we

first add the identity matrix I (of size N × N) into the set of initial document

structures A = [Adep, Acontext, Agloss, Astruct, Asent, Acoref , I] = [A1, . . . ,A7]. The

GTN model is then organized into C channels for structure combination, where the

k-th channel contains M intermediate document structures Qk
1, Q

k
2, . . . , Q

k
M of size

N ×N . As such, each intermediate structure Qk
i is computed by a linear combination

of the initial structures in A using learnable weights αk
ij: Qk

i =
∑

j=1..7 α
k
ijAj.

Here, due to the linear combination, the interaction scores in Qk
i are able to reason

with any of the six initial structure types in V (although such scores still consider

the direct interactions of the involving words only). Afterward, the intermediate

structures Qk
1, Q

k
2, . . . , Q

k
M in each channel k are multiplied to generate the final

document structure Qk = Qk
1 × Qk

2 × . . . × Qk
M of size N × N (for the k-the

channel). As shown in Yun et al. (2019), the matrix multiplication enables the

importance score between a pair of words wi and wj in Qk to condition on the

multi-hop interactions/reasoning between the two words and other words in D

(up to M − 1 hops due to the inclusion of I in A). The interactions involved in

one importance score in Qk can also realize any of the initial structure types in V

(heterogeneous reasoning) due to the flexibility of the intermediate structure Qk
i .

Given the rich document structures Q1, Q2, . . . , QC from the C channels,

GTN then feed them into C graph convolutional networks (GCN) Kipf and Welling
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(2016) to induce document structure-enriched representation vectors for argument

role prediction in EAE (one GCN for each Qk = {Qk
ij}i,j=1..N). As such, each of

these GCN models involve G layers that produces the hidden vectors h̄k,t
1 , . . . , h̄k,t

N

at the t-th layer of the k-th GCN model for the words in D (1 ≤ k ≤ C, 1 ≤ t <

G):

h̄k,ti = ReLU(Uk,t
∑

j=1..N

Qk
ij h̄

k,t−1
j∑

u=1..N Qk
iu

) (2.2)

where Uk,t is the weight matrix for the t-th layer of the k-th GCN model and

the input vectors h̄k,0
i for the GCN models are obtained from the contextualized

representation vectors H (i.e., h̄k,0
i = hi for all 1 ≤ k ≤ C, 1 ≤ i ≤ N).

In the next step, the hidden vectors in the last layers of all the GCN

models (at the G-th layers) for wi (i.e., h̄1,G
i , h̄2,G

i , . . . , h̄C,G
i ) are concatenated

form the final representation vector h′
i for wi in the proposed GTN model:

h′
i = [h̄1,G

i , h̄2,G
i , . . . , h̄C,G

i ].

Finally, to predict the argument role for wa and wt in D, we assemble a

representation vector R based on the hidden vectors for wa and wt from the GTN

model via: R = [h′
a, h

′
t,MaxPool(h′

1, h
′
2, . . . , h

′
N)]. This vector is then sent to a

two-layer feed-forward network with softmax in the end to produce a probability

distribution P (.|D, a, t) over the possible argument roles. We then optimize the

negative log-likelihood Lpred to train the model: L = − logP (y|D, a, t) where y is

the golden argument role for the input example. We call the proposed model the

Multi-hop Reasoning for Event Argument extractor with heterogeneous Document

structure types (MREAD) for convenience.

2.2 Experiments

Dataset & Parameters: We evaluate the document-level EAE models

in this work on RAMS, a recent dataset introduced in Ebner et al. (2020) for
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document-level EAE. RAMS contains 9,124 annotated event mentions across 139

types for 65 argument roles, serving as the largest available dataset for document-

level EAE. We use the official train/dev/test split and evaluation script for RAMS

provided by Ebner et al. (2020) to achieve a fair comparison. In addition, we

evaluate the models on the BNB dataset Gerber and Chai (2012) for implicit

semantic role labelling (iSRL), a closely related task to document-level EAE where

the models need to predict roles of argument candidates for a given predicate

(arguments and predicates can appear in different sentences in iSRL). In our

experiments, we use the version of BNB prepared by Ebner et al. (2020) (with

the same data split and pre-processing script) for a fair comparison. This dataset

annotates 2,603 argument mentions for a total of 12 argument roles (for 1,247

predicates/triggers). We use the development set of the RAMS dataset to fine-tune

the hyper-parameters of the proposed model MREAD.

Results: We compare our model MREAD with two categories of baselines on

RAMS:

(1) Structure-free: These baselines do not exploit document structures for

EAE. In particular, we compare MREAD with the RAMSmodel model in Ebner

et al. (2020) and the Head-based model in Z. Zhang, Kong, Liu, Ma, and Hovy

(2020). Here, RAMSmodel currently has the state-of-the-art (SOTA) performance for

document-level EAE on RAMS.

(2) Structure-based: These baselines employ some forms of document

structures (mostly based on syntax and semantic information) to learn

representation vectors for input documents. Note that as none of the prior work

has explored document structure-based models for document-level EAE, we

compare MREAD with the existing document structure-based models for a related
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Model Standard Decoding Type Constrained
P R F1 P R F1

RAMS 62.8 74.9 68.3 78.1 69.2 73.3
Head-based 71.5 66.2 68.8 81.1 66.2 73.0

iDepNN 65.8 68.0 66.9 77.1 67.7 72.1
EoG 71.0 71.7 71.4 82.4 69.2 75.2
GCNN 72.2 72.8 72.5 85.1 69.4 76.5
LSR 72.6 73.6 73.1 83.9 71.4 77.2

MREAD (ours) 75.7 75.3 75.5 88.2 72.1 79.3

Table 4. Performance on the RAMS test set using BERT.

task of document-level relation extraction (DRE) in IE. As such, the following

SOTA models for DRE are considered in this category: (i) iDepNN Gupta et

al. (2019); (ii) GCNN Sahu et al. (2019): This baseline generates document

structures based on both syntax and discourse information (e.g., dependency trees,

coreference links). Note that although GCNN also considers more than one source

of information for document structures as we do, it fails to exploit semantic-based

document structures (for both contextual and knowledge-based semantics) and

lacks effective mechanisms for structure combination (i.e., not using GTN); (iii)

LSR Nan et al. (2020); and (iv) EoG Christopoulou et al. (2019).

In addition to the standard decoding (i.e., using argmax with P (.|D, a, t)

to obtain the predicted roles), following Ebner et al. (2020), we also consider the

decoding setting where the models’ predictions are constrained to the permissible

roles for the event type e evoked by the trigger wt. Tables 4 and 5 show the the

models’ performance on the RAMS test set using BERT and GloVe embeddings,

respectively. There are several observations from these tables. First, the proposed

model MREAD significantly outperforms all the baselines in both the standard and

type constrained decoding regardless of the used embeddings (BERT or GloVe).

This consistent performance improvement is significant with p < 0.01 and clearly
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demonstrates the effectiveness of MREAD for document-level EAE. Second, except

for iDepNN, all the structure-based models significantly outperform the structure-

free baselines. This finding is significant especially considering that the structure-

based models are not originally designed for document-level EAE, thereby clearly

showing the benefits of document structures for document-level EAE. Finally,

compared to GCNN and EoG that also consider multiple sources of information

as our model, MREAD achieves substantially better performance, suggesting the

advantages of contextual and knowledge-based structures along with multi-hop

heterogeneous reasoning in our EAE problem.

Model Standard Decoding Type Constrained
P R F1 P R F1

RAMS 66.3 69.8 68.0 77.4 68.8 72.9
Head-based 70.2 63.4 66.6 74.6 65.3 69.6

iDepNN 65.7 65.4 65.5 75.7 63.2 68.9
EoG 69.2 69.0 69.1 81.3 68.0 74.1
GCNN 71.1 70.9 71.0 83.7 68.1 75.1
LSR 72.5 72.0 72.2 82.9 70.3 76.1

MREAD (ours) 73.6 73.5 73.5 86.7 71.0 78.1

Table 5. Performance on the RAMS test set using GloVe.

Finally, we evaluate the performance of MREAD on the BNB dataset for

iSRL. As we use the data version prepared by Ebner et al. (2020) that involves a

different train/dev/test split from the original BNB dataset in Gerber and Chai

(2012), we directly use the RAMSmodel model in Ebner et al. (2020) as our baseline

for a fair comparison. In addition, we report the performance of the structure-based

baselines (iDepNN, GCNN, LSR, and EoG) for a complete view. Table 6 shows the

performance of the models on the BNB test dataset (using BERT embeddings). As

can be seen, MREAD is also better than all the baseline models substantially and
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significantly (p < 0.01), further confirming the benefits of our proposed model in

this work.

Model P R F1

RAMS - - 76.6

iDepNN 80.0 75.1 77.5
EoG 78.5 74.4 76.4
GCNN 81.0 73.9 77.3
LSR 80.3 74.1 77.1

MREAD (ours) 82.9 75.0 78.8

Table 6. Performance on the BNB test set for iSRL.

Ablation Study: Our proposed model combines different types of document

structures (i.e., six types in A) using GTN to enable multi-hop and heterogeneous

reasoning for document-level EAE. This section studies the contribution of the

proposed document structures and structure combination in MREAD by evaluating

the performance of the ablated versions of the model on the development set of

the RAMS dataset. In particular, the following ablated models are examined: (i)

MREAD-Av: In this group of ablated models, we eliminate each of the document

structures in A from MREAD and evaluate the performance of the model with the

remaining structures (e.g., MREAD-Adep, MREAD-Asent, etc.), (ii) MREAD-

GTN: In this ablated model, the GTN architecture is excluded from MREAD, so

the GCN models are directly and separately applied to each document structure in

A. (iii) MREAD-Multi-hop: This ablated model is to show the effectiveness of

multi-hop heterogeneous reasoning/interaction for EAE. As such, this model avoids

the multiplication of the intermediate structures Qk
i in each channel of GTN, and

directly runs the GCN models over the intermediate document structures Qk
i (i.e.,

the final structures Qk are not produced).

Table 27 presents the performance of the models on the RAMS development

set. As can be seen from the table, the removal of any document structures in
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A would significantly hurt the performance of MREAD, thus confirming the

effectiveness of the introduced document structures for EAE. Also, the significantly

better performance of MREAD over MREAD-Multi-hop suggests that the

multiplication of the intermediate structures in the channels of GTN is helpful

to generate richer structures for EAE (i.e., by enabling multi-hop heterogeneous

reasoning/interactions of words).

Model P R F1

MREAD 75.5 76.5 76.0

MREAD-Adef 73.5 74.9 74.2
MREAD-Acontext 72.7 73.5 73.1
MREAD-Agloss 74.6 73.4 74.0
MREAD-Astruct 74.1 74.3 74.2
MREAD-Asent 72.8 73.2 73.0
MREAD-Acoref 73.2 74.9 74.1

MREAD-GTN 72.1 73.7 72.9
MREAD-Multi-Hop 73.2 74.6 73.9

Table 7. Performance of the models on the RAMS development set using BERT
embeddings and standard decoding.

2.3 Further Experiments on iSRL

In order to better assess the generalization ability of the proposed model

to other datasets, we further evaluate the performance of MREAD on another

iSRL dataset, i.e., SemEval 2010 Task 10 Ruppenhofer, Sporleder, Morante,

Baker, and Palmer (2010). Similar to BNB, SemEval 2010 dataset annotates the

predicates and their arguments across sentences (i.e., implicit arguments). This

dataset contains 8,000 argument annotation for a total of 410 argument roles (for

1,819 predicates). We use the same data split and evaluation scripts provided

by Ruppenhofer et al. (2010) for a fair comparison. As such, we compare the

performance of MREAD with prior iSRL models that report their performance

on the SemEval 2010 Task 10 dataset. The GloVe embeddings are used in this

experiment to make it more compatible with prior work. Namely, we consider the
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following baselines: S&F Silberer and Frank (2012), VEC and Ensemble VEC

Gorinski, Ruppenhofer, and Sporleder (2013), L&R Laparra and Rigau (2013),

F&P Feizabadi and Padó (2015), and the recent deep learning models C&W

Embedding Schenk and Chiarcos (2016) and NMSP M. Le and Fokkens (2018).

As can be seen in Table 8, MREAD can establish a new SOTA performance on the

SemEval 2010 test set by improving the F1 score of the prior SOTA model by 1.4%.

Model P R F1

VEC 21.0 18.0 19.0
VEC Ensemble 26.0 24.0 25.0
C&W Embedding 27.2 25.7 26.4
S&F 30.8 25.1 27.7
L&R 33.0 24.0 28.0
NMSP 28.8 28.6 28.7
F&P 35.0 30.8 32.8

MREAD (ours) 38.9 30.5 34.2

Table 8. Performance on the SemEval 2010 Task 10 test set for iSRL.

2.4 Error Analysis

In order to better understand the operation of the proposed model MREAD

and provide suggestions for future improvement, this section analyzes the errors

made by our model. As such, we sample 100 examples in the development set of

RAMS that are incorrectly predicted by MREAD and manually categorize them

into different types. For this analysis, we employ the best performing version of

MREAD that is trained with BERT in the type constrained decoding setting.

Seven categories of errors detected in our analysis along with their distribution are

shown follows (Table 9 provides examples for each category and Figure 1 shows the

error type distribution):

– Related Roles (38%): This type of errors involves examples where the

golden roles are very similar to some other roles (e.g., Target vs. Place)
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ID Error Sample Prediction Gold

1 Related Roles
We do not agree with what Russia is doing,
bombarding Aleppo.

Place Target

2 Lack of Entity Types

They’re importing not only oil, but wheat and
historic artefacts as well. Bilal Erdogan this
week denied continuous Russian allegations of
smuggling oil from ISIS.

Artifact Transporter

3
Disconnected
Sentences

3/12 Donald Trump’s wife Melania delivered
a speech at the GOP convention in Cleveland
that was later found to have been cribbed in
part from Michelle Obama’s 2008 convention
address AP. 5/12 Donald Trump held a joint
press conference with Mexican leader Enrique
Pena Nieto in Mexico City in August, hours
before reiterating his harsh immigration plans
at a campaign rally in Arizona Reuters

Communicator Place

4
Background
Knowledge

Genocide will never remain in the past. By
recognizing the genocide, it will force the Turkish
government to take a brave step and look into its
own history,” he said. Representatives from the
Turkish and Armenian embassies were present in
the German parliament while the vote was taking
place.

Place Victim

5 Imperfect Structures

Most synthetic drugs that end up in the United
States come from China, either directly or by
way of Mexico. Adding carfentanil to that list
is likely to only diminish, not eliminate, global
supply.

Destination Origin

6 Infrequent Labels

In the wake of Snowden’s disclosures about the
NSA’s snooping at home and abroad, the spy
agency and other federal agencies sought to step
up their controls on sensitive information.

Beneficiary Spy

7 Incorrect Annotations
I would never have expected that he would have
won the vast majority of people who voted in
the Democratic primary under age 45.

Place Ballot

Table 9. Examples for the types of errors. Trigger words are shown in red bold
font while arguments are shown in blue underlined font.

and there is not enough evidence in the input documents to distinguish

such similar roles. Among the similar roles for an example in this case, the

model tends to choose the most frequent role (based on training data), thus

causing an error when the most frequent role is different from the golden

one. For instance, in the first example of Table 9 (ID 1), the correct role

of the argument candidate “Aleppo” for the trigger word “bombarding” is
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Target. However, due to the limitation of the context information, the model

incorrectly predicts a similar and more frequent role of Place for the example.

– Lack of Entity Types (15%): This type of errors corresponds to the

examples whose argument role predictions of the model are inconsistent

with the entity types of the argument candidates (e.g., person, organization).

Such errors could be avoided if the model exploits the entity type information

of the argument candidates to capture the constraints between entity types

and argument roles. For instance, in the second example of Table 9 (ID 2),

the model incorrectly predicts the role Artifact for the argument candidate

“Bilal Erdogan” of the event trigger “importing”. This error could be fixed if

the model realizes that “Bilal Erdogan” is a person and Transporter would be

more suitable role for this entity type.

– Disconnected Sentences (14%): The examples in this type of errors involve

sequences of captions for the photos in the input documents. Here, the syntax

information and the discourse structures in these caption-based documents

are different from those in the training data, which involves syntactically well-

formed sentences with coherent structures, causing the failure of the model

in this case. An example for this type of errors is shown in the third row of

Table 9 (ID 3).

– Background Knowledge (20%): In this type of errors, the annotated

role of an argument candidate for the given trigger word assumes some

background knowledge that is not available in the document context. The

model thus do not have enough information to make correct prediction in

this case. For instance, in the fifth example of Table 9 (ID 4), the input
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document does not provide any explicit evidence to infer that entity mention

“Armenian” is an argument of the annotated role Victim for the event

triggered by “Genocide”. It thus suggests that some background knowledge,

which is not available to the model, has been leveraged to perform this

annotation, causing the failure of the model in this case.

– Imperfect Structures (8%): Our model is based on the document

structures computed from syntax, semantic and discourse information to

infer important context words and their interactions. Our model fails for

the examples in this type of errors as the applied information cannot help

the document structures to achieve their goal on capturing interactions of

important context words. An example for this type of errors can be found in

the sixth row of Table 9 (ID 5) with the argument role prediction for “China”

in the event triggered by “supply”. Here, both the syntax and discourse

information cannot help to effectively link “China” and “supply” as the

shortest dependency path between them is long and does not contain effective

context words; and there is no coreference links between the corresponding

sentences. In addition, the importance scores between “China” and “supply”

as well as their neighboring words are also weak according to the semantic-

based document structures (i.e., for both contextual and knowledge-based

information), eventually hindering the model to make a correct prediction in

this case.

– Infrequent Labels (3%): Some event types and their roles are very rare

in the RAMS dataset (e.g., the Spy event). As such, it is likely that these

rare event types and roles are dominated by others, causing the errors of the

model in this case (see the row with ID 6 in Table 9 for an example).
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38%
15%

14%
20%

8%
3%
2%

Related Roles
Lack of Entity Types

Disconnected Sentences
Background Knowledge
Imperfect Structures
Infrequent Labels

Incorrect Annotations

Figure 1. Distribution of error types in MREAD on the RAMS development set.

– Incorrect Annotations (2%): We also find that a small portion of the

RAMS dataset is erroneously labeled, so the golden labels are incorrect while

the predicted labels are actually correct in these samples. The last row in

Table 9 (ID 7) shows an example of such erroneous annotations.

2.5 Related Work

Most of prior work on EE has focused on sentence-level EAE Lai,

Nguyen, and Nguyen (2020a); D. M. Le and Nguyen (2021); Q. Li et al. (2013);

T. H. Nguyen, Cho, and Grishman (2016); T. M. Nguyen and Nguyen (2019b);

Pouran Ben Veyseh, Nguyen, and Nguyen (2020). Recently, some work has

considered document-level EAE, featuring Ebner et al. (2020) as the most related

work to our problem. However, the model proposed by Ebner et al. (2020) (i.e.,

RAMSmodel) does not consider document structures to improve the performance for

document-level EAE as we do in this work. Our work is also related to the recent

document structure-based models for other NLP tasks Christopoulou et al. (2019);

Thayaparan et al. (2019); H. M. Tran, Nguyen, and Nguyen (2020). However,

compared to our proposed model, these prior works on document structures

fail to exploit external knowledge to generate the structures and do not involve

mechanisms to combine multiple structures for multi-hop heterogeneous reasoning.
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2.6 Conclusion

This Chapter presents a novel deep learning model for document-level EAE.

To facilitate the interaction of important context words in the documents for

EAE, our model leverages multiple sources of information, including the novel

employment of external knowledge bases, to generate document structures to

provide effective knowledge for representation learning in EAE. Also, for the first

time in EAE, graph transformer networks are employed to produce richer document

structures. The experiments confirm the benefits of the proposed model, yielding to

SOTA performance on benchamrk datasets.

While the proposed method is en effective solution for integrating different

types of structural information for IE, it is limited to the structures that are

obtained from existing parsers. In the next Chapter, we will study a novel method

to infer structures that are not limited to the existence of pre-trained parsers.

Concretely, the structural views are inferred based on the downstream IE task.

Also, a novel mechanism is introduced to ensure consistency between all structures

that are inferred.
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CHAPTER III

INFERRING STRUCTURE FOR IE AT EXAMPLE LEVEL

This Chapter contains materials from the published papers “Amir Pouran

Ben Veyseh, Franck Dernoncourt, My Thai, Dejing Dou, and Thien Huu Nguyen.

‘Multi-view consistency for relation extraction via mutual information

and structure prediction.’ In Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 05, pp. 9106-9113. 2020” and “Amir Pouran Ben Veyseh,

Franck Dernoncourt, Dejing Dou, and Thien Huu Nguyen. ‘Exploiting the

syntax-model consistency for neural relation extraction.’ In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pp.

8021-8032. 2020”. In these publications, the experiments were entirely done by

the author of this dissertation, Amir Pouran Ben Veyseh. The other co-authors

provided feedback regarding the experiments and results. Amir wrote the entire

paper and Dr. Thien Huu Nguyen provided editorial feedback for this paper.

In the previous chapter, we discussed an effective method to combine

multiple types of structural information for the task of document-level event

argument extraction. One of the limitations of this approach is that it is limited

to the existence of efficient parsers to obtain structural information for the task

in hand. On the other hand, these structures are general-purpose and cannot

provide effective interactions for the downstream IE task. In order to address

these shortcomings, in this chapter, we study how the structural information

can be inferred by the IE model, so that the important task-specific interactions

are available for the IE model. In particular, we study the task of Relation

Extraction. To this end, two methods that infer different structures for RE and

ensure consistency between them are presented in this chapter. In particular,
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we first introduce a method for inferring the structural information using novel

architecture Ordered Neuron LSTM, then we provide an effective method based

on Mutual Information to ensure consistency of the structural information that is

inferred by the RE model.

3.1 Exploiting the Syntax-Model Consistency for

Neural Relation Extraction

One of the fundamental tasks in Information Extraction (IE) is Relation

Extraction (RE) where the goal is to find the semantic relationships between two

entity mentions in text. Due to its importance, RE has been studied extensively in

the literature. The recent studies on RE has focused on deep learning to develop

methods to automatically induce sentence representations from data T. H. Nguyen

and Grishman (2015a); Verga, Strubell, and McCallum (2018); D. Zeng et al.

(2014). A notable insight in these recent studies is that the syntactic trees of

the input sentences (i.e., the dependency trees) can provide effective information

for the deep learning models, leading to the state-of-the-art performance for RE

recently Guo, Zhang, and Lu (2019); V.-H. Tran, Phi, Shindo, and Matsumoto

(2019); Xu et al. (2015b). In particular, the previous deep learning models for RE

has mostly exploited the syntactic trees to structure the network architectures

according to the word connections presented in the trees (e.g., performing Graph

Convolutional Neural Networks (GCN) over the dependency trees Y. Zhang et al.

(2018)). Unfortunately, these models might not be able to generalize well as the

tree structures of the training data might significantly differ from those in the test

data (i.e., the models are overfit to the syntactic structures in the training data).

For instance, in the cross-domain setting for RE, the domains for the training data

and test data are dissimilar, often leading to a mismatch between the syntactic
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structures of the training data and test data. In order to overcome this issue, the

overall strategy is to obtain a more general representation of the syntactic trees

that can be used to inject the syntactic information into the deep learning models

to achieve better generalization for RE.

A general tree representation for RE is presented in Veyseh et al. (2019)

where the dependency trees are broken down into their sets of dependency

relations (i.e., the edges) between the words in the sentences (called the edge-based

representation). These dependency relations are then used in a multi-task learning

framework for RE that simultaneously predicts both the relation between the two

entity mentions and the dependency connections between the pairs of words in the

input sentences. Although the dependency connections might be less specific to the

training data than the whole tree structures, the major limitation of the edge-based

representation is that it only captures the pairwise (local) connections between

the words and completely ignores the overall (global) importance of the words in

the sentences for the RE problem. In particular, some words in a given sentence

might involve more useful information for relation prediction in RE than the other

words, and the dependency tree for this sentence can help to better identify those

important words and assign higher importance scores for them (e.g., choosing the

words along the shortest dependency paths between the two entity mentions). We

expect that introducing such importance information for the words in the deep

learning models might lead to improved performance for RE. Consequently, in this

work, we propose to obtain an importance score for each word in the sentences from

the dependency trees (called the syntax-based importance scores). These will serve

as the general tree representation to incorporate the syntactic information into the

deep learning models for RE.
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How can we employ the syntax-based importance scores in the deep learning

models for RE? In this work, we first use the representation vectors for the words

from the deep learning models to compute another importance score for each word

(called the model-based importance scores). These model-based importance scores

are expected to quantify the semantic information that a word contributes to

successfully predict the relationship between the input entity mentions. Afterward,

we propose to inject the syntax-based importance scores into the deep learning

models for RE by enforcing that the model-based importance scores are consistent

with the syntactic counterparts (i.e., via the KL divergence). The motivation of the

consistency enforcement is to promote the importance scores as the bridge through

which the syntactic information can be transmitted to enrich the representation

vectors in the deep learning models for RE.

In order to implement this idea, we employ the Ordered-Neuron Long Short-

Term Memory Networks (ON-LSTM) Shen, Tan, Sordoni, and Courville (2019a)

to compute the model-based importance scores for the words in the sentences for

RE. ON-LSTM extends the popular Long Short-Term Memory Networks (LSTM)

by introducing two additional gates (i.e., the master forget and input gates) in

the hidden vector computation. These new gates controls how long each neuron

in the hidden vectors should be activated across different time steps (words) in

the sentence (i.e., higher-order neurons would be maintained for a longer time).

Based on such controlled neurons, the model-based importance score for a word

can be determined by the number of active neurons that the word possesses in

the operation of ON-LSTM. To our knowledge, this is the first time ON-LSTM is

applied for RE in the literature.
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One of the issues in the original ON-LSTM is that the master gates and the

model-based importance score for each word are only conditioned on the word itself

and the left context encoded in the previous hidden state. However, in order to

infer the importance for a word in the overall sentence effectively, it is crucial to

have a view over the entire sentence (i.e., including the context words on the right).

To this end, instead of relying only on the current word, we propose to obtain an

overall representation of the sentence that is used as the input to compute the

master gates and the importance score for each word in the sentence. This would

enrich the model-based importance scores with the context from the entire input

sentences, potentially leading to the improved RE performance of the model in this

work.

Finally, to further improve the representations learned by the deep learning

models for RE, we introduce a new inductive bias to promote the similarity

between the representation vectors for the overall sentences and the words along

the shortest dependency paths between the two entity mentions. The intuition is

that the relation between the two entity mentions of interest in a sentence for RE

can be inferred from either the entire sentence or the shortest dependency path

between the two entity mentions (due to the demonstrated ability of the shortest

dependency path to capture the important context words for RE in the prior work

Bunescu and Mooney (2005)). We thus expect that the representation vectors

for the sentence and the dependency path should be similar (as both capture the

semantic relation) and explicitly exploiting such similarity can help the models

to induce more effective representations for RE. Our extensive experiments on

three benchmark datasets (i.e., ACE 2005, SPOUSE and SciERC) demonstrate
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the effectiveness of the proposed model for RE, leading to the state-of-the-art

performance for these datasets.

3.1.1 Related Work. RE has been traditionally solved by the feature-

based or kernel-based approaches Bunescu and Mooney (2005); Chan and Roth

(2010); T. H. Nguyen and Grishman (2014); T. H. Nguyen, Plank, and Grishman

(2015c); Sun et al. (2011); Zelenko et al. (2003); G. Zhou et al. (2005b). One of

the issues in these approaches is the requirement for extensive feature or kernel

engineering effort that hinder the generalization and applicability of the RE

models. Recently, deep learning has been applied to address these problems for the

traditional RE approaches, producing the state-of-the-art performance for RE. The

typical network architectures for RE include the Convolutional Neural Networks

dos Santos, Xiang, and Zhou (2015); T. H. Nguyen and Grishman (2015a); L. Wang

et al. (2016); D. Zeng et al. (2014), Recurrent Neural Networks L. T. Nguyen,

Van Ngo, Than, and Nguyen (2019); T. H. Nguyen and Grishman (2016); Y. Zhang

et al. (2017); P. Zhou et al. (2016), and self-attentions in Transformer Verga et al.

(2018). The syntactic information from the dependency trees has also been shown

to be useful for the deep learning models for RE Guo et al. (2019); Y. Liu et al.

(2015); Miwa and Bansal (2016); N. Peng et al. (2017); Y. Song, Wang, Jiang, Liu,

and Rao (2019); Tai, Socher, and Manning (2015); V.-H. Tran et al. (2019); Veyseh

et al. (2019); Xu et al. (2015b); Y. Zhang et al. (2018). However, these methods

tend to poorly generalize to new syntactic structures due to the direct reliance on

the syntactic trees (e.g., in different domains) or fail to exploit the syntax-based

importance of the words for RE due to the sole focus on edges of the dependency

trees Veyseh et al. (2019).
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3.1.2 Model. The RE problem can be formulated as a multi-class

classification problem. Formally, given an input sentence W = w1, w2, . . . , wN

where wt is the t-th word in the sentence W of length N , and two entity mentions

of interest at indexes s and o (1 ≤ s < o ≤ N), our goal is to predict the semantic

relation between ws and wo in W .

Similar to the previous work on deep learning for RE Shi et al. (2018);

Veyseh et al. (2019), we first transform each word wt into a representation vector xt

using the concatenation of the three following vectors: (i) the pre-trained word

embeddings of wt, (ii) the position embedding vectors (to encode the relative

distances of wt to the two entity mentions of interest ws and wo (i.e., t − s and

t− o)), and (iii) the entity type embeddings (i.e., the embeddings of the BIO labels

for the words to capture the entity mentions present in X). This word-to-vector

transformation converts the input sentence W into a sequence of representation

vectors X = x1, x2, . . . , xN to be consumed by the next neural computations of the

proposed model.

There are three major components in the RE model in this work, namely (1)

the CEON-LSTM component (i.e., context-enriched ON-LSTM) to compute the

model-based importance scores of the words wt, (2) the syntax-model consistency

component to enforce the similarity between the syntax-based and model-based

importance scores, and (3) the similarity component between the representation

vectors of the overall sentence and the shortest dependency path.

3.1.2.1 CEON-LSTM. The goal of this component is to obtain a

score for each word wt that indicates the contextual importance of wt with respect

to the relation prediction between ws and wo in W . In this section, we first describe

the ON-LSTM model to achieve these importance scores (i.e., the model-based
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scores). A new model (called CEON-LSTM) that integrates the representation of

the entire sentence into the cells of ON-LSTM will be presented afterward.

ON-LSTM: Long-short Term Memory Networks (LSTM) Hochreiter

and Schmidhuber (1997) has been widely used in Natural Language Processing

(NLP) due to its natural mechanism to obtain the abstract representations for

a sequence of input vectors M. Nguyen and Nguyen (2018b); T. M. Nguyen and

Nguyen (2019a). Given the input representation vector sequence X = x1, x2, . . . , xN ,

LSTM produces a sequence of hidden vectors H = h1, h2, . . . , hN using the following

recurrent functions at the time step (word) wt (assuming the zero vector for h0):

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ĉt = tanh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ ĉt

ht = ot ◦ tanh(ct)

(3.1)

where ft, it and ot are called the forget, input and output gates (respectively).

In order to compute the importance score for each word wt, ON-LSTM

introduce into the mechanism of LSTM two additional gates, i.e., the master forget

gate f̂t and the master input gate ît Shen et al. (2019a). These gates are computed
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and integrated into the LSTM cell as follow:

f̂t = cummax(Wf̂xt + Uf̂ht−1 + bf̂ )

ît = 1 − cummax(Wîxt + Uîht−1 + bî)

f̄t = f̂t ◦ (ftît + 1 − ît)

īt = ît ◦ (itf̂t + 1 − f̂t)

ct = f̄t ◦ ct−1 + īt ◦ ĉt

(3.2)

where cummax is an activation function defined as cummax(x) =

cumsum(softmax(x))1.

The forget and input gates in LSTM (i.e., ft and it) are different from the

master forget and input gates in ON-LSTM (i.e., f̂t and ît) as the gates in LSTM

assume that the neurons/dimensions in their hidden vectors are equally important

and that these neurons are active at every step (word) in the sentence. This is in

contrast to the master gates in ON-LSTM that impose a hierarchy over the neurons

in the hidden vectors and limit the activity of the neurons to only a portion of

the words in the sentence (i.e., higher-ranking neurons would be active for more

words in the sentence). Such hierarchy and activity limitation are achieved via

the function cumax(x) that aggregates the softmax output of the input vector x

along the dimensions. The output of cumax(x) can be seen as the expectation of

some binary vector of the form (0, . . . , 0, 1, . . . , 1) (i.e., involving two consecutive

segments: the 0’s segment and the 1’s segment). At one step, the 1’s segments in

the gate vectors represents the neurons that are activated at that step. In ON-

LSTM, a word wi is more contextually important than another word wj if the

master gates for wi have more active neurons than those for wj. Consequently,

in order to compute the importance score for the word wt, we can rely on the

1cumsum(u1, u2, . . . , un) = (u′
1, u

′
2, . . . , u

′
n) where u′

i =
∑

j=1..i uj .
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number of active neurons in the master gates that can be estimated by the sum

of the weights of the neurons in the master gates in ON-LSTM. Following Shen

et al. (2019a), we employ the hidden vectors for the master forget gate in ON-

LSTM to compute the importance scores for the words in this work. Specifically,

let f̂t = f̂t1, f̂t2, . . . , f̂tD be the weights for the neurons/dimensions in ĥt (i.e., D is

the dimension of the gate vectors). The model-based importance score modt for the

word wt ∈ W is then obtained by: modt = 1 −
∑

i=1..D f̂ti. For convenience, we also

use H = h1, h2, . . . , hN to denote the hidden vectors returned from the application

of ON-LSTM over the input representation vectors X.

Introducing Sentence Context into ON-LSTM. One limitation

of the ON-LSTM model is that it only relies on the representation vector of the

current word xt and the hidden vector for the left context (encoded in ht−1) to

compute the master gate vectors and the model-based important score for the word

wt as well. However, this score computation mechanism might not be sufficient for

RE as the importance score for wt might also depend on the context information

on the right (e.g., the appearance of some word on the right might make wt less

important for the relation prediction between ws and wo). Consequently, in this

work, we propose to first obtain a representation vector x′
t = g(x1, x2, . . . , xN)

that has the context information about the entire sentence W (i.e., both the left

and right context for the current word wt). Afterward, x′
t will replace the input

representation vector xt in the computation for the master gates and importance

score at step t of ON-LSTM (i.e., in the formulas for f̂t and ît in Equation 3.2). In

this way, the model-based importance score for wt will be able to condition on the

overall context in the input sentence.
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In this work, we obtain the representation vector x′
t for each step t of

ON-LSTM based on the weighted sum of the transformed vectors of the input

representation sequence x1, x2, . . . , xN : x′
t =

∑
i αti(Wxxi + bx). The weight αti for

the term with xi in this formula is computed by:

αti =
exp((Whht−1 + bh) · (Wxxi + bx))∑N
j=1 exp((Whht−1 + bh) · (Wxxj + bx))

(3.3)

where Wh, bh,Wx and bx are the learnable parameters. Note that in this formula,

we use the ON-LSTM hidden vector ht−1 from the previous step as the query

vector to compute the attention weight for each word. The rationale is to enrich

the attention weights for the current step with the context information from

the previous steps (i.e., encoded in ht−1), leading to the contextualized input

representation x′
t with richer information for the master gates and importance

score computations in ON-LSTM. The proposed ON-LSTM with the enriched input

vectors x′
t is called CEON-LSTM (i.e., Context-Enriched ON-LSTM) in this work.

3.1.2.2 Syntax-Model Consistency. As mentioned in the

introduction, the role of the model-based importance scores obtained from CEON-

LSTM is to serve as the bridge to inject the information from the syntactic

structures of W into the representation vectors of the deep learning models for

RE. In particular, we first leverage the dependency tree of W to obtain another

importance score synt for each word wt ∈ W (i.e., the syntax-based importance

score). Similar to the model-based scores, the syntax-based scores are expected to

measure the contextual importance of wt with respect to the relation prediction

for ws and wo. Afterward, we introduce a constraint to encourage the consistency

between the model-based and syntax-based importance scores (i.e., modt and synt)

for the words via minimizing the KL divergence Limport between the normalized
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scores:

mod1, . . . ,modN = softmax(mod1, . . . ,modN)

syn1, . . . , synN = softmax(syn1, . . . , synN)

Limport = −Σimodilog
modi
syni

(3.4)

The intuition is to exploit the consistency to supervise the model-based importance

scores from the models with the syntax-based importance scores from the

dependency trees. As the model-based importance scores are computed from

the master gates with the active and inactive neurons in CEON-LSTM, this

supervision allows the syntactic information to interfere directly with the internal

computation/structure of the cells in CEON-LSTM, potentially generating

representation vectors with better syntax-aware information for RE.

To obtain the syntax-based importance scores, we take the motivation

from the previous work on RE where the shortest dependency paths between

the two entity mentions of interest have been shown to capture many important

context words for RE. Specifically, for the sentence W , we first retrieve the shortest

dependency path DP between the two entity mentions ws and wo and the length

T of the longest path between any pairs of words in the dependency tree of W .

The syntax-based importance score synt for the word wt ∈ W is then computed

as the difference between T and the length of the shortest path between wt and

some word in DP in the dependency tree (i.e., the words along DP will have the

score of T ). On the one hand, these syntax-based importance scores are able to

capture the importance of the words that is customized for the relation prediction

between ws and wo. This is better suited for RE than the direct use of the edges

in the dependency trees in Veyseh et al. (2019) that is agnostic to the entity

mentions of interest and fails to encode the importance of the words for RE. On
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the other hand, the syntax-based importance scores synt represent a relaxed form

of the original dependency tree that might have a better chance to generalize over

different data and domains for RE than the prior work (i.e., the ones that directly

fit the models to the whole syntactic structures Y. Zhang et al. (2018) and run the

risk of overfitting to the structures in the training data).

3.1.2.3 Sentence-Dependency Path Similarity. In this

component, we seek to further improve the representation vectors in the proposed

deep learning model for RE by introducing a novel constraint to maximize the

similarity between the representation vectors for the overall input sentence W

and the words along the shortest dependency path DP (i.e., inductive bias). The

rationale for this bias is presented in the introduction.

In order to implement this idea, we first obtain the representation vectors

RW and RDP for the sentence W and the words along DP (respectively) by

applying the max-pooling operation over the CEON-LSTM hidden vectors

h1, h2, . . . , hN for the words in W and DP : RW = max poolingwi∈W{hi} and

RDP = max poolingwi∈DP{hi}. In the next step, we promote the similarity between

RW and RDP by explicitly minimizing their negative cosine similarity2, i.e., adding

the following term Lpath into the overall loss function:

Lpath = 1 − cos (RW , RDP ) (3.5)

3.1.2.4 Prediction. Finally, in the prediction step, following

the prior work Veyseh et al. (2019), we employ the following vector V as the

overall representation vector to predict the relation between ws and wo in W :

V = [xs, xo, hs, ho, RW ]. Note that V involves the information at different abstract

2We tried the KL divergence and the mean square error for this, but cosine similarity achieved
better performance.

70



levels for W , i.e., the raw input level with xs and xo, the abstract representation

level with hs and ho from CEON-LSTM, and the overall sentence vector RW . In

our model, V would be fed into a feed-forward neural network with the softmax

layer in the end to estimate the probability distribution P (.|W,ws, wo) over the

possible relations for W . The negative log-likelihood function is then obtained to

serve as the loss function for the model: Llabel = − logP (y|W,ws, wo) (y is the

golden relation label for ws and wo in W ). Eventually, the overall loss function of

the model in this work is:

L = Llabel + αLimport + βLpath (3.6)

where α and β are trade-off parameters. The model is trained with shuffled mini-

batching.

3.1.3 Experiments.

3.1.3.1 Datasets and Hyper-parameters. We evaluate the models

in this work using three benchmark datasets, i.e., ACE 2005, SPOUSE, and

SciERC. For ACE 2005, similar to the previous work L. Fu, Nguyen, Min, and

Grishman (2017); T. H. Nguyen and Grishman (2016); Shi et al. (2018); Veyseh

et al. (2019), we use the dataset preprocessed and provided by M. Yu et al. (2015)

for compatible comparison. There are 6 different domains in this dataset, i.e., (bc,

bn, cts, nw, un, and wl), covering text from news, conversations and web blogs.

Following the prior work, the union of the domains bn and nw (called news) is used

as the training data (called the source domain); a half of the documents in bc is

reserved for the development data, and the remainder (cts, wl and the other half

of bc) serve as the test data (called the target domains). This data separation

facilitates the evaluation of the cross-domain generalization of the models due to

the domain difference of the training and test data.
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The SPOUSE dataset is recently introduced by Hancock et al. (2018),

involving 22,195 sentences for the training data, 2,796 sentences for the validation

data, and 2,697 sentences for the test data. Each sentence in this dataset contains

two marked person names (i.e., the entity mentions) and the goal is to identify

whether the two people mentioned in the sentence are spouses.

Finally, the SciERC dataset Luan, He, Ostendorf, and Hajishirzi (2018)

annotates 500 scientific abstracts for the entity mentions along with the

coreferences and relations between them. For RE, this dataset provides 3,219

sentences in the training data, 455 sentences in the validation data and 974

sentences in the test data.

We fine tune the hyper-parameters for the models in this work on the

validation data of the ACE 2005 dataset. The best parameters suggested by

this process include: 30 dimensions for the position embeddings and entity type

embeddings, 200 hidden units for the CEON-LSTM model and all the other

hidden vectors in the model (i.e., the hidden vectors in the final feed-forward

neural network (with 2 layers) and the intermediate vectors in the weighted

sum vector for x′
t), 1.0 for both loss trade-off parameters α and β, and 0.001 for

the initial learning rate with the Adam optimizer. The batch size is set to 50.

Finally, we use either the uncontextualized word embeddings word2vec (with 300

dimensions) or the hidden vectors in the last layer of the BERTbase model (with 768

dimensions) Devlin, Chang, Lee, and Toutanova (2019a) to obtain the pre-trained

word embeddings for the sentences Devlin et al. (2019a). We find it better to fix

BERT in the experiments.

3.1.3.2 Comparison with the state of the art. We fist compare

the proposed model (called CEON-LSTM) with the baselines on the popular ACE
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2005 dataset. In particular, the four following groups of RE models in the prior

work on RE with the ACE 2005 dataset is chosen for comparison:

(i) Feature based models: These models hand-design linguistic features for

RE, i.e., FCM, Hybrid FCM, LRFCM, and SVM Hendrickx et al. (2010); M. Yu et

al. (2015).

(ii) Deep sequence-based models: These models employ deep learning

architectures based on the sequential order of the words in the sentences for RE,

i.e., log-linear, CNN, Bi-GRU, Forward GRU, Backward GRU T. H. Nguyen and

Grishman (2016), and CNN+DANN L. Fu et al. (2017).

(iii) Adversarial learning model: This model, called GSN, attempts to learn

the domain-independent features for RE Shi et al. (2018).

(iv) Deep structure-based models: These models use dependency trees either

as the input features or the graphs to structure the network architectures in the

deep learning models. The state-of-the-art models of this type include: AGGCN

(Attention Guided GCN) Guo et al. (2019), SACNN (Segment-level Attention-

based CNN) V.-H. Tran et al. (2019) and DRPC (the Dependency Relation

Prediction and Control model) Veyseh et al. (2019). DRPC has the best reported

performance on ACE 2005. Note that we obtain the performance of these models

on the considered datasets using the actual implementation released by the original

papers.

Most of the prior RE work on the ACE 2005 dataset uses the

uncontextualized word embeddings (i.e., word2vec) for the initial word

representation vectors. In order to achieve a fair comparison with the baselines,

we first show the performance of the models (i.e., the F1 scores) on the ACE 2005

test datasets when word2vec is employed for the pre-trained word embeddings in
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System bc cts wl Avg.

FCM M. Yu et al. (2015) 61.90 52.93 50.36 55.06
Hybrid FCM M. Yu et al. (2015) 63.48 56.12 55.17 58.25
LRFCM M. Yu et al. (2015) 59.40 - - -
Log-linear T. H. Nguyen and Grishman (2016) 57.83 53.14 53.06 54.67
CNN T. H. Nguyen and Grishman (2016) 63.26 55.63 53.91 57.60
Bi-GRU T. H. Nguyen and Grishman (2016) 63.07 56.47 53.65 57.73
Forward GRU T. H. Nguyen and Grishman (2016) 61.44 54.93 55.10 57.15
Backward GRU T. H. Nguyen and Grishman (2016) 60.82 56.03 51.78 56.21
CNN+DANN L. Fu et al. (2017) 65.16 - - -
GSN Shi et al. (2018) 66.38 57.92 56.84 60.38
C-GCN Y. Zhang et al. (2018) 65.55 62.98 55.91 61.48
AGGCN Guo et al. (2019) 63.47 59.70 56.50 59.89
SACNN V.-H. Tran et al. (2019) 65.06 61.71 59.82 62.20
DRPC Veyseh et al. (2019) 67.30 64.28 60.19 63.92

CEON-LSTM (ours) 68.55 65.42 61.93 65.30

Table 10. F1 scores of the models on the ACE 2005 test datasets using the
word2vec word embeddings.

Table 10. The first observation from the table is that the deep structured-based

models (e.g., C-GCN, DRPC) are generally better than the deep sequence-based

models (e.g., CNN, Bi-GRU) and the feature base models with large performance

gaps. This demonstrates the benefits of the syntactic structures that can provide

useful information to improve the performance for the deep learning models for

RE. We will thus focus on these deep structure-based models in the following

experiments. Among all the models, we see that the proposed model CEON-

LSTM is significantly better than all the baseline models over different test

domains/datasets. In particular, CEON-LSTM is 1.38% and 3.1% better than

DRPC and SACNN (respectively) on the average F1 scores over different test

datasets. These performance improvements are significant with p < 0.01 and clearly

demonstrate the effectiveness of the proposed CEON-LSTM model for RE.

In order to further compare CEON-LSTM with the baselines, Table 11

presents the performance of the models when the words are represented by the
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System bc cts wl Avg.

C-GCN Y. Zhang et al. (2018) 67.02 64.4 58.92 63.44
AGGCN Guo et al. (2019) 65.29 63.65 60.35 63.09
SACNN V.-H. Tran et al. (2019) 68.52 64.21 62.19 64.97
DRPC Veyseh et al. (2019) 69.41 65.82 61.65 65.62

EA-BERT X. Wang, Han, et al. (2019a) 69.25 61.70 58.48 63.14

CEON-LSTM (ours) 71.58 66.92 65.17 67.89

Table 11. F1 scores of the models on the ACE 2005 test datasets using the BERT
word embeddings.

contextualized word embeddings (i.e., BERT). For this case, we also report

the performance of the recent BERT-based model (i.e., Entity-Aware BERT

(EA-BERT)) in X. Wang, Han, Liu, Sun, and Li (2019a) for RE on the ACE

2005 dataset. Comparing the models in Table 11 with the counterparts in 10,

it is clear that the contextualized word embeddings can significantly improve

the deep structure-based models for RE. More importantly, similar to the case

with word2vec, we see that the proposed model CEON-LSTM still significantly

outperforms all the baselines models with large performance gaps and p < 0.01,

further testifying to the benefits of the CEON-LSTM model in this work.

Finally, in order to demonstrate the generalization of the proposed model

over the other datasets, we show the performance of the models on the two other

datasets in this work (i.e., SPOUSE and SciERC) using either word2vec or BERT

as the word embeddings in Table 12. The results clearly confirm the effectiveness

of CEON-LSTM as it is significantly better than all the other models over different

datasets and word embedding settings.

3.1.3.3 Ablation Study. The Effect of the Model

Components: There are three major components in the proposed model: (1)

the introduction of the overall sentence representation x′
t into the ON-LSTM
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System SPOUSE SciERC

C-GCN (word2vec) Y. Zhang et al. (2018) 73.52 65.30
AGGCN (word2vec) Guo et al. (2019) 73.51 67.91
SACNN (word2vec) V.-H. Tran et al. (2019) 72.88 67.54
DRPC (word2vec) Veyseh et al. (2019) 74.66 68.18

CEON-LSTM (word2vec) (ours) 76.43 69.92

C-GCN (BERT) Y. Zhang et al. (2018) 75.18 74.11
AGGCN (BERT) Guo et al. (2019) 76.91 75.77
SACNN (BERT) V.-H. Tran et al. (2019) 77.98 76.42
DRPC (BERT) Veyseh et al. (2019) 78.93 77.21

CEON-LSTM (BERT) (ours) 81.01 78.24

Table 12. F1 scores of the models on the SPOUSE and SciERC datasets.

cells (called SCG – Sentence Context for Gates), (2) the consistency constraint

for the syntax-based and model-based importance scores (called SMC – Syntax-

Semantic Consistency), and (3) the similarity constraint for the representation

vectors of the overall sentence and the shortest dependency path (called SDPS –

Sentence-Dependency Path Similarity). In order to evaluate the contribution of

these components for the overall model CEON-LSTM, we incrementally remove

these components from CEON-LSTM and evaluate the performance of the

remaining model. Table 13 reports the performance of the models on the ACE

2005 development dataset.

It is clear from the table that all the components are necessary for the

proposed model as excluding any of them would hurt the performance significantly.

It is also evident that removing more components results in more performance drop,

thus demonstrating the complementary nature of the three proposed components in

this work.

The Variants for CEON-LSTM: We study several variants of SCG,

SMC, and SDPS in CEON-LSTM to demonstrate the effectiveness of the designed

mechanisms. In particular, we consider the following alternatives for CEON-LSTM:
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System P R F1

CEON-LSTM (Full) 74.51 67.29 71.08

- SCG 74.00 66.98 70.45
- SMC 72.87 66.85 69.89
- SDPS 73.02 66.00 69.18
- SCG - SMC 71.52 64.62 68.08
- SCG - SDPS 70.33 64.22 67.17
- SMC - SDPS 71.02 63.95 67.58
- SCG - SMC - SDPS 70.51 63.01 66.98

Table 13. Ablation study on the development set of ACE 2005. The components
listed in each row are removed from the overall model.

(i) Bi-ON-LSTM: Instead of employing the attention-based representation

vectors x′
t to capture the context of the entire input sentence for the model-based

importance scores in SCG, we run two unidirectional ON-LSTM models (i.e.,

the forward and backward ON-LSTM) to compute the forward and backward

importance scores for each word in W . The final model-based importance score for

each word is then the average of the corresponding forward and backward scores.

(ii) SA-ON-LSTM: In this method, instead of using the hidden vector

ht−1 as the query vector to compute the attention weight αti in Equation 3.3 for

SCG, we utilize the input representation vector xt for wt as the query vector (i.e.,

replace ht−1 with xt in Equation 3.3). Consequently, SA-ON-LSTM is basically a

composed model where we first run the self-attention (SA) model Vaswani et al.

(2017b) over X. The results are then fed into ON-LSTM to obtain the model-based

importance scores modt.

(iii) CE-LSTM: This aims to explore the effectiveness of ON-LSTM for

our model. In CE-LSTM, we replace the ON-LSTM network with the usual LSTM

model in CEON-LSTM. The SMC component is not included in this case as the

LSTM model cannot infer the importance scores.
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System P R F1

CEON-LSTM (proposed) 74.51 67.29 71.08

Bi-ON-LSTM 72.65 67.17 69.28
SA-ON-LSTM 73.21 67.31 70.13

CE-LSTM 71.58 64.19 67.92
EP-ON-LSTM 71.03 65.16 68.45

SP-CEON-LSTM (RW in V ) 73.58 66.92 70.13
SP-CEON-LSTM (RW not in V ) 72.94 65.21 69.51

Table 14. Models’ performance on the development dataset of ACE 2005.

(iv) EP-ON-LSTM: Before this work, the DRPC model in Veyseh et

al. (2019) has the state-of-the-art on ACE 2005. Both DRPC and CEON-LSTM

apply a more general representation of the dependency trees in a deep learning

model (i.e., avoid directly using the original trees to improve the generalization).

To illustrate the benefit of the importance score representation for SMC, EP-ON-

LSTM replaces the importance score representation for the dependency trees in

CEON-LSTM with the dependency edge representation in DRPC. In particular,

we replace the term Limport in the overall loss function (i.e., Equation 3.6) with the

dependency edge prediction loss (using the ON-LSTM hidden vectors) in DRPC for

EP-ON-LSTM.

(v) SP-CEON-LSTM: This model removes the SDPS component and

includes the representation vector of the dependency path DP (i.e., RDP ) in the

final representation V for relation prediction. We consider both retaining and

excluding the sentence representation RW in V in this case. This model seeks

to show that the use of RDP for the similarity encouragement with RW is more

effective than employing RDP directly in V .

Table 14 reports the performance of these CEON-LSTM variations on the

ACE 2005 development dataset. As we can see from the table, all the considered
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variants have significantly worse performance than CEON-LSTM (with p < 0.005).

This clearly helps to justify the designs of the components SCG, SMC and SDPS

for CEON-LSTM in this work.

3.1.4 Analysis. This section analyzes the main contribution of this

work which is improving the model robustness toward noises in the dependency tree

by indirectly incorporating syntactic structure with semantic hierarchy. To this end,

we propose a synthetic setting in which the dependency tree has some noises and

compare the main model robustness toward the noise in the dependency tree with

the other two main baselines C-GCN and DRPC.

In order to introduce noise into the dependency tree, we randomly choose

n words which are not on the dependency path, remove the edge between the

selected nodes and their parents and add an edge between the selected nodes and a

randomly selected node on the dependency path. We vary n from 0 (no noise) to 3

where 3 is the highest level of noise in the noisy dependency tree.

If the proposed model is robust toward noise in the syntactic tree, i.e.,

dependency tree, we expect it to have smaller performance lost than the other

two baselines. More specifically, the performance gap between our model and the

baseline is expected to increase by increasing the level of noise, i.e., n. The results

of this analysis are shown in Table 15. Increasing noise level results in performance

drop in all models as expected. However, SAON-LSTM enjoys less performance

lost thanks to its indirect incorporation of syntactic tree than C-GCN which means

the performance gap between these two models would increase by increasing the

level of noise. This Table also shows that both SAON-LSTM and DRPC are robust

toward noise level n = 1. It strengthen the usefulness of indirectly incorporating

syntactic tree into the model. However, as SAON-LSTM exploit more structural
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System n=0 n=1 n=2 n=3

SAON-LSTM 71.08 70.63 69.03 67.21

DRPC 68.79 68.52 67.18 66.92
C-GCN 66.54 65.37 63.18 59.78

Table 15. Comparison of the performance on ACE 2005 development set when
increasing the level of noise in the dependency tree.

information than DRPC, via modeling the distance to root instead of pair-wise

relations between words, it has higher performance result than DRPC when level of

the noise is low. Although, increasing the noise would hurt the SAON-LSTM more

as it is more reliable to the whole structure of the dependency tree.

Baseline for the Model-Based Importance Scores: One of the

contributions in our work is to employ the gates in the cells of ON-LSTM to

obtain the model-based importance scores that are then used to promote the

consistency with the syntax-based importance scores (i.e., in the SMC component).

In order to demonstrate the effectiveness of the master cell gates to obtain the

model-based importance scores, we evaluate a typical baseline where the model-

based importance score modi for wi ∈ W is computed directly from the hidden

vector hi of CEON-LSTM (i.e., by feeding hi into a feed-forward neural network

with sigmoid activation function in the end). The model-based importance scores

obtained in this way then replace the importance scores from the cell gates and are

used in the SMC component of CEON-LSTM in the usual way (i.e., via the KL

divergence in Limport) (note that we tried the alternatives for the KL divergence in

Limport (i.e., the mean square error and the cosine similarity between the syntax-

based and model-based importance scores), but the KL divergence produced the

best results for both CEON-LSTM and HIS-CEON-LSTM on the development

data). The resulting model is called HIS-CEON-LSTM. Table 16 reports the
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System P R F1

CEON-LSTM (proposed) 74.51 67.29 71.08

HIS-CEON-LSTM 72.02 63.97 68.29

Table 16. Models’ performance on the development dataset of ACE 2005.

performance of HIS-CEON-LSTM and the proposed model CEON-LSTM on the

ACE 2005 development dataset. It is clear from this table that the proposed model

CEON-LSTM achieves significantly better performance than HIS-CEON-LSTM

(with large performance gap), thus testifying to the importance of the master gates

to obtain the model-based importance scores for CEON-LSTM.

In order to provide more insights into the performance of the proposed

model, we analyze examples in the test data that can be predicted correctly with

the proposed model and incorrectly with the baselines. For a baseline model

M (e.g., GCN, DRPC), we call the test examples that cannot be recognized

by M but can be successfully predicted by the proposed model the M -failure

examples. Based on our analysis, the GCN-failure examples tend to involve the

syntactic/dependency structures that does not appear or are not well represented in

the training data. Some examples for the GCN-failure examples are shown in Table

17. On the one hand, as GCN is directly dependent on the syntactic structures of

the input sentences, it would not be able to learn effective representations for the

sentences with new structures in the GCN-failure examples for RE. On the other

hand, as CEON-LSTM only exploits a relaxed general form of the tree structures

(i.e., the importance scores of the words), it will be able to generalize better to the

new structures in the GCN-failure examples where the general tree form is still

helpful to induce effective representations for RE.
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For the DRPC-failure examples (their examples are presented in Table

18), we find that these examples often involve the two entity mentions of interest

with long distance from each other in the input sentences. For these examples,

the dependency paths between the two entity mentions tend to be very helpful or

crucial for RE as they can capture the important context words (thus eliminating

the irrelevant ones). This allows the models to learn effective representations to

correctly predict the relations in the sentences for RE. As DRPC only retains

the dependency edges in the dependency trees separately (i.e., the local tree

representations), it cannot directly capture such dependency paths, thereby

failing to predict the relations for the DRPC-failure examples with long distances

between the entities. This is in contrast to CEON-LSTM that exploits the global

representations of the trees with the importance scores based on the distances of

the words to the dependency paths. As the dependency paths can be still inferred

in this global representation, CEON-LSTM can benefit from this information to

successfully perform RE for the sentences in the DRPC-failure examples.

3.1.5 Conclusion. We introduce a new deep learning model for RE

(i.e., CEON-LSTM) that features three major proposals. First, we represent the

dependency trees via the syntax-based importance scores for the words in the

input sentences for RE. Second, we propose to incorporate the overall sentence

representation vectors into the cells of ON-LSTM, allowing it to compute the

model-based importance scores more effectively. We also devise a novel mechanism

to project the syntactic information into the computation of ON-LSTM via

promoting the consistency between the syntax-based and model-based importance

scores. Finally, we present a novel inductive bias for the deep learning models

that exploits the similarity of the representation vectors for the whole input
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Sentence Relation
Some Arab countries also want to
play a role in the stability operation
in Iraq but are reluctant to send
troops because of political, religious
and ethnic considerations, the official
said.

ORG-
AFF

Some suggested that Russian
President Vladimir Putin will now
be scrambling to contain the damage
to his once -budding friendship with
US President George W. Bush
because he was poorly advised by his
intelligence and defense aides.

PER-
SOC

Other countries including the
Philippines, South Korea, Qatar and
Australia agreed to send other help
such as field hospitals, engineers,
explosive ordnance disposal teams
or nuclear, biological and chemical
weapons experts.

PART-
WHOLE

Table 17. The GCN-failure examples. The two entity mentions of interest are
shown in bold in the sentences.

sentences and the shortest dependency paths between the two entity mentions

for RE. Extensive experiments are conducted to demonstrate the benefits of the

proposed model. We achieve the state-of-the-art performance on three datasets

for RE. In the future, we plan to apply CEON-LSTM to other related NLP tasks

(e.g., Event Extraction, Semantic Role Labeling) T. H. Nguyen, Cho, and Grishman

(2016a); T. H. Nguyen and Grishman (2018a).

3.2 Multi-view Consistency for Relation Extraction via Mutual

Information and Structure Prediction

In the previous section, we introduced a novel method for inferring structure

for RE using Ordered-Neuron LSTM. In this section, we provide further research
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Sentence Relation
US diplomats have hinted in recent
weeks that Washington ’s anger with
European resistance to the campaign
was focused more on Paris –and to a
lesser extent Berlin– than it was with
Moscow.

PART-
WHOLE

In Montreal, “Stop the War” a
coalition of more than 190 groups,
said as many as 200,000 people
turned out, though police refused to
give a figure.

PHYS

Although the crossing has, in
principle, been open for movement
between the two territories –while
being frequently closed by Israeli
for reasons rarely explained– the
Palestinian section has been manned
by Israel for more than two years.

ART

Table 18. The DRPC-failure examples. The two entity mentions of interest are
shown in bold in the sentences.

on how the inferred structure can be enforced to be consistent with other structural

information such as semantics-based graphs. In particular, we will show a novel

application of Mutual Information for enforcing consistency between different

structures inferred for RE.

The early methods for RE have involved the feature-based approach and

the kernel-based approach Zelenko et al. (2003); G. Zhou et al. (2005b) where

extensive feature engineering is necessary to produce effective RE models. Recently,

the research in RE has essentially transformed from such feature engineering

approaches to the deep learning models that have helped to significantly advance

our performance on the RE benchmark datasets. Among different techniques

introduced by deep learning for RE, the syntactic tress (i.e., dependency trees

and constituent trees) have been shown to be a useful resource to impose the
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structures over the computational graphs of the network architectures Socher,

Huval, Manning, and Ng (2012); Xu et al. (2015a); Y. Zhang et al. (2018). The

major benefits of such syntactic structures involve the incorporation of the

semantic/syntactic hierarchies in the sentence representations Socher et al. (2012)

and the capacity to directly capture the important context words for RE (i.e., via

the dependency paths) Y. Zhang et al. (2018).

Despite such advantages of the syntactic structures for the deep learning

models for RE, a major limitation in this approach is the reliance on some high-

quality external parsers to produce the effective parse trees for the models. There

are at least three issues originated from this parser reliance. First, the high-quality

external parsers might only be available for some domains and languages, thus

restricting the application of the RE models to those specific scenarios in practice.

Second, as the external parsers are often trained only for the parsing purposes,

the tree structures provided by these syntactic parsers might not be the optimal

ones for RE, calling for more customized or task-specific structures for the RE

problem. In fact, the syntactic trees generated by the external parsers cannot

be used directly by the recent deep learning models for RE, necessitating some

additional post-processing or controling mechanisms (i.e., pruning and graph

attention) Guo et al. (2019); Y. Zhang et al. (2018). Finally, the external parsers

are often trained for some general or specific domains for which their performance

might degrade if they are applied to new domains (i.e., the domain shift problem)

Plank (2011). Such performance loss of the parsers on the new domains might

eventually propagate to the RE models that critically depends on the quality of the

tree structures for the sentences to perform well.

85



In order to overcome the reliance on the external parsers, in this work, we

propose to learn the implicit structures for the input sentences along with the

relationship prediction for the entity metions for RE. This would help to avoid the

external parsers for RE, making it possible to apply the RE models for different

domains and languages, providing the task-specific sentence structures for RE,

and potentially improving the RE performance on new domains. To this goal, we

propose to learn the sentence structures for RE by applying two different methods

to generate the dependencies/hierarchies between the words in the sentences (i.e.,

the two views). We would then introduce the constraints between the structures

and representations learned by these two views to promote their consistencies. Our

expectation is that such consistency constraints, once enforced under the relation

prediction task in RE, can help to reveal the effective task-specific structures and

representations for RE, a property that is impossible if the structures are pre-

determined with some external parsers.

In particular, the two views for inducing the structures of the sentences

involve Ordered Neurons Long-short Term Memory (ON-LSTM) Shen, Tan,

Sordoni, and Courville (2019b) and self-attention Vaswani et al. (2017b) (i.e.,

Transformers). ON-LSTM is an extended version of the popular Long-short Term

Memory networks (LSTM) that, via its internal forget and input mechanisms, can

assign an importance score for each word in the sentence. Such importance scores

indicate how close the words should be to the root of the tree structure induced

by On-LSTM for the input sentence (i.e., the root would have highest importance

score), thus implicitly forming a tree structure for the sentence. In order to perform

its computation, ON-LSTM manipulates the life cycle of each neurons so the high-

ranking neurons would be maintained for a larger number of steps (words) while
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the low-ranking neurons would be discarded more rapidly. In contrast to the word

order schema for structure induction in ON-LSTM, the seft-attention mechanism

induces the structure for an input sentence by estimating the connection scores

between every pair of words in the sentence (i.e., a fully connected graph structure).

The score for one pair of word reflects how influential one word is with respect to

the semantic understanding for the other word. Finally, in order to encourage the

structure consistency between ON-LSTM and seft-attention, we transforms the

pairwise scores between the words in self-attention into the importance scores for

the words and promote the similarity between the two importance score sequences

(i.e., from ON-LSTM and self-attention) using the KL divergence in the loss

function.

In the baseline version of the aforementioned similarity promotion, we

consider the importance scores of every word in the input sentence for both ON-

LSTM and self-attention. However, for RE, it is possible that only a subset of the

words in the sentence are necessary to correctly recognize the relationships for the

entity mentions. It is thus desirable to perform the similarity promotion only on

the importance scores of those relevant context words to avoid any potential noise.

Consequently, in this work, we propose a filtering technique that predicts which

context words in the sentence are relevant for the RE problem, and incorporates

such information into the similarity promotion process to further improve the

induced structures for RE.

A potential issue with the word representations induced by ON-STM and

self-attention is that such word representations are excessively constrained to

achieve the importance score similarity for the structure consistency, thereby

loosing the important semantic information for RE. In order to alleviate this
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problem, in addition to the structure consistency, we also introduce the constraints

to preserve the important semantic information in the representation vectors

produced by ON-LSTM and self-attention. In particular, we first use a bidirectional

LSTM (BiLSTM) model to encode the semantic representations of the words in

the its hidden vectors. We would then enrich the semantic content of the hidden

vectors from ON-LSTM and self-attention via the semantic consistency between

those vectors. In particular, we consider two mechanisms to achieve such semantic

consistencies between the hidden/representation vectors in this work. The first

mechanism is inspired by the control mechanism in Veyseh et al. (2019) that retains

the semantic content in the representation vectors of self-attention via the control

vector computed from the BiLSTM vectors of the two entity mentions. The second

mechanism (newly proposed in this work), on the other hand, exploits the mutual

information (MI) between the high dimension representation vectors from ON-

LSTM and BiLSTM to enable their semantic consistency.

We conduct extensive experiments on the ACE 2005 and SemEval 2010

datasets that demonstrate the effectiveness of the proposed model for RE. Our

model significantly outperforms the competitive baselines and achieves the state-of-

the-art performance on the datasets.

3.2.1 Related Work. The early works have used the feature or

kernel based approaches for RE Chan and Roth (2010); T. H. Nguyen and

Grishman (2014); T. H. Nguyen et al. (2015c); Sun et al. (2011); Zelenko et al.

(2003); G. Zhou et al. (2005b). These approaches often perform extensive feature

engineering and might not generalize well on challenging datasets. Recently, deep

learning models have been proposed to address such issues, leading to the state-of-

the-art results for RE T. H. Nguyen and Grishman (2016); L. Wang et al. (2016);
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D. Zeng et al. (2014); Y. Zhang et al. (2017). These deep learning models can

be further categorized into the sequence based or structure based models. In the

sequence based models, the sequential order of the words are preserved in the

processing flow of the models (e.g., CNN T. H. Nguyen and Grishman (2015a),

RNN Y. Zhang et al. (2017) or Transformer Verga et al. (2018)). In contrast,

the structure-based models utilize the syntactic trees of the input sentences to

structure the computational graphs of the deep learning models, thereby being able

to capture the longer-term dependencies for the words. Y. Liu et al. (2015); Miwa

and Bansal (2016); T. H. Nguyen and Grishman (2018a); N. Peng et al. (2017);

L. Song, Zhang, Wang, and Gildea (2018); Tai et al. (2015); Xu et al. (2015a);

Y. Zhang et al. (2018). However, in practice, such syntactic trees often require

post-processing step (i.e., rule-based or attention-based) to customize them for RE

Guo et al. (2019); Y. Zhang et al. (2018). Our work differs from these prior works

as we introduce a new mechanism to automatically induce the structures for RE

from the context. The learned structures are customized for RE and do not require

post-processing steps.
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Figure 2. Model overview. The green vectors represent input word representations
while the circles indicate the element-wise product.
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3.2.2 Method. The RE task can be seen as a multi-class classification

problem. Given a sentence W = w1, w2, . . . , wN (N is the number of words/tokens

in W ) and two entity mentions of interest located at tokens ws and wo (1 ≤ s < o ≤

N), we need to predict the semantic relationship between the two entity mentions

in this case.

Motivated by the prior word on RE Shi et al. (2018); Veyseh et al. (2019),

we represent each word wi in the sentence using the concatenation vector ei of its

pre-trained word embeddings, position embeddings (to indicate the positions of the

two entity mentions), and entity type embeddings (to capture the entity mentions

in the sentence)3. After this word-to-vector transformation, the input sentence W

is converted into a sequence of word representation vectors E = e1, e2, . . . , eN that

would be used as the inputs for the next neural computations.

In order to avoid the external parsers, we propose to induce the task-

specific structures during the relation prediction process for RE. Given the input

sentence for RE, we employ two different network architectures to obtain the

implicit structure and semantic representations for the words in the sentence.

Several constraints are then introduced to ensure the consistencies between the

structures and semantic representations learned by the two views. As mentioned

in the introduction, the ON-LSTM and self-attention networks are used for the

two views (called as the word-order view and the graph-based view respectively).

Figure 2 shows the overall architecture of the proposed model. The details about

the network architectures and consistency constraints are presented below.

3Note that different from Veyseh et al. (2019), we do not include the binary feature vectors
for wi obtained from the dependency trees (i.e., from the dependency relations and paths) as we
would like to avoid the parse trees in this work.
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3.2.2.1 The word-order structure view. The strategy to induce a

structure in the word-order view with ON-LSTM is to assign an importance score

wonlstm
i for every word wi in the input sentence to implicitly form a binary tree

structure for W . The words with higher importance scores would be closer to the

root of the tree, reflecting the levels of the words in the tree. Consequently, the

word wi∗ with the highest score ws
i∗ would be considered as the tree root, from

which two subtrees are recursively constructed based on the words before wi∗ for

the left child and the words after wi∗ for the right child.

ON-LSTM computes the importance scores for the words by introducing

two additional master gates (i.e., forget and input) into the original computation

of LSTM Shen et al. (2019b) (i.e., ON-LSTM is thus similar to LSTM in that

both consume a sequence of vectors to produce a new sequence of hidden vectors).

Basically, the hidden vectors for the input and forget gates (called the gate vectors)

in both LSTM and ON-LSTM are computed for each word/step in the sentence

and determine how much information of the context should be updated or forgotten

respectively in the current step. However, the forget and input gate vectors in

ON-LSTM differ from those in LSTM because the gates in LSTM treat every

neurons/dimensions in their hidden vectors independently, imposing no hierarchy

over such neurons and assuming the activity of each neuron for every word in the

sentence/sequence. This is in contrast to the forget and input gates in ON-LSTM

that enforce a hierarchy for the neurons/dimensions in their hidden vectors and

only allow each neuron to be activated for a portion of words in the sentence. The

rationale is that higher-ranking neurons would have a longer life time (i.e., being

activated for more words in the sentence) to encode long-term information while
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lower-ranking neurons would be canceled more rapidly to focus on the short-term

information (i.e., the structural bias).

In order to achieve such ranking mechanisms for the neurons in the

master gates, ON-LSTM employs the cummax activation function in the

computation for the hidden vectors of the forget and input gates: cumax(x) =

cumsum(softmax(x))4. cummax essentially aggregates the softmax output of some

input vector x along the dimensions that can be seen as the expectation of some

binary vector of the form (0, . . . , 0, 1, . . . , 1) (i.e., divided into two consecutive

segments: the 0-segment and the 1-segment). Similar to the forget and input

gates in LSTM, the input for the cummax activation function to compute the

gate vectors for ON-LSTM at the current step/word also involves the hidden

vector from the previous step and the input vector for the current step. At one

word/step, the 1-segments of the hidden vectors of the master gates cover the

neurons that are activated for the gates at that step. Consequently, in ON-LSTM,

the lengths of the 1-segments, or more precisely the sums of the weights of the

neurons in the 1-segments of the gate vectors for a word are used to determine the

importance of that word in the sentence. Following Shen et al. (2019b), we use the

hidden vectors of the master forget gate in ON-LSTM to obtain the importance

scores the words. In particular, let fi = fi1, fi2, . . . , fiD be the hidden vector

for the master forget gate at the i-th word wi ∈ W from ON-LSTM (D is the

dimension of the hidden vector), the importance score wonlstm
i for wi is computed

by: wonlstm
i = D −

∑
j=1..D fij.

In this work, we feed the input vector sequence E = e1, e2, . . . , eN into two

layers of ON-LSTM. We use the master forget gates of the second layer to generate

4cumsum(u1, u2, . . . , un) = (u′
1, u

′
2, . . . , u

′
n) where u′

i =
∑

j=1..i uj .
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the importance sores wonlstm
i for the words in W , serving as the encoding of the

tree structure induced by ON-LSTM in this work. For convenience, we denote the

output hidden vectors produced by the second layer of ON-LSTM for the words in

the input sentence as H ′ = h′
1, h

′
2, . . . , h

′
N .

3.2.2.2 The graph-based structure view. Different from the word

importance scores via the number of active neurons in ON-LSTM, the graph-based

structure view represents the structure for the input sentence via a fully connected

graph between the words. The weight aij for the edge between wi and wj would

indicate the level of connections/dependencies of these two words, thus implicitly

defining a hierarchy among the words.

As presented previously, we obtain the graph-based structure for the input

sentence in this work via the self-attention mechanisms in Transformers Vaswani

et al. (2017b). In particular, starting from the input representation vectors for

the words E = e1, e2, . . . , eN , we first feed them into a bidirectional LSTM layer

(BiLSTM) that produces a sequence of hidden vectors H = h1, h2, . . . , hN as

the output. These representation vectors are expected to capture the semantic

information for the whole input sentence. Afterward, the BiLSTM would be

consumed by the self-attention layer to generate the connection scores for the

pairs of words in the sentence. Specifically, for each BiLSTM vector hi, we compute

its corresponding key vector ki, query vector qi, and value vector vi via: ki = Ukhi,

qi = Uqhi, and vi = Uvhi where Uk, Uq and Uv are the weight matrices, and biases

are omitted for brevity in this work. The connection scores aij between the words

wi and wj would then be obtained by the dot product between ki and qj:

ai,j = exp(ki · qj)/
∑

t=1..N

exp(ki · qt) (3.7)
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We omit the normalization factor in this formula in Vaswani et al. (2017b)

for brevity. The connection scores aij of the graph structure induced by self-

attention for the input sentence can be exploited for two purposes. First, they

can be used to compute more abstract representation vectors H ′′ = h′′
1, h

′′
2, . . . , h

′′
N

for the words in the sentence via: h′′
i =

∑
j=1..n aijvj. Such vectors are expected

to encode richer context information for the input sentence with a greater focus

on the induced graph structure information. Second, the connection scores aij can

also be utilized to transform the induced graph structure into a tree structure by

computing an importance score for every word in the sentence and following the

same strategy to generate the binary tree as we do for the ON-LSTM model. In

order to obtain the importance scores for the words with aij, we assume that a

word would be more important if it has stronger connections with the other words.

In particular, we compute the importance score wsatt
i for the word wi by:

wsatt
i = ΣN

j=1ai,j/N (3.8)

where the weights ai,i are set to be zero. We consider the scores

wsatt
1 , wsatt

2 , . . . , wsatt
N as the encoding for the tree structure learned by seft-attention

in this work.

3.2.2.3 Structure consistency between views. As we do not

have any supervision about the structure of the input sentence in this work, we

seek to induce such structure automatically by promoting the similarity between

the structures learned by the word-order and graph-based views. Intuitively,

the word-order and graph-based structures should be similar/related as they

are computed for the same input sentence W . We expect that such structure

similarity enforcement would help to reveal the effective structures for RE.

In order to achieve such structure similarity, we first transform the structure-
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encoding scores wonlstm
1 , wonlstm

2 , . . . , wonlstm
N and wsatt

1 , wsatt
2 , . . . , wsatt

N from ON-

LSTM and self-attention into the probability distributions W onlstm and W satt

(respectively) via: W onlstm = softmax([wonlstm
1 , wonlstm

2 , . . . , wonlstm
N ]) and

W satt = softmax([wsatt
1 , wsatt

2 , . . . , wsatt
N ]). We would then incorporate the KL

divergence between W onlstm and W satt into the overall loss function to minimize the

distance between the two distribution:

KL(W onlstm||W satt) = −ΣiW
onlstm
i log

W onlstm
i

W satt
i

(3.9)

One potential issue with Equation 3.9 is that it enforces the structure

similarity based on the importance scores for the words in the sentence equally

(i.e., imposing the same weight for the word-specific term in the KL divergence).

This implicitly assumes the equal contribution of the words for the structure of

the sentence for RE. However, in RE, there might be only a subset of words in

the sentence that are actually relevant or necessary for the semantic prediction

(e.g., the words along the dependency path between the two entity mentions).

This suggests a mechanism where the words are weighted differently in the KL

divergence for the structure consistency based on their potential contribution for

the relationship prediction of the two entity mentions. Consequently, we seek to

estimate a contribution score si for each word wi in the KL divergence based on the

BiLSTM vectors hi, hs and ho of wi and the two entity mentions of interest:

si = σ(W1σ(W2[hi, hs, ho])) (3.10)

where W1 and W2 are the weight matrices. Finally, we use such contribution

scores to weight the word-specific terms in the KL divergence in Equation 3.9 in

the overall loss:

Lstructure = −ΣisiW
onlstm
i log

W onlstm
i

W satt
i

(3.11)
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3.2.2.4 Semantic consistency between views. Given the

representation vectors learned ON-LSTM (i.e., H ′ = h′
1, h

′
2, . . . , h

′
N) and self-

attention (i.e., H ′′ = h′′
1, h

′′
2, . . . , h

′′
N), the natural approach to perform RE is

to aggregate such representation vectors to create an overall feature vector for

classification. However, the structure consistency constraint in Equation 3.11

might have filtered the information content in H ′ and H ′′ excessively to encode

mostly the structure information, erasing the important semantic information for

RE. In order to enrich the representation vectors H ′ and H ′′ with the semantic

information, we propose to distill the semantic information from the BiLSTM

vectors (i.e., H = h1, h2, . . . , hN) and directly incorporate it into H ′ and H ′′

for RE. As the representation vectors in H are less involved with the structure

constraint, we expect that they can still preserve important semantic information

for RE in this case. In particular, we seek to employ mechanisms to promote the

semantic consistencies between the BiLSTM representation vectors H and those

from ON-LSTM and self-attention (i.e., H ′ and H ′′). We expect that such semantic

consistencies can help to enrich the semantic information in the representation

vectors H ′ and H ′′.

First, for the semantic consistency between H and H ′, we propose to

maximize the mutual information (MI) between their aggregated representations

in the loss function. In information theory, MI evaluates how much information we

know about one random variable if the value of another variable is revealed. Two

random variables would be more dependent if they have larger mutual information.

Consequently, if the semantic representations from H and H ′ are encouraged to

have large mutual information, we expect them to share more semantic information.

As H already encodes the important semantic information for RE, this would help
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to enrich the semantic content in H ′ as a by-product. In order to introduce this

mutual information constraint, we first aggregate the representation vectors in

H and H ′ into the overall representation vectors h̄ and h̄′ via the max-pooling

function: h̄ = Max Pooling(h1, h2, . . . , hN) and h̄′ = Max Pooling(h′
1, h

′
2, . . . , h

′
N).

The mutual information would be computed between h̄ and h̄′ and introduced

directly into the loss function for optimization.

One issue with this approach is that the computation of the MI for such

high dimensional continuous vectors as h̄ and h̄′ is prohibitively expensive. In

this work, we propose to address this issue by employing the mutual information

neural estimation (MINE) in Belghazi et al. (2018) that seeks to estimate the

lower bound of the mutual information between the high dimensional vectors via

adversarial training. To this goal, MINE attempts to compute the lower bound

of the KL divergence between the joint and marginal distributions of the given

high dimensional vectors/variables. Recently it has been shown that the Jensen-

Shannon divergence can also used for this purpose, offering simpler methods to

compute the lower bound for the MI. Consequently, following such methods, we

apply the adversarial approach to obtain the MI lower bound via the binary cross

entropy of a variable discriminator. This discriminator differentiates the vectors

that are sampled from the joint distribution from those that are sampled from the

product of the marginal distribution of the variables. In our case, the two variables

are the semantic representations h̄ and h̄′. In order to sample from their joint

distribution, we simply concatenate h̄ and h̄′ (i.e., the positive example). To sample

from the product of the marginal distribution, we concatenate the representation

h̄ with ĥ′ where ĥ′ is the aggregated vector (with max-pooling) of the ON-LSTM

representation vectors from another sentence in the same batch with the current
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sentence of interest W (i.e., the negative example). These samples are fed into a

2-layer feed forward neural network D (i.e., the discriminator) to perform a binary

classification (i.e., coming from the joint distribution or the product of the marginal

distributions). Finally, we use the following binary cross entropy loss to estimate

the mutual information between h̄ and h̄′ to add into the overall loss function:

Ldisc = −(log(D[h̄, h̄′]) + log(1 −D([h̄, ĥ′]))) (3.12)

Second, regarding H and H ′′, we apply the control mechanism proposed in

Veyseh et al. (2019) to enforce the semantic consistency for these representation

vectors. This control mechanism first obtains a control vector c from the

representation vectors in H, emphasizing on the representation vectors of the

two entity mentions hs and ho. This control vector is then applied directly to the

representation vectors in H ′′, obtaining a new vector h̄′′
i for each vector h′′

i ∈ H ′′:

h̄′′
i = c⊙ h′′

i .

For convenience, we use h̄′′ to denote the max-pooling aggregation vector

for the representation vectors h̄′′
i : h̄′′ = Max Pooling(h̄′′

1, h̄
′′
2, . . . , h̄

′′
N). Due to the

direct incorporation, we expect that the semantic information in H ′′ would be

consistent with those in H, thereby enriching the semantic content in H ′′. The

control mechanism has been shown to work well for RE in Veyseh et al. (2019). In

the experiments, we will evaluate whether we can use the control mechanism and

the new MI constraint interchangeably for the semantic consistency between H, H ′

and H ′′.

3.2.2.5 Training. Finally, in order to predict the relationships

between the two entity mentions ws and wo, we combine the representation

vectors produced by BiLSTM, ON-LSTM, and self-attention to obtain an overall

representation vector R for the input sentence. This representation vector involves
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the max-pooling aggregation vectors from these three components (i.e., h̄, h̄′, and

h̄′′) as well as their specific elements for the two entity mentions (i.e., hs, ho, h
′
s,

h′
o, h

′′
s and h′′

o): R = [h̄, h̄′, h̄′′, hs, ho, h
′
s, h

′
o, h

′′
s , h

′′
o ]. Due to the structure and

semantic consistencies introduced in this work, we expect R would contain effective

information for the RE problem. In the final step, R would be fed into a 2 layer

feed-forward neural network followed by a softmax layer to compute the probability

distribution P (.|W, s, o) over the possible relations for RE. We use the negative

log-likelihood as the training loss in this work: Lpred = −P (y|W, s, o) where y is the

true relation label for the input sentence.

Overall, the loss function to train the model is:

L = Lpred + αLdisc + βLstructure (3.13)

where α and β are the trade-off parameters. The rest of this section continues with

the experiments on the proposed method.

3.2.3 Experiments.

3.2.3.1 Datasets and Hyper-Parameters. We employ two widely

used datasets (i.e., ACE 2005 and SemEval 2010) to evaluate the model in this

work. For the ACE 2005 dataset, similar to the previous work L. Fu et al. (2017);

Shi et al. (2018); Veyseh et al. (2019), we use the dataset preprocessed and

provided by M. Yu et al. (2015) for compatible comparison. There are 6 different

domains in this dataset, i.e., (bc, bn, cts, nw, un, and wl), covering text from

news, conversations and web blogs. Following the the prior work, the union of

the domains bn and nw (called news) is used as the training data (called the source

domain); a half of the documents in bc is reserved for the development data, and

the remainder (cts, wl and the other half of bc) serve as the test data (called

the target domains). This data separation helps to evaluate the cross-domain
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System bc cts wl Avg.

FCM M. Yu et al. (2015) 61.90 52.93 50.36 55.06
Hybrid FCM M. Yu et al. (2015) 63.48 56.12 55.17 58.25
LRFCM M. Yu et al. (2015) 59.40 - - -
Log-linear T. H. Nguyen and Grishman (2016) 57.83 53.14 53.06 54.67
CNN T. H. Nguyen and Grishman (2016) 63.26 55.63 53.91 57.60
Bi-GRU T. H. Nguyen and Grishman (2016) 63.07 56.47 53.65 57.73
Forward GRU T. H. Nguyen and Grishman (2016) 61.44 54.93 55.10 57.15
Backward GRU T. H. Nguyen and Grishman (2016) 60.82 56.03 51.78 56.21
CNN+DANN L. Fu et al. (2017) 65.16 - - -
GSN Shi et al. (2018) 66.38 57.92 56.84 60.38
AGGCN Guo et al. (2019) 63.47 59.70 56.50 59.89
SACNN V.-H. Tran et al. (2019) 65.06 61.71 59.82 62.20
DRPC Veyseh et al. (2019) 67.30 64.28 60.19 63.92

MVC (ours) 70.32 66.43 64.61 68.20

Table 19. F1 scores of the models on the ACE 2005 dataset over different target
domains bc, cts, and wl.

generalization of the models due to the domain difference of the training data

and test data. For the SemEval 2010 dataset Hendrickx et al. (2010), there are 18

semantic relations that along with an Other class, leading to a 19-class classification

problem. As validation data is not provided in SemEval 2018, we use the same

model parameters as those used for the ACE 2005 dataset for consistency.

Based on the fine-tuning process on the validation data of the ACE 2005

dataset, we find the following values for the hyper-parameters for the proposed

model: 50 dimensions for the position embeddings and entity type embeddings, 100

hidden units for the BiLSTM and ON-LSTM models, 200 dimensions for all the

other hidden vectors in the model (i.e., the hidden vectors in self-attention and the

layers of the feed-forward neural networks), 0.1 for the loss trade-off parameters α

and β, and 0.3 for the learning rate with the Adam optimizer. Finally, we use the

pre-trained word embedding word2vec with 300 dimension to represent the words.
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3.2.3.2 Comparison to the state of the art. We compare the

performance of the proposed model (called MVC for multi-view consistency) with

the following baselines:

• Feature based models: These models use linguistic features for RE, i.e.,

FCM, Hybrid FCM, LRFCM, and SVM Hendrickx et al. (2010); M. Yu et al.

(2015).

• Deep sequential models: These models employ deep learning architectures

based on the sequential order of the sentence for RE, i.e., log-linear, CNN, Bi-

GRU, Forward GRU, Backward GRU T. H. Nguyen and Grishman (2016), and

CNN+DANN L. Fu et al. (2017).

• Adversarial learning model: This model, called GSN, is trained to learn

the genre agnostic features for cross-domain RE. Shi et al. (2018)

• Deep structure-based models: These models employ dependency trees

either as the input features or graphs to form the computation flow for deep

learning models. The state-of-the-art models of this type include: AGGCN Guo

et al. (2019), SACNN V.-H. Tran et al. (2019) and DRPC Veyseh et al. (2019).

DRPC has the best reported performance on ACE 2005. Note that we obtain

the performance of these models on the considered datasets using the actual

implementation released by the original papers.

We report the F1 scores on all the ACE 2005 test sets in Table 19. From

the table, we see that the deep structure-based models (i.e., AGGCN, SACNN and

DRPC) are in general better than the deep sequential models, thus suggesting the

benefits of the sentence structures (i.e., the dependency trees from the external

parsers) for deep learning for RE. More importantly, the proposed model MVC is

shown to significantly outperforms the baseline models on all the test sets with
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System F1

SVM Hendrickx et al. (2010) 82.2
SDP-LSTM Xu et al. (2015a) 83.7
SPTree Miwa and Bansal (2016) 84.4
PA-Tree Y. Zhang et al. (2017) 82.7
C-GCN Y. Zhang et al. (2018) 84.8
LISA Strubell, Verga, Andor, Weiss, and McCallum (2018) 83.9
DRPC Veyseh et al. (2019) 85.2
AGGCN Guo et al. (2019) 85.7
SACNN V.-H. Tran et al. (2019) 85.8

MVC (ours) 86.1

Table 20. Performance on the SemEval 2010 dataset.

p < 0.01. The performance gap is substantial and clearly demonstrates the

effectiveness of the proposed MVC in this work. In particular, MVC improves

the average F1 score of the deep sequential models by almost 10% while this

performance improvement for the structure-based model is at least 4%. We

attribute the better performance of MVC over the structure-based models to the

fact that the task-specific and context-dependent structures from MVC is better

suited for RE than the pre-defined structures from the external parsers. Finally,

due to the cross-domain nature of the evaluation on the ACE 2005 dataset, we can

also conclude that the task-specific structures learned by MVC can be more robust

against the domain shifts for RE.

We also compare the performance of MVC (i.e., using the macro F1 score)

with the state-of-the-art structured-based RE models (i.e., using dependency

trees) on the SemEval 2010 test set in Table 20. These models are also selected

for comparison in Veyseh et al. (2019). As we can see from the table, MVC can

achieve significantly better or comparable performance with the other structure-

based methods, further testifying to the advantages of the task-specific structure

induction for RE proposed in this work.
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3.2.3.3 Ablation study on components. In this section, we report

the performance of the proposed model on the ACE 2005 development set when the

major components of the model is excluded. In particular, we seek to evaluate the

contribution of four main components in this work, including the BiLSTM module,

the ON-LSTM module, the self-attention module, and the contribution scores

si for the KL divergence constraint in Equation 3.10. The results are shown in

Table 21. As we can see from the table, all the components are necessary for MVC

as removing any of them would hurt the performance significantly. The largest

performance loss comes from excluding ON-LSTM that highlights the importance

of ON-LSTM on inducing effective structure and semantic information for RE.

Importantly, the performance loss due to the elimination of the contribution scores

si in Equation 3.10 suggests that in RE, learning the structure throughout the

entire sentences would not be as helpful as restricting the structure induction to the

relevant parts of the sentences.

3.2.3.4 Semantic consistency. There are two mechanisms

for semantic consistency in this work, i.e., the MI constraint and the control

mechanism Veyseh et al. (2019). In the model, the MI constraint is used to

promote the semantic consistency between the representation vectors from BiLSTM

and ON-LSTM (i.e., BiLSTM ↔ ON-LSTM) while the control mechanism is

applied for the vectors from BiLSTM and self-attention (i.e., BiLSTM ↔ self-

attention). The natural question is whether the MI and control mechanisms can be

used interchangeably to achieve the semantic consistencies for the representation

vectors for the two pairs BiLSTM ↔ ON-LSTM and BiLSTM ↔ self-attention.

Table 22 shows the performance of the 4 possible combinations of the MI and

control mechanisms for the two semantic consistency pairs BiLSTM ↔ ON-
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System P R F1

MVC 77.8 65.1 70.1

MVC - LSTM 75.7 62.9 68.0
MVC - ON-LSTM 72.1 63.4 67.5
MVC - SA 80.1 61.2 68.4
MVC - Contribution Scores in (3.10) 73.2 66.5 69.2

Table 21. Ablation study on the ACE 2005 dev set.

Mechanisms P R F1

MI, Control (proposed) 77.8 65.1 70.1
MI, MI 84.5 59.6 67.3
Control, MI 77.2 64.5 69.2
Control, Control 74.2 63.2 68.9

Table 22. Performance on the ACE 2005 dev set when the MI and control
mechanisms are used interchangeably. The first and second mechanisms in each
row corresponds to the constraints for BiLSTM ↔ ON-LSTM and BiLSTM ↔
self-attention respectively.

LSTM and BiLSTM ↔ self-attention. This table shows that when we use only

one type of the semantic consistency mechanisms, i.e. both MI or both control,

the performance drops more than the cases with two types of mechanisms. This

demonstrates the complementary effects between the MI and control constraints

for semantic consistency for RE. The best performance is achieved when the

MI mechanism is used for BiLSTM ↔ ON-LSTM and the control mechanism is

reserved for BiLSTM ↔ self-attention, testifying to our design of the proposed

model in this work.

3.2.3.5 Ablation study on consistency. This section investigates

whether the consistency constraints (i.e., structure and semantics) are necessary.

Table 23 presents the performance of MVC when different combinations of

the consistency constraints are removed from the model. As we can see from

the table, the model’s performance would be reduced significantly if any of
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Model P R F1

MVC 77.8 65.1 70.1

MVC - KL 72.3 65.8 68.1
MVC - MI 74.0 67.4 69.5
MVC - Control 78.4 61.9 68.5
MVC - KL - MI 71.2 66.1 68.0
MVC - MI - Control 70.1 65.6 67.9
MVC - KL - Control 70.5 66.4 68.2
MVC - KL - MI - Control 72.1 63.2 67.1

Table 23. Performance on the ACE 2005 dev set when the consistency constraints
are removed from the model.

the constraints is excluded, among which the KL divergence constraint for the

structure consistency between ON-LSTM and self-attention would lead to the

most significant performance loss. Importantly, when all the three constraints are

excluded from MVC (thus making it an ensemble model between ON-LSTM and

self-attention), the performance would become the worst (i.e., 3% loss in the F1

score). These results clearly demonstrate the effectiveness of the proposed MVC in

this work, highlighting the consistency constraints as the important mechanisms to

achieve good performance for RE.

3.2.4 Conclusion. We propose a novel method for RE that seeks to

automatically induce the task-specific structures for the input sentences, avoiding

the external parsers. The experiments show that the induced structures are

more effective for RE than the pre-defined structures from the external parsers.

The key innovation of the proposed method is to use two views (i.e., ON-LSTM

and self-attention) to learn the structures and semantic representations for the

input sentences. We introduce several constraints to enforce the structure and

semantic consistencies between the two views based on KL differences and mutual

information. We achieve the state-of-the-art performance for RE on both the
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cross-domain and general settings, thereby demonstrating the effectiveness and

the robustness of the proposed model.

3.3 Conclusion

In this Chapter, we study two novel methods based on On-LSTM and Self-

Attention to infer effective structures for the task of Relation Extraction. Further,

we provide details on a novel mechanism to ensure consistency between these views

using Mutual Information. In the next Chapter, we take a step further and instead

of inferring structure between words in an input text, we infer structure between

samples in a batch of data. Such a structure can be used to ensure the consistency

of the data points in a batch.
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CHAPTER IV

INFERRING STRUCTURES FOR IE AT DATASET LEVEL

This Chapter contains materials from the published paper: “Amir Pouran

Ben Veyseh, Viet Lai, Franck Dernoncourt, and Thien Huu Nguyen. ‘Unleash

GPT-2 power for event detection’ In Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6271-

6282. 2021”. In this publication, the experiments were entirely done by the author

of this dissertation, Amir Pouran Ben Veyseh. The other co-authors provided

feedback regarding the experiments and results. Amir wrote the entire paper and

Dr. Thien Huu Nguyen provided editorial feedback for this paper.

In previous chapters, we study novel methods for exploiting existing

structures or inferring task-specific structures for IE problems. Although these

structures are helpful to improve the performance of IE models, they are limited

to a single input data point. In other words, the interactions between the samples

have not been studied so far. Such interactions could be modeled as the similarity

between data points which could be helpful to increase the generalization ability

of the IE model. As such, in this Chapter, we study how the interaction between

samples in a batch of data can be exploited for an IE model. In particular, the

similarity between samples can be used to construct a bipartite graph that can

measure the consistency between different data points in a batch of data. The

remainder of this Chapter provides details of the proposed technique.

An important task of Information Extraction (IE) involves Event Detection

(ED) whose goal is to recognize and classify words/phrases that evoke events in

text (i.e., event triggers). For instance, in the sentence “The organization donated
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2 million dollars to humanitarian helps.”, ED systems should recognize “donated”

as an event trigger of type Pay. We differentiate two subtasks in ED, i.e., Event

Identification (EI): a binary classification problem to predict if a word in text is

an event trigger or not, and Event Classification (EC): a multi-class classification

problem to classify event triggers according to predefined event types.

Several methods have been introduced for ED, extending from feature-

based models Ahn (2006); Liao and Grishman (2010a); Miwa et al. (2014) to

advanced deep learning methods Y. Chen et al. (2015); M. V. Nguyen, Lai, and

Nguyen (2021a); T. H. Nguyen and Grishman (2015a); T. H. Nguyen, Meyers, and

Grishman (2016g); Sha et al. (2018); Y. Zhang, Xu, et al. (2020). Although deep

learning models have achieved substantial improvement, their requirement of large

training datasets together with the small sizes of existing ED datasets constitutes a

major hurdle to build high-performing ED models. Recently, there have been some

efforts to enlarge training data for ED models by exploiting unsupervised L. Huang

et al. (2016); Yuan et al. (2018) or distantly-supervised Araki and Mitamura (2018);

Keith et al. (2017); M. Nguyen and Nguyen (2018b) techniques. The common

strategy in these methods is to exploit unlabeled text data that are rich in event

mentions to aid the expansion of training data for ED. In this work, we explore a

novel approach for training data expansion in ED by leveraging the existing pre-

trained language model GPT-2 Radford et al. (2019) to automatically generate

training data for models. Motivated by the promising performance of GPT models

for text generation, we expect our approach to produce effective data for ED in

different domains.

Specifically, we aim to fine-tune GPT-2 on existing training datasets so

it can generate new sentences annotated with event triggers and/or event types,
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serving as additional training data for ED models. One direction to achieve this

idea is to explicitly mark event triggers along with their event types in sentences

of an existing ED dataset that can be used to fine-tune the GPT model for new

data generation. However, one issue with this direction is that in existing ED

datasets, numbers of examples for some rare event types might be small, potentially

leading to the poor tuning performance of GPT and impairing the quality of

generated examples for such rare events. In addition, large numbers of event types

in some ED datasets might make it more challenging for the fine-tuning of GPT

to differentiate event types and produce high-quality data. To this end, instead of

directly generating data for ED, we propose to use GPT-2 to only generate samples

for the event identification task to simplify the generation and achieve data with

better annotated labels (i.e., output sentences only are only marked with positions

of event triggers). As such, to effectively leverage the generated EI data to improve

ED performance, we propose a multi-task learning framework to train the ED

models on the combination of the generated EI data and the original ED data. In

particular, for every event trigger candidate in a sentence, our framework seeks

to perform two tasks, i.e., EI to predict a binary label for being an event trigger

or not, and ED to predict the event type (if any) evoked by the word via a multi-

class classification problem. An input encoder is shared for both tasks that allow

training signals from both generated EI data and original ED data to contribute to

the representation learning in the encoder (i.e., transferring knowledge in generated

EI data to ED models).

Despite the simplification to EI for better annotated labels of data,

the generated sentences might still involve noises due to the inherent nature

of the language generation, e.g., grammatically wrong sentences, inconsistent
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information, or incorrect event trigger annotations. As such, it is crucial to

introduce mechanisms to filter the noises in generated data to enable effective

transfer learning from generated EI data. To this end, prior works for GPT-based

data generation for other tasks has attempted to directly remove noisy generated

examples before actual usage for model training via some heuristic rules Anaby-

Tavor et al. (2020); Y. Yang et al. (2020). However, heuristic rules are brittle

and restricted in their coverage so they might overly filter the generated data or

incorrectly retain some noisy generated samples. To address this issue, we propose

to preserve all generated data for training and devise methods to explicitly limit

impacts of noisy generated sentences in the models. In particular, we expect the

inclusion of generated EI data into the training process for ED models might help

to shift the representations of the models to better regions for ED. As such, we

argue that this representation transition should only occur at a reasonable rate as

drastic divergence of representations due to the generated data might be associated

with noises in the data. Motivated by this intuition, we propose a novel teacher-

student framework for our multi-task learning problem where the teacher is trained

on the original clean ED datasets to induce anchor representation knowledge

for data. The student, on the other hand, will be trained on both generated EI

data and original ED data to accomplish transfer learning. Here, the anchor

knowledge from the teacher will be leveraged to guide the student to prevent

drastic divergence of representation vectors for noisy information penalization.

Consequently, we propose a novel anchor information to implement this idea,

seeking to maintain the same level of differences between the generated and original

data (in terms of representation vectors) for both the teacher and the student (i.e.,

generated-vs-original data difference as the anchor). At the core of this techniques
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involves the computation of distance/difference between samples in generated

and original data. In this work, we envision two types of information that models

should consider when computing such distances for our problem: (1) representation

vectors of the models for the examples, and (2) event trigger likelihood scores of

examples based on the models (i.e., two examples in the generated and original

data are more similar if they both correspond to event triggers). As such, we

propose to cast this distance computation problem of generated and original data

into an Optimal Transport (OT) problem. OT is an established method to compute

the optimal transportation between two data distributions based on the probability

masses of data points and their pair-wise distances, thus facilitating the integration

of the two criteria of event trigger likelihoods and representation vectors into the

distance computation between data point sets.

Extensive experiments and analysis reveal the effectiveness of the proposed

approach for ED in different domains, establishing new state-of-the-art performance

on the ACE 2005, CySecED and RAMS datasets.

4.1 Model

We formulate the task of Event Detection as a word-level classification

problem as in prior work Ngo, Nguyen, and Nguyen (2020); T. H. Nguyen and

Grishman (2015a). Formally, given the sentence S = [w1, w2, . . . , wn] and the

candidate trigger word wt, the goal is to predict the event type l from a pre-defined

set of event types L. Note that if the word wt is not a trigger word, the gold event

type is None. Our proposed approach for this task consist of two stages: (1) Data

Augmentation: to employ natural language generation to augment existing training

datasets for ED, (2) Task Modeling: to propose a deep learning model for ED,

exploiting available training data.
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4.1.1 Data Augmentation. As presented in the introduction,

our motivation in this work is to explore a novel approach for training data

augmentation for ED based on the powerful pre-trained language model for text

generation GPT2. Our overall strategy involves using some existing training

dataset O for ED (i.e., original data) to fine-tune GPT-2. The fine-tuned model is

then employed to generate a new labeled training set G (i.e., synthetic data) that

will be combined with the original data O to train models for ED.

To simplify the training data generation task and enhance the quality of

the synthetic data, we seek to generate data only for the subtask EI of ED where

synthesized sentences are annotated with positions of their event triggers (i.e., event

types for triggers are not required for the generation to avoid the complication

with rare event types for fine-tuning). To this end, we first enrich each sentence

S ∈ O with positions of event triggers that it contains to facilitate the GPT fine-

tuning process. Formally, assume that S = w1, w2, . . . , wn is a sentence of n words

with only one event trigger word located at wt, the enriched sentence S ′ for S

would have the form: S ′ = [BOS,w1, . . . , TRGs, wt, TRGe, . . . , wn, EOS] where

TRGs and TRGe are special tokens to mark the position of the event trigger, and

BOS and EOS are special tokens to identify the beginning and the end of the

sentence. Next, the GPT-2 model will be fine-tuned on the enriched sentences

S ′ of O in an auto-regressive fashion (i.e., predicting the next token in S ′ given

prior ones). Finally, using the fine-tuned GPT-2, we generate a new dataset G of

|O| sentences (|G| = |O|) to achieve a balanced size. Here, we ensure that only

generated sentences that contain the special tokens TRGs and TRGe (i.e., involving

event trigger words) are added into G, allowing us to identify the candidate trigger

word in our word-level classification formulation for ED. As such, the combination
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A of the synthetic data G and the original data O (A = O ∪ G) will be leveraged to

train our ED model in the next step.

To assess the quality of the synthetic data, we randomly select 200

sentences from G (generated by the fine-tuned GPT-2 model over the popular ACE

2005 training set for ED) and evaluate them regarding grammatical soundness,

meaningfulness, and inclusion and correctness of annotated event triggers (i.e.,

whether the words between the tokens TRGs and TRGe evoke events or not).

Among the sampled set, we find that 17% of the sentences contains at least one

type of such errors.

4.1.2 Task Modeling. This section describes our model for ED to

overcome the noises in the generated data G for model training. As discussed in the

introduction, we employ the Teacher-Student framework with multi-task learning

to achieve this goal. In the proposed framework, the teacher and student employs a

base deep learning model with the same architecture and different parameters.

Base Model: Following the prior work X. Wang, Han, Liu, Sun, and Li

(2019b), our base model consists of the BERTbase model to represent each

word wi in the input sentence S with a vector ei. Formally, the input sentence

[[CLS], w1, w2, . . . , wn, [SEP ]] is fed into the BERTbase model and the hidden states

of the last layer of BERT are taken as the contextualized embeddings of the input

words, i.e., E = [e1, e2, . . . , en]. Note that if wi contains more than one word-piece,

the average of its word-piece embeddings is used for ei. In our experiments, we

find that fixing the BERTbase parameters achieve higher performance. As such,

to fine-tune the contextualized embeddings E for ED, we employ a Bi-directional

Long Short-Term Memory (BiLSTM) network to consumes E; its hidden states,

i.e., H = [h1, h2, . . . , hn], are then employed as the final representations for the
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words in S. Finally, to create the final vector V for ED prediction, the max-

pooled representation of the sentence, i.e., h̄ = MAX POOL(h1, h2, . . . , hn),

is concatenated with the representation of the trigger candidate, i.e., ht. V is

consumed by a feed-forward network, whose last layer has |L| neurons, followed

by a softmax layer to predict the distribution P (·|S, t) over possible event types

in L. To train the model, we use negative log-likelihood as the loss function:

Lpred = − logP (l|S, t) where l is the gold label.

As the synthetic sentences in G only involve information about positions

of event triggers (i.e., no event types included), we cannot directly combine G

with O to train ED models with the loss Lpred. To facilitate the integration of

G into the training process, we introduce an auxiliary task of EI for the multi-

task learning in the training process, seeking to predict the binary label laux for

the trigger candidate wt in S, i.e., laux = 1 if wt is an event trigger. To perform

this auxiliary task, we employ another feed-forward network, i.e., FFaux, which

also consumes the overall vector V as input. This feed-forward network has one

neuron with the sigmoid activation function in the last layer to estimate the event

trigger likelihood score: P (laux = 1|S, t) = FFaux(V ). Finally, to train the base

model with the auxiliary task, we exploit the binary cross-entropy loss: Laux =

−(laux log(FFaux(V )) + (1 − laux) log(1 − FFaux(V ))). Note that the main ED task

and the auxiliary EI task are done jointly in a single training process where the loss

Lpred for ED is computed only for the original data O. The loss Laux, in contrast,

will be obtained for both original and synthetic data in A.

Knowledge Consistency: The generated data G is not noise-free. As such,

training the ED model on A could lead to inferior performance. To address

this issue, as discussed in the introduction, we propose to first learn the anchor
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knowledge from the original data O, then use that to lead the model training

on A to prevent drastic divergence from the anchor knowledge (i.e., knowledge

consistency promotion), thus constraining the noises. Hence, we propose a teacher-

student network, in which the teacher is first trained on O to learn the anchor

knowledge. The student network will be trained on A afterward leveraging the

consistency guidance with the induced anchor knowledge from the teacher. We will

also use the student network as the final model for our ED problem in this work.

In our framework, both teacher and student networks will be trained in

the multi-task setting with ED and EI tasks. In particular, the training losses for

both ED and EI will be computed based on O for the teacher (the loss to train

the teacher is: Lpred + τLaux where τ is a trade-off parameter). In contrast, the

combined data A will be used to compute the EI loss for the student while the

ED loss for the student can only be computed on the original data O. As such,

we propose to enforce the knowledge consistency between the two networks for

both the main task ED and the auxiliary task EI during the training of the student

model. First, to achieve the knowledge consistency for ED, we seek to minimize

the KL divergence between the teacher-predicted label-probability distribution

and the student-predicted label-probability distributions. Formally, for a sentence

S ∈ O, the label-probability distributions of the teacher and the student, i.e.,

Pt(·|S, t) and Ps(·|S, t) respectively, are employed to compute the KL-divergence

loss LKL = −Σl∈LPt(l|S, t) log(Pt(l|S,t)
Ps(l|S,t)). By decreasing the KL-divergence during

the student’s training, the model is encouraged to make similar predictions as

the teacher for the same original sentence, thereby preventing noises to mislead

the student. Note that different from traditional teacher-student networks that

employ KL to achieve knowledge distillation on unlabelled data Hinton, Vinyals,
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and Dean (2015), the KL divergence in our model is leveraged to enforce knowledge

consistency to prevent noises in labeled data automatically generated by GPT-2.

Second, for the auxiliary task EI, instead of enforcing the student-teacher

knowledge consistency via similarity predictions, we argue that it will be more

beneficial to leverage the difference between the original data O and the generated

data G as an anchor knowledge to promote consistency. In particular, we expect

that the student which is trained on A, should discern the same difference between

G and O as the teacher which is trained only on the original data O. Formally,

during student training, for each mini-batch, the distances between the original

data and the generated data detected by the teacher and the student are denoted

by dTO,G and dSO,G, respectively. To enforce the O-G distance consistency between

the two networks, the following loss is added into the overall loss function: Ldist =

|dTO,G−dSO,G |
|B| , where |B| is the mini-batch size. The advantage of this novel knowledge

consistency enforcement compared to the KL-divergence is that it explicitly exploits

the different nature of the original and generated data to facilitate the mitigation of

noises in the generated data.

A remaining question for our proposed knowledge consistency concerns

how to assess the difference between the original and the generated data from the

perspective of the teacher, i.e., dTO,G, and the student networks, i.e., dSO,G. In this

section, we will describe our method from the perspective of the student (the same

method is employed for the teacher network). In particular, we define the difference

between the original and the generated data as the cost of transforming O to G

such that for the transformed data the model will make the same predictions as

G. How can we compute the cost of such transformation? To answer this question,

we propose to employ Optimal Transport (OT) which is an established method
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to find the efficient transportation (i.e., transformation with the lowest cost)

of one probability distribution to another one. Formally, given the probability

distributions p(x) and q(y) over the domains X and Y, and the cost function

C(x, y) : X × Y → R+ for mapping X to Y, OT finds the optimal joint distribution

π∗(x, y) (over X × Y) with marginals p(x) and q(y), i.e., the cheapest transportation

from p(x) to q(y), by solving the following problem:

π∗(x, y) = min
π∈Π(x,y)

∫
Y

∫
X
π(x, y)C(x, y)dxdy

s.t. x ∼ p(x) and y ∼ q(y),

(4.1)

where Π(x, y) is the set of all joint distributions with marginals p(x) and q(y). Note

that if the distributions p(x) and q(y) are discrete, the integrals in Equation 4.1

are replaced with a sum and the joint distribution π∗(x, y) is represented by a

matrix whose entry (x, y) represents the probability of transforming the data point

x ∈ X to y ∈ Y to convert the distribution p(x) to q(y). By solving the problem in

Equation 4.11, the cost of transforming the discrete distribution p(x) to q(y) (i.e.,

Wasserstein distance DistW ) is defined as: DistW = Σx∈XΣy∈Yπ
∗(x, y)C(x, y).

In order to utilize OT to compute the transformation cost between O and

G, i.e., dSO,G, we propose to define the domain X and Y as the representation spaces

of the sentences in O and G, respectively, obtained from the student network. In

particular, a data point x ∈ X represents a sentence Xo ∈ O. Similarly, a data

point y ∈ Y stands for a sentence Yg ∈ G. To define the cost function C(x, y)

for OT, we compute the Euclidean distance between the representation vectors of

the sentences Xo and Yg (obtained by max-pooling over representations of their

words): C(x, y) =
∥∥h̄X

o − h̄Y
g

∥∥ where h̄X
o = MAX POOL(hX

o,1, . . . , h
X
o,|Xo|), h̄

Y
g =

MAX POOL(hY
g,1, . . . , h

Y
g,|Yg |), and hX

o,i and hY
g,i are the representation vectors of

1It is worth mentioning that this problem is intractable so we solve its entropy-based
approximation using the Sinkhorn algorithm Peyre and Cuturi (2019).
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the i-th words of Xo and Yg, respectively, obtained from the student’s BiLSTM.

Also, to define the discrete distribution p(x) for OT over X , we employ the event

trigger likelihood ScoreXo for the trigger candidate of each sentence Xo in X that is

returned by the feed-forward network FFSaux for the auxiliary task EI in the student

model, i.e, ScoreXo = FFSaux(Xo). Afterward, we apply the softmax function over

the scores of the original sentences in the current mini-batch to obtain p(x), i.e.,

p(x) = Softmax(ScoreXo ). Similarly, the discrete distribution q(y) is defined as

q(y) = Softmax(ScoreYg ). To this end, by solving the OT problem in Equation 4.1

and obtaining the efficient transport plan π∗(x, y) using this setup, we can obtain

the distance dSO,G. In the same way, the distance dTO,G can be computed using the

representations and event trigger likelihoods from the teacher network. Note that

in this way, we can integrate both representation vectors of sentences and event

trigger likelihoods into the distance computation between data as motivated in the

introduction.

Finally, to train the student model, the following combined loss function is

used in our framework: L = Lpred + αLaux + βLKL + γLdist, where α, β, and γ are

the trade-off parameters.

4.2 Experiments

4.2.1 Datasets, Baselines & Hyper-Parameters. To evaluate

the effectiveness of the proposed model, called the GPT-based data augmentation

model for ED with OT (GPTEDOT), we conduct experiments on the following ED

datasets:

ACE 2005 Walker, Strassel, Medero, and Maeda (2006b): This dataset

annotates 599 documents for 33 event types that cover different text domains(e.g.,

news, weblog or conversation documents). We use the same pre-processing script
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and data split as prior works Lai, Nguyen, and Nguyen (2020b); Tong, Xu, et al.

(2020) to achieve fair comparisons. In particular, the data split involves 529/30/40

articles for train/dev/test sets respectively. For this dataset, we compare our model

with prior state-of-the-art models reported in the recent works Lai, Nguyen, and

Nguyen (2020b); Tong, Xu, et al. (2020), including BERT-based models such as

DMBERT, AD-DMBERT X. Wang, Han, et al. (2019b), DRMM, EKD Tong, Xu,

et al. (2020), and GatedGCN Lai, Nguyen, and Nguyen (2020b).

CySecED Man Duc Trong, Trong Le, Pouran Ben Veyseh, Nguyen, and

Nguyen (2020): This dataset provides 8,014 event triggers for 30 event types from

300 articles of the cybersecurity domain (i.e., cybersecurity events). We follow the

the same pre-processing and data split as the original work Man Duc Trong et al.

(2020) with 240/30/30 documents for the train/dev/test sets. To be consistent

with other experiments and facilitate the data generation based on GPT-2, the

experiments on CySecED are conducted at the sentence level where inputs for

models involve sentences. As such, we employ the state-of-the-art sentence-level

models reported in Man Duc Trong et al. (2020), i.e., DMBERT X. Wang, Han, et

al. (2019b), BERT-ED S. Yang et al. (2019), as the baselines for CySecED.

RAMS Ebner et al. (2020): This dataset annotates 9,124 event triggers for

38 event types. We use the official data split with 3,194, 399, and 400 documents

for training, development, and testing respectively for RAMS. We also perform ED

at the sentence level in this dataset. For the baselines, we utilize recent state-of-

the-art BERT-based models for ED, i.e., DMBERT X. Wang, Han, et al. (2019b)

and GatedGCN Lai, Nguyen, and Nguyen (2020b). For a fair comparison, the

performance of such baseline models is obtained via their official implementations

from the original papers that are fine-tuned for RAMS.
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Model P R F1
CNN T. H. Nguyen and Grishman (2015a) 71.8 66.4 69.0
DMCNN Y. Chen et al. (2015) 75.6 63.6 69.1
DLRNN Duan, He, and Zhao (2017) 77.2 64.9 70.5
ANN-S2 S. Liu, Chen, Liu, and Zhao (2017) 78.0 66.3 71.7
GMLATT J. Liu, Chen, Liu, and Zhao (2018) 78.9 66.9 72.4
GCN-ED T. H. Nguyen and Grishman (2018) 77.9 68.8 73.1
Lu’s DISTILL Lu, Lin, Han, and Sun (2019) 76.3 71.9 74.0
TS-DISTILL J. Liu, Chen, and Liu (2019) 76.8 72.9 74.8
DMBERT* X. Wang, Han, et al. (2019b) 77.6 71.8 74.6
AD-DMBERT* X. Wang, Han, et al. (2019b) 77.9 72.5 75.1
DRMM* Tong, Wang, et al. (2020) 77.9 74.8 76.3
GatedGCN* Lai, Nguyen, and Nguyen (2020b) 78.8 76.3 77.6
EKD* Tong, Xu, et al. (2020) 79.1 78.0 78.6
GPTEDOT* 82.3 76.3 79.2

Table 24. Performance on the on ACE 2005 test set. * indicates models that use
BERT for the encoding.

For each dataset, we use its training and development data to fine-tune

the GPT-2 model. We tune the hyperparameters for the proposed teacher-student

architecture using a random search. All the hyperparameters are selected based on

the F1 scores on the development set of the ACE 2005 dataset. The same hyper-

parameters from this fine-tuning are then applied for other datasets for consistency.

In our model we use the small version of GPT-2 to generate data. In the base

model, we use BERTbase, 300 dimensions in the hidden states of BiLSTM and

2 layers of feed-forward neural networks with 200 hidden dimensions to predict

events. The trade-off parameters τ , α, β and γ are set to 0.1, 0.1, 0.05, and 0.08,

respectively. The learning rate is set to 0.3 for the Adam optimizer and the batch

size of 50 are employed during training. Finally, note that we do not update the

BERT model for word embeddings in this work due to its better performance on

the development data of ACE 2005.
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Model P R F1
CNN T. H. Nguyen and Grishman (2015a) 51.8 36.7 43.0
DMCNN Y. Chen et al. (2015) 47.5 38.7 43.2
GCN-ED T. H. Nguyen and Grishman (2018) 46.3 51.8 48.9
MOGANED Yan, Jin, Meng, Guo, and Cheng (2019b) 53.7 59.6 56.5
CyberLSTM Satyapanich, Ferraro, and Finin (2020b) 42.5 29.0 34.5
DMBERT X. Wang, Han, et al. (2019b) 59.4 51.3 55.1
BERT-ED Man Duc Trong et al. (2020) 60.2 56.1 58.1
GPTEDOT 65.9 64.1 65.0

Table 25. Comparison with state-of-the-art models on CySecED. All the models in
this table use BERT.

Model P R F1
DMBERT X. Wang, Han, et al. (2019b) 62.6 44.0 51.7
GatedGCN Lai, Nguyen, and Nguyen (2020b) 66.5 59.0 62.5
GPTEDOT 55.5 78.6 65.1

Table 26. Model’s performance on RAMS. All the models use BERT in this table.

4.2.2 Results. Results of experiments on the ACE 2005 test set are

shown in Table 24. The most important observation is that the proposed model

GPTEDOT significantly outperforms all the baseline models (p < 0.01), thus

showing the benefits of GPT-generated data and the teacher-student framework

with knowledge consistency for ED in this work. In particular, compared to the

BERT-based models that leverage data augmentation, i.e., AD-DMBERT X. Wang,

Han, et al. (2019b) with semi-supervised and adversarial learning, DRMM Tong,

Wang, et al. (2020) with image-enhanced models, and EKD Tong, Xu, et al. (2020)

with external open-domain event triggers, the better performance of GPTEDOT

highlights the advantages of GPT-2 to generate data for ED models.

Results of experiments on the CySecED test set are presented in Table 25.

This table reveals that the teacher-student architecture GPTEDOT significantly

improves the performance over previous state-of-the-art models for ED in
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cybersecurity domain. This is important as it shows that the proposed model is

effective in different domains. In addition, our results also suggest that GPT-2 can

be employed to generate effective data for ED in domains where data annotation

for ED requires extensive domain expertise and expensive cost to obtain such as the

cybersecurity events. Moreover, the higher margin of improvement for GPTEDOT

on CySecED compared to the those on the ACE 2005 dataset suggests the necessity

of using more training data for ED in technical domains.

Finally, results of experiments on the RAMS test set are reported in Table

26. Consistent with our experiments on ACE 2005 and CySecED, our proposed

model achieve significantly higher performance than existing state-of-the-art models

(p < 0.01), thus further confirming the advantages of GPTEDOT for ED.

4.2.3 Ablation Study. This ablation study evaluates the effectiveness

of different components in GPTEDOT for ED. First, for the importance of the

generated data G from GPT-2 and the teacher-student architecture to mitigate

noises, we examine the following baselines: (1) BaseO: The baseline is the base

model trained only on the original data O, thus being equivalent to the teacher

model and not using the student model; and (2) BaseA: This baseline trains the

base model on the combination of the original and generated data, i.e., A, using the

multi-learning setting (i.e., the teacher model is excluded).

Second, for the multi-task learning design in the teacher network, we

explore the following ablated models: (3) Teacher−A: This baseline removes

the auxiliary task EI in the teacher from GPTEDOT. As such, the OT-based

knowledge consistency for EI is also eliminated; (4) Teacher−M : In this model,

the main task ED is utilize to train the teacher, so the corresponding KL-based

knowledge consistency for ED is also removed.
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Third, for the design of the knowledge consistency losses in the student

network, we evaluate the following baselines: (5) Student−OT : This ablated model

eliminates the OT-based knowledge consistency loss for the auxiliary task EI

in the student’s training of GPTEDOT (the auxiliary task is still employed for

the teacher and the student); (6) Student−KL: For this model, the KL-based

knowledge consistency for the main task ED is ignored in the student’s training;

(7) Student+OT : In this baseline, we use OT for the knowledge consistency on

both the main and the auxiliary tasks. Here, for the main task ED, the cost

function C(x, y) for OT is still obtained via the Euclidean distances between

representation vectors while the distributions p(x) and p(y) are based on the

maximum probabilities of the label-probability distributions Ps(.|Xo, to) and

Ps(Yg, tg) for the ED task; and (8) Student+KL: This baseline employs the KL

divergence between models’ predicted distributions to enforce the teacher-student

consistency for both the main task and the auxiliary task. To this end, for the

auxiliary task EI, we convert the final activation of FFaux into a distribution with

two data points (i.e., [FFaux(X), 1 − FFaux(X)]) to compute the KL divergence

between the teacher and the student.

Finally, for the importance of Euclidean distances and event trigger

likelihoods in the OT-based distance between O and G for knowledge consistency

in EI, we investigate two baselines: (9) OT−Rep: Here, to compute OT, we use

constant cost between every pair of sentences, i.e., C(x, y) = 1 (i.e., ignoring

representation-based distances); and (10) OT−Score: This model uses uniform

distributions for p(x) and q(y) to compute the OT (i.e., ignoring event trigger

likelihoods).
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Model P R F1
GPTEDOT (full) 82.4 75.0 78.5
BaseO 78.2 73.7 75.9
BaseA 75.8 73.9 74.9
Teacher−A 76.9 78.1 77.5
Teacher−M 75.8 77.9 76.9
Student−OT 75.4 79.3 77.3
Student−KL 76.8 77.3 77.0
Student+OT 76.1 76.6 76.4
Student+KL 77.1 76.7 76.9
OT−Rep 76.8 77.3 77.0
OT−Score 78.0 77.1 77.6

Table 27. Ablation study on the ACE 2005 dev set.

Dataset Sentence
ACE 2005 I was totally shocked by the court’s decision to agree with Sam Sloan after he TRGs sued TRGe his children.
CySecED According to the last update by the company, the following techniques are used to protect against such TRGs malware TRGe.
RAMS The Russian officials TRGs vowed TRGe to bomb the ISIS bases after the last week’s TRGs attack TRGe.

Table 28. Generated sentences by GPT-2 for different datasets. Event triggers
are shown in boldface that are surrounded by the special tokens TRGs and TRGe

generated by GPT-2.

Error Type Sentence Example Proportion
Incompleteness A federal judge on Monday settled TRGs charges TRGe against seven members of 18%
Repetition Do you think the TRGs attack TRGe will happen to you or do you think the TRGs attack TRGe will happen to you? 15%
Inconsistency this morning we were watching the news and heard the news about the tragic TRGs death TRGe of a young boy and her mother in Iraq. 12%

Missing Labels Aaron Tramailer’s story is the story of a woman who was forced into suicide. 29%
Incorrect Labels The SEC is a very good place to TRGs hide TRGe money. 26%

Table 29. Samples of noisy generated sentences for the ACE 2005 dataset from
GPT-2. Event triggers are shown in boldface and the special tokens TRGs and
TRGe are generated by GPT-2.

|G| P R F1
0.5 * |O| 80.3 72.4 76.2
1.0 * |O| 82.4 75.0 78.5
2.0 * |O| 81.3 73.3 77.1
3.0 * |O| 78.4 71.8 75.0

Table 30. The performance of GPTEDOT on the ACE 2005 dev set with different
sizes of the generated data G.
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We report the performance of the models (on the ACE 2005 development

set) for the ablation study in Table 27. There are several observations from

this table. First, the generated data G and the teacher-student architecture

are necessary for GPTEDOT to achieve the highest performance. In particular,

comparing with BaseO, the better performance of GPTEDOT indicates the benefits

of the GPT-generated data. Moreover, the better performance of BaseO over BaseA

reveals that the simple combination of the synthetic and original data without

any effective method to mitigate noises might be harmful. Second, the lower

performance of Teacher−A and Teacher−M shows that both the auxiliary and the

main task (i.e., multi-task learning) in the teacher are integral to produce the best

performance. Third, the choice of methods to promote knowledge consistency is

important and the proposed combination of KL and OT for the ED and EI tasks

(respectively) are necessary. In particular, removing or replacing each of them with

the other one (i.e., Student+OT and Student+KL) would decrease the performance

significantly. Finally, in the proposed consistency method based on OT for EI, it is

beneficial to employ both representation-level distances (i.e., OT−Rep) and models’

predictions for event trigger likelihoods (i.e., OT−Score) as removing any of them

hurts the performance.

4.2.4 Analysis. To provide more insights into the quality of the

synthetic data G, we provide samples of sentences that are generated by the fine-

tuned GPT-2 model on each dataset in Table 28. This table illustrates that the

generated sentences also belong to the domains of the original data (i.e., the

cybersecurity domain). As such, combining synthetic data with original data is

promising for improving ED performance as demonstrated in our experiments.
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As discussed earlier, the generated data G is not free of noise. In order to

better understand the types of errors existing in generated sentences, we manually

assess 200 sentences randomly selected from the set G generated by the fine-tuned

GPT-2 model on the ACE 2005 dataset. We categorize the errors into five types

and provide their proportions along with example for each error type in Table

29. This table shows that the majority of errors are due to missing labels (i.e., no

special tokens TRGs and TRGe are generated) or incorrect labels (i.e., marked

words are not event triggers of interested types) generated by the language model.

Finally, to study the importance of the size of the generated data to

augment training set for ED, we conduct an experiment in which different numbers

of generated samples in G (for the ACE 2005 dataset) are combined with the

original data O. The results are shown in Table 30. According to this table, the

highest performance of the proposed model is achieved when the numbers of the

generated and original data are equal. More specifically, decreasing the number

of generated samples potentially limits the benefits of data augmentation. On the

other hand, increasing the size of generated data might introduces extensive noises

and become harmful to the ED models.

4.3 Related Work

Early methods for ED have employed feature-based techniques (Ahn, 2006;

Hong et al., 2011a; Ji & Grishman, 2008; Q. Li et al., 2013; Liao & Grishman,

2010a, 2010b; McClosky et al., 2011; Miwa et al., 2014; Patwardhan & Riloff, 2009;

B. Yang & Mitchell, 2016a). Later, advanced deep learning methods (Y. Chen

et al., 2015; T. H. Nguyen et al., 2016a; T. H. Nguyen & Grishman, 2015a;

T. H. Nguyen, Sil, Dinu, & Florian, 2016b; T. M. Nguyen & Nguyen, 2019a; Sha

et al., 2018; S. Yang et al., 2019; J. Zhang et al., 2019; Y. Zhang, Xu, et al., 2020)
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have been applied for ED. One challenge for ED research is the limited size of

existing datasets that hinder the training of effective models. Prior works have

attempted to address this issue via unsupervised L. Huang et al. (2016); Yuan et al.

(2018), semi-supervised Ferguson, Lockard, Weld, and Hajishirzi (2018); R. Huang

and Riloff (2012); Liao and Grishman (2010a), distantly supervised Araki and

Mitamura (2018); Keith et al. (2017); M. Nguyen and Nguyen (2018b); Y. Zeng et

al. (2017), and few/zero-shot B. Huang, Ou, and Carley (2018); Lai, Dernoncourt,

and Nguyen (2020a, 2020b) learning. In this work, we propose a novel method to

augment training data for ED by exploiting the powerful language model GPT-2 to

automatically generate new samples.

Leveraging GPT-2 for augmenting training data has also been studied for

other NLP tasks recently (e.g., relation extraction, commonsense reasoning) Anaby-

Tavor et al. (2020); Bosselut et al. (2019); Kumar, Choudhary, and Cho (2020);

Madaan et al. (2020); Papanikolaou and Pierleoni (2020); B. Peng, Zhu, Zeng, and

Gao (2020); Y. Yang et al. (2020); D. Zhang, Li, Zhang, and Yin (2020). However,

none of those works has explored GPT-2 for ED. In addition, existing methods only

resort to heuristics to filter out noisy samples generated by GPT-2. In contrast, we

propose a novel differentiable method capable of preventing noises from diverging

representation vectors of the models for ED.

4.4 Conclusion

We propose a novel method for augmenting training data for ED using the

samples generated by the language model GPT-2. To avoid noises in the generated

data, we propose a novel teacher-student architecture in a multi-task learning

framework. We introduce a mechanism for knowledge consistency enforcement to

mitigate noises from generated data based on optimal transport. This mechanism
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is based on the inferring structure between generated and original labeled data.

Experiments on various ED benchmark datasets demonstrate the effectiveness of

the proposed method. Finally, in the last Chapter, we will employ the findings of

the methods presented in the previous Chapters to improve IE in a less-explored

setting, i.e., Cross-Lingual Information Extraction.
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CHAPTER V

EXPLORING STRUCTURES FOR IE IN CROSS-LINGUAL TRANSFER

LEARNING

This Chapter contains materials from the published paper: “Amir Pouran

Ben Veyseh, Javid Ebrahimi, Franck Dernoncourt, and Thien Nguyen. “MEE:

A Novel Multilingual Event Extraction Dataset’. In Proceedings of the

2022 Conference on Empirical Methods in Natural Language Processing, 9603–13.

Abu Dhabi, United Arab Emirates: Association for Computational Linguistics,

2022. https://aclanthology.org/2022.emnlp-main.652”. In this publication, the

experiments were entirely done by the author of this dissertation, Amir Pouran Ben

Veyseh. The other co-authors provided feedback regarding the experiments and

results. Amir wrote the entire paper and Dr. Thien Huu Nguyen provided editorial

feedback for this paper.

In the final Chapter, we provide a case study on how structural information

could be helpful to improve the performance of IE models in less-explored settings.

Specifically, cross-lingual event extraction (EE) is an important task for IE that

aims to exploit the labeled data in other languages to train an IE model for a

target language with less annotated data. Since there is no labeled data that covers

a diverse set of languages with enough labeled data, we first discuss the details of

collecting and annotating a new dataset for event argument extraction in multiple

languages. Next, in the experiments, we show that structure-based models would

outperform the sequential models for cross-lingual EE.

Event Extraction (EE) is one of the major tasks of Information Extraction

(IE) for text. In a complete EE pipeline, three major goals should be pursued: (1)

Entity Mention Detection (EMD): to recognize mentions of real world entities; (2)
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Event Detection (ED): to identify event mentions/triggers and their types. An

event trigger is a word or phrase that most clearly refers to the occurrence of an

event; and (3) Event Argument Extraction (EAE): to find participants/arguments

of an event mentioned in text. A participant is an entity mention that has

an specific role in a given event mention. For instance, in the sentence “The

soldiers were hit by the forces.”, there are two entity mentions “soldiers” and

“forces” of types PERSON and ORGANIZATION and an event trigger “hit” of

type ATTACK. Also, the two event mentions “soldiers” and “forces” play the

argument roles of Victim and Attacker (respectively) in the ATTACK event.

An EE system could be employed in other downstream applications such as

Question Answering, Knowledge Base Population and Text Summarization to

assist extracting information about events in text.

Multiple methods have been proposed for Event Extraction. Early work has

employed feature-based models Ahn (2006); Hong et al. (2011b); Ji and Grishman

(2008); Q. Li et al. (2013); Liao and Grishman (2010a); B. Yang and Mitchell

(2016b) while later methods have explored deep learning to present state-of-the-art

performance for Event Extraction Y. Chen et al. (2015); Lai, Nguyen, and Nguyen

(2020b); Y. Lin, Ji, Huang, and Wu (2020); M. V. Nguyen, Lai, and Nguyen

(2021b); T. H. Nguyen, Cho, and Grishman (2016); T. H. Nguyen and Grishman

(2015b); Sha et al. (2018); X. Wang, Han, et al. (2019b). However, despite all

advancements on event extraction in recent years, a major limitation of current EE

research is to overly focus on a few popular languages, thus failing to adequately

reveal challenges and generalization of models in many other languages of the world.

As such, a critical barrier for studying EE over multiple languages is the lack of

high quality datasets that fully annotate data for many other languages for EE. For
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instance, the most popular dataset for EE, i.e., ACE 2005 Walker et al. (2006a),

only provide annotations for three languages English, Chinese and Arabic while

TAC KBP datasets Mitamura, Liu, and Hovy (2016, 2017) only supports English,

Chinese and Spanish. The TempEval-2 dataset Verhagen, Sauŕı, Caselli, and

Pustejovsky (2010) involves 6 languages; however, it does not offer event argument

annotation. Even worse, recently created datasets, e.g., MAVEN X. Wang et al.

(2020), RAMS Ebner et al. (2020), and WikiEvents, are only annotated for English.

In all, such language and task limitations prevents research to comprehensively

develop and evaluate EE methods over different languages and multilingual settings.

Moreover, the limited size of these datasets, i.e. less than 11K and 27K in ACE

2005 and TempEval-2 respectively, hinders training of data-hungry deep learning

models. Finally, we note that important multilingual datasets for EE, e.g., ACE

2005 and TAC KBP, are not publicly available, which further restricts research on

this domain.

To address these limitations, in this work, we propose a large-scale

Multilingual Event Extraction (MEE) dataset that covers 8 typologically different

languages from multiple language families, including English, Spanish, Portuguese,

Polish, Turkish, Hindi, Korean, and Japanese. As such, Portuguese, Polish, Turkish,

Hindi, and Japanese are not explored in the popular multilingual datasets for EE,

i.e., ACE 2005 and TAC KBP. Importantly, to enable public data sharing and

diversity the data, we employ Wikipedia articles for the 8 languages in diverse

topics (i.e., Economy, Politics, Technology, Crime, Nature and Military) for EE

annotation.

Our dataset comprehensively annotates each document in a language

for all the three sub-tasks EMD, ED, and EAE. To be consistent with prior EE
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Category English Portuguese Spanish Polish Turkish Hindi Japanese Korean
Economy 1,095 112 168 315 297 189 199 250
Politics 3,202 308 772 1,270 1,233 349 232 248
Technology 2,171 189 400 712 815 295 312 249
Crimes 893 78 220 152 118 95 80 73
Nature 1,195 398 705 455 398 245 299 185
Military 4,444 415 1,003 1,575 1,619 326 378 495
Total 13,000 1,500 3,268 4,479 4,480 1,499 1,500 1,500

Table 31. Numbers of annotated segments in each Wikipedia subcategory for our 8
languages.

research, we inherit the type anthologies for such tasks from the ACE 2005 dataset

that provides well-designed guidelines and examples for the types. In particular,

we include 7 entity types, 8 event types and 16 event sub-types, along with 23

argument roles in MEE to facilitate EE annotation over multiple languages.

Overall, our dataset involves more than 415K entity mentions, 50K event triggers,

and 38K arguments, which are much larger than previous multilingual EE datasets

to better support model training and evaluation with deep learning.

Due to shared information schema over all the languages, our MEE

dataset enables cross-lingual transfer learning evaluation of MEE models where

training and test data comes from different languages. To this end, we conduct

comprehensive experiments for both monolingual and cross-lingual learning settings

to provide insights for language-specific challenges and cross-lingual generalization

of EE methods. By examining both pipeline and joint inference models for EE, our

experiments show that the proposed dataset present unique challenges with less

satisfactory performance of existing EE models, especially for cross-lingual settings,

thus calling for more research efforts for multilingual EE in the future.

5.1 Data Annotation

We follow the entity/event type definition and annotation guidelines from

the popular ACE 2005 dataset to benefit from its well-designed documentation and
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be consistent with prior EE research. As such, entity mentions refer to mentions of

real-world entities in text that can be expressed via names, nominals, and pronouns.

Entity Mention Extraction (EMD) is more general than Named Entity Recognition

that only concerns names of entities. In addition, an event is defined as an incident

whose occurrence changes the state of real world entities. An event mention is

the part of input text that refers to an event that consists of two components:

(1) Event Trigger: the words that most clearly refer to the occurrence of the

event. It is noteworthy that we allow an event trigger to span multiple words

to accommodate trigger annotation for multiple languages. For instance, in the

Turkish phrase “tayin etmek”, both words are necessary to indicate an event trigger

of type “Appoint”; and (2) Event Arguments: the entity mentions that are involved

in the event with some roles.

Based on the ACE 2005 dataset, our dataset annotates entity mentions for 7

entity types: PERSON (human entities), ORGANIZATION (corporations,

agencies, and other groups of people), GPE (geographical regions defined by

political and/or social groups), LOCATION (geographical entities such as

landmasses or bodies of water), FACILITY (buildings and other permanent man-

made structures), VEHICLE (physical devices primarily designed to move an

object from one location to another), and WEAPON (physical devices primarily

used as instruments for physically harming). For event types, to avoid confusion

and improve data quality, we prune the original ACE 2005 event types to only

include the types that are not ambiguous across multiple languages. For instance,

in Turkish, the event types Sentence and Convict are very similar (both can be

evoked by the phrase “Mahkum etmek”) so they are not retained in our dataset.

As such, we preserve 8 event types and 16 sub-types that are distinct enough
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for annotation in our dataset. Finally, for event arguments, we preserve all 23

argument roles in the ACE 2005 dataset. Table 34 shows the list of event types

along with their argument roles in our dataset.

5.1.1 Data Preparation. Our dataset MEE covers 8 different

languages, i.e., English, Spanish, Portuguese, Polish, Turkish, Hindi, Korean

and Japanese. These languages are selected based on their diversity in terms

of typology and their novelty with respect to existing multilingual EE datasets.

For each language, we employ its latest dump of Wikipedia articles as raw data

for annotation. To focus on event data, we select articles in the sub-categories

under category Event in Wikipedia. In particular, the following sub-categories are

considered to improve topic diversity: Economy, Politics, Technology, Crimes,

Nature, and Military. Note that we start with these categories in English

Wikipedia. Afterward, we follow interlinks between the categories in different

languages to locate the intended categories for Wikipedia for non-English languages

in MEE.

We process the collected articles with the WikiExtractor tool Attardi (2015)

to obtain clean textual data and meta-data for each article. The textual data is

then split into sentences and tokenized into words by the multilingual NLP toolkit

Trankit M. V. Nguyen, Lai, Veyseh, and Nguyen (2021). Afterward, to annotate

the data with entity and event mentions, one approach is to directly ask annotators

to read each article entirely for annotation. However, as the articles in Wikipedia

might be lengthy, this approach can be overwhelming for annotators, thus hindering

their attention and lowering quality of annotated data. To address this issue, we

follow prior dataset creation efforts for EE, i.e., RAMS Ebner et al. (2020), to

divide the articles into segments of five consecutive sentences. Each segment will
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Language #Seg. Avg. Length #Entities #Triggers #Arguments Challenging Entity Type Challenging Trigger Type Language Family
English 13,000 123 190,592 17,642 13,548 GPE Personnel Germanic
Spanish 3,268 112 48,001 6,064 802 GPE Conflict Italic

Portuguese 1,500 102 25,463 1,953 12,329 Location Personnel Italic
Polish 4,479 108 62,971 10,875 3,395 Facility Transaction Balto-Slavic

Turkish 4,480 117 38,469 8,390 1,416 GPE Personnel Turkic
Hindi 1,499 98 18,797 1,810 2,117 Facility Conflict Indo-Iranian

Japanese 1,500 99 19,174 2,152 3,399 Location Personnel Japonic
Korean 1,500 103 12,508 1,125 1,742 GPE Personnel Koreanic

Total (MEE) 31,226 - 415,975 50,011 38,748 - - -

Table 32. Statistics of the MEE dataset. #Seg. represents the numbers of
annotated text segments for each language. All annotated segments consist of
5 sentences and their lengths (Avg. Length) are computed in terms of numbers
of tokens. “Challenging Type” indicates the types where entity or event trigger
annotation involves largest disagreement between annotators in each language.

then be annotated separately for EE tasks so annotators can better capture the

entire context to provide entity and event annotation. Note that similar to RAMS,

we annotate all event arguments in a text segment for each event trigger, thus

allowing event arguments to appear in different sentences from the event trigger

(i.e., document-level EAE). Finally, to accomodate our budget, a sample of text

segments is obtained for each language for annotation. The numbers of selected

text segments for each category per language in our dataset are presented in Table

31.

5.1.2 Annotation Process. To annotate the sampled article

segments, we employ the crowd-sourcing platform upwork.com that allows us to

hire freelancers across the globe with different expertise. For each language in

our dataset, we choose native speakers as annotator candidates. In addition, we

require them to be fluent in English, have experience in related tasks (i.e., data

annotation for information extraction), and have approval rate higher than 95%

(i.e., provided in their profiles). The candidates are first provided with annotation

guidelines and interfaces in English. Afterward, they are invited to an annotation

test for entity mentions, event triggers, and arguments. Those candidates who

correctly annotate all test cases are then officially hired to work on our annotation
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Language #Annotator EMD ED EAE
English 10 0.792 0.834 0.820
Spanish 10 0.788 0.812 0.823
Portuguese 5 0.791 0.803 0.799
Polish 8 0.780 0.799 0.813
Turkish 10 0.785 0.813 0.822
Hindi 6 0.790 0.803 0.812
Japanese 5 0.793 0.789 0.780
Korean 6 0.802 0.810 0.825

Table 33. Number of annotators and agreement scores for 8 languages in MEE for
Entity Mention Detection (EMD), Event Detection (ED) and Event Argument
Extraction (EAE).

jobs. Table 33 shows the numbers of annotators who are hired to annotate data

for each language in our dataset. Next, before the actual annotation process, the

English annotation guideline and examples are translated to each target language

by the hired annotators. Any language-specific confusions and rules for annotation

is discussed and included in the translation to create a common understanding.

Finally, our language experts will review the annotation guideline in each language

to avoid conflicts across languages to be used for actual annotation.

Our annotation process is done in three separate steps to annotate data for

three EE tasks with entity mentions, event triggers, and event arguments in this

order. In particular, the annotation for a later task will be performed over the text

segments that have been annotated and finalized for previous tasks (e.g., event

arguments will be annotated over segments that are already provided with entity

mentions and event triggers). As such, for each task, 20% of text segments for each

language will be co-annotated by the annotators to measure agreement score. The

remaining 80% of text segments will be distributed and annotated separately by

the annotators for each language. Based on the Krippendorff’s alpha Krippendorff

(2011) with MASI distance metric Passonneau (2006), we report the inter-annotator
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ID Event Arguments

1 Life Be-Born Person, Time, Place
2 Life Marry Person, Time, Place
3 Life Divorce Person, Time, Place
4 Life Injure Agent, Victim, Instrument, Time, Place
5 Life Die Agent, Victim, Instrument, Time, Place
6 Movement Transport Agent, Artifact, Vehicle, Price, Origin, Destination, Time
7 Transaction Transfer-Ownership Buyer, Seller, Beneficiary, Price, Artifact, Time, Place
8 Transaction Transfer-Money Giver, Recipient, Beneficiary, Money, Time, Place
9 Business Start-Organization Agent, Organization, Time, Place
10 Conflict Attack Attacker, Target, Instrument, Time, Place
11 Conflict Attack Entity, Time, Place
12 Contact Meet Entity, Time, Place
13 Contact Phone-Write Entity, Time
14 Personnel Start-Position Person, Entity, Position, Time, Place
15 Personnel End-Position Person, Entity, Position, Time, Place
16 Justice Arrest-Jail Person, Agent, Crime, Time, Place

Table 34. Event types and argument roles for each type in MEE. The types and
roles are inherited from the event extraction annotation guideline in the ACE 2005
dataset Walker et al. (2006a).

agreements (IAA) for each task and language in Table 33, showing high agreement

scores and quality of our MEE dataset. Note that after independent annotation for

each EE task, the annotators also share their annotations and communicate with

each other to resolve any conflicts and finalize our data.

5.1.3 Data Analysis. Table 32 shows the main statistics of MEE for

each language. As such, comparing to the popular multilingual ACE 2005 dataset

Walker et al. (2006a) for EE, our MEE dataset provides more languages (i.e., 3

vs. 8) and much more event mentions (i.e., 11K vs. 50K). For other multilingual

datasets for EE, i.e., TAC KBP (with three languages and 6.5K event mentions)

Mitamura et al. (2016, 2017) and TempEval-2 (with 6 languages and 27K event

mentions) Verhagen et al. (2010), they do not annotate entity mentions and event

arguments. In contrast, our MEE dataset fully annotates texts for three EE tasks

(i.e., EMD, ED, and EAE) and also with more languages and event mentions.
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Figure 3. Distributions of event types in each language.

This clearly demonstrates the advantages of our dataset over existing multilingual

datasets for EE.

In addition, from the table, we find that the languages in our dataset

exhibits diverse densities for entity mentions, event triggers, and arguments in texts.

In particular, while the average number of entities in a text segment in Portuguese

is 16.9, this number is only 8.3 in Korean. For event density, in Polish, there are 2.4

event mentions per article segment on average while the average number in Korean

is only 0.75. Similarly for event arguments, the average number of arguments per

event is 6.1 in Portuguese and only 0.75 in English. Further, Table 32 highlights

the divergences between languages regarding challenging entity and event types.

Specifically, we employ the disagreement rates (i.e., number of disagreements

divided by frequency of mentions) between annotators for each entity and event

types. Those types that have highest disagreement rates are selected as challenging

entity or event types. Finally, Figures 4, 3, and 5 present the distributions of entity
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Figure 4. Distributions of entity types in each language.
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Language Pipeline OneIE FourIE
Entity Event Argument Entity Event Argument Entity Event Argument

English 70.32 70.58 61.14 62.18 70.09 62.94 69.72 72.19 65.89
Spanish 70.39 66.19 60.16 70.27 65.00 60.31 71.89 67.49 62.19
Portuguese 75.13 71.33 69.15 73.19 70.13 71.27 74.98 72.99 70.17
Polish 69.27 59.12 60.09 60.09 59.44 60.14 68.23 60.98 61.32
Turkish 71.88 66.09 56.19 71.98 61.27 58.72 72.33 65.13 59.80
Hindi 66.22 57.77 57.78 61.72 58.18 59.44 65.23 59.88 60.82
Japanese 68.19 67.89 68.19 71.40 65.01 63.17 70.88 66.88 70.19
Korean 57.17 61.26 67.87 55.87 61.10 65.41 58.18 60.09 69.23
Avg. 68.57 65.03 62.57 65.84 63.78 62.68 68.93 65.70 64.95

Table 35. Performance (F1 scores) of models in the monolingual setting using
mBERT on MEE.

types, event types, and argument roles (respectively) for each language in our

dataset, which further demonstrate the differences between languages in MEE. In

all, such differences over various dimensions will cause significant challenges for EE

models to adapt to new languages (e.g., for cross-lingual transfer learning), thus

presenting ample opportunities for multilingual EE research with our dataset.

5.2 Experiments

This section evaluates the state-of-the-art models for Event Extraction

to reveal challenges in our new dataset MEE. To this end, the annotated

article segments for each language in MEE are randomly split into

training/development/test portions with the ratios of 80/10/10. Here, to prevent

any information leakage, we ensure that different segments of an article (if any)

are only assigned to one portion of the data split for each language. We examine

EE models in two different settings: (1) monolingual learning where training

and test data of models comes from the same language; (2) cross-lingual transfer

learning where models are trained on training data of one language (i.e., the source

language), but evaluated directly on test data of the other languages (i.e., the

target languages).
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Language Pipeline OneIE FourIE
Entity Event Argument Entity Event Argument Entity Event Argument

English 70.22 71.28 66.34 70.39 70.29 68.68 71.19 73.14 68.23
Spanish 70.33 64.32 61.12 70.18 62.46 62.23 72.87 65.90 63.11
Portuguese 70.39 71.88 71.75 72.16 69.43 70.33 73.98 70.43 72.23
Polish 69.14 60.45 61.23 72.22 63.77 60.15 70.25 62.87 62.84
Turkish 76.13 67.18 55.78 74.45 65.31 57.40 75.19 67.29 58.23
Hindi 65.14 59.34 58.22 61.72 58.18 59.44 66.69 61.99 62.19
Japanese 71.34 67.77 69.19 68.20 62.89 70.90 72.82 65.27 73.55
Korean 59.13 62.34 69.70 59.99 60.55 66.89 60.24 61.18 70.09
Avg. 68.98 65.57 64.17 68.84 64.36 64.57 70.40 66.01 66.31

Table 36. Performance (F1 scores) of models in the monolingual setting using XLM-
RoBERTa on MEE.

Models: We evaluate two typical approaches for EE models with pipeline and

joint inference in this work. First, for the pipeline approach, a model is trained

separately for each of the three tasks in EE, i.e., entity mention detection (EMD),

event detection (ED), and event argument extraction (EAE). Here, the EMD and

ED tasks are modeled as sequence labeling problems, aiming to predict BIO tag

sequences for each input sentence to capture spans and types of entity and event

mentions. As such, motivated by previous work X. Wang et al. (2020), our EMD

and ED models leverage a pre-trained transformer-based language model to encode

the input text. The representation for each token in input text (obtained via

average of hidden vectors of word-pieces in the last transformer layer) is then sent

into a feed-forward network to compute a tag distribution for the token for training

and decoding. For EAE, the task is formulated as a text classification problem in

which the input consists of an input text and two word indices for the positions

of an event trigger and an entity mention of interest. The goal is to predict the

argument role that the entity mention plays for the event. To this end, we also

use a pre-trained language model to obtain representations for the tokens in input

text. Next, the representations for the event trigger and entity mention words are

concatenated and sent to a feed-forward network to predict argument role. Note
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that the EAE model employs golden entity mentions and event triggers during the

training process while the outputs from the EMD and ED models are fed into the

EAE model in the test time.

Second, for the joint inference approach, EE models simultaneously predicts

entity mentions, event triggers, and arguments in end-to-end fashion to avoid

error propagation and leverage inter-dependencies between tasks. To this end, we

evaluate two state-of-the-art (SOTA) joint EE models, OneIE Y. Lin et al. (2020)

and FourIE M. V. Nguyen, Lai, and Nguyen (2021b), in this work due to their

language-agnostic nature. Both OneIE and FourIE utilize pre-trained language

models to represent input texts and capture cross-task dependencies for joint

inference. However, FourIE employs structural information, i.e. dependency tree,

to encode the input text. Note that these models are original designed to include

the relation extraction task between entities. To adapt them to EE, we obtain

their implementations from the original papers and remove the relation extraction

components. Finally, for performance measure, we report the performance (F1

scores) of EE models over three tasks EMD (Entity), ED (Event), and EAE

(Argument) using the same correctness criteria as in prior work Y. Lin et al. (2020)

(i.e., requiring correct prediction for both offsets and types of entity mentions, event

triggers, and argument roles).

Hyper-parameters: To facilitate evaluation with multiple languages, we leverage

the multilingual pre-trained language models (PLMs) mBERT Devlin, Chang, Lee,

and Toutanova (2019b) and XLM-RoBERTa Conneau et al. (2020) (base versions)

to encode texts for EE models. For the pipeline approach, we fine-tune the hyper-

parameters for the EMD, ED, and EAE models over development data for English

and apply the selected values for all experiments for consistency. In particular, our
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Language XLM-RoBERTa mBERT
Entity Event Argument Entity Event Argument

English 69.72 72.19 65.89 71.19 73.14 68.23
Spanish 61.96 59.70 52.23 60.72 60.06 50.77
Portuguese 59.98 54.80 52.23 56.17 52.98 50.28
Polish 52.89 51.78 52.44 53.44 50.29 53.56
Turkish 60.13 53.32 52.19 59.19 52.76 53.10
Hindi 56.32 59.76 57.17 55.39 58.44 55.65
Japanese 41.13 44.95 40.13 42.43 43.76 41.18
Korean 45.78 42.99 43.04 44.78 40.22 41.14

Table 37. Cross-lingual performance (F1 scores) of FourIE when it is trained on
English training data and evaluated on test data of other languages in MEE.

hyper-parameters for the pipeline model include: 2 hidden layers with 250 hidden

units in each layer for the feed-forward networks, 8 for mini-batch size, and 1e-2

for learning rate with the Adam optimizer. For the joint IE models, we utilize the

same hyper-parameters suggested in the original papers, i.e., OneIE Y. Lin et al.

(2020) and FourIE M. V. Nguyen, Lai, and Nguyen (2021b).

Results: The results for monolingual experiments over different languages in MEE

are presented in Tables 35 and 36 (i.e., with mBERT and XLM-RoBERTa encoders

respectively). There are several observations from the tables. First, the models’

performance on individual languages and on average for all three tasks EMD, ED,

and EAE is still far from being perfect (i.e., all average performance is less than

69%), thus indicating considerable challenges in our multilingual EE dataset for

future research. In addition, comparing the current state-of-the-art joint IE model

(i.e., FourIE) with the pipeline method, we find that FourIE is better than the

pipeline model on average, especially for the EAE task with significant performance

gap. As such, we attribute this to the ability of joint models to mitigate error

propagation to EAE from EMD and ED to boost the performance. In addition

to the joint modeling of tasks, the superiority of FourIE can be attributed to
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Language Entity Event Argument
English Devlin et al. (2019b) 70.21 73.18 66.19
Spanish Cañete et al. (2020) 67.29 65.14 60.13
Portuguese Souza, Nogueira, and Lotufo (2020) 70.21 68.88 67.13
Polish K leczek (2021) 65.78 61.23 59.14
Turkish MDZ (2021) 67.34 64.19 58.72

Table 38. Test data performance (F1) of FourIE in monolingual learning using
available language-specific BERT models on MEE. The citations indicate the
sources of the language-specific models.

its use of structureal information. Due to its best average performance, FourIE

will be leveraged in our next experiments. Finally, we find that XLM-RoBERTa

generally has better performance than mBERT (i.e., on average) for EE models.

Future research can thus focus on XLM-RoBERTa to develop better EE models for

multilingual settings.

Cross-lingual Evaluation: To further understand the cross-lingual generalization

challenges in MEE, Table 37 reports the performance of FourIE in the cross-lingual

transfer learning settings where the model is trained on English training data

(source language) and tested on test data of the other languages in MEE. As

can be seen, compared to performance on English test set, FourIE suffers from

significant performance drops over different tasks and multilingual encoders when

it is evaluated on other languages. It thus demonstrates inherent challenges of

cross-lingual generalization for complete EE models that can be further studied

with MEE. In addition, the performance loss due to cross-lingual testing varies

across different target languages (e.g., 10.88% loss for Spanish vs. 33.42% loss

for Japanese in EAE task). These variations can be attributed to different levels

of divergence between languages (e.g., sentence structures and morphology) that

hinder cross-lingual knowledge transfer for EE.
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Language Entity Event Argument
English Y. Liu et al. (2019) 70.32 72.28 69.19
Spanish MMG (2021) 70.23 61.34 60.28
Polish CLARIN-PL (2021) 68.12 60.89 60.34
Hindi Parmar (2021) 64.91 59.09 60.38
Japanese Wongso (2021) 69.72 60.45 71.45

Table 39. Test data performance (F1) of FourIE in monolingual learning using
available language-specific RoBERTa models on MEE. The citations indicate the
sources of the language-specific models.

Language-Specific Encoders: To study the effectiveness of pre-trained language

models as text encoders for EE models, we compare the performance of FourIE

when the multilingual encoders mBERT or XLM-RoBERTa are replaced with

comparable language-specific encoders (i.e., BERT-based models for mBERT and

RoBERTa-based models for XLM-RoBERTa). Using publicly available pre-trained

language models for our languages in MEE, Tables 38 and 39 show the monolingual

performance over test data of the languages for BERT-based and RoBERTa-based

models (respectively). Comparing corresponding performance in Tables 35, 36, 38

and 39, it is clear that language-specific language models all under-perform their

multilingual counterparts over different EE tasks and languages, thus suggesting

the benefits of multilingual data to train language model encoders to boost EE

performance over different languages.

Source Language Impact: Finally, to study the impact of the source language

for cross-lingual transfer learning for EE, we compare the performance of FourIE

when either English or another comparable language is used as the source language

to provide training data to train the model. In particular, we choose Polish as a

comparable language for English as it has the same sentence structure (i.e., both

languages have Subject-Verb-Object order) and entails similar density and type

distributions for entity/event mentions as English. Table 40 shows the performance
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Language Trained on English Trained on Polish
Entity Event Argument Entity Event Argument

Portuguese 53.22 50.79 40.21 54.17 51.70 42.33
Spanish 50.76 43.72 41.16 51.72 45.22 45.81
Turkish 54.44 50.12 55.71 53.99 50.78 56.15
Hindi 51.44 52.78 45.27 52.21 53.00 47.24
Japanese 36.16 41.23 38.13 37.17 40.13 39.28
Korean 43.72 40.08 37.29 42.08 39.78 37.10

Table 40. Cross-lingual performance (F1) of FourIE with XLM-RoBERTa encoder
when it is trained on English or Polish training data, and tested on test data of
the other languages in MEE. We use 3,500 random annotated segments from the
training sets of English and Polish to train the model.

of the models when they are tested over test data of the other 6 languages in MEE.

Here, to make it comparable, we use the same number of annotated segments (i.e.,

3,500) sampled from training data of English and Polish to train the FourIE model.

Interestingly, we find that Polish can lead to better performance for FourIE than

English over a majority of task and target language pairs (i.e., over 4 languages

for EMD and ED, and 5 languages for EAE). A possible explanation for this issue

comes from richer event patterns that Polish might introduce to produce allow

better cross-lingual generalization for EE than those for English. As such, this

superior performance of Polish challenges the common practice of using English

as the source language in cross-lingual transfer learning studies for EE and NLP.

Future research can explore this direction to better understand the differences

between languages to best select a source language to optimize performance over a

target language for EE.

5.3 Related Works

Due to its importance, various datasets have been recently developed for

EE in different domains, including CySecED Man, Trong Le, Pouran Ben Veyseh,

Nguyen, and Nguyen (2020) (for cybersecurity domain), LitBank (for literacy) Sims,
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Park, and Bamman (2019b), MAVEN X. Wang et al. (2020), RAMS Ebner et al.

(2020), and WikiEvents (for Wikipedia texts). However, these datasets are only

annotated for English texts. There exist several multilingual datasets for EE, ACE

Walker et al. (2006a), TAC KBP Mitamura et al. (2016, 2017), and TempEval-

2 Verhagen et al. (2010); however, such datasets only provide annotation for a

handful of popular languages with limited number of event mentions and might not

fully support all EE tasks (e.g., missing EAE in TAC KBP and TempEval-2).

Regarding model development, existing EE methods can be categorized

into feature-based Ahn (2006); Hong et al. (2011b); Ji and Grishman (2008);

Q. Li et al. (2013); Liao and Grishman (2010a); B. Yang and Mitchell (2016b)

or deep learning Y. Chen et al. (2015); Y. Lin et al. (2020); T. H. Nguyen, Cho,

and Grishman (2016); Pouran Ben Veyseh, Lai, Dernoncourt, and Nguyen (2021);

Pouran Ben Veyseh, Nguyen, Ngo Trung, Min, and Nguyen (2021); Sha et al.

(2018); X. Wang, Han, et al. (2019b) methods. While most prior EE methods

have been designed for one popular language, there have been growing interests in

multilingual and cross-lingual learning for EE in recent work, featuring multilingual

PLMs (i.e., mBERT and XLMR) as the key component for representation learning

Ahmad et al. (2020); Z. Chen and Ji (2009a); M’hamdi, Freedman, and May (2019);

M. V. Nguyen, Nguyen, Min, and Nguyen (2021). However, as such works only rely

on existing multilingual EE datasets, their evaluation is limited to a few popular

languages and fails to evaluate the generalization over many other languages.

5.4 Conclusion

We present a novel multilingual EE dataset, i.e., MEE, that covers 8

typologically different languages with more than 50K event mentions to support

training of large deep learning models. MEE provides complete annotation for
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three EE sub-tasks, i.e., entity mention detection, event detection, and event

argument extraction. To study the challenges in MEE, we conduct extensive

analysis and experiments with different EE methods in the monolingual and cross-

lingual learning settings. Our results demonstrate various challenges for EE in

the multilingual settings that can be further pursued with MEE. Moreover, we

demonstrate that structure-based models, e.g., FourIE, outperform their sequential

counterparts.
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CHAPTER VI

CONCLUSION

Information Extraction is one of the essential tasks in Natural Language

Processing. The objective of this field is to automate the extraction of meaningful

information from raw text and provide them in a more structured format (e.g., a

knowledge base). To this end, several sub-tasks should be solved to complete a

pipeline of IE. These tasks range from entity recognition, entity linking, relation

extraction, event detection, and event argument extraction. Moreover, each of these

tasks may have several settings and sub-tasks (e.g., event co-reference detection

to identify the event mentions that refer to the same event in the text). In the

literature, each of these tasks and sub-tasks has a rich body of research. One of

the directions that have shown promising results in various IE tasks is structure-

based models. Structural information for information extraction models refers

to any interactions between different components of the input text (i.e., words,

phrases, or sentences). For instance, a syntactic tree which is commonly modeled

by dependency trees could be used to encode the syntactical interactions between

the words, so that those parts of the input text that are syntactically related to

each other would have an influence on their representations obtained by the model.

The structural information could be used to overcome the long distances between

related words/sentences that are difficult to encode with sequential models.

Due to the importance of structural information for IE, in this dissertation,

we study the effective directions for incorporating various types of structures into

IE models. In particular, this dissertation category the methods into three general

approaches: (1) Models that use the existing structures, i.e. structures obtained

from pre-trained parsers; (2) Models that infer a task-specific structure for the
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input text; (3) Models that in infer structure between samples in a batch of data.

For each of these categories, we present novel methods that improve the state-

of-the-art performance on selected IE tasks. Finally, in order to show that the

structure-based models could be helpful for less-explored IE settings, in the final

Chapter, we present a novel multilingual event argument extraction dataset and we

show that a structure-based model outperforms other sequential models.

For the models that employ the existing structures, we study the task of

document-level event argument extraction. For this task, the objective is to identify

the role of entities in a document in a specific event mentioned in the text. For this

task, we introduced a novel method to incorporate the structural information of

different types, e.g., syntactic, semantic, and external knowledge. The proposed

method demonstrates an effective application of graph transformer to this end. The

presented model achieves state-of-the-art performance for this setting of EAE.

Next, to show how the structural information could be inferred, for the task

of relation extraction, we show that a special architecture, i.e., ordered neuron

LSTM (ON-LSTM), can be utilized to induce semantic structure for the input text.

Moreover, we present a novel mechanism based on mutual information that can

be used to ensure the consistency of the inferred semantic structure with syntactic

information.

For the final category of structure-based models, we study how the

interactions between samples in a batch of data can be utilized for IE models.

In particular, we first discuss the necessity of generating synthetic data to address

data scarcity for the settings that suffer from the small size of training datasets.

Next, as a mechanism to ensure that the generated synthetic data have high quality,

we propose a novel solution based on optimal transport to obtain a bipartite
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graph between original and synthetic data. This graph is employed to compute

the consistency between the groups of samples.

Finally, to showcase that structural information is helpful for less-explored

settings of IE, in the final Chapter, we study how structure-based models can

be used for cross-lingual event extraction. In particular, our experiments show

that joint models that employ structural information, i.e., instance interactions in

FourIE, outperform other sequential models such as BERT. This finding shows that

graph-based models could be a remedy for the challenges of training a deep model

in low-resource settings.

While this dissertation provides a broad overview of different methods to

employ structures for IE, there are directions that are left for future research.

One potential direction is to study how the structures can be used to integrate

IE models with other downstream applications such as Question Answering and

Summarization. As discussed in this dissertation, task-specific structures are

a powerful tool to improve the performance of the task at hand. However, for

multitasking setting the interactions between structures used in each task are

not studied here. Another direction to explore in future works is to evaluate the

effectiveness of the proposed solutions for informal settings. For instance, structures

in conversations or transcripts could be drastically different from the structures

of the formal text, and more research on this is needed. Finally, exploring the

application of the proposed technique in other tasks, e.g., document classification,

natural language inference, etc, is another potential direction to consider for future

work.

151



REFERENCES CITED

Aguilar, G., & Solorio, T. (2019). Dependency-aware named entity recognition with
relative and global attentions. arXiv preprint arXiv:1909.05166 .

Ahmad, W. U., Peng, N., & Chang, K.-W. (2020). Gate: Graph attention
transformer encoder for cross-lingual relation and event extraction. arXiv
preprint arXiv:2010.03009 .

Ahn, D. (2006). The stages of event extraction. In Proceedings of the workshop on
annotating and reasoning about time and events (pp. 1–8).

Amir Pouran Ben Veyseh, T. H. N., Tuan Ngo Nguyen. (2020). Graph transformer
networks with syntactic and semantic structuresfor event argument
extraction.

Anaby-Tavor, A., Carmeli, B., Goldbraich, E., Kantor, A., Kour, G., Shlomov, S.,
. . . Zwerdling, N. (2020). Do not have enough data? deep learning to the
rescue! In Proceedings of the association for the advancement of artificial
intelligence (aaai).

Andreas, J., Rohrbach, M., Darrell, T., & Klein, D. (2016). Neural module
networks. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 39–48).

Araki, J., & Mitamura, T. (2018). Open-domain event detection using distant
supervision. In Proceedings of the international conference on computational
linguistics (coling).

Attardi, G. (2015). Wikiextractor. https://github.com/attardi/wikiextractor.
GitHub.

Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., &
Hjelm, R. D. (2018). Mine: mutual information neural estimation. In Icml.

Björkelund, A., & Kuhn, J. (2014). Learning structured perceptrons for coreference
resolution with latent antecedents and non-local features. In Proceedings of
the 52nd annual meeting of the association for computational linguistics
(volume 1: Long papers) (pp. 47–57).

152

https://github.com/attardi/wikiextractor


Björne, J., & Salakoski, T. (2018, July). Biomedical event extraction using
convolutional neural networks and dependency parsing. In Proceedings of the
BioNLP 2018 workshop (pp. 98–108). Melbourne, Australia: Association for
Computational Linguistics. Retrieved from
https://www.aclweb.org/anthology/W18-2311 doi:
10.18653/v1/W18-2311

Blevins, T., & Zettlemoyer, L. (2020). Moving down the long tail of word sense
disambiguation with gloss informed bi-encoders. In Acl.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013).
Translating embeddings for modeling multi-relational data. In Advances in
neural information processing systems (pp. 2787–2795).

Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., & Choi, Y.
(2019). Comet: Commonsense transformers for automatic knowledge graph
construction. In Proceedings of the annual meeting of the association for
computational linguistics (acl).

Bunescu, R., & Mooney, R. (2005). A shortest path dependency kernel for relation
extraction. In Proceedings of human language technology conference and
conference on empirical methods in natural language processing (pp.
724–731).

Cao, Y., Hou, L., Li, J., & Liu, Z. (2018). Neural collective entity linking. arXiv
preprint arXiv:1811.08603 .
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