Environmental Disturbances: S4 and Pre-S5

Robert Schofield, U of O Doug Cook, Fred Raab, Richard McCarthy, LHO

- Seismic up-conversion
- II. Some peak identification for upper limits groups
 - VME produced
 - seismic/acoustic
- III. Seismic/acoustic mitigation
 - -acoustic enclosures
 - -floating the H2 dark port

DARM injection does not produce up-conversion.

Up-conversion with injection to mimic pitch during wind

Up-conversion depends on stack motion not floor motion

Ground shaking to excite specific motions

Red: mainly beam-axis; Blue: mainly side-to side; Black: no

Side-to-side shaking does not produce upconversion.

Up-conversion for different shaking amplitudes

8

Up-conversion similar at LHO ETMs; is it similar at ITMs and LLO at similar velocities?

Brian O'Reilly's recent LLO measurements

Simple model doesn't explain tail

Possible sources of up-conversion

back-scattering from opticsupport structure – but why not also from BSC back wall?

back-scattering from output telescope: consistent with lack of up-conversion for side-to optic support wire at clamps

brushing cables on test mass support structure - not consistent with side-to side

S4 H1-H2 coherence peak identification for stochastic group

133 Hz: Neslab PSL

chillers

330 Hz HVAC turbine SF01

Pulsars in VME crates (harmonics of 70.12 Hz)

magnetometer near VME crate detects pulsar candidate frequencies.
Magnetometers elsewhere don't.

Red: normal operation of VME crate,

LACK: CPU on but code not running

Coherence between AS_Q and VME

T0=15/05/2005 07:30:25

Avg=1

BW=0.046874

108 Hz peak moves with air-flow to fans

108 Hz peak goes away when power supply fan disconnected.

Acoustic enclosures for LHO reflected port by S5

Acoustic coupling at ISCT4 was reduced beyond expectations, making it worth while to enclose what was the second worst coupling site – the reflected port. We have also ordered an enclosure for the H2 REFL port, though we don't expect

improvement.

ISCT10 floated yesterday, velocity down more than 10

Summary

I. Seismic Up-conversion

- a. several types, focus on the anthropogenic type characterized by b.
- b. not reproduced by DARM injections
- c. not produced by side-to-side motions; possibly not by yaw (n=1)
- d. looks like back-scattering, at least at large amplitudes
- e. similar at LHO ETMX and ETMY, as well as LLO ETMX, MICH noise dominates LHO ITMY
- f. at least at LHO noise starts showing up at a few times background, which is not atypical of seismic transients

II. Peak identification

- a. 70.12 from crate controller
- b. 108 from crate power supply fan
- c. 133 from chiller
- d. 330 from HVAC turbine

III. Acoustic/seismic mitigation

- a. acoustic enclosures for LHO dark port are on their way
- b. H2 dark port is now floating more than 10 reduction in velocity, should reduce H1-H2 coherence, range increased 0.5 Mpc

