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A “Leidenfrost ratchet” is a device which facilitates a newly-discovered phenomenon,
where drops of liquid accelerate across a heated substrate. The system has been
qualitatively studied and a vapor flow model has been suggested to account for this
observed behavior. This paper provides a study of general behavior, considerations
needed to apply and test a vapor flow model for the ratchet system, and submits
the model to an experimental trial. The results show the quantitative validity of a
vapor flow model, while exposing subtle qualitative inconsistencies for the behavior of
water and ethanol droplets. Content of the study can be used as a starting point for
more detailed analysis of the system, possibly leading to novel scientific and industrial
applications.
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Chapter 1

Introduction

1.1 The Leidenfrost Ratchet

When an amount of liquid is placed on a heated surface, it experiences evaporation
at different rates depending on the surface temperature relative to the liquid’s boiling
point [1]. Above the boiling point, nucleate boiling begins, as pockets of gas de-
velop along the heated surface of the liquid. As temperature is increased, the boiling
becomes more violent, as these gas pockets form larger and more rapidly. This con-
tinues until a certain temperature, called the Leidenfrost point is reached. Above this
temperature, vapor escapes the liquid rapidly enough to cause a pressure sufficient
to support the entire weight of the liquid, which rests on top of the newly formed
vapor layer (see figure 1.1). Thus, a small amount of liquid placed on a surface whose
temperature is above the Leidenfrost point is completely separated from the surface
by the vapor that is escaping the droplet itself. The film of vapor that supports the

droplet also serves to insulate it, maximizing the lifetime of a boiling droplet.

This paper will study a phenomenon observed when film boiling ( Leidenfrost) drops
of liquid are placed on periodically asymmetric surfaces (ratchets). Namely, that such
a droplet will experience a net force in a preferred direction relative to the ratchet

surface (see figure 1.2 and website [2]). Said phenomenon represents a manifestation of
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Figure 1.1: Different boiling regimes. Adapted from [18]

the “ratchet effect,” where properties of asymmetry and disequilibrium are exploited

to obtain useful work from an otherwise random physical system.

Figure 1.2: Film boiling nitrogen droplet on ratchet surface. In the image, the droplet
would be observed as moving to the right. The scale bar length is 1.5mm. Ratchets
are machined from brass or plastic, which are chosen for their compatibility with fab-
rication procedures. Plastic ratchets can be used for liquid nitrogen, which film boils
at room temperature, while brass ratchets can be heated to temperatures sufficient
for most common liquids to film boil.

Similar effects, where drops of liquid spring into directed motion along the surface
of a substrate, have been demonstrated using a chemical [3, 4, 5, 6, 7, 8, 9], thermal
[3, 10, 11], or electrical [12] gradient. The droplets in these systems typically must
be in contact with the substrate surface and are therefore subject to wetting related
forces. Resulting motion is usually limited to a few ™™ and overall transport rarely
exceeds a few centimeters. The system studied here is a unique alternative to these

processes because of the formation of a thin layer of vapor between the liquid and
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ratchet. This vapor layer serves as a low-friction surface over which the droplet can

move faster and farther in comparison to other ratchet systems.

This effect was discovered by Matt Francis and Dr. Heiner Linke, and makes possible
a new class of liquid transport devices with possible applications in both industrial
and laboratory processes. It has been described in [13] and received attention in the
scientific and popular media [14, 15]. The ratchet system possesses asymmetry as
a spatial feature, machined into the ratchet geometry. A thermal gradient that is
perpendicular to the direction of motion (the ratchet is heated from below) keeps
the system out of thermal equilibrium. Spontaneous acceleration of droplets in this
system has been observed for all liquids tested (boiling points ranging from —196°C’
to +151°C') and is expected to occur for any liquid, provided the temperature is above

the Leidenfrost point.

The system’s behavior has been previously described by Laura Melling [16] and a
preliminary model was developed by Benjamin Alemén in 2004 [17]. The basic concept
of this model is that the droplet experiences a force due to vapor that is flowing
beneath it. Therefore, it will be referred to throughout this paper as the vapor flow
model. The course of my research that is represented here has been to build upon
this previous work, gathering more complete data of droplet behavior, adapting the
existing model into an experimentally testable form, and carrying out the preliminary

experimental verification of the vapor flow model.



Chapter 2
Phenomenology

Before exploring the dynamic processes involved in droplet motion, I will first describe
how film boiling droplets behave in the ratchet system and quantify some initial

observations that have been made.

2.1 Kinematics

In order to experimentally characterize the force produced in the ratchet system, data
will need to be taken of the acceleration experienced by the droplet. To accomplish
this, I first note, as observed by Melling [16], that droplet motion is consistent with
a differential equation which includes a constant (velocity independent) driving force

(ratchet force) and a retarding force that is linear in velocity (drag force):

d?*z dx
mW = Fratchet - ﬁ% (21)

Solving this equation, an expression for velocity is obtained:



CHAPTER 2. PHENOMENOLOGY )

v(t) = (UO - &) e mt — & (2.2)

Here, m is the droplet mass, ‘5737 is the net acceleration experienced by the droplet,

Fratener = ma is the driving ratchet force, a is the acceleration resulting from the
ratchet force, (3 is the drag coefficient, ‘fi—f = v is the velocity of the droplet, and ¢
is time. By experimentally measuring the velocity profile of a droplet in the ratchet
system, equation 2.2 can be fit to the data and used to determine values for a and %
Experimental data of droplet velocity matches this fit equation quite well for droplets
in the film boiling regime, as shown in figure 2.1. As will be discussed in section
2.2, data fit the curve, but show more fluctuation in velocity at lower temperatures.

Experimental and data analysis procedures are given in appendix A.
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Figure 2.1: A typical plot of the velocity of a film boiling droplet of R-134a (a
common refrigerant, B.P. & —26°C) as a function of time. The droplet was given
initial velocity opposing the preferred direction of motion and reverses direction under
the influence of the ratchet force. This data was taken at a ratchet temperature of
70°C'. The circles represent a three point average of experimental data (see appendix
A) and the curve is fit equation 2.2.
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Since the physical value of acceleration in mathematically equivalent to the second
time derivative of a particle’s position, one may first attempt to calculate acceleration
directly from position data. Under constant acceleration, the data could be fit to a
simple parabolic curve x(t) = at*+ 3, where a = Z(t) = 2« gives the desired quantity.
Because of the presence of a drag term, however, the position data will not be simply
parabolic, except near zero velocity when drag is small. To use a parabolic fit, it

would be necessary to restrict oneself to the data gathered in the region near v = 0.

Fit equation 2.2 was observed to be experimentally preferable to a simple parabolic
fit of position near the zero velocity region of droplet motion. In order to see why,
consider the equivalent fit to velocity: a linear fit of the points around v = 0. As
shown in figure 2.2, this type of fit is very sensitive to scatter in the experimental
data. For a set of points, a number of different slopes appear feasible as accurate
characterizations of the data depending on how many are included and the error in
each point. Utilizing equation 2.2 allows the use of significantly more data points,
improving fit accuracy and providing information about the drag constant % and the

terminal velocity achieved by the droplet.
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Figure 2.2: Linear fits of several different slopes seem plausible around the point
where v = 0, making the use of such a fit undesirable to determine acceleration.
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2.2 Temperature Dependence

Since the heat flow from ratchet to droplet is the driving energy source of droplet
motion, it is a good idea to first study how the ratchet effect depends on temperature.
In order to do this, I have gathered data for droplets of a fixed volume over a range
of ratchet temperatures. This was done for three liquids: refrigerant R-134a, ethanol,
and water. For the latter two, data acquisition began at the lowest temperature
at which droplet motion was observed and the liquid was thought to be entering
the film boiling temperature regime (the fact that film boiling may have only been
partially achieved will be discussed in the following paragraphs where two different
temperature regimes are identified). In the case of R-134a, this is already occurring

at room temperature, so that is where experimental data begins.

Using the same experimental procedure as above, data for the acceleration and drag of
droplets was gathered over a temperature range of about 200°C. Of particular interest
is the droplet acceleration as it depends on temperature, which is summarized for the

three liquids in figure 2.3.

It is useful to distinguish two different temperature regimes from this data: 1 will
therefore refer to the low and high temperature regimes, as indicated in figure 2.3.
Droplets in the low temperature regime tend to experience the highest values for
acceleration, but also show the most scatter in the data. Once in the high temperature
regime, however, acceleration tends to become more stable and varies little with an
increase in temperature. A difference in behavior can also be observed by comparing
the velocity profile of a droplet in the low temperature regime with the previously
shown data for a drop in the high temperature regime as shown in figure 2.4. While the
overall behavior of the droplet in the low-temperature plot tends to follow equation
2.2, it is subject to fluctuations around the actual curve. Spontaneous acceleration

and deceleration events can be seen as rapid increases and decreases in velocity.

We attribute this behavior to spontaneous nucleate boiling events, where the droplet
briefly comes into contact with the ratchet surface, resulting in the type of violent

boiling characteristic of the transition boiling regime. This may happen if the liquid is
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Figure 2.3: Acceleration measured by fitting equation 2.2 to experimental data for
velocity. Crosses indicate cleaning the ratchet surface with brass polish only, while
circles represent data obtained after additional cleaning by sonication (outlined in
appendix A). The dashed line distinguishes two different temperature regimes, sepa-
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rated by scatter observed in droplet behavior.
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Figure 2.4: Velocity evolution of R-134a droplets in the low (a) and high (b) tem-
perature regimes. Data was taken at temperatures of 22°C' and 70°C respectively.

not yet entirely in the film boiling temperature range. This supposition is supported
by the dependence on the cleaning method used. It is well known that the Leidenfrost
point can vary substantially with surface roughness and cleanliness [18, 19]. In the
low temperature regime, where the temperature may be near the Leidenfrost point,
the cleaning method used substantially affects the observed acceleration, while in the
high temperature regime, where liquid is presumably not in contact with the surface,

cleaning doesn’t notably impact droplet motion.

2.3 Ratchet Orientation and the Role of Gravity

A final observation of droplet behavior is made by replacing the horizontally-oriented

ratchet with a channel having a flat bottom and ratcheted side walls (see figure 2.5).

A drop of film boiling liquid placed in such a channel experiences a net force in
the same direction relative to the ratchet geometry as those described above. The
resulting acceleration, though not yet quantified, is noticeably more significant than

that which results from one ratchet surface on the underside of the droplet. It can
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Figure 2.5: A channel with ratchet side walls. In the diagram, the drop of liquid
would be observed to move in the direction of the arrow. Also see video at [2].

move slugs of liquid up substantial inclines and becomes stronger as the width of
the channel is narrowed. This observation suggests that the role of gravity in the
ratchet system is not unique; its function is merely to confine the liquid to the ratchet
surface and force an interaction between droplet and ratchet. This type of channel
may facilitate the use of a Leidenfrost ratchet mechanism for liquid transport in
applications such as microchip cooling [15], or other environments where traditional

pumping and/or cooling techniques may have disadvantages.
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Chapter 3

Vapor Flow Model

Having now developed an understanding of the basic behavior of the Leidenfrost
ratchet system, further physical inquiry requires the development of a working model
for the mechanisms of the driving ratchet force. Such a model was initially developed
by Benjamin Alemén in 2004 [17]. This chapter will begin by laying out his formula-
tion of the vapor flow model. I will then taylor the model to our droplet system and

provide a comparison to initial experimental results.

3.1 Motivation and Initial Considerations for a
Vapor Flow Model

As a consequence of being in the Leidenfrost boiling regime, a droplet in our system
is separated from the ratchet surface by a thin layer of vapor. It is therefore natural
to expect this vapor layer to play an important role in the generation of the ratchet

force.

For a film boiling droplet on a flat surface, gas escapes via the vapor layer in all

horizontal directions equally. When placed on a ratcheted surface, however, the
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symmetry of the system is broken, which is assumed to result in a net flow of vapor
along one direction relative to the ratchet geometry (see figure 3.1). The model

assumes that this flow of vapor tends to pull the droplet along with it by viscous

drag, resulting in the observed movement of the droplet.

Symmetry Bt"eak g

Hot, flat surface ‘ Hot, ratchet surface
}

Figure 3.1: A break in symmetry in the ratchet system may lead to directed vapor
flow, eventually causing droplet motion. Arrows indicate assumed vapor flow.

3.1.1 Modeling Vapor Flow with a Parallel Plate Geometry

Due to the surface tension of the liquid, the droplet curves around the ratchet ge-
ometry in such a way that it is very close to the surface in some areas and relatively
far above the surface in others (see figure 3.2). It will be shown in section 3.2.3 that
at its closest, the droplet is likely to be at a distance on the order of at most a few
tens of microns. As the droplet curves away from the surface, the distance between
them rapidly becomes of order 0.1mm (the “depth” of one ratchet tooth is 0.3mm).
In order to conserve mass flux across this transition from the proximate region (call
it region “1”) and the far region (“2”), the velocity of the vapor must decrease by at

least an order of magnitude (assuming incompressibility):

pAivr = pAvy

U1

I

10

V2

It is therefore reasonable to concentrate on the areas where ratchet and droplet are in
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close proximity and parallel to each other. Adopting this restriction greatly simplifies
the study of vapor flow in the ratchet system; it allows the use of a parallel plate
geometry for flow within the vapor layer. It is also plausible that outside of these
regions, vapor is capable of escaping in such a way as to not affect droplet motion

(namely, in a direction transverse to droplet motion).

Photo

Vapor

[ k’
Ratchet

Tlustration

Figure 3.2: Attention is given to those areas where droplet and ratchet form a parallel
plate geometry. The upper plate being the drop of liquid and the lower plate being
the ratchet surface.

For fluid flow between parallel plates, there are commonly two types of laminar flow.
Poiseuille flow arises due to a gradient in pressure along the fluid channel and will
result in the driving force in our system. Couette flow is caused by the relative motion
of the two plates (it will arise once the droplet is in motion) and will result in a drag
force which opposes motion [20]. The next sections go through the mathematical

derivation of these two types of flow.

(a) (b)

V4

X

Figure 3.3: Velocity profiles of vapor in Poiseuille (a) and Couette (b) type flow.
The top arrow in (b) indicates the movement of the upper plate. Adapted from [20].
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3.1.2 Vapor Flow Within Parallel Plate Geometry: Solving
the Navier-Stokes Equation

The set of differential equations that describe the motion of a fluid are known as
the Navier-Stokes equations [20]. Here, I begin with the equation specific to an

incompressible fluid, simplified by the lubrication approximation (see appendix B):

oP 0%
oz | 19z (3:-1)
where P is pressure, 1 is the viscosity the fluid, v is its velocity, and the x and z
directions are defined in figure 3.3. To obtain the velocity profile v(z) of the vapor
flow in the Leidenfrost ratchet system, we integrate twice and apply the boundary
conditions that the vapor at the upper (liquid) and lower (ratchet) plates is stationary

relative to the plates themselves.

o _ o
T2 T ox
*v oP
n//@dde—//adzdz
1 0P

Since the lower plate represents the surface of a stationary ratchet, the velocity there

is zero. Applying v(0) = 0:
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The upper plate represents the surface of a drop of liquid, whose velocity changes as
a function of time. The condition that vapor not move with respect to the droplet

surface means that it must have the same velocity as the drop. Applying v(h) = Vgrep:

1 0P
U(Z)|z:h = Udrop = %%lf + Clh

Vdrop h dP

h 2n dx

= Clz

The general expression for the velocity profile v(z) now now reads:

1 0P Vdrop

v(z) = %EZ(Z —h)+ 2 (3.3)

The first term represents a pressure driven Poiseuille type flow while the second
represents the drag-inducing Couette type flow. Except in the instance where the
droplet is not moving with respect to the ratchet, the typical vapor flow will be a
combination of these two basic types. Figure 3.4 shows the velocity profile within the

vapor layer for various droplet speeds.

3.1.3 Net Force and Equation of Motion

Now that we have a good idea of how the vapor is flowing in the ratchet system, it
is relatively simple to arrive at an expression for the force exerted on the droplet.
This force will be due to frictional forces between the droplet surface and parallel
layers of the vapor flow. It will be proportional to the area of the drop upon which
the vapor interacts; a given vapor flow acting over a larger area results in a greater
force. Also, for a given vapor flow v(2), the resulting force will be proportional to
the differential ag—(;). A large value for this quantity corresponds to a large difference
in velocity between adjacent vapor layers, resulting in a greater frictional force [21].

The resulting force on a droplet is then given by:
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(a) (b)
(c) (d)

Figure 3.4: Velocity profiles of vapor for varying droplet speeds. (a) is at vgop = 0,
(b) Is at Vdrop = %’Uterminala (C) at Vdrop = Uterminal, and (d) at Vdrop = 2Vterminal- Note
the sign of the gradient (with respect to z) of each at z = h. The expression for
terminal velocity was obtained from the proceeding treatment of the net force.

Fdrop = _Fvapor = _nA_[U(z)]z:h (34)

where the constant of proportionality is the viscosity of the vapor. Note the sign
convention, if the velocity is increasing as the vertical height increases, kinetic energy
from the drop goes into frictional forces between vapor layers and the droplet slows
down under the influence of a negative force (see figure 3.4). Inserting expression 3.3,

we obtain

P
F = (_ﬁ@_ — UM> A cosf (3.5)

The cos 6 term has been added to account for the directionality of the ratchet “teeth”
(see figure 3.12). This total force exerted on the drop may be interpreted as the sum
of two independent forces. A driving “ratchet force” caused by a pressure gradient,

and a dissipative “drag force” caused by viscous drag.
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Expression 3.5 is still too general a form to be useful in modeling the Leidenfrost
ratchet system. All work in the present section up to this point, including the proposal
of a vapor flow model and how to apply it, was in place prior to my involvement
(largely due to [17], whose contributions are also present to a lesser extent in some
of the following sections), my focus has been bridging the gap between theory and
experiment. Before proceeding with an actual experimental trial, it is necessary to

determine more detailed expressions for:

e The vapor layer thickness h
e The pressure gradient g—]:

e The area of the droplet A

These parameters will be specific to the Leidenfrost ratchet system, and are the

subjects of the proceeding sections.

3.2 Tailoring the Vapor Flow Model to the
Leidenfrost Ratchet System

3.2.1 “Contact Area” A,

The first term that I would like to consider in equation 3.1.3 is the area term A. In
the preceding formulation, A was the area of one “plate” in the specified geometry.
The expression applicable to the Leidenfrost ratchet system must therefore take into
account only those areas of a droplet where the surface is parallel to the ratchet.
In later sections, I will refer to this area as the “effective” area A.f;. In order to
formulate an expression for this amount of area, I will begin by looking at the more
common case of a droplet film boiling on a flat surface, which has been studied in

some detail.
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(a) Contact Area A,

b e o e

Figure 3.5: The physical quantities “A.” and “A.s,” are illustrated in (a) and (b)
respectively. In each case, the area has been marked with a red line.

Effective Area A.ss

There exist in the literature two separate formulations for this area, which is referred
to as the “contact area” A, of a droplet (somewhat misleading, since a film boiling
droplet is not in contact with the substrate). The first is offered by Baumeister et
al. [22] and is derived from a numerically obtained solution to the Laplace capillary
equation (which will appear in a later section about the pressure gradient %), the

second is developed by [23, 24] and is based on simple geometry and scaling laws.

Scaling law-obtained expression for contact area.

To a certain extent, film boiling drops of liquid can be regarded as equivalent to
droplets placed on a non-wetting surface. Such droplets experience competing forces
due to gravity, which tends to flatten them out, and surface tension, which prefers a
spherical shape (minimizing surface area). A useful quantity when dealing with this
type of interplay between forces is what is known as the “capillary length” x~1.It is
derived by balancing the Laplace pressure (produced by surface tension forces) and

the hydrostatic pressure (produced by gravity) for a spherical droplet of radius ™'
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A N

1

29k = 2pgKk~
-1 _ g
K = — 3.6
Pg (3.6)

where 7 is the surface tension, p is the density of the liquid, and g is the acceleration
due to gravity. The capillary length can be thought of as the length scale beyond
which the influence of gravity becomes important [25]. For example, if a normally
flat surface is pertubed in such a way as shown in figure 3.6, it returns to its flat

geometry after a horizontal distance roughly equal to one capillary length.

Figure 3.6: Liquid displaced by an object returns horizontal in a distance of one
capillary length. Adapted from [25].

In formulating an expression for A, [23, 24] distinguish two separate volume regimes
which are characterized by droplet shape. For droplets whose volumetric radius R
(given by V = %’NR?’) is smaller than one capillary length, the shape is considered

roughly spherical with a flattened bottom (see figure 3.7).
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Side Top
Figure 3.7: Top and side view of a small droplet. The marked area is where the

droplet is in “contact” with the surface. R and r are also illustrated.

In order to determine how the “contact radius” r scales with volume, I examine the

geometry of figure 3.8:

Figure 3.8: Geometry considered for drops with B < x~!. The center of mass is

lowered an amount § against a flat surface (dashed line), deforming the spherical
shape.

This figure depicts a droplet whose center of mass has been lowered by an amount o
against a flat surface. Following the derivation in [24], the energy cost to do this is

approximated by:

AE x 70? — pgR*§ (3.7)

Minimizing the energy, a scaling law for ¢ is obtained.
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v6% o< pgR*6
5 o PR3

§ o KR? (3.8)

Examining the geometry of figure 3.8, we see that r and ¢ can be related to R:

(R—0+r* = R’
r? = 2R6 —6°

So for very small values of 9,

r? ~ 2R} (3.9)

into which we can insert equation 3.8 to obtain

r o Rk (3.10)

This relation is verified by [24], where the numerical constant is found to be about
0.9.

Once a droplet’s radius exceeds one capillary length, its shape is more accurately
described as a “puddle” than a sphere (see figure 3.9). The height of such a puddle
is constrained to 2x~! by surface tension and hydrostatic forces (2y and .5pgh by

length, respectively) [23]. Any volume added to the drop will increase the puddle



CHAPTER 3. VAPOR FLOW MODEL 22

1

radius, while the height remains fixed at 2k7'. A scaling law for r is obtained by

relating the spherical volume to a cylindrical volume of radius r:

V x R

V o x k?

NI
N|=

(3.11)

r x R2k

The physical quantity termed “contact area” is defined by A, = 7r2. Using the above

expressions for r, we obtain:

(3.12)

C

) 81rR'%? if R<rk7!
| 8lnR3k if R> K1

Side Top

Figure 3.9: Top and side view of a large droplet. Although the actual contact area of
the drop is that which is indicated in the figure, the formulation for A, includes the
extra area outside this radius, as shown.

Using water as an example, this area is plotted below for illustrative purposes. In
the figure, I have included a shaded region where the two curves meet. This is as a
reminder that they represent the asymptotic behavior of the contact area and should

be connected by a smooth transition from one to the other.



CHAPTER 3. VAPOR FLOW MODEL 23
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Figure 3.10: Contact area A, for water. For drops with R < k!, the area grows with
volume as V3. For drops with R > k7!, the area grows linearly with volume. The
shaded region indicates the fact that the two curves do not connect directly; they are
only accurate for asymptotic regions of the graph.

Baumeister’s expression for contact area.

A consequence of a liquid’s surface tension is that there is typically a difference in
pressure between a droplet’s interior and the external environment [25]. This is known

as the Laplace pressure, and was mentioned in the previous discussion.

This difference in pressure is given by the Laplace capillary equation:

1 1
Pin — Pout = (R_ + R—) (3.13)
x y

where R, and R, represent the radii of curvature along two different axes. What the

equation says is that if the pressure across a liquid’s surface increases, the “curvature”

% must also increase by the same amount. For example, the capillary equation for a

sphere is
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2y

AP = —
R

(AP)R = 2v

The product (AP)R is a constant. Equation 3.13 will be revisited in section 3.2.4 in
order to determine the pressure gradient % in the ratchet system. For the present
discussion, it is sufficient to recognize that this over /under pressure dictates the equi-
librium shape adopted by a drop of liquid and can therefore be used to determine the
contact area A.. The approach taken by [22] was to numerically solve the equation

for film boiling droplets on a flat surface, obtaining an expression for A..

Droplet volume is first non-dimensionalized by defining V* = x3V. The shape
adopted by droplets is shown to fall into three regimes determined by the depen-
dence of droplet thickness on liquid volume. The three corresponding expressions for

the contact area are given as:

15 (32)P v it v <08
A. =< 125612756 if 0.8 < V* <155 (3.14)
0.54KV if V* > 155

Examining these equations, we see that for very small and very large droplets, the
contact area closely matches the expressions derived previously (the expressions for
large drops are identical up to a constant factor). The middle equation in 3.14
effectively “patches together” the asymptotic expressions. It just happens to be that

droplets in our experiments typically fall into this transition range (see table 3.1).

Because the expressions derived previously from scaling laws are really only good
approximations for very large and very small volumes, it is reasonable to expect
equation 3.14 to more accurately describe our ratchet system. Figure 3.11 shows

equations 3.12 and 3.14 for water drops over a volume range typical of experiments
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Volume corresponding to: | V* = 0.8 | V* = 155
Water 12.5ul 2430l
Ethanol 3.28ul 635l
R-134a 0.98ul 190ul

Table 3.1: Volume limits for the validity of equation 3.14.

for the Leidenfrost ratchet system.

:
Contact &rea [m*] Water

0.00008

0.00006

0.00004

000002

Tolume [pL]

Figure 3.11: Contact area A, for water. The solid line represents equation 3.14 and is
valid at all points in the range shown, while the dashed equation represents equation
3.12. Typical experiments run over the volume range ~ 10 — 200ul.

Although we now have some likely expressions for A., we recall that what we need is
some fraction of this area A.ss that will be specific to droplets on a ratchet surface.
This area will vary from A, not only because of the shape of the substrate, but also
due to the fact that droplets in the ratchet system tend to be “stretched” along the
direction of the ratchet force (destroying the circular shape held by a droplet on a

flat surface). Accounting for the ratchet shape will be the subject of the next section.
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3.2.2 “Contact Length” [ and Effective Area A ;;.

Because the area term in equation 3.1.3 represents only the area of the droplet that
is parallel to the ratchet surface, the contact area A, needs to be corrected in order
to be applicable to the Leidenfrost ratchet system. The fraction of this area that
results in the ratchet force will be referred to as the “effective area” A.fy and must
be measured directly. I begin by considering the shape of the droplet and defining a

few dimensions as shown in figure 3.12.

) /M

-J

U
T

Figure 3.12: Diagram of droplet shape which is adapted from actual photographs
(e.g., as in figure 3.13). In the figure, 7 = 1.5mm is the period length and [ is the
length of droplet surface that is parallel to the ratchet slope, which is approximated
in experimental treatments as the distance between a local maximum and the next
local minimum. Ratchet depth is 0.3mm and 6 = 11.31°.

As illustrated in the figure, every horizontal distance of period length 7 has associated
with it an amount of liquid surface [ that is approximately parallel to the ratchet slope.
Since the expression for A, also pertains to a horizontal area, I define the “effective
area” to be this fraction of the total contact area: A sy = A It is not immediately
obvious that his would constitute a good approximation for A.s; for a stationary
drop. For a moving droplet, however, there will be a time averaging of this area
as the droplet moves from one ratchet tooth to another. The assumption would be
pretty good for droplets covering at least three full period lengths, getting better as

volume increases.

In order to measure this value, high resolution still photographs were taken of a drop

of liquid on the ratchet surface large enough to cover multiple period lengths. This
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is to ensure that the drop has adopted a general shape. For convenience, as well as
objectivity, we define [ to be the distance between a local maximum and the next
local minimum. Using known ratchet dimensions as a scale, the characteristic length

[ is measured for ethanol and water.

e N

Ethanol

— ——

Figure 3.13: Images used to measure parameter [. Ratchet period length 7 = 1.5mm
is used as a scale. Volumes are around 60ul, with temperatures about twenty degrees
above each liquid’s change over to the high temperature regime. We choose the local
minima/maxima for points 1 and 2 in an attempt to be objective with visual data.

The measured values for % are collected in table 3.2 below.

{

Ethanol | 0.70
Water | 0.60
R-134a | 0.76

Table 3.2: Measured values for é for ethanol and water.

It should be noted that this procedure must be carried out at temperatures corre-
sponding to those which experiments are to be carried out. This is because the surface
tension lowers with an increase in temperature, affecting the measurement. It is also
important that the droplet be large enough to cover multiple period lengths in order

to avoid the influence of edge affects, where the droplet curves upward.
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3.2.3 Vapor Layer Thickness h

[ now turn my attention to perhaps the most difficult term in equation 3.1.3 to obtain.
Measuring this quantity directly has been done for droplets on a flat surface by [23],
and is found to typically be on the order of 10 — 100um. This was accomplished
by studying the diffraction pattern produced by directing a laser through the vapor
layer. Such an experiment for a droplet on a ratchet surface is currently underway by
our group, but until data is available, I must use a more indirect approach to measure

the value of h for droplets in the Leidenfrost ratchet system.

Note that the drag force depends on h:

Vdro
Fdrag = _ﬂvdrop = - dhpAeff

p 1

ma = EAeff (315)
Solving for h, one obtains:

ho= A

(5) m

n Ay
= — cos 0 (3.16)

() PV

Here, cos § has once again been used to correct for the directionality of the drop. %

is one of the fit parameters obtainable from fit equation 2.2, p is the liquid’s mass
density, and V' is the volume of the drop. Using this formulation, it is a simple matter

to infer the value for h from experimental data for %
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3.2.4 Droplet Curvature and Pressure Gradient %

As mentioned in section 3.2.1, the surface of a drop of liquid has a curvature that is
directly related to a difference between internal and external pressure. For every point

on the surface, this over /under pressure is given by the Laplace capillary equation [25]:

1 1

PLn_POUt:AP:’Y(R__R#> (317)
T Y

Here P is pressure, v is the surface tension of the liquid, and R and R’ are the radii
of curvature along the two dimensions of the surface (on the surface of a sphere, both
radii would be equal and positive, while for a saddle, one would be positive, the other

negative).

In order to employ this equation to obtain the pressure gradient g—i in the Leidenfrost
ratchet system, I first make a few observations. Although equation 3.17 involves
two radii of curvature, a droplet on a ratchet surface curves only in one dimension
(excluding the outer edges). A droplet curves around the ratchet’s profile, as shown
in figure 3.14, but is flat across its width. This is equivalent to having an infinite

radius of curvature (in one dimension) at all points away from the outer edges. As

R, — oo, R%, — 0 and equation 3.17 simplifies to AP = £.

Figure 3.14: Diagram of droplet curvature. The surface of the droplet is seen to
curve around the ratchet at points 1 and 2, while remaining flat in the direction
perpendicular to the plane of the page.
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If I now make the assumption that the internal pressure of the drop is constant, the
difference in pressure between points 1 and 2 (defined as the distance between a local

maximum and the next minimum, see figure 3.14) is easily obtained:

in ou 1
P — Pt = W(R—l)

. 1
o = (1)

Plout _ P20ut = AP = v (_ — _) (318)

Once again labeling [ as the distance over which this occurs, the pressure gradient %—];

between points 1 & 2 is roughly given by:

oP AP vy [ 1 1
PV A (- 3.19

By measuring the radii of curvature at these two points (see Appendix D), the pressure
gradient, which is responsible for the ratchet force, can be calculated and inserted

into equation 3.5.

3.3 Experimental Verification

The data acquired through fit equation 2.2 gives numerical values for the acceleration
a due to the ratchet force, and the drag term % In order to test the idea of Fjchet
being produced by the mechanisms of the vapor flow model, I would like to compare
the predicted dependence a(V') = “rathet from the model to experimentally measured
values for a over a range of volumes V. I begin with the F},;.ner component of equation

3.5 and solve for a using Newton’s second law:
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hoP
Frac et — = TS a_
tehet = 14 2 Oz
hoP A
a = ————
2 0x m
hoP A
- = = 3.20
¢ 2 0z pV ( )

h (3¢ i 1 1 1
- 2 (1s S 6 21
5 (p3> (R1 RQ)V 6 COS (3.21)

Before comparing this equation to experimental data, it is still necessary to insert
an experimentally determined value for h. I therefore use equation 3.16, along with
experimental values for % and % to see how the value for h varies over a range of

volumes. This is summarized in figure 3.15.
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Figure 3.15: Experimentally determined values of h, using the expression for A. that
scales as V56 for water (a) at 460°C' and ethanol (b) at 300°C. The horizontal line
indicates the average value in the 50 — 200u! range for water and over all volumes for
ethanol.

Equation 3.21 and figure 3.15 represent how acceleration is to be calculated if we
use the formulation of A, given by [22]. T also want to consider the acceleration that
results from using the expressions for A, derived in section 3.2.1 as outlined in [23, 24].

Inserting equation 3.12, an alternate expression for a(V) is derived:

R1

a(V) = (3.22)
(.81)2k (R%—RLQ) \/ 2 cosf if R> k™!

(.81m) (1)4/3 2 ocosh (i — R%) gV'/3 if R< k™!

The corresponding calculation of vapor layer thickness h is also performed using

equation 3.12 into the equation for A(V') (3.16) and is shown in figure 3.16.
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Figure 3.16: Experimentally determined values of h, using the scaling-law expression
for A., for water (a) at 460°C' and ethanol (b) at 300°C'. For water, the horizontal
line indicates the average value in the 50 — 200u/ range. For ethanol, the horizontal
line is an average over all volumes and the red line is a linear fit to the data.

I note that beyond 50ul, the value for h becomes roughly constant for water. Because
experimental data for acceleration generally shows significant scatter for volumes
below 50ul, I will use the average value for h in the V' > 50ul range while realizing
that the acceleration dependence a(V') will not be valid for V' < 50ul. Using the
value h =~ 10.2pm in equation 3.20, I can now compare it to experimentally measured
values for a as show in figure 3.17 below. As for the ethanol data, using the average
is not justified by the experimental data. I therefore use both a linear fit to the data

and the average value for A in the comparison to theory.
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Figure 3.17: Acceleration as a function of volume for water (a) at 460°C' and ethanol
(b) at 300°C. The upper curve represents acceleration determined using contact area
from [22] (equation 3.21) with the corresponding experimentally calculated value for h.
The dashed segment of this curve indicates the model’s invalidity in that region, where
considerations for [/7, h, and A, are inadequate. Lower curves are for acceleration
determined using the scaling-law derived contact area from [23, 24] (equation 3.22),
with the red curves using the average calculated value for h and the dashed line using
a linear fit for A, as shown in figures 3.15 and 3.16.
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Chapter 4

Conclusive Remarks

The measured values for acceleration due to F.qcher in the Leidenfrost ratchet system
agree quantitatively with a vapor flow model which uses the expression for contact
area that scales as V°/6.  As expected, contact area equation 3.14 seems to also
qualitatively describe droplets in the typical volume range spanned by experiment
more accurately. Error introduced into the model is mainly due to measurements of
%, Ry, Ry, and h. The first three depend on the quality of photograph attainable,
as well as human error. These errors will be difficult to reduce unless an alternative
method of measurement is found. Data for h, however, may be improved significantly
through the method of measurement offered in [23, 24], which is currently in progress
by our group. It is also likely that there are other more complicated effects that must
be factored into the present thinking, such as droplet oscillations, thermo-capillary

flow, and stretching of droplets that is observed in the ratchet system.

In order to explore applications such as microchip cooling [15], work needs to be done
in order to determine how the effect may be scaled down to useful sizes. Specifically,
varying ratchet dimensions such as depth, period length, and slope will be important
to obtain optimal results. The type of liquid will also be important since the surface
tension will likely need to be low for smaller ratchet dimensions. Of particular interest
for applications could be ratchet channels such as that illustrated in figure 2.5 and

shown online at [2]. Because it is likely important for vapor to escape the ratchet
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geometry at some point, a completely closed channel may not work properly and
different channel designs should be explored. As with many new and interesting

phenomena, novel uses of the Leidenfrost ratchet may arise in unexpected places.
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Appendix A

Experimental Procedures

A.1 Cleaning Protocol

To begin with, after a ratchet exits the machine shop and comes into our possession,
special care is taken in order to avoid touching the ratchet surface. This prevents the
introduction of dirts and oils, which could later be burned onto the surface. Because
of the often large differences in temperature at which experiments are performed for
different liquids, each liquid used to gather experimental data has it own ratchet.
These are never heated to a temperature beyond that at which experiments are per-
formed. As illustrated in section 2.2, the cleanliness (or rather, method of cleaning)
of the ratchet is capable of significantly altering droplet behavior (it has even been
observed that ratchets with significant material in the “teeth” can completely reverse

the direction of ratchet motion).

Prior to an experimental run, the brass ratchet to be used goes through an established
cleaning protocol in order to ensure reproducible conditions. The first step is to
polish the ratchet with commercial brass polish (Wright Keane, New Hampshire) and
Kimwipes. Special attention is given to ratchet crevices to ensure that all residues
are removed. The ratchet is then rinsed with de-ionized water. At this point, the

cleaning procedure is complete for those data points indicated by crosses in figure
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2.3, which were obtained prior to the establishment of a more rigorous procedure. All
other data points, however, were collected after the ratchet underwent the following
additional procedures. These were initiated in order to better control ratchet surface

properties.

The polished ratchet is placed in a beaker containing acetone and sonicated for five
minutes at room temperature. Upon removal, the ratchet is rinsed with and then
placed into isopropyl alcohol, where it is sonicated for three minutes. Finally, the
process is repeated using methanol, sonicating for an additional three minutes. The

ratchet is then dried using nitrogen gas, completing the cleaning procedure.

A.2 Data Collection

In order to gather data for the velocity evolution of a drop, which can be used in fit
equation 2.2, a recently cleaned ratchet is placed onto a hot plate, which rests on a
leveling platform. The thickness of the ratchet substrate is &~ 1.2cm Temperature was
measured by inserting thermocouple probes into small holes drilled into the side of
the ratchet approximately 5mm from the top surface and 2.5¢m into the side. Once
hot enough for film boiling to occur, droplets are deposited on a flat brass plate in
order to adjust the surface until it is level. Properly leveled, the ratchet is filmed
from above by a digital video camera, which feeds video onto a computer. Droplets
are given an initial velocity by sending them down an incline in the direction opposite
that of the ratchet force (see figure A.1). Such a droplet will slow to a stop, reverse

direction, and return to the preferred end of the ratchet.

Video clips of droplet motion are analyzed with video tracking software Videopoint
(Lenox, MA). For each frame of a droplet’s motion on the ratchet, position data is
recorded. This position data is used to calculate velocity, which is averaged over three
data points. An example of data is shown in figure A.2 in order to specify calculation
methods. This averaged velocity data can be fit to equation 2.2 as shown in figure
2.1.
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Figure A.1: Experimental setup.

Time s1 position 51 velocity s1 velocity average
u] 0.10%96

0.03333333 0.1015F T -0.243

0.0EEEEEET 00941270~ -0.2214 = —— -0.2141
0.1 0.0851% -01779 -0,15898

0.13333333 0.08252 -0,1701 -0,1637

0.16666667 0.07775 -0,1431 -0,1534
0.2 0.07285 -0,147 -0,128

0,23233332 0.06872 -0,1239 -0,1277

0. 26666667 0.06498 -01122 -0,1109
0.z 0.06176 -0,0966 -0,100%5

Figure A.2: Part of a typical table of values used to calculate droplet velocity. Time is
taken to step forward at the frame rate of %s. Position data in column two is obtained
via direct measurement from the video data. Velocity (column 3) is calculated by
taking the difference of the prior and current position and dividing by time elapsed.
The three point average of velocity (column 4) is calculated as the average of the
previous, current, and next cells of column 3.
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When carrying out an experiment, it is important to keep a few things in mind. First,
the ramp angle should be adjusted periodically so that there is enough initial velocity
for the droplet’s motion to cover the entire length of the ratchet (while remaining on
camera). This ensures the maximum number of data points to use in fit equation 2.2,
giving a better measurement of the fit parameters. Also, the transition from ramp to
ratchet should be made as smooth as possible to prevent droplets from breaking apart
on impact. Experimenting with lighting will give a better contrast of the droplet on

the ratchet, making tracking easier.
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Appendix B

The Lubrication Approximation

In order to simplify the Navier-Stokes equation to a one-dimensional equation that
is linear in v, I invoke the “lubrication approximation” (as well as assuming incom-
pressibility) [25]. This derivation will follow that of [26]. For a fluid, Newton’s second

law reads as:

—

- dv

fzp%+p77-V17 (B.l)
where f is the force acting on an element of volume, p is the mass density, and ¥ is
the velocity of the element of volume. The additional term on the right takes into
account the possibility of ¥ field changing overall, in addition to with time [26]. For
an incompressible fluid, there is the additional condition V - ¢ = 0. There are two
types of forces present within a fluid, one from a pressure gradient and another from
viscosity. Equating the sum of these two forces to the form of Newton’s law above,

we obtain:

—

dv

pt pv - Vi = —VP +nV3 (B.2)
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The above vector equation constitutes three equations, these are the Navier-Stokes
equations. The term pv- V¥ is inertial, it can be neglected for systems with sufficiently
small Reynolds numbers, which is simply a ratio of inertial to viscous forces present.
From [20], we have
vh
v
vhp,

o

where v is the average velocity of the vapor, h is the height of the vapor layer, and v

is the kinematic viscosity of the vapor, v = Z—Z. We integrate our expression for v(z)

over h in order to determine v(z):

h
v(z) = 1/0 ia_PZ(Z_m

Using equation 3.19 for %, the Reynolds number is

h3p, 1 1
Re— 11 B.3
‘T 121 7712)7 (Rz Rl) (B:3)

Using values from appendix C, as well as our measured values for curvature and [, we
calculate the values of Re for our liquids and find that they are indeed much smaller
than 1.

Re
Water Vapor | 6.8 x 107°
Ethanol Vapor | 1.02 x 1078

Table B.1: Reynolds numbers for water and ethanol in vapor “channels.”

Since all Reynolds numbers of our system are much less than 1, the inertial term in

the Navier-Stokes equation can be left out, leaving;:
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—

d
pd—:; = _VP 4V (B.4)

If we also want steady-state solutions for v, the left hand side must also be zero,

leaving:

VP =nV* (B.5)
which is further simplified for flow in one-dimension:

oP 9%

—$ + 7]@ =0 (B6)

This is the equation used to approximate vapor flow within our ratchet system.
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Appendix C

Physical Properties

C.1 Liquid Properties

TE) ITEC) [p GE) [ v ()
31315 | 40 | 772.01 -
32315 | 50 | 763 | 1989 x 107

340 66.85 - 18.6 x 1073
360 86.85 - 16.7 x 1073

Table C.1: Properties of Ethanol liquid (B.P. = 78.5°C) (Reference: [27], [28] 15-43,
6-150)

TE) ITCEC) [p )| v (5)
372778 | 99.63 | 958.63 .
37315 | 100 | - | 5801 x 107

Table C.2: Properties of liquid water at boiling point (Reference: [28] 6-13, 6-150)

According to [28], temperature dependence of volume is described by cubic expansion
coefficient o (°C~1). For ethanol at 70°C, a = 1.67 x 1073,

o = %(%)P (1)
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TE) [TCO) |p (5] ()
247.07 | -26.08 | 1376.6 | 15.54 x 1073

Table C.3: Properties of liquid R-134a. (Reference: [27], 2.71)

In terms of density:
p = % (C.3)
dp = —% v (C.4)
= —ﬁaV(dT)p (C.5)
= —VOé(dT)p (C.6)
= —pa(dT)p (C.7)
ps = pi(l —adl) (C.8)

So if we take the initial temperature to be 50°C with a density of 763 (%), the density
at the boiling point 78.5°C' becomes:

p = T63(1—47.6 x 107?) (C.9)
o (1) c10

We also need a better value for surface tension of ethanol at boiling point 78.5°C". A
274 degree polynomial is fitted to the three data points from table C.1 and evaluated
at the boiling point using Mathematica (Wolfram, USA).

Y(T) = —0.355562 + 0.00228248z — 3.46782 x 10~ %2> (C.11)

N
7(351.65) ~ 18.2x107% (E) (C.12)
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Figure C.1: Fitted data for surface tension of ethanol.

So our table of physical properties now becomes:

TO | TE [pH] ()

Water 100 | 373.15] 958.63 | 58.91 x 1073
Ethanol | 78.5 |351.65| 727 18.2 x 1073
R-134a | -26.08 | 247.07 | 1376.6 | 15.54 x 10~

Table C.4: Physical properties of liquids at their boiling points.

C.2 Vapor Properties

For the vapor of these chemicals, we are interested in the viscosity and the density
at the average temperature between the boiling point and the ratchet surface. This

temperature roughly corresponds to 550K for water,

o (3) n. (Pa-s)
Water Vapor 0.36185 19.4 x 107
Ethanol Vapor .00118 14.5 x 107°
R-134a Vapor | 4.279 (293.15) | 13.2 x 107¢ (317K)

Table C.5: Physical properties of gases at the approximate average of ratchet tem-
perature and boiling points (n for water is taken to be the average of its values at
500K and 600K). Reference: [28] 6-13, 6-201; [29] 56; [30] 11; [31] 5.
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Appendix D

Measuring Droplet Curvature

In section 3.2.4, T have shown how it is possible to use the Laplace capillary equation
to determine the pressure gradient ﬁ—]; by measuring the radii of curvature at points
1 & 2. To carry out these measurements, I examine the high resolution images used

in section 3.2.2.

Each image was imported into a computer data analysis program Phantom (Vision
Research, USA), where a coordinate system was established using known ratchet
dimensions as a scale. Data points were collected by mouse clicks along the profile of
the droplet, recording position coordinates for a number of points along the droplet
surface. This position data is imported in Mathematica (Wolfram, USA), where a
fourth-order polynomial was fit to the data points immediately surrounding points 1

& 2. The data with fit curves for water is shown in figure D.1 below.

The mathematical definition for the radius of curvature at a point on a curve is given
by [32]:

3
2

L+ (F@)?)
() -

r(z) =
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Figure D.1: Curvature data and fit curves for water. The curves shown are fourth-
order polynomial fits of the twenty-five data points surrounding the local maximum
and minimum.

Which simplifies at maxima/minima (such as points 1 & 2) to:

!
(@)

r(z) (D.2)

Determined in this way, the values of R; & Rs for water and ethanol are gathered in
table D.1

Ry(mm) | Re(mm)
Water -2.19 0.58
Ethanol -0.21 0.92

Table D.1: Measured values for R; & R».
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