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DISSERTATION ABSTRACT

Jay Hathaway

Doctor of Philosophy

Department of Mathematics

December 2023

Title: A Special Endomorphism of the Standard Gaitsgory Central Object of the
Affine Hecke Category

Using the combinatorial description of the standard Gaitsgory central

object of the (extended, graded) affine type A Hecke category due to Elias, we

show the existence of and explicitly describe the unique endomorphism that lifts

right multiplication by the i-th fundamental weight on the i-th component of

the associated graded of its Wakimoto filtration. We give work in progress on

describing a conjectural program to categorify the Vershik-Okounkov approach

to the representation theory of the affine Hecke algebra. Here this endomorphism

will play a role. This is the affine version of the program described by Gorsky,

Negut, and Rasmussen in finite type A.
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CHAPTER I

INTRODUCTION

1.1 Spectral Theory

Given an associative algebra A, one method of studying its representation

theory is to study the simultaneous eigenvalues of its center Z(A). The

simultaneous eigenspaces of Z(A) are A-submodules, so simultaneously

diagonalizing Z(A) is a way to find isotypic components. Sometimes the

simultaneous eigenvalues of Z(A) are difficult to understand, but there is a larger

commutative subalgebra S of A, with Z(A) ⊂ S, whose simultaneous eigenvalues

are easier to understand. While S-eigenspaces are not A-submodules, studying

them can nevertheless help to understand the structure of A-modules. A classic

example of this is in Lie theory when one studies the simultaneous eigenvalues of

the Cartan subalgebra of a Lie algebra, i.e. the weights.

The notion of simultaneous eigenvalues can be reinterpreted in the

language of algebraic geometry. A simultaneous eigenvalue of S is a closed point

in SpecS, and studying the simultaneous S-eigenspaces of an A-module amounts

to studying its support as a quasi-coherent sheaf on SpecS. One satisfying

feature of this picture is that the symmetrizer onto the simultaneous eigenspace

corresponding to a point λ ∈ SpecS is given by the Dirac delta function δλ.

1.2 Vershik-Okounkov Approach

Let’s now expand on an important example of spectral theory. In [22],

Vershik and Okounkov reformuate the representation theory of the symmetric

group by studying the spectrum of the subalgebra of its group algebra generated

by the Young-Jucys-Murphy Operators ji 2.5.15. Remarkably, these operators
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commute, and the center Z(C[Sn]) is shown to be generated by symmetric

polynomials of the ji.

As explained in [44], this setup deforms to the Hecke algebra H
n
fin of Sn.

Here too there are Jucys-Murphys operators ji, they all commute, and symmetric

polynomials in the ji generate Z(Hn
fin).

1.3 Categorified Spectral Theory

The categorification of an algebra is a monoidal category C. The Drinfel’d

center of C consists of objects A in C equipped with natural isomoprhisms A ⊗

(−) ∼−→ (−) ⊗ A, which forms a braided monoidal category. Forgetting these

natural isomorphisms, we obtain a full subcategory of C which we refer to as the

naive Drinfel’d center. Sometimes it is a symmetric monoidal full subcategory. A

large source of symmetric monoidal categories is Coh(Y ) where Y is a (derived)

scheme or stack. The categorical analogue of the discussion in section 1.1 is the

following.

Given a monoidal category C can we find a symmetric monoidal full

subcategory S, containing the naive Drinfel’d center of C, and a (derived) scheme

or stack Y so that S is realized, by concretely defined functors, as the category of

coherent sheaves on Y ? If we can, then the skyscraper sheaves at closed points in

Y give categorical symmetrizers. In the setting of triangulated and dg-categories,

the categorical symmetrizer is given by a “normalized” skyscraper sheaf, to

account for the fact that while skycraper sheaves are idempotent under the usual

tensor product, they are not idempotent under the derived tensor product.

In [6], Elias and Hogancamp introduce the theory of categorical

diagonalization. Given a (graded) dg-pretriangulated monoidal category C and

an invertible object F , then F is said to be categorically prediagonalizable if there

12



exist ‘eigencones’ [1(λi)
αi→ F ] such that

⊗

i

(
1(λi)

αi→ F
)
= 0.

Here 1(λi) is a grading shift of the monoidal unit. Thus λi is the eigenvalue

and αi is the eigenmap. Given a prediagonalizable functor whose eigenvalues

are sufficiently distict in a category C which is suitably complete, Elias and

Hogancamp construct objects Pλ categorifing the Lagrange interpolators:

Pλi
:=

∏
j 6=i(F − λjI)∏
j 6=i(λi − λj)

,

thus giving categorical projectors onto eigencategories. Categorifying the

denominator in the above formula requires working with semi-infinite complexes

hence the necessity of a completeness assumption.

In [3, Chapter 4], it is explained how the work of Elias-Hogancamp can

be interpreted via algebraic geometry. The space Y is a projective space with

a certain torus action prescribed by the eigenvalues of F , so the fixed points

correspond to eigenvalues. It has an affine stratification via the torus action given

by the Bialynicki-Birula decomposition. Let Uλ denote the ascending set, an affine

chart, and let pλ denote the corresponding torus fixed point. The categorical

symmetrizers are recovered by pushing forward S•ν∨λ where νλ is the normal

bundle of Uλ. This sheaf is equal to a multiple of the skyscraper sheaf Opλ after

descending to K-theory and is idempotent under the derived tensor product of

OY -modules.

13



1.4 Hecke category

There is a category, the finite type A Hecke category Hn
fin, which

categorifies H
n
fin. It has several constructions: representation-theoretic (BGG

category O), algebraic (Soergel bimodules), combinatorial (Elias-Williamson), and

geometric (sheaves/D-modules on flag varieties). There has been much progress

in recent years to categorify the Vershik-Okounkov approach by understanding

the categorified spectrum of the full subcategory J of Hn
fin generated (under

direct sums, tensor products, grading shifts, and cones/cocones) by the Jucys-

Murphy objects Ji.

The Jucys-Murphy subalgebra J of Hn
fin generated by the Jucys-Murphy

braids ji can also be generated by the full twists FTi. Thus to understand its

spectrum, one could have simultaneously diagonalized the FTi rather than the

ji as in the original paper of Vershik-Okounkov. To this end, in [7], Elias and

Hogancamp apply their theory of categorical diagonalization to the objects

of Hn
fin corresponding to the full twists, which we also denote FTi. Since the

FTi also generate (in the stable dg/triangulated monoidal sense) the category

J , this allows them to construct categorical projectors onto simulataneous

eigencategories for J .

1.5 Flag Hilbert Schemes and Categorified Projectors

Now, wouldn’t it be great if the results of Elias and Hogancamp

diagonalizing categorified full twists could be recast in terms of algebraic

geometry? This is exactly what Gorsky, Negut, and Rasmussen (GNR) sought

to do in [3]. They propose coherent sheaves on the (derived) flag Hilbert scheme

of points in the plane supported on the x-axis (FHilbn) as the spectral incarnation

of the Jucys-Murphy category J .

14



Now, the inclusion ι : J → H
n
fin has an adjoint, ι∗ : Hn

fin → J . Likewise, the

inclusion of the center ι : Z(Hn
fin) →֒ H

n
fin also has an adjoint ι∗ : Hn

fin → Z(Hn
fin).

This is because the standard form 2.5.12 restricts to non-degenerate forms on J

and Z(Hn
fin). They conjecture this can be categorified by adjoint functors

Hn
fin

ι∗−�==�−
ι∗

Coh
C

∗×C∗(FHilbn), ι∗ ⊣ ι∗. (1.5.1)

The torus equivariance comes from the torus action on the plane. These functors

make Hn
fin into a category over (see 6.2.1) the Hilbert scheme. These functors

exchange the Jucys-Murphy objects Ji with the i-th tautological line bundle Li

on FHilbn.

Similarly, we let Z the naive Drinfel’d center of Hn
fin. Let Hilbn denote the

(derived) Hilbert scheme of n points in the plane supported on the x-axis. They

also conjecture that Hn
fin has adjoint functors

Hn
fin

ι∗−�==�−
ι∗

Coh
C

∗×C∗(Hilbn), (1.5.2)

and that the essential image of ι∗ should be related to the center Z . These

functors can be constructed from the ones to FHilbn by using the map p :

FHilbn → Hilbn.

Remarkably, GNR show how you can recover the categorified projectors

of Elias-Hogancamp by considering skyscrapers sheaves at torus fixed-points in

FHilbn.

1.5.1 Connection to Knot Theory. Let Tr : Hfin → Z[a±1](v) denote

the Jones-Ocneanu trace as in [12, Theorem 5.2.2]. For a planar braid β, we have

Tr(β) is the HOMFLY invariant ([40]) of the braid closure β of β which is a link in

15



S3. Let ι∗ : H
n
fin → J denote the adjoint of the inclusion. Then

Tr(β) = Tr |J (ι∗(β)). (1.5.3)

Thus HOMFLY invariants may be computed just by considering traces of

elements of J . The HOMFLY invariant is categorified by the derived categorical

trace of the object corresponding to β in the Hecke category, or more concretely

by the total Hochshild cohomology of its Rouquier complex of Soergel

bimodules, which explicitly gives the HOMFLY homology of β. Let HHH(β)

denote the HOMFLY homology of β. Ignoring issues of matching gradings, GNR

conjecture that equation 1.5.3 is categorified by:

HHH0(β) = RΓFHilb(ι∗Fβ), (1.5.4)

with similar interpretations of HHHi for all i.

1.5.2 Inductive Approach. Using the fact that FHilbn can be realized

as an iterated (dg) projective bundle, GNR give an inductive approach to

constructing the functors in 1.5.1. The tautological bundle Tn on FHilbn is

filtered by the tautological line bundles Li. An important piece of the inductive

construction is the need for the incarnation of Tn in the Hecke category, which

should be ι∗Tn, along with incarnations of its endomorphisms X and Y . We

denote this object as Tn It should carry a filtration by the Jucys-Murphy objects

Ji. The construction then involves checking some concrete properties of Tn, X

and Y purely in the Hecke category [3, Conjecture 3.9].

While the object Tn and the endomorphisms X, Y have not yet been

constructed, a version of Tn and Y have been constructed in the setting of affine

16



Hecke categories. This leads us to consider an affine version of the whole GNR

story.

1.6 Flag Commuting Stack and Affine Hecke Category

Let Hn
ext denote the extended affine Hecke algebra of type An (see 2.5.2).

It contains a (non-unique) copy of the weight lattice Λwt of gln, generated by the

Wakimoto braids yi 2.4.14. The subalgebra Z[v±1][Λwt] ⊂ H
n
ext plays the role of

J . It is known that symmetric polynomials in the yi generate Z(Hn
ext). Thus one

could understand the representation theory of Hn
ext through the simulaneous

eigenvalues of Z[v±1][Λwt]. The inclusions ι∗ : Z[v±1][Λwt] → H
n
ext and

ι : Z(Hn
ext) → H

n
ext have adjoints ι∗ : Hn

ext → Z[v±1][Λwt] and ι∗ : Hn
ext → Z(Hn

ext)

because the standard form of Hn
ext remains non-degenerate after restricting to

these subalgebras.

There is a categorification of Hn
ext, the extended affine Hecke category

Hn
ext (see 3.3.19). It has Wakimoto objects Wi (see 4.1.12) categorifying the yi.

They generate a full subcategory (in the stable dg/triangulated monoidal sense)

which we denote Wak. Due to motivation coming from the geometric Langlands

program that we will discuss later, it is expected that the flag commuting stack

FCommn, which is the derived stack parametrizing commuting pairs of upper-

triangular n × n matrices X and Y with Y nilpotent, plays the role in the affine

setting that FHilbn played in the finite setting of GNR.

This yields an ‘affine version’ of the GNR conjecture categorifying the

inclusion Z[v±1][λwt] → H
n
ext and its adjoint.

Conjecture 1.6.1. (Conjecture 7.3.3) There exists functors:

Hn
ext

ι∗−�==�−
ι∗

Coh
C

∗×C∗(FCommn), ι∗ ⊣ ι∗, (1.6.1)

17



making Hn
ext into a category over FCommn. These functors exchange the i-th tautological

line bundle of FCommn with the i-th Wakimoto object Wi.

As was communicated to us by Gorsky and Negut [39], the underlying

classical stack FCommcl
n can be realized as an iterated graded affine bundle (see

7.1.3). We conjecture (Conjecture 7.1.4) that this lifts to derived enhancements.

In section 7.3 we describe an inductive procedure to construct the functors

in 1.6.1. Let Tn denote the tautological vector bundle of FCommn (see 7.1.1).

Similarly to the program described by GNR, ours involves checking some

properties (see 7.3.2) of the object Vn corresponding to ι∗(Tn) along with its

endomorphisms X and Y .

1.6.1 Relating Finite and Affine GNR Conjectures. We assume the

existence of the yet undefined flattening functor ♭ : Hext → Hfin from the extended

affine Hecke category to the finite Hecke category [27, 1.6], which categorifies the

map described in 2.4.4. Like the bifunctor in 1.9.1, this functor is well-defined on

the additive category of Soergel bimodules SBim (see [17]), but extending it to the

homotopy category remains open.

We expect the GNR conjecture and the affine GNR conjecture to be

compatble in the following way. Note that there is map π : FHilbn → FCommn

given by forgetting the cyclic vector (the stability condition). We conjecture that

the following diagram commutes.

Hn
ext

ι∗✲✛
ι∗

Coh
C

∗×C∗(FCommn)

Hn
fin

♭

❄ ι∗✲✛
ι∗

Coh
C

∗×C∗(FHilbn)

π∗

❄
. (1.6.2)
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Here, the flattening functor sends the Rouquier complex for the i-th Wakimoto

braid to the Rouquier complex for the i-th Jucys-Murphy braid.

1.6.2 Connection to Knots in the Thickened 2-Torus. Given a

cylindrical braid β (see 2.4.6), one can associate an object Fβ of Hext, its Rouquier

complex 4.1. The closure of a cylindrical braid is naturally a link in the thickened

2-torus T 2 × I . Using total Hochschild cohomology of Fβ, we define the toroidal

HOMFLY-PT homology of such a link in 4.1.16. We hope that in further work one

could exploit the geometry of FComm to establish similar idenitities as (GNR) do

for ordinary HOMFLY homology in the case of toroidal HOMFLY homology.

1.7 Standard Gaitsgory Central Object

The object Vn should carry an n-layer filtration, where the i-th graded

component of the associated graded is the i-th Wakimoto object Wi. Such an

object of Hext is implicit in the work of Gaitsgory (see [10]) in constructing

central objects of affine Hecke categories. We won’t go in to the details of that

construction, which involves nearby cycles of sheaves. We now summarize some

features of Gaitsgory’s construction in type A. To a representation V of GLn,

Gaitsgory constructs an object Z(V ) of Hext satisfying:

1. Z(V ) can be upgraded to an object of the Drinfel’d center.

2. Z(V ) carries a filtration by Wakimoto objects corresponding to the weight

filtration of V .

3. Z(V ) carries a nilpotent endomorphism µ, the log monodromy,

corresponding to the principal nilpotent operator on V , i.e. the sum

∑
αi∈∆

ei of the raising operators ei for each of the simple roots.

4. Z(V ) is in the heart of the perverse t-structure on Hext.
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Thus if V is the standard representation of GLn, the object Z(V ), along with its

nilpotent log monodromy endomorphism µ, account for Vn and Y .

In the setting of the diagrammatic Hecke category, Elias (see [27]) gives a

purely combinatorial construction of Vn and Y . Because that category is defined

over Z, this construction also applies to the setting of parity sheaves by the work

of [23] relating the diagrammatic Hecke category to parity sheaves. We must also

mention the work of Achar and Rider [14] constructing this object directly in the

setting of parity sheaves. Their construction agrees with Elias’s up to homotopy

equivalence.

1.8 Main result and The Map χ

While Vn and Y are accounted for in the works mentioned above, the map

X is still missing. The main technical result of this work is proving the existence

and uniquenes of X , and identifying an explicit formula for it in terms of the

combinatorial description of Vn due to Elias.

Theorem 1.8.1. (Main Theorem 5.1.6) There exists a unique chain-map χ : Vn →

Vn(2), upper-triangular with respect to the Wakimoto filtration of F , which lifts right

multiplication by the fundamental weight xi on the i-th graded component of the

associated graded of the filtration.

With our result, the necessary ingredients to pursue an affine version of

the GNR program are all accounted for.

1.9 Related Work and Motivation

1.9.1 Elliptic Hall Algebra and HOMFLY-PT Skein of the Torus.

Motivated by work of Morton and Samuelson [31] giving an isomorphism

between the HOMFLY-PT skein algebra of the 2-torus and the elliptic Hall

algebra, Gorsky and Negut [30] explore the relation between the derived trace
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of the extended affine Hecke category Hext , i.e. its cocenter, and the K-theoretic

elliptic Hall algebra. The latter category is built from Hecke correspondences

between commuting varieties, given by 2-step flag commuting varieties.

Let Hn
ext denote the extended affine Hecke category of type An−1. Let

Tr(Hn
ext) denote its derived trace. There is a yet undefined bifunctor

Hn
ext ⊗Hm

ext → Hn+m
ext (1.9.1)

categorifying the inclusion in 2.6.3. They work under the assumption that

induced functor on the trace categories Tr(Hext) should categorify concatenation

in the HOMFLY-PT Skein algebra of the 2-torus. They show that the categorical

commutators between certain objects in the trace categories Tr(Hext) and the K-

theoretic Hall algebra agree.

1.9.2 Betti Geometric Langlands. Bezrukanikov’s equivalance [2]

identifies the extended affine Hecke category with CohGLn
(Z) where Z is the

(derived) Steinberg variety. Using this equivalence, Ben-Zvi, Nadler, and

Preygel show that the cocenter of the extended affine Hecke category is naturally

Coh(Comm). Their models for these categories, derived cocenters, and derived

spaces all use the language of modern derived algebraic geometry and ∞-

category theory.

In subsequent work, Nadler, Li, and Yun [38] exploit this connection

between the (derived) commuting variety and the extended affine Hecke

category to compute its dg-coordinate ring.

In remarkable recent work of Li and Ho [43], the authors upgrade the

results of Ben-Zvi, Nadler, and Preygel, and also those of Bezrukavnikov,

Finkelberg, and Ostrik (see [1]) on centers and traces of Hecke categories to
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the setting of graded Hecke categories (e.g. mixed or parity sheaves, Soergel

Bimodules, diagrammatic category). In finite type A, they establish a proof of

GNR’s conjecture computing HOMFLY homology via sheaves on Hilbn.

1.9.3 Matrix Factorizations and Hilbert Schemes. In [21], and [20],

Oblomkov and Rozansky describe categories of matrix factorizations MF , and

AMF , along with strict braid group actions from the ordinary braid group

Brfin → MF and the cylindrical braid group Brext → AMF . They also give

functors

MF → Coh(Hilb), AMF → Coh(Comm). (1.9.2)

For ordinary braids, their images in Coh(Hilb) appear to agree with the

complexes conjectured by (GNR) to compute HOMFLY-PT homology. It is not

known whether MF or AMF are equivalent to Hfin and Hext respectively. It also

not yet known whether the functor AMF → Coh(Comm) is trace-like in the sense

of [34].
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CHAPTER II

WEYL GROUPS, BRAID GROUPS, AND HECKE ALGEBRAS

2.1 Weyl Groups

Definition 2.1.1. (Finite Weyl Group). Let (Wfin, Sfin) denote the Coxeter system

of type An−1. Here Sfin = {1, ..., n − 1} and {si}i∈Sfin
is a set of generators for Wfin,

with the relations

s2i = 1, (2.1.1)

(sisj)
mij = id, (2.1.2)

where

mij =





1 if i = j.

3 if i = j ± 1

2 else.

. (2.1.3)

Note that Wfin is isomorphic to the symmetric group Sn, and the generator si

corresponds to the transposition ((i)(i+ 1)) in cycle notation.

Definition 2.1.2. Let k be a commutative integral domain. A realization of a

Coxeter system (W,S) over k is a triple (h, {αs}s∈S ⊂ h∗, {α∨
s }s∈S ⊂ h), where

h is a free, finite rank k-module and the following hold

1. For all s ∈ S, αs(α
∨
s ) = 2.

2. The assignment

S × h → h

(s, v) 7→ v − αs(v)α
∨
s
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extends to a W -action on h.

3. If mst = 2 then αs(α
∨
t ) = αt(α

∨
s ) = 0.

4. If αs(α
∨
t ) = αt(α

∨
s ) = 0, then mst is even.

The αs are called the simple roots and the α∨
s are called the simple coroots.

In the following we will consider special examples where k = C and h is a

Euclidean space with Euclidean form (·, ·) and we may identify h ∼= h∗.

Example 2.1.3. (The gln realization of Wfin). We set the following notation.

H = C{x1, ..., xn} ∼= Cn. (2.1.4)

αi = α∨
i = xi − xi+1. (2.1.5)

∆ = {αi | 1 ≤ i ≤ n− 1} ⊂ Cn. (2.1.6)

Λrt = Z∆ (2.1.7)

Λwt = Z{x1, ..., xn} (2.1.8)

Identifying H ∼= H∗ via standard Euclidean form, the data (H,∆,∆) gives

a realization of Wfin over C. We define a faithful action of Wfin on H where, for

i ∈ Sfin, si acts as the transposition ((i)(i+ 1)) on the set {xi} of basis vectors. This

is reflection across the hyperplane orthogonal to αi ∈ H .

We note that H may be identified with a maximal toral subalgebra for the

reductive Lie algebra gln, ∆ may be identified as a choice of simple roots for the

corresponding root system, and Wfin as the corresponding Weyl group. In this

setup Λrt and Λwt are the corresponding root and weight lattices respectively of

gln. From this we obtain the usual sln realization of Wfin by taking the quotient of

H by the vector space spanned by
∑n

i=1 xi.
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Definition 2.1.4. (Affine Weyl Group) Let (Waff , Saff) denote the Coxeter system of

type Ãn−1. Here Saff = {0, 1, ..., n − 1} and {si}i∈Saff
is a set of generators for Waff

with the relations

s2i = 1, (2.1.9)

(sisj)
mij = id, (2.1.10)

where

mij =





1 if i = j

3 if i = j ± 1 mod n

2 else

. (2.1.11)

We identify Saff
∼= Z/nZ as a set, as suggested by these relations. Note that

for i = 1, ..., n−1, the relations among the si are the same as in 2.1.3, therefore Wfin

is a subgroup of Waff . The Coxeter system (Waff , Saff) has an automorphism

τ : Waff →Waff (2.1.12)

defined by

τ(si) = si+1.

Remark 2.1.5. The group Waff does not act linearly on the vector space H in 2.1.3

however we can define an action by affine linear transformations. The si for

i = 1, ..., n act as before, while s0 acts by reflection across an affine hyperplane

orthogonal to

αlong =
n∑

i=1

αi
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and translated from the origin by x1. This action can be linearized by adding a

new parameter.

Example 2.1.6. (The gln realization of Waff). We reuse the notation from 2.1.3 and

we set the following notation.

Ĥ = H ⊕C{δ} ∼= Cn+1. (2.1.13)

αlong =
∑

α∈∆

α. (2.1.14)

α0 = −αlong + δ. (2.1.15)

α∨
0 = −αlong. (2.1.16)

∆̂ = ∆ ∪ {α0}. (2.1.17)

∆̂∨ = δ ∪ {α∨
0 } (2.1.18)

We endow Ĥ with the standard Euclidean form. We note that δ =
∑

i∈Z/nZ αi.

We define a linear action of Waff on Ĥ as follows. We set δ to be invariant under

Waff . We set si for i = 1, ..., n to act by permuting the basis vectors {xj} as the

transposition (i(i+ 1)). We define the action of s0 on the basis vectors as follows.

s0(x1) = xn + δ, s0(xn) = x1 − δ, s0(xi) = xi for i 6= 1, n. (2.1.19)

Equivalently, for i ∈ Z/nZ, si acts by reflection across the linear hyperplane

orthogonal to αi. This makes the data (Ĥ, ∆̂, ∆̂∨) into a realization of (Waff , Saff).

This realization of Waff is compatible with the automorphism τ in the the

following way. We define a map τ : Ĥ → Ĥ by

τ(δ) = δ, τ(xn) = x1 − δ, τ(xi) = xi+1 for 1 ≤ i ≤ n− 1. (2.1.20)
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It satisfies the the following compatibility.

τ(s) · τ(x) = τ(s · x), τ(αi) = α(i+1 mod n), for s ∈ Waff and x ∈ Ĥ.

(2.1.21)

We recover the affine action of Waff by projecting this linear action to the

affine hyperplane H + δ.

We recall some fundamental notions about Coxeter groups. Let (W,S) be

an abstract Coxeter system.

Definition 2.1.7. Let w ∈ W . An expression w for w is a tuple, or word, (si1 , ..., sik)

in S such that the product si1 · · · sik in W is equal to w.

Definition 2.1.8. The length of w, denoted by l(w), is the minimal k for which w

has an expression of length k. Such an expression with minimal length is called a

reduced expression.

Definition 2.1.9. Let R ⊂ W denote the set of conjugates of elements of S. These

are called the reflections in W . The Bruhat order on W is the transitive completion

of the relation defined by x < y if sx = y or xs = y for some s ∈ R and with

l(x) < l(y).

2.2 Loop vs Coxeter

The presentation of Waff discussed in 2.1.4 is called the Coxeter presentation

of Waff . Recall the action of Wfin on Λrt ⊂ H . The following isomorphism is called

the loop presentation of Waff .

Proposition 2.2.1. (Loop Presentation).

Waff
∼= Wfin ⋉ Λrt. (2.2.1)
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Recall the faithful action of Waff by affine linear transformations on

H , where s0 acts by reflection across an affine hyperplane. Let tαlong
indicate

translation by αlong. Let slong indicate reflection across the hyperplane orthogonal

to αlong in H . Then

tαlong
= s0slong. (2.2.2)

Taking conjugates of tαlong
under Wfin, we get the translations tα for α ∈ ∆,

which generate a normal copy of Λrt inside Waff . The presentation of Waff with

generators si for i ∈ Sfin and tα for α ∈ ∆ is the loop presentation.

2.3 Extended Affine Weyl Group

Recall the automorphism τ of the Coxeter system (Waff , Saff). We define a

new group, the extended affine Weyl group, by making τ an inner automorphism.

Definition 2.3.1. The extended affine Weyl group is defined as

Wext :=Waff ⋉ Z. (2.3.1)

We set ω to be the generator of Z, and we set ωxω−1 = τ(x) for x ∈ Waff .

Definition 2.3.2. We call the presentation of Wext given by si for i ∈ Saff , and ω,

the Coxeter presentation of Wext.

Definition 2.3.3. We call (l, si1 , si2, ..., sik), for im ∈ Saff , an expression for w ∈

Wext if ωlsi1 · · · sik = w. Here l is a (possibly negative) integer, and is uniquely

determined by w. The expression is reduced if k is minimal.

We now describe a geometric interpretation of Wext in terms of a faithful

action by affine linear transformations on H . Recall the action of Wfin on Λwt ⊂ H .
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Let Λwt ⊂ Aut(H) consist of the translations along the lattice Λwt. The following

decomposition is called the loop presentation of Wext.

Proposition 2.3.4. (Loop presentation). The following decomposition holds.

Wext
∼= Wfin ⋉ Λwt. (2.3.2)

From it we infer a faithful action of Wext on H by affine linear transformations.

The generator (1, 0, ..., 0) of Λwt is given by ωsn−1sn−1 · · · s1. The rest of

the generators are given by conjugation by ω. These are related to the Wakimoto

braids discussed in Definition 2.4.14.

We note that Wext/Waff
∼= Λwt/Λrt

∼= Z.

Recall that Ĥ was compatible with the automorphsim τ as a realization of

(Waff , Saff). We define a faithful action of Wext by linear transformations on Ĥ by

setting

ω · x = τ(x), for x ∈ Ĥ.

2.4 Braid Groups

We recall the definition of the braid group of a Coxeter group.

Definition 2.4.1. The Braid Group BrW of a Coxeter system (W,S) is given by the

presentation with generators

fi, for i ∈ S (2.4.1)
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and the relations

fifj · · ·︸ ︷︷ ︸
mij times

= fjfi · · ·︸ ︷︷ ︸
mij times

. (2.4.2)

We note there is always a homomorphism h : BrW → W .

Definition 2.4.2. For w ∈ W , we set fw to be the braid diagram such that h(fw) =

w, with fw having the minimal number of crossings among such diagrams and

only having positive crossings according to the convention we set in 2.4.3. We call

fw the positive lift of w. Equivalently, if (si1 , ..., sik) is a reduced expression for w,

we have

fw = fi1 · · ·fik .

Notation 2.4.3. We set Brfin and Braff to be the braid groups of Wfin and Waff

respectively.

Proposition 2.4.4. There is an inclusion Brfin →֒ Braff as in the case of the

corresponding Weyl groups.

2.4.1 String Diagrams and Braid Diagrams. We introduce braid

diagrams in the planar strip to understand elements of Brfin. For example, we

draw the simple crossings f2 and f−1
2 when n = 4.

f2 = , f−1
2 = . (2.4.3)

This sets our convention for a positive crossing and negative crossing respectively.

We interpret the elements of Braff as braid diagrams on a cylinder, or a planar

strip with the left and right ends identified. The generators fi for i 6= 0 are the
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same simple crossings as in the finite case, while f0 wraps behind the cylinder.

We draw it below in the case n = 4.

f0 = (2.4.4)

Diagrammatically, the elements of Brfin correspond to braid diagrams that don’t

wrap behind the cylinder.

We view elements of Wfin and Waff diagrammatically in terms of string

diagrams on a cylinder. Here, we do not keep track of whether strands cross over

or under. We draw the string diagram for s2 in the case n = 4 below.

s2 = s−1
2 = (2.4.5)

We think of Wfin as corresponding to string diagrams that do not go behind the

cylinder.

Proposition 2.4.5. The vertical stacking or concatenation of braid diagrams corresponds

to multiplication in Brfin and Braff . Likewise, vertical stacking of string diagrams is

multiplication in Wfin and Waff .

2.4.2 Cylindrical Braid Group.

Definition 2.4.6. (Cylindrical Braid Group). We define the braid group of Wext,

which we denote Brext, to be the group generated by

ω, fi, for i ∈ Saff (2.4.6)
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with the relations

fifj · · ·︸ ︷︷ ︸
mij times

= fjfi · · ·︸ ︷︷ ︸
mij times

, ωfiω
−1 = f(i+1 mod n). (2.4.7)

From this presentation, we have

Brext ∼= Braff ⋉Z (2.4.8)

We also call this group the cylindrical braid group.

Remark 2.4.7. We have a homomorphism Brext →Wext.

Let us expand on why this group is the cylindrical braid group, and

not Braff . Indeed, not all cylindrical braid diagrams are obtained from those

generated by fi for i ∈ Saff under vertical concatenation. Such braid diagrams

can only have zero winding number.

The following is the cylindrical braid diagram for ω and ω−1, which have

winding numbers 1 and −1 respectively.

ω = , ω−1 = . (2.4.9)

All braid diagrams can be generated by ω and fi for i ∈ Saff under vertical

stacking.

Proposition 2.4.8. The group Brext is isomorphic, via mapping the generators fi and

ω as described above, to the group of braid diagrams, considered up to isotopy, on the

cylinder.

Definition 2.4.9. We define the winding number of a cylindrical braid to be

the number of times it wraps around the cylinder, with counterclockwise
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rotation being set as positive winding. In fact, winding number is the group

homomorphism

wind : Brext → Brext /Braff ∼= Z. (2.4.10)

We note that wind(ωk) = k.

Definition 2.4.10. We define the evaluation homomorphism

ev : Brext → Wfin
∼= Sn, (2.4.11)

in terms of cylindrical braid diagrams, by mapping a braid diagram to its

underlying permutation on the n-marked points on the boundary circles of the

cylinder.

Definition 2.4.11. We define a pure cylindrical braid to be a braid in the kernel of

ev : Brext → Sn. These form a subgroup called PBrext.

Because the underlying permuation of a pure cylindrical braid is the

identity, we can keep track of the winding of each individual strand of the braid.

This allows us to define the following.

Definition 2.4.12. We define the homomorphism

wind : PBrext → Z
n ∼= Λwt, (2.4.12)

in terms of cylindrical braid diagrams, by mapping a diagram on n strands to the

n-vector of integers recording the winding number of each strand. We identify Zn

with Λwt in the standard way.
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Example 2.4.13. Consider the following cylindrical braid diagram.

. (2.4.13)

It is the diagram corresponding to ωf3f2f1 for n = 4. Here, we have

wind(ωf3f2f1) = (1, 0, 0, 0).

2.4.3 Translation Lattices. Let us introduce a particular lift of Λwt under

wind.

Definition 2.4.14. (Wakimoto Braids). For i ≤ y ≤ n, let yi denote the pure

cylindrical braid where the i-th strand wraps to the right around the cylinder,

passing over the j-th strand for j > i and under it for j < i. We draw the yi for

n = 4.

y1 = y2 = y3 = y4 = .

(2.4.14)

We refer to yi as the i-th Wakimoto braid. In terms of the generators ω and

fi, we have

yi = f−1
i−1 · · · f

−1
2 ωfn−1 · · · fi+1fi (2.4.15)

Proposition 2.4.15. The elements yi commute with each each other and wind gives an

isomorphism between the group they generate and Λwt. Let ǫi = (0, · · · , 1, · · · , 0) ∈ Λwt.
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One has wind(yi) = ǫi and
n∏

i=1

yi = ωn (2.4.16)

Remark 2.4.16. This lift of Λwt is not unique. Let us describe a way to obtain other

interesting lifts. Fix an ordering σ of 1, · · ·n. Let yσi denote the pure cylindrical

braid which wraps around the cylinder from the right, crossing over the j-th

strand if j < i and crossing under if j > i under the ordering specified by σ.

Orderings of n points are an Sn-torsor and may be identified with Sn by

identifying the ordering n > n− 1 > · · · > 2 > 1 with id ∈ Sn. Then the yi defined

earlier correspond to yidi .

In addition to these lifts of Λwt we can get other copies of Λwt by

conjugating these by an arbitrary braid. However, the lattices given by orderings

described above are useful because the yσi have no repeated crossings. This is

useful for categorification, as the Rouquier complexes for braids with no repeated

crossings are minimal complexes.

2.4.4 Flattening. By drawing the cylinder as a strip with the left and

right edges identified as in the images before, we’ve fixed a projection π : S1× I ×

(−ǫ, ǫ) → I×I×(−ǫ, ǫ), a map from the thickened cylinder to the thickened planar

strip. This induces a map from cylindrical braids, which live in the thickened

cylinder, to planar braids which live in the thickened strip. Indeed, this projection

also induces a group homomorphism ♭ : Brext → Brfin. We draw some examples

of flattening in n = 4 below.
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y2 =
♭
7→ , (2.4.17)

ω =
♭
7→ . (2.4.18)

f0 =
♭
7→ . (2.4.19)

We can explicitly define ♭ in terms of generators.

Definition 2.4.17. Let ♭ : Brext → Brfin be the homomorphism defined on

generators by

♭(fi) = fi for 1 ≤ i ≤ n− 1, (2.4.20)

♭(ω) = f1f2 · · ·fn−1, (2.4.21)

♭(f0) = f−1
n−1 · · · f

−1
2 f1f2 · · · fn−1. (2.4.22)

2.4.5 Bar Involution.

Definition 2.4.18. Let β be cylindrical braid. We set β to be the cylindrical braid

diagram where all the positive crossings are changed to negative crossings and

vice versa, according to the convention we set in 2.4.3. This gives an involution

on Brfin, Braff , and Brext which we denote as the bar involution.

Let fw be the positive lift of w ∈ W . We note that

fw = f−1
w−1. (2.4.23)

We note that ω = ω, hence the bar involution preserves winding number

and also wind of pure braids.
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2.5 Hecke Algebras

Now that we’ve discussed the Braid groups of Wfin,Waff , and Wext we may

introduce their Hecke algebras.

Definition 2.5.1. (Hecke Algebra). Let (W,S) be a Coxeter system and Br its braid

group. The Hecke algebra H of (W,S) is obtained as a quotient of the Z[v, v−1]-

group algebra of Br by the relations

(fi + v)(fi − v−1) = 0. (2.5.1)

We note that this definition applies to Brext giving its Hecke algebra Hext.

Definition 2.5.2. We set Hfin,Haff , and Hext to be the Hecke algebras of Wfin,Waff ,

and Wext respectively.

Notation 2.5.3. In the following we will set Tsi to be the image of the quotient

of fi. When the choice of generator is not relevant, we may drop the index i and

refer to these generators as Ts.

Remark 2.5.4. The flattening map ♭ : Brext → Brfin extends linearly over Z[v, v−1]

and descends to a map ♭ : Hext → Hfin.

Proposition 2.5.5. The following decompositions hold.

Haff
∼= Hfin ⋉ Λrt, (2.5.2)

Hext
∼= Hfin ⋉ Λwt, (2.5.3)

Hext
∼= Haff ⋊ Z. (2.5.4)

We set ω to be the generator of Z in 2.5.4.
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2.5.1 Bases and Pairings. Let (W,S) be a Coxeter system (e.g (Wfin, Sfin)

or (Waff , Saff)), Br its braid group and H its Hecke algebra. We may also consider

(W,Br,H) to be (Wext,Brext,Hext) with appropriate modification.

Proposition 2.5.6. (Standard Basis). Let w ∈ W and let fw be a positive lift of w in Br.

Let Tw denote the image of fw in H. Equivalently, for a reduced expression (si1, ..., sik) of

w, we have

Tw = Tsi1 · · ·Tsik .

The set {Tw | w ∈ W} are a basis of H over Z[v, v−1].

Proposition 2.5.7. (Standard Basis of Hext). The set {ωkTw | w ∈ Waff , k ∈ Z} are a

basis of Hext over Z[v, v−1].

To prove this one must use the multiplication rules in this basis which are

expressed in terms of the Bruhat order on W . We will not do so.

Definition 2.5.8. (Bar Involution) Recall the bar involution β 7→ β defined on

braids β. We extend it to and involution of H as follows.

Ts = T−1
s , v = v, (ab) = a · b. (2.5.5)

In the case of Hext, we also set

ω = ω.

Definition 2.5.9. (Kazhdan-Lusztig anti-involution). We define an anti-involution

α : H → H as follows.

α(Ts) = T−1
s , α(v) = v−1, α(ab) = α(b)α(a). (2.5.6)
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In the case of Hext, we also set

α(ω) = ω.

Definition 2.5.10. (Standard Trace) The standard trace ǫ : H → Z[v, v−1] is defined

on the standard basis by

ǫ(Tw) = δw,id.

It extracts the coefficient of Tid.

Proposition 2.5.11. The following hold for ǫ.

1.

ǫ(TxTy) =





1 if x = y−1

0 else

2. ǫ(ab) = ǫ(ba) for all a, b ∈ H.

This allows us to define a form on H which is Z[v, v−1]-sequilinear with

respect to the anti-involution on Z[v, v−1] given by v 7→ v−1.

Definition 2.5.12. The standard form (·, ·) : H × H → Z[v, v−1] is the Z[v, v−1]-

sequilinear form defined by (a, b) := ǫ(α(a)b).

Proposition 2.5.13. The standard form is non-degenerate.

Remark 2.5.14. As we will mention again in the following, the standard form is

categorified by the graded-Hom spaces between Soergel bimodules.

Definition 2.5.15. We define the Jucys-Murphy subalgebra J = ♭(Z[v±][Λwt]) ⊂ Hfin.

The braids ji = ♭(yi) are called the multiplicative Jucys-Murphy braids.

Proposition 2.5.16. 1. The standard form on Hfin restricts to a nondegenerate form

on the Jucys-Murphy subalgebra J .
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2. The standard form on Hext restricts to a nondegenerate form on Z[v, v−1][Λwt].

Theorem 2.5.17. (Kazhdan-Lusztig Basis/Positivity Theorem) H has a unique basis

{bw | w ∈ W} such that

1. (self-duality): bx = bx

2. bx has the form

bx = Tx +
∑

y<x

hy,xTy for some hy,x ∈ vZ[v]

3. bsbt =
∑

uC
u
stbu, where C ∈ N[v, v−1]

The polynomials hy,x are the famous Kazhdan-Lusztig polynomials and

their positivity, along with the positivity of the Cu
st, is the result of the famous

Kazhdan-Lusztig positivity theorem.

Example 2.5.18. For all s ∈ S, bs = Ts + v.

The following relates to part (3) of Theorem 2.5.17.

Corollary 2.5.19. Let w = (si1 , ..., sik) be a reduced expression for w ∈ W . Then

bsi1 · · · bsik = bw +
∑

x<w

Cxwbx (2.5.7)

where Cxw ∈ N[v, v−1]. The element on the left-hand side of the equation is called the

Bott-Samelson element for the expression w.

Definition 2.5.20. (KL Basis of Hext). We define the set {ωkbw | w ∈ Waff , k ∈ Z} to

be the Kazhdan-Lusztig basis of Hext.
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Proposition 2.5.21. The Kazhdan-Lusztig basis is asymptotically orthonormal with

respect to (·, ·). That is, for all x, y ∈ W ,

(bx, by) ∈





1 + vZ[v] if x = y

vZ[v] else

(2.5.8)

If we set v = 0, they are orthonormal.

Remark 2.5.22. Left multiplication by an element fixed under α is self-biadjoint

with respect to (·, ·). This occurs in particular for the elements bs where s ∈ S.

2.6 Traces, Inclusions, and Link Invariants.

2.6.1 Inclusions. In the following we will be working with Weyl

groups, braid groups, and Hecke algebras of different ranks simultaneously, so

we introduce the following notation.

Notation 2.6.1. Let Hn
fin be the Hecke algebra of type An−1 let W n

fin be the Coxeter

group (i.e. the symmetric group Sn), and let Brnfin be its braid group. Let W n
aff

be the Coxeter group of type Ãn−1, let Brnaff its braid group and H
n
aff its Hecke

algebra. Let W n
ext, Br

n
ext, and H

n
ext be the extended incarnations of those objects

with the same rank.

Proposition 2.6.2. There are inclusion maps

ι :W n
fin ×Wm

fin →֒ W n+m
fin (2.6.1)

ι : Brnfin ×Brmfin →֒ Brn+m
fin (2.6.2)

ι : Hn
fin ⊗Z[v±1] H

m
fin →֒ H

n+m
fin (2.6.3)

We make sense of the case m = 1 by setting W 1
fin = Br1fin = {id} and H

1
fin = Z[v, v−1].
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Diagrammatically, one may think of these as horizontally composing braid

or string diagrams. We will be especially interested in the inclusion ι : Hn
fin →֒

H
n+1
fin .

There are analogs of these inclusion in the affine setting i.e. with braids

and strings on a cylinder.

Proposition 2.6.3. There are inclusion maps

ι : W n
ext ×Wm

ext →֒ W n+m
ext (2.6.4)

ι : Brnext ×Brmext →֒ Brn+m
ext (2.6.5)

ι : Hn
ext ⊗Z[v±1] H

m
ext →֒ H

n+m
ext (2.6.6)

We make sense of the case m = 1 by setting W 1
ext = Br1ext = Z and H

1
ext = Z[v, v

−1][Z].

We do not have horizontal stacking for cylindrical braids. What we

can do is place one cylinder in the interior of another, which we’ll call internal

composition or internal stacking of cylindrical braids. Diagrammatically, the above

inclusions come from internal composition of a cylindrical braid on m strands

with a cylindrical braid on n strands.

We draw an example of ι in the case n = 3, m = 2.

Example 2.6.4.

ι




,




= . (2.6.7)

In the above, the red strands pass behind the blue strands.
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We’ll mainly be interested in the inclusions ι : Brnext →֒ Brn+1
ext , and ι :

H
n
ext →֒ H

n+1
ext , which diagrammatically correspond to inserting one strand inside

the cylinder.

Proposition 2.6.5. The inclusion ι : Brnext →֒ Brn+1
ext sends the i-th Wakimoto braid in

Brnext to the i-th Wakimoto braid in Brn+1
ext where i = 1, ..., n.

Proposition 2.6.6. The inclusions of finite and extended affine Hecke algebras are

isometric with respect to the standard forms.

2.6.2 Traces. Let H = Hfin,Haff , or Hext. Let us define some trace maps

on H that we will later discuss categorifications of, and that allow one to define

link invariants. The first is the standard trace we have already defined ǫ : H →

Z[v, v−1]. We observe that it is equivalent to (1, ·) : H → Z[v, v−1], so it will later

be categorified in the setting of Hecke categories by taking graded-Hom with

monoidal unit.

The standard trace on Hfin is the specialization (at (a = 0)) of a trace

valued in Z[a±1](v) originally defined by Ocneanu via a Skein relation. We state

the relevant theorem.

Theorem 2.6.7. (Ocneanu) There is a unique family of Z[v, v−1]-linear maps

Trn : Hn
fin → Z[a±1](v)

satisfying

1. Trn(xy) = Trn(yx),

2. Trn+1(ι(x)) = {0}Trn(X),
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3. Trn+1(ι(x))bsn = {1}Trn(x),

4. Tr0(1) = 1,

where

{n} =
av−n − a−1vn

v − v−1
.

Definition 2.6.8. Let β be a planar braid diagram, viewed as an element of Hn
fin.

Let L denote its braid closure. The HOMFLY-PT invariant of L is defined to be

Trn(β).

Proposition 2.6.9. The standard trace (1, ·) : Hfin → Z[v±1] factors through the adjoint

of the inclusion of the Jucys-Murphy algebra ι : J →֒ Hfin.

Proof. We note that (1, x)Hfin
= (ι(1), x)Hfin

= (1, ι∗(x))J .

Remark 2.6.10. As far as we know, it is an open problem to realize the standard

trace of Hn
ext as the specialization at a = 0 of a Jones-Ocneanu trace. While

such a trace hasn’t been defined, a related object, the HOMFLY-PT skein

algebra of the 2-torus T 2, has been studied in [31]. Such a trace would give a yet

undefined toroidal HOMFLY-PT invariant for a link in the thickened 2-torus. The

categorification of such an invariant is implicitly studied in [30].

2.6.3 Partial Traces. The inclusion ι : Hn
fin →֒ H

n+1
fin has an adjoint with

respect to the standard form pn := ι∗ : Hn+1
fin → H

n
fin. Both ι and pn have been

categorified by Hogancamp in [32]. Likewise ι : H
n
ext →֒ H

n+1
ext has an adjoint

pn := ι∗ : H
n+1
ext → H

n
ext. As we will elaborate on later, categorifying ι and its

adjoint in the extended affine setting remains an open problem.

Proposition 2.6.11. The standard trace (1, ·) : Hn
fin → Z[v±1] is equal to the repeated

partial trace p2p3 . . . pn.
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Exercise 2.6.12. Prove proposition 2.6.11 using induction and the fact that p2 is

the adjoint with respect to the standard form (·, ·). The base case n = 2 is the

definition of the standard trace.

2.6.4 Link Invariants.

Definition 2.6.13. Let β be a planar braid diagram, viewed as an element of Hn
fin.

Let L denote its braid closure, which is a link in the 3-sphere S3. The HOMFLY-PT

invariant of L is defined to be Trn(β).

Theorem 2.6.14. (HOMFLY [40]). The HOMFLY-PT invariant is an invariant of L (up

to scalar, we ignore normalization). It is invariant under the Markov moves, because Trn

is.

Definition 2.6.15. Let β be a cylindrical braid, and let L be its closure which is a

link in T 2 × I . We define the toroidal HOMFLY-PT (at a = 0) invariant of L to be

(1, β) ∈ Z[v±1].

Conjecture 2.6.16. The toroidal HOMFLY-PT invariant is an invariant of L as a link in

T 2 × I .

45



CHAPTER III

HECKE CATEGORIES

3.1 Soergel Bimodules

We follow the book [28] closely in the following.

Let (W,S) be a Coxeter system and let h be a realization of it over C. Let

R = Sym h∗, viewed as a graded ring with h∗ in degree 2. Note that R has an

action of W . We define the Demazure operators.

Definition 3.1.1. For each element s ∈ S, we have the Demazure operator ∂s :

R → Rs(−2) where Rs is the s-invariant subring of R. It is defined as

∂s(f) =
f − s(f)

αs
. (3.1.1)

Note that f − s(f) is divisible by αs since it is s-anti-invariant and αs

generates the s-anti-invariants as an Rs-module.

Lemma 3.1.2. 1. The map ∂s is an Rs-bimodule map

2. We have ∂2s = 0, s ◦ ∂s = ∂s, and ∂s ◦ s = −∂s.

3. (Twisted Leibniz), For f, g ∈ R, the following equation holds:

∂s(fg) = ∂s(f)g + s(f)∂s(g). (3.1.2)

Proposition 3.1.3. The Demazure operator ∂s : R → Rs makes R into a Frobenius ring

extension of Rs.

We will not give details on Frobenius extensions and Frobenius objects,

but will refer to the relevant section on them and related diagrammatics in [28,

Chapter 7].
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Notation 3.1.4. Let M be a graded R-bimodule. Let M(n) denote the grading

shift by n. Here, M(n)i = M i+n. Let R-grbimod denote the category of graded

R-bimodules.

Notation 3.1.5. For s ∈ S, we consider the following graded R-bimodules.

Bs := R⊗Rs R(1). (3.1.3)

Definition 3.1.6. Let w = (si1 , ..., sik) be a word in S. The Bott-Samelson bimodule

associated to w is

BS(w) := Bsi1
⊗ · · · ⊗ Bsik

. (3.1.4)

Definition 3.1.7. The category BSBim of Bott-Samelson bimodules associated to

(W,S) and h is the smallest full subcategory of R-grbimod containing all the Bott-

Samelson bimodules and direct sums of them.

The category BSBim is closed under tensor product, because the tensor

product of two Bott-Samelson bimodules is a Bott-Samelson bimodule. The

category BSBim is generated, as an additive monoidal category, by the objects

R, and Bs for s ∈ S, in R-grbimod. The following definition is due to Soergel [26].

Definition 3.1.8. The category SBim of Soergel bimodules associated to (W,S)

and h is the smallest full subcategory of R -grbimod containing all the Bott-

Samelson bimodules, and closed under taking direct sums and direct summands.

The category SBim is a graded Krull-Schmidt category, i.e. it has unique

decompositions into indecomposables, with graded local endomorphism rings.

We note that SBim is the Karoubi envelope of BSBim.
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Example 3.1.9. Let (W,S) = (Wfin, Sfin), the Coxeter system of type An−1. Let

h = H . Here R = C[x1, ..., xn]. We set SBimn to be the corresponding category of

Soergel bimodules.

Example 3.1.10. Let (W,S) = (Waff , Saff), the Coxeter system of type Ãn−1. Let

h = Ĥ . Here R = C[x1, ..., xn, δ]. We set ASBimn to be the corresponding category

of Soergel bimodules.

Let H be the Hecke algebra of (W,S). Let [SBim]⊕ indicate the additive

Grothendieck ring of Soergel bimodules, an additive monoidal category, viewed

as a Z[v±1]-algebra where v corresponds to the internal grading.

Theorem 3.1.11. (Soergel Categorification Theorem [26]).

1. There is a Z[v±1]-algebra isomorphism c : H → [SBim]⊕ defined on the Kahzdan-

Lusztig generators by

bs 7→ [Bs]

for all s ∈ S.

2. There is a bijection between W and the indecomposables of SBim. Let w be any

reduced expression of w ∈ W . The indecomposable Bw is a summand of BS(w)

with multiplicity 1. All other summands are By(k) with y < w and k ∈ Z.

Notation 3.1.12. Let A,B ∈ R-grbimod. We set the notation for the graded hom.

HOM(A,B) =
⊕

m∈Z

Hom(A,B(m)).

The bar involution is categorified by the following duality functor.
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Definition 3.1.13. The (right) duality functor is the contravariant autoequivalence

D of R-grbimod given by

D(−) := Hom•
−R(−, R). (3.1.5)

To a bimodule B it assigns the space of right R-module maps to R. We view it as

a graded R-bimodule via (r · f · r′)(b) = rf(b)r′ for r, r′ ∈ R, f ∈ D(B), and b ∈ B.

We note how D intertwines grading shifts, that D(B(k)) ∼= D(B)(−k).

Proposition 3.1.14. ([28, Proposition 18.1]) For all w ∈ W , we have D(Bw) ∼= Bw.

Theorem 3.1.15. (Soergel Hom Formula [26, Theorem 5.15]). Let A and B be Soergel

bimodules. Then HOM(A,B) is free as a left or right graded R-module, of graded rank:

grdrkHOM(A,B) = ([A]⊕, [B]⊕). (3.1.6)

So the graded hom categorifies the standard form on H.

Example 3.1.16. grdrkHOM(R,Bs) = v because HOM(R,Bs) is generated, as a

right R-module, by the ‘start-dot’ (see 3.2.2). We recall that bs = Ts + v and thus

(1, bs) = v.

Remark 3.1.17. If I ⊂ S, then the restriction of the standard form on the

Hecke algebra HS associated to S restricts to the standard form on the Hecke

algebra HI associated to I . There is a full subcategory of SBim(W,S), generated by

R,Bs for s ∈ I . This differs from the category SBim(WI ,I), Soergel bimodules

for the corresponding parabolic subgroup, in that the graded Hom spaces

between corresponding objects are still free of the same graded ranks but over

a potentially different polynomial ring.

49



For example, The subcategory of ASBimn generated by R and Bs for s =

1, ...n is equivalent to SBimn with Hom spaces extended from R = C[x1, ..., xn] to

R′ = C[x1, ..., xn, δ]. Simply apply (−)⊗R R
′ on all Hom spaces.

3.1.1 Extended affine Soergel bimodules. Consider (W,S) = (Waff , Saff)

and h = Ĥ . Recall that R has an action of Wext via τ : R → R. Let Rτ denote

the bimodule defined in the following way. It is free of rank 1 as either a left or

right R-module. The left action is the ordinary one. The right action by x ∈ R is

multiplication by τ(x). Let Rτ−1 defined in the same way except the right action

by x ∈ R is multiplication by τ−1(x). Following the notation of [27], we’ll set

Ω := Rτ and Ω−1 := Rτ−1 . Note, for k ∈ Z, that Ωk ∼= Rτk , the R-bimodule where

the right action by x ∈ R is given by τk(x).

Definition 3.1.18. The category EASBimn of extended affine Soergel bimodules is

the smallest full subcategory of R-grbimod containing Ω, Ω−1, R, and Bs for s ∈

Saff = Z/nZ and closed under tensor product, direct sum, and direct summand.

Remark 3.1.19. The category ASBimn is a full subcategory of EASBimn.

Lemma 3.1.20. There are bimodule isomorphisms:

Ω⊗ Ω−1 ∼= R ∼= Ω−1 ⊗ Ω, (3.1.7)

Ω⊗Bs
∼= Bτ(s) ⊗ Ω. (3.1.8)

Let F ∈ EASBim. The lemma above implies that, for some k ∈ Z, we have

F ∼= ΩkT where T ∈ ASBim. Moreover, Elias proves the following in [27].
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Proposition 3.1.21. Let A,B ∈ ASBim.

Hom(ΩkA,ΩlB) ∼=





0 k 6= l,

Rk
τ ⊗R Hom(B,C) k = l.

(3.1.9)

Theorem 3.1.22. (Soergel Categorification theorem for Hext [16, Theorem 2.5]).

1. There is a Z[v±1]-algebra isomorphism c : Hext → [EASBim]⊕ defined on the

Kahzdan-Lusztig generators by

ωkbs 7→ [ΩkBs]

for all s ∈ Saff and k ∈ Z.

2. There is a bijection between Wext and the indecomposables of EASBim. They are of

the form ΩkBw where w ∈ Waff and k ∈ Z.

3.2 Diagrammatics

Notation 3.2.1. In [27] Elias defines a diagrammatic category ED and a functor

ϕ : ED → EASBim. This functor is an equivalence after considering Karoubi

envelopes. The category ED is an extension of the diagrammatic category of the

Elias-Williamson D associated to (Waff , Saff , H) described in [9], whose Karoubi

envelope was shown to be equivalent to ASBim via a functor we also call ϕ : D →

ASBim.

Each of these categories is described as a unital additive monoidal

category, generated by Frobenius algebra objects. A general discussion of this

framework for defining diagrammatic categories can be found in [28, Chapter 8].

Here, isotopy and cyclicity are enforced as relations.
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Our utilization of the diagrammatic categories will be simply to efficiently

describe morphisms between Soergel bimodules themselves.

We abusively set R to be the unit of D and the generating objects to be

Bs for s ∈ Saff , as these are the Soergel bimodules they are mapped to under ϕ.

While we will not aim to list all of the generating morphisms and relations of D,

we list a few, along with the corresponding morphism of Soergel bimodules. The

following diagrams are from [9].

Notation 3.2.2. (One Color Generating Morphisms).

end-dot deg 1 Bs → R f ⊗ g 7→ fg

start-dot deg 1 R → Bs 1 7→ 1
2
(αs ⊗ 1 + 1⊗ αs)

tri-valent vertex deg -1 BsBs → Bs 1⊗ g ⊗ 1 7→ ∂sg ⊗ 1

deg -1 Bs → BsBs 1⊗ 1 7→ 1⊗ 1⊗ 1

polynomial f deg f R → R 1 7→ f

Notation 3.2.3. (The 2mst-valent vertex). For s, t ∈ S, we have a diagram for the

isomorphism.

deg 0 BsBt . . .︸ ︷︷ ︸
mst

∼
→ BtBs . . .︸ ︷︷ ︸

mst

For Saff recall that all mst are equal to 2 or 3, so there are 4 and 6 valent vertices as

generating morphisms.

Let i ∈ S be represented by the color blue. Consider the vertical

composition of the i-colored start-dot, with the end-dot, which is the ‘barbell’:

: R → Bi(1) → R(2) (3.2.1)
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We also have multiplication by αi. The following equality holds.

αi = : R → R(2). (3.2.2)

We make use of the following relation extensively.

Lemma 3.2.4. (Polynomial forcing). Here s ∈ S is represented by the color red and

f ∈ R.

f = s(f) + ∂s(f). (3.2.3)

The category ED is extended from D by adding new generators which we

abusively call Ω and Ω−1. There are new generating morphisms and relations

added to ensure that 3.1.20 holds in ED. We will not list these as we do not use

them. We refer the reader to [27, Section 3.2] for details.

3.3 Chain complexes and Pseudocomplexes

The additive category SBim is enough to categorify the Kazhdan-Lusztig

basis of H. We want to categorify Z[v±1]-linear combinations of the Kazhdan-

Lusztig and Bott-Samelson elements of the Hecke algebra. To do so we must

work with chain complexes over SBim.

Definition 3.3.1. We define the Hecke Category, HW , associated to (W,S, h) to be

the bounded chain complex category Chb(SBim), viewed as a pre-triangulated

dg-category.

Notation 3.3.2. Given a chain complex M = (M i, di), we denote by M [k] the

homological shift of M by k. Here M [k]i =M i+k and d[k]i = di+k.
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Notation 3.3.3. We set notation for the Hom complex

Hom(A,B) =
⊕

m∈Z

Hom(A,B[m]).

We view it as a chain complex with the usual differential. It carries the structure

of a left dg-module over Hom(B,B) and a right dg-module over Hom(A,A).

Remark 3.3.4. The setting of pre-triangulated dg-categories is the one we work

with in following sections. These are sometimes referred to as dg-enhanced

triangulated categories. They are an abstraction of triangulated categories arising

as the homotopy category of chain complexes over an additive category. We refer

the reader to [33] for more. For a pre-triangulated dg-category C, its homotopy

category Ho(C) is a triangulated category.

Notation 3.3.5. In the following, to align ourselves with the conventions in the

literature, we will obscure whether we are working in the dg-category Chb(SBim)

or its triangulated homotopy category Kb(SBim) := Ho(Chb(SBim)). We will

simply refer to the category Kb(SBim), or to HW . When the dg-structure is

relevant, we will mean the category Chb(SBim). When the triangulated structure

is relevant, for example when considering a triangulated Grothendieck ring, we

will mean its homotopy category.

Definition 3.3.6. We set Hfin to be the category HW for (Wfin, Sfin, H).

Definition 3.3.7. The duality functor D extends to complexes in Hfin. Because it

is contravariant, it reverses the differentials in the complex, hence reverses the

homological grading. In terms of Soergel diagrams, it corresponds to flipping

diagrams upside-down.
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Proposition 3.3.8. Let C be an additive monoidal category, and let Kb(C) be its bounded

homotopy category, viewed as a triangulated monoidal category. Let [C]⊕ be the additive

Grothendieck ring of C, and let [Kb(C)]T be the triangulated Grothendieck ring of Kb(C).

Then we have

[C]⊕ = [Kb(C)]T . (3.3.1)

3.3.1 Pseudocomplexes. Let us describe the setup that will be relevant

in the rest of this work. We will later need to define important objects which are

not chain complexes, but pseudocomplexes. We refer the reader to [18, Chapter 4]

for more on the general setup for pseudocomplexes. We follow [27, Section 5.1]

for a restricted setting of this theory.

We set C = EASBim and we recall the element δ ∈ EndC(R) ∼=

C[x1, ..., xn, δ].

Definition 3.3.9. (Pseudocomplexes). A pseudocomplex over C is the data X =

(X i, di)i∈Z of objects X i ∈ C and morphisms di : X i → X i+1 of degree zero, such

that di+1 ◦ di ∈ HOM(X i, X i+2) · δ.

These objects are similar to, and include, ordinary chain complexes except

where the differential is not required to square to zero. Instead we only require it

to square to a multiple of δ.

Definition 3.3.10. Let X and Y be pseudocomplexes. A pseudochain map f : X →

Y is a collection f i : X i → Y i such that diY f
i − f i+1diX ∈ Hom(A,B)δ.

Definition 3.3.11. Each pseudocomplex X is equipped with a monodromy map

µX ∈ Hom(X,X(−2)[2])
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given by d2X = µX · δ. In fact, µX is a pseudochain-map. For homologically

bounded pseudocomplexes, µX is nilpotent.

Definition 3.3.12. We set Chδ(C) to be the category of pseudocomplexes, twisted

by δ, over C. The morphisms in this category are the pseudo chain maps.

Proposition 3.3.13. Let X and Y be psudocomplexes. The category Chδ(C) inherits a

monoidal structure from C, where complex X ⊗ Y and its differential are defined in the

usual way as with ordinary complexes.

Remark 3.3.14. In order for X ⊗ Y to be a pseudocomplex, it is needed that left

and right multiplication on morphisms by δ are the same, which holds because

δ is invariant under Waff and τ . Indeed, d2X⊗Y = d2X ⊗ 1 + 1 ⊗ d2Y . Now 1 ⊗

d2Y is in the ideal generated by δ acting on the right, and d2X ⊗ 1 is in the ideal

generated by δ acting in the middle (right of X , left of Y ). The left, right, and

middle multiplications by δ all agree so d2X⊗Y is right multiple of δ.

Proposition 3.3.15. Let X and Y be pseudocomplexes. Then

µX⊗Y = µX ⊗ 1 + 1⊗ µY . (3.3.2)

Definition 3.3.16. A pseudohomotopy of pseudocomplexes is a morphism h ∈

Hom(X, Y [−1]). The corresponding nulhomotopic map is dh+ hd.

Definition 3.3.17. Let I denote the ideal of Chδ(C) generated by the

nulhomotopic maps, and by the map of right mulitplication by δ. We define the

homotopy category Kδ(C) to be the quotient of Chδ(C) by I.

The usual concept of mapping cones of morphisms of chain complexes

applies in the psuedocomplex setting to pseudochain maps.
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Proposition 3.3.18. Kb
δ(C) is triangulated.

See [18] for details.

If we take the quotient of Chb
δ(C) by the ideal generated by δ, we get

ordinary chain complexes over C modulo its ideal generated by δ. We will need to

consider this later as it is not clear to us how to enhance the category of pseudo-

chain complexes into a dg-category. In the following, the dg-structure will be

relevant for our conjecture, so we must pass back to ordinary chain complexes

which may be dg-enhanced.

Definition 3.3.19. (Extended affine Hecke category). We define the extended affine

Hecke category, Hext, to be the quotient of Chδ(C) by the ideal generated by δ.

This is the same category as if we had defined EASBim by working with

the realization R = C[x1, ..., xn] in the first place, by setting δ to zero, and then

taking chain-complexes over it. Thus it may be dg-enhanced and we view it as a

dg-category.

It is still helpful to work with pseudocomplexes, rather than their images

in the quotient, as it makes their monodromy endomorphisms, µX , self-evident.

Practically we will work with these complexes without killing δ. When we say

two morphisms in this category are homotopic, we will mean up to homotopy

and the ideal of δ. However, when the dg-category structure is important to us,

we will mean ordinary complexes over C/δ, having killed δ.
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CHAPTER IV

CATEGORIFIED BRAIDS AND STANDARD GAITSGORY COMPLEX

4.1 Rouquier Complexes

In this section we discuss the complexes in Hext associated to braids in

Brext. Let ω, and fi for i ∈ Saff denote the generators of Brext as in 2.4.6.

Claim 4.1.1. The generators ω and fi of Brext, and their inverses, are categorified by the

following objects of Hext.

ω  Ω (4.1.1)

ω−1
 Ω−1 (4.1.2)

fi  Fsi :=

(
Bsi

✲ R(1)

)
(4.1.3)

f−1
i  F−1

si
:=

(
R(−1) ✲ Bsi

)
(4.1.4)

The underline in the chain complexes above indicates homological degree zero.

Proposition 4.1.2. (Rouquier [24]). There are homotopy equivalences

Fs ⊗ F−1
s ≃ R ≃ F−1

s ⊗ Fs, (4.1.5)

Fs ⊗ Ft ⊗ · · ·︸ ︷︷ ︸
mst times

≃ Ft ⊗ Fs ⊗ · · ·︸ ︷︷ ︸
mst times

(4.1.6)

for all s, t ∈ Saff .

A consequence of Lemma 3.1.20 is the following.

Proposition 4.1.3. There is an isomorphism:

Ω⊗ Fs
∼= Fτ(s) ⊗ Ω. (4.1.7)
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Definition 4.1.4. Let β ∈ Brext denote a cylindrical braid. Given a braid word

b for β, we may write β = ωlfi1fi2 · · ·fik . We define the Rouquier complex Fb

associated to b to be

Fb := Ωl ⊗ Fsi1
⊗ · · · ⊗ Fsik

. (4.1.8)

The following lemma follows from 3.1.21.

Lemma 4.1.5. Let x = ωkβ and y = ωℓγ be in Brext. There is an isomorphism as R-

bimodules:

HomKb(EASBim)(Fx, Fy) ∼=





0 if k 6= ℓ,

Rτk ⊗R HomKb(ASBim)(Fβ, Fγ) if k = ℓ.

(4.1.9)

In [27, 4.4], Elias proves the following.

Theorem 4.1.6. (Rouquier Canonicity for Brext). Let b1, b2 be braid words representing

the same braid β ∈ Brext. There exists a homotopy equivalence

ψb1,b2 : Fb1 → Fb2 .

These homotopy equivalences are compatible:

ψb1,b3 = ψb2,b3 ◦ ψb1,b2. (4.1.10a)

For any simple reflection s ∈ Saff , we have

ψb1fs,b2fs = ψb1,b2 ⊗ idFs
, (4.1.10b)

ψ
b1f

−1
s ,b2f

−1
s

= ψb1,b2 ⊗ idF−1
s
. (4.1.10c)
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The above are equalities in the homotopy category.

Proof. Let M denote the monoidal ideal of EASBim generated by idBx
for

x ∈ Waff with x 6= 1, and by positive degree polynomials f ∈ END(R). Let

v : Hext → Hext/M denote the functor which is the quotient by this ideal. Taking

the quotient by this ideal, one recovers the category Vect
C

gr ⊠ Z.

Here Vect
C

gr denotes graded vector spaces and Z denotes the category with

objects k ∈ Z and morphisms

Hom(k, l) = Cδkl.

Extending to complexes, we get a functor v : Hext → Chb(Vect
C

gr ⊠ Z).

Note that v(R) = C ⊠ 0 and v(Ωk) = C ⊠ k, and v(Bx) = 0 ⊠ 0.

The Because Fb1 and Fb2 are invertible objects in Kb(EASBim) by 4.1.5, a

homotopy equivalence between them is already determined up to scalar. The

issue is in choosing compatible scalars. The complexes Fb1 and Fb2 have a

unique copy of R(k) ⊗ Ωl[−k] where l is the winding number and k is the braid

exponent: the number of positive crossings - the number of negative crossings.

An isomorphism between them must descend to an isomorphism after taking the

quotient by M. An isomorphism exists by applying 4.1.5 and 4.1.6. We choose the

isomorphism which descends to the identity on the copy of C(k)[−k]⊠ l in v(Fb1)

and v(Fb2) S.

The theorem defines what we call a strict action of Brext on Hext.

Notation 4.1.7. We will keep the notation v : Hext → Vect
C

gr ⊠ Z. This functor will

be referred to briefly again in the following.
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4.1.1 Sign convention for Rouquier complexes. We introduce a helpful

way of understanding the sign of the differentials in Rouquier complexes from

the diagrammatics. Let P and Q be chain complexes. The typical convention for

the sign of the differential on P i ⊗Qj is dP ⊗ 1 + (−1)i ⊗ dQ. We’ll use a different,

yet isomorphic, convention for the differentials on Rouquier complexes.

Given a Rouquier complex Fb, in terms of Soergel diagrammatics, all of

its differentials are, up to sign, either a start-dot (see 3.2.2) tensored with identity

maps idBi
on the left and right, or an end-dot, also tensored with identity maps

idBi
on the left or right. For example the following diagrams may be matrix

entries of the differential.

± , ± (4.1.11)

We will use the convention where the sign on this entry of the differential

is (−1)l, where l is the number of strands to the left of the start-dot or end-dot. So,

in our example, the entries would have the following signs:

, − . (4.1.12)

We show the entries of the differential, with this sign rule, for Fb = FsFtFs,

with s being represented by red and t being represented by blue. The underline

indicates homological degree zero.
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Example 4.1.8.

FsFtFs =




BsBtBs

BsBt(1)

BsBs(1)

BtBs(1)

Bs(2)

Bt(2)

Bs(2)

R(3)−

−

−

−




4.1.2 Wakimoto Complexes.

Definition 4.1.9. Let λ ∈ Λwt. Recall the corresponding Wakimoto braid w(λ) =

yλ1
1 · · · yλn

n . We set W (λ) := Fw(λ), the Rouquier complex for this braid.

Remark 4.1.10. By Rouquier canonicity, the Wakimoto complexes give a strict

action of Λwt on Hext. In fact, the homotopy equivalences picked out by Rouquier

canonicity ensure that the Wakimoto complexes commute in the categorical

sense.

Proposition 4.1.11. Let λ, ν ∈ Λwt. Then we have canonical isomorphisms:

W (λ)⊗W (ν) ∼= W (λ+ ν) ∼= W (ν)⊗W (λ). (4.1.13)

Notation 4.1.12. We set Wi = W (ǫi), the Rouquier complex categorifiying the

Wakimoto braid yi ∈ Brext.
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4.1.3 Toroidal HOMFLY Homology. Consider the total Hochschild

cohomology functor HH∗ := R•HOM(R,−) : R -grbimod → Db(R -grmod), where

the target category is the derived category. Extending to complexes, it yields a

functor:

HH∗ : Kb(R -grbimod) → Kb(Db(Vect
C

gr)). (4.1.14)

Here, we are implicitly applying the forgetful functor

Kb(Db(R -grmod))
for
→ Kb(Db(Vect

C

gr).

Now, the target category of this functor carries 3 gradings! The homological

grading coming from Db, which we call the Hochschild grading, the homological

grading coming from Kb, and the internal grading on Vect
C

gr which is the v-

grading.

Definition 4.1.13. (HOMFLY Homology). Given an ordinary planar braid β ∈

Brfin, the HOMFLY homology complex of its closure L = β, a link in S3, is defined

to be

HHH(L) = HH∗(Fβ). (4.1.15)

The total Hochschild homology categorifies the Jones-Ocneanu trace in the

following sense:

Theorem 4.1.14. (Khovanov [41]).

1. The homology modules of the bicomplex HHH(L), up to grading shift, give an

invariant of L as a link in S3.
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2. The complex HHH(L) categorifies the HOMFLY-PT invariant. Let P (L) ∈

Z[a±1](v) denote the HOMFLY-PT invariant of L. Then

P (L) =
∑

i,j

(−1)i(−a2v2)j grdrkv HHHi,j(L). (4.1.16)

We can also apply the total Hochschild cohomology functor in the

extended affine setting. This ultimately gives us a functor

HH∗ : Kb(EASBimn) → Kb(Db(Vect
C

gr)). (4.1.17)

Conjecture 4.1.15. The functor above is ‘trace-like’ in the sense of [34].

Now we define the following.

Definition 4.1.16. Given a cylindrical braid β and its braid closure L, a link in

T×I , we define the toroidal HOMFLY-PT complex of L:

HHH(L) := HH∗(Fβ) ∈ Kb(Db(Vect
C

gr)). (4.1.18)

Conjecture 4.1.17. Up to grading shifts and isomorphism in Kb(Db(Vect
C

gr)), we

conjecture that HHH(L) is an invariant of L as a link in T 2 × I .

Remark 4.1.18. It would be interesting to demonstrate a relation between toroidal

HOMFLY homology of β and the ordinary HOMFLY homology of ♭(β).

Conjecture 4.1.19. Let β = fi1 · · · fik where i1, ..., ik ⊂ Sfin ⊂ Saff , for one of the

n copies of Sfin in Saff obtained by omitting j of Saff . We conjecture that the toroidal

HOMFLY homology complex of β and the ordinary HOMFLY homology complex of ♭(β)

are quasi-isomorphic.
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4.2 Standard Gaitsgory Complex

In [27, Section 8.1], Elias defines a pseudocomplex F over ASBim. The

complex V = ΩF is then shown to have the desired properties of the standard

Gaitsgory central object of Hext.

Proposition 4.2.1. There is a natural isomorphism of functors

F ⊗ (−) ∼= τ(−)⊗ F : EASBim → Hext, (4.2.1)

where τ is the endofunctor of ASBimn sending the generator Bs to Bτ(s). We have

τ(−) = Ω⊗ (−)⊗ Ω−1.

Therefore, the complex V = ΩF is proven to commute, in the categorical

sense, with the additive category EASBim. This is a first step to showing it is

central in Hext. Elias also shows the following.

Proposition 4.2.2. (Wakimoto Filtration). The complex V has a filtration

0 = V0 →֒ V1 →֒ · · · →֒ Vn = V.

The i-subquotient V i/V i−1 is isomorphic to the i-th Wakimoto complex Wi. This filtration

comes from a filtration of F :

0 = F0 →֒ F1 →֒ · · · →֒ Fn = F .

The i-th subquotient F i/F i−1 is isomorphic to Ω−1Wi.

Because V is a bounded pseudocomplex, it is equipped with a nilpotent

‘monodromy’ operator µ : V → V[2].
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Recall the functor v : Hext → Chb(Vect
C

gr ⊠ Z). Under this functor, we

have v(V) = V ⊠ 1, where V is the standard representation of gln, viewed as a

chain complex with a copy of C, for each weight space, in homological degrees

-(n-1) to n-1 with zero differential. Here, µ becomes the principal nilpotent

operator
∑

i ei where i ranges over the simple roots of gln and the ei are the

raising operators. The Wakimoto filtration becomes the weight filtration of V ,

and the i-th Wakimoto Wi is sent to the weight vector for ǫi.

In the following we’ll develop the notation necessary to define F .

4.2.1 Cyclic Orders and Signs. The objects in each homological degree

of F will be indecomposable Soergel bimodules BX associated to a subset X ⊂

Saff .

Definition 4.2.3. Let X ( S. Choose ℵ ∈ S \ X . This choice determines a total

order on S, where ℵ < ℵ + 1 < ℵ + 2 < . . . < ℵ − 1. Restricting this order to the

subset X , we write X = {x1 < x2 < . . . < xd}. We call such an order on X a cyclic

order. Let hX ∈ Waff denote the element sxd
· · · sx2sx1 .

Definition 4.2.4. We set ρk to be the cyclic order on Saff which starts at k.

Proposition 4.2.5. The element hX does not depend on the cyclic order on X (i.e. the

choice of ℵ). Any two reduced expressions coming from a cyclic order on X will be related

by braid relations of the form sksj = sjsk for |j − k| > 1.

Definition 4.2.6. Let X ( Saff . Suppose we have a cyclic ordering on X as in

4.2.3. We set define BX to be the Bott-Samelson bimodule BS(sxd
· · · sx1). It is

indecomposable, and isomorphic to the bimodule BhX
.

The definition of BX above depends on the choice of cyclic order. Given

two cyclic orders on X , we have two reduced expressions, h1, and h2, for hX ,
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hence two Bott-Samelson bimodules BS(h1) and BS(h2). They both deserve to be

called BX . We now fix a family of isomorphisms rex(h1, h2) : BS(h1) → BS(h2)

which are compatible like in 4.1.10a. We will use these different constructions to

canonically identify these different constructions of BX .

Until these issues are settled, we use the following notation to

disambiguate different constructions of BX . For k /∈ X , if we use the cyclic order

ρk to obtain a reduced expression hX for hX , then we write B
(k)
X for BS(hX).

Because these two reduced expressions are related only by braid moves of

the form sisj = sjsi, the Soergel diagram making them isomorphic will involve

only involve 4-valent vertices from 3.2.2.

Definition 4.2.7. (Signed Rex Move). Let X ( Saff . Given two cyclic orders of

X , we have two isomorphic Bott-Samelson bimodules BS(h1) and BS(h2). Let

d : BS(h1) → BS(h2) be any diagram built from the 4-valent vertices, making

them isomorphic. Let m be the number of vertices in the Soergel diagram for this

isomorphism. We defined the signed rex move to be:

rex := (−1)md : BS(h1) → BS(h2).

It is independent of the choice of diagram d.

Example 4.2.8. Let n = 8 and let X = 2, 3, 4, 6 ⊂ Saff = Z/8Z. There are two

distinct cyclic orders 2346 and 6234. Below we draw the signed rex move: rex :

BS(2345) → BS(6234). Here 2 is represented by green, 3 by blue, 4 by red, and 6

by pink.

rex = (−1)3

 

 

(4.2.2)
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Now that we are able to switch reduced expressions for hX at will, we can

pick our favorite to induce sign conventions on morphisms.

Definition 4.2.9. Let X, Y ( Saff with Y = X ∪ {i}. Choose k /∈ Y and give

both X and Y the cyclic order induced from ρk. We set ∀Y
X : B

(k)
X → B

(k)
Y (1) and

AX
Y : B

(k)
Y → B

(k)
X (1) to be the signed dot maps discussed in 4.1.1.

Lemma 4.2.10. For k, l /∈ Y , let ∀(k) and A(k) (resp. ∀(l) and A(l) ) be the maps defined

above using the cyclic order ρk (resp. ρl). Then the following diagrams commute.

B
(k)
Y

rex✲ B
(l)
Y

B
(k)
X

A(k)

❄
rex✲ B

(l)
X

A(l)

❄
,

B
(k)
Y

rex✲ B
(l)
Y

B
(k)
X

∀(k)
✻

rex✲ B
(l)
X

∀(l)
✻
. (4.2.3)

Checking this is an easy computation. Given the above lemma, Definition

4.2.9 defines a map BX → BY which is independent of the choice of cyclic orders,

up to canonical identifications by the map in Definition 4.2.7.

4.2.2 The Pseudocomplex F .

Definition 4.2.11. For k ∈ Z let Pk denote the following set of subsets of Saff :

Pk = {X ( Saff | |X| = m where 0 ≤ m ≤ n− 1− |k| and n− 1− k −m is even}.

(4.2.4)

So, for example, P0 consists of all proper subsets of S whose parity agrees

with n − 1, while Pn−1 = P1−n = {∅}, and Pk is empty for |k| ≥ n. Note that

Pk = P−k.

Definition 4.2.12. Let F = (F i, di) denote the precomplex with

Fk =
⊕

X∈Pk

BX(k). (4.2.5)
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Thus Pk indexes the summands in homological degree k. Let X in Pi, and let

di : F i → F i+1. Let diBX
denote the column of di when restricted to the direct

summand BX(i)
⊕
⊂ F i. Then

diBX
=

⊕

i/∈X
Xi∈Pk+1

∀Xi
X ⊕

⊕

j∈X
X\j∈Pk+1

A
X\j
X . (4.2.6)

Remark 4.2.13. We often refer to a summand of F by the index X , rather than

specifying a pair (X, k) where X ∈ Pk. Implicitly, whenever we refer to X as

indexing a summand of F , there is implicitly some k such that X ∈ Pk. We treat

as distinct summands X ∈ Pk and X ∈ Pl for k 6= l.

It is not obvious that F is a pseudocomplex, i.e. that di+1 ◦ di ∈

HOM(F i,F i+1)δ. A priori, the entries of di+1 ◦ di will involve middle

multiplication by simple roots αj like

,

and middle ‘broken-dot-maps’ like:

.

Elias proves that after you exploit (3.2.4) to move all the polynomials to the right,

that the broken-dots cancel out, and that di+1 ◦ di ∈ HOM(F i,F i+1)δ.

Proposition 4.2.14. [27, Proposition 8.25] The complex F is a well-defined

pseudocomplex, and a true complex after setting δ = 0. It is concentrated in homological

degrees −(n− 1) through (n− 1).
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Elias also proves that F has the desired properties of the standard

Gaitsgory complex, which include the following.

Proposition 4.2.15. The pseudocomplex F is self-dual, i.e. D(F) = F . It is also perverse

[28, Definition 19.5]. Hence, V has these properties.

4.2.3 Examples.

4.2.3.1 n=1. We haven’t discussed the category Hext for n = 1. We define

it as follows.

Definition 4.2.16. We define the extended affine Hecke category, for n=1, to be

the category Vect
C

gr ⊠ (Z). Here the category Z is the additive monoidal category

generated by an invertible object Ω, with grading shifts (i), and with graded hom

spaces

HomZ(Ω
k,Ωk) =





0 if k 6= l,

C[x1, δ] else,

where x is in degree 2.

Let R = C[x1, δ]. We can think of Ω as being the twisted bimodule Rτ

where τ(x1) = x1 − δ. Then, as an R-bimodule, we have Hom(Ωk,Ωk) = Rτk .

We should think of this category as categorifying cylindrical braids on a

single strand. When there is one strand, there can be no crossings, only winding.

In this setting V = Ω. The nilpotent monodromy operator µ is the zero

map, as V is concentrated in homological degree 0. We also have W1 = Ω. The

map χ : V → V(2) of chapter V is simply right multiplication by x1.

4.2.3.2 n=2. For n = 2 , we have
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V = Ω



R(−1)

B1

B0

R(1)



. (4.2.7)

Now we observe its Wakimoto filtration. It has

W1 = Ω




B1

R(1)




(4.2.8)

as a subcomplex. This is the Wakimoto complex W ((1, 0)), which is the Rouquier

complex for the braid y1 = ωf1. The quotient by this complex is

W2 = Ω



R(−1)

B0




(4.2.9)

which is the Wakimoto complex W ((0, 1)), the Rouquier complex for the braid

y2 = ωf−1
0 . The nilpotent monodromy operator µ : V → V[2](−2) is

µ = idΩ⊗




R(−1)

B1

B0

R(1)

R(−3)

B1(−2)

B0(−2)

R(−1)

idR




. (4.2.10)
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Oberve that d2 = δ · µ.

Now we give the operator χ : V → V(2). It is given in homological degree

-1 by χ−1 = x2, i.e. multiplication by x2, and in homological degree 1 by χ1 = x1.

In homological degree 0 it is given by

χ0 = idΩ ⊗




x1

0 x2


 . (4.2.11)

It is a short-exercise in polynomial forcing (3.2.4) to check this is a pseudochain

map.

72



4.2.3.3 n=3. For n = 3, we have

V = Ω




R(−2)

B2(−1)

B1(−1)

B0(−1)

R

B21

B10

B02 B2(1)

B1(1)

B0(1)

R(2)

−

−

−

−

−

−




.

(4.2.12)

Here is the Wakimoto filtration:
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W1 = ΩF2F1 =




B21

B2(1)

B1(1) R(2)




(4.2.13)

W2 = ΩF−1
0 F2 =




B2(−1)

R

B02

B0(1)




(4.2.14)

W3 = ΩF−1
1 F−1

0 =




R(−2) B1(−1)

B0(−1)

B10




(4.2.15)

Now we describe χ : V → V(2) Here χ−2 = x3. In homological degree −1 it is

given by

χ−1 = idΩ⊗




x2

0 x3 0

0 0 x3



. (4.2.16)

In homological degree 0 it is given by

χ0 = idΩ ⊗




x1 − − −

0 x2 0 0

0 0 x2 −

0 0 0 x3




. (4.2.17)
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In homological degree +1 it is given by

χ+1 = idΩ⊗




x1 0 0

0 x1

0 0 x2



. (4.2.18)

Lastly in homological degree 2, χ2 = x1.

4.2.4 Wakimoto filtration. We now discuss some features of Elias’s

proof of Proposition 4.2.2. We observe that the Wakimoto braid yi = ωh̃Xi
, where

Xi = S \ {i − 1} and h̃Xi
is a negative-positive lift of the element hXi

∈ Waff . For

any subset X ⊂ Xi, the subexpression of hXi
corresponding to this subset is hX .

Let’s ignore the copies of Ω in V and the Wakimoto complexes Wi. Then

we are dealing with the filtration of the complex F and Rouquier complexes for

the negative-positive lifts of Coxeter elements hXi
. We call this Rouquier complex

Yi. Note that Yi = Ω−1Wi. Observe that Yi is a cube complex with vertices

BX for X ⊂ Xi. Recall our sign convention for the differential on Rouqiuer

complexes. By this convention, the differential of a summand in Yi agrees with

the corresponding differential of that summand of F . Now all that remains

to prove that F is filtered with subquotients Yi is to prove the combinatorial

statement the summands
∐
Pk of F can be paritioned into cubes Yi, and that

there are no nonzero differentials from the cube Yi to the cube Yj when j > i.

Let Pk as in 4.2.11. We set

Um =
⊔

k

{X ∈ Pk | k = n− 1− |X| − 2m}. (4.2.19)
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Note that
⊔

m Um gives a partition of P , where m ranges from 0 to n − 1. As an

example, note that U0 consists of all summands BX that sit in homological degree

n− 1− |X|.

Notation 4.2.17. By abuse of notation, we also let Yk denote the set of subsets

X ⊂ Saff (or more precisely pairs (X, k) with X ∈ Pk but we shorten to just X ,

see Remark 4.2.13) for which BX is a summand of Yk. In each of these subsets,

k − 1 6∈ X . We define it by setting Yk ∩ Um to consists of X ∈ Um for which

k − 1 /∈ X and {0, 1, ..., k − 2} ∩X has size k − 1−m.

We argue these sets Yk ∩ Um are disjoint. Suppose X ∈ Yk ∩ Yl ∩ Um with

k < l. Then X ∩ {0, 1, ..., l − 2} must have size l − 1 −m, and X ∩ {0, 1, ..., k − 2}

has size k − 1 −m. Thus we must have X ∩ {k − 1, k, ..., l − 2} has size l − k. But

then k − 1 ∈ X , a contradiction.

We refer the reader to [27, Theorem 8.40] for the rest of the proof

concerning the differentials.

We make the following remark.

Remark 4.2.18. Earlier (see Remark 4.2.13) we mentioned that given X ⊂ Saff ,

one can specify which summand of F we are speaking of by indicating the

homological degree k, i.e. X ∈ Pk. We note now that we may also specify the

summand by indicating which layer l of the Wakimoto filtration it lies in. In other

words, saying X ∈ Yl uniquely determines its homological degree k.
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CHAPTER V

THE MAP χ

5.1 Main goal and theorem

Notation 5.1.1. We set χ : F → F(2) to be a linear map, and χi
X,Y : BX → BY (2)

where BX and BY are both summands of F in homological degree i. These are

the matrix entries of χi : F i → F i(2).

We eventually want χ to have these three properties:

1. χi
X,X =right multiplication by xl when BX ∈ Yl.

2. χi
X,Y = 0 when Y 6= X , BX ∈ Yl, BY ∈ Yl′ , and l′ ≥ l.

3. χ is a pseudochain map.

We reiterate Remarks 4.2.13 and 4.2.18 from the previous chapter.

In this chapter, we will first state our theorem, providing χ satisfying 1− 3.

When we prove the theorem, we will derive conditions equivalent to 3 given 1

and 2.

Notation 5.1.2. – BX - The Bott-Samelson bimodule associated to an ordering

of a subset X ⊂ S. It is indecomposable.

– Xk := X ∪ {k}

– Xk,j := X ∪ {k, j}

– Xk,j,i := X ∪ {k, j, i}

– X\i := X \ {i}

– X\i\j := X \ {i, j}
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– X\i\j\k := X \ {i, j, k}

– Xk\j := (X ∪ {k}) \ {j}

– Xk,j\i := (X ∪ {k, j}) \ {i}

– Xk\j\i := (X ∪ {k}) \ {i, j}

– ∀Xk

X The signed start dot map BX → BXk
(2). These are some of the matrix

entries of the differential of F .

– A
X\k

X The signed final dot map BX → BX\k
. These are the rest of the matrix

entries of the differential of F .

– Yl - the l-th layer of the Wakimoto filtration, combinatorially defined as in

Notation 4.2.17.

5.1.1 Double-dot maps. The matrix entries χi
X,Y : BX → BY (2) are

degree two maps between indecomposable Soergel bimodules. The summands

of F i are Bott-Samelson bimodules BX for a Coxeter element of the parabolic

subgroup of Waff given by X ⊂ S. The only degree two maps between these,

up to scalar, are double-dot maps. These are compositions of a start/end dot,

(possibly) a (signed) rex move (see 4.2.7), and another start/end dot. We define

these double-dot maps, and give a sign convention for them so that they will play

well with the signs on the differential in F .

Definition 5.1.3. (Signed double-dot maps). Let X ⊂ S and BX the

indecomposable Soergel bimodule given by a cyclic ordering of X .

1. (Add two). Let k, j ∈ S − X and assume Xk,j 6= S. Choose t /∈ Xk,j, and

use the cyclic order starting at t, ρt, for both X and Xk,j . Assume without
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loss of generality that k > j in that cyclic order. In this cyclic order we

write Xk,j = X1kX2jX3 and X = X1X2X3. Such a cyclic order exists up to

possibly reversing the roles of j and k. With these cyclic orders, the signed

double-dot map BX → BXk,j
(2) is

 

L
Xk,j ,(t)
X = (−1)|X2|+1

X1

k

X2

j

X3 .

Note it depends on t.

2. (Remove two). Let k, j ∈ X . Choose t /∈ X , and use the cyclic order ρt.

Assume without loss of generality that k > j in this cyclic order. We write

X = X1kX2jX3 and X\k\j = X1X2X3 according to this cyclic order. . With

these cyclic orders, the signed double dot map BX → BX\k\j
(2) is

 

L
X\k\j ,(t)

X = (−1)|X2|+1

X1 k X2 j X3 .

3. (Add and Remove). Let k ∈ S − X and j ∈ X . Let X have the cyclic order

X1jX2 which starts at k, and let Xk\j have the cyclic order X2kX1, which
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starts at j. The signed double dot map BX → BXk\j
(2) is

 

L
Xk\j

X = (−1)|X1|+|X2|+|X1|·|X2|

X1 j X2

k

.

We note that |X1|+ |X2|+ |X1| · |X2| is even if and only if |X1| and |X2| are

both even.

Lemma 5.1.4. 1. Let t, t′ /∈ Xk,j , and t < j < t′ < k < t in the circle representing

Saff . Then the double-start-dot L
Xk,j ,(t)
X is equal to −L

Xk,j ,(t
′)

X up to canonical

isomorphisms of the source and target via 4.2.7.

2. Similarly, let t, t′ /∈ X . Let k, j ∈ X t < j < t′ < k < t in the circle

representing Saff . Then the double-end-dot L
X\k\j ,(t)

X is equal to −L
X\k\j ,(t

′)

X up to

canonical isomorphisms of the source and target via 4.2.7.

Proof. This is left the reader, but we do a very similar calculation below in

Example 5.4.10.

5.1.2 Criterion for χ and main theorem. Recall that our simple

reflections are parametrized by Saff = Z/nZ. However our choice of Wakimoto

filtration breaks the rotational symmetry of Saff . In the rest of this chapter, we will

parametrize the simple reflections by {0, ..., n− 1}.

Definition 5.1.5. Let BX be a summand of F i which lies in the l-th layer of the

Wakimoto filtration, Yl. We define the block of X over l− 1, A(X, l), to be the largest
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contiguous subset {l, l + 1, ..., l + m} ⊂ X starting at l. We reiterate that the

sequence l, l + 1, ..., l +m does not cross from n− 1 to 0. If l /∈ X , then A(X, l) = ∅.

We set ξ(X, l) = |A(X, l)|+ 1.

We now state the main theorem of this chapter.

Theorem 5.1.6. There exists a unique pseudochain-map χ : F → F(2), upper-

triangular with respect to the Wakimoto filtration of F , which lifts right multiplication

by xi on the i-th graded component of the associated graded. The matrix entries χi
Z,X :

BZ → BX of the signed double-dot maps are determined by the following criterion.

Let BX be a summand of F in Yl, the l-th layer of the Wakimoto filtration

– (C1). If both j, k ≥ l and at least one of j, k are in A(X, l), then we have

χi
X\j\k ,X

= L
X,(l−1)
X\j\k

.

Note we are using the cyclic order ρl−1. Without loss of generality we assume j <

k. Then, by applying Lemmas 5.2.2 and 5.2.4 we have that BX\j\k
is in Yj+1, so this

matrix entry of χi goes from the j + 1-th layer Yj+1 to the l-th layer Yl.

In all other cases, we have

χi
X\j\k ,X

= 0.

– (C2). If j ∈ A(X, l) and k ≤ l − 1, then

χi
Xk\j ,X

= LX
Xk\j

.

By applying Lemmas 5.2.2 and 5.2.4 we have that BXk\j
is in Yj+1, so this matrix

entry of χi goes from the j + 1-th layer Yj+1 to the l-th layer Yl.
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In all other cases, we have

χi
Xk\j ,X

= 0.

– (C3). For all j, k ∈ S \X , we have

χi
Xj,k ,X

= 0.

Notation 5.1.7. Given the signed double-dot maps, from now on we abusively set

χi
X,Y to be the coefficient of the signed double-dot map in the map BX → BY (2),

rather than the map itself. We also remove the superscripts (t) from the signed

double-start-dot L
Xk,j ,(t)
X and the signed double-end-dot L

X\k\j ,(t)

X . We instead take

t to be l − 1 where l is the Wakimoto layer of the target and source respectively.

Remark 5.1.8. In the proof that χ is unique, we’ll be studying a general linear map

χ : F → F(2) defined as above but with different coefficients. To make sense of

the coefficient χi
X,Y for a double-end-dot, we will need to specify a cyclic order.

We use l − 1 where l is the Wakimoto layer of the source. However, we’ll show

this coefficient must be zero anyway, so the cyclic order, and hence the sign of the

coefficient (see lemma 5.1.4), is irrelevant.

5.2 More on the Wakimoto filtration of F .

We expand on properties of the Wakimoto filtration of F .

Proposition 5.2.1. The summand BX in homological degree i is in Yl if and only if:

1. l − 1 /∈ X .

2. |X ∩ {0, ..., l − 2}| = l − 1 + i−n+1+|X|
2

.
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Proof. Recall the set Um (see 4.2.19) where Um =
⊔

i{X ∈ P i | i = n−1−|X|−2m}.

We defined the Wakimoto filtration layer Yl such that Yl ∩ Um consists of X ∈ Um

such that |X ∩ {0, ..., l − 2}| = l − 1−m. If X ∈ P i then m = −( i−n+1+|X|
2

).

Lemma 5.2.2. (Movement in the Wakimoto filtration 1). Let BX be a summand of F in

Yl in homological degree i. For Z ⊂ S which differs from X by one element, the following

accounts for the layer of the Wakimoto filtration that the summand BZ in homological

degree i− 1 sits in.

1. Let j ∈ X , and BX\j ∈ F i−1. Then

BX\j
∈





Yl if j < l − 1

Yj+1 if j ∈ A(X, l)

Yl+ξ(X,l) if j > l + ξ(X, l)− 2

2. Let j ∈ S −X , and BXj
∈ F i−1. Then

BXj
∈





Yl if j > l − 1

Yl+ξ(X,l) if j ≤ l − 1

Proof. We use proposition 5.2.1 extensively in this proof.

Proof of 1: If j < l − 1, then

|X\j ∩ {0, ..., l− 2}| = |X ∩ {0, ..., l− 2}| − 1 (5.2.1)

= l − 1 +
i− n + 1 + |X|

2
− 1 (5.2.2)

= l − 1 +
(i− 1)− n+ 1 + |X\j |

2
. (5.2.3)
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Hence BX\j
is in Yl. If j ∈ A(X, l), then

|X\j ∩ {0, ..., (j + 1)− 2}| = |X ∩ {0, ..., l − 2}|+ (j − l) (5.2.4)

= l − 1 +
i− n+ 1 + |X|

2
+ (j − l) (5.2.5)

= j − 1 +
i− n + 1 + |X|

2
+ 1− 1 (5.2.6)

= (j + 1)− 1 +
i− n + 1 + |X| − 2

2
(5.2.7)

= (j + 1)− 1 +
(i− 1)− n+ 1 + |X\j|

2
. (5.2.8)

Hence BX\j
is in Yj+1. Finally, if j > l + ξ(X, l)− 2, then

|X\j ∩ {0, ..., l + ξ(X, l)− 2}| = |X ∩ {0, ..., l − 2}|+ (ξ(X, l)− 1) (5.2.9)

= (l + ξ(X, l))− 1 +
i− n + 1 + |X|

2
− 1 (5.2.10)

= (l + ξ(X, l))− 1 +
(i− 1)− n+ 1 + |X\j |

2
. (5.2.11)

Hence BX\j
is in Yl+ξ(X,l).

Proof of 2: If j > l − 1, then

|Xj ∩ {0, ..., l − 2}| = |X ∩ {0, ..., l − 2}| (5.2.12)

= l − 1 +
i− n+ 1 + |X|+ (1− 1)

2
(5.2.13)

= l − 1 +
(i− 1)− n + 1 + |Xj|

2
. (5.2.14)

84



Hence BXj
is in Yl. If j ≤ l − 1, then

|Xj ∩ {0, ..., l + ξ(X, l)− 2}| = |X ∩ {0, ..., l − 2}|+ 1 + (ξ(X, l)− 1) (5.2.15)

= (l + ξ(X, l))− 1 +
i− n + 1 + |X|

2
(5.2.16)

= (l + ξ(X, l))− 1 +
i− n + 1 + |X|+ (1− 1)

2

(5.2.17)

= (l + ξ(X, l))− 1 +
(i− 1)− n+ 1 + |Xj|

2
. (5.2.18)

Hence BXj
is in Yl+ξ(X,l).

We can apply a similar analysis to determine the layer of BZ in degree i+1,

but to do se we need the block of X below l − 1 instead.

Definition 5.2.3. Let BX ∈ F i and in Yl. We define the block of X under l − 1,

C(X, l), to be the largest contiguous subset {l − m, l − m + 1, ..., l − 2} ⊂ X

ending at l − 2. We reiterate that this subset does not cross from n− 1 to 0. We set

γ(X, l) = |C(X, l)| − 1. Note that l ≥ 1. When l = 1, then C(X, l) must be the

empty set.

Lemma 5.2.4. (Movement in the Wakimoto filtration 2). Let BX be a summand of F in

Yl in homological degree i. For Z ⊂ S which differs from X by one element, the following

accounts for the layer of the Wakimoto filtration that the summand BZ in homological

degree i+ 1 sits in.
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1. Let j ∈ X , and BX\j
∈ F i+1. Then

BX\j ∈





Yl if j > l − 2

Yj+1 if j ∈ C(X, l)

Yl−2−γ(X,l) if j < l − 2− γ(X, l)

2. Let j ∈ S −X , and BXj
∈ F i+1. Then

BXj
∈





Yl if j < l − 1

Yl−2−γ(X,l) else

Proof. Again, we use proposition 5.2.1 extensively in this proof.

Proof of 1: If j > l − 2, then

|X\j ∩ {0, ..., l − 2}| = |X ∩ {0, ..., l − 2}| (5.2.19)

= l − 1 +
i− n+ 1 + |X|

2
(5.2.20)

= l − 1 +
i− n+ 1 + |X|+ (1− 1)

2
(5.2.21)

= l − 1 +
(i+ 1)− n+ 1 + |X\j|

2
. (5.2.22)
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Hence BX\j
is in Yl. If j ∈ C(X, l), then

|X\j ∩ {0, ..., (j + 1)− 2} = |X ∩ {0, ..., l − 2}| − (l − 1− j) (5.2.23)

= l − 1 +
i− n+ 1 + |X|

2
− (l − 1− j) (5.2.24)

= (j + 1)− 1 +
i− n+ 1 + |X|+ (1− 1)

2
(5.2.25)

= (j + 1)− 1 +
(i+ 1)− n + 1 + |X\j|

2
. (5.2.26)

Hence BX\j
is in Yj+1. If j < l − 2− γ(X, l), then

|X\j ∩ {0, ..., (l − 2− γ(X, l))− 2} = |X ∩ {0, ..., l− 2}| − 1− (γ(X, l) + 1)

(5.2.27)

= l − 1 +
i− n+ 1 + |X|

2
− 1− (γ(X, l) + 1)

(5.2.28)

= (l − 2− γ(X, l))− 1 +
i− n+ 1 + |X|+ (1− 1)

2

(5.2.29)

= (l − 2− γ(X, l))− 1 +
(i+ 1)− n+ 1 + |X\j |

2
.

(5.2.30)

Hence BX\j
is in Yl−2−γ(X,l).
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Proof of 2: If j < l − 1, then

|Xj ∩ {0, ..., l− 2}| = |X ∩ {0, ..., l− 2}|+ 1 (5.2.31)

= l − 1 +
i− n + 1 + |X|

2
+ 1 (5.2.32)

= l − 1 +
i− n + 1 + |X|+ 2

2
(5.2.33)

= l − 1 +
(i+ 1)− n+ 1 + |Xj |

2
. (5.2.34)

Hence BXj
is in Yl. If j ≥ l − 1, then

|Xj ∩ {0, ..., (l− 2− γ(X, l))− 2}| = |X ∩ {0, ..., l − 2}| − (γ(X, l) + 1) (5.2.35)

= l − 1 +
i− n+ 1 + |X|

2
− (γ(X, l) + 1) + (1− 1)

(5.2.36)

= (l − 2− γ(X, l))− 1 +
i− n + 1 + |X|

2
+ 1

(5.2.37)

= (l − 2− γ(X, l))− 1 +
i− n + 1 + |X|+ 2

2

(5.2.38)

= (l − 2− γ(X, l))− 1 +
(i+ 1)− n + 1 + |Xj |

2
.

(5.2.39)

Hence BXj
is in Yl−2−γ(X,l).

5.3 Commutative squares.

In order for χ to be a pseudochain map, χ must commute with the

differential of F modulo δ. Thinking in terms of the matrix entries of χ, this
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reduces to the observation that the following types of squares must commute

modulo δ.

BX\j
⊕
(⊕

k∈X\j
BX\k

)
⊕
(⊕

k∈S−X BXk

) di−1
✲ BX

BX\j

χi−1 ✻

di−1
✲ BX ⊕

(⊕
k∈X\j

BX\j\k

)
⊕
(⊕

k∈S−X BXk\j

)
χi
✻

(5.3.1)

BXj
⊕
(⊕

k∈X BX\k

)
⊕
(⊕

k∈S−Xj
BXk

)
di−1

✲ BX

BXj

χi−1 ✻

di−1
✲ BX ⊕

(⊕
k∈X BXj\k

)
⊕
(⊕

k∈S−Xj
BXj,k

)
χi
✻

(5.3.2)

BX\i
⊕ BX\j

⊕ BX\k

di−1
✲ BX

BX\i\j\k

χi−1
✻

di−1
✲ BX\j\k

⊕ BX\i\k
⊕ BX\i\j

χi
✻

(5.3.3)

BX\i
⊕BX\j

⊕ BXk

di−1
✲ BX

BXk\i\j

χi−1
✻

di−1
✲ BXk\i

⊕ BXk\j
⊕BX\i\j

χi
✻

(5.3.4)

BXi
⊕ BXj

⊕BX\k

di−1
✲ BX

BXi,j\k

χi−1
✻

di−1
✲ BXj\k

⊕BXi\k
⊕BXi,j

χi
✻

(5.3.5)
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BXi
⊕ BXj

⊕BXk

di−1
✲ BX

BXi,j,k

χi−1
✻

di−1
✲ BXj,k

⊕BXi,k
⊕ BXi,j

χi
✻

(5.3.6)

The commutativity of these six squares give several equations which must

hold modulo δ.

Now, let BX ∈ Yl and set ξ = ξ(X, l). We also set A = A(X, l).

The square (5.3.1) gives the following equations in Hom(BX\j
, BX(3)). If

j ∈ {0, 1, ..., l− 2}, then BX\j
∈ Yl by Lemma 5.2.2, so we get the equation

∀X
X\j

xl +
∑

k∈X\j

χi−1
X\j ,X\k

∀X
X\k

L
X\k

X\j
+
∑

k∈S−X

χi−1
X\j ,Xk

AX
Xk
LXk

X\j

=∀X
X\j

xl +
∑

k∈X\j

χi
X\j\k,X

LX
X\j\k

A
X\j\k
X\j

+
∑

k∈S−X

χi
Xk\j ,X

LX
Xk\j

∀
Xk\j

X\j
.

(5.3.7a)

If j ∈ A, then BX\j
∈ Yj+1 so we get the equation

∀X
X\j

xj+1 +
∑

k∈X\j

χi−1
X\j ,X\k

∀X
X\k

L
X\k

X\j
+
∑

k∈S−X

χi−1
X\j ,Xk

AX
Xk
LXk

X\j

=∀X
X\j

xl +
∑

k∈X\j

χi
X\j\k ,X

LX
X\j\k

A
X\j\k
X\j

+
∑

k∈S−X

χi
Xk\j ,X

LX
Xk\j

∀
Xk\j

X\j
.

(5.3.7b)

If j > l + ξ − 2, then BX\j
∈ Yl+ξ so we get the equation

∀X
X\j

xl+ξ +
∑

k∈X\j

χi−1
X\j ,X\k

∀X
X\k

L
X\k

X\j
+
∑

k∈S−X

χi−1
X\j ,Xk

AX
Xk
LXk

X\j

=∀X
X\j

xl +
∑

k∈X\j

χi
X\j\k,X

LX
X\j\k

A
X\j\k
X\j

+
∑

k∈S−X

χi
Xk\j ,X

LX
Xk\j

∀
Xk\j

X\j
.

(5.3.7c)
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Note that these three equations only differ by the first term, which

involves a diagonal entry of χi−1, and thus depends on where BX\j
sits in the

Wakimoto filtration.

The square (5.3.2) gives the following equations in Hom(BXj
, BX(3)). If

j 6∈ {0, 1, ..., l− 1}, then BXj
∈ Yl, so we get the equation

AX
Xj
xl +

∑

k∈X

χi−1
Xj ,X\k

∀X
X\k

L
X\k

Xj
+

∑

k∈S−Xj

χi−1AX
Xk
LXk

Xj

=AX
Xj
xl +

∑

k∈X

χi
Xj\k ,X

LX
Xj\k

A
Xj\k

Xj
+

∑

k∈S−Xj

χi
Xj,k ,X

LX
Xj,k

∀
Xj,k

Xj
.

(5.3.8a)

If j ∈ {0, 1, ..., l − 1}, then BXj
∈ Yl+ξ, so we get the equation

AX
Xj
xl+ξ +

∑

k∈X

χi−1
Xj ,X\k

∀X
X\k

L
X\k

Xj
+

∑

k∈S−Xj

χi−1AX
Xk
LXk

Xj

=AX
Xj
xl +

∑

k∈X

χi
Xj\k ,X

LX
Xj\k

A
Xj\k

Xj
+

∑

k∈S−Xj

χi
Xj,k,X

LX
Xj,k

∀
Xj,k

Xj
.

(5.3.8b)

Again, these equations only differ by the first term.

The next four squares only involve off-diagonal entries of χ, so we do not

have to break them into cases like we did with the squares above.

The square (5.3.3) gives the equation

χi−1
X\i\j\k ,X\i

∀X
X\i
L
X\i

X\i\j\k
+ χi−1

X\i\j\k ,X\j
∀X
X\j

L
X\j

X\i\j\k
+ χi−1

X\i\j\k,X\k
∀X
X\k

L
X\k

X\i\j\k

=χi
X\j\k ,X

LX
X\j\k

∀
X\j\k

X\i\j\k
+ χi

X\i\k,X
LX
X\i\k

∀
X\i\k

X\i\j\k
+ χi

X\i\j ,X
LX
X\i\j

∀
X\i\j

X\i\j\k
.

(5.3.9)
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The square (5.3.4) gives the equation

χi−1
Xk\i\j ,X\i

∀X
X\i
L
X\i

Xk\i\j
+ χi−1

Xk\i\j ,X\j
∀X
X\j

L
X\j

Xk\i\j
+ χi−1

Xk\i\j ,Xk
AX

Xk
LXk

Xk\i\j

=χi
Xk\i,X

LX
Xk\i

∀
Xk\i

Xk\i\j
+ χi

Xk\j ,X
LX
Xk\j

∀
Xk\j

Xk\i\j
+ χi

X\i\j ,X
LX
X\i\j

A
X\i\j

Xk\i\j
.

(5.3.10)

The square (5.3.5) gives the equation

χi−1
Xi,j\k,Xi

AX
Xi
LXi

Xi,j\k
+ χi−1

Xi,j\k ,Xj
AX

Xj
L
Xj

Xi,j\k
+ χi−1

Xi,j\k ,X\k
∀X
X\k

L
X\k

Xi,j\k

=χi
Xj\k,X

LX
Xj\k

A
Xj\k

Xi,j\k
+ χi

Xi\k,X
LX
Xi\k

A
Xi\k

Xi,j\k
+ χi

Xi,j ,X
LX
Xi,j

∀
Xi,j

Xi,j\k
.

(5.3.11)

The square (5.3.6) gives the equation

χi−1
Xi,j,k,Xi

AX
Xi
LXi

Xi,j,k
+ χi−1

Xi,j,k ,Xj
AX

Xj
L
Xj

Xi,j,k
+ χi−1

Xi,j,k,Xk
AX

Xk
LXk

Xi,j,k

=χi
Xj,k,X

LX
Xj,k

A
Xj,k

Xi,j,k
+ χi

Xi,k,X
LX
Xi,k

A
Xi,k

Xi,j,k
+ χi

Xi,j ,X
LX
Xi,j

A
Xi,j

Xi,j,k
.

(5.3.12)

5.4 Solving for the coefficients of χ.

In order to solve the equations of the previous section to get recursive

formulas for the coefficients χi
X,Y we will need the following lemma.

Lemma 5.4.1. (Pushing Polynomials). Let l − 1 6∈ X , set ξ = ξ(X, l), and set A =

A(X, l). For any cyclic order on X , let xLi and xRi denote left and right multiplication by

xi on BX respectively. The following equations hold modulo δ.

xRl+ξ − xRl =


 ∑

k∈S−X,k 6=l+ξ−1

AX
Xk

∀Xk

X +
∑

k∈X,k/∈A

∀X
X\k

A
X\k

X


 . (5.4.1a)

xRl − xRl+ξ =

(
AX

XX
l+ξ−1

∀
Xl+ξ−1

X +

l+ξ−2∑

k=l

∀X
X\k

A
X\k

X

)
. (5.4.1b)
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Proof. Since l−1 /∈ X , we give X the cyclic order starting at l−1, and consider BX

to be the corresponding Bott-Samelson bimodule. By the proof of [27, Theorem

14.7], we have that, modulo δ,

xLl+ξ−1 − xRl+ξ = −

(
∑

k∈S−X,k 6=l+ξ−1

AX
Xk

∀Xk

X +
∑

k∈X,k 6=l+ξ−1

∀X
X\k

A
X\k

X

)
. (5.4.2)

Using the polynomial forcing relation (3.2.4) repeatedly to move the left

multiplication by xl+ξ−1 competely to the right by introducing broken lines, we

get the equation

xLl+ξ−1 = −

(
l+ξ−2∑

k=l

∀X
X\k

A
X\k

X

)
+ xRl . (5.4.3)

Substituting this into equation 5.4.2 gives the equation:

xRl − xRl+ξ = −


 ∑

k∈S−X,k 6=l+ξ−1

AX
Xk

∀Xk

X +
∑

k∈X,k/∈A

∀X
X\k

A
X\k

X


 . (5.4.4)

Negating the whole equation gives us equation 5.4.1a. Note that,

∑

k∈S\X

AX
Xk

∀Xk

X +
∑

k∈X

∀X
X\k

A
X\k

X = 0 mod δ (5.4.5)

This follows from Elias’s proof (cf. [27, Proposition 8.25]) that F is a

pseudocomplex. Subtracting this from 5.4.1a gives the equation:

xRl+ξ − xRl = −

(
AX

XX
l+ξ−1

∀
Xl+ξ−1

X +

l+ξ−2∑

k=l

∀X
X\k

A
X\k

X

)
. (5.4.6)

Negation of the whole equation gives 5.4.1b.
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Keeping track of sign differences will be a hassle in the following

discussion. For instance, in (5.3.7a), we can match the terms ∀X
X\k

L
X\k

X\j
on the left-

hand side to the terms LX
X\j\k

A
X\j\k

X\j
on the right-hand side. These two terms differ

by a sign depending on how j and k are situated in the cyclic ordering of X . We

introduce the following notation to deal with such sign differences.

Definition 5.4.2. (Sign Rule). Fix a cyclic order ρ on S. Then

sgnρ(j, k) :=





1 if j > k in ρ,

−1 if j < k in ρ.

(5.4.7)

Notation 5.4.3. Given a subset X ⊂ S, we abusively set ρ(X) to indicate any cyclic

ordering ρt of S starting at some t ∈ S − X . We only use this convention for the

purpose of using the notation of Definition 5.4.2 when the choice of cyclic order is

irrelevant.

Again,we let BX ∈ Yl in homological degree i, and set ξ equal to ξ(X, l).

Lemma 5.4.4. Equation (5.3.7a) holds if and only if the following equations, (5.4.8) and

(5.4.9), hold.

Since j < l − 1 we have BX\j
∈ Yl.

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k)

for k ∈ S −X.

(5.4.8)

χi
X\k\j ,X

= χi−1
X\j ,X\k

sgnρ(X)(j, k)

for k ∈ X\j .

(5.4.9)
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Proof. First we argue that each term on the left-hand side of (5.3.7a) matches a

term on the right-hand side up to sign, and we verify that equations (5.4.8) and

(5.4.9) are equivalent to matching of signs. Then we argue that the terms were

linearly independent, so that the equality in equation (5.3.7a) holds if and only if

the signs match.

We work out the sign difference to get equation 5.4.8. This equation comes

from matching the terms χi
Xk\j ,X

LX
Xk\j

∀
Xk\j

X\j
with the terms χi−1

X\j ,Xk
AX

Xk
LXk

X\j
in

equation 5.3.7a. Note that LX
Xk\j

∀
Xk\j

X\j
and AX

Xk
LXk

X\j
are equal up to a sign. To

determine this sign, we must determine the total signs on LX
Xk\j

∀
Xk\j

X\j
and AX

Xk
LXk

X\j

coming from signed (double) dot maps, and rex moves, then compare these

signs. Let Xk have the cyclic order X1kX2jX3. Give X the cyclic order X2jX3X1

induced by k, give Xk\j the cyclic order X3X1kX2 induced by j, and give X\j the

cyclic order X2X3X1 inherited from X . The following picture represents where

the sets X1, X2, X3, and j, k are situated in S.

X2

j
X3

X1
k (5.4.10)

The tick mark indicates where the cyclic order on Xk begins. Below we

decompose AX
Xk
LXk

X\j
into dot maps and signed rex moves, and calculate the total

sign
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(−1)|X1|(|X2|+1+|X3|) rex

(−1)|X1| AX
Xk

(−1)|X2|+1 L
Xk

X\j

(−1)|X1|(|X2|+|X3|) rex

X2 X3 X1

X1 X2 X3

X1 k X2 j X3

X1 X2 j X3

X2 j X3 X1

Total Sign: (−1)|X2|+1

(5.4.11)

The labels on the right indicate what the component is, while on the left the sign

on this component is indicated.

Now we decompose LX
Xk\j

∀
Xk\j

X\j
into signed double-dot maps and signed

rex moves, and calculate the total sign.
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(−1)|X1|+|X2|+|X3|+|X1|(|X2|+|X3|)

(−1)|X3|+|X1|

(−1)|X2|(|X3|+|X1|)

Total Sign: (−1)|X2|

X2 X3 X1

X3 X1 X2

X3
X1 k X2

X2 j X3 X1

LX
Xk\j

∀
Xk\j

X\j

rex

(5.4.12)

Note that the diagrams (5.4.11) and (5.4.12) are equal, ignoring coefficients,

because X3 is distant from X1kX2 and can be slid over the rest of the diagram.

Overall, the sign difference between these two diagrams is sgnρ(Xk)
(j, k) as in

(5.4.8).

Now we argue that the diagrams in (5.4.12) are linearly independent as k

ranges over S \ X . Using Lemma 3.2.4, we can force the k-colored barbell to the

right, past all the strands in X2. The result will be a linear combination of terms,

some which break strands in X2 and one pure sliding term where no strands are

broken. The pure sliding term is equal to
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X2 j X3 X1

gk (5.4.13)

for some polynomial gk. The polynomials gk are equal to αk +
∑

k<m<j cmαm for

some coefficient cm. The polynomials gk, hence the pure sliding terms, are linearly

independent as k varies.

Meanwhile, the term with a broken strand looks like

X1
2 m X2

2 j X3 X1

(5.4.14)

where X2 = X1
2mX

2
2 . All terms with a broken strand lie in an ideal of the category

of morphisms factoring through objects of shorter length. Modulo this ideal,

the original diagrams of (5.4.11) are equal to their pure sliding terms, hence are

linearly independent as k varies.

One must also argue independence with the other kinds of diagrams

appearing in equation (5.3.7a), indexed by k ∈ X \ j. These diagrams look like

diagram (5.4.14) except with broken strand labeled by k instead of m, and they lie
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in the ideal of shorter terms, thus they are linearly independent from the terms

indexed by k ∈ S \ X . If equation (5.3.7a) holds, then all signs must match for

terms indexed by k ∈ X \ j, and these terms cancel from both sides of (5.3.7a). It

remains to show that the terms indexed by k ∈ S \ X are linearly independent

from each other. This is straightforward using the light leaves basis of [29], as

these diagrams are distinct basis elements.

Remark 5.4.5. The proofs of Lemmas 5.4.6 through 5.4.14 below will follow a very

similar argument. One matches terms in sums on both sides of the equations,

and argues their coefficients match if and only if certain formulas hold. Then

one argues linear independence of the terms in each sum. The proof of linear

independence in each case is similar to the proof given above, and we omit it. We

focus on the problem of matching the signs.

Lemma 5.4.6. The equation (5.3.7b) holds if and only if the sign equations (5.4.15)-

(5.4.17) below hold.

We set ξ = ξ(X, l) and A = A(X, l). This is the first nontrivial case. As in

5.4.4, we can match terms on the left-hand side to terms on the right-hand side,

but we need some additional terms terms on the right to cancel out with ∀X
X\j
xl to

give ∀X
X\j

xj+1. Here we apply equation 5.4.1a, post-composed with ∀X
X\j

, applied

to BX\j
where l + ξ − 2 = j − 1. We note that we must use 5.4.1a as opposed to

5.4.6 because there aren’t any terms involving a j-colored barbell. This distinction

will become clearer in the next case. We then have

∀X
X\j

(xj+1 − xl) =
∑

k 6=j,k∈S−X\j

∀X
X\j

A
X\j

Xk\j
∀
Xk\j

X\j
+

∑

k 6=l,...,j−1,k∈X\j

∀X
X\j

∀
X\j

X\k\j
A

X\k\j

X\j
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Accounting for sign differences, we get the following equations.

Since j ∈ A we have BX\j
∈ Yj+1.

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k) + 1

for k ∈ S −X.

(5.4.15)

χi
X\k\j ,X

=
(
χi−1
X\j ,X\k

− 1
)

sgnρ(X)(j, k)

for k ∈ X\j, k 6= l, ..., j − 1.

(5.4.16)

χi
X\k\j ,X

= χi−1
X\j ,X\k

sgnρ(X)(j, k)

for k ∈ X\j, k = l, ..., j − 1.

(5.4.17)

Example 5.4.7. We explain the signs in equation 5.4.16. In this equation, as

in equation 5.4.9, we match the terms χi
X\j\k,X

LX
X\j\k

A
X\j\k
X\j

with the terms

χi−1
X\j ,X\k

∀X
X\k

L
X\k

X\j
. So χi

X\j\k,X
= χi−1

X\j ,X\k
sgnρ(X)(j, k)± 1, where the ±1 comes from

the sign difference between LX
X\j\k

A
X\j\k
X\j

and ∀X
X\j

∀
X\j

X\k\j
A

X\k\j

X\j
. We now analyze

this sign difference. Let X have the cyclic order X = X1jX2kX3, let X\j and X\k\j

have the cyclic orders inherited from X . The following picture depicts where j, k

and the subsets X1, X2, and X3 are situated in S. The tick mark is where the cyclic

order on X starts.

X2

k
X3

X1
j
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Below we analyze the total sign on LX
X\j\k

A
X\j\k
X\j

.

(−1)|X2|+1

(−1)|X1|+|X2|

Total Sign: (−1)|X1|+1

X1 X2 k X3

X1 X2 X3

X1 j X2 k X3

LX
X\j\k

A
X\j\k

X\j

Now we analyze the total sign on ∀X
X\j

∀
X\j

X\k\j
A

X\k\j

X\j

(−1)|X1|

(−1)|X1|+|X2|

(−1)|X1|+|X2|

Total Sign: (−1)|X1|

X1 X2 k X3

X1 X2 X3

X1 X2 k X3

X1 j X2 k X3

∀XX\j

∀
X\j

X\k\j

A
X\k\j

X\j

Observe the sign difference is −1. A similar analysis would observe

no sign difference when k > j in the cyclic order on X . Thus χi
X\j\k,X

=

χi−1
X\j ,X\k

sgnρ(X)(j, k) + sgnρ(X)(k, j), which gives equation 5.4.16.
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Lemma 5.4.8. Equation (5.3.7c) holds if and only if the sign equations (5.4.18)-(5.4.21)

below hold.

This case is similar to 5.4.6 - we now need some additional terms terms

on the right to cancel out with ∀X
X\j

xl to give ∀X
X\j

xl+ξ. The difference is that here

we apply equation 5.4.6, precomposed with ∀X
X\j

. This is because we do see an

(l + ξ − 1)-colored barbell on the right-hand side of equation 5.3.7c, so 5.4.1a,

which excludes this barbell, does not apply. Accounting for sign differences

between terms on the right-hand side of 5.3.7c and corresponding terms in 5.4.6

precomposed with ∀X
X\j

, we get the following.

Since j > l + ξ − 2 we have BX\j
∈ Yl+ξ.

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k)

for k ∈ S −X, k 6= l + ξ − 1.

(5.4.18)

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k)− 1

for k ∈ S −X, k = l + ξ − 1.

(5.4.19)

χi
X\k\j ,X

= χi−1
X\j ,X\k

sgnρ(X)(j, k)

for k ∈ X\j , k /∈ A.

(5.4.20)

χi
X\k\j ,X

=
(
χi−1
X\j ,X\k

+ 1
)

sgnρ(X)(j, k)

for k ∈ X\j , k ∈ A.

(5.4.21)

Lemma 5.4.9. Equation (5.3.8a) holds if and only if the sign equations (5.4.22) and

(5.4.23) below hold.
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This is another easy case, as we can directly match the terms on the left-

hand side to those on the right-hand side, up to a sign difference. We get the

following.

Since j > l − 1 we have BXj
∈ Yl.

χi
Xj,k,X

= χi−1
Xj ,Xk

sgnρ(Xj,k)
(j, k)

for k ∈ S −Xj .

(5.4.22)

χi
Xj\k,X

= χi−1
Xj ,X\k

sgnρ(Xj )
(j, k)

for k ∈ X.

(5.4.23)

Lemma 5.4.10. Equation (5.3.8b) holds if and only if the sign equations (5.4.24)-(5.4.27)

hold.

This is a nontrivial case. We need additional terms terms on the right to

cancel out with AX
Xj
xl to give AX

Xj
xl+n. Since the right-hand side of 5.3.8b does

have an (l + ξ − 1)-colored barbell, we apply 5.4.6 precomposed with AX
Xj

.

Accounting for sign differences between terms on the right-hand side of 5.3.8b

and the corresponding terms on the right-hand side of 5.4.6 precomposed with

AX
Xj

, we get the following.

Since j ≤ l − 1 we have BXj
∈ Yl+ξ.

χi
Xj,k,X

= χi−1
Xj ,Xk

sgnρ(Xj,k)
(j, k)

for k ∈ S −Xj, k 6= l + ξ − 1.

(5.4.24)

χi
Xj,k,X

=
(
χi−1
Xj ,Xk

− 1
)

sgnρ(Xj,k)
(j, k)

for k = l + ξ − 1.

(5.4.25)
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χi
Xj\k,X

= χi−1
Xj ,X\k

sgnρ(Xj )
(j, k)

for k ∈ X, k /∈ A.

(5.4.26)

χi
Xj\k ,X

= χi−1
Xj ,X\k

sgnρ(Xj)
(j, k) + 1

for k ∈ A.

(5.4.27)

For the next four equations, we will not have to apply Lemma 5.4.1 as no

diagonal entries of χ appear in them. For each of these equations all the terms

appearing are equal up to a sign.

Lemma 5.4.11. Equation (5.3.9) holds if and only if the equation (5.4.28) below holds.

Accounting for sign differences, we get the following.

χi−1
X\i\j\k,X\i

sgnρ(X)(i, j)sgnρ(X)(i, k) + χi−1
X\i\j\k ,X\j

sgnρ(X)(j, i)sgnρ(X)(j, k)

+χi−1
X\i\j\k,X\k

sgnρ(X)(k, i)sgnρ(X)(k, j)

=χi
X\j\k,X

sgnρ(X)(i, j)sgnρ(X)(i, k) + χi
X\i\k,X

sgnρ(X)(j, i)sgnρ(X)(j, k)

+χi
X\i\j ,X

sgnρ(X)(k, i)sgnρ(X)(k, j)

(5.4.28)

Lemma 5.4.12. Equation (5.3.10) holds if and only if the equation (5.4.29) below holds.

We work out the signs for this equation. Let X have the cyclic order

X1iX2jX3, induced by k. Let Xk\i\j have the cyclic order X3kX1X2, induced

by j. Let Xk have the cyclic order X2
1 iX2jX3kX

1
1 where X1 = X1

1 ∪ X2
1 . The

following picture depicts where i, j, k and X1, X2, X3 are situated in S. The tick

mark indicates where the cyclic order on Xk starts.

X1
1

X2
1

i
X2

j
X3

k
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Below we work out the total signs of the terms in equation 5.3.10.

X1 i X2 j X3

X1 X2 j X3

X3 k X1 X2

X1 i X2 j X3

X2
1iX2jX3 X1

1

X2
1iX2j X3 kX

1
1

X2
1
X2 X3 k X1

X3 k X1 X2

X1 i X2 j X3

X3 k X1 i X2

X3 k X1 X2

X1 i X2 j X3

X2 i X2 X3

X2X3 k X1

X3 k X1X2

X1iX2 j X3

X2 j X3 k X1

X3 k X1X2 j

X3k X1X2

X1 i X2 j X3

X1 X2 X3

X3 X1 X2

X3 k X1 X2

+

+ =

+ +

χi−1
Xk\i\j ,X\i

(−1)|X3||X1|+|X3||X2|+|X3|+|X2| χi−1
Xk\i\j ,X\j

(−1)|X3||X1|+|X3||X2|+|X3|+|X2|+1

χi−1
Xk\i\j ,Xk

(−1)|X3||X1|+|X3||X2|+|X3|+|X2|+1 χi
Xk\i,X

(−1)|X3||X1|+|X3||X2|+|X3|+|X2|+1

χi
Xk\j ,X

(−1)|X3||X1|+|X3||X2|+|X3|+|X2| χi
X\i\j ,X

(−1)|X3||X1|+|X3||X2|+|X3|+|X2|+1

We note the symmetry between i and j in this equation. Thus, the terms

involving add-two double dot maps have equal sign regardless of the cyclic order

on X . For this equation to hold, it is essential that we give X the cyclic order ρk
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χi−1
Xk\i\j ,X\i

sgnρ(X)(j, i) + χi−1
Xk\i\j ,X\j

sgnρ(X)(i, j) + χi−1
Xk\i\j ,Xk

=χi
Xk\j ,X

sgnρ(X)(j, i) + χi
Xk\i,X

sgnρ(X)(i, j) + χi
X\i\j ,X

.

(5.4.29)

Lemma 5.4.13. Equation (5.3.11) holds if and only if the equation (5.4.30) below holds.

For this equation to hold, it is essential that we give Xi,j\k the cyclic order

ρk.

χi−1
Xi,j\k,Xi

sgnρ(Xi,j\k)
(j, i) + χi−1

Xi,j\k ,Xj
sgnρ(Xi,j\k)

(i, j) + χi−1
Xi,j\kX\k

=χi
Xj\k,X

sgnρ(Xi,j\k)
(j, i) + χi

Xi\k,X
sgnρ(Xi,j\k)

(i, j) + χi
Xi,j ,X

(5.4.30)

Lemma 5.4.14. Equation (5.3.12) holds if and only if equation (5.4.31) below holds.

Accounting for sign differences, we get the following.

χi−1
Xi,j,k ,Xi

sgnρ(Xi,j,k)
(i, j)sgnρ(Xi,j,k)

(i, k) + χi−1
Xi,j,k,Xj

sgnρ(Xi,j,k)
(j, i)sgnρ(Xi,j,k)

(j, k)

+χi−1
Xi,j,k ,Xk

sgnρ(Xi,j,k)
(k, i)sgnρ(Xi,j,k)

(k, j)

=χi
Xj,k ,X

sgnρ(Xi,j,k)
(i, j)sgnρ(Xi,j,k)

(i, k) + χi
Xi,k,X

sgnρ(Xi,j,k)
(j, i)sgnρ(Xi,j,k)

(j, k)

+χi
Xi,j ,X

sgnρ(Xi,j,k)
(k, i)sgnρ(Xi,j,k)

(k, j)

(5.4.31)

5.5 Proof of main theorem.

5.5.1 Existence. In order for χ to be a pseudo-chain map, the criterion

(C1-C3) in 5.1.6 must be compatible with the equations 5.4.8-5.4.31. We check this.

Showing 5.4.8 holds. For this equation, we have j < l−1, thus χi
Xk\j ,X

= 0,

and BX\j ,X ∈ Yl. If k ≤ l − 1, then BXk
∈ Yl+ξ by Lemma 5.2.2. Then j ≤ l − 1 ≤

(l + ξ − 1), so 5.1.6 (C1) says that χi−1
X\j ,Xk

= 0. So the equation holds in this case. If
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k > l− 1, then BXk
∈ Yl. Since j < l− 1, the criterion still says χi−1

X\j ,Xk
= 0, and the

equation still holds.

Showing 5.4.9 holds. For this equation we have j < l − 1 so the criterion

says that χi
X\j\k ,X

= 0. If, no matter what k is, we have then BX\k
∈ Ym, where

m ≥ l. Since j < l, the criterion says that χi−1
X\j ,X\k

= 0 so the equation holds.

Showing 5.4.15 holds. For this equation j ∈ A. If k ∈ {0, . . . , l− 1} then the

criterion says that χi
Xk\j ,X

= 1. In this case, we also have BXk
∈ Yl+ξ by Lemma

5.2.2 part (2). Since j ∈ {0, . . . , (l + ξ) − 2}, 5.1.6 (C1) says that χi−1
X\j ,Xk

= 0.

So the equation holds. If k > l − 1, 5.1.6 (C2) says that χi
Xk\j ,X

= 0. We also

have that BXk
∈ Yl. Hence ξ(Xk, l) is at most ξ + 1, which happens in the case

k = l + ξ − 1. Then j will still be between l and l + ξ(Xk, l) − 2. Thus, 5.1.6 (C1)

says that χi−1
X\j ,Xk

= 1. We also know that k > l + ξ − 2 ≥ j, so we have that

sgnρ(Xk)
(j, k) = −1 in the cyclic order of Xk induced by l − 1. Thus the right-hand

side of the equation is 0, so the equation holds.

Showing 5.4.16 holds. For this equation j ∈ A. If k ≤ l − 1, then χi
X\k\j ,X

=

0 by 5.1.6 (C1). By Lemma 5.2.2 part (1), BXk
∈ Yl. By 5.1.6 (C2), χi−1

X\j ,X\k
= 1,

so the right-hand side of the equation is 0 and the equation holds. If k > l − 1,

then k > j in the cyclic order of X induced by l − 1. Thus sgnρ(X)(j, k) = −1.

Here 5.1.6 (C1) says that χi−1
X\j\k,X

= 1. By Lemma 5.2.2 part (1), BX\k
∈ Ym where

m ≥ k + 1 > j + 1. Since BX\j
∈ Yj+1, then χi−1

X\j ,X\k
= 0 by upper-triangularity. So

the right-hand side of the equation is 1, and the equation holds.

Showing 5.4.17 holds. For this equation j ∈ A and k < j in the cyclic order

of X induced by l − 1. Thus sgnρ(X)(j, k) = 1. 5.1.6 (C1) says that χi
X\j\k ,X

= 1. By

Lemma 5.2.2 part (1), BX\k
∈ Yk+1. Since j ∈ A(X\k, k + 1) = {k + 1, k + 2, . . . , l +
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ξ − 2}, and k ≤ (k + 1) − 1, 5.1.6 (C2) says that χi−1
X\j ,X\k

= 1. Thus the equation

holds.

Showing 5.4.18 holds. Since j > l+ ξ− 2, 5.1.6 (C2) says that χi
Xk\j ,X

= 0. If

k > l−1, then BXk
∈ Yl by Lemma 5.2.2 part (1). Since l, l+1, . . . , l+ξ−2 ∈ X , and

k ∈ S \X ,we must have k > l+n−2. In this equation we also have k 6= l+n−1, so

k > l + n− 1. Then ξ(Xk, l) = ξ. Since both j and k are greater than l + n− 2, 5.1.6

(C1) says that χi−1
X\j ,Xk

= 0, and the equation holds. If k ≤ l − 1 then BXk
∈ Yl+ξ.

Since k ≤ l− 1 ≤ l+ ξ − 2, 5.1.6 (C1) says that χi−1
X\j ,Xk

= 0, and the equation holds.

Showing 5.4.19 holds. Since j > l + ξ − 2, 5.1.6 (C2) says that χi
Xk\j ,X

= 0.

Since k = l+ξ−1, we have BXk
∈ Yl by Lemma 5.2.2 part (2). Then ξ(Xk, l) = ξ+1.

Since k ∈ A(Xk, l), 5.1.6 (C1) says that χi−1
X\j ,Xk

= 1. In the cyclic order of Xk

induced by l − 1, we have j > k. Thus sgnρ(Xk)
(j, k) = 1. Thus the right-hand side

of the equation is 0, and the equation holds.

Showing 5.4.20 holds. Since k /∈ A, either k < l − 1 or k > l + ξ − 2. Either

way, since j > l+ ξ−2, 5.1.6 (C1) says that χi
X\k\j ,X

= 0. If k < l−1, then BX\k
∈ Yl

by Lemma 5.2.2 part (1). Since k /∈ A, we have ξ(X\k, l) = ξ. Since j > l + ξ − 2,

5.1.6 (C2) says that χi−1
X\j ,X\k

= 0, and the equation holds.

Showing 5.4.21 holds. Since k ∈ A, 5.1.6 (C1) says that χi
X\j\k,X

= 1. By

Lemma 5.2.2 part (1), BX\k
∈ Yk+1. Since j > l+n− 2, we have j /∈ A(X\k, k+1) =

{k + 1, k + 2, ..., l + n− 2}. Then 5.1.6 (C2) says that χi−1
X\j ,X\k

= 0. Note j > k in the

cyclic order of X induced by l − 1, so sgnρ(X)(j, k) = 1. Thus the equation holds.

Showing 5.4.22 holds. 5.1.6 (C3) says that χi
Xj,k,X

= 0. If k > l − 1, then

BXk
∈ Yl by Lemma 5.2.2 part (2). Since j > l − 1, 5.1.6 (C2) says that χi−1

Xj ,Xk
= 0

and the equation holds. If k ≤ l − 1, then BXk
∈ Yl+ξ. Now since k < l + ξ, 5.1.6

(C2) says that χi−1
Xj ,Xk

= 0 and the equation still holds.
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Showing 5.4.23 holds. Since j > l − 1 5.1.6 (C2) says that χi
Xj\k,X

= 0. 5.1.6

(C3) says that χi−1
Xj ,X\k

= 0, and the equation holds.

Showing 5.4.24 holds. By 5.1.6 (C3), χi
Xi,j ,X

= 0. If k > l − 1, then BXk
∈ Yl

by Lemma 5.2.2 part (2). Since k 6= l + ξ − 1, we have ξ(Xk, l) = ξ. Then since

k /∈ X , k /∈ A. Then by 5.1.6 (C2), χi−1
Xj ,Xk

= 0, and the equation holds. If k ≤ l − 1,

then BXk
∈ Yl+ξ. Since k < l+ξ, 5.1.6 (C2) says χi−1

Xj ,Xk
= 0, and the equation holds.

Showing 5.4.25 holds. By 5.1.6 (C3), χi
Xi,j ,X

= 0. Since k = l+ξ−1, BXk
∈ Yl

by Lemma 5.2.2 part (2). Thus ξ(Xk, l) = ξ + 1. Since k = l + ξ − 1 ∈ A(Xk, l), and

j ≤ l − 1, 5.1.6 (C2) says that χi−1
Xj ,Xk

= 1. Thus the right-hand side of the equation

is 0, and the equation holds.

Showing 5.4.26 holds. Since k /∈ A, 5.1.6 (C2) says that χi
Xj\k,X

= 0. 5.1.6

(C3) says that χi−1
Xj ,X\k

= 0, so the equation holds.

Showing 5.4.27 holds. Since k ∈ A and j ≤ l − 1, 5.1.6 (C2) says that

χi
Xj\k,X

= 1. 5.1.6 (C3) says that χi−1
Xj ,X\k

= 0, so the right-hand side of the equation

is 1, and the equation holds.

For the next four equations, there are no conditions on what i, j, k are, so

we must consider several cases for each.

Showing 5.4.28 holds. We break this into several cases conditioned on

i, j, k.

i, j, k < l − 1 : Under these conditions BX\i
, BX\j

, BX\k
∈ Yl. The reader

may verify that all the coefficients appearing are 0, and the equation holds.

i ∈ A, j, k < l − 1 : Under these conditions, BX\i
∈ Yi+1, BX\j

∈ Yl, and

BX\i
∈ Yl. The reader may verify that all the coefficients are 0, and the equation

holds.
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i > l + ξ − 2, j, k < l − 1 : Under these conditions, BX\i
∈ Yl+n, BX\j

∈

Yl, and BX\k
∈ Yl. The reader may verify that all the coefficients are 0, and the

equation holds.

i, j ∈ A, k < l − 1 : Under these conditions BX\i
∈ Yi+1, BX\j

∈ Yj+1, and

BX\k
∈ Yl. By 5.1.6 (C1), all the coefficients are 0, except χi−1

X\i\j\k ,X\k
, and χi

X\i\j ,X
,

which are both equal to 1. The equation holds.

i > l + n− 2, j ∈ A, k < l − 1 : Under these conditions BX\i
∈ Yl+ξ, BX\j

∈

Yj+1, and BX\k
∈ Yl. By 5.1.6 (C1), all the coefficients are 0, except χi−1

X\i\j\k,X\k
, and

χi
X\i\j ,X

, which are both equal to 1. The equation holds.

i, j > l + ξ − 2, k < l − 1 : Under these conditions BX\i
∈ Yl+ξ, BX\j

∈

Yl+ξ, and BX\k
∈ Yl. The reader may verify that all the coefficients are 0, and the

equation holds.

i, j, k ∈ A : Under these conditions BX\i
∈ Yi+1, BX\j

∈ Yj+1, and BX\k
∈

Yk+1. Assume, without loss of generality, that i > j > k. The reader may verify

that all the coefficients appearing on the right-hand side of the equation are equal

to 1. On the left-hand side, the only non-zero coefficient is χi−1
X\i\j\k ,X\k

, which is 1

by 5.1.6 (C1). In the cyclic order of X induced by l − 1, we have sgnρ(X)(i, j) =

sgnX(i, k) = sgnρ(X)(j, k) = 1 and sgnρ(X)(j, i) = sgnρ(X)(k, i) = sgnρ(X)(k, j) = −1.

Both sides of the equation total to 1, and the equation holds.

i > l + ξ − 2, j, k ∈ A : Under these conditions BX\i
∈ Yl+ξ, BX\j

∈ Yj+1,

and BX\k
∈ Yk+1. The reader may verify that all the coefficients appearing in the

right-hand side of the equation are equal to 1. Assume, without loss of generality,

that j > k. By 5.1.6 (C1), χi−1
X\i\j\k,X\i

= 0, χi−1
X\i\j\k ,X\j

= 0, and χi−1
X\i\j\k ,X\k

= 1. The

signs work out the same as the previous case too. Both sides of the equation total

to 0, and the equation holds.
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i, j > l + ξ − 2, k ∈ A : Under these conditions BX\i
∈ Yl+n, BX\j

∈ Yl+ξ,

and BX\k
∈ Yk+1. The reader may verify that all the coefficients on the left-hand

side are 0. On the right-hand side, by 5.1.6 (C1), we have χi
X\i\j ,X

= 0, χi
X\i\k,X

=

1, and χi
X\j\k,X

= 1. Assume, without loss of generality, that i > j. In the cyclic

order of X induced by l − 1, sgnρ(X)(j, i) = sgnρ(X)(k, i) = sgnρ(X)(k, j) = −1, and

sgnρ(X)(j, k) = 1. The right-hand side of the equation totals to 0, and the equation

holds.

i, j, k > l + ξ − 2 : Under these conditions BX\i
∈ Yl+ξ, BX\j

∈ Yl+ξ, and

BX\k
∈ Yl+ξ. The reader may verify that all the coefficients on the right-hand

side of the equation are 0. Assume, without loss of generality, that i > j > k. Let

ζ = ξ(X, l+ξ). In any case, χi−1
X\i\j\k ,X\k

= 0. If k /∈ {l+ξ, l+ξ+1, . . . , l+ξ+ζ−2}, then

χi−1
X\i\j\k,X\i

= χi−1
X\i\j\k,X\j

= 0, and the equation holds. If k ∈ {l + ξ, l + ξ + 1, . . . , l +

ξ + ζ − 2}, then χi−1
X\i\j\k,X\i

= χi−1
X\i\j\k ,X\j

= 1. In the cyclic order of X induced by

l − 1, sgnρ(X)(i, j) = sgnρ(X)(i, k) = sgnρ(X)(j, k) = 1, and sgnρ(X)(j, i) = −1. Then

the left-hand side of the equation totals to 0, and the equation holds.

Showing 5.4.29 holds. We also break this into several cases conditioned on

i, j, k.

k > l − 1, i, j < l − 1 : Under these conditions on i, j, k we have BX\i
, BX\j

,

and BXk
are in Yl. The reader can verify that all the coefficients χi−1

Z,W and χi
Z,W

appearing in this equation are 0, so the equation holds.

k > l − 1, i ∈ A, j < l − 1 : Under these conditions, BXk
and BX\j

are in Yl,

and BX\i ∈ Yi+1. The reader can verify that all the coefficients appearing in this

equation are 0, so the equation holds.

111



k > l − 1, i > l + ξ − 2, j < l − 1 : Under these conditions, we have BX\i
∈

Yl+ξ, BX\j
∈ Yl and BXk

∈ Yl. The reader can verify all the coefficients appearing

in this equation are 0, so the equation holds.

k > l − 1, i, j ∈ A : Under these conditions, BXk
∈ Yl, BX\i

∈ Yi+1 and

BX\j
∈ Yj+1. Since k /∈ X , we have k > l + ξ − 2, so k > i = (i + 1) − 1 and

k > j = (j + 1) − 1. Thus 5.1.6 (C2) says then that χi−1
Xk\i\j ,X\j

and χi−1
Xk\i\j ,X\i

are 0.

5.1.6 (C1) says that χi−1
Xk\i\j ,Xk

= 1. Since k /∈ {0, ..., l−1}, 5.1.6 (C2) says that χi
Xk\i,X

and χi
Xk\j ,X

are 0. 5.1.6 (C1) says that χi
X\i\j ,X

= 1. Thus the equation holds.

k > l − 1, i > l + ξ − 2, j ∈ A : Under these conditions, BXk
∈ Yl, BX\i

∈

Yl+ξ, and BX\j
∈ Yj+1. By 5.1.6 (C2), χi−1

Xk\i\j ,X\i
, χi−1

Xk\i\j ,X\j
, χi

Xk\i,X
and χi

Xk\j ,X
are 0.

5.1.6 (C1) says that χi−1
Xk\i\j ,Xk

and χi
X\i\j ,X

are 1, and the equation holds.

k > l − 1, i, j > l + ξ − 2 : Under these conditions, BXk
∈ Yl, BX\i

∈ Yl+ξ,

BX\j
∈ Yl+ξ. The reader can verify that all the coefficients on the right-hand side

of the equation are 0. If k 6= l + ξ − 1, 5.1.6 (C2) says that both χi−1
Xk\i\j ,X\j

and

χi−1
Xk\i\j ,X\i

are 0. Since k 6= l + ξ − 1, BXk
∈ Yl and ξ(Xk, l) = ξ, so 5.1.6 (C1) says

that χi−1
Xk\i\j ,Xk

= 0. Now assume k = l + ξ − 1. Without loss of generality, assume

i > j. Let ζ = ξ(Xk, l + ξ). Note now that BXk
∈ Yl and ξ(Xk, l) = ξ + ζ . If

j /∈ A(Xk, l + ξ) = {l+ ξ, (l+ ξ) + 1, ..., (l+ ξ) + ζ − 2}, then neither is i since i > j.

Thus both i, j > (l + ξ) + ζ − 2, so the all the coefficients on the left-hand side of

the equation are 0. If j ∈ A(Xk, l + ξ), then 5.1.6 (C2) says that χi−1
Xk\i\j ,X\i

= 1, and

χi−1
Xk\i\j ,X\j

= 0. 5.1.6 (C1) says that χi−1
Xk\i\j ,Xk

= 1. Since i > j > l + ξ − 2, i > j in

the cyclic order of X induced by l − 1. Thus sgnρ(X)(j, i) = −1. Then the terms on

the left-hand side of the equation sum to 0, and the equation holds.
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k ≤ l − 1, i, k < l − 1 : Under these conditions, BX\i
∈ Yl, BX\j

∈ Yl, and

BXk
∈ Yl+ξ. The reader may verify that all the coefficients are 0, and the equation

holds.

k ≤ l − 1, i ∈ A, j < l − 1 : Under these conditions, BX\i
∈ Yi+1, BX\j

∈ Yl,

and BXk
∈ Yl+ξ. 5.1.6 (C2) says that χi−1

Xk\i\j ,X\i
= 0, χi−1

Xk\i\j ,X\j
= 1, χi

Xk\j ,X
= 0

and χi
Xk\i,X

= 1. 5.1.6 (C1) says that χi−1
Xk\i\j ,Xk

= 0 and χi
X\i\j ,X

= 0. The equation

holds.

k ≤ l − 1, i > l + ξ − 2, j < l − 1 : Under these conditions BX\i
∈ Yl+ξ,

BX\j
∈ Yl, and BXk

∈ Yl+ξ. The reader may verify that all the coefficients are 0,

and the equation holds.

k ≤ l − 1, i, j ∈ A : Under these conditions BX\i
∈ Yi+1, BX\j

∈ Yj+1, and

BXk
∈ Yl+n. Assume, without loss of generality, that i > j. 5.1.6 (C2) says that

χi−1
Xk\i\j ,X\i

= 0, χi−1
Xk\i\j ,X\j

= 1, χi
Xk\j ,X

= 1, and χi
Xk\i,X

= 1. 5.1.6 (C1) says that

χi−1
Xk\i\j,Xk

= 0 and χi
X\i\j ,X

= 1. The left-hand side and the right-hand side both

total to 1, and the equation holds.

k ≤ l − 1, i > l + ξ − 2, j ∈ A : Under these conditions BX\i
∈ Yl+ξ, BX\j

∈

Yj+1, and BXk
∈ Yl+ξ. The only nonzero coefficients in the equation are χi

Xk\j ,X

and χi
X\i\j ,X

which are both 1. Under these conditions, i > j in the cyclic order of

X induced by k, so sgnX(j, i) = −1. The right-hand side of the equation totals to

0, and the equation holds.

k ≤ l − 1, i, j > l + ξ − 2 : Under these conditions BX\i
∈ Yl+ξ, BX\j

∈ Yl+ξ,

and BXk
∈ Yl+ξ. The reader may verify that all the coefficients on the right-hand

side of the equation are 0. Let ζ = ξ(Xk, l + ξ). Assume, without loss of generality,

that i > j. If j /∈ A(Xk, l + ξ) = {l + ξ, l + ξ + 1, . . . , l + ξ + ζ − 2}, then all the

coefficients on the left-hand side of the equation are 0, and the equation holds. If
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j ∈ A(Xk, l + ξ), then 5.1.6 (C2) says that χi−1
Xk\i\j ,X\i

= 1 and χi−1
Xk\i\j ,X\i

= 0. 5.1.6

(C1) says that χi−1
Xk\i\j ,Xk

= 1. Note that i > j in the cyclic order of X induced by k,

so sgnρ(X)(j, i) = −1. Thus the left-hand side of the equation totals to 0, and the

equation holds.

Showing 5.4.30 holds. We break this into the following cases.

k ∈< l − 1, i, j > l − 1 :. Under these conditions BXi
∈ Yl, BXj

∈ Yl, and

BX\k
∈ Yl. The reader may verify that all the coefficients in the equation are 0.

k < l − 1, i ≤ l − 1, j > l − 1 : Under these conditions BXi
∈ Yl+ξ, BXj

∈ Yl,

and BX\k
∈ Yl. The reader may verify that all the coefficients in the equation are 0.

k < l − 1, i, j ≤ l − 1 : Under these conditions BXi
∈ Yl+ξ, BXj

∈ Yl+ξ, and

BX\k
∈ Yl. The reader may verify that all the coefficients in the equation are 0.

k ∈ A, i, j > l − 1 : Under these conditions BXi
∈ Yl, BXj

∈ Yl, and BX\k
∈

Yk+1. The reader may verify that all the coefficients in the equation are 0.

k ∈ A, i ≤ l − 1, j > l − 1 : Under these conditions BXi
∈ Yl+ξ, BXj

∈ Yl,

and BX\k
∈ Yk+1. The only nonzero coefficients are χi−1

Xi,j\k,Xj
and χi

Xi\k,X
which are

both 1, and the equation holds.

k ∈ A, i, j ≤ l − 1 : Under these conditions BXi
∈ Yl+ξ, BXj

∈ Yl+ξ, and

BX\k
∈ Yk+1. The coefficients χi−1

Xi,j\k ,X\k
and χi

Xi,j ,X
are 0 and all other coefficients

are 1. The equation holds.

k > l + ξ − 2, i, j > l − 1 : Under these conditions BXi
∈ Yl, BXj

∈ Yl, and

BX\k
∈ Yl+ξ. The reader may verify that all the coefficients in the equation are 0.

k > l + ξ − 2, i ≤ l − 1, j > l − 1 : Under these conditions BXi
∈ Yl+ξ, BXj

∈

Yl, and BX\k
∈ Yl+ξ. The reader may verify that all the coefficients on the right-

hand side of the equation are 0. Let ζ = ξ(Xi, l + ξ). If k /∈ A(Xi, l + ξ) = {l + ξ, l+

ξ + 1, . . . , l + ξ + ζ − 2} then all the coefficients are 0 and the equation holds. If

114



k ∈ A(Xi, l + ξ) and j 6= l + ξ − 1, then all the coefficients on the left-hand side 0

and the equation holds. If j = l + ξ − 1, then BXj
∈ Yl and ξ(Xj, l) = (ξ + ζ). Then

5.1.6 (C2) says that χi−1
Xi,j\k ,Xi

and χi
Xi,j\k ,Xj

are both equal to 1. The left-hand side

totals to 0, and the equation holds.

k > l + ξ − 2, i, j ≤ l − 1 : Under these conditions BXi
∈ Yl+ξ, BXj

∈ Yl+ξ,

and BX\k
∈ Yl+ξ. The reader may verify that all the coefficicents on the right-hand

side of the equation are 0. Let ζ = ξ(Xi, l + ξ). If k /∈ A(Xi, l + ξ) = A(Xj, l + ξ) =

{l+ξ, l+ξ+1, . . . , l+ξ+ζ−2}, then the reader may verify that all the coefficients on

the left-hand side are 0, and the equation holds. If k ∈ A(Xi, l + ξ) = A(Xj, l + ξ),

then 5.1.6 (C2) says that χi−1
Xi,j\k ,Xi

and χi−1
Xi,j\k ,Xj

are both equal to 1. The left-hand

side of the equation totals to 0, and the equation holds.

Showing 5.4.31 holds. 5.1.6 (C3) says all the coefficients appearing in this

equation are 0, so the equation holds.

5.5.2 Uniqueness. Now we show the uniqueness of χ. To do this, we

show that the equations 5.4.8through 5.4.31 on the coefficients χi
X,Y determine the

criterion (C1) to (C3) in Theorem 5.1.6.

Deducing Theorem 5.1.6 (C1).

Suppose j < l − 1. The equation 5.4.9 gives

χi
X\k\j ,X

= χi−1
X\j ,X\k

sgnρ(X)(j, k). (5.5.1)

Now, X\j ∈ Yl by Lemma 5.2.2. By the same lemma, X\k is in Yl′ for l′ ≥ l. Thus

χi−1
X\j ,X\k

= 0 by upper-triangularity. We remind the reader that on Yl χ should

be right multiplication by xl, so this coefficient is 0 in the case l′ = l also. Thus

χi
X\k\j ,X

= 0.
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Suppose both j, k ≥ l. Assume one of j or k is in A(X, l). Without loss of

generality, we take it to be j. If k > j, then equation (5.4.16) gives:

χi
X\k\j ,X

=
(
χi−1
X\j ,X\k

− 1
)

sgnρ(X)(j, k). (5.5.2)

Now by Lemma 5.2.2, X\j ∈ Yj+1. Under the assumptions on k, we have

X\k ∈ Yl′ for l′ ≥ j + 1. Thus χi−1
X\j ,X\k

= 0 by upper-triangularity. Note that under

the assumptions we have sgnρl−1
(j, k) = −1. Hence χi

X\k\j ,X
= 1.

If k < j, then we may reverse the roles of k and j and arrive at the same

conclusion: χi
X\k\j ,X

= 1.

Finally suppose both j and k are greater than l + ξ(X, l)− 2. Then equation

(5.4.20) gives

χi
X\k\j ,X

= χi−1
X\j ,X\k

sgnρ(X)(j, k). (5.5.3)

Under these assumptions, we have that both X\j and X\k are in Yl+ξ(X,l) by

Lemma 5.2.2. Thus χi−1
X\j ,X\k

= 0 by upper-triangularity. Hence χi
X\k\j ,X

= 0.

Deducing Theorem 5.1.6 (C2).

Suppose j < l − 1, then X\j ∈ Yl by Lemma 5.2.2. Equation (5.4.8) gives

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k). (5.5.4)

By Lemma 5.2.2, Xk ∈ Yl′ where l′ ≥ l. Hence χi−1
X\j ,Xk

= 0 by upper-triangularity.

Hence χi
Xk\j ,X

= 0.

Now suppose j ∈ A(X, l). Then equation (5.4.15) gives

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k) + 1. (5.5.5)
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By Lemma 5.2.2 we have X\j ∈ Yj+1. If k ≤ l − 1, then Xk ∈ Yl+ξ(X,l). Then

χi−1
X\j ,Xk

= 0 by upper-triangularity. Hence, χi
Xk\j ,X

= 1.

If k > l − 1, then Xk ∈ Yl. Then (C1), which we have already deduced, says

that χi−1
X\j ,Xk

= 1. Since sgnρl−1
(j, k) = −1, we have χi

Xk\j ,X
= 0.

Now suppose j > l+ ξ(X, l)− 2. If k 6= l+ ξ(X, l)− 1, then equation (5.4.18)

gives

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k). (5.5.6)

By Lemma 5.2.2, we have X\j ∈ Yl+ξ(X,l). If k ≤ l − 1, then Xk ∈ Yl+ξ(X,l). Then

χi−1
X\j ,Xk

= 0 by upper triangularity. Then χi
Xk\j ,X

= 0. If k > l − 1, then Xk ∈ Yl.

Now, neither k or j are in A(Xk, l). Thus χi−1
X\j ,Xk

= 0 by (C1) which we have

already deduced. Hence, χi
Xk\j ,X

= 0.

If k = l + ξ(X, l)− 1, then equation (5.4.19) gives

χi
Xk\j ,X

= χi−1
X\j ,Xk

sgnρ(Xk)
(j, k)− 1. (5.5.7)

Now Xk ∈ Yl. Since k ∈ A(Xk, l) and j ≥ l, then χi−1
X\j ,Xk

= 1 by (C1) which

we have already deduced. Since sgnρl−1
(j, k) = 1, we have χi

Xk\j ,X
= 0.

Deducing Theorem 5.1.6 (C3).

Assume, without loss of generality, that j < k. If j > l − 1, then equation

(5.4.22) gives

χi
Xj,k ,X

= χi−1
Xj ,Xk

sgnρ(Xj,k)
(j, k). (5.5.8)

Since both j and k are greater than l − 1, then Xj and Xk are both in Yl by Lemma

5.2.2. Thus χi−1
Xj ,Xk

= 0 by upper-triangularity. Hence χi
Xj,k,X

= 0.
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Now suppose j ≤ l − 1. Then Xj ∈ Yl+ξ(X,l) by Lemma 5.2.2. If k 6=

l + ξ(X, l)− 1, then equation (5.4.24) gives

χi
Xj,k ,X

= χi−1
Xj ,Xk

sgnρ(Xj,k)
(j, k). (5.5.9)

If k ≤ l − 1, then Xk ∈ Yl+ξ(X,l). Then χi−1
Xj ,Xk

= 0 by upper-triangularity. Hence

χi
Xj,k,X

= 0.

If k > l − 1, then Xk ∈ Yl. Observe that k is not in A(Xk, l) since k 6=

l + ξ(X, l) − 1. Thus χi−1
Xj ,Xk

= 0 by (C2) which we have already deduced. Hence

χi
Xj,k,X

= 0.

Now suppose k = l + ξ − 1. Then equation (5.4.25) gives

χi
Xj,k ,X

=
(
χi−1
Xj ,Xk

− 1
)

sgnρ(Xj,k)
(j, k). (5.5.10)

Since k > l − 1, we have Xk ∈ Yl by Lemma 5.2.2. Now k ∈ A(Xk, l).

Thus, by (C2) which we have already determined, we have χi−1
Xj ,Xk

= 1. Hence

χi
Xj,k,X

= 0.

118



CHAPTER VI

CATEGORIES OVER SCHEMES

We review the theory of categories over schemes introduced in [3, 4]. We

then make some comments on how [3, Proposition 4.16], which concerns lifting

this structure to graded affine and projective bundles, might work in the setting

of derived schemes and stacks.

6.1 Classical setting of maps to projective space.

Let X be a projective variety and let L be a line bundle over X . We say L is

generated by global sections if the map of sheaves

O ⊗ Γ(X,L) → L (6.1.1)

is surjective. If this is the case, then we can choose a basis s0, . . . , sn of Γ(X,L) of

basepoint-free sections of L that globally generate. This data gives us a map:

X
ι
→ P

n, x 7→ [s0(x) : . . . : sn(x)] (6.1.2)

such that ι∗O(k) = L⊗k for all k ∈ Z. We then have pushforward and pullback

functors

Coh(X)
ι∗−�==�−
ι∗

Coh(Pn) (6.1.3)

with adjunction ι∗ ⊣ ι∗ between categories of coherent sheaves. The pullback

functor ι∗ is monoidal with respect to tensor product of O-modules. The functor

ι∗ is not monoidal but instead satisfies the following projection formula:

ι∗(ι
∗M1 ⊗ C ⊗ ι∗M2) =M1 ⊗ ι∗C ⊗M2. (6.1.4)
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The sections si are maps OX
si→ L. The cone

[
OX

si→ L
]
∈ DbCoh(X) (6.1.5)

has nonzero stalk complex only at points x ∈ X where si(x) = 0. Thus, if the

sections si are basepoint-free, the Koszul complex

K(s0, . . . , sn) =
⊗

i

[
OX

si→ L
]

(6.1.6)

is quasi-isomorphic to 0.

Given a birational map X
ι
→ Y of schemes, one has ι∗OX = OY . In fact this

is a suitable definition of birationality. Since L is very ample, we have

X = Proj

(
∞⊕

k=0

Γ(X,L⊗k)

)
. (6.1.7)

The map ι is induced by the map of graded rings S•
C

n+1 = C[z0, ..., zn] →

⊕∞
k=0 Γ(X,L

⊗k) sending zi to si.

6.2 General Theory

Let X be a scheme or stack. We let Coh(X) denote its dg-derived category

of coherent sheaves, viewed as a dg-pretriangulated category.

Definition 6.2.1. Let C be a dg-pretriangulated monoidal category. We say having

dg functors

C
ι∗−�==�−
ι∗

Coh(X) (6.2.1)

makes C a category over X if they satisfy

– The functor ι∗ is monoidal.
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– The adjunction ι∗ ⊣ ι∗ holds.

– The projection formula holds functorially:

ι∗(ι
∗M1 ⊗ C ⊗ ι∗M2) =M1 ⊗ ι∗C ⊗M2. (6.2.2)

We will denote the structure of being a category over X simply by ‘the

morphism’ C
ι
→ X .

Definition 6.2.2. The morphism C
ι
→ X is called birational if ι∗(1) = OX .

Lemma 6.2.3. If C
ι
→ X is birational, then ι∗ι

∗(F) = F for all objects F ∈ Coh(X).

Proof. Observe that

ι∗ι
∗F = ι∗(ι

∗F ⊗ 1) = F ⊗ ι∗1 = F ⊗OX = F . (6.2.3)

Remark 6.2.4. When one has a proper birational map X
ι
→ Y , so pushforward

preserves being coherent, then ι∗ι
∗F = F for all F ∈ Coh(Y ). This is because,

since it is coherent, F may be presented by copies of OY , and one has ι∗ι
∗OY =

OY .

Proposition 6.2.5. Let C
ι
→ X be birational. Then ι∗ is fully faithful, and

HomC(1, ι
∗F) = Γ(X,F) (6.2.4)

for all F ∈ Coh(X).
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Proof.

HomC(ι
∗F ′, ι∗F) = HomX(F

′, ι∗ι
∗F) = HomX(F

′,F). (6.2.5)

The last equality follows from 6.2.3.

6.3 Examples

6.3.1 The affine case. Let C be an additive monoidal category. Let A be

a (Noetherian) commutative ring, and suppose we have a finite ring morphism

A
f
→ EndC(1). (6.3.1)

Then the chain category K(C), viewed as a dg-category, is a sometimes a category

over SpecA. Let us explore the structures present. We have functors

K(C)
ι∗−�==�−
ι∗

D(A-modf.g). (6.3.2)

Here the latter category is the bounded dg-derived category of finitely generated

A-modules. The functor ι∗ : C → A-mod is given by

ι∗(B) = HomC(1, C), B ∈ C (6.3.3)

A priori, this gives a functor C → Aop. Since A is commutative, A = Aop, so we

intepret it as a functor to A-mod. By extending to complexes, we get the functor

K(C) → D(A-modf.g.).

Now we describe the functor in the other direction. Since A is Noetherian,

every complex of finitely-generated A-modules has a (possibly infinite) resolution

by finitely generated free modules. Let FA-mod denote the category of finitely
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generated free A-modules. The inclusion K(FA-mod) → D(A-modf.g.) is

an equivalence because A is Noetherian. Therefore, we need only define ι∗

on K(FA-mod). We set ι∗(A) = 1 and ι∗(a) = f(a) for all a ∈ A. This

extends to complexes of finitely-generated free A-modules in the obvious way. If

M ∈ D(A-mod), we write ι∗(M) = M ⊗A 1 to denote this functor, understanding

we must take a free resolution to interpret it. Now we ask whether this satisfies

the properties of being a category over.

– We note that ι∗ is monoidal by construction.

– We note that

HomK(C)(M ⊗A 1, C) = HomD(A-modf.g.)(M,HomC(1, C)) (6.3.4)

is seen to hold functorially when M is a complex of free modules, which

suffices.

– Likewise, we see that the projection formula

HomC(1,F ⊗ (M ⊗A 1)⊗ G) = HomC(1,F)⊗A-mod M ⊗HomC(1,G) (6.3.5)

reduces to the following for M = A:

HomC(1,F ⊗ G) = HomC(1,F)⊗A-mod HomC(1,G). (6.3.6)

This is not always expected to hold, but does in the example below.

Example 6.3.1. (Example of affine case): Let Y be a scheme. Then Coh(Y ) is a

category over its affinization, Spec(ΓY (OY )).
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6.3.2 The projective case. Let C be a monoidal dg-pretriangulated

category, and let F be an object that is invertible in the homotopy category K(C).

Assume that the graded algebra:

HomK(C)(1, F
•) :=

∞⊕

k=−∞

HomK(C)(1, F
k) (6.3.7)

is commutative. The multiplication is given by tensor of morphisms. Suppose R•

is a Noetherian graded commutative C-algebra and we have a finite graded ring

homomorphism

R• f
→ HomK(C)(1, F

•). (6.3.8)

That is, HomK(C)(1, F
•) is finitely generated over R•. Then C is sometimes a

category over the quotient stack SpecR/C∗. Let us explore the structures present.

Notation 6.3.2. We will refer to the quotient stack SpecR/C∗ associated to a

graded C-algebra as grSpecR•.

Recall that:

Coh(grSpecR•) = Db({finitely generated graded R•-modules}). (6.3.9)

The functors are given by

ι∗(C) = HomK(C)(1, F
• ⊗ C) (6.3.10)

and

ι∗(M) = (M• ⊗R• F •)deg 0 . (6.3.11)
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Here, as in the affine case, we assume M is a complex of free graded modules

over R•. Now we ask whether this construction satisfies the properties of being

a category over. First, you may be confused as to why the sums in the above

constructions are taken over Z and notN. When you check whether there is an

adjunction between the functors ι∗ and ι∗ in the case M• = R•, you’ll see it to be

necessary.

Likewise, if we check the projection formula in the case M• = R• ∈

R• -grmod, and B,C ∈ C, we see that we need

HomK(C)

(
1,

∞⊕

k=−∞

F k ⊗ (A⊗ B)

)
= (6.3.12)

HomK(C)

(
1,

∞⊕

k=−∞

F k ⊗ A

)
⊗R• HomK(C)

(
1,

∞⊕

k=−∞

F k ⊗B

)
(6.3.13)

to hold. This does not always hold, but does in the examples coming from

algebraic geometry like in the case discussed in 6.1 where C is Coh(Y ) for a

scheme Y and F an ample line bundle.

Let’s elaborate on the case of this when R• = A[z0, . . . , zn] for a C-algebra

A equipped with a homomorphism to EndC(1), and the zi have degree 1. We can

thus specify f by giving a morphism

1
αi→ F. (6.3.14)

for each degree 1 generator zi. This data makes C into a category over grSpecR =

A

n+1
A /C∗. Like Proj(R), which we will discuss shortly, grSpec(R) has line bundles

O(k). These correspond to the graded module R(k). In this setting, we have

ι∗F = O(1).
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We may view P

n
A = ProjR• as an open substack ofAn+1/C∗. The question

is when does this structure factor through projective space as follows.

C ...............
ι′

✲
P

n
A

A

n+1
A /C∗

❄

∩
ι′

✲ (6.3.15)

We recall the following.

Proposition 6.3.3. (Beilinson’s Description of Coh(Pn
A) [42]). Let R = A[z0, ..., zn].

Each degree 1 generator zi of A[z0, ..., zn] gives a map R• zi→ O(1). We define the Koszul

complex

K(z0, ..., zn) :=
⊗

i

[
R

si→ R(1)
]
. (6.3.16)

We have

Coh(Pn
A) =

Db({finitely generated graded R-modules})

K(z0, ..., zn) ≃ 0
. (6.3.17)

The latter category is a modification of the dg-derived category of finitely generated

graded R-modules, where we add an isomorphism between K(z0, ..., zn) and 0. We note

that the line bundle O(k) on Pn
A corresponds to R(k).

Since we think of Pn
A as an open substack ofAn

A/C
∗ via Pn

A = (An
A −

{0})/C∗
m →֒ A

n
A/C

∗, we expect sheaves supported at the non-geometric point

0 ∈ A

n+1
A /C∗ to be quasi-isomorphic to 0. The Koszul complex resolves the

skyscraper sheaf of the point 0, so it makes sense that we ‘set’ it to zero.

Beilinson’s description of coherent sheaves gives us our answer for when

we can ‘lift’ the structure ι. In C, we must have

⊗

i

Cone
[
1

αi→ F
]
≃0. (6.3.18)
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We will have that ι∗F = O(1).

Remark 6.3.4. This means that F is categorically pre-diagonalizable with

eigencones
[
1

αi→ F
]

in the framework of categorical diagonalization given in

[6].

6.3.3 Relative Case. Now we ask more generally, given a map of

schemes Y
π
→ X , and C a category over X via ι, how can we make C a category

over Y so that the following diagram commutes?

C ...........
ι′

✲ Y

X

π

❄

ι

✲ (6.3.19)

6.3.3.1 Projectivization of a Locally Free Sheaf. We dicuss the case

where Y = P(V ∨) where V is a locally free sheaf on X . In terms of the relative

Proj construction, we have

Y = Proj(S•V ). (6.3.20)

Here, S•V is the symmetric algebra of V in Coh(X). We note that like in

the case relative to SpecA discussed above, we have a relative version of graded

Spec, and we can define the graded affine bundle Tot(V ∨)/C∗, the C∗ quotient

stack of the affine bundle Tot(V ∨), as

Tot(V ∨)/C∗ = grSpec(S•V ). (6.3.21)

We set Y ′ = grSpec(S•V ) and note that Y is an open substack of Y ′.

We have
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Coh(Y ′) = {graded S•V modules in Coh(X)} . (6.3.22)

There is a relative version of Beilinson’s description of coherent sheaves on

Y , describing Coh(Y ) as a modification of Coh(X).

Proposition 6.3.5. [3, Appendix 10.4]

Coh(Y ) =
{graded S•V modules in Coh(X)}

(S•V /S•>0V ∨) ∼= 0
. (6.3.23)

We note that both Y and Y ′ come equipped with the tautological line

bundle O(1) corresponding to the object S•V (1).

Proposition 6.3.6. Let Y = PV∨ and let C be a category over X . The data of ι′ is

equivalent to having F ∈ Pic C and a map

ι∗V
α
→ F (6.3.24)

satisfying

Tot
[
...

α
→ ι∗

(
∧kV

)
⊗ F−k α

→ ...
]
≃0 ∈ C (6.3.25)

The map ι′ is birational if ι is birational and satisfies:

Sk(V ) ∼= ι∗(F
k), ∀k ≥ 0. (6.3.26)

Here the map α on the left-hand-side of (6.3.25) is given by contraction by

the map α of (6.3.24). We will refer the reader to [3, Prop 4.15] for the full details.
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We explain how to define the functors. The functor ι′∗ is given as follows.

Because ι∗ is monoidal, we have morphisms

ι∗(V ⊗k) → F k. (6.3.27)

Because F is invertible, we factor through

ι∗(Sk(V )) → F k. (6.3.28)

This gives
⊕∞

k=−∞ F k an action of ι∗(S•V ). Given M in Coh(Y ) we set

ι′
∗
(M) :=

(
ι∗(M)⊗ι∗S•V

∞⊕

k=−∞

F k

)

deg 0

. (6.3.29)

=

We define the functor ι′∗ as follows. Given an object C of C, we set

ι′∗(C) := ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
. (6.3.30)

We equip it with an action of S•V in Coh(X) via

S•V ⊗OX
ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
−→ ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
. (6.3.31)

This morphism is given by the map 6.3.28 and adjunction.

A priori, these maps make C into a category over TotV∨/C∗. The condition

6.3.25 combined with 6.3.5 ensure that this descends to the category Coh(P(V∨)).

We note that when α is an isomorphism, then ι′∗(O(1)) = F .
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6.3.3.2 Adapting to Derived Algebraic Geometry. Starting with the

work of Bezrukavnikov in [2], it has been understood that the spectral (coherent)

incarnations of categories of arising in geometric representation theory (e.g. the

Hecke category) behave like coherent sheaves on a locally complete intersection

X . Generally, when the underlying space X of spectral parameters is not

a locally complete intersection, it seems it must be replaced by a derived

enhancement, which is a derived stack. For example, the work of Bezrukavnikov

realizes the extended affine Hecke category for a reductive group G in terms of

coherent sheaves on a derived enhancement of the usual Steinberg variety of the

Langlands dual group.

The following definition will be important while we discuss aspects of

derived algebraic geometry.

Definition 6.3.7. A connective dg-algebra is a dg-algebra concentrated in non-

positive degrees.

We now make some comments on how we expect the theory of categories

over classical schemes and stacks to adapt to the setting of derived stacks. We

are not going to be very explicit about what framework for derived algebraic

geometry we are considering, but we consider derived stacks which are locally

modeled on connective (non-positively graded) commutative dg C-algebras,

which we denote as cdgas≤0. Thus to us a derived stack is an ∞-functor

X : (cdgas≤0)op → gpds (6.3.32)

satisfying relevant descent conditions. The target category is the (∞, 1)-category

of infinity groupoids. This is essentially the framework considered in [36] and

130



[37] and we refer the reader there for actual details. The following discussion

should not be taken to be mathematically rigorous.

Given a derived stack X , we denote its underlying classical stack as Xcl.

We treat Coh(X) as a dg-pretriangulated monoidal category (aka a stable dg-

category).

Because the theory of categories over schemes just requires Coh(X) to be

a monoidal stable dg-category, we define what it means for a category C to be a

category over a derived stack X identically to the definition for classical stacks.

The case we will care about in the next chapter involves a version of relative

graded Spec, and we are not aware of this in the DAG literature (of which we

are unfamiliar). Nevertheless, we propose the following conjecture.

Conjecture 6.3.8. Let X be a derived stack, and let F ∈ Coh(X) complex of vector

bundles on X . Let S•F denote the symmetric (dg) algebra of F . Let Xcl denote the

underlying classical stack of X . Then the derived stack

grSpecXS
•F := SpecX(S

•
XF)/C∗ (6.3.33)

has the following properties.

1. There is a map π : grSpecXS
•F → X .

2. There is a relative description Coh(grSpecXS
•F) = {S•F graded modules inCoh(X)}.

3. There is a line bundle O(k) on grSpecXS
•F such that π∗O(k) ≃ SkF for

all k ≥ 0, and O(k) = S•(F)(k) in the above relative description. In that

description, π corresponds to taking the degree 0 part in the •-grading. In addition,
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Coh(grSpecXS
•F) is generated, in the triangulated/stable-dg sense, by the objects

E(k) := S•F(k)⊗ E , for k ∈ Z and E ∈ Coh(X).

4. (grSpecXS
•F)cl = grSpecXclS•H0F .

The first three properties are what we expect from the classical setting,

while the fourth property ensures that the construction gives the derived

enhancement of the corresponding classical constuction.

A version of this conjecture exists in the setting of dg-schemes and dg-

stacks, and requires that F is (quasi-isomorphic to) a connective complex, so that

S•F is (quasi-isomorphic to) a connective dg-algebra. This is discussed in [3,

Section 10.4].

Given a construction of grSpec in the derived setting, satisfying the

properties above, we make the following proposition.

Proposition 6.3.9. Let C be a dg-pretriangulated category with the structure ι∗, ι
∗

making it a category over a derived stack X . Let V ∈ Coh(X) be a complex of vector

bundles on X and let Y
π
→ X be given by Y = grSpecXS

•V . Then an invertible object F

in C and an isomorphism

ι∗V
α
→ F (6.3.34)

can be used to make C into a category over Y . If α is an isomorphism, then the map is

birational if ι satisfies

SkV ∼= ι∗(F ) (6.3.35)
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Proof. As in Proposition 6.3.6, the map ι∗(V⊗k) → F k must factor through ι∗(SkV)

because F is invertible. Given an object M of Coh(Y ), we define

ι′
∗
(M) :=

(
ι∗(M)⊗ι∗S•V

∞⊕

k=−∞

F k

)

deg 0

.

We note that if α is an isomorphism, then ι∗(O(1)) = F , since π∗(O(1)) = F .

We define the functor ι′∗ as follows. Given an object C of C, we set

ι′∗(C) := ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
. (6.3.36)

We equip it with an action of S•V in Coh(X) via

S•V ⊗OX
ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
−→ ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
. (6.3.37)

This morphism is given by the adjoint of the map ι∗(SkV) → F k. Assuming

Conjecture 6.3.8, the rest of the proof goes like GNR’s proof of 6.3.6, except

without the need to check the functors descend to the quotient by torsion

modules since Y is not the projective bundle. For example, to check ι′∗ ⊣ ι′∗, it

suffices to check this holds on the generators E(i). We demonstrate this.
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Let E(k) = E ⊗ S•V (k) ∈ Coh(X), viewed as an object of Coh(Y ). Let

M ∈ C. Then,

HomC(ι
′∗(E(k)),M) = HomC(ι

′∗(E ⊗ S•V (k)),M) (6.3.38)

= HomC



(
(ι∗(S•V (k)⊗ E)⊗ι∗S•V

∞⊕

l=−∞

F l

)

deg 0

,M


 (6.3.39)

= HomC



(
(ι∗(S•V (k))⊗ ι∗(E)⊗ι∗S•V

∞⊕

l=−∞

F l

)

deg 0

,M


 since ι∗is monoidal.

(6.3.40)

= HomC(F
k ⊗ ι∗(E),M) since α is an iso. (6.3.41)

= HomC(ι
∗(E),M ⊗ F−k) (6.3.42)

= HomCoh(X)(E , ι∗(M ⊗ F−k)) (6.3.43)

= HomS•V -mod(E ⊗ S•V (k), ι∗(M ⊗
∞⊕

l=−∞

F l)) (6.3.44)

= HomCoh(Y )(E(k), ι
′
∗(M)). (6.3.45)
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CHAPTER VII

THE FLAG COMMUTING STACK

7.1 Geometry of FComm

The classical flag commuting variety is the stack quotient

FCommcl
n = {X, Y | X ∈ b, Y ∈ [b, b], [X, Y ] = 0}/B. (7.1.1)

Here b indicates upper triangular n × n matrices over C, and B indicates

invertible upper triangular matrices acting by the adjoint action on both X and

Y . Let n = [b, b]. We write

FCommcl
n = ((b× n)×g {0}) /B. (7.1.2)

It is a classical fiber product, where b× n
[−,−]
→ g is the commutator map.

The dimension of the space of X and Y is n(n + 1)/2 + n(n − 1)/2 = n2.

The affine subscheme of Cn2
cut out by the equation [X, Y ] = 0 is not a complete

intersection. So we replace it by the affine derived scheme with coordinate dg-

algebra given by the Koszul complex of the commutator map

b× n = Cn2 [−,−]
→ C

n2

= g, (7.1.3)

viewed as a section of trivial g-bundle over Cn2
. This gives a map g∗ ⊗ O

C

n2
µ
→

O
C

n2 . The Koszul complex is

[
· · ·

d3→ ∧2(g∗ ⊗O
C

n2 )
d2→ g∗ ⊗O

C

n2
d1=µ
→ O

C

n2

]
. (7.1.4)

We call this affine derived scheme Zn.
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Definition 7.1.1. The derived version of the flag commuting variety FCommn we

study is the quotient stack

FCommn = Zn/B.

We equivalently can think of Zn as a derived fiber product, and hence

FCommn = ((b× n)
L
×g {0})/B (7.1.5)

The space FCommn inherits a T = C∗ ×C∗-action via the scaling of X and

Y respectively, i.e the T action on the factor b× n.

7.1.1 Tautological Bundles. Since FCommn is a B-quotient, to any

representation V of B there is a vector bundle V on FCommn via the associated

bundle construction, i.e. V = p∗V where p is the map FCommn → pt /B. For the n

elementary characters of B, we get n tautological line bundles L1, ...,Ln. Here, B

preserves the full flag

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn.

The i-th elementary character of B is given by B |F i/F i−1 . Likewise, FCommn has

the rank n vector bundle Tn given by the standard representation Cn of B. The

standard flag fixed by B gives a filtration of vector bundles:

0 →֒ T1 →֒ T2 →֒ · · · →֒ Tn. (7.1.6)

Here, the i-th subquotient is equal to Li. The bundle Tn is equipped with

endomorphisms

X y Tn x Y. (7.1.7)
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These endomorphisms preserve the filtration of Tn. Here, Y is nilpotent with

respect to the filtration. The endmorphisms X and Y are not T -equivariant and

instead have weights t and q respectively with respect to the T -action. We should

really write:

X : tTn → Tn. (7.1.8)

Y : qTn → Tn. (7.1.9)

These give the correct maps in the equivariant category.

7.1.2 Iterated Graded-Affine Bundle. The following idea was

communicated to us by Eugene Gorsky and Andrei Negut.

There is a map:

FCommcl
n

FCommcl
n−1×C

π
❄

(7.1.10)

given by:

(X, Y ) 7→ ((X |Fn−1, Y |Fn−1), X |Fn/Fn−1
). (7.1.11)

Let’s try to understand the fiber of this map. Let (Xn−1, Yn−1, xn) be a point

in FCommcl
n−1×C. Let (Xn, Yn) be a point in the fiber. We have to find two (n− 1)-

vectors to fill in the remaining entries of the n × n matrices Xn and Yn. We set v
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and w to be these vectors as in

Xn =



Xn−1 v

0 · · ·0 xn


 , (7.1.12)

Yn =



Yn−1 w

0 · · ·0 0


 . (7.1.13)

Proposition 7.1.2. Let V = C

n−1. We claim that the space of possible pairs of n − 1

vectors are given, up to scaling, as the dual of the zero-th cohomology of the following

complex:

En−1 := V
(Xn−1−xn·id,−Yn−1)
−−−−−−−−−−−−→ V ⊕ V

(Yn−1,Xn−1−xn·id)T

−−−−−−−−−−−−→ V. (7.1.14)

Here, the underline indicates homological degree 0.

Proof. Let v and w be the vectors filling in the remaining entries of Xn and Yn

respectively. The equation [Xn, Yn] = 0 gives (Xn−1 − xn)w + Yn−1v = 0.

Now, let Bn denote the group of invertible upper-triangular n× n matrices.

Let Bn = TnUn where Un is the unipotent radical of Bn and Tn = Bn/Un is the

torus. Let An denote the affine scheme parametrizing the matrices Xn and Yn.

The action of Un on matrices is a proper free action so the stack quotient [An/B] is

equivalent to [(An // Un)/Tn] where (An // Un) is the affine (categorical) quotient.

We now must consider v and w up to the residual action of V = ker[Un → Un−1]

acting via Un on n× n matrices. Given t ∈ V , the action by t is precisely:

(v, w) 7→ (v, w) + ((Xn−1 − xn)− Yn−1)t. (7.1.15)

138



Lastly we must consider residual stacky action of C∗ = ker[Tn → Tn−1], which acts

by scaling. This completes the proof.

So we should think of the fiber as a C∗-quotient, because there was no

stacky C∗-action on the base factor C. The consequence of the above discussion is

the following.

Proposition 7.1.3. Let xn denote the coordinate function on C. Consider the following

complex of vector bundles on FCommcl
n−1×C.

En−1 := qtTn−1
(X−xn,−Y )
−−−−−−−→ qTn−1 ⊕ tTn−1

(Y,X−xn)T

−−−−−−→ Tn−1. (7.1.16)

We have the following diagram.

FCommcl
n = grSpec(S•H0(En−1))

FCommcl
n−1×C

π
❄

Thus

Coh(FCommcl
n ) = {S•H0(En−1) graded modules inCoh(FCommcl

n−1)⊠C[xn]-mod}.

Recall that graded affine bundles are equipped with tautological bundles

O(k). We can think of O(k) as the S•H0(En−1) module given by S•H0(En−1)(k)

where (k) indicates a degree shift by k in the •-grading. For k = 1, this line

bundle is in fact the n-th tautological line bundle Ln discussed previously.

This is because for each k, we can also obtain O(k) via the associated bundle

construction for the weight k character for the residual torus C∗. Restricting
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the n-th elementary character of Bn to C∗ gives the weight 1 character. For

1 ≤ m < n, we have Lm = π∗Lm, because the first n − 1 elementary characters of

Bn factor through Bn → Bn−1. This gives an inductive construction of FCommcl
n

and its tautological line bundles. We have:

p∗(L
k
n) = Sk(H0(En−1)) ∀k ≥ 0. (7.1.17)

From this iterative description of FCommcl
n we can see how it is badly

behaved. The maps in the complex En−1 are not always injective or surjective,

so H0(En−1) is not a vector bundle.

The map in (7.1.10) certainly lifts to derived enhancements to give a map

π : FCommn → FCommn−1×C. However, it is not obvious that this map is a

derived version of a graded affine bundle.

We now make a conjecture about how this iterative description of

FCommcl
n may exist for its derived enhancement.

Conjecture 7.1.4. The structure of iterated graded affine bundles for FCommcl lifts to

derived enhancements. There exists a complex of vector bundles V on FCommn−1×C

such that

FCommn = grSpecFCommn−1 ×C(S
•V)

FCommn−1×C

π

❄

where grSpecFCommn−1 ×C(S
•V) is the construction in Conjecture 6.3.8, and Ln = O(1).

Conjecture 7.1.5. In Conjecture 7.1.4, the complex V is quasi-isomorphic to En−1.

We make two conjectures rather than one, because our intuition

suggests it is more likely that the graded affine bundle structure lifts to derived
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enhancements for some complex of vector bundles V . Nevertheless, in the

following we work with the conjecture that V is equal to En−1 which we view

as less likely. It is important to note that S•En−1 is not a connective dg-algebra, or

obviously quasi-isomorphic to one. This is because En is concentrated in degrees

−1, 0 and 1, and the first map fails to be always injective while the second fails

to be always injective. Hence S•En−1 is possibly concentrated in all homological

degrees. Thus in this particular case, it is conceivable that the correct setting for

the above conjecture is one of non-connective derived algebraic geometry or

dg-algebraic geometry. Another possibility of course is that En−1 is the wrong

complex of vector bundles after all.

Remark 7.1.6. In [3, Proposition 2.10], it is shown how the classical flag Hilbert

scheme can also be described iteratively, as the projectivization of the 0-th

homology of a similar complex of vector bundles also concentrated in degrees

−1, 0 and 1. An important difference though is that the second map in that

complex is guaranteed to be surjective, so that complex is actually quasi-

isomorphic to a complex supported in degrees −1 and 0. Hence the symmetric

algebra of that complex is obviously quasi-isomorphic to a connective dg-algebra.

The authors then explain how to construct a family of dg-schemes iteratively

from this connective dg-algebra. We initially attempted to work in the setting of

dg-schemes and dg-stacks rather than modern DAG, but because S•En−1 is not

connective, or obviously quasi-isomorphic to a connective dg-algebra, we didn’t

see much hope.

7.2 Categorifying inclusion and trace in the affine setting

In [32], Hogancamp gives categorifications of the inclusion map ι : Hn
fin →

H
n+1
fin and its adjoint, the partial trace ( 2.6.3) pn : Hn+1

fin → H
n
fin. He defines adjoint
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functors:

I : Hn
fin ⊠C[xn+1]-mod → Hn+1

fin Tr : Hn+1
fin → Hn

fin ⊠C[xn+1]-mod. (7.2.1)

He calls the latter functor partial Hochshild homology. This functors play a key role

in the inductive proof the the GNR conjecture proposed in [3].

Now, we want to explain how one might categorify the inclusion map

ι : Hn
ext → H

n+1
ext and its adjoint pn : Hn+1

ext → H
n
ext. These are the functors we will

need in the inductive proof of the affine GNR conjecture that we propose in the

next section.

We state the following conjecture.

Conjecture 7.2.1. There exist functors:

I : Hn
ext ⊠C[xn+1]-mod → Hn+1

ext Tr : Hn+1
ext → Hn

ext ⊠C[xn+1]-mod, (7.2.2)

with adjunction I ⊣ Tr.

The map I is analogous to p∗ and the map Tr is analogous to p∗ where p is

the map in equation 7.1.10.

Note that ι maps the Kazhdan-Lusztig generators of Hn
ext as follows:

ι(bi) = bi for i = 1, ..., n− 1, ι(b0) = Tnb0T
−1
n , ι(ω) = ωTn. (7.2.3)

We can give a well defined functor on the additive category I : EASBimn ⊠

C[xn]-mod → Hn+1
ext by describing where the generators go. We have:

I(B0) = FnB0F
−1
n I(Bi) = Bi for i = 1, ..., n− 1 I(Ω) = ΩFn. (7.2.4)

142



On generating morphisms, I sends i-colored morphisms in EASBimn to their

counterparts in Hn+1
ext for i = 1, ..., n − 1. It sends an n-colored generating

morphism ϕ to idFn
⊗ϕ ⊗ idF−1

n
. It sends an Ω-colored morphism ϕ (the black

diagrams in [27, Definition 3.12]) to ϕ ⊗ idFn
. The construction of I , ignoring the

tensor factor of C[xn]-mod, was accomplished in very recent work of Mackaay-

Miemietz-Vaz (see [17]). The factor of C[xn]-mod simply extends scalars on Hom

spaces to include multiplication by xn.

While we conjecture it to be true, it is not guaranteed that I lifts to a

functor on the homotopy category of EASBim. This needs to be checked. Let

us explain. Let A and B be additive categories. There are two issues that arise:

1. A functor F : A→ Kb(B) doesn’t necessarily induce F̂ : Kb(A) → Kb(B).

2. If functors F̂ , Ĝ : Kb(A) → Kb(B) restrict to functors F,G : A → Kb(B), and

ϕ : F → G is a natural transformation, then ϕ doesn’t necessarily lift to a

natural transformation ϕ̂ : F̂ → Ĝ.

Point 2 above is especially relevant to us when extending units and counits

of adjunction.

Resolving this issue is the subject of forthcoming work by Elias and

Hogancamp [5].

We propose that the adjoint to I is the same as the functor defined by

Hogancamp. Given a complex F in Hn+1
ext , we conjecture that

F
Tr
7→ Tot

[
0 → F

xL
n−xR

n→ F → 0

]
(7.2.5)

gives the desired functor. Here, xLn and xRn denote left and right multiplication by

xn respectively.
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7.3 Affine GNR Conjectures

Let Vn denote the standard Gaitsgory complex in Hn
ext (see section 4.2), let

χ : Vn → Vn(2) be the map of chapter V, and let Y : V → V(−2)[2] be the nilpotent

monodromy map that V is equipped with from being a pseudocomplex.

Notation 7.3.1. We set En to be the following object of Hn
ext ⊠C[xn+1]-mod:

En−1 := Tot

[
Vn−1[−2]

(χ−xn+1,−Y)
−−−−−−−−→ Vn−1(2)[−2]⊕ Vn−1(−2)

(Y ,χ−xn+1)T

−−−−−−−−→ Vn−1

]
.

(7.3.1)

Here, the underline indicates homological degree zero.

For the rest of the section, we assume the functors

Hn−1
ext ⊠C[xn]-mod

I−�==�−
Tr

Hn
ext

of the last section exist.

We state the following conjecture about objects of Hext, having drawn

comparisons with the corresponding bundles on FComm.

Conjecture 7.3.2. Let Wi denote the i-th Wakimoto object. We conjecture that:

1. We have I(Wi) =Wi for i = 1, 2, ..., n− 1.

2. There exists a homotopy equivalence:

SkEn−1 ≃ Tr(W⊗k
n ) ∀k ≥ 0. (7.3.2)

In particular, when k = 1, we conjecture that En−1
∼= Tr(Wn). Using adjunction,

this gives rise to the map I(En−1) ∼−→Wn.
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3. We have

Vn = Cone[I(Vn−1[1]) →Wn], (7.3.3)

for some map I(Vn−1) → Wn. In addition, we propose it is the following map.

Composing the inclusion Vn−1[1] → En−1, after applying I , with the map

I(En−1) →Wn gives this map.

Now we state our main conjecture in full detail, which we called the affine

GNR conjecture.

Conjecture 7.3.3. There exist adjoint functors

Hn
ext

ι∗−�==�−
ι∗

Coh
C

∗×C∗(FCommn) (7.3.4)

making Hext a category over FComm, exchanging the q grading with (2)[−2] and the t

grading with (−2). Moreover:

1. The functor ι∗ is birational, i.e. ι∗(R) = O.

2. The functors exchange the i-th Wakimoto with the i-th tautological line bundle Li.

3. The following diagrams of functors commute:

Hn
ext

ι∗ ✲ Coh
C

∗×C∗(FCommn)

Hn−1
ext ⊠C[xn]-mod

Tr
❄

ι∗✲ Coh
C

∗×C∗(FCommn−1)⊠C[xn]-mod

p∗
❄

(7.3.5)

and
Hn

ext
✛ ι∗

Coh
C

∗×C∗(FCommn)

Hn−1
ext ⊠C[xn]-mod

I
✻

✛ι
∗

Coh
C

∗×C∗(FCommn−1)⊠C[xn]-mod

p∗
✻

(7.3.6)
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In the next section, we explain how to deduce Conjecture 7.3.3 from

Conjecture 7.3.2.

A corollary of this conjecture is that the toroidal HOMFLY homology can

be computed via coherent sheaves on FComm.

Corollary 7.3.4. Let β be a cylindrical braid and let L be its closure, a link in the

thickened torus T 2 × I . Let Fβ be the Rouquier complex. Let HHH(L) be the toroidal

HOMFLY homology of L defined in 4.1.16. Then

HHH0(L) = RΓ•(ι∗Fβ)

up to degree shift.

7.3.1 n = 1 Case. Recall that H1
ext = Kb(Z) where Z is the category

defined in 4.2.16. We note that FComm1 = FCommcl
1 = C × (pt /C∗), so

CohT (FComm1) = (t, q)−graded C[x1]-mod where x1 is in degree (−1, 0). The

functor ι∗ : CohT (FComm1) → H1
ext is given by (−)⊗ Ω.

We must consider the additive category EASBim1 to understand ι∗. Given

an object

M ⊗ Ωk M ∈ C[x1, δ]-mod. (7.3.7)

the functor ι∗ sends it to

qkM (7.3.8)

7.3.2 Inductive construction. Now we show how Conjecture 7.3.3 can

be deduced from the earlier conjectures.

Assume the conjecture for all m < n.
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By the inductive assumption we have functors

Hn−1
ext

ι∗n−1−�====�−
ιn−1∗

Coh
C

∗×C∗(FCommn) (7.3.9)

satisfying 1 and 2 of Conjecture 7.3.3. Because ι∗n−1 exchanges Li with Wi, it

exchanges Tn−1 with Vn−1 by part 3 of Conjecture 7.3.2. Since χ and µ are unique,

it also exchanges them with X and Y respectively. Hence ι∗n−1(En−1) = En−1. We

obtain functors

Hn
ext

ι∗−�==�−
ι∗

CohT (FCommn×C) (7.3.10)

by setting ι∗ = ιn−1∗ ◦ Tr and ι∗ = I ◦ ι∗n−1. These make Hn into a category

over FCommn ×C. Now apply Proposition 6.3.9 using Wn as the invertible object.

Take the adjoint of the map En−1
∼−→ Tr(Wn) to get a map I(En−1). Note that

I(En−1) = I(ι∗n−1(En−1)) = ι∗(En−1). Hence we have a map ι∗(En−1) →Wn.

By applying Proposition 6.3.9 we get functors

Hn
ext

ι′∗−�==�−
ι′∗

CohT (FCommn). (7.3.11)

Since the map ι∗(En−1) →Wn is an equivalence, we have ι∗(Ln) = ι∗(O(1)) =Wn.
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