

Olga Igonkina

University of Oregon

August 30, 2004

- Introduction
- BABAR Detector

Lepton Flavor Violating (LFV) tau decays are forbidden in the classical Standard Model; are allowed but very small in SM with neutrino mixing; are very sensitive to non-SM physics.

The limits on LFV before BABAR/Belle :

- $\ \ \, {\cal B} \left(\tau \to \mu \gamma \right) \ < 1.1 \times 10^{-6} \ \, {\rm at} \ 90\% \ {\rm CL} \ [{\rm CLEO}, \ 13.8 \ {\rm fb}^{-1}]$
- $\mathcal{B}(\tau \to \mu \mu \mu) < 1.9 \times 10^{-6}$ at 90% CL [CLEO, 4.8 fb⁻¹]

Model	$ au ightarrow \ell \gamma$	$ au ightarrow \ell \ell \ell$	Ref.
SM + lepton CKM	10^{-40}	10^{-14}	hep-ph/9810484
SM + left-h. heavy Dirac neutrino	$< 10^{-18}$	$< 10^{-18}$	SJNP25(1977)340
SM + right-h. heavy Majorana neutrino	$< 10^{-9}$	$< 10^{-10}$	PRD66(2002)034008
SM + left and right-h. neutral singlets	10^{-8}	10^{-9}	PRD66(2002)034008
MSSM + right-h. heavy Majorana neutrino	10^{-10}	10^{-9}	hep-ph/0306195
MSSM + seesaw	10^{-7}		hep-ph/0206110
left-right SUSY	10^{-10}	10^{-10}	$\mathrm{hep} ext{-ph}/0306195$
SUSY $SO(10)$	10^{-8}		$\mathrm{hep} ext{-ph}/0209303$
SUSY-GUT	10^{-8}		$\mathrm{hep} ext{-ph}/0307393$
SUSY + neutral Higgs	10^{-10}	$10^{-10} - 10^{-7}$	hep-ph/0304081)
SUSY + Higgs triplet		10^{-7}	hep-ph/0209170
gauge mediated SUSY breaking	10^{-8}		hep-ph/0310148
MSSM+universal soft SUSY breaking	10^{-7}	10^{-9}	hep-ph/9911459
MSSM+nonuniversal soft SUSY breaking	10^{-10}	10^{-6}	hep-ph/0305290
Non universal Z' (technicolor)	10^{-9}	10^{-8}	PLB547(2002)252
two Higgs doublet III	10^{-15}	10^{-17}	$\mathrm{hep} ext{-ph}/0208117$
seesaw with extra dimensions	10^{-11}		hep-ph/0210021

See also E. Ma hep-ph/0209170 for a review

(Some of the numbers are guesses on base on given publication. For precise information, please, consult the reference)

...

Olga Igonkina

DPF 2004

2003

2004

- One prong on the tag side $(\pi\nu_{\tau}, \rho\nu_{\tau}, e\nu_{e}\nu_{\tau}, \mu\nu_{\mu}\nu_{\tau}, ..) \sim 85\%$
- Three well identified leptons on the signal side
- No missing momentum on the signal side

MC: $\tau^- \rightarrow \mu^- e^+ e^-$

$$\begin{split} &Neutrinoless \text{ Decay}\\ &\Delta M = M_{rec} - M_\tau \sim 0\\ &\Delta E = E_{rec}^{CM} - E_{CM}/2 \sim 0\\ &\text{Smeared by resolution and radiative effects} \end{split}$$

Require 1-3 topology, reject conversions; apply lepton identification and selection cuts. Selection cuts and signal box borders are optimized for each channel separately.

Different channels are contaminated with different backgrounds:

$$\begin{array}{cccc} \bullet & \tau^- \to e^- e^+ e^-, & \tau^- \to e^- \mu^+ \mu^- & - \text{Bhabha}, \, q\overline{q}, \, \tau\tau \\ \bullet & \tau^- \to e^- \mu^+ \mu^-, & \tau^- \to \mu^- \mu^+ \mu^- & - \text{Di-muon}, \, q\overline{q}, \, \tau\tau \\ \bullet & \tau^- \to \mu^+ e^- e^-, & \tau^- \to e^+ \mu^- \mu^- & - q\overline{q}, \, \tau\tau \end{array}$$

All cuts except the one shown are applied

Suppress Bhabha and di-muon events with $p_T^{cms} > 100 \text{ MeV}/c$; On 1-prong side - $p_1^{cms} < 4.8 \text{ GeV}/c$ and lepton veto for Bhabha and di-muon contaminated channels;

On 3-prong side - kaon veto and no photon candidates with E > 100 MeV

Each background shape (P_i) is fitted on MC or data control sample. Data are fitted with sum of 3 PDFs. The contribution of backgrounds in signal box is estimated using sideband region.

PRL 92, 121801 (2004)

No excess found in $\mathcal{L} = 91.6 \text{ fb}^{-1}$; $\mathcal{B}(\tau \to \ell \ell \ell) < (1-3) \times 10^{-7} \text{ at } 90\% \text{ CL}$

LFV tau decays Olga Igonkina

DPF 2004

Old Preliminary BABAR $\tau \rightarrow \mu \gamma$ Limit

 $\mathcal{L} = 63 \text{ fb}^{-1}$ $\varepsilon = (5.2 \pm 0.5)\%$ Expected $N_{bkgr} = 7.8 \pm 1.4$

Data observed : 13

$(\mathcal{B}(au o \mu \gamma) < 2.0 imes 10^{-6} ext{ at } 90\% ext{ CL})$

Update with 220 fb^{-1} is expected for Tau2004

Select 1-1 topology; $e \text{ or } \rho$ tag; only μ and γ on signal side; cuts on missing momentum and net p_T in the event. Significant background from $e^+e^- \rightarrow \mu^+\mu^-\gamma$ and $\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau} \gamma$

Limits $(\times 10^{-7})$ at 90% CL based on ~ 90 fb⁻¹ per experiment

Mode	BABAR	Belle
	PRL 92, 121801 (2004)	PLB 589, $103 (2004)$
$\mathcal{B}\left(\tau^{-} \to \mu^{-} \mu^{+} \mu^{-}\right)$	1.9	2.0
$\mathcal{B}\left(\tau^- \to e^- \mu^+ \mu^-\right)$	3.3	2.0
$\mathcal{B}\left(\tau^{-} \to e^{+} \mu^{-} \mu^{-}\right)$	1.3	2.0
$\mathcal{B}\left(\tau^{-} \to \mu^{-} e^{+} e^{-}\right)$	2.7	1.9
$\mathcal{B}\left(\tau^{-} \to \mu^{+}e^{-}e^{-}\right)$	1.1	2.0
$\mathcal{B}\left(\tau^{-} \to e^{-}e^{+}e^{-}\right)$	2.0	3.5

Also $\mathcal{B}(\tau \to \mu \gamma) < 3.1 \times 10^{-7}$ and $\mathcal{B}(\tau \to \mu \eta) < 3.4 \times 10^{-7}$ (Belle)

B-factories have lowered limits on LFV in tau decays to 10^{-7}

Over 500 fb⁻¹ expected in next few years; $\tau \to \ell \ell \ell$ limits should approach $\mathcal{O}(10^{-8})$ soon : many predictions are above this level!

Many more channels to study $\tau \to \ell h h$, $\tau \to \mu \eta'$, $\tau \to p \gamma$, etc.

LFV tau decays Olga Igonkina

DPF 2004

- New BABAR results on search of $\tau \to \ell \ell \ell$ are presented for $\mathcal{L} = 91.6$ fb⁻¹. $\mathcal{B}(\tau \to \ell \ell \ell) < (1-3) \times 10^{-7}$ at 90% CL, where $\ell = e$ or μ .
- BABAR preliminary result for $\tau \to \mu \gamma$ on $\mathcal{L} = 63 \text{ fb}^{-1}$ is $\mathcal{B}(\tau \to \mu \gamma) < 2.0 \times 10^{-6}$ at 90% CL will be updated soon
- Current experimental sensitivity to LFV tau decays approaches theoretical predictions
- Run 4 was very successful for BABAR, the total integrated luminosity is over 220 fb⁻¹ ⇒

expect many more new results on tau physics and LFV processes soon!