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In recent years, nanoscience has evolved from a multidisciplinary research concept to a 

primary scientific frontier. Rapid technological advancements have led to the 

development of nanoscale device components, advanced sensors, and novel biomimetic 

materials. However, potential negative impacts of nanomaterials are sometimes 

overlooked during the discovery phase of research. The implementation of green 

chemistry principles can enhance nanoscience by maximizing safety and efficiency while 

minimizing the environmental and societal impacts of nanomateriaIs. 

This dissertation introduces the concept ofgreen nanosynthesis, demonstrating the 

application of green chemistry to the synthesis of nanomaterials. A comprehensive 

review of the synthesis of metal nanomaterials is presented, demonstrating how 

individual green chemistry principles can improve traditional synthetic routes as well as 

guide the design of new materials. Detailed examples of greener syntheses of 
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functionalized gold nanoparticles with core diameters of 2-10 nm are described in 

subsequent chapters, beginning with a method for functionalizing citrate-stabilized gold 

nanoparticles that are desirable for advanced applications. 

Although citrate-stabilized gold nanoparticles can be easily produced from a 

classic procedure using mild reagents and benign methods, functionalization via ligand 

exchange is often unsuccessful. It was discovered that an ill-defined layer comprised of 

citrate and other ligands interferes with functionalization processes. By removing excess 

citrate in a manner where overall structure and stability is maintained, gold cores 

produced by this route are readily functionalized by incoming thiols, affording 

unprecedented control over surface composition and functionality. 

A direct route to functional nanomaterials using Bunte salt precursors is discussed 

next, describing the use of easily synthesized shelf-stable alternatives to thiols in the 

preparation of water-soluble gold nanoparticles. Control of core size and surface 

chemistry is demonstrated through simple manipulation of reagent ratios, yielding 

products similar to those produced by traditional direct syntheses which rely on the use of 

thiols. 

The use of functionalized nanoparticles as "building blocks" for more complex 

structures was demonstrated in self-assembly processes. Cationic gold particles were 

deposited upon DNA scaffolds to create linear arrays. 

A discussion of the future outlook of green nanosynthesis concludes this work, 

identifying immediate challenges and long-term goals. This dissertation contains 

previously published and co-authored materials. 
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CHAPTER I 

TOWARD GREENER NANOSYNTHESIS 

Note: The material in Chapter I originally appeared as a portion of a recent 

publication, reprinted from Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. "Toward 

Greener Nanosynthesis" Chemical Reviews, 2007,107,2228-2269. The majority of the 

material appearing in chapter I was authored by Dahl, with contributions from Hutchison; 

Dahl and Hutchison shared editing tasks in preparation for publication. Portions of the 

original publication attributed to Maddux were not reproduced in this chapter. 

1. Introduction 

During the last decade, scientists have developed techniques for synthesizing and 

characterizing many new materials with at least one dimension on the nanoscale, 

including nanoparticles, nanolayers, and nanotubes. 1 Still, the design and synthesis (or 

fabrication) of nanoscale materials with controlled properties is a significant and on­

going challenge within nanoscience and nanotechnology. 

Nanoscience is still largely in the "discovery phase" wherein new materials are 

being synthesized (using any means available) on small scales (lOOs of milligrams or 

less) for testing specific physical properties. Typically, during this phase of development 
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of a new technology area, researchers focus mainly on identifying new properties and 

applications. As a result, the examination of any unintended properties of the material 

(e.g. environmental or health hazards) or concerns about hazards or efficiencies ofthe 

production process is often deferred. Given the anticipated wide application and 

distribution of these materials in commerce, consideration of the materials design, 

processes, and applications that minimize hazard and waste will be essential as 

nanoscience discoveries transition to commercialized products of nanotechnology. 

The nature of engineered nanomaterials and their proposed uses provides 

compelling reasons for the implementation of green chemistry in the development of the 

new materials and applications. The technology is early in development and expected to 

be widely applied and distributed. These materials are expected to (i) exhibit new size­

based properties (both beneficial and detrimental) that are intermediate between 

molecular and particulate, (ii) incorporate a wide range of elemental and material 

compositions, including organics, inorganics and hybrid structures, and (iii) possess a 

high degree of surface functionality. Assessment of the potential toxicological and 

environmental effects of nanoscale materials before they are accepted as mature 

technologies presents an opportunity to minimize putative negative consequences2 from 

the outset and ultimately lead to the design of higher performance materials. 

Understanding the structure-function relationships that relate specifically to 

nanomaterials could lead to new "design rules" for producing benign, high-performance 

nanoscale substances. 
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Given that green chemistry has been employed successfully in the preparation of 

highly functionalized products (e.g. pharmaceuticals) that have a strong analogy to the 

functionalized nanomaterials proposed for a range of future applications, one would 

expect successful application of this approach for these nascent materials. Application of 

green chemistry to nanoscience should also prove beneficial in developing production­

level commercial scale materials. The development of high-precision, low-waste 

methods of nanomanufacturing will be crucial to commercialization. In addition to 

providing enhanced research and development strategies, green chemistry offers an 

opportunity to improve public perception of nanoscience, as this approach is relatively 

easy to explain and can be used to convey a responsible attitude toward the development 

of this new technology. For these reasons, green chemistry can playa prominent role in 

guiding the development of nanotechnology to provide the maximum benefit of these 

products for society and the environment. 

In this review, we explore the application of green chemistry principles to the 

field of nanoscience. We first define green nanoscience3 and offer examples of the ways 

in which green chemistry has been, or can be, applied to the design of greener products, 

processes, and applications. Because the vast majority of the research in this area has, 

thus far, involved developing greener approaches and processes, this review will focus on 

nanosynthesis. We further focus the review on those methods that involve wet-chemical 

approaches to the production, functionalization, purification, and assembly of 

nanoparticle building blocks. The bulk of the materials covered within the review are 

ligand-functionalized inorganic nanoparticles, due to the fact that these have been the 
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most prevalent in the literature to date. Throughout the review, we strive to examine how 

the application of green chemistry principles to nanoscience can guide technological 

progress within this emerging field. Because this is an emerging area of technology, we 

identify future research needs and directions throughout the review. 

A number of outstanding reviews on the synthesis and assembly of functionalized 

nanoparticles have already been published.4-7 This review does not intend to provide 

comprehensive coverage of these topics but will focus instead on the aspects of these 

processes that are most relevant to green chemistry. However, publications in 

nanoscience that identify the environmentally benign aspects of the work are just starting 

to appear, so we have attempted to identify and highlight the examples from the literature 

that illustrate greener nanosynthesis concepts and techniques and that help inform the 

reader of research needs within this emerging field. 

1.1 Green Nanoscience 

Green chemistry is "the utilization of a set of principles that reduces or eliminates 

the use or generation of hazardous substances in the design, manufacture, and application 

of chemical products".8 The 12 principles of green chemistry (originally defined by 

Anastas and Wame~ and summarized in Figure 1.1) have now been applied to the design 

of a wide range of chemical products and processes with the aims of minimizing 

chemical hazards to health and the environment, reducing waste, and preventing 

pollution. Application of these principles has reduced the use of hazardous reagents and 

solvents, improved the material and energy efficiency of chemical processes, and 

enhanced the design of products for end of life. Employing these principles toward 
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nanoscience will facilitate the production and processing of inherently safer 

nanomaterials and nanostructured devices. 

Green nanoscience/nanotechnology involves the application of green chemistry 

principles to the design of nanoscale products, the development of nanomaterial 

production methods, and the application of nanomaterials.3 The approach aims to develop 

an understanding of the properties of nanomaterials, including those related to toxicity 

and ecotoxicity, and to design nanoscale materials that can be incorporated into high 

performance products that pose little hazard to human health or the environment. It 

strives to discover synthesis/production methods that eliminate the need for harmful 

reagents and enhance the efficiency of these methods, while providing the necessary 

volume of pure material in an economically viable manner. It also provides proactive 

design schemes to ensure that the nanomaterials produced are inherently safer by 

assessing the biological and ecological hazards in tandem with design. Finally, it seeks 

applications of nanoscience that maximize societal benefit while minimizing impact on 

the ecosystem. In this way, green nanoscience guides materials development, processing, 

and application design throughout the life cycle, starting with raw material selection 

through end-of-life. 

1.2 Application Green Chemistry Principles to Nanoscience 

Nanoparticles and other nanomaterials that exhibit size-dependent properties are 

already finding application in products ranging from consumer healthcare goods to high­

performance composites.9 In addition, a growing number of applications of 

nanoscience/nanotechnology are being developed that promise environmental benefit, 
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including new catalysts for environmental remediation,1O cheap and efficient 

photovoltaics,l1 thermoelectric materials for cooling without refrigerants,12 lightweight 

(and thus energy-conserving) nanocomposite materials for vehicles,13 miniaturized 

devices that reduce material consumption, and sensors that eliminate the need for (often) 

wasteful wet chemical analyses. Nanoscale sensors14 can also offer faster response times 

and lower detection limits, making on-site, real-time detection possible. New 

manufacturing strategies that are additive, rather than subtractive, such as functional 

group directed processes involving self-assembly, can reduce energy requirements and 

waste generation. The use of self-assembly methods also enables materials disassembly, 

incorporating a potential design for end-of-life. To realize new nanotechnologies that 

pose little harm to human health or the environment and to develop technologies that can 

be used to improve or protect the environment, it is desirable to design and use greener 

nanomaterials and develop greener nanoproduction methods. 

Nearly all of the principles of green chemistry can be readily applied to the design 

of nanoscale products, the development of nanosynthesis methods, and the application of 

nanomaterials (see Figure 1.1). In nearly every case, several of the principles can be 

applied simultaneously to drive the best design or solution. We will first discuss how the 

principles guide the design and application of nanoscale materials. Next, we describe 

how the principles apply to design, application, and production of nanoscale materials. 

Principles ofGreener Nanomaterial Design. Three of the 12 principles (as shown in 

Figure 1.1) relate directly to nanomaterial design and the application of these materials as 
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Figure 1.1. Translating the 12 green chemistry principles for application in the practice of green 
nanoscience. The principles are listed, in abbreviated form, along with the general approaches to 
designing greener nanomaterials and nanomaterial production methods and specific examples of 
how these approaches are being implemented in green nanoscience. Within the figure PX, where 
X =1-12, indicates the applicable green chemistry principle. 

nanodevices. These are Principle 4 (Designing Safer Chemicals), Principle 10 (Design 

for Degradation/Design for End of Life) and Principle 12 (Inherent Safety). Application 

of Principle 4 to product design involves considering the structural features of the 

nanomaterial (i.e. the size, shape, composition and surface chemistry) that dictate its 

health hazards (e.g. toxicity) as well as its physical properties. In order to routinely 

implement this design approach, improved understanding of the structure/activity 

relationships for nanomaterials is needed. The rich structural diversity of nanomaterials 

provides significant opportunities to tune and optimize the physical and toxicological 

properties. 

Although a significant body of research exists on environmental and health effects 

of ultrafine particles, there is still a lack of toxicological data regarding the effects of 

engineered nanomaterials both on human health and the environment. Ultrafine particle 
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data show that materials such as silicates, asbestos fibers, and to a lesser extent, carbon 

black and titanium dioxide, can cause oxidative stress, induce pulmonary inflammation, 

trigger the release of cytokines and induce signal transduction pathways.15,16 

"Nanoparticles" represent intentionally engineered products below 100 nm in diameter 

with carefully controlled sizes, shapes, and surface chemistries. The unusual properties of 

nanoparticles (e.g. chemical, optical, or electronic) could lead to adverse biological 

effects that may be unique compared to larger compositions of the same material. 

Variations in particle size17-19 and surface chemistry 15,18 can affect the degree of toxicity. 

For example, nanoparticles may generate free radicals that can adversely affect biological 

molecules. Significant differences may exist between toxicity of nanoparticles and larger 

particles of the same chemical composition.2,2o For instance, smaller nanoparticles are 

more likely to enter the circulatory system and travel throughout the body, lodging in 

distal organs.2,15 

Methods developed to analyze the toxicity of ultrafine particles may provide a 

starting point for determining toxicity of engineered nanoparticles and comparisons can 

be made in terms of methods of injury (e.g. oxidative stress, inflammatory responses, 

signal transduction pathways, etc). Traditional testing and screening strategies may be 

employed initially, leading to novel detection methods that account for the unique 

properties of nanoparticles. These include in vitro cellular assays17,21,22 and biochemical 

analyses which probe the generation of reactive oxygen species and effects on enzymatic 

pathways. Using in vitro assays, route of nanoparticle entry can be determined as well as 

biochemical effects (such as protein interactions, DNA damage, gene expression changes, 
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or generation of reactive oxygen species). Genomics and proteomics can track oxidative 

stress, induction of signal transduction pathways, and apoptosis. Since susceptibility 

factors vary across a given population based on individual genetic makeup, risk 

assessment evaluation should accompany information provided by various assays and 

screens. In vivo studies are essential for identifying potential target organs, travel routes 

of nanoparticles within the body or other phenotypic changes. Such studies could lead to 

reliable methods for tracking and quantifying nanoparticles in cells and whole animals.23 

Additionally, dose-response relationships, calculated using a variety of metrics including 

mass, number of nanoparticles, and surface area, provide a means of normalizing 

information gathered from individual toxicology studies. As an example, one study 

analyzed the cellular uptake of citrate-stabilized gold nanoparticles and found acute 

effects on cell proliferation, motility, and morphology. Unfortunately, only high 

concentrations were examined, so no definitive conclusions could be drawn on the 

toxicity of these nanoparticles,21 exemplifying how dose-response studies are critical to 

accurate evaluation of nanoparticles. 

Care must be taken in experimental design and analysis of engineered 

nanoparticles, since variations in structure and purity can lead to altered toxicity. 

Drastically different methods may be used to produce similar products, but variations in 

methodology and reaction route often lead to differences in yields, purity, and side 

products. For example, carbon nanotubes are routinely mass-produced by at least four 

unique methods, leading to compositionally diverse products.20,24 Thus, engineered 

nanoparticles should be well characterized, with known size and/or distribution, surface 
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area, shape, solubility, purity, surface chemistry, physical (e.g. crystal structure), 

electronic or optical properties. Well-characterized nanomaterials are essential to accurate 

assessments of biological and ecological impacts. 

Principle 10 focuses on design related to the environmental impacts of 

nanomaterials. The approach is to design materials that rapidly degrade in the 

environment, producing innocuous degradation products. In order to implement Principle 

10, further understanding of the fate and transport of designed nanomaterials in the 

environment will be needed. Long-term effects of nanoparticles in the air, soil, and water 

are also important considerations in relation to human health because persistence in the 

environment is directly proportional to the amount of nanoparticles in use.19,25 

Environmental impacts of nanoparticles are usually considered in terms of toxicity or 

exposure/9 but information garnered from the biological studies described above would 

complement our understanding of the corresponding environmental implications. For 

example, bioaccumulation in aquatic and terrestrial organisms will aid in developing 

models for environmental insult, as well as studies from whole animal analyses and in 

vitro experiments. Taxonomic and genetic susceptibility are also important 

considerations. Since chronic exposures often impact the environment in assessing 

ecological risk, long-term studies analyzing a range of sub-lethal doses should be 

included. Preliminary studies of the toxicological effects of engineered nanoparticles on 

Daphnia magna have been inconclusive,20.26,27 highlighting the present need for carefully 

designed assessments. 
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Principle 12 addresses the inherent safety of the material being used. For example, 

the high surface area and increased reactivity of nanoparticles may lead to explosions and 

fires in large-scale production, yet when incorporated into macroscale structures, the 

same material is less likely to be released into the workplace or environment. Taken 

together, Principles 4, 10 and 12 provide a robust framework for designing nanomaterials 

with reduced health, environmental or safety concerns. 

Principles ofGreener Nanomaterial Production. Green chemistry provides a 

number of advantages in process development and manufacturing as well as product 

design. Many preparations of the building blocks of nanotechnology involve hazardous 

chemicals, low material conversions, high energy requirements, and difficult, wasteful 

purifications; thus, there are multiple opportunities to develop greener processes for the 

manufacture of these materials. 

Some progress toward greener nanosynthesis has already been made. For 

example, a more efficient and less hazardous synthesis of metal nanoparticles has been 

developed, producing greater amounts of particles, in less time, under milder conditions, 

while using less hazardous reagents than the traditional preparation.28 Metal nanoparticles 

have been synthesized using intact organisms, such as living plants and in 

microorganisms.29 Microreactors have been used to synthesize nanoparticles in a rapid, 

continuous process, resulting in reduced waste, improved energy efficiency, and 

increased control of product properties.J° In each of these processes, green chemistry 

principles have provided strategies for the development of synthetic methods that are 

more efficient, reduce waste, and have improved health and environmental impacts. 
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For the foreseeable future, green nanosynthesis will certainly be an iterative 

process. As greener methods are developed to provide the nanomaterials needed for 

testing or applications, the demand for enhanced, or more precise, surface chemistry will 

often lead to new synthetic methods that require use of materials that are less green. 

Thus, another round of innovation will be required to meet the material needs while 

reducing hazards and environmental impact. Reducing the biological and ecological 

hazards can only be met through tandem testing during the' discovery' synthesis phase. 

At each stage of iteration, compromises may arise; thus, metrics will have to be 

developed to assess the relative greenness of the competing alternatives. As green 

nanoscience becomes more developed, more benign discovery phase syntheses will be 

constructed in the first iteration. 

One subset of these principles, Prevent Waste (PI), Safer Solvents/Alternative 

Reaction Media (PS) and Reduce Derivatives (P8), aims to reduce waste by designing 

methods that minimize the number of processing steps and the amount of ancillary 

material (solvents, processing aids) used to carry out those steps. An illustrative example 

involves the fabrication of nanoscale features on a substrate such as a silicon wafer. The 

traditional strategy for producing these structures is a top-down approach that creates 

features through a lithographic process involving a significant number of deposition, 

patterning, etching, and cleaning steps that, in effect, remove material to produce 

nanoscale structures. This method employs many materials processing and cleaning steps 

that contribute to the waste stream. The vast majority of the materials used do not end up 

in the product, therefore resulting in low materials utilization. Alternative greener 
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approaches include additive or bottom-up processes, employing self-assembly reactions 

or "direct" write deposition to generate and interconnect the structures. Such alternatives 

eliminate many processing steps, thus minimizing material and solvent use. 

Solvent use is of particular concern in the purification and size selection of 

nanomaterials. Current methods for purification of nanoparticle samples involve washing 

or extraction to remove impurities. This process typically requires liters of solvent per 

gram of nanoparticles and is not usually effective in removal of all the impurities. Size 

selection is essentially a form of purification that consumes solvents in extraction, 

fractional crystallization, or chromatographic methods used to separate the different sizes. 

Development of methods to reduce solvent use in purification and size selection remain 

essential areas of research in nanoscience. 

Another subset of the principles (Atom Economy (P2), Catalysis (P9), and Real­

time Monitoring (PI!) aims to maximize materials efficiency, Le. optimizing conversion 

of raw materials into desired products by enhancing reaction selectivity and yields. The 

concept of atom economy (P2) readily applies to wet-chemical nanomaterial preparations 

in the same fashion as for other synthetic transformations. However, the concept also 

applies to the fabrication of extended nanoscale structures that use bottom-up approaches 

such as self-assembly of molecules or nanoscale subunits into more complex structures. 

Because these approaches incorporate more of the raw materials in the product than 

corresponding top-down methods, they have higher atom economy. At the molecular 

level, catalysis (P9) can enhance materials conversion by enhancing the selectivity of 

reactions, thereby preventing the channeling of raw material into by-products. The 
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development of highly selective transformations that can be carried out in the presence of 

diverse, sensitive functionality is a continuing challenge in nanoscience as it is in 

molecular reaction chemistry. Real-time monitoring (PU) of the production and 

transformation of nanomaterials, though in its infancy, will be one of the keys to 

enhancing materials conversion in the future. 

Four of the principles, Less Hazardous Reagents (P3), Safer Solvents/Alternative 

Reaction Media (PS), Renewable Feedstocks (P7), and Inherent Safety (P12), can be 

employed to enhance the process safety or reduce the hazards associated with a process. 

Many of the "discovery phase" preparations of nanomaterials utilize hazardous reagents 

(P3, P12) or solvents (PS). There are already a few examples that illustrate the 

application and benefits of applying these principles to enhance process safety by 

developing alternatives for toxic and/or inherently hazardous reagents and replacing or 

reducing the use of hazardous solvents. This is a rich area for investigation as the 

demand for larger volumes of nanomaterials increases and new methods for nanomaterial 

synthesis are developed. In some cases, the use of benign feedstocks derived from 

renewable sources (P7) may prove a successful strategy for enhancing safety in 

nanomaterial production. 

The last subset of the principles involves enhancing energy efficiency and 

includes Designfor energy efficiency (P6), Catalysis (P9), and Real-time Monitoring 

(PU). Assembly reactions occur under mild conditions with a wide range of suitable 

materials and synthetic methods to choose from. Bottom-up assembly of nanodevices 

greatly reduces the number of processing steps, the chances of particle contamination, 



15 

and reliance on cleanrooms, all contributing to energy savings. In the event that higher 

reaction temperatures are needed, as is currently the case for a number of nanoparticle 

preparations, the development of specific catalysts may be a useful strategy. Given the 

complexity of many nanoparticle preparation reactions (requiring simultaneous control of 

composition, dispersity, shape, and functionality), in most cases careful in situ 

monitoring of reaction conditions and progress (Pll) will lead to energy savings as well 

as improved product characteristics. 

This discussion thus far provides an overview of the broad applicability of the 

green chemistry principles to nanoscience. Each of the 12 principles provides guidance 

in the design of safer nanomaterials and greener production of these materials. The bulk 

of this review will describe the current status and on-going challenges for greener 

synthesis and production of nanomaterials within the context of these defining principles. 

2. Toward Greener Synthetic Methods for Functionalized Metal Nanoparticles 

Many syntheses of nanoparticles have been developed in recent years, in an effort 

to produce structures that have specific form and function relevant to a given application. 

The preparation of functionalized nanoparticles within a green context poses interrelated 

challenges in terms of maintaining product integrity (such as structure, shape and size 

dispersity, functionality, purity, and stability) while employing greener methods 

whenever possible. For example, control over particle size and dispersity may reduce 

purification requirements by eliminating the need for extensive separations, while the 
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Figure 1.2. Key properties of nanomaterials. The overall size (d) and shape of the particle dictates 
optical and electronic properties. A stabilizing shell composed of either covalently bound ligands 
(depicted above) or associated ions provides stability and solubility. Pendant functional groups 
define reactivity, while the length of the ligand shell determines the minimum interparticle 
spacing (r). 

ability to control surface functionalization, intended to enhance particle stability, dictate 

surface chemistry, solubility, and the degree of particle interactions (see Figure 1.2) helps 

to better define the safety and reactivity of nanoparticles. 

Nanosynthesis methods are being refined such that they are convenient and 

scalable, whether it involves the direct synthesis of a functionalized material or the 

preparation of a versatile precursor particle whose smface properties can be easily 

modified to meet the demands of a given application.5 While a tremendous body of 

knowledge related to nanosynthesis currently exists, the need for more advanced 

materials and techniques may bring nanosynthesis back to the discovery phase. Thus, we 

are presented with a unique opportunity to utilize green chemistry principles while 

acknowledging existing information, rather than simply retrofitting existing methods to 

meet greener standards. 

To iJlustrate the status of green nanosynthesis as weJl as describe the challenges 

presented by the application of green chemistry to the field of nanoscience, we review the 
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synthesis of noble metal nanomaterials, beginning first with citrate reductions of metal 

ions, followed by direct synthesis of ligand stabilized materials. Seeded growth 

approaches are discussed next, as they relate to both spherical and anisotropic particles. 

Emerging technologies in green nanosynthesis are discussed, followed by sections 

describing modifications to nanomaterials that serve not only to impart new functionality, 

but also allow manipulation of the materials at the nanoscale. Not all of the practices and 

methods described would be characterized as "green." Indeed, many classic benchmark 

methods are described with the intent of providing a historical context for the 

implementation of green chemistry within nanoscience, while more recent reports offer 

incremental improvements to traditional practices, addressing process challenges 

including reducing agent selection, avoiding surfactants, solvent choice, and improving 

yields, size distribution, and purity. It is by this gradual mechanism that the development 

of new methods to meet greener standards will occur: without compromise to the overall 

quality of the nanomaterial products, through continuous effort and revision, rather than 

as a single revolutionary event. 

Direct synthesis of nanoparticles occurs under conditions where the nanoparticles 

nucleate and grow, usually by the reduction of metal ions. Nanoparticles are often 

synthesized in the presence of a ligand or a stabilizer that can bind to the surface of the 

newly formed particle, offering stability and imparting well-defined surface chemistry. 

Excess ligands may be used to arrest further particle growth, thus offering increased 

control over nanoparticle size and polydispersity. It is critical that the ligand does not 

interfere with particle development in an undesirable manner (i.e. by preventing 
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reduction of the metal ion precursor, or inducing the formation of misshaped particles). 

Typical ligands include phosphines, thiols, and amines, which may be organic or water 

soluble, depending on the pendant functionality. 

2.1 Citrate Reductions 

The reduction of gold salts by citrate anions was pioneered by Turkevich over 

half a century ago, yielding nearly monodisperse, water soluble gold clusters with 

diameters ranging from 7-100 nm?l,32 Although the synthesis predates green chemistry 

principles by several decades, it is a rather benign procedure, as the reagents pose little 

hazard, the preparation does not rely on organic solvents, and few (if any) undesirable 

side products are generated in the course of the reaction. Revered for its simplicity, 

requiring only a gold salt (hydrogen tetrachloroaurate, HAuCI4), trisodium citrate, and 

water, it remains one of the most reliable methods of creating large gold nanoparticles. 

Upon addition to a refluxing solution of HAuCI4, citrate plays the dual role of reductant 

and stabilizer, reducing Au(llI) to colloidal gold clusters, where virtually all of the gold 

starting material is converted to product, demonstrating excellent atom economy. Excess 

citrate stabilizes the particles by forming a complex multilayered assembly of anions 

having various oxidation states, lending an overall negative charge to the surface, 

imparting repulsive forces to prevent aggregation. The stability of colloidal and 

nanoparticle solutions is attributed to the collective effects of van der Waals interactions, 

electrostatics, and steric forces (figure 1.3).J3 However, these solutions are very sensitive 

to changes in pH, ionic strength of the medium, and the presence of other organic 
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Figure 1.3. The electric double layer of nanoparticles in solution. The tightly bound Stem layer 
(or adsorbed layer) prevents aggregation by maintaining interparticle repulsion, while a graduated 
diffuse layer of ions provides compatibility between the dissolved nanomaterials and their solvent 
environment. (reproduced with permission from Laaksonen, T., Ahonen, P., Johans, C. Kontturi, 
K. Chern. Phys. Chern. 2006, 7, 2143, Figure 1. Copyright 2006 Wiley Publishing.) 

materials, thus complicating efforts to modify the surface chemistry by standard ligand 

exchange techniques. 

Citrate has proven to be a useful regent in the synthesis of silver nanomaterials, in 

addition to gold. Pillai and Kamat investigated the role of citrate ions in the synthesis of 

spherical and anisotropic silver nanoparticles. Citrate reduction of gold ions leads to the 

formation of spherical particles, but the analogous reaction with silver ions (see Figure 

1.4) can yield large silver particles 60-200 nm having a wide range of morphologies, 

depending upon the reaction conditions, due to citrate's additional role as a complexing 

agent. The formation of citrate-silver complexes influences crystal growth, and even 

facilitates photochemical reactions that convert spherical silver nanocrystals to triangular 
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Figure 1.4. Large silver nanoparticles prepared by the citrate reduction route. Excess silver ions 
pennit fusion of smaller particles into a large, stable cluster. Analogous reactions with citrate 
stabilized gold nanoparticles have been shown to yield higher ordered structures, such as 
nanowires, from smaller "building block" particles. (reprinted with pennission from Pillai, Z. S.; 
Kamat, P. V J. Phys. Chern. B 2004~ 108, 945, Scheme 1. Copyright 2004 American Chemical 
Society.) 

nanoprisms. Molar ratios of reagents that produce silver crystals in the size range of 50­

100 nm produce much smaller nanocrystals (5-20 nm) if a different reducing agent is 

used, such as sodium borohydride, suggesting that citrate reductions have a unique 

reaction mechanism. Studies comparing the impact of various concentrations of citrate 

ions in reactions where the molar amount of silver ion is held constant demonstrate that 

excess citrate ions dramatically slow the growth of silver nanoparticles. A series of pulse 

radiolysis experiments demonstrated that citrate ions complex with Ag2 
+ dimers in the 

early stages of the reaction, hindering seed formation while promoting slow growth of 

large nanocrystals. These results contrast sharply with the citrate reduction of gold ions, 

where increased molar ratios of citrate lead to smaller nanoparticles.34 

Despite the benign nature of the citrate method, the need for greater stability and 

precise control over surface chemistry has driven researchers to explore alternative 
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syntheses which may better suit these goals, but cannot match the green merits of the 

citrate route. Later sections in the review will highlight methods which preserve or 

improve upon green aspects of the synthesis of more complex materials, and recent 

efforts to control the surface chemistry of citrate stabilized gold nanoparticles will be 

discussed. 

2.2 Direct Synthesis of Ligand Stabilized Nanoparticles 

A wide range of materials can be generated by reducing metal ions in the presence 

of a capping agent, providing libraries of diverse materials useful for determining 

structure/function relationships essential to understanding potential health and 

environmental impacts, aside from creating materials for targeted applications. The direct 

preparation of ligand-stabilized nanoparticles provides a simple route to functionalized 

materials, usually in a single-step, one pot procedure, imparting stability and chemical 

functionality to the nanoparticle products, often without the need for further modification. 

Current research challenges are focused on modifying solvents, reaction conditions, and 

reagents to access a target material, but one should not overlook the opportunity to 

incorporate greener methods by giving equal consideration to more benign reaction 

conditions (i.e. choosing safer solvents, avoiding biphasic conditions, and eliminating 

toxic surfactants), overall yield and atom economy, and environmental fate of new 

nanoproducts. Additional attention towards controlling average size, dispersity, and 

purity can further drive processing in a greener direction. The following sections describe 

the preparation of nanomaterials capped by various classes of ligands, including thiol, 

amines, and phosphines, highlighting green improvements that have emerged in recent 
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years. Subsequent discussions will address the synthesis of more complex materials and 

emerging methods towards greener nanosynthesis. 

2.2.1 Thiol Stabilized Nanoparticles 

The number of direct syntheses of thiol-stabilized nanoparticles has expanded in 

recent years since Brust reported the preparation of dodecanethiol-stabilized 

nanoparticles in 1994. The Brust synthesis provides ready access to functionalized 

nanomaterials with properties analogous to those of large molecules, as they are stable 

under ambient conditions and can exist in solvent free forms, in contrast to the less robust 

citrate based materials. In this reaction a gold salt (hydrogen tetrachloroaurate) is reduced 

by sodium borohydride in the presence of a capping agent, yielding particles having 

average core diameters in the range of 2-8 nm. This reaction was first developed within a 

biphasic context, taking advantage of phase transfer compounds to shuttle ionic reagents 

to an organic phase where particle nucleation, growth, and passivation occur. Subsequent 

variations of this procedure demonstrated the full scope of this reaction, substituting a 

wide range of thiols and varying the ratio of reagents in order to control the average 

diameter of the products. More recently, reports of water-soluble nanoparticles prepared 

in this manner have further extended the utility of this procedure, and it remains the 

simplest direct synthesis of functionalized nanoparticles. The greatest limitation of the 

Brust prep is that the stabilizing thiolligands must be compatible with all of the reagents, 

including NaBH4 and the phase transfer catalysts (if used for a biphasic preparation of 

organic soluble particles), thus sidestepping adverse influences on the reaction chemistry. 

For example, the thiols must not be subject to any unwanted reduction of other functional 
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groups that may be present on the ligand, and the thiol cannot interact with the phase 

transfer catalyst in such a way that leads to persistent reagent contamination, or products 

that are inseparable from the reaction mixture. To this end, Brust-type reactions have 

been performed in other solvents such as water and THF, permitting a single-phase 

synthesis of organic soluble gold nanoparticles while eliminating the need for phase 

transfer reagents. 

Here, we will describe modifications to this classic method of synthesizing 

monolayer-protected clusters, noting refinements offered from Brust and others. 

Emphasis has been placed on modifications in either design or process that represent 

improvements within the context of green nanosynthesis, by improving size control and 

dispersity, utilizing safer solvents, or avoiding surfactants by adapting reactions for a 

single phase context. Methods that enhance monodispersity are inherently greener, since 

solvent consumption due to size separation efforts is avoided. Biphasic methods requiring 

phase transfer reagents are valued for obtaining high quality materials with narrow size 

distributions, while greener, single phase methods sometimes fail to yield products of 

equal merit, underscoring the need for continued research efforts within this highly 

developed class of nanosynthesis. 

In 2000, Chen and Murray et al. addressed specific issues of particle growth and 

monodispersity issues in the preparation of hexanethiol protected gold nanoparticles, 

monitoring size evolution of the clusters over the course of 125 hrs. Core diameters 

reached a maximum of 3.0 nm at 60 hrs, and particle growth occurs only if the 

nanoparticles remain in situ, while toluene solutions of isolated, purified nanoparticles 
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are stable in solution for extended periods.35 A stable AU38 compound was isolated by a 

slightly different method, using a reduced temperature adaptation of the Brust synthesis 

where the biphasic reduction of HAuCl4 was carried out at 0 °C in the presence of a 

phenylethanethiol passivating ligand. Reduced reaction temperatures impact nanoparticle 

growth without significantly slowing nucleation and passivation events, thus leading to a 

product enriched in smaller particles.36 Jiminez and Murray et al. detailed the synthesis of 

a AU38 compound having narrow size dispersity. By either reducing the reaction 

temperature to -78°C, or by running the reaction at ice temperature with a hyperexcess 

(300 fold, relative to Au) of thiol, nanoparticle growth is arrested, enriching the products 

with AU38 clusters?7 The above cases highlight the importance of controlling competing 

particle nucleation and growth processes in order to limit the size dispersity of 

nanosynthesis products. 

Larger (5-8 nm) gold clusters can be prepared in biphasic water/toluene systems.38 

Brust explored a range of biocompatible moieties by using derivatives of thioalkylated 

polyethylene glycol ligands to impart water soluble ligand shells to 5-8 nm TOAB 

(tetraoctylammonium bromide) stabilized particles. To access more versatile surface 

chemistries, a range of target ligands featuring carboxylate, amino, and monohydroxy 

pendant groups (attached to the terminus of the polyethylene glycol portion of the ligand) 

were prepared for use in ligand exchange reactions.39 Although the ligands used in these 

reactions present biocompatible moieties, special care must be taken to ensure that all 

traces of TOAB are removed from the system prior to use in biological applications. 
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Figure 1.5. Tetraethylene glycol tenninates a Cll alkylthiolligand, which offers the combined 
advantages of water solubility with the high surface coverage characteristic of an alkylthiol 
capping ligand. (Reprinted with pennission from Kanaras, A. G.; Kamounah F. S.; Schaumburg 
K.; Kiely C. J.; Brust M. Chem. Commun., 2002,20, 2294, Figure 1. Copyright 2002 Royal 
Society of Chemistry. ) 

To generate nanomaterials featuring biocompatible surfaces, Kanaras and Brust 

used a thioalkylated ligand (monohydroxy (l-mercaptoundec-ll-yl) tetraethylene glycol) 

to introduce a stable, neutral, water soluble functionality to gold nanoparticles by both 

ligand exchange and direct synthesis routes (see Figure 1.5)?8 This work was inspired by 

Foos' report of water soluble gold nanoparticles capped with short chain thiolated 

polyethylene glycol ligands that were capable of place exchange reactions, and the work 

of Murray, whom demonstrated the synthesis of gold clusters in the presence of thiolated 

PEG. By successfully incorporating water soluble functional groups, these reports 

inspired researchers to consider new ligands, solvents, and reaction conditions that permit 

synthesis within a single phase context. 

Development of a single phase adaptation of the Brust method of nanoparticle 

synthesis was motivated by a desire to eliminate issues posed by the use of phase transfer 

reagents, including cytotoxicity and the potential for persistent contamination. In the 

course of such developments, many of the single-phase procedures became much greener 
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as well, sometimes eliminating organic solvents, improving atom economy, and using 

milder reaction conditions. Quite often the products are benign enough for use in 

biological applications, especially in the case of certain aqueous procedures. Most single 

phase adaptations of the Brust method yield products with larger average diameters and 

size distributions than those produced by the original biphasic procedure, which poses a 

challenge to researchers targeting smaller functionalized nanoparticles prepared by 

greener routes. It is believed that variations in product morphology may be attributed to 

the difference in the ordering of the capping agent in highly polar aqueous environments. 

Thus, possible solutions may include the use of capping agents that present additional 

order to aqueous phases (such as those containing hydrogen-bonding moieties) or the 

substitution of somewhat less polar solvents in lieu of water. The following section 

highlights some examples of cleaner, more efficient single phase Brust-type syntheses of 

metal nanoparticles, concluding with some reports of alternative procedures that are 

likely to open up a new area of innovation in nanosynthesis. 

In 1999, Murray et al. reported water-soluble clusters with an average diameter of 

1.8 nm, synthesized in single aqueous phase using a method adapted from Brust, where 

HAuCl4 was reduced by NaBH4 in the presence of tiopronin (N-2-mercaptopropionyl­

glycine). This report focused on the viability of these water soluble nanoparticles as 

precursors for both ligand exchange and post-synthetic modification via amide coupling 

reactions.40 In the same year, Chen and Kimura reported the synthesis of nanoparticles 

ranging in size from 1.0 to 3.4 nm by NaBH4 reduction of HAuCl4 in the presence of 

mercaptosuccinic acid, using methanol as a solvent. Although size evolution of the 
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nanoparticle products in solution became apparent over time, the dried nanoparticle 

powders were stable and completely redispersible in water. Such nanoparticles could be 

used to construct various nanostructures by taking advantage of hydrogen bonding or 

electrostatic interactions controlled by the pendant carboxylate groupS.41 

In 2003 a single-phase nanoparticle procedure was developed Pengo, using 

ligands having common features to those used in the biphasic synthesis of Brust and 

Twigg. Water-soluble nanoparticles with core sizes ranging from 1.5 to 4.2 nm were 

synthesized in a single water/methanol phase, using an amphiphilic thiol featuring a 

hydrophobic mercaptoheptane portion and a hydrophilic triethylene glycol monomethyl 

ether unit linked together by a central secondary amide. The rate of NaBH4addition 

impacted the average core size and monodispersity, especially if the ratio of gold to thiol 

was high. The rate of Au reduction corresponds to the initial borohydride concentration: 

if a reducing agent is added rapidly, small nanoparticles form rapidly and sequester much 

of the thiols, leaving little capping agent to stabilize (and arrest the growth of) larger 

nanoparticles.42 Such issues are not encountered in the traditional biphasic Brust 

synthesis, since the rate of NaBH4addition is controlled by the phase transfer process at 

the interface. 

A unique approach to water soluble nanoparticles was presented Selvakannan, 

where aqueous HAuCl4is reduced by NaBH4in the absence of any potentially toxic 

stabilizers or phase transfer reagents, yielding 6.5 nm bare gold clusters.43 The amino acid 

lysine was added to the solution as a capping agent, rather than a thiol. NMR studies 

suggest that lysine binds to the bare gold clusters via the a-amino group, leading to 
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Figure 1.6. Lysine capped gold nanoparticles feature inherently pH-sensitive pendant groups, 
which may be manipulated to control the degree of interparticle interaction. (Left) Particles at pH 
= 3. (Right) Particles at pH = 10. (Reprinted with permission from Selvakannan, P. R.; Mandai, 
S.; Phadtare, S.; Pasricha, R.; Sastry, M., Langmuir 2003,19,3545, Figure 5. Copyright 2003 
American Chemical Society.) 

reversible pH dependent properties attributed to the pendant carboxyl and amino 

moieties, agglomerating at pH = 10 and redispersing at lower pH values. TEM images of 

these structures are shown in Figure 1.6. 

Fabris designed thiolated ligands with a various numbers of peptide moieties for 

use in aqueous Brust procedures, finding that capping agents with greater degrees on 

conformational constraint (imparted by hydrogen bonding interactions amongst the 

peptides) yield smaller nanoparticles, reconciling the difference in core sizes provided by 

biphasic and single phase methods.44 Beyond offering more control over the average core 

size of the products, the presence of hydrogen-bonding peptides increases the overall 

stability of the particles, evidenced by resistance to cyanide etching.45 Conformational 

constraint appears to be key to the trend reported by Fabris, where Higashi discovered an 

opposing trend: that increased numbers of helical peptide moieties within a thiol capping 
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agent lead to larger particles.46 However, in Higashi's case, the peptides of neighboring 

thiols on a nanoparticle probably do not strongly interact with each other (as in Fabris' 

study) due to their particular conformational arrangement. 

In 2004, Rowe and Matzger reported a single-phase synthesis of gold 

nanoparticles in tetrahydrofuran using metal-to ligand ratios similar to those of the Brust 

route, yielding products indistinguishable from the biphasic Brust method. While the 

methods described in this report aren't particularly green, the importance of eliminating 

phase transfer reagents was highlighted during evaluation of the products. Since small 

nanoparticles are often synthesized with electrical applications in mind, it is imperative 

that unnecessary ionic species are removed from the products. The materials obtained by 

this route were compared to those of the Brust method, and it was found that the charge 

transport properties of the Brust products were dominated by ionic conduction, 

overshadowing the tunneling-based behaviors expected of gold nanoparticles.47 

Besides eliminating issues of contamination associated with biphasic reactions, 

single phase procedures can provide a facile route to synthesizing water soluble 

nanoparticles that can act as useful, modifiable precursor materials for use in biologically 

relevant applications.. For example, Latham and Williams recently developed a unique 

ligand, trifluoroethylester-polyethylene glycol-thiol, which may be used for direct 

synthesis, ligand exchange, and post-synthetic modification approaches to functionalized 

nanomaterials (see Figure 1.7). 
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Figure 1.7. The versatile trifluoroethylester-PEG-thiolligand may serve multiple roles, acting as 
(1) a capping agent for direct synthesis, (2) an incoming ligand for place exchange reactions on 
preformed particles, and (3) an ideal candidate for post-synthesis coupling reactions, due to the 
labile CF3 protecting group. (Reprinted with permission from Latham, A. H.; Williams, M. E. 
Langmuir 2006J 22, 4319, Scheme 1. Copyright 2006 American Chemical Society.) 

Direct synthesis of gold clusters via the modified Brust route leads to particles having 

average core diameters of 3-4 nm. Ligands used in direct synthesis may be modified via 

the trifluoroethyl ester moiety prior to particle formation, which reacts with amines to 

form amides in the absence of coupling agents, or it may be hydrolyzed in water to yield 

a pendant carboxylic acid. Coupling reactions of the ligand with primary amines prior to 

its use in direct synthesis afford a diverse range of pendant functionalities, including 

butane, pyridine, amino, and biotin. The ligands are capable of participating in exchange 

reactions with alkanethiol-protected particles. The trifluoroethylester group remains 

intact after direct synthesis of nanoparticles or after a ligand exchange reaction (if 

anhydrous conditions are maintained), offering multiple opportunities to introduce other 

functional groups or small biomolecules to the surface of the nanoparticle. This ligand 
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has also been used to impart similar chemistries to FePt nanoparticles, which are gaining 

prominence as MRI imaging agents.48 

At this point, all discussion has been focused on gold nanoparticles, but further 

insight can be derived from similar treatments of platinum, lending greater understanding 

to the preparation of other noble metal materials. For example, Yang and Too et al. 

described the multiple roles of NaBH4 in nanosynthesis, demonstrating its additional 

capability as a stabilizing agent. Platinum nanoparticles were synthesized in the aqueous 

phase by NaBH4 reduction of a Pt(IV) precursor. The authors proposed that excess BH4­

anions hinder transfer to the organic phase by acting as stabilizing agents that hinder the 

binding of alkanethiols. To confirm this hypothesis, platinum nanoparticles were 

prepared with a four fold stoichiometric excess of NaBH4, and indeed could not be 

transferred to an alkanethiolltoluene solution unless concentrated HCI was added to the 

platinum sol in order to accelerate the decomposition of BH4- anions. In light of these 

results, the authors modified their procedure such that the platinum nanoparticles could 

be transferred to the organic phase immediately upon formation, without the use of a 

phase transfer reagent, resulting in nanoparticles with an average core size of 2.6 ± 0.4 

Like other methods of preparing gold nanomaterials, weaker reducing agents may 

be substituted for sodium borohydride. Eklund and Cliffel prepared organic and water­

soluble platinum nanoparticles for use as catalytic reagents. Organic soluble particles 

were synthesized by reducing HAuCI4 with lithium triethylborohydride (LiTEBH) in the 

presence of alkanethiols suspended in THF. Aqueous platinum nanoparticles were 
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prepared in an analogous manner with water soluble thiols, substituting NaBH4 for 

LiTEBH and using water as a solvent,5O Most recently, the microwave-assisted 

preparation of platinum nanoparticles catalysts was reported, using only aqueous sugar 

solutions as a support medium. In this procedure, numerous green challenges were met, 

including the elimination of organic solvents, surfactants, and strong reducing agents, 

while demonstrating excellent atom economy.51 

The Brust method of nanoparticle synthesis can be used to generate amine­

stabilized nanoparticles by simply substituting an appropriate amine for the thiol. Such 

particles may provide a route to larger (5-15 nm) materials capable of participating in 

ligand exchange reactions, since amines are more labile ligands than thiols. 

Amine stabilized particles were first prepared by Leff using a method analogous 

to that of Brust, substituting a primary amine for alkanethiol. Larger nanoparticles having 

diameters up to 7 nm can be accessed by this method, although dispersity broadens at the 

upper limit of the size range. If harsh reducing agents (Le. NaBH4) are replaced by 

weaker reagents, or completely omitted from the procedure, even larger noble metal 

nanoparticles may be obtained, as primary amines are strong enough reducing agents to 

nucleate and grow particles. lana and Peng further extended the Brust analogy, 

synthesizing noble metal nanoparticles in a single organic phase from Auel3 (or another 

organic soluble metal cation), tetrabutylammonium borohydride (TBAB), and either fatty 

acids or aliphatic amines. Organic soluble articles between 1.5 and 7.0 nm were obtained 

without the use of surfactants, depending on the amount of capping agent used.52 
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Figure 1.8. Nanopartides prepared by refluxing gold or silver precursors with oleylamine. (A) 21 
nm gold, (B) 9 nm Ag, (C) 12 nm Ag, and (D) 32 nm Ag. Scale bars indicate 100 nm. (Reprinted 
with permission from Hiramatsu, H.; Osterloh, F. E., Chern. Mater. 2004~ 16, 2509, Figure 1. 
Copyright 2004 American Chemical Society.) 

Hiramatsu and Osterloh found that borohydride reducing agents are unnecessary 

for the synthesis of nanomaterials in larger size regimes. Gold and silver amine stabilized 

particles with core diameter ranges of 6-21 nm for gold and 8-32 nm (Figure 1.8) for 

silver were synthesized in a simple scalable preparation where either HAuCl4 or silver 

acetate were refluxed with oleylamine in an organic solvent. Other reducing agents are 

not necessary, since amines are capable of reducing gold, forming nitriles upon further 

oxidation. In the case of gold, core size was controlled by regulating the gold to amine 

ratio, although it is acknowledged that samples with good monodispersity (less than 10%) 

were achieved only if a minimum of 65 equivalents of amine (relative to gold) were used. 

Silver nanoparticles were formed by refluxing silver acetate with oleylamine in a variety 

of organic solvents. The particle size is determined primarily by the reflux temperature 

associated with each solvent: hexanes (bp: 69°C) yield 8.5 nm particles, while the use of 
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toluene (bp: 110°C) and 1,2-dichlorobenzene (bp: 181°C) results in 12.7 and 32.3 nm 

particles, respectively.53 

Aslam and Dravid et al. reported a similar method of generating water-soluble 

gold nanoparticles that eliminates harsh reducing agents and organic solvents, while 

demonstrating greatly improved atom economy. HAuCl4 is reduced by oleylamine in 

water, creating nanoparticles that are water soluble despite the apparent mismatch in 

polarity between the solvent and the stabilizing ligand. Gold is used in excess over the 

amine, perhaps leading to products with mixed ligand shells whose stability is bolstered 

by chloride complexes. The products of this reaction have core sizes of 9.5 to 75 nm, and 

the greatest monodispersity is achieved for particles at the lower end of the size range, 

where a 10: 1 ratio of gold:amine is used. Lesser amounts of amines lead to particles with 

very wide polydispersities.54 

2.2.2 Phosphine Stabilized Nanoparticles 

The Brust method of nanoparticle synthesis is a valuable technique for preparing 

thiol-stabilized nanoparticles, where functional groups are limited only by the 

compatibility of thiols. However, the identification of a unique set of reaction conditions 

is often required for the preparation of each functionalized target, and it is often difficult 

to access smaller nanomaterials by this route. An approach pioneered in our laboratories 

involves producing a nanoparticle precursor having a temporary stabilizing ligand shell, 

amenable to ligand exchange reactions with an incoming molecule that has the desired 

chemical functionality. By optimizing the preparation of a common precursor (synthon) 

one can generate libraries of diverse nanoparticles that bear pendant functional groups, 



35 

thus introducing the desired chemical functionality to the surface of the particle. 

Although this procedure requires two steps and employs triphenylphosphine as temporary 

stabilizing group, this synthon approach has permitted greater control of nanoparticle 

size, dispersity, and functionality. The tradeoff made is the use of an additional step to 

avoid the inefficiencies and waste generating purification steps inherent in developing a 

specific preparation for each direct synthesis. While somewhat unstable, as-synthesized 

triphenylphosphine stabilized nanoparticles are valued for their ready participation in 

ligand exchange reactions (which will be discussed in later sections of this review 

covering nanoparticle functionalization and exchange reactions). The earliest reported 

syntheses of such particles by Schmid provided the benchmark method for preparing high 

quality small gold nanoparticles.5
5-57 AuCI(PPh3) is prepared from HAuCI4, suspended in 

warm benzene, and reduced by a stream of diborane gas, presenting significant health and 

explosion hazards. Despite the hazards involved, this method remained the most reliable 

large-scale preparation of phosphine stabilized gold nanoparticles for nearly two decades. 

In 1997, Hutchison et al. presented a convenient, safer, and scalable synthesis 

(Scheme 1.1) that yields high-quality 1.4 nm triphenylphosphine stabilized gold 

nanoparticles through a much greener route that eliminates the use of diborane gas (>40 L 

di borane/g nanoparticle) and benzene (>1000g benzene/g nanoparticle). This biphasic 

synthesis involves the use of a phase transfer reagent (TOAB) to facilitate the transfer of 

chloroaurate ions from an aqueous solution to an organic phase (toluene) containing 

triphenylphosphine. Reduction is carried out using aqueous NaBH4 delivered to the 

organic phase via complexation with TOAB. There is still opportunity to further 
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phase transfer 

HAuCI4 (aq) + TOABr(toluene) TPP(toluene) 
I 

NaBH4 (aq) 

Scheme 1.1. Biphasic synthesis of 1.4 nm gold nanoparticles stabilized by triphenylphosphine. 

green this preparation. Substitutions of NaBH4 for diborane and toluene for benzene are 

clearly beneficial, however, it would be preferable to avoid using TOAB and find a yet 

greener solvent. In addition the purification of these particles still requires solvent 

washes. If membrane filtration methods suitable for use with organic solvents could be 

developed to replaced solvent washes as the purification step, the preparation could be 

made even less wasteful. 

The triphenylphosphine stabilized nanoparticles may be stored as a powder under 

cold, dry conditions until they are needed for ligand exchange reactions.58 Besides being 

greener and safer, this synthesis also features a great improvement in yield, providing 500 

mg of purified nanoparticles from one gram of HAuCI4 , compared to 150 mg of product 

from Schmid's method. The products of both preparations yield nanoparticles of equal 

core diameter, monodispersity, and reactivity. The nanoparticles from Hutchison's prep 

have been functionalized by a wide range of ligands through ligand exchange reactions, 

yielding a diverse library of functional nano "building blocks" ideal for use in the bottom 

up assembly of new nanostructures, all from a versatile gold nanoparticle precursor. 

2.3 Seeded Growth and Shape Control of Nanoparticles 

In the pursuit of nanoscale materials featuring optical properties, nanoparticles 

having core diameters exceeding 5 nm can be grown from smaller seed particles through 
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the epitaxial addition of metal atoms. Delivered to the surface of the seed particle in a 

partially reduced form, supplemental amounts of a metal salt can be reduced in a surface 

catalyzed reaction with a mild reducing agent, transforming a solution of small particles 

to larger colloids. Whether the goal is to grow large spherical particles or nanorods, the 

use of well-defined seeds is critical to obtaining products with narrow size dispersity. 

Other reagents such as surfactants may be present as a component of the nanoparticle 

growth solution, acting in the capacity of a directing agent that promotes the formation of 

anisotropic materials, or simply as surface passivants and stabilizing agents. Growth of 

such materials from monodisperse seeds allows the researcher to employ milder reaction 

conditions for the synthesis of materials, and the wide range of weaker reducing agents 

capable of reducing metal ions in a growth solution offers increased possibilities for 

designing greener syntheses. Larger nanomaterials are especially valued for their optical 

properties, useful for surface enhanced Raman scattering, imaging, sensing, and 

waveguiding applications, where the optical absorption arising from the surface plasmons 

(see Figure 1.9) of noble metal materials is key. 

The synthesis of larger spherical nanoparticles from smaller seed materials is 

reviewed, as is the formation of anisotropic nanorod materials. (A complete analysis of 

seeded growth methods is beyond the scope of this review, but an excellent review of 

gold nanorods was recently offered by Perez-Juste and coworkers.4
) A special focus has 

been placed on studies intended to elucidate the individual roles of nanoparticle seeds, 

reducing agents, and additives, with respect to their impact on the morphology of the 

final products. The information garnered from these studies has ultimately contributed to 
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Figure 1.9. UV-Vis absorption spectra of gold nanoparticles corresponding to (a) 1.5 nm (b) 3.4 
nm (c) 5.4 nm (d) 6.8 nm and (e) 8.7 nm. Absorptions due to interactions with surface plasmons 
feature extinction coefficients that increase with particle size, making particles with average 
diameters> 8 nm appropriate for optical applications. (Reprinted with permission from Shimizu, 
T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chern B. 2003,107,2719, Figure 1. 
Copyright 2003 American Chemical Society.) 

a better understanding of the surface chemistry of these materials, which should in turn 

lead to targeted functionalization methods that will enable their utility in solution-based 

sensing applications and beyond. Next, shape controlled methods that provide access to 

more exotic materials are discussed, followed by selective etching techniques (see section 

2.3.4) which can be used to give new life to nanomaterials by transforming their shape. 

Gaining access to larger particles through growth techniques provides a secondary use for 

small gold clusters (which serve as seeds), while etching techniques can be especially 

helpful for transforming larger spherical and rodlike structures back to smaller particles. 

Ultimately, the application of these recycling measures prolongs the useful lifetime of a 

nanomaterial, reducing the amount of products entering the wastestream. 
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2.3.1 Spherical Particles 

Seeded growth of nanoparticles utilizes a growth solution composed of a weak 

reducing agent, gold salt, and possibly a surfactant. Small nanoparticle "seeds" are 

known to exhibit surface selective catalytic properties, and the use of high quality 

materials allows the researcher to gain additional control over subsequent reactions, 

whether it involves growth to a larger material or other catalytic applications. The choice 

of reducing agent was once thought to be the most critical factor in preventing secondary 

3thermodynamically capable of reducing Au +

nucleation within a growth solution. Reducing agents such as citrate, some organic acids, 

and hydroxylamine catalyze the reduction of metal ions at metal surfaces, yet do not 

contribute to additional nucleation events, since the seed particles themselves act as 

nucleation centers. Central to seeded growth is the selection of monodisperse, well 

defined seed particles. Sodium citrate has been used most extensively in this manner to 

yield particles having average diameters of 20 -100 nm,31 although a significant 

population of gold rods forms with iterative growth. Hydroxylamine is 

to the bulk metal, but the rate of this 

reaction is negligible. Brown and Natan reported the growth of gold nanoparticles with 

core diameters ranging from 30-100 nm from existing smaller particles prepared by the 

3single-step citrate route, utilizing the surface catalyzed reduction of Au +

3the seed nanoparticles and the amount of Au +

hydroxylamine59
• The growth of the particles was monitored by visible spectroscopy (see 

Figure 1.10). The average diameters of the products were governed by the diameter of 

by 

present in the growth solution. The further 

utility of this method was demonstrated by exposing a monolayer of nanoparticles 
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Figure 1.10. Preformed gold nanoparticle seeds are capable of catalyzing further reduction of 
gold salts at their surfaces in the presence of a mild reducing agent such as hydroxylamine. The 
reaction between 12 nm gold seeds and a growth solution of HAuCl4 was followed in situ by UV­
Vis, showing increased intensity of the surface plasmon band (530 run) as well as the appearance 
of higher-order multipole plasmon activity (700-750 run) indicative of larger gold nanoparticles. 
(Reprinted with permission from Brown, K. R.; Natan, M. J., Langmuir 1998, 14, 726, Figure 1. 
Copyright 1998 American Chemical Society.) 

assembled on a solid substrate to hydroxylamine/HAuCl4 growth solutions, resulting in 

the growth of the fixed particles, thereby affording a simple method for decreasing 

interparticle spacing within a nanoparticle array. 

In a follow-up study by Brown, Walter, and Natan,60 it was noted that the 

reduction of Au3 
+ is greatly catalyzed on any surface, and thus other (stronger) reducing 

agents could be used in seeded growth methods. Growth conditions consisting of the 

addition of a boiling mixture of citrate to a boiling solution of either 2.4 or 12 nm 

nanoparticle seeds and Au3 
+ was used to develop the seed particles into larger structures, 
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even though it is well known that such solutions promote particle nucleation. However, 

since the rate of reduction at the surface of the seeds greatly exceeds the reduction rate of 

metal ions in the growth solution, the seed nanoparticles grow at the expense of 

nucleating new particles. 

lana and Murphy et al. were able to grow nanoparticles having diameters ranging 

from 5-40 nanometers with narrow polydispersity from 3.5 nm seeds, using stock 

solutions of HAuCl4 and a surfactant, cetyltrimethylammonium bromide (CTAB), as a 

growth medium. The reduction of Au3 
+ was carried out by ascorbic acid. The authors 

found that an iterative approach to nanoparticle growth, where seed particles are 

repeatedly exposed to fresh aliquots of growth solutions, yields products of greater 

monodispersity in terms of both size and shape. The presence of CTAB added stability to 

the nanoparticle solutions and aided subsequent functionalization by alkanethiols. 

The preparation of seeds intended for use in nanoparticle growth procedures need 

not be by the citrate reduction route. Sau et al. reported the photochemical preparation of 

seed particles with core diameters ranging from 5-20 nm. Various aqueous solutions of 

HAuCl4 were reduced to gold colloids by a photochemically activated reaction with a 

polymeric stabilizing agent, Triton X-IOO (poly(oxyethylene)iso-octylphenyl ether). 

Nanoparticle growth was initiated by the ascorbic acid catalyzed reduction of surface­

adsorbed Au(III) ions, reaching final core sizes ranging from 20-110 nm, depending upon 

the size of the seed particles and the amount of gold ions present in the growth medium.61 
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2.3.2 Anisotropic Particles and Nanorods 

Anisotropic metal nanoparticles feature unique optical properties which have 

generated interest in applications related to surface enhanced Raman scattering, single 

molecule detection, surface enhanced fluorescence, biological imaging, and scanning 

optical microscopy techniques, amongst many others.4,?,62 Anisotropic materials possess 

multiple surface plasmon bands with tunable positions (see, for example, Figure 1.11) 

based on the overall size of the particle and the aspect ratio (length divided by width, in 

the case of nanorods). Additionally, anisotropic materials feature enhanced electric fields 

at the tips of the structure,? making them especially well-suited for many of the 

applications listed here. 
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Figure 1.11. The aspect ratio of gold nanorods may be tuned by controlling the ratio of gold 
seeds:growth solution. The extinction spectra a-h result from increasingly reduced amounts of 
seed particles, which effectively increases the amount of growth solution available for addition to 
individual particles. (Reprinted with permission from Jana, N. R.; Gearheart, L.; Murphy, C. J. 
Adv. Mat. 2001, 13,1389. Figure 1. Copyright 2001 Wiley Publishers Ltd.) 
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While an understanding of growth mechanisms has been accumulated, several 

challenges remain towards shifting the synthesis and application of these materials 

toward a greener context. It has been acknowledged that mild conditions may be used for 

seeded growth approaches, yet efforts to maximize yields of anisotropic materials relative 

to spherical by-products remains a significant challenge, despite increased mechanistic 

understanding. The replacement of surfactants with other shape-directing agents would 

greatly improve the green merits of seeded growth while broadening the range of utility 

for these materials, enabling their use in applications where low toxicity is a priority. The 

following contributions offer insight into both the growth mechanisms and unique surface 

chemistry of anisotropic particles, setting the stage for future refinements in the 

functionalization and application of these materials. 

Formation of nanorods relies on coordination chemistry between the surface of 

the seed particle and additives such as surfactants, passivants, chelating agents, or 

polymers which hinder the growth of certain crystal faces, promoting an overall 

lengthening of the seed particle as the metal ions of a growth solution are reduced at the 

exposed faces. 4 Besides presenting a useful synthetic route towards the preparation of 

reduced-symmetry materials, such approaches may offer a simple means of creating 

ordered arrays of nanorods if placement of the gold seeds is controlled.63
•
64 

The mechanism by which growing particles break symmetry and favor growth in 

a particular direction has been the topic of much speculation, as the formation of reduced 

symmetry materials occurs under a wide range of circumstances. Although nanorods can 

form spontaneously under conditions intended to favor growth of symmetric colloids, it is 
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understood that surfactants may act in a capacity beyond that of mere passivants, 

directing epitaxial growth of a particular crystal face by hindering the growth of others. 

However, a number of preparations of shape-controlled materials have been repOited 

where symmetry breaking of a growing seed particle is not considered the key step in the 

growth mechanism (see section 2.3.3). 

To favor the formation reduced symmetry particles, the use of a directing agent is 

required. A surfactant such as crAB, known to bind preferentially to the pentatwinned 

crystallographic faces of a seed, leaves other regions of the particle available as growth 

sites. This method suggests that the surfactant simply acts as a directing agent, rather 

than a soft micellar template, although the surfactant does form stabilizing bilayers along 

the length of the nanorod. Surfactants with longer hydrophobic tails naturally form more 

robust bilayers, and thus higher aspect ratio materials are achieved. 

+ 

Figure 1.12. A possible mechanism for gold nanorod formation. AuCJ 4 - anions displace bromide 
at the surface of CTAB micelles, where they are reduced from Au(III) to Au(l) by ascorbic acid. 
Transport from the micelle to the micelle-coated gold seeds is favored by double layer 
interactions, leading to deposition at the tips of the seeds. (Reprinted with permission from Perez­
Juste, 1.; Liz-Marzan, L. M.; Carnie, S.; Chan, D. Y. c.; Mulvaney, P., Adv. Functional Mat. 
2004,14,571, Scheme 1. Copyright 2004 Wiley Publishers Ltd.) 

Mulvaney has suggested an alternative mechanism (see Figure 1.12), where gold ions are 

encapsulated within micelles and preferentially delivered to the ends of a growing 

nanorod, since the ends of the rod have the highest electric field gradient compared to the 
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rest of the structure.65 The authors note that while this mechanism may explain 

anisotropic growth, it does not provide a clear description of the symmetry breaking 

events that initiate anisotropy. 

Murphy, Mann and coworkers explored the crystal structure of nanorods at 

various stages of growth from smaller seed particles prepared by the NaBH4 enhanced 

reduction of HAuCl4 in the presence of citrate anions, which serve primarily as a capping 

agent.66 Spherical particles were iteratively exposed to fresh growth solutions containing 

AuCI4-, ascorbic acid, and CTAB. After a single exposure to the growth medium, the 

average particle size had evolved to from 4.3 ± 1.2 nm to 9.6 ± 2.1 nm. Using HRTEM 

selective area electron diffraction, it was found that shape anisotropy arises from the 

emergence of a penta-tetrahedral twin crystal at the surface of a growing spherical 

nanoparticle. It is believed that once symmetry breaking occurs within a spherical 

particle, subsequent growth will occur preferentially along the {11O} axis (see diagram in 

Figure 1.13). Nanorod structures evolve from such a configuration by elongation of the 

five fold {100} axis central to the five (111) faces which will become the capping ends of 

the nanorod. Subsequent exposures to the growth medium resulted in the formation of 

larger spherical colloids, in addition to an emerging population of reduced symmetry 

materials. It is proposed that Au-surfactant complexes are incorporated into the (100) side 

faces, while non-complexed clusters and ionic species favor the end faces, leading to an 

overall elongation of the nanorod. 
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(111) 

(100) 

Figure 1.13. Diagram of a pentatwinned gold nanorod, highlighting the major crystal faces of the 
structure. Preferential binding of stabilizers to a particular face is believed to playa role in 
nanorod formation. (Adapted from Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. 1.; 
Mann, S. J. Mater. Chern. 2002, 12,1765, Figure 3a. Copyright 2002 Royal Society of 
Chemistry.) 

As the role of surfactants in seeded growth approaches to nanorod synthesis was 

better understood, delineating the impact of the nature of the seed particles used in such 

techniques became the focus of later mechanistic studies. Murphy has suggested that the 

sterics of the ammonium head group of CTAB are most compatible with the lattice 

arrangement found along crystal faces making up the length of the nanorod (see Figure 

1.14).7 Prior to more focused studies of this topic, Nikoobakht and El-Sayed published a 

follow-up study to lana's silver ion enhanced studies of seeded growth methods, 

replacing citrate capped seed materials with CTAB stabilized gold nanoparticles, and 

assessed the use of a cosurfactant (benzyldimethylammonium bromide, BDAB) in 

addition to small amounts of silver ion.67 Both modifications of the iterative seeded 

growth process strongly favored the growth of nanorods over larger spherical colloids to 

the extent that spherical particles composed only 0-1% of the nanomaterial products.68
,69 
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STEP 1: SYMMETRY BREAKING IN FCC METALS 

A) NUCLEATION B) GROWTH C) DEVELOPMENT OF FACETS
 

STEP 2: PREFERENTIAL SURFACTANT BINDING TO SPECIAC CRYSTAL FACES
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Figure 1.14. SuIfactant directed growth of gold nanorods. Once seed particles grow large enough 
to develop facets, surfactants bind preferentially to (l00) faces, permitting growth at the exposed 
ends of the nanorod. (Reprinted with permission from Murphy, C. l; Sau, T. K.; Gole, A. M.; 
Orendorff, C. l; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J Phys. Chern. B 2005, 109,13857, 
Figure 8. Copyright 2005 American Chemical Society.) 

A more comprehensive study describing the impact various types of gold seed 

particles have on nanorod synthesis was undertaken by Gole and Murphy, comparing 

particles differing in both their average diameter and sUlface chemistry.7o In this work, 

negatively charged seeds were compared to positively charged seeds (where citrate, 

mercaptobutylamine, and glucose stabilizers impose a negative charge, and CTAB 

stabilized particles bear an overall positive charge, due to partial bilayer formation). 

Negatively charged seeds produced materials with a wider range of aspect ratios, where 

positively charged seeds produced nanorods with relatively consistent dimensions. The 

average core size of the particles within these categories was varied, ranging from 3.5 to 

18 nm. It was found that the gold nanorod aspect ratio has an inverse relation to the size 
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of the seed particle, and larger seeds produce bimodal populations of shorter and longer 

nanorods. Since nanorod synthesis is believed to take place largely through 

unencumbered epitaxial growth at the ends of the rod coupled with hindered growth 

along the surfactant-protected longitudinal faces, it is quite likely that facile 

rearrangement or displacement of the original capping agent is essential to the formation 

of high aspect ratio materials. Thus, particles having covalently bound thiol capping 

agents are ill-suited to surfactant directed growth processes, whereas those stabilized by 

materials similar to those present in the growth medium readily interact in a manner 

consistent with the proposed nanorod formation mechanism. 

Less obvious factors in the synthesis of anisotropic materials have been explored, 

focusing on the presence of various ions in solution. Gold seeds were added to growth 

solutions containing CTAB, HAuCI4, ascorbic acid, and sometimes AgN03• The 

morphology of the particles was related to the interdependent factors imposed by the 

concentrations of the growth solution components, suggesting that the surfactant-induced 

faceting processes compete with growth kinetics to determine the final shape of product,71 

The role of silver ions is still not completely understood. It is proposed that Ag+ 

binds to the surface of the particles as AgBr, restricting growth of the particle in a manner 

similar to crAB. Silver ions are not reduced in the presence of ascorbic acid or trisodium 

citrate at room temperature. Bromide ions were also found to be essential: substitution 

with iodo- or chloro- analogues of both the silver salt and the ammonium surfactant does 

not lead to growth of anisotropic materials.? Cyanide dissolution studies of nanorods 

prepared with either crAB or Ag+ as a directing agent have differing degrees of 
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resistance towards decomposition, suggesting that CTAB may be more densely packed 

on the rods if Ag+ is present, leaving the tips of the rods vulnerable to cyanide digestion.4 

Recently, it was determined that pH has a significant role in directing the 

formation of gold nanoprisms.72 A simple solution phase seeded growth method was 

used, employing standard procedures similar to those described above, with the exception 

of NaOH as an additive in the growth medium. Increasing the pH of the growth solution 

deprotonates ascorbic acid, giving the monoanion form in solution. The monoanion is 

believed to bind more effectively to the ends of the nanorod, facilitating gold reduction at 

this site. Paradoxically, at pH values exceeding 5.6, a mixture of large spherical particles 

and crystalline flat triangular nanoprisms is obtained by this method, rather than the 

nanorod structures typically afforded by seeded growth in the presence of CTAB. 

Clearly, tremendous effort has been put forth toward understanding the 

mechanisms of anisotropic nanocrystal growth, which will hopefully set the stage for 

redesigning synthetic methods to meet greener standards. Elimination of surfactants is 

clearly the greatest challenge, followed by the need to improve yields of nanorods grown 

from spherical seeds. Aside from these shortcomings, seeded growth approaches allow 

the researcher to perform nanosynthesis of sophisticated materials under mild conditions, 

using relatively benign reagents. 

2.3.3 Control of Nanoparticle Shape 

Modifications of the citrate reduction method for silver and gold ions have led to 

numerous reports of anisotropic materials synthesis. The following section discusses 

methods that provide access to nanomaterials with unusual shapes, some of which avoid 



50 

the use of harsh reducing agents, surfactants, and organic solvents. Many of these reports 

expand upon established knowledge of common nanosynthesis techniques (such as 

seeded growth) while exploring the use of new additives as shape modifying agents. 

Pei reported a simple method for synthesizing gold nanowires from spherical 

citrate stabilized gold particles simply by introducing excess HAuCl4 to a solution of gold 

nanoparticles.73,74 Excess chloroaurate ions adsorb to the surface of the nanoparticles, 

introducing an attractive force that draws the particles together, while additional gold 

ions fill in the gaps between particles. Schatz and coworkers reported a citrate reduction 

that was bolstered by the addition of hydrogen peroxide and a capping agent, bis-(p­

sulfonatophenyl)phenylphosphine (BSPP), resulting in the formation of unique, single­

crystal branched gold nanoparticles exhibiting one, two, or three distinct tips.75 The 

particles begin as small triangular nuclei, and subsequent selective binding of the BSPP 

directing agent results in anisotropic crystal growth in a direction parallel to the nuclei 

edges. Chu recently reported the citrate reduction of a surfactant-gold complex formed 

between HAuCl4 and cetyltrimethylammonium bromide (CTAB) yielding flat gold 

structures. Hexagonal, triangular, and truncated triangular materials (Figure 1.15) can be 

obtained by varying the ratio of reagents and the reaction time.76 

Occasionally, removal of the directing agent can be difficult, hindering the use of 

these materials in applications such as surface-enhanced Raman spectroscopy and self 

assembly processes, where good control over the particles surface chemistry is essential. 

Murphy reported the synthesis of crystalline silver nanowires in the absence of 

surfactants. Silver salt was reduced by citrate anion at 100°C, in the presence of a small 
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Figure 1.15. TEM images of gold nanoplates and chainlike arrangements of gold nanoplates (a-c). 
Triangular and hexagonal plates with their corresponding electron diffraction patterns (d-g). 
(Reprinted with permission from Chu, H.-C.; Kuo, C.-H.; Huang, M. H./norg. Chern. 2006,45, 
808, Figure 4. Copyright 2006 American Chemical Society.) 

amount of hydroxide ion. A moderate amount of hydroxide (6-8 uL of 1M NaOH, 40 uL 

of 0.1 M AgN03 dissolved in 100 mL deionized water) yields predominantly nanowires 

(35 ± 6 nm) when reduced by citrate. If the hydroxide source is omitted, this preparation 

results in spherical nanoparticles. Citrate performs in multiple capacities in this reaction, 

as it complexes with silver ions, reduces the ions to metallic silver, and caps the resulting 

structure, imparting water solubility. The relatively small amounts of NaOH ensure that 

citrate is completely deprotonated, making it a stronger complexing agent, yet hydroxide 

competes with citrate for binding sites on the growing nanostructure, thus directing 

crystal growth.77 In an alternative shape-controlling procedure, Swami reported the 

synthesis of nanoribbons at the air-water interface.78 Alkylated tyrosine is capable of 

acting as a phase transfer material, reducing agent, and a capping stabilizer. Due to the 
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limited water miscibility of this organic reagent, gold reduction is restricted to the air 

water interface, reducing the possible degrees of freedom for crystal growth. 

More unusual nanocrystal shapes have been produced by the polyol reduction method. In 

2003, Xia reported the synthesis of nanoprisms having tunable optical properties.62 Silver 

nitrate was reduced by citrate and sodium borohydride in the presence of poly(vinyl 

pyrrolidone) (PVP), initially yielding spherical nanoparticles. Irradiation of the solution 

with a halogen lamp initiated a photochemical reaction leading to the formation of 

triangular nanoprisms. Further UV irradiation led to an additional morphological change, 

transforming the nanoprisms to circular disks. In a later report, the synthesis of 

nanocubes and truncated cubic structures (shown in the TEM in Figure 1.16) by a 

modified polyol procedure was described, where silver nitrate was thermally reduced in a 

PVP/ethylene glycol sOlution.79 Initially, only twinned crystals were observed by TEM. 

After stirring under ambient conditions for two days, single crystal cubes and tetrahedral 

structures were obtained in high yield. The addition of sodium chloride to the reaction 

mixture was a critical factor in the evolving crystal morphology. It was proposed that 

exposure to oxygen selectively etched the twinned materials, and chloride stabilized the 

liberated silver ions, allowing only the remaining single crystal materials to grow. In a 

somewhat analogous procedure reported by Kan, gold ions were reduced by a polyol 

route, yielding large gold nanoplates with morphologies that were dependent upon the 

reaction times.so Physisorption of polar groups likely restricted crystal growth on the 

(111) face, leading to flat structures. 
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Figure 1.16. Silver nanoparticles prepared by the polyol route, featuring cubic and truncated cubic 
structures. (Reprinted with pennission from Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 
2004,4,1733, Figure 2D. Copyright 2004 American Chemical Society.) 

2.3.4 Size Evolution and Nanoparticle Etching 

Modification of existing nanostructures such that their size or shape changes with 

the use of minimal reagents further increases the multitude of uses for materials produced 

by a single synthetic procedure, opening up the possibility of recycling nanomaterials for 

secondary uses. For example, smaller nanoparticles having diameters below 2 nm are 

most often studied for their electronic properties, but if these same particles are 

transformed (perhaps by a ripening process) to larger single crystal nanoparticles, one 

could envision launching studies of the optical properties associated with these materials 

without developing an entirely different synthetic protocol. Such procedures are 

especially useful if the size evolution process leads to nanomaterials with excellent size 

monodispersity, as one common drawback of some convenient nanornaterial preparations 

is the tendency to form polydisperse products, which is often the case for many variations 

of the Brust nanoparticle synthesis. 
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Several of the nanoparticle-enlarging techniques described below require the use 

of (quite toxic) TOAB as a stabilizing agent. The green value of these methods could be 

greatly improved by identifying an alternative stabilizer. In some cases, commendable 

efforts toward the removal of TOAB from the final product were made. Purity of 

nanoproducts will continue to be a universal issue for the application of nanoscience, 

especially since the elimination of surfactants remains one of the greatest challenges in 

greener nanosynthesis. With this in mind, we have included a section highlighting various 

purification methods (see section 2.4.2). 

The transformation of larger nanomaterials to smaller structures is also attractive 

from the standpoint of generating high quality materials, as well as the prospect of 

studying size dependent physical properties. To this end, the controlled etching of a 

crystalline nanorod affords the opportunity to study fundamental properties associated 

with changing aspect ratios, without the complications that arise from multiple product 

morphologies produced by growing nanorods from spherical seed particles (including 

highly faceted materials, nanocubes, prisms, and other truncated structures). In this 

manner, well-defined nanomaterials may serve as synthons, appropriate for reuse in 

subsequent reactions to yield products with altered morphologies. This section highlights 

various procedures that can be used to modify the size of nanomaterials, yielding high 

quality products that can be utilized in applications beyond their initial purpose. 

In 1999, Hutchison and coworkers found that they were able to transform 1.5 nm 

triphenylphosphine stabilized particles to 5 nm amine stabilized materials in a highly 

reproducible manner, simply by stirring the smaller particles in a solution containing a 
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Figure 1.17. Triphenylphosphine stabilized nanoparticles evolve to larger amine stabilized gold 
nanoparticles with strong optical absorption upon reflux with a solution of alkylamines. 
(Reprinted with permission from Brown, L. 0.; Hutchison, J. E. J. Am. Chern. Soc. 1999,121, 
882, Figure 3. Copyright 1999 American Chemical Society.) 

primary amine.s1 Visible spectroscopy, Figure 1.17, shows the development of a narrow 

plasmon resonance at ",525 nm as the growth process proceeds. Similar conditions are 

often applied with thiols for the purpose of ligand exchange reactions, but no core size 

evolution was ever noted in those cases. A bimodal size distribution is maintained 

throughout the course of the reaction, indicating that smaller particles are consumed as 

larger particles grow. Analysis of the nanoparticles composition by XPS indicates that 

displacement of the triphenylphosphine stabilizer is complete, and no small particles 

remain, yielding products with excellent reproducibility in terms of their size and 

composition. Besides providing a secondary use for smaller particles, this method also 

features the green merits of room temperature operation, nearly quantitative yields, and 

additive processing. 
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While Hutchison's report is an excellent example of creating larger monodisperse 

nanoparticles from smaller precursor materials, an even greater challenge lies within the 

transformation of relatively polydisperse materials to those having a more uniform size 

distribution. Miyake and coworkers reported size evolution processes in the solid state.82
­

84 Having identified the boiling point of a nanoparticle mixture as a key limitation in 

thermal size evolution processes, dodecanethiol-stabilized particles prepared by the Brust 

route were used as a starting material for the thermal reaction. When the crude 

nanoparticles were stripped of their solvent and heated to temperatures of 150, 190, and 

230°C, the 1.5 nm particles grew to sizes of 3.4 ± 0.3, 5.4 ± 0.7, and 6.8 ± 0.5 nm, 

respectively,82 suggesting that the nanoparticles grow until they become 

thermodynamically stable at the heat treatment temperature. Unfortunately, molten 

TOAB is essential in this reaction, as particles heated treated in its absence did not 

experience a similar growth.83 Additionally, a mechanism for the thermal reaction was 

elucidated, whereby the small thiol stabilized particles are believed to melt and coalesce 

to a thermodynamically stable product, which is once again capped by thiols as the 

ligands rearrange around the product. 

More recently, Miyake and coworkers explored the thermal size evolution of gold 

nanoparticles stabilized by 11-mercaptoundecanoic acid (MUA).84 The pH dependent 

solubility of the MUA-stabilized particles played a critical role in the thermal reaction. 

Since it has been established that TOAB is critical to uniform size evolution processes, 

treatment of the particles with HClleads to reduced solubility in non-polar solvents, as 

TOAB readily complexes with the particles in their ionized state. Such pH treatments 
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were essential for comparison of the thermal treatments in the presence and absence of 

TOAB, since treatment with HCI is required for the complete removal of TOAB. Once 

again, the particles formed monodisperse products in the presence of TOAB. Upon 

heating to temperatures of 150, 160, and 170°C, the 1.8 nm particles grew to average 

diameters of 2.4 ± 0.4, 4.6 ± 0.8, and 9.8 ± 1.2 nm, respectively. While it is reassuring 

that excess surfactants may be removed from the products, surfactants must be eliminated 

from thermal size evolution processes so that the merits of this method (improving 

monodispersity, materials recycling, and preserved atom economy) overshadow the 

drawbacks. 

In contrast to transforming nanomaterials to larger structures, simple etching 

processes are helpful for controlling reaction conditions by removing unwanted material 

from a mixture, as well as the straightforward modification of larger materials to smaller, 

simpler structures. Etching not only provides a clear route to secondary applications of 

nanomaterials, but it may also serve as a means of narrowing size dispersity. 

Control over nucleation events is critical in the synthesis of many larger and more 

complex nanostructures. Xia and collaborators reported the use of a selective oxidative 

etchant capable of reducing the number of seed nuclei in solution, thus allowing larger 

nanostructures to develop without competitive reactions with emerging nucleation 

centers.85 FeCl3 was used in conjunction with the polyol reduction of PdClt' leading to 

an unprecedented synthesis of larger Pd nanocubes ranging from 25-50 nm. When the 

same reduction was carried out in the absence of Fe(lII), the resulting Pd structures had a 

maximum dimension of only 8 nm. This reaction was performed under ambient 
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Figure 1.18. Gold nanorods can be selectively oxidized (b) to yield structures with reduced aspect 
ratios (c). Continued oxidation results in spherical particles (d). (Reproduced from Tsung, c.-K.; 
Kou, X.; Shi, Q.; Zhang, J.; Yeung, M. H.; Wang, J.; Stucky, G. D. J. Am. Chern. Soc. 2006, 128, 
5352, Figure 1 b,c,d. Copyright 2006 American Chemical Society.) 

conditions, which were later determined critical to the suppression of excess nucleation, 

since oxygen is required to sustain the continuous etching activities by converting Fe(II) 

back to Fe(lII). FeCl3 is a known noble metal etchant whose use in nanosynthesis could 

certainly be applied to other materials where control over nucleation and growth 

processes is key towards reaching a synthetic target structure. 

Etching techniques are most commonly used to completely decompose noble 

metal structures, usually for the purpose of analyzing their organic components. Recently, 

Stucky et al. reported the use of mild oxidation methods to reduce the aspect ratio of gold 

nanorods by selectively etching the ends of the structures, eventually arriving at spherical 

nanoparticles as shown in Figure 1.18. Gold nanorod solutions were acidified with RCl 

and oxygen gas was bubbled through the stirring solution. The oxidation rate was 

proportional to the concentration of hydrochloric acid and temperature. This reaction 

requires the use of additional CTAB to stabilize the nanomaterials as they are etched, but 

this controlled method of size evolution allows researchers to decompose nanomaterials 
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in a manner that avoids the use of harsh oxidizers such as nitric acid or concentrated 

hydrogen peroxide, and entirely toxic reagents, including cyanide.86 

2.4 Emerging Approaches in Nanoparticle Synthesis 

2.4.1 Preparations Involving Minimal Reagents 

While continuous efforts have been made to improve overall reaction yields, atom 

economy is often overlooked as a potential refinement to nanosynthesis techniques. Atom 

economy can be improved by choosing solvents and reagents capable of serving multiple 

roles. For example, one could employ reducing agents which also function as a 

stabilizing material (such as carboxylates and amines), solvents which can act as a 

reducing agent or stabilizer (such as diglyme), or change solvent systems such that 

auxiliary materials such as phase transfer reagents may be omitted. From a completely 

different angle, the use of solid-state techniques provides an opportunity to completely 

bypass the need for solvents. Another benefit of reducing the number of components of a 

reaction is that subsequent purification needs are often simplified, or even eliminated. 

The following section highlights reports of syntheses that have taken advantage of 

minimal reagent use, while yielding high quality materials. 

The Brust synthesis of gold nanoparticles involves the reduction of a gold(I)- thiol 

polymeric complex, yielding thiol-protected gold nanoparticles. As part of an 

investigation intended to better characterize these polymeric precursors, Kim et al. found 

that irradiation under the electron beam of TEM led to the formation of gold 

nanoparticles. As shown in Figure 1.19, by changing the accelerating voltage of the 

electron beam, particles ranging from 2 to 5 nm in diameter could be obtained. Higher 
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Figure 1.19. TEM images of nanoparticles formed via electron-beam irradiation of gold(l) salts 
with various hydrocarbon chain lengths and accelerating voltages. (a) Au(l)-SC18 at 300 keY, (b) 
Au(l)-SC18 at 80 keY, (c) Au(l)-SC6 at 300 keY, and (d) Au(l)-SC2 at 300 keY. (Reprinted with 
permission from Kim, J.-U.; Cha, S.-H.; Shin, K.; Jho, J. Y.; Lee, J.-c. J. Am. Chem. Soc. 2005; 
127, 9962, Figure 2. Copyright 2005 American Chemical Society.) 

accelerating voltages promote particle nucleation, where lower voltages favor growth of 

larger particles. Additionally, like many other nanoparticle preparations, it was found that 

the length of the hydrocarbon chain of the thiol is inversely proportional to the size of the 

resulting nanoparticles.87 While this example doesn't provide an especially practical 

means of preparing larger particles, it highlights the importance of product purity, as 

excess unreacted starting materials can induce changes in product morphology. 

Recently it was discovered by Yamamoto and Nakamoto that gold(I) thiolate 

complexes can form nanostructures via simple pyrolysis reactions. The controlled 

thermolysis of a gold(I) thiolate complex, Au(C13H27COO)(PPh3), at 180°C under inert 

atmosphere for 1-10 hours leads to particles capped primarily by myristate and a small 

amount of phosphine, ranging in size from 12-28 nm. This reaction does not require the 

use of solvents, stabilizers, or reducing agents, although higher reaction temperatures are 

required, and purity may be an issue. Thermolysis temperatures can be elevated to access 
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particles with larger diameters. The particles are soluble in acetone and remain in solution 

for weeks. The reaction occurs by the elimination of the myristate ligand, which reduces 

the gold and caps the particles. Eliminated PPh3 reacts with the precursor complex, 

producing Au(PPh3)zC13H27COO, which does not participate in thermolysis reactions. 

Triphenylphosphine is believed to act as a stabilizing agent for the intermediate gold(O) 

species formed during the thermolysis reaction.88 

Lastly, silver nanoparticles (3-14 nm) were prepared at the air-water interface 

below Langmuir monolayers of Vitamin E. Using an alkaline solution of AgzS04 is key 

to promoting reduction by the phenolic groups of vitamin E, since the resulting phenolate 

ions are capable of transferring electrons to the silver ions during nanoparticle 

formation. 89 This method bears some analogy to the biphasic Brust procedure, in that 

Vitamin E monolayers behave as a solventless organic phase. The green merits of this 

procedure are quite pronounced, since it uses no organic solvents, harsh reducing agents, 

or phase transfer materials, and doesn't require extensive washes or precipitation-based 

purification techniques. Although the procedure is difficult to scale up in its current form, 

the use of continuous-flow microchannel reactors may enable greater production. 

2.4.2 Advances in Nanoparticle Purification 

Although they are not readily detected in the most commonly employed analytical 

techniques (e.g. TEM and SEM), impurities including unreacted starting materials, excess 

reagents and by-products resulting from side reactions or degradation pathways are 

present in nanoparticle samples and have been shown to have significant impact on 

properties such as reactivity,90 stability,91 and toxicity. Nearly all end applications of 
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nanomaterials will necessitate the use of highly pure materials, particularly those 

intended for electronic or medical purposes. The development of structure-activity 

relationships (SARs) critically depends upon the availability of pure samples. For 

example, in developing the SARs related to the health impacts of nanomaterials, these 

studies become more complicated, or impossible, when one must delineate whether or not 

a nanomaterial is inherently toxic, or if the deleterious effects are due to contaminants 

and byproducts. Thus, a key to furthering our understanding of SARs for nanoparticles 

and to designing greener nanoparticles for a wide range of applications is the 

development of effective purification strategies that can provide samples with fully 

characterized and reproducible purity profiles. The greenness of the purification methods 

themselves should be a central focus, since many techniques currently used rely on the 

use of large amounts of solvents (often liters/gram) for extraction or washing purposes. A 

brief comparison of purification methods currently in use is offered below, with the 

intention of illustrating the state of nanoparticle purification methods, guiding the 

researcher to the most appropriate, efficient techniques and motivating the development 

of new purification strategies. 

Centrifugation and precipitation techniques are amongst the most established 

means of isolating nanomaterials from the bulk reaction mixture. Centrifugation isolates 

materials based on mass and relative solubility, while precipitation is effected by a loss of 

solubility in the reaction media due to the introduction of an antisolvent. Both methods 

have been used for the separation of noble metal nanoparticles and carbon-based 

nanomaterials. Each can be time-consuming and solvent intensive. Although the 
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volumes of solvent consumed in these purifications are hard to quantify based upon the 

reported procedures, one analysis of a typical purification method has recently been 

reported. In a traditional purification strategy, purification of a thiol-stabilized gold 

nanoparticle requires a combination of precipitation, extraction and ultracentrifugation. 

This sequence of steps generates considerable organic solvent waste (> 15L solvent/gram 

nanoparticle) and is not effective in removing all the small molecule impurities.92 A more 

rigorous purification required a combination of extraction, ultracentrifugation, and 

chromatography steps. Recently, extractive methods have been developed to include 

more sophisticated means of separation, using surface-selective reagents to promote 

cross-linking or phase separation exclusively amongst the products, ensuring that other 

contaminants remain in the bulk of the reaction mixture.93
-
97 

Chromatography provides a means of purification and size fractionation, provided 

the products are sufficiently stable and not excessively retained by the column support. 

In the authors' experience working with dozens of ligand-stabilized gold nanoparticles, 

chromatography (particularly size exclusion chromatography)98 has proven effective for 

removal of small molecule impurities from the nanoparticle products. However, in nearly 

all cases recoveries are quite low (a few percent) due to sample degradation and/or 

irreversible binding to the support. Despite these limitations, size-exclusion 

chromatography is still a viable method for producing milligram quantities of relatively 

pure material. Others have reported recent advances in this technique that include the 

separation of carbon nanorods99 and recycling of size exclusion materials.1OO 

Electrophoresis has also been used to separate metal nanoparticles based on the relative 
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core size, and recently, has been proven to be a useful method of separating particles 

based on the relative number of functional groups.lOl Most chromatographic methods 

reported to date are also solvent-intensive methods (with the exception of those carried 

out in water) and have proven difficult to scale to produce larger amounts of pure 

nanoparticles. 

In an attempt to find new methods of purification that reduce solvent consumption 

while enhancing separation performance, a number of researchers have turned their 

attention to nanofiltration methods and have made significant strides toward purifying 

noble metal and magnetic nanomaterials in a greener, more efficient process.92
,l02,l03 Such 

methods typically employ solvents such as water and simple alcohols, as other organic 

solvents are often incompatible with filter membrane materials. In particular, diafiltration 

affords a simple, rapid method of isolating nanomaterials with superior purity and yield 

compared to the more traditional techniques described above. Sweeney et at. 

demonstrated the efficiency of diafiltration for the purification of ligand-stabilized gold 

nanoparticles by comparing the proton NMR spectra of products from different 

purification methods. The spectra in Figure 1.20 show that the sharp signals due to free 

ligand, top trace, are absent in the diafiltered sample, but exist to varying degrees in the 

samples purified by the other methods. In this case, diafiltration produces higher purity 

material while eliminating the use of organic solvent in the purification process. As 

noted above, the traditional purification of these materials requires liters of solvent per 

gram of nanoparticle and does not effectively remove the contaminants. Diafiltration, on 

the other hand, is more effective and eliminates the use of organic solvent in this 
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Figure 1.20. 'H NMR comparison of nanopalticles purified by various methods. From the top, 
NMR signals arising from the ligand alone, crude nanoparticles, nanoparticles purified via 
dialysis (Aun-D), extraction, chromatography, and centrifugation (AUZ8-ECC), and diafiltration 
(AUZ9-R) The sample purified via dialysis has an undetectable amount of free ligand, whereas the 
presence of free ligand is readily detected by NMR for the other samples. (Reprinted with 
permission from Sweeney, S. F.; Woehrle, G. H.; Hutchison, J. E. J. Am. Chern. Soc. 2006,128, 
3190, Figure 2. Copyright 2006 American Chemical Society.) 

purification. Membrane based methods such as diafiltration are scaleable to large 

volumes. 

Given the importance of purity for fundamental studies and practical applications 

of nanoparticles and the convenience and effectiveness of nanofiltrationfor purification, 

further research is warranted to develop membranes with finer control over pore size and 

size dispersity and to develop membranes that are compatible with organic solvents (for 

use with nanopalticles requiring such conditions). 
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3. Toward Greener Preparations of Semiconductor and Inorganic Oxide 

Nanoparticles 

Studies related to greener methods of synthesizing semiconductor nanomaterials 

are still relatively scarce, and thus presents one largely unexplored frontier in 

nanoscience. Synthetic challenges are numerous, providing significant opportunities to 

incorporate green nanoscience principles in the design of new methods. One specific 

challenge involves the synthesis of true nanoalloys, free of significant phase separation 

between individual components. Another area of exploration includes controlling the 

unique surface chemistry of such materials at the nanoscale. Despite the fact that many of 

these materials are inherently toxic, green nanoscience principles developed through 

metal synthesis could be applied to semiconductor and oxide materials to enable greener 

process development to minimize overall impacts on human safety and the environment. 

Several particular materials have been the focus of intense research, and a great 

deal of progress has been made toward greener processing. The discussion below 

highlights advances in the synthesis of cadmium, zinc, and iron compounds, with special 

emphasis on processes that reduce hazard in preparation and enable materials 

applications. 

3.1 Cadmium Selenide and Cadmium Sulfide 

Although these materials contain toxic elements, they remain the focus of intense 

study. Fortunately, numerous modifications have been made to standard procedures, 

leading to safer and greener methods. Ultimately, the inherent safety of these materials is 
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contingent upon identifying an appropriate for substitute for Cd2+, without compromising 

the optical properties that make these materials so useful. 

Typically, CdSe nanocrystal synthesis involves the use of dimethyl cadmium with 

trioctylphosphine oxide (TOPO). The raw materials (organometallics, usually) are 

especially toxic, pyrophoric, unstable, and expensive, and the reactions often lack control 

and reproducibility. 104 The reaction solvent TOPO is prohibitively expensive and hinders 

the possibility of industrial scale up procedures,105 and the surface chemistry of such 

materials is limited, reducing the options for further manipulation of the particles. 

However, although the established synthetic procedures suffer these apparent 

shortcomings, this approach has been useful for the formation of high-quality CdSe 

nanoparticles. Nevertheless, it is clear that greener, more efficient synthetic procedures 

are needed, although the development of a completely green technique has remained a 

daunting task. If we accept that the nanoscale products of CdSe/CdS syntheses are likely 

to retain their inherent toxicity regardless of the synthetic methods used, multiple 

opportunities to develop greener methods remain. The modification of a single step in 

these procedures may eventually build the foundation for the use of safer techniques in 

nano-semiconductor syntheses, leading to a benign methodology resulting from a 

composite of incremental improvements. 

To this end, early progress was made by O'Brien and coworkers, replacing a 

pyrophoric cadmium source, dimethyl cadmium, with air-stable precursor complexes, 

specifically, bis(methyl(n-hexyl)di -thio or -seleno) carbamato complexes of zinc or 

cadmium. Nearly monodisperse (d =5.0 ± 0.3 nm) quantum dots of CdSe, CdS, ZnSe, or 
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ZnS can be prepared by this route. The use of these air-stable complexes has greatly 

simplified the preparation of such QDs, requiring only the preparation of a solution with 

trioctylphosphine, followed by stirring with TOPO at 200°C, yielding air-stable TOPO 

capped materials. 106 

Peng reported a significant reduction of the hazard associated with the use of 

highly reactive dimethyl cadmium, achieved by conversion to a stable, isolable cadmium 

complex via the reaction of cadmium oxide with hexylphosphonic acid (HPA). 

Alternatively, this complex can be formed in situ by the reaction of CdO with HPA at 

elevated temperatures. The use of this precursor in TOPO-mediated reactions with 

selenium yields CdSe nanocrystals having a diameter> 2 nm, which is difficult to obtain 

by the traditional route. The full scope of this breakthrough is being explored as other 

precursors have been formed by reaction of CdO with fatty acids, amines, phosphonates, 

and phosphine oxides. Thus, hundreds of greener combinations are possible. Larger, 

monodisperse particles (d =1.5 - 25 nm) have been accessed via syntheses utilizing these 

precursors, which have a range of reactivity based on the complexing ligand, resulting in 

a variety of average core diameters. 104 

The use of dimethyl cadmium alternatives was further simplified in a one pot 

synthesis of core-shell CdSe/CdS quantum dots. 107 Beginning with air-stable, readily 

available cadmium acetate, quantum dots with excellent photoluminescent quantum 

efficiencies were prepared in a mixture of TOPO, hexadecylamine, and 

tetradecylphosphonic acid, which serves as a capping agent. Selenium was introduced in 

a typical manner as a trioctylphosphine complex. Besides acting as a capping agent, the 
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phosphonic acid slows the growth of the dots, offering more control over the core size. 

Additionally, the relatively lower reactivity of cadmium acetate (vs. dimethyl cadmium) 

hinders the formation of excess nuclei and consumption of cadmium monomers, 

permitting the growth of somewhat larger materials. To develop a CdS passivation shell, 

HzS was introduced in the gas phase to the crude reaction mixture via injection through a 

rubber septum into the headspace of the reaction vessel, permitting slow delivery of the 

reagent to the quantum dot mixture, thus allowing the slow epitaxial growth at the surface 

of the CdSe particles. 

Cadmium chloride has also proven to be a useful alternative to pyrophoric 

cadmiun sources. Another step was made towards realizing a useful synthetic procedure 

by eliminating the need for TOPO as a reaction medium. 108 Bao reported the synthesis of 

CdS nanorods in toluene, utilizing a new class of ligands, alkylisothionium salts, to 

stabilize the growing nanorods in analogy to the use of alkylammonium salts in the 

synthesis of reduced symmetry gold and silver materials. A variety of alkyl chain lengths 

were considered (CI2, CI4, and CI8) and it was found that S-dodecylisothionium (CI2) 

salts yield nanorods with the highest aspect ratios. Thiourea and ethylenediamine play 

key roles in the mechanism of nanorod formation. The authors propose that 

ethylenediamine forms a complex with Cdz+, which then reacts with thiourea to form CdS 

nuclei. The surfactants bind preferentially to certain crystal faces, thus directing 

subsequent growth into a nanorod. More recently, Querner et al. reported the use of 

another class of bidentate ligand, carbodithioic acids, as an alternative shell material for 

the passivation of CdSe cores.109 Besides offering passivation comparable to CdS, ZnS, 
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and ZnSe, such ligands permit control over the surface chemistry of the nanomaterials. 

Specifically, the ligands feature a pendant aldehyde that can participate in subsequent 

coupling reactions, allowing the introduction of various functional groups without 

disturbing the photoluminescent properties of the core materials. 

Commercially available heat transfer solvents have proven to be useful as a direct 

substitute for Tapa, if one wishes to preserve all other aspects of the traditional 

preparation of CdSe quantum dots. Wong and coworkers explored the use of two 

commercially available solvents, Dowtherm A (a mixture of biphenyl and diphenyl ether) 

and Therminol 66 (a terphenyl-based blend), which are able to sustain the high 

temperatures which warrant the use of Tapa. lID Cadmium oxide was reacted with a 

trioctylphosphine selenium complex in the presence of oleic acid, yielding 2.7 nm 

particles, somewhat smaller than those obtained by analogous reaction conditions in 

Tapa. Other alternative solvents having high boiling points, such as octadecene and 

octadecene/tetracosane blends, have also been used to achieve the temperature control 

required for the greener synthesis of ZnSe and ZnS nanomaterials from the alkylamine­

catalyzed reaction of Zn-fatty acid complexes with selenium-phosphine compounds. 111 

As suggested earlier in this section, incremental improvements to the traditional 

preparation of cadmium-based nanomaterials have the potential to add up to an all-around 

greener synthesis. An excellent example was offered by Deng and coworkers, using 

paraffin as the reaction medium for the synthesis of high quality (demonstrated by the 

characterization methods shown in Figure 1.21) cubic CdSe quantum dots. 112 In this 

greener procedure, CdO and oleic acid were dissolved heated paraffin. Selenium was 
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Figure 1.21. Oleic acid capped CdSe nanocrysta1s. (a) TEM image, (b) HRTEM, (c) electron 
diffraction pattern, and (d) EDX of corresponding particles. (Reprinted with permission from 
Deng, Z.; Cao, L.; Tang, F.; Zou, B. J. Phys. Chern. B 2005, 109,16671, Figure 5. Copyright 2005 
American Chemical Society.) 

dissolved in a separate aliquot of paraffin, and the two mixtures were combined, yielding 

particles with diameters of 2-5 nm, depending upon the reagent concentration. This low-

cost procedure not only eliminates the use of TOPO, but also dispels the need to prepare 

a selenium-trioctylphosphine complex, greatly reducing the majority of hazardous 

reagents and reaction conditions associated with the preparation of these materials. 

Although CdSe and CdS quantum dots are inherently toxic regardless of the 

method of preparation, careful manipulation of the surface chemistry of such materials 

can facilitate more "hands-off' approaches to the handling of these materials. We have 

already described the clever use of a chelating ligand that promotes modification of the 
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pendant functionality of quantum dots, and such approaches are likely to gain further 

prominence if self-assembly techniques are used in the fabrication of quantum dot arrays. 

Templating approaches offer an alternative means of dictating the relative positioning of 

quantum dots. Broadly speaking, templates can serve multiple roles, acting as nucleation 

centers during synthesis,l13 stabilizing agents for synthesized materials, and assembly 

directing matrices. While there is a trend towards minimizing risks by reducing the direct 

handling of quantum dots, it should be noted that this solution is only as robust as the 

stability of the particles within a given application; that is, accidental release of tethered 

particles remains a possibility, so long-term greener solutions rely on the identification of 

alternative materials, rather than the containment of toxic nanoparticles. 

3.2 Zinc Nanomaterials 

The formation of spherical zinc oxide nanoparticles is a very straightforward 

process, commonly achieved through a simple base catalyzed reaction of zinc acetate 

with hydroxide ions, hydrothermal reactions of various Zn(II) sources in the presence of 

base, and gas phase reactions of organozinc compounds, involving either thermolysis or 

controlled oxidation. Although the reports are too numerous completely review, they 

have provided a foundation of knowledge over the years, contributing to the discovery of 

a number of methods for the synthesis of anisotropic ZnO nanostructures, several of 

which are especially noteworthy for their greener merits. 

The use of ionic precursor compounds is common in the synthesis of anisotropic 

materials, since their general preparation closely matches the classic techniques of 

spherical particle synthesis. Chang created 2-D arrays of nanorods through a solution 
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process using aqueous preparations of zinc nitrate and hexamethylenetetramine 

(HMTA).114 The amine generates ammonium hydroxide in the presence of water, which 

reacts with Zn2 
+ to form ZnO. The arrays were formed on various substrates featuring a 

ZnO overlay formed by atomic layer deposition. It is proposed that such substrates are 

critical to nucleation events, since their lattice-matched surface templates seed layer 

formation that leads to the growth of single crystal materials. Electron energy loss 

spectroscopy revealed the presence of nitrogen at the core of the nanorods, confirming 

that larger nanorods are the product of smaller, thinner individual rods that fuse together 

as the reaction proceeds. A somewhat similar process was reported by Sun and Yan et aI., 

whereby ZnO nanowires form via the stacking and fusion of rectangular nanoplates. 1l5 

Briefly, Zn(OH)/ is prepared from zinc acetate and sodium hydroxide and reacted in 

SDS reverse micelles, resulting in the formation of small uniform nanoparticles. The 

particles fuse together is a hexagonal crystal arrangement (wurzite structure), creating 

plates that stack together to form nanorods, retaining their rectangular cross section. 

Elemental zinc has also proven useful in greener nanosynthesis. Zhao and Kwon 

synthesized aligned single crystal ZnO nanorods by a hydrothermal reaction between zinc 

powder and hydrogen peroxide.116 This preparation has the added advantage of being 

completely templateless, avoiding issues of persistent organic contamination. As a solid 

state alternative, Chaudhuri's oxygen assisted thermal evaporation of elemental zinc on 

quartz substrates yields nanorods of various morphologies, depending upon the vapor 

pressure of zinc. 117 This reaction demonstrates excellent atom economy, since no reagents 

are used save zinc and oxygen. A self-catalyzed vapor-liquid-solid equilibrium between 
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zinc vapor, liquid zinc, and the substrate is responsible for the formation of nuclei, 

followed by a simple vapor-solid equilibrium that facilitates longitudinal growth. Again, 

the products are free of contaminants that may compromise their utility in a given 

application. 

3.3 Iron Oxides 

The synthesis of magnetic nanoparticles has received increased attention as the 

possibility of creating functional materials became more apparent, generating interest as 

isolable sequestering agents for removal of solution phase contaminants (magnetically 

assisted chemical separation), heat transfer reagents, and medical imaging enhancers. 

Typically, colloidal magnetite is synthesized through the reaction of a solution of 

combined Fe(II) and Fe(III) salts with an alkali,l1s Magnetite (Fe30 4) precipitates from 

this solution as particles ranging in size from 5-100 nm, depending upon the solution 

concentrations, the identity of the alkali, and the general reaction conditions. In the 

synthesis of such materials, care must be taken to prevent agglomeration driven by the 

inherent magnetic properties of the particles. The inclusion of excess salts or surfactants 

provides a general means of passivation. More recently, a simple solid state "ball­

milling" technique was reported. 119 Anhydrous Fe(II)/Fe(III) salts are mixed with NaOH 

and excess NaCI and milled in the solid state, yielding particles ranging from 12.5 to 46 

nm, depending upon the final annealing temperature. Excess NaCI (rather than excess 

surfactants and dispersion agents) prevents agglomeration of the magnetic particles, 

which can be purified through simple washes. While ball-milling is energy intensive, it 

remains a valuable industrial-scale production method whose green merits can be 
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improved by avoiding the use of dispersion agents, which in turn require extensive 

washing to ensure complete removal. 

Micellar surfactants have been used as microreactors in the synthesis of 

maghemite (FeZ0 3).lZ0 Ions (as FeClz) have been sequestered within mixed 

anionic/cationic micellar vesicles composed of CTAB and dodecylbenzenesulfonic acid. 

Excess extravesicular ions are removed through ion exchange chromatography. Isotonic 

sodium hydroxide is capable of diffusing to the interior of the micelle, reacting with iron 

ions to form maghemite nanoparticles. The superparamagnetic particles range from 2.1 to 

2.7 nm in diameter, depending upon the size of the micelles and the concentration of 

NaOH. The magnetic diameter of the particles is somewhat smaller, indicating that the 

particles possess a deactivated surface layer. Micellar synthesis of such materials presents 

the advantage of preventing further growth and possible aggregation of the particles. 

Ordered arrays of magnetic nanoparticles can be accessed through templating 

methods. Li et al. reported the synthesis of ordered two-dimensional nanoparticle arrays 

formed within a porous film. Maghemite structures were obtained by depositing Fe(N03)3 

in between the pores formed by a network of polystyrene beads. 1z1 Subsequent drying and 

annealing steps lead to the formation of FeZ0 3, and the polystyrene template can be 

removed via solvent washes. Further control over the size of the nanostructures is made 

possible by partially dissolving the polystyrene template prior to depositing the iron­

based reagents. 

As with other nanomaterials, functionalization chemistry provides an opportunity 

to alter solubility and impart stability to as-synthesized materials. Surfactants have been 



76 

used to impart temporary stability to magnetic particles, allowing for subsequent 

functionalization. 122 Aqueous maghemite (Fe20 3) particles with average diameters of 8 ± 

2 nm were synthesized by reacting a mixture of Fe(II)/Fe(III) ions with NaOH in the 

presence of sodium dodecylsulfate (SDS). Methylmethacrylate was introduced to the 

solution, displacing SDS. The addition of a polymer initiator led to the growth of 

poly(methylmethacrylate) around the particles, with no apparent cross-linking. The 

functionalized particles are stable against oxidation, and present pendant carboxylate 

groups which allow for further functionalization through grafting techniques, taking 

advantage of many possible coupling reactions. Core-shell nanoparticles having an iron 

oxide core and a gold shell have been obtained through seeded growth techniques. l23 

Magnetic nanoparticles (d =9 nm) were synthesized using standard precipitation 

methods. Citrate ions were exchanged for hydroxyls on the surface of the particles, in 

preparation for gold deposition. Gold shells were deposited through a series of treatments 

(monitored by visible spectroscopy shown in Figure 1.22) with a growth solution of 

HAuCl4 and hydroxylamine, leading to particles having a final average diameter of 60 

nm. The magnetic properties of the core were unaffected by the presence of the gold 

shell. 

Since some of the most promising applications of magnetic nanomaterials lie 

within the medical imaging field, functionalization designed with biological 

environments in mind has been an area of increasing focus. Rotello reported the use of a 

cubic silsesquioxane ligand to functionalize magnetic materials, resulting in excellent 

stability in a variety of aqueous solutions, resisting aggregation upon encountering 



77 

0.8 

IS 
0.8 

c: 

~ 
0 0.4III 
.c « 

0.2 

0.0 

Fel~ portlCIOSi 

1st Au 11eI8flon 
2nd Au Iteration 
3rd Au IlerBlion 
4th Au Itoration 
5th Au lIorati<:>n 

400 500 BOO 700 800 

Wavelength, nm 

Figure 1.22. The iterative formation of gold nanoshells around iron oxide cores, as followed by 
changes in the UV-Vis spectrum. (Reprinted with permission from Lyon, J. L.; Fleming, D. A.; 
Stone, M. B.; Schiffer, P.; Williams, M. E. Nano Lett. 2004,4,719, Figure 3. Copyright 2004 
American Chemical Society.) 

environmental variations such as changes in pH and salt concentration. 124 Wang and 

coworkers reported the functionalization of magnetite nanoparticles by ligands featuring 

a surface-binding catechol moiety and a bisphosphonate pendant group, designed to 

remove uranyl ions from blood. 125 Neither group reports complete functionalization of the 

particles' surface, but the coverage is adequate to impart new surface properties, thus 

broadening the range of applications for these materials. 

4. Alternative Solvents for Nanoparticle Synthesis 

In the pursuit of particular nanosynthetic targets, the choice of starting materials 

may be somewhat non-negotiable, especially if a particular surface functionality is 

essential to a given application. Reaction conditions, on the other hand, can often be 

tuned such that one arrives at the same product in a more efficient, benign manner. 

Variations in reaction media can involve fairly simple modifications such as substitution 

of the solvent, reduced temperature and pressure, or more advanced techniques that 
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provide a supporting environment for the reaction while continuing to produce high­

quality products. In this section we highlight recent progress in the use of alternative 

solvents, including supercritical fluids and ionic liquids, and energy sources, namely 

photochemical and microwave assisted reactions. 

4.1 Supercritical Fluids 

At temperatures and pressures beyond the critical point of liquid-vapor 

equilibrium, supercritical fluids (SCFs), having density, viscosity, and solvation 

properties that are intermediate between the vapor and liquid phase, have gained attention 

as benign solvents for the synthesis of inorganic nanoparticles. SCFs such as HzO and 

COz are nonflammable, nontoxic, easily accessed materials. The relative strength of the 

solvent may be continuously tuned by adjusting temperature and/or pressure in the 

supercritical state, while maintaining unique wetting properties arising from the lack of 

surface tension, as there is no liquid-vapor interface. Supercritical COz is readily accessed 

at relatively low temperatures and pressures, although it should be noted that as a solvent, 

SC-COz acts as a rather nonpolar material; thus, the use of fluorinated metal precursors 

and capping ligands is often required to impart solubility to inorganic materials. Esumi 

reported the preparation of particles from a fluorinated organometallic precursor, 

triphenylphosphine gold(l) perfluorooctanoate, reduced by dimethylamine borane in SC­

COZ•
126 The products had an average diameter of 1.0 ± 0.3 nm, and could be redispersed 

in ethanol, although aggregation tends to occur upon standing. On the other hand, SC­

HzO allows the researcher to employ highly elevated temperatures that cannot be 

sustained by most conventional solvents, which can be a useful property for the synthesis 
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of many metal and semiconductor materials.lz6-130 Korgel used supercritical water to 

create hexanethiol capped copper nanoparticles. lz9 

The use of COz emulsions can sometimes mitigate these extreme cases, 

generating solvent environments with intermediate properties. Silver and copper crystals 

were prepared in a surfactant-containing water-in-COz microemulsion, where the 

structure of the emulsion acted as a shape-directing template. 131 Supercritical-COz has 

been used for both the synthesis and deposition of gold nanoparticles into low-defect 

films. The use of COz-expanded liquids (i.e. organic solventlSC-COz mixtures) as an 

alternative to pure SC-COz systems holds the advantage of eliminating the need for 

perfluorinated compounds by increasing the range of solvent properties, allowing 

inorganic-hydrocarbon composites to remain stable under SC conditions. This concept 
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Figure 1.23. TEM image of f3-D-glucose capped gold nanoparticles, and a histogram showing the 
corresponding size distribution. (Reprinted with permission from Uu, J.; Anand, M.; Roberts, C. 
B. Langmuir 2006,22,3964, Figure 2. Copyright 2006 American Chemical Society.) 
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was demonstrated recently by Roberts, creating wide area, low defect films of 

alkanethiol-capped gold nanoparticles (see Figure 1.23) from CO2-expanded hexane 

solutions. 132 

Previously, supercritical CO2/ethanol mixtures have proven useful for the 

preparation of copper nanocrystals prepared by thermal decomposition of a perfluorinated 

organometallics precursor.133 A unique method described as "precipitation by compressed 

antisolvents" was used to drive the preparation of nickel and cobalt nanoparticles, where 

SC-C02 is fed into a solution of the metal compound. Taking advantage of the limited 

solubility of inorganic materials in SC-C02, supersaturation conditions are reached, 

leading the precipitation of nanoparticulate materials. 134 If these reports are taken 

together, one may conclude that supercritical fluids hold great promise in the 

development of more benign synthetic routes, with demonstrated utility in nanosynthesis, 

assembly, and purification. The development of new (benign) surfactants and 

supercritical solvent systems is likely to increase the range of materials that are soluble 

under such conditions, potentially eliminating the need for perfluorinated materials in this 

area of research. 

4.2 Ionic Liquids 

Ionic liquids (lL) have received attention as alternative solvents and stabilizers for 

nanomaterials synthesis, due to their general ease of synthesis, stability (nonflammable, 

thermally stable), and low vapor pressures. Ionic liquids feature low interfacial tension 

that allows them to adapt to the surrounding reaction media, and their relative solubility 

may be tuned by varying their anionic and cationic components. Careful choice of anion 
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is critical to their use within a green chemistry context, since BF4- and SF6- are believed to 

evolve hydrofluoric acid over time,135 and variations in vapor pressure arise from 

individual cation/anion combinations. Their limited miscibility with water and organic 

solvents often simplifies product purification and promotes recovery and recycling, 

although drying ionic liquids prior to use can be difficult. Nanomaterials composed of 

noble metals, oxides, and semiconductors have been prepared in such solutions. 

The vast majority of IL syntheses are carried out using imidazolium derivatives 

having various counterions. Kim reported the synthesis of gold and platinum 

nanoparticles by NaBH4 reduction of HAuCl4 in the presence of a thiolated IL, yielding 

nanoparticles with diameters of 2.0 - 3.5 nm. The monodispersity was dictated by the 

number of thiol groups present in the reaction mixture. 136 Tatumi used a zwitterionic 

material as an IL, based on the imidazolium functionality derivatized with a thiol 

headgroup and a pendant sulfonate, to synthesize 2.5 nm gold particles. 137 Others have 

used ionic liquids as capping agents despite the absence of thiol functionality. Hoh and 

coworkers described such a use of ILs in the synthesis of gold nanoparticles, finding that 

the product solubility could be tuned by exchanging the anion. 138 Large gold nanosheets 

were prepared by Kim et al. in a neat, microwave assisted reaction between HAuCl4 and 

an imidazolium-based IL,139 More recently, the synthesis of an alcohol-derivatized IL was 

reported, where the IL may act as both a reducing agent and a capping material to create 

nearly monodisperse 4.3 nm gold particles. l40 To further ease isolation and purification of 

nanomaterials synthesized in ionic liquids, Wang described how the addition of oleic acid 
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as a primary capping agent facilitates the precipitation of gold nanoparticles from an IL­

based reaction mixture. 141 

Platinum nanoparticles may be synthesized by similar routes. Scheeren et al. 

reported the reaction of ~(dba)3 with an imidazolium-type IL to yield nanoparticles with 

average diameters ranging from 2.0 - 2.5 nm. Larger particles could be accessed by 

varying the counteranion.14Z.143 Zhao and colleagues recently described the ionic-liquid 

mediated synthesis of platinum nanoparticle-studded carbon nanotubes. l44 

Ionic liquids may also be used for the general synthesis of inorganic 

nanostructures. 145 Kimizuka reported the synthesis of hollow titania microspheres in a 

toluene/ionic liquid medium. The nanospheres form at the interface of a microdroplet of 

toluene and the surrounding ionic liquid. l46 A modified sol-gel technique employing ionic 

liquids and an immiscible titanium tetraisopropoxide/alcohol solution was used to create 

5 nm titania crystals. 147 Ionic liquids have been used to drive the synthesis of ZnO 

nanostructures with unusual morphologies, as in the case of ZnO pyramids where all 

exposed surfaces are the very polar (0001) and {lOll} planes. 148 The strongly polar 

environment imposed by ionic liquids helped to form PbO nanocrystals featuring the PbS 

crystal structure.149 Manganese oxide molecular sieves were synthesized from ionic 

liquids, where the ionic liquid acts as a reducing agent, cosolvent, and shape-directing 

material. l50 The thermal stability of ILs assisted the synthesis of CoPt nanorods from a 

mixture of Co(acac)3' Pt(acac)z, and CTAB (present as a shape-directing agent).l5l 

Unusual BizS3 "flowers" were synthesized in ILs, and it was discovered that prolonged 

aging of these materials ultimately led to the structural breakdown, followed by nanowire 
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growth. 152 Finally, rounding out the range of synthetic applications afforded by this class 

of reagents, nanoscale metal fluorides were synthesized in ionic liquids, demonstrating 

predictable rodlike morphologies, regardless of the metal precursor employed.153 

5. Functionalization 

While our primary focus has been on the topic of nanomaterials synthesis, efforts to 

control the surface chemistry of products are key to defining how the material interacts 

with its surroundings, whether in a solution or in the solid phase. Nanoparticle syntheses 

of the Brust-type can provide a direct route towards a product that features the desired 

surface chemistry as synthesized, assuming reagent compatibility (Le. the thiol-based 

capping agent must not be react with sodium borohydride). However, there are a few 

caveats to this approach if multiple products are desired. The preparation of similar 

nanomaterials differing only in their surface chemistry often requires individualized 

tailoring of a general synthetic route, since the choice of capping ligand can greatly 

impact the average size and morphology of the products. Because unique products must 

be generated in a single batch, larger amounts of solvent are required to support 

numerous parallel reactions. To circumvent these issues, the preparation of versatile core 

materials amenable to surface modifications may be a more strategic approach if one 

wishes to create a diverse library of materials with uniform core sizes. Surface 

modification methods can be categorized into two major classes (see Figure 1.24): post­

synthetic modification of the existing ligand shell, involving simple transformations of 

pendant functionalities or grafting, and ligand exchange, where an existing ligand shell is 

displaced by a different incoming ligand. 
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Figure 1.24. Strategies for nanoparticle functionalization. Post synthetic modifications take 
advantage of the existing stabilizing shell, using either coupling reactions or simple organic 
transformations to impart the desired functionality. Ligand exchange reactions displace the 
existing stabilizing shell with a ligand featuring either the same headgroup, or one that 
demonstrates greater binding affinity than the original. 

5.1 Post Synthetic Modification of the Ligand Shell 

Post-synthetic modification methods involve the direct synthesis of a stable 

nanoparticle that can sustain secondary reactions intended to introduce a new chemical 

functionality to the surface of the particle in a subsequent reaction sequence. Candidates 

for post-synthetic modifications are generally produced by direct synthesis «(.0­

functionalized particles created by Brust preps) or sometimes ligand exchange methods 

(usually involving the introduction of a ligand bearing a reactive pendant functional 

group). Modification reactions include polymerizations,I54.157 coupling reactions,40·48.'58-162 

or transformation of existing chemical moiety.48.'63.165 In all cases, the success of such 

modifications relies not only on the nanoparticles tolerance for various reaction 

conditions, but also the overall reactivity and steric environment presented by functional 

groups that are constrained through binding to a nanoparticle. Factors that impact the 

efficacy of post-synthetic modifications may include: the length of the ligand composing 
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the stabilizing shell, since this impacts the steric mobility of w-functional groups, the 

spatial density of such groups, and the bulk of the incoming nucleophile (for SN2 type 

reactions). Nanoparticles featuring amino, carboxylate, and bromo- or iodo- terminal 

groups are commonly used to generate libraries of functional materials through post­

synthetic modifications. Although this method affords greater versatility to a single 

precursor material, it should be noted that characterization of the modified materials 

might be exceedingly difficult, due to difficulties encountered when assessing the extent 

of modification. 

5.2 Ligand Exchange 

Ligand exchange methods are somewhat of a hybrid technique, as they require the 

direct synthesis of a versatile precursor nanoparticle stabilized by a labile ligand shell, 

followed by a ligand exchange step where the original ligand shell is partially or fully 

displaced by another ligand that bears pendant functional groups, thus introducing the 

desired chemical functionality to the surface of the particle. This strategy offers multiple 

green advantages, since a single batch of nanoparticles can be divided and exchanged 

with multiple ligands, yielding numerous products while consuming minimal resources. 

Solvent use is reduced, compared to one-off direct synthesis routes, and no coupling 

reagents are necessary, as is often the case for post-synthetic modifications. The products 

are easily characterized via NMR and XPS, particularly if a different headgroup is 

introduced (e.g. thiol vs. phosphine). Triphenylphosphine stabilized nanoparticles, having 

a relatively labile ligand shell, readily undergo ligand exchange reactions with other 

phosphines, amines, and thiols. The nanoparticles obtained by Hutchison's procedure 
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Figure 1.25. The labile triphenylphosphine ligand shell is easily displaced by an incoming thiol 
without significantly altering core size, allowing for complete ligand exchange and rapid 
generation of a library of functionalized nanoparticles. 

have been functionalized by a wide range of ligands through exchange reactions, yielding 

a diverse library of functional nano "building blocks" ideal for use in the bottom up 

assembly of new nanostructures. 166,167 Ligand exchange reactions that displace phosphines 

in favor of incoming thiols (Figure 1.25) are amongst the most versatile and well studied 

examples of ligand exchange reactions;I68-171 however, in the past decade, ligand 

exchanges have been pelformed on a wide variety of materials having other stabilizing 

ligands. 

Several different classes of ligand exchange reactions have emerged, with one 

commonality: the incoming ligand used in the exchange reaction has equal or greater 

affinity for gold than the ligands composing the original stabilization shell for the 

nanoparticle. Thus one may start from a product that is stabilized by weakly coordinating 

materials such as organic acids (citrate, ascorbate, tannic acid) and surfactants, or more 

robust materials (such as phosphines, amines, or thiols), bearing in mind that the options 

for incoming ligands become more limited as the strength of the initial stabilizing ligand 

is increased, i.e. a phosphine is unlikely is displace a thiol. Ligand exchange reactions can 

be carried out under a range of solution conditions that can be tailored to achieve the 
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desired product, including aqueous, organic, and biphasic conditions, if a change in 

solubility is likely to occur as the ligand exchange proceeds. The following discussion 

will illustrate the versatility of ligand exchange by providing examples of ligand 

exchanges performed on precursor particles with a variety of stabilizing ligand shells. 

5.2.1 Place Exchanges Involving Ligands of the Same Class 

Phosphine-to-phosphine. This place exchange technique may be used to introduce 

functionality to phosphine stabilized precursor particles, although complete exchange of 

the original ligand shell is difficult to aChieve. 172 Early examples include the 

functionalization of triphenylphosphine stabilized undecagold clusters by introduction of 

w-functionalized aminophosphine ligands, and the production of water-soluble clusters 

via exchange with Ph2PC6H4S03.56,173 Although the exchange kinetics are quite rapid,174 

the use of such exchanges is limited by the general instability of phosphine stabilized 

clusters and inability to perform complete ligand exchanges. 

Thiol-to-thiol exchange The earliest reports of thiol-for-thiol place exchange 

reactions were performed on alkanethiol stabilized nanoparticles prepared by the Brust 

route. Alkanethiols featuring a range of w-functionalities were introduced to stirring 

nanoparticles, with attention to the molar ratio of incoming ligands, offering control over 

the extent of the ligand exchange reaction to yield products with mixed ligand shells.175,176 

These polyfunctional nanoparticles featured pendant groups capable of participating in 

secondary chemical and redox reactions, providing proof-of-principal for a range of new 

applications as nanoreactors. Later reports by Foos and Twigg demonstrated phase 
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transfer during ligand exchange, transferring hexanethiol capped particles to the aqueous 

phase upon exchange with water soluble ligands. 177
,178 

A great deal of attention has gone toward elucidating the mechanism of thiol-for 

thiol exchanges. It is generally accepted that the chain length and steric bulk of an 

incoming ligand impact exchange rates, with smaller, simpler ligands exchanging most 

rapidly. The overall mechanism is associative, occurring in two distinct steps, where 

exchange is initiated at the gold atoms that form the vertices and edges of a nanoparticle 

surface. The exchanged species then diffuse toward the terraced regions of the surface, 

eventually leading to an equilibrium state.175
,179,180 Murray explored several other factors 

affecting exchange rate, including the charge on the particle and the acid/base 

environment, finding that ligand exchange reaction proceed faster on particles whose 

gold cores bear positive charges, as do exchanges that take place in moderately basic 

environments.181 In a follow-up study, the impact of core size with respect to ligand 

exchange rates revealed that two distinct rates corresponding to individual steps of the 

exchange persist for particles regardless of size regime. However, the rate of the second 

step (involving diffusion and rearrangement of thiolate species on gold terraces) varies, 

with the rate being slower for larger particles.182 Recently, Rotello reported a new method 

of studying exchange kinetics using dye functionalized nanoparticles as substrates for 

exchange. 179 Since gold nanoparticles effectively quench the fluorescence of bound 

probes, the progress of the ligand exchange could be monitored by the relative 

fluorescence of the particle solution, since incoming ligands will displace the dyes as the 

reaction proceeds. While these studies have provided great insight toward a better 
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understanding of ligand exchange, the fact remains that precise control over the extent of 

exchange is a challenge. Worden has offered a solution that allows for exchange of a 

single ligand, using a "catch and release" strategy (see Figure 1.26).183 Polymeric 

supports served as an anchor for 6-mercaptohexanoic acid (6-MHA), leaving the thiol 

group free to bind to a gold particle. The 6-MHA dosing was sufficiently low in order to 

maintain distance between the tethered molecules. A single butanethiol capped 

nanoparticle could then bind to the free thiol, and liberation of the newly monosubstituted 

particle was achieved using trifluoroacetic acid. To demonstrate that the particles 

contained only a single 6-MHA molecule, peptide-coupling reactions were performed 

using the particles and a diamine, resulting in the formation of nanoparticle dimers. 
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Figure 1.26. The "catch and release" strategy for controlling the extent of ligand exchange, in this 
case, adding a single incoming ligand to each particle. (Reprinted with permission from Worden, 
J. G.; Dai, Q.; Shaffer, A. W.; Huo, Q. Chern. Mater. 2004, 16, 3746, Scheme 1. Copyright 2004 
American Chemical Society.) 
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5.2.2 Introduction of a New Surface Binding Functionality 

Phosphine-to-thiol. Already discussed above, this is the most versatile type of 

exchange reaction, since it is capable of producing monosubstituted clusters bearing a 

wide variety of terminal functional groups. The pioneering work of Hutchison et al. 

demonstrated the utility of this exchange with triphenylphosphine stabilized 1.4 nm gold 

particles by carrying out exchanges in a single organic phase to introduce organic soluble 

thiols,I68,184-187 or in a biphasic manner, using water soluble thiols to convert the organic 

soluble precursor particles to water soluble materials without disrupting the original size 

of the gold core.167,168,l7l,l87 The extent of exchange in the biphasic case is governed by the 

degree of mutual thiol solubility in both phases: that is, a water soluble thiol that has a 

partial organic solubility is capable of more extensive ligand exchange than a thiol that is 

completely insoluble in organic solvents. Phosphine-to-thiolligand exchange reactions 

have also been used to functionalize smaller (0.8 nm) nanoparticles having undecagold 

cores.98,I88 Murray has reported that the core size of phosphine stabilized nanoparticles 

increases during ligand exchange processes,169 but it should be noted that Murray 

employed much longer reaction times than Hutchison/87 making Ostwald ripening 

processes more likely. 

Phosphine-to-amine. Amines can displace phosphine ligands in a single-phase 

reaction. One unique aspect of this reaction is that the size of the gold cores may evolve 

as the reaction progresses, transforming 1.4 nm triphenylphosphine stabilized particles to 

larger monodisperse amine stabilized particles, ranging in size from the original 1.4 nm 

up to 8 nm, depending on the exchange conditions.81,184 As mentioned, the amine 
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stabilized products are nearly monodisperse, and while the exact mechanism of the 

exchange remains unknown, it is worth noting that a bimodal size distribution is 

maintained throughout the course of the reaction. These particles are not as robust as 

those stabilized by thiols, but the relatively labile amine ligands can be exchanged with 

thiols, potentially providing access to larger functionalized gold nanoparticles by first 

growing the particles to the desired size through reactions with amines, followed by 

introduction of surface functionality by an exchange with thiols. 

Citrate to thiol. Citrate to thiol exchanges are amongst the most commonly 

employed yet least understood methods of creating larger functionalized gold 

nanoparticles. The reduction of HAuCl4by citrate anions was pioneered by Turkevich 

half a century ago, yielding monodisperse, water soluble gold clusters with diameters 

ranging from 7-100 nm. The clusters are stabilized by a complex multilayered assembly 

of citrate anions in various oxidation states, lending an overall negative charge to the 

particles.189,190 This highly charged ligand shell makes solutions of the particles very 

sensitive to changes in pH, ionic strength of the medium/91 and the presence of other 

organic materials. Incomplete functionalizations involving a few thiolated biomolecular 

ligands are easily achieved/92,193 but full functionalization of these particles by a complete 

thiolligand shell remains elusive. Levy and coworkers recognized the functionalization 

challenge presented by citrate stabilized gold nanoparticles, and designed a ligand 

featuring not only a gold binding thiol moiety, but also several amino acids capable of 

stabilizing the citrate surface.194 For many years, the most successful ligand exchange 

methods employed a thiol bearing anionic oo-functionality.195-197 One example of this type 
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Figure 1.27. A two-step approach to functionalizing nanoparticles. Thioctic acid bind to citrate 
stabilized gold nanoparticles with minimal disruption of the electrostatic environment, stabilizing 
the particles for a subsequent exchange with another thio!. (Reprinted with permission from Lin, 
S.-Y.; Tsai, Y.-T.; Chen, c.-c.; Lin, C.-M.; Chen, C.-h. J. Phys. Chern. B, 2004,108,2134. 
Scheme 1. Copyright 2004 American Chemical Society.) 

of exchange, involving thioctic acid as a ligand, is shown in Figure 1.27. 

Recently, investigations of this type of exchange by Hutchison et al. have opened 

up the possibility of extensive thiol functionalization of citrate stabilized particles by 

other water soluble thiols, including those having anionic, neutral, and positively charged 

pendant functional groups. Hutchison found that complete removal of the citrate 

stabilizing shell by extensive diafiltration is required for maximum surface coverage by 

thiols (Figure 1.28). The stripped gold cores remain soluble in water, permitting the 

introduction of thiolligands without the usual problems of low surface coverage, 

aggregation, or cross-linking. The use of a thiol bearing pendant trimethylammonium 

functionality is unprecedented in the case of citrate-stabilized gold nanoparticles, as 

excess citrate anions promote cross-linking and aggregation as functionalization 

proceeds. This method of creating a versatile stripped gold precursor particle amenable to 

functionalization by a wide range of thiols is promising as a route to nanoscale building 
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Figure 1.28. A new strategy for functionalization of citrate stabilized nanoparticles utilizes 
extensive diafiltration to remove most ions from the surface of the gold particle, thus allowing 
facile binding of an incoming thiolligand. 

blocks capable of self-assembly, much in the way that phosphine-to-thiol exchanges have 

increased the scope of utility for 1.4 nm triphenylphosphine stabilized nanoparticles. 

Surfactant-to-thiol. This class of exchange has been discussed elsewhere 

throughout the review, as it is a key route to high aspect ratio nanorods and prisms. 

Briefly, gold clusters may be synthesized within micellar templates through reduction of 

gold salts by NaBH4. Excess surfactant molecules, usually in a tetraalkylammonium 

form, impart stability to the clusters while providing a ligand shell that is readily 

displaced by ligands capable of bonding covalently to gold, such as thiols. Although the 

use of smfactant in this capacity is common, subsequent displacement by thiols or other 

ligands has not been reported frequently, likely due to the difficulty in obtaining products 

free of sUlfactant contaminants. Surfactants have also been displaced by amines, as in the 

case of Gandubert and Lennox's assessment of dimethylaminopyridine's (DMAP) 

capability as a stabilizing agent for nanoparticles. Gold nanoparticles were synthesized in 

a biphasic Brust reaction, yielding TOAB-stabilized clusters suspended in toluene. The 
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clusters were exchanged with DMAP, which is intended to serve as a temporary stabilizer 

for subsequent ligand exchanges meant to yield functionalized nanomaterials. 198 

6. Future Challenges for Greener Nanosynthesis 

The emerging field of green nanoscience faces considerable research challenges 

to achieve the maximum performance and benefit from nanotechnology while 

minimizing impact on human health and the environment. The principles of green 

chemistry, applied to nanoscience, provide a framework for designing greener 

nanomaterials and developing greener nanosynthesis methods. As nanoscience emerges 

from the "discovery phase" to the production level, the need for larger quantities of 

highly purified, structurally well defined and precisely functionalized materials will 

require significant improvements in nanoparticle synthesis. This review highlights the 

growing body of research that addresses the development of these greener processes for 

nanomaterial synthesis. We focused primarily on the preparation of functionalized metal 

particles, describing advances in core synthesis, surface functionalization, and shape 

control that illustrate the current status and future challenges to developing greener 

approaches. The literature in this area illustrates a few of the many approaches that are 

being explored in the pursuit of greener nanosynthesis and provides some examples of 

how these steps can yield high performance materials with higher efficiency and 

enhanced safety. However, careful analysis of the examples we describe in this review 

suggests that there is still much to learn in developing greener nanosynthesis methods and 

furthermore point to a number of important research challenges that would accelerate a 

transition toward greener nanosyntheses. 
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Among the key findings thus far have been discovery of methods to produce 

nanoparticles and assemblies with desired properties, that (i) eliminate the use of toxic 

reagents and solvents, (ii) afford higher yields and fewer by-products, (iii) provide better 

control of particle size dispersity, (iv) reduce the need for purification or the amount of 

solvent needed to carry out purification, and (v) enhance material utilization (e.g. in 

assembly reactions). Finally, initial steps have been taken toward development of metrics 

by which competing production methods will be compared. 

Despite the progress described within this review, there are still considerable 

research challenges within this field that remain to be addressed. Each of those listed 

below would have significant impact toward providing the research base needed to 

pursue greener approaches, while advancing nanoscience generally. To achieve this end 

it is necessary to: 

1.	 Develop structure-activity relationships (SARs) needed to predict biological 

impacts, ecological impacts and degradation at end-of-life. Each of these SARs is 

needed to design nanoparticles that will have the desired human health and 

environmental performance to complement their physical properties. The 

materials challenge in developing these SARs is accessing diverse populations of 

nanostructures for investigation that have well-defined structures and purity 

profiles. 

2.	 Develop new transformations and reagents that are more efficient, safer, and 

useful in a wider range of reaction media/solvents that will ultimately provide 

access to greener media. These methods should also produce materials of high 
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quality and purity and allow one to access the composition, size, shape, and 

functionality desired in a compact synthetic approach. This is a significant 

challenge that will require enhanced understanding of the mechanisms of 

nanoparticle formation and the ability to adjust reagent reactivity to address these 

multiple criteria. These transformations and reagents should be amenable to scale 

up for production level processing. Continuous-flow microreactors present such 

advantages for nanoparticle production and may be useful for large-scale 

production. 

3.	 Gain improved understanding of product distributions, nanoparticle formation 

mechanisms, and reaction stoichiometries. Currently little is known about the 

mechanistic details of these transformations. Without knowledge of 

stoichiometry and mechanism, it is impossible to assess atom economy or 

rationally develop new synthetic methods. Without an understanding of the 

impurity profiles, one cannot develop new purification strategies. In terms of 

impact, this is one of the most important challenges, but one that is difficult, in 

part, because of the limitations of analytical techniques to assess nanoparticle 

structure, composition, and purity (vide infra). 

4.	 Optimize analytical techniques that permit the routine analysis of nanoparticles 

for composition, structure, and purity. In the discovery phase of nanoscience, 

greater emphasis has been placed on the analysis of structure (e.g. core diameter 

of a particle by TEM) with little attention paid to the chemical composition of the 

stabilizing shell or the presence of small molecule impurities in the nanoparticle 



97 

samples. Availability of routine analytical methods that address these issues is a 

key to gaining a better understanding of the mechanisms of nanoparticle 

formation and reactivity. In addition, given the influence of purity on a wide 

range nanoparticle properties (e.g. self-assembly, ligand exchange, and toxicity) 

analytical techniques that can detect and quantify impurities will be important to 

pursuing greener approaches. Importantly, analytical techniques are needed that 

permit real-time, in situ monitoring to optimize production processes, thus 

minimizing waste and energy costs as well as providing mechanistic information. 

5.	 Find alternatives to the use of surfactants, templates, or other auxiliary substances 

to stabilize and control nanoparticle shape during synthesis. A number of the 

examples provided in this review make use of surfactants for these purposes. 

Surfactants are often toxic, tend to persist as residual contaminants in the product, 

and must usually be replaced in order to incorporate new functionality on the 

particle surface. New approaches wherein the molecule used to control shape 

during synthesis instills permanent function (beyond initial stabilization) to the 

material are particularly needed. Some studies have utilized biological molecules 

to control the size and shape of nanoparticles, often in the absence of surfactants. 

These biomimetic approaches are in their infancy, but show great promise in 

biologically derived nanoparticle production. For these bio-based nanoparticles to 

be successful, it will be necessary to develop methods that are amenable to scale 

up, such as those used in microreactor design. 
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6.	 Further develop and assess alternative solvents and reaction media. If alternative 

reaction media (e.g. ionic liquids, supercritical fluids, or other new solvents) are 

to be exploited, the efficacy, safety, and broader implications need to be assessed 

to guide selection of most appropriate medium, whether it be a new material or a 

traditional solvent. These implications include chemical and energy utilization 

associated with production and use of the new reaction media. 

7.	 Develop convenient purification methods that provide access to pure 

nanomaterials without generating large amounts of solvent waste. As 

nanoscience transitions from the discovery phase to commercialization, the 

availability of pure nanoparticle samples or those with well-defined impurity 

profiles will be needed for applications. In addition, pure materials are essential 

for studies aimed at developing structure-activity relationships needed to predict 

physical properties, reactivity, toxicity, and eco-toxicity. Current purification 

methods are wasteful and inadequate as described in section 2.4.2. Methods that 

utilize filtration technology can greatly improve purification without generating 

large solvent wastes and should be investigated to develop greener purification 

methods. 

8.	 Identify metrics or other approaches for comparing the greenness of competing 

approachesl99 that consider the relative hazards and efficiencies of the 

immediately relevant transformation and the relative impacts of each method 

within a broader life cycle. These metrics are only beginning to be developed, but 

will be increasingly important in guiding method selection, particularly during 
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reaction scale up, and the development of new, greener approaches to 

nanoparticle synthesis. 

As the above listing of research challenges suggests, green nanosynthesis is in its early 

stages and further research is warranted to develop the approach and examine the breadth 

of its application. There are encouraging results that suggest that the green nanoscience 

framework can guide design, production, and application of greener nanomaterials across 

the range of compositions, sizes, shapes, and functionality. Further development and 

application of this framework to the design and production of a growing number of 

classes of nanoparticle materials will provide research opportunities and challenges for 

this community for the foreseeable future. 

7. Bridge to Chapter II 

Portions of this dissertation (specifically, chapters I, II, and III) contain previously 

published and/or coauthored materials. The material in Chapter I originally appeared as a 

portion of a recent publication, reprinted from Dahl, J. A.; Maddux, B. L. S.; Hutchison, 

J. E. "Toward Greener Nanosynthesis" Chemical Reviews, 2007, 107, 2228-2269. The 

majority of the material appearing in chapter I was authored by Dahl, with contributions 

from Hutchison; Dahl and Hutchison shared editing tasks in preparation for publication. 

Chapter I provided an overview of the presence of green chemistry in the synthesis and 

functionalization of metal-based nanomaterials. Chapter II describes the development of 

a route to functionalized large gold nanoparticles, useful for their inherent optical 

properties. The synthesis features numerous green advantages, including innocuous 

reagents, mild reaction conditions, and benign purification and processing techniques. 
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Specifically, we have produced stable gold cores with diameters exceeding 8 nm that 

serve as versatile synthons for the generation of a library of functionalized particles, via 

functionalization by an incoming thiol. In order to define the scope of these materials and 

maximize the range of possible applications, the gold cores were functionalized with 

several water-soluble thiols, having a range of pendant functional groups useful for 

participation in later self-assembly processes. 
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CHAPTER II 

FUNCTIONALIZATION OF CITRATE STABILIZED GOLD NANOPARTICLES 

WITH WATER SOLUBLE THIOLS 

Note: Portions of Chapter II are expected to appear in an upcoming publication, 

co-authored by Dahl, 1. A.; Jespersen, M. L.; and Hutchison, 1. E. The first author made 

the initial discoveries described in this work, designed experiments, and carried out the 

majority of the laboratory work. The author also composed the manuscript corresponding 

to Chapter II. 1. E. Hutchison provided experimental and editorial guidance, while M. L. 

Jespersen assisted with laboratory experiments during the later stages of this project. All 

syntheses and the vast majority of materials characterization were carried out at the 

University of Oregon, with some analysis performed at the Environmental Molecular 

Sciences Laboratory at Pacific Northwest National Laboratory. 

1. Introduction 

The demand for functiona1ized noble metal nanoparticles has steadily increased as 

the scope of these materials broadens to include a multitude of optical, electronic, and 

biomateria1s app1ications.39
,172,200-21o Realization of these materials often requires the 

presence of a functiona11igand shell that affords control over solubility, reactivity, 
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stability, and self-assembly processes. Within the past decade, a number of methods for 

the preparation of functionalized gold nanoparticles have been reported, including the 

synthesis of a 1.4 nm triphenylphosphine-stabilized gold precursor nanoparticle which 

readily undergoes ligand exchange reactions with a wide range of thiols,28,58,I87 while 

variations of the Brust synthesis provide a direct route to functionalized nanoparticles 

with diameters in the range of 2-8 nm.J8,39,42,177,211,212 However, for applications that exploit 

strong optical characteristics arising from surface plasmon activity, such as molecular 

sensors,14,213-215 flow assays,216,217 and optical waveguides,2OO,205,218-22o larger particles having 

diameters greater than 8 nm are required, yet access to functional nanoparticles in this 

size regime remains limited. 

Large gold nanoparticles are usually synthesized directly by citrate reduction of 

gold salts,31,32,190,221 or by seeded growth techniques52,95,222-224 that employ solutions 

consisting of a mild reducing agent, a gold salt, and a stabilizer (often a surfactant) to 

iteratively increase the diameter of smaller metal seed particles. While such methods 

offer products having desirable core sizes and optical properties, subsequent 

functionalization attempts often lead to materials that are poorly defined in terms of 

surface chemistry and purity. 

Although ligand exchange reactions are proven to be a reliable means of 

functionalizing smaller nanoparticles, similar transformations of citrate stabilized gold 

nanoparticles are largely unsuccessful due to the tendency for the particles to aggregate in 

the event of modest variations to solution conditions. Small changes in pH and ionic 

strength are sufficient cause for irreversible precipitation. Specifically, electrostatic 
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repulsion between particles is lost under acidic conditions, as ionized carboxylate groups 

are re-protonated. While better tolerated than acidic solutions, basic environments disrupt 

the stabilizing electrolyte gradient around the gold cores, leading to precipitation. 

Although excess ions (in the form of NaCl, buffers, or even excess citrate) do not interact 

directly with the surface of the nanoparticles, their presence causes aggregation by 

promoting a loss in electrostatic screening.191 ,225 

A closer look at the synthesis and surface chemistry reveals both the green merits 

and functionalization challenges of citrate stabilized nanoparticles. The citrate reduction 

route remains an attractive, reliable, green method of nanosynthesis, using benign 

reducing agents, solvents (water) and no additional passivating ligand, yielding gold 

nanoparticles within the size range of 8-100 nm with relatively monodisperse size 

distributions.31 ,32 Control over nanoparticle size is fairly straightforward and related to the 

ratio of reagents used, yet a single citrate molecule can undergo multiple oxidations in 

this non-stoichiometric reaction. As a result, the surface chemistry is confounded by the 

formation of a complex, negatively charged, multilayered stabilizing shell composed of 

excess citrate anions in various oxidation states. It is known that deprotonated citrate and 

dicarboxyacetone species form stable complexes with surface gold atoms,189-191 yet the 

precise extended structure surrounding the core of a citrate stabilized gold nanoparticle 

remains ambiguous since it varies with the ratio of reagents used, the size of the gold 

cores, and the relative solution concentration. The presence of the multilayered 

stabilization shell creates an electrostatic barrier to functionalization by incoming ligands. 

The stability of the particle solution is limited to a narrow range of conditions, many of 



104 

which do not permit the presence of an incoming ligand. Taken together, such qualities a 

pose significant barrier to subsequent functionalization efforts, with the consequence of 

limiting their utilization in more advanced applications. 

Despite a general intolerance for changes in solution characteristics, a few reports 

of thiol functionalization have emerged recently, sharing common features based on the 

character of incoming ligand, including ligands with anionic pendant groups and thiolated 

macromolecules. The first case involves thiols having anionic pendant groups (usually 

carboxylate or sulfonate)195-197,215,226-231 which form a covalent Au-S bond without 

significant destabilization, suggesting that it is crucial to maintain the electrostatic 

environment afforded by the stabilizing citrate anions as they are replaced by new 

ligands. The second case involves the use of macromolecules in the form of thiolated 

polymersI57
,232-236 or biomolecules. 157

,192,237-239 Large gold nanoparticles stabilized by 

charge-neutral water-soluble thiolligands have been pursued for use in biological 

applications, as such a ligand shell offers excellent biocompatibility and solubility in 

biological media while hindering unwanted non-specific interactions. Thiolated 

biomolecules, poly(ethylene glycol), and thiol end-capped polymers readily bind to gold, 

although dense surface coverage of nanoparticles remains elusive. In these instances, 

solubility is dictated by the biomolecule, rather than the nanoparticle. Such materials are 

often lacking aggressive purification efforts, leaving small amounts of unbound materials 

in solution, enhancing the stability of such nanoparticles while hindering complete 

characterization of the surface chemistry and masking the need for more extensive 

functionalization. 



105 

Instead of accommodating the inherent difficulties of citrate stabilized gold 

nanoparticle solutions, isolating the gold cores by removing excess ions may hold the 

promise of successful functionalization. In general, ligand exchange reactions rely upon 

two key factors: the outgoing stabilizing material must be labile enough to be displaced, 

while being stable enough to support the particles during ligand exchange. Additionally, 

the incoming ligand must have a greater affinity for the gold surface than the outgoing 

ligand. Hence, citrate stabilized nanoparticles should be capable of participating in ligand 

exchange reactions if the native stabilizers (excess citrate ions) can be removed, clearing 

the path for a stronger ligand (Le. thiol) to bind with the gold surface. Recent reports 

describe how citrate stabilized gold nanoparticles are more readily functionalized in 

solutions of low ionic strength,240 suggesting that removal of excess citrate prior to 

functionalization promotes denser ligand coverage. Rather than simply diluting 

nanoparticle solutions to tailor ionic strength, a more powerful means of controlling the 

electrostatic environment can be found in diafiltration. Capable of removing ions, 

unreacted materials, and other small molecules from aqueous nanoparticle solutions, 

diafiltration does not disturb ligands that are either covalently bound or strongly 

complexed with a nanoparticle.92 Previously identified as a superior means of purifying 

nanomaterials, we discovered that diafiltration could also strip excess ions away from 

nanoparticles prepared by the citrate route without compromising their stability in 

aqueous solutions. 

Here, we report a new approach to the functionalization of citrate stabilized gold 

nanoparticles where unbound citrate anions are completely removed from the particles by 
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Scheme 2.1. Strategy for functionalizing citrate stabilized gold nanoparticles with water-soluble 
thiols featuring anionic, cationic, and neutral pendant groups. Excess citrate species are first 
removed from the surface of the gold nanoparticles, leaving behind a gold core that is readily 
functionaJized by an incoming thioJ. 

extensive diafiltration, leaving behind stable, well-defined gold cores having only a 

sparse monolayer of dicarboxyacetone bound to the surface (scheme 2.1). The improved 

reactivity of the stripped gold cores is demonstrated in scalable ligand exchange reactions 

with simple water-soluble thiols having a range of pendant functional groups, including 

anionic, neutral, and cationic moieties, leading to readily characterized products with 

unambiguous compositions. 

The entire fabrication process features the use of greener methods starting with 

nanoparticle synthesis, isolation of the gold cores, ligand exchange, and purification. The 

techniques described here facilitate dense binding of an incoming thiol ligand to gold 

cores prepared by the citrate reduction method, without the usual constraints imposed by 

the presence of excess ions. By this route, citrate stabilized gold nanoparticle solutions 

may be transformed into versatile synthons, leading to well-defined functional 
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nanomaterials upon reaction with thiols, thus enabling applications that demand products 

with strong optical properties and specific functional groups. 

2. Experimental 

Ultrapure water (minimum 18.2 MQ-cm resistivity) was provided by a Bamsted 

Nanopure water filtration system and used in all stages of glassware cleaning, ligand 

synthesis, sample preparation, and purification. Hydrogen tetrachloroaurate trihydrate 

(HAuCl4-3HzO, 99.9%) was purchased from Strem Chemicals, Inc., and used as 

received. Trisodium citrate dihydrate (Na3C6H507-2HzO) was purchased from Fisher 

Scientific and used as received. Polyethylene glycol 200 (PEG-200, average molecular 

weight 190-210) was purchased from J. T. Baker and used as received. Thiolligands (6­

mercaptohexanoic acid, 2-ethanol, and (trimethylammonium)ethane thiol iodide) were 

prepared according to known procedures.98,167,187 Buffer solutions (pH =4, 7, and 10, 

0.025 M) were purchased from VWR and used as received. Diafiltration membranes 

(Minimate 70 kDa, polysulfone) were purchased from Pall, Inc. All other reagents and 

solvents were obtained from Aldrich and Mallinckrodt and used without further 

purification. Standard glassware and stir bars were cleaned with aqua regia; fritted 

funnels were cleaned with bleach/HCI. All glassware was rinsed with copious amounts of 

ultrapure water prior to use. 

UV-visible absorption spectra (UV-vis) were collected using an Ocean Optics 

USB2000 spectrometer and a quartz cuvette, which was cleaned with aqua regia and 

rinsed with ultrapure water prior to use. Spectra were normalized at an arbitrary 

wavelength of 450 nm and displayed in an offset overlay format for clarity. Transmission 
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electron microscopy (TEM) was used to collect images of nanoparticles with a Philips 

CM-12 microscope operating at an accelerating voltage of 120 kV. Nanoparticles were 

aerosoled from dilute solutions onto SiOx coated copper TEM grids (400 mesh, Ted 

Pella) and allowed to dry under ambient conditions prior to image collection. Image 

processing and size analysis were performed with Image J software. X-ray photoelectron 

spectroscopy (XPS) and thermogravimetric analysis (TGA) were used to analyze 

lyophilized nanoparticle samples in powder form. XPS was performed on a Kratos Axis 

165 instrument with an operating pressure of 10-9 mmHg using monochromatic Al Ka 

radiation at 10 kV and 20 rnA. Dry nanoparticle powders were pressed onto indium foil 

affixed to a copper sample holder with carbon tape. Charge neutralization was applied to 

the samples during analysis, and the resulting spectra were referenced to C Is at 284.5 

eV. TGA was performed with a Hi Res TGA 2950 thermogravimetric analyzer equipped 

with a nitrogen purge. Powder samples were applied to calibrated aluminum pans at 

ambient temperatures, heated at 5°C/min to 110°C, whereupon isothermal conditions 

were maintained for 10 minutes to ensure removal of residual solvent. The samples were 

then heated at 5°C/min to 500°C, and held under isothermal conditions for twenty 

minutes to ensure that mass loss due to ligand removal was complete. 

The use of diafiltration for nanoparticle purification has been described in detail 

elsewhere. Here, diafiltration is used to concentrate particle solutions, strip away excess 

ions, and purify thiol functionalized nanoparticles. Briefly, aqueous solutions of 

nanoparticles may be concentrated via diafiltration by feeding particle solutions into a 

sample reservoir, and a peristaltic pump drives the crude sample through a diafiltration 
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Figure 2.1. Schematic of the diafiltration apparatus. As nanoparticle solutions are driven through 
the filtration membrane by a peristaltic pump, solvent, ions and small molecules pass through the 
pores of the membrane, iteratively reducing the concentration of such species in the retentate. 
Larger materials such as nanoparticles are retained, and solution volume is maintained by adding 
fresh solvent as diafiltration progresses. (Reprinted with permission from: Sweeney, S.F.; 
Woehrle, G. H.; Hutchison, J. E. J. Am Chem. Soc., 2006,128,3190. Copyright 2006 American 
Chemical Society.) 

membrane at a constant pressure of 100 kPa. Excess solvent, ions, and small molecules 

are eluted as filtrate, while the nanoparticles are returned to the sample reservoir as 

retentate (figure 2.1). A constant retentate vol ume (Vrt) is maintained by feeding 

additional crude nanoparticle solution to the retentate reservoir as excess solvent and 

small molecules are eluted, eventually reducing the volume of the nanoparticle sample 

while retaining initial nanoparticle sample mass. (Here, a batch of nanoparticles that has 

been reduced in volume to 40 mL will be referred to as "concentrated.") Diafiltration 

progress is generally expressed in volume equivalents (Veq) of filtrate, where 1 Veq =Vr!' 

To strip excess ions away from the gold cores diafiltration is continued on a concentrated 

sample of citrate stabilized gold nanoparticles, introducing fresh solvent (ultrapure water) 
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to the retentate reservoir to maintain constant sample volume during processing (for 

details, vide infra). To purify thiol functionalized particles, nanoparticle samples are 

concentrated in the retentate reservoir, and ultrapure water is added to maintain sample 

volume as diafiltration progresses until 20 Veq of retentate have been collected. 

Citrate stabilized gold nanoparticles having average diameters of 8.5 nm were 

synthesized via an adaptation of the method reported by Turkevich. Briefly, 0.17 g of 

HAuCl4
e3H20 was added to 300 mL ultrapure water in a 500 mL round-bottom flask 

equipped with a magnetic stirrer. The solution was brought to reflux, whereupon 0.44 g 

Na3C6Hs07e2H20 dissolved in 10 mL ultrapure water was added and allowed to reflux 

for 20 minutes. The resulting ruby red solution of nanoparticles was rapidly cooled to 

room temperature using an ice bath, and filtered through a medium ceramic frit. The 

solution was immediately concentrated to a volume of 40 mL using a diafiltration 

apparatus as described above. The concentrated solution of nanoparticles was stripped of 

excess ions by continuing diafiltration with a continuous feed of ultrapure water supplied 

to the retentate reservoir to maintain volume. The progress of anion (citrate) removal was 

monitored by UV-vis spectrometry, tracking of the presence of citrate in the filtrate, 

rather than the retentate, of a sample as it is being stripped of ions. Aliquots of filtrate 

were collected from the diafiltration apparatus, and the stripping process was deemed 

complete by the loss of citrate's signature absorption at 210 nm, which usually occurred 

after 10-15 Veq of filtrate had been collected. (A detection limit of 10 ""M was first 

established by tracking the spectra of increasingly dilute trisodium citrate solutions of 

known concentrations.) 
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To functionalize the gold cores, concentrated nanoparticle solutions (20 mL) were 

redispersed in ultrapure water to reach a volume of 130 mL. A twenty-fold excess (based 

upon potential binding sites relative to the surface area of the gold cores) of water soluble 

thiolligands was dissolved in 20 mL of either ethanol or ultrapure water and introduced 

to the stirring nanoparticle solution. After stirring for at least 8 hours, the nanoparticle 

solutions were concentrated to a volume of 20 mL and subject to constant volume 

diafiltration until 20 Veq of filtrate were obtained. The purified samples were allowed to 

remain in solution for analysis by TEM and UV-Vis, or lyophilized to a dry powder and 

stored under vacuum for analysis by TGA and XPS. Slight modifications to this general 

method were employed to accommodate the solubility characteristics of imparted by 

various ligands: 

1)	 Cationic Ligands. The use of (trimethylammonium)ethane thiol iodide 

(TMAT) did not require any modifications to the general functionalization 

described above. 

2)	 Anionic Ligands. Bare gold nanoparticles were allowed to react with 6­

mercaptohexanoic acid (6-MHA) by the functionalization procedure described 

above, although pH adjustments were made as follows to ensure complete 

ligand ionization: prior to introduction of the ligand, the pH of the 

nanoparticle solution was adjusted to pH =10 with 2M NaOH. After the 

ligand was introduced as an ethanolic solution to the stirring nanoparticles, the 

pH was once again adjusted. 
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3)	 Neutral Ligands. To prevent ligand interdigitation, a small amount (5-fold 

excess, relative to thiol) of PEG-200 was added to the solution of bare gold 

nanoparticles prior to the introduction of 2-[2-(2­

mercaptoethoxy)ethoxy]ethanol (MEEE). The ultrapure water used for 

diafiltration of the functionalized particles was spiked with a similar 

concentration of PEG-200 to prevent agglomeration during diafiltration. 

3. Results and Discussion 

Functionalization of citrate stabilized gold nanoparticles by thiols featuring 

charged pendant groups was successful after complete removal of the citrate anion 

stabilizing shells by extensive diafiltration. Dense functionalization was achieved using 

anionic (6-MHA), neutral (MEEE), and cationic (TMAT) ligands. With slight 

modifications to enhance ligand solubility (described above), the particles remained in 

solution, subject to none of the constraints (primarily ionic strength and electrostatics) 

formerly imposed by excess citrate anions. Following functionalization, diafiltration was 

employed once again to purify the modified nanomaterials, removing unbound ligands, 

salts, and other liberated materials. To gain a better understanding of the surface 

chemistry enabling these functionalizations, both the stripped gold nanoparticles and the 

functionalized materials were characterized using TEM, UV-vis, TGA, and XPS, 

highlighting surface transformations due to the removal of excess ions and the subsequent 

binding of thiols. 

We discovered a new application of diafiltration that enables otherwise difficult 

functionalization chemistry by removing ions and molecules that hinder the binding of 
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incoming ligands if left intact. Since previous reports suggest that efforts to remove 

excess citrate lead to unstable gold cores,241 a means of monitoring the ion removal 

process was required to ensure that all excess ions have been removed without 

compromising the general stability and quality of the gold cores. Diafiltration is a 

continuous flow filtration method where the retention and elimination of materials 

corresponds to the pore size of the membrane material, analogous to standard dialysis. 

However, diafiltration features a dynamic system driven by a peristaltic pump to increase 

the speed and efficiency of purification, while tangential flow prevents membrane fouling 

associated with dialysis. Previous reports have demonstrated that diafiltration is superior 

to classic nanomaterials purification methods, including dialysis, ultracentrifugation, and 

chromatography, yielding products free of unbound ligands, unreacted materials, and 

other small molecules.92 In our application, nanoparticle products remain dissolved in the 

retentate, while unbound materials are collected in the filtrate. We found that the 

immediate removal of citrate by diafiltration is critical to the success of this method, 

since aged nanoparticles are known to be less reactive in ligand exchange reactions, 

presumably due to the decreased lability of the outgoing ligands.242 As crude citrate 

stabilized gold nanoparticles were stripped of ions via diafiltration, the presence of citrate 

in the filtrate was tracked at regular intervals. Once the absorption at 210 nm was no 

longer detected in the filtrate (see figure 2.2), the stripping of noncoordinated ions from 

the surface of the particles was complete, and the particles were ready for 

functionalization. 
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Figure 2.2. UV-vis monitoring of citrate molecules in solution. Known concentrations of citrate 
ions were analyzed to determine the detection limit, enabling an in-line monitoring process for 
determining complete removal of citrate ions from a solution of gold nanoparticles. 

Full characterization of the stripped gold cores provided a better understanding of 

particles transformations that occur during the ion removal process, revealing that 

diafiltration completely removes noncoordinated ionic stabilizers, leaving behind a partial 

monolayer of dicarboxyacetone. Previous reports of citrate removal by washing with 

acetone or by reduction with NaBH4 suggest that the exposed gold cores are unstable.241 

We found that the stripped cores prepared by our technique remain in solution for at least 

six months even in the absence of other stabilizing agents, likely due to the remaining 

dicarboxyacetone species tethered to the surface, which affords electrostatic stability and 

solubility. Stability is often judged in terms of agglomeration (the reversible clustering of 

particles due to decreased repulsion) and aggregation (the fusion of nanoparticles upon 

contacting another completely unpassivated particle). TEM images (figure 2.3) 

demonstrate that the as-synthesized particles are monodisperse (8.5 ± 1.2 nm) and 
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Figure 2.3. (left) UV-vis extinction spectra of nanoparticle solutions. The position of the surface 
plasmon peak changes little after the nanoparticles are stripped of excess ions. TEM images of 
citrate stabilized gold nanoparticles, (middle) as synthesized, and (right) stripped gold cores 
(200,OOOx magnification) 

unaggregated. After extensive diafiltration, the particles agglomerate (rather than 

aggregate) since most of the citrate has been removed, and interparticle repulsions are 

minimized. Despite the fact that the stripped particles have a tendency to settle to the 

bottom of a flask after standing for extended periods, they redispersed immediately with 

gentle swirling. Although TEM images of the stripped particles suggest aggregation, UV-

Vis spectra corresponding to these samples (figure 2.3) show the surface plasmon band 

position is only slightly shifted, indicating that the nanoparticles are simply 

agglomerated. 

Thermogravimetric analysis (TGA) provides an estimate of the organic portion of 

a functionalized nanoparticle, with distinct step-like mass losses corresponding to simple 

pyrolysis reactions associated with the combustion of ligands. TGA curves of the stripped 

particles confirmed that a very modest amount of organic material remains attached to the 

particle, showing a mass loss corresponding to a monolayer of dicarboxyacetone, rather 

than larger amounts of citrate derivatives. Comparison ofTGA data derived from 
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Figure 2.4. Thermogravimetric analysis of trisodium citrate reagent. Mass loss occurs in two 
distinct steps, due to the loss of waters of hydration and subsequent elimination of CO2 attributed 
to the three carboxylate moieties. 
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Figure 2.5. Thermogravimetric analysis of gold nanoparticles with excess citrate. The features of 
the curve are dominated by the presence of pure trisodium citrate. 
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Figure 2.6. Thermogravimetric analysis of stripped gold cores. The mass loss features of free 
citrate (specifically, the loss of CO2) are absent from the curve, indicating that citrate is not the 
chemical species remaining on the surface of the particles after processing. 

stripped particles, as-synthesized citrate-stabilized nanoparticles, and trisodium citrate 

reagent (figures 2.4-2.6) reveals a unique mass loss curve for the stripped particles 

attributed to a partial monolayer of 

dicarboxyacetone, confirming that citrate is neither bound to nor associated with the 

surface of the stripped particles (see table 2.1). 

X-ray photoelectron spectroscopy (XPS) was performed before and after 

pyrolysis of organic components associated with the stripped gold cores. Carbon species 

were present on the surface of the particles prior to pyrolysis, with C Is binding energies 

consistent with carboxylate and ketone species. Sodium counterions were not detected, 

suggesting that all carboxylate groups are complexed with the surface of the gold 
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Table 2.1. Summary of nanoparticle functionalization. 

Particle type	 Smface plasmon S:Au ratios Ligands as Extent of
 
band max (XPS) percent of total Ligand
 
position (UV- mass (TGA) Coverage
 

___.. ._. .__ . Yi~l .._..__ . . ._.. _ .._ __. . . 
Stripped, excess 521 nm N/a 0.28% 96.0% 
citrate removed 
Particles 531 nm 0.18 ± 0.05 7.38% 98.1 % 
functionalized with 6­
MHA (anionic) 
Particles 537 nm 0.15 ± 0.07 6.41 % 75.9% 
functionalized with 
MEEE (neutral) 
Particles 532 nm 0.14 ± 0.08 3.99% 65.5% 
functionalized with 

_I~I..(~~!i_()llicL. _ ~..~__ .•~•. "._ •._" '_"~~__'''__•._'' ~.c."_"""." ~_.~••_ ..o_._. '"_ __ ",•...._.~. __,«__".» 

Notes: The surface plasmon band is red shifted in the case of functionalized particles, reflecting 
the change in the dielectric environment upon binding. S:Au ratios determined by XPS show a 
clear trend in thiolligand coverage, while TGA reveals the relative ligand coverage based on the 
particles surface area and the number of possible binding sites. 

particles. No organic material was detected after pyrolysis, confirming that the amount of 

ligand detected by TGA corresponds to a complete and quantitative assessment of ligand 

coverage. 

A second round of characterization was performed on the functionalized materials 

after reaction with thiols and subsequent purification. XPS and TGA were used to 

establish the surface chemistry and extent of functionalization, while TEM and UV-vis 

provided information related to overall structural integrity. We discovered a clear trend in 

the extent of functionalization based on the nature of the pendant group of the thiolligand 

(summarized in table 2.1). The Au:S atomic ratios detected by XPS (figure 2.7) provide a 

comparison of ligand coverage density. Here, integrated peaks corresponding to 

photoelectrons emitted from the S 2p and Au 4f were compared to discern the relative 

amounts of these elements present in each sample. We found that 6-MHA binds most 
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Figure 2.7. XPS survey scans of gold nanoparticles functionalized with (top) 6-MHA, (middle) 
MEEE, and (bottom) TMAT. 

readily, followed by MEEE and TMAT. Corresponding TGA data revealed a similar 

trend for the relative amounts of ligand lost through pyrolysis, allowing additional 

comparisons of the amount of ligand detected to the theoretical amount of ligand required 

to fully functionalize the particles. Nearly fuJI coverage was achieved for 6-MHA, but 

lesser amounts of ligand were bound to the gold cores for the cases of MEEE and TMAT. 

Full coverage by 6-MHA was expected based on literature precedent, since it has been 

proposed that the addition of the anionic ligand shouldn't disrupt the overall electrostatic 

environment of the nanoparticles, ensuring stability as the functionalization proceeds. 

However, in the case of MEEE, interparticle repulsions are reduced as the nonionic 

ligand is added to the surface. As a result, complete ligand coverage is progressively 

hindered by the increased likelihood of particle interaction and ligand 
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Figure 2.8. UV-vis extinction spectra of gold nanoparticles before and after functionalization with 
water-soluble thiols. Modest red shifting is observed as the dielectric environment at the smface 
of the particle changes in response to the binding of thiols. 

interdigitation. For the case of ligand exchange with TMAT, it is probable that the 

pendant quaternary ammonium groups of the particle-bound ligand induced moderate 

cross-linking with neighboring particles through electrostatic interaction with residual 

dicarboxyacetone moieties. 

These hypotheses are further supported by UV-vis and TEM images of the 

functionalized nanoparticles, where the assemblies of particles reflect the nature of 

interactions proposed above. UV-vis data confirm that the particles retain their inherent 

optical properties after functionalization, showing a modest red shift of the surface 

plasmon band due to ligand binding, rather than the dramatic red shifts indicative of 

aggregation (figure 2.8). Nanoparticles functionalized with 6-MHA were once again 

completely dispersed, reflecting a similar degree of interparticle repulsion compared to 

the as-synthesized citrate nanoparticles due to ionized carboxylate species. The size (8.9 

± 1.5 nm) and shape of the gold core is virtually unchanged after stripping and 

functionalization, despite the stripped particles appearing heavily aggregated prior to 
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Figure 2.9. TEM images of particles functionalized with: TMAT (left) 24 hours of stirring 
(center) TMAT, 48 hours, and (right) MEEE (200,OOOx magnification) 

functionalization. Nanoparticles functionalized with MEEE interact in a manner that 

suggests a lack of interparticle repulsion, much like the stripped citrate particles. Ligand 

interdigitation was confirmed by adding a small amount of low-molecular weight 

(poly)ethylene glycol (PEG-200) to solutions of MEEE-functionalized particles. Based 

on our observations, we propose that the otherwise unreactive PEG interacts with bound 

MEEE, reversing any agglomeration caused by interdigitated particles. TMAT 

functionalized nanoparticles form end-to-end structures suggestive of mild cross-linking. 

Regardless of the apparent nanoparticle interaction observed by TEM (figure 2.9), the 

nanoparticles retain their optical properties, showing only small red shift in the surface 

plasmon band upon functionalization, consistent with solution stability and little 

aggregation. 

To delineate whether successful functionalization is dependent upon the either the 

low ionic strength of the stripped nanoparticle solutions or simply the loss of the 

multilayered citrate stabilizing shell, the same functionalization conditions were applied 
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to 1) as-synthesized "crude" citrate nanoparticles dissolved in ultrapure water and 2) 

stripped nanoparticles dissolved in buffer solutions having pH =4, 7, or 10. For all cases 

introduction of MEEE and TMAT to the crude solutions led to irreversible aggregation, 

while modest amounts of 6-MHA were able to bind to the nanoparticles. With the 

exception of 6-MHA, aggregation and subsequent precipitation was most rapid for the 

crude citrate nanoparticles, whereas the stripped particles dissolved in buffer solutions 

were slower to precipitate, with the exception of the rather unstable acidic solution of 

particles. These results underscore the importance of complete removal of excess citrate 

anions, as these failed functionalizations confirm that both high ionic strength of the 

solution as well as the presence of the full citrate ligand shell hinder efficient 

functionalization by thiolligands. 

4. Conclusions 

We have developed a facile route to the functionalization of large gold 

nanoparticles prepared by the citrate reduction method. Complete stripping of the anionic 

citrate stabilizing shell by extensive diafiltration leads to a versatile gold core, unhindered 

by the presence of noncoordinated ions. The stripped gold cores are stabilized by a 

monolayer of dicarboxyacetone, rather than an extended stabilizing shell of excess citrate 

anions, and are thus amenable to functionalization by a range of water-soluble thiol 

ligands. Overall size and shape of the particles is preserved throughout this process, and 

the particles retain their optical properties regardless of the pendant functionality of the 

thiolligand shell. The extent of ligand coverage is based on the character of the pendant 

groups, highlighting the importance of maintaining electrostatic repulsion between 
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particles and avoiding the possibility of cross-linking between reactive surface functional 

groups. This ability to control the surface chemistry of nanoparticles prepared by the 

citrate reduction route is likely to facilitate the utilization of these materials in 

applications dependent upon the optical properties associated with surface plasmon 

activity, paving the way for the development of new chemical sensors, bioassay 

materials, and optical devices. 

5. Bridge to Chapter III 

Chapter II discussed the preparation of a large gold nanoparticle core amenable to 

functionalization by an incoming thiol, yielding stable materials with known surface 

chemistry. While the work detailed in Chapter II provides a versatile precursor to 

functionalized nanoparticles, offering a wide range of options in terms of surface 

chemistry, a simple direct route is useful when specific materials are needed, rather than a 

library of analogs. Chapter III describes such a direct route to well-defined nanomaterials, 

yielding functionalized, water-soluble gold nanoparticles in a single reaction step. By 

reducing a gold salt in the presence of a capping agent, functionalized nanoparticles are 

produced without the need for addition processing or ligand exchange reactions. As an 

alternative to the thiols used in more traditional preparations, we used Bunte salts as a 

capping agent for the work comprising Chapter III. Bunte salts are easily synthesized, 

odorless, and shelf-stable, eliminating the need for the sometimes complicated syntheses 

and careful handling of thiols. 
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CHAPTER III 

DIRECT AQUEOUS SYNTHESIS OF LARGE GOLD NANOPARTICLES USING 

BUNTE SALTS 

Note: Portions of Chapter III are expected to appear in an upcoming publication 

co-authored by Lohse, S. E.; Dahl, J. A.; and Hutchison, J. E. The author of this 

dissertation made the initial discoveries reported in Chapter III, guided the later 

experiments of the project, and co-authored a manuscript. J. E. Hutchison provided 

research guidance and editorial assistance, while S. E. Lohse performed and designed 

many of the experiments in the later stages of this project, in addition to co-authoring a 

manuscript for publication. 

1. Introduction 

The size-dependent electronic and optical properties of spherical gold 

nanoparticles have generated interest in gold nanoparticle-based devices including 

microelectronic and optical devices, as well as in vitro sensors.6.167.171,243 Gold 

nanoparticles (AuNPs) smaller than 2.0 nm in diameter may display non-linear current 

vs. voltage behavior at room temperature,90·167 while those larger than 5.0 nm in diameter 

possess strong optical properties due to the resonant behavior between visible light and 
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6surface electrons (plasmons), characterized by an optical absorbance at 520 nm. ,244-246 

Functionalized nanoparticles hold a green advantage as device components, due to their 

ability to act as nanoscale "building blocks" of higher-ordered structures. Devices 

assembled using a bottom-up fabrication approach via the self-assembly of AuNPs 

provide superior lithographic resolution and are less materials intensive in their 

construction compared to devices produced by etching or other top-down production 

methods. 167
,244 Successful bottom-up device fabrication requires the nanoparticles to have 

specific functional groups, serving as anchor points between the particles and the 

substrate. Thus, the realization of these materials applications requires the development 

of syntheses that provide precise control over nanoparticle core diameter and facile 

functionalization methods. 

Although a number of AuNP syntheses have been developed that provide very 

precise control over nanoparticle core diameter between 0.8 and 10.0 nm, many of these 

routes do not provide effective methods for functionalizing the surface of the 

nanoparticle, particularly in the case of AuNPs with d core > 5.0.31,32,98,247-249 The Brust 

method provides a direct synthesis route which imparts control over both functionality 

and size,212,250-253 while ligand exchange reactions allow for modification of existing 

nanomaterials post_synthesis.98,I66,I68,I88,I%,254,255 However, both methods have significant 

drawbacks that limit their utility in the general synthesis of functionalized AuNPs. The 

Brust prep is most effective in the synthesis of AuNPs less than 5.0 nm in diameter, while 

nanoparticles greater than 5.0 nm in diameter are typically synthesized using charged 

ligands, such as citrate31 ,32 or tetraoctyl ammonium bromide (TOAB),195,256 making the 
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introduction of certain ligands (e.g. thiols) during ligand exchange challenging. 

Additionally, the use of materials stabilized by TOAB compromises the green merits of 

subsequent device assembly, as TOAB is a persistent contaminant having significant 

cytotoxicity. Furthermore, both of these methods require the synthesis of functionalized 

thiols, which have very short shelf lives and often require complex syntheses to produce. 

The development of a direct synthesis method for AuNPs in a variety of size regimes 

having intact thiol-based ligand shells would greatly simplify the synthetic process 

required to produce nanoparticle-based devices or in-solution sensors, reducing the 

overall number of steps, the amount of materials used, and the need for purification 

throughout the process. 

Recently, Murray proposed alkylthiosulfates (Bunte salts) as alternatives to 

functionalized thiols for the direct synthesis of gold nanoparticles. Functionalized Bunte 

salts are synthetically more straightforward to prepare than most functionalized thiols, 

and can be stored for long periods of time without oxidizing to disulfides.257-259 When 

used in gold nanoparticle synthesis, the Bunte salt first physically adsorbs to the surface 

of the developing nanoparticle, and then eliminates sulfite to form a thiolate linkage to 

the gold core (Figure 3.1). 

The potential for Bunte salts as ligand precursors for the synthesis of large 

functionalized AuNPs has not been extensively investigated, however. Although it is 

known that Bunte salts passivate growth at the nanoparticle surface more slowly than 

thiols, no attempt has yet been made to use Bunte salts as ligand precursors in the direct 

synthesis of AuNPs greater than 5.0 nm in diameter, nor has anyone study demonstrated 
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Figure 3.1. Reaction scheme for the synthesis of gold nanoparticles using Bunte salts as ligand 
precursors. Following adsorption to the gold surface, the ligand precursor eliminates an oxidized 
sulfur species to provide a thiolate attachment to the surface of the gold nanoparticle (AuNP). 

the versatility of Bunte salts as a method for introducing a wide array of functional 

groups onto the AuNP surface.257
-
260 

In this study, we demonstrate that the use of Bunte salts as ligand precursors can 

be utilized in the synthesis of gold nanoparticles as large as 9.0 nm, while simultaneously 

imparting a number of hydrophilic functionalities to the surface of the particles, including 

neutral, cationic, and anionic moieties. We also show that a range of core diameters can 

be accessed (much as in the Brust prep) by varying the L:Au ratios used in the reaction 

mixture. The potential for simultaneous size and functionality control provided by this 

synthetic method make it a powerful tool for the direct synthesis of functionalized gold 

nanoparticles, which has hitherto been unavailable for AuNPs deare > 5.0 nm in diameter. 

2. Experimental 

Ultrapure water (minimum 18.2 MQ-cm resistivity) was provided by a Barnsted 

Nanopure water filtration system and used in all stages of glassware cleaning, ligand 

synthesis, sample preparation, and purification. Hydrogen tetrachloroaurate trihydrate 

(HAuCl4-3H20, 99.9%) was purchased from Strem Chemicals, Inc., and used as 
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Figure 3.2. The Bunte salts used in this study. 

received. 5-bromopentyl(trimethylammonium bromide) (BPTMA) (99%), 2-[2-(2­

chloroethoxy)-ethoxy]ethanol (99%), and 6-bromomercaptohexanoic acid (BMHA) were 

purchased from Aldrich and used as received. Diafiltration membranes (Minimate 10 

kDa, polysulfone) were purchased from Pall, Inc. All other reagents and solvents were 

obtained from Aldrich and Mallinckrodt and used without further purification. Standard 

glassware and stir bars were cleaned with aqua regia; fritted funnels were cleaned with 

bleach/HCI. All glassware was rinsed with copious amounts of ultrapure water prior to 

use. 

Bunte salts (figure 3.2) were synthesized using known methods adapted from 

Murray and others.259-262 Briefly, 2.0 g of the organohalide precursor was added to a 

stirring solution containing 0.8 molar equivalents of sodium thiosulfate (Na2S20 3) and 

150 mL ultrapure water. The solution was heated to reflux for four hours, cooled to room 

temperature, and the solvent was removed via rotary evaporation. Due to differences in 

solubility, purification methods were customized as follows: 

1) Purification ofthe Bunte Salt ofMPTMA 1. The crude product was dried in vacuo 

overnight. To remove excess starting material, the product was triturated 2x with 

50 mL acetone. The remaining solid was dissolved in ultrapure water and 

sonicated for 30 min with 10 molar equivalents of solid NaCI to promote ion 
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exchange. Excess water was removed via rotary evaporation, and triturated once 

more with 50 mL acetone to remove liberated bromide. The remaining solids 

were filtered and dried briefly in vacuo, and the product was taken up with dry 

ethanol. The solution was filtered and the solvent was removed to yield an oily 

white solid. IH NMR (300 MHz, D20): () 3.30 ((CHjkN, s, 9H); 3.24 ((CHj)rN­

CH2, t, 2H); 2.56 (CH2-S-SOj , t, 2H); 1.73 ((CHj)rN-CH2-CH2' m, 2H); 1.59 

(CH2-CHr S-SOj , m, 2H); 1.29 ((CHj )j-N-CH2-CH2-CH2, m, 2H). 

2)	 Purification ofthe Bunte Salt ofMEEE 2. Following reflux heating, the water was 

removed by rotary evaporation, followed by overnight drying in vacuo.. The 

crude product was recrystallized in ethanol. IH NMR (300 MHz, D20): () 3.70 

(CH2-OH, q, 2H); 3.65 (CH2-O-CH2, m, 8H); 3.36 (CH2-S-SOj , t, 2H); 2.31 (OH, 

t, broad, 1H). 

3)	 Purification ofthe Bunte Salt ofMHA 3. Following reflux heating of the reaction 

mixture, the water was removed by rotary evaporation, followed by overnight 

drying in vacuo. The crude product was purified by recrystallization in ethanol, 

retaining excess NaBr side product. (The final product was determined via acid­

base titration to be 60% by weight of the desired Bunte salt. The presence of 

excess NaBr in the reaction mixture was found to have no effect on particle size.) 

IH NMR (300 MHz, D20): () 2.39 (CH2-S-SOj , t, 2H); 2.24 (CH2-COOH, t, 2H); 

1.45 (CH2-CHr CH2, m, 4H); 1.27 (CH2-CH2-CH2,m, 2H).
 

Gold nanoparticles were synthesized using a modified procedure from that given
 

by Murphy et al. Briefly, 0.1 mmol of hydrogen tetrachloroaurate hydrate (Strem) were 
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combined in a potassium hydroxide solution (pH=lO) with varying amounts of the 

chosen organothiosulfate, yielding solutions ranging in appearance from clear and 

colorless to light orange or brown in the case of higher L:Au ratios. The use of sodium 

hydroxide is necessary to ensure complete ionization of the MHT analog, and to prevent 

to formation of Au(III)-(MPTMA)3 complexes, which are insoluble under neutral or 

acidic conditions. The reaction mixture was allowed to stir for five minutes prior to the 

addition of 2.0 molar equivalents (with respect to HAuCI4) of aqueous NaB~ (0.1 M). 

This addition immediately induced a color change to deep red (at lower L:Au ratios) or 

dark brown (at higher L:Au ratios). The particle solutions were left to stir for an 

additional 3 hours, filtered through a coarse ceramic frit, and diafiltered with 20 volume 

equivalents of ultrapure water to remove the excess free organothiosulfate and unreacted 

gold salt,92 

UV-visible absorption spectra (UV-vis) were collected using an Ocean Optics 

USB2000 spectrometer and a quartz cuvette, which was cleaned with aqua regia and 

rinsed with ultrapure water prior to use. Spectra were normalized at an arbitrary 

wavelength and displayed in an offset overlay format for clarity. Transmission electron 

microscopy (TEM) was used to collect images of nanoparticles with a Philips CM-12 

microscope operating at an accelerating voltage of 120 kV. Nanoparticles were aerosoled 

from dilute solutions onto SiOx coated copper TEM grids (400 mesh, Ted Pella) and 

allowed to dry under ambient conditions prior to image collection. Image processing and 

size analysis were performed with Image J software. Thermogravimetric analysis (TGA) 

was used to quantify the relative organic content of lyophilized nanoparticle samples in 
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powder form. Analysis was performed with a Hi Res TGA 2950 thermogravimetric 

analyzer equipped with a nitrogen purge. Powder samples were applied to calibrated 

aluminum pans at ambient temperatures, heated at 5 °C/min to 110 °C, whereupon 

isothermal conditions were maintained for 10 minutes to ensure removal of residual 

solvent. The samples were then heated at 5 °C/min to 500 °C, and held under isothermal 

conditions for twenty minutes to ensure that mass loss due to ligand removal was 

complete. 

3. Results and Discussion 

Gold nanoparticles were synthesized by reducing Au(III) with sodium 

borohydride in the presence of a Bunte salt. As a capping agent, Bunte salts act in a 

manner similar to thiols, while having the advantages of easy preparation, shelf-stability, 

and versatility. Bunte salts stabilize gold nanoparticles via the formation of a monolayer 

at the surface of the particle, first associating through the thiosulfate headgroup, followed 

by the elimination of sulfite to yield a stable gold-thiolate system. Because monolayer 

formation occurs in two steps, nanoparticle synthesis in the presence of Bunte salts was 

expected to differ from analogous reactions with thiols in terms of kinetics. Since the 

average size of the nanoparticle products is not only a function of reagent ratios but also 

passivation rates, a change in the kinetics of monolayer formation (passivation) should 

have an impact on particle growth. Thus, if the two-step monolayer formation of Bunte 

salts results in slower passivation, nanoparticles should be able to grow beyond sizes 

accessed by the Brust prep using similar reagent ratios. On the other hand, if the 

thiosulfate headgroup passivates nanoparticle growth as well as a thiol, the average core 
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size of the products should be unaffected, despite the transient nature of this arrangement. 

Beyond investigating the nature of the ligand shell, we demonstrate the versatility of 

Bunte salts in nanoparticle synthesis by synthesizing particles with a range of core sizes 

and functional groups, providing access to nanoparticles in size regimes associated with 

useful electronic or optical properties through a single direct synthesis route. 

Our general preparation method used Bunte salts prepared from organobromide 

precursors having a range of water-soluble functional groups, including those with 

neutral, cationic, or anionic characteristics. The ratio of gold salt (HAuCI4) to Bunte salt 

was varied to yield products with different average core diameters. The reducing agent 

concentration was kept fairly low, as it is suspected that excess borohydride ions may act 

as a surface passivant, rapidly arresting nanoparticle growth and interfering with the 

formation of Au-thiolate bonds. We also regulated solution pH with hydroxide ions, to 

ensure complete ionization of carboxylates and prevent to formation of unreactive solids 

prior to the addition of borohydride. Diafiltration was used to remove any unreacted 

materials from the nanoparticle solutions prior to analysis. 

Immediately following synthesis, the AuNPs were analyzed using UV-vis 

absorption spectroscopy to gain a first approximation of the gold core diameter, and thus 

the relative impact of the ligand to gold (L:Au) ratio on the core size (Figure 3.3). We 

expected that higher ratios of L:Au would yield smaller particles, as excess ligands will 

quickly passivate the particles after nucleation, while lesser amounts of ligand should 

permit further particle development. As predicted, AuNPs synthesized using L:Au ratios 

less than 4: 1 showed SPR (surface plasmon resonance) absorbances at approximately 520 
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Figure 3.3. UV-vis spectra of AuNPsr•q) generated from thiosulfate analogs of the following thiols 
(a) mercaptotrimethylaminopentane (MPTMA), (b) mercaptoethoxyethoxyethanol (MEEE), (c) 
mercaptohexanoate (MHA). Spectra were taken 3h after the addition of the reducing agent to 
HAuCl4/Bunte salt reaction mixture. The ligand:gold (L:Au) ratio used in the corresponding 
reaction mixture is given in the legend. 

nm, suggesting that these red solutions contain particles greater than 5.0 nm in diameter. 

In contrast, when reagent ratios exceeded 4: 1 L:Au, the surface plasmon absorbance 

broadens and loses intensity, consistent with the formation of particles 2.0-2.5 nm in 

diameter.6 This trend was especially apparent in the case of the anionic MHT-stabilized 

particles. Particles resulting from 2: 1 L:Au conditions show a blue-shifted absorbance 

compared to the 1:3 L:Au particle solution, indicating that the solution contains particles 

of intermediate size. These results suggest that fine size control can also be achieved by 

varying the L:Au ratio used in the reaction mixture. 

TEM analysis of the purified particle solutions supports the size trend suggested 

by the UV-vis data (Table 3.1). At lower L:Au ratios, the synthesized nanoparticles are 
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Table 3.1. Summary of nanoparticle properties. 

Ligand L:Au 
Ratio 

dcore (nm) SPBmax Percent 
Organic 
(TGA) 

MTMAP 1:2 6.4± 2.8 525nrn 6.1% 

MTMAP 8:1 2.0 ± 1.3 -­ 12.7% 

MEEE 1:4 6.9 ± 3.2 526nrn 3.5 % 

MEEE 4:1 1.8 ± 0.8 -­ 14.5 % 

MHT 1:3 8.4 ± 3.2 520nrn 3.6% 

MHT 2:1 6.5±3.1 511 nrn * 
MHT 4:1 2.0 ±0.7 -­ 7.6% 

larger than 5.0 nm in core diameter, while those synthesized at higher L:Au ratios are 

approximately 2.0 nm in diameter. This confirms that the L:Au ratio used in this direct 

synthesis provides core diameter control at room temperature, which extends to a size 

range beyond that provided by the Brust prep. Interestingly, when similar L:Au ratios are 

used in the Brust prep and in our reaction, gold nanoparticles of comparable core 

diameters are produced, suggesting that Bunte salts passivate nanoparticle growth at an 

overall rate similar to that of thiols, yet the Brust prep cannot be extended to larger 

particles. TGA of the lyophilized particles suggests that the product AuNPs are covered 

with a monolayer-like ligand shell comparable that of nanoparticles in the same size 

range, synthesized with similar Au:thiol ratios via the Brust route. However, in the case 

of the MPTMA analog, a much higher L:Au ratio is required to achieve the smaller core 

diameters, suggesting that the quaternary ammonium functionalized ligand is not 

passivating the nanoparticle growth with the same efficacy as the other two Bunte salts. 
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This may be due to solubility differences among the ligands- the MTMAP analog 

possesses a quaternary ammonium functionality and a long hydrocarbon chain, making it 

the least hydrophilic of the functionalities investigated. Alternatively, the steric demands 

of this bulky head group may hinder ligand association. If so, this effect would be 

greatest in the case of the smallest particles, due to the pronounced curvature of the 

surface, and so increased L:Au ratios are required to force sufficient coverage of the 

nanoparticle surface. 

TEM analysis also suggests that the core diameter of the synthesized 

nanoparticles show significant dispersity. For particles above 5.0 nm in diameter, the 

polydispersity approaches 40% in some instances, while in the case of the smaller 

particles, the polydispersity has decreased somewhat to approximately 30%. It can be 

seen from the size distribution histograms (Figure 3.4) that this relatively large 

polydispersity is, in part, due to a large population of particles'" 2.0 nm in diameter, the 

relative population of which increases as the L:Au ratio increases. 
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Figure 3.4. TEM images of MHT-stabilized AuNPs. (left) 1:3 L:Au [140 kx magnification], 
(middle) 2:1 L:Au [140 kx], (right) 4:1 L:Au [260 kx]. 
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Further size control could be exerted during purification by increasing the pore 

diameter of the diafiltration membrane, allowing the smaller diameter particles to be 

eluted in the filtrate, thus decreasing the polydispersity of the sample. For the purposes of 

this study, the smaller particles were retained to provide an accurate picture of the 

reaction products by performing diafiltration with a small pore diameter (10 kDa) 

membrane. It should also be noted that the somewhat bimodal nature of the size 

distribution does not significantly impact the reported mean diameter for the samples, 

which still reflects the approximate modal diameter well in all cases. 

It should be emphasized that varying the L:Au ratio used in the reaction mixture 

also provides access to products with intermediate core diameters. This is demonstrated 

in Figure 3.3, where an increase in the L:Au ratio used in the synthesis of MHT-stabilized 

AuNPs from 1:3 to 2: 1 L:Au causes a core diameter decrease from 8.4 nm to 6.5 nm. 

This core diameter decrease is apparent in both the UV-vis analysis, where the bulk 

surface plasmon absorbance changes from 520 nm to 511 nm, as well as TEM analysis. 

This makes the direct synthesis of AuNPs using Bunte salts as ligand precursors a 

powerful technique for both "coarse" and "fine" size control, which can potentially 

extend across a number of useful core diameters from 10.0-2.0 nm. The nanoparticles 

generated by this method can be manipulated (post-synthesis) as single molecules- that is 

the particles can be dried out and re-suspended in solution, or stored in the freezer and 

reconstituted later. Such properties are characteristic of AuNPs protected with a thiolate­

stabilized monolayer. This is consistent with previous XPS studies of Bunte salt-derived 

monolayers on both planar gold surfaces and AuNPs, which describe how Bunte salts 
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Au(III), BH4 

s/ 
Figure 3.5. A possible mechanism of nanoparticle growth with Bunte salt passivants. While the 
thiosulfate headgroup associates rapidly with growing nuclei, the concurrence of borohydride 
creates a poorly passivated surface. As sulfite and borohydride are eliminated, the surface of the 
particle is exposed, presenting an opportunity for further growth before Au-thiolate bonds are 
formed. 

eliminate sulfite following interaction with the gold surface to provide a thiolate-gold 

bond. 

The observed polydispersity is believed to be a consequence of the unique 

passivation kinetics of Bunte salts. The initial passivation is accomplished by physical 

adsorption of the thiosulfate and borohydride to the nanoparticle surface, followed by 

elimination of sulfite to provide a thiolate linkage to the gold nanoparticle surface.259.261,262 

It is possible that the surface of the particle is briefly unprotected as the sulfite and 

borohydride are eliminated, allowing the particle to grow a bit more before the Au-thiol 

linkage is established (figure 3.5). 

Although the overall rate of passivation is similar to that of thiols, Bunte salt 

passivation may consist of two relatively fast steps, giving the appearance of kinetics 

having rates similar to thiols, but an entirely different mechanism. 
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4. Conclusions 

In conclusion, we have extended the direct synthesis of functionalized spherical 

AuNPs using Bunte salts as stabilizing ligands to core diameters greater than 5.0 nm, and 

demonstrated the versatility of Bunte salts as a delivery vehicle for imparting hydrophilic 

functional groups. This synthesis provides simultaneous control of both size and 

functionality. Size control is provided during synthesis by varying the ligand:Au ratio, in 

a similar manner to the Brust prep, but provides access to a wider variety of core 

diameters ranging from 2.0 to 9.0 nm. The nanoparticles produced by this method show 

some significant polydispersity in core diameter- likely a consequence of the passivation 

kinetics of Bunte salts. The observed polydispersity could be decreased by making small 

adjustments to the purification method, or by varying other synthetic parameters, such as 

reducing agent concentration or reaction temperature. Improving the dispersity of the 

product core diameters is the focus of our current investigations, and will be key for 

realizing the full synthetic power of this technique. 

5. Bridge to Chapter IV 

Chapters II and III described two unique routes to synthesizing functionalized 

large gold nanoparticles. These materials are known to have useful optical properties, 

owing to the dimensions of the gold cores. The presence of a ligand shell, whether it 

originates from exchanged thiols or transformed Bunte salts, imparts the functional 

groups needed to drive assembly into a coherent structure. Chapter IV describes the 

assembly of nanoparticles produced by the citrate route upon a biomolecular scaffold. 

Previous work with appropriately functionalized 1.4 nm gold particles demonstrated that 
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periodic 1-D arrays and other extended structures may be composed if the particles are 

allowed to assemble upon DNA scaffolds, either in situ or when the DNA has been pre­

arranged on a solid substrate. By analogy, larger particles featuring similar surface 

chemistry are expected to interact with DNA, yielding arrays that may be useful for 

waveguiding applications, since the surface plasmons of neighboring particles are known 

to couple efficiently when excited by incoming light. 
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CHAPTER IV 

NANOPARTICLE ASSEMBLY ON BIOMOLECULAR SCAFFOLDS 

1. Introduction 

Note: Chapter IV was authored entirely by J. A. Dahl, and the work was shared 

amongst J. A. Dahl and G. E. Kearns. J. E. Hutchison provided research guidance and 

editorial assistance. 

In order to take full advantage of the unique physical properties of nanomaterials, 

it must be possible to assemble particles into higher-ordered structures, with 1-, 2-, and 3­

dimensional architectures. Most applications in the fields of optics, electronics, and 

sensing require controlled interactions between the individual components of an ordered 

structure. For example, nanoparticle based electronic devices that operate by tunneling 

and Coulomb blockade characteristics must be arranged such that the nanoparticle 

"building blocks" are spaced in a relatively uniform manner, in close proximity to each 

other (separated only by tens of angstroms). Likewise, the optical characteristics of arrays 

of larger nanoparticles arise from distance-dependent plasmon interactions. Nanoparticle 

based sensing devices, regardless of whether they provide an optical or electronic 
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response, operate as a function of spatial proximity. The ability to manipulate functional 

materials at the nanoscale is critical for realizing the promise of green nanoscience. 

If arranged properly, large (d > 5 nm) gold nanoparticles may serve as optical 

waveguides. Noble metal nanoparticles (d =5-100 nm) have unique optical 

characteristics due to the highly polarizable valence electrons at the periphery of the 

particle, commonly referred to as surface plasmons. Plasmons are capable of interacting 

with light in the visible regime, leading to very strong absorptions with extinction 

coefficients exceeding 106
• One-dimensional nanoparticle arrays have demonstrated 

highly efficient waveguiding properties via the coupling of dipolar plasmon oscillations 

amongst particles in the array, even though the smallest dimension of the array is much 

smaller than the impinging light. In such an array, light interacts with the surface 

plasmons, simultaneously polarizing the nanoparticles electric field (figure 4.1). This 

creates an effective restoring force that initiates a dipolar oscillation of the surface 

plasmons on the particle. This oscillation in turn induces subsequent oscillation of the 

plasmons of a neighboring particle. In this manner, a collective, coherent oscillation is 

Figure 4.1. Surface plasmon resonance in a I-D array. As the plasmons of a particle oscillate in 
response to light (ca. 500-550 nm), the electric field around the particle is offset accordingly. This 
electronic offset is capable of influencing the field of a neighboring particle, inducing a similar 
oscillation, effectively guiding light along the array. 
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created along the nanoparticle array, and light is effectively guided along a structure 

having a dimension d«A, thus circumventing the diffraction limit of light. 

Nanoparticle arrays have additional optical qualities that define them as a superior 

alternative to existing optical devices. It has been shown that energy is tightly confined 

the to array, minimizing radiation losses. Because wave propagation occurs primarily 

through nearest-neighbor plasmon coupling, it is possible for light to be guided around 

90° bends.2
°O,202,263,264 Typical optical devices suffer significant radiation losses if similar 

changes in geometry are encountered. The ability to manipulate the position of 

nanoparticles in solid-state arrays is the key to fabricating novel waveguides. 

Assemblies of nanostructures can be achieved through three main routes, 

including interparticle linkage, binding to a functionalized surface, or binding to a fixed 

template. The primary interactions responsible for the construction of robust 

nanoarchitectures can be classified as either electrostatic attractions or covalent bonding, 

and thus good control over the surface chemistry is critical. The ability to impart specific 

functionality to the surface of a nanoparticle provides a means of exploiting such 

interactions to generate higher-order structures. 

Self-organizational processes enable bottom-up approaches toward device 

fabrication, which is an inherently greener approach than the wasteful top-down 

techniques (figure 4.2) currently employed in commercial micro- and nanodevice 

production, although other techniques such as atomic layer deposition and lithographic 

methods are finding their place within nanoscience as they become more refined and less 

resource intensive. Self-assembly stands as the greenest method of creating ordered 
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Figure 4.2. Top down vs. bottom up approaches to materials assembly. Top down approaches 
(left side) begin with relatively amorphous materials and employ a series of additive and 
subtractive processing steps to arrive at an ordered structure, generating various amounts of waste 
with each step. Bottom up strategies (right side) take advantage of functionalized precursor 
materials combined by additive processes to create a higher-order structure, requiring little 
processing support while sacrificing minimal amounts of starting materials. 

structures, as it uses minimal materials, consumes negligible amounts of energy, and is 

often self-passivating, with a tremendous ability to correct defects as the most 

thermodynamically stable configuration is achieved. 

Chemical modification of the substrate may be needed to drive interactions with 

nanomaterials and can be achieved through simple monolayer chemistry.265.268 Common 

examples include dithiol functionalized gold surfaces, capable of capturing gold 

nanoparticles, and amine functionalized surfaces that drive electrostatic assemblies of 

nanoparticles having carboxylate and sulfonate groups at their periphery. Conversely, 

monolayers with inert pendant groups can be used to passivate surfaces and prevent 

nanoparticle adhesion: alkyl silane films have been used for such purposes. The work 

featured in this chapter uses this a combination of these strategies, as nanoparticles 

functionalized with ionic functional groups are assembled upon DNA scaffolds. 

DNA stands as the most common biomolecular substrate employed for 

assembling nanoparticle linkages l92,208,269.272 and arrays. 166,209.273·275 A wide range of 

biologically derived substrates have proven useful, including RNA,276.278 viruses,279.286 and 

proteins/peptides.214.287.294 Manipulation of the biomolecule prior to self-assembly 
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reactions with nanomaterials allows one to control the morphology of the assembled 

array, as the final structure typically mimics that of the substrate. Thus, planar substrates 

may support two-dimensional arrays, whereas substrates having a relatively linear 

structure (such as a biomolecule) are best suited to one-dimensional structures. 

Here, molecular combing techniques are used to stretch DNA into a linear 

arrangement upon the surface of an alkylsilane passivated Si02 TEM grids (figure 4.3). 

Citrate-stabilized gold nanoparticles were stripped of excess ions and functionalized by 

an incoming thiol, trimethyl(ammonium)ethanethiol iodide (TMAT). Solutions of 

functionalized nanoparticles were incubated with the DNA-containing grids to create 

one-dimensional arrays, which have the potential to act as optical waveguides, owing to 

the optical properties of larger gold nanoparticles. 

Figure 4.3. SEM images of Si/SiOz TEM grids. a.) top view of windows, b.) a single window with 
a dust particle, c.) back view showing converging Si(lll) etch planes, and d.) closer back view of 
an individual window. (Reprinted with permission from Keams, G. J.; Foster, E. W.; Hutchison, 
J. E. Anal. Chern. 2006, 78,298, Figure 1. Copyright 2006 American Chemical Society.) 
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2. Experimental 

Ultrapure water (minimum 18.2 MQ-cm resistivity) was provided by a Barnsted 

Nanopure water filtration system and used in all stages of glassware cleaning, ligand 

synthesis, sample preparation, and purification. Hydrogen tetrachloroaurate trihydrate 

(HAuCI4-3H20, 99.9%) was purchased from Strem Chemicals, Inc., and used as 

received. Trisodium citrate dihydrate (Na3C6Hs07-2H20) was purchased from Fisher 

Scientific and used as received. (Trimethylammonium)ethanethiol iodide was prepared 

according to known procedures.98,167,187 Si02TEM grids were prepared by known 

procedures.90 Octyltrichlorosilane was purchased from Aldrich and used as received. 

MES buffer solutions (50 mM, (2-(N-morpholino)ethanesulfonic acid) was freshly 

prepared prior to use. Diafiltration membranes (Minimate 70 kDa, polysulfone) were 

purchased from Pall, Inc. All other reagents and solvents were obtained from Aldrich and 

Mallinckrodt and used without further purification. Standard glassware and stir bars were 

cleaned with aqua regia; fritted funnels were cleaned with bleach/HCI. All glassware was 

rinsed with copious amounts of ultrapure water prior to use. 

Citrate stabilized gold nanoparticles having average diameters of 10 nm were 

synthesized via an adaptation of the method reported by Turkevich. Briefly, 0.17 g of 

HAuCl4-3H20 was added to 300 mL ultrapure water in a 500 mL round-bottom flask 

equipped with a magnetic stirrer. The solution was brought to reflux, whereupon 0.44 g 

Na3C6Hs07-2H20 dissolved in 10 mL ultrapure water was added and allowed to reflux 

for 20 minutes. The resulting ruby red solution of nanoparticles was rapidly cooled to 

room temperature using an ice bath, and filtered through a medium ceramic frit. The 
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solution was immediately concentrated to a volume of 40 mL using a diafiltration 

apparatus, described elsewhere.92 The concentrated solution of nanoparticles was stripped 

of excess ions by continuing diafiltration with a continuous feed of ultrapure water 

supplied to the retentate reservoir to maintain volume, until 15 Veq were collected. 

Complete removal of citrate was assessed by analyzing an aliquot of filtrate by UV-vis 

spectrometry, confirming the disappearance of citrate's signature absorption at 210 nm. 

The resulting solution of bare gold nanoparticles cores was concentrated to 20 mL and 

redispersed in ultrapure water to reach a volume of 130 mL. A twenty-fold excess (based 

upon potential binding sites relative to the surface area of the gold cores) of TMAT was 

dissolved in 20 mL of ultrapure water and introduced to the stirring nanoparticle solution. 

After stirring for at least 8 hours, the nanoparticle solution was concentrated to a volume 

of 20 mL and subjected to constant volume diafiltration until 20 Veq of filtrate were 

obtained, removing all unbound TMAT to yield a pure solution of functionalized 

particles. 

Si02 TEM grids were cleaned a 15 minute treatment in a UV-ozone cleaner, 

followed by rinsing with copious amounts of ethanol followed by ultrapure water. The 

grids were allowed to dry and mounted on double sided tape, allowing only the edges of 

the grids to make contact with the adhesive material. The mounted grids were placed in a 

small dessicator containing a beaker with 300 !J.L of octyltrichlorosilane. Vapor phase 

silanization continued overnight to create a hydrophobic monolayer on the surface of the 

grids. Prior to deposition upon the TEM grids, genomic A-DNA (Hind III digest) was 

diluted to 5 !J.g/mL in 0.25 mM MES buffer solution, pH pre-adjusted to 5.5 with 0.1 M 
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NaOH. A fine tip forceps bearing a vertically oriented silanized TEM grid was attached 

to a motorized pulley, and dipped into the DNA solution. The TEM grid was allowed to 

incubate in the solution for 5 minutes, and was removed by pulling the grid vertically, 

windows orthogonal to the solution meniscus, at a rate of 300 f!mls. The grids, containing 

fixed strands of DNA, were rinsed with ultrapure water prior to soaking with a 10 f!L 

droplet of TMAT-functionalized nanoparticle solution for one hour. The grids were then 

rinsed with copious amounts of ultrapure water and blown dry with a stream of argon gas 

in preparation for collection of TEM images. Images of DNA-nanoparticle composites 

were collected with a Philips CM-12 microscope operating at an accelerating voltage of 

120 kV. Image processing was performed with Adobe Photoshop and Image J software. 

3. Results and Discussion 

In this work, a combination of surface treatments was used to generate DNA­

nanoparticle composites supported on SiOz TEM grids. Gold nanoparticles were 

functionalized with the cationic ligand TMAT in order to promote electrostatically driven 

self-assembly upon the anionic phosphate-containing backbone of DNA. Prior to the 

introduction of nanoparticles, the SiOz grids were treated with vapor phase OTS to form a 

hydrophobic monolayer intended to limit non-specific interactions with charged moieties 

present on the functionalized particles. DNA was then arranged on the modified surface 

of the grids using biomolecular combing techniques pioneered by the Bensimon group.Z95 

Here, biomolecules were stretched over the grids as they were removed from a buffered 

DNA solution, with the receding solution meniscus effectively pulling the strands of 
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Figure 4.4. Arrays of nanoparticles supported on DNA scaffolds. While the arrays extend for 
microns (top), the structures lack periodicity due to the deposition of clusters, rather than 
individual particles (bottom). 

DNA downward into a parallel arrangement. Functionalized particles were allowed to 

assemble on the biomolecular scaffolds to yield composite structures. 

TEM images reveal linear structures at low magnification, while higher resolution 

images reveal that the nanoparticle arrays are not continuous (figure 4.4). The particles 

appear to be grouped in clusters, lacking distinct interparticle spacing rather than in a 

periodic array. Previous work using pure 1.5 nm TMAT-functionalized particles resulted 

in DNA-nanoparticle "ribbons" with about 5-6 particles making up the width of the 
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structure.90 These structures are believed to be the result of ultrapure particles spanning 

the width of the DNA scaffold. In the present case, 10 nm TMAT functionalized particles 

exceed the width of individual DNA strands, making it unlikely that the clustering of the 

large particles is due to the dimensions of the biomolecular scaffold. 

The structures produced here may be understood by reviewing the nature of the 

nanoparticle "building blocks" prepared by the citrate route. It has been confirmed that 

even after excess citrate anions are removed by diafiltration, a partial monolayer of 

dicarboxyacetone remains, presenting free carboxylate groups. The extent of 

functionalization of the gold cores by incoming thiol ligands appears to be dependent 

upon the nature of the pendant moiety: ligands with trimethylammonium groups are 

incapable of forming complete monolayers since they are capable of cross-linking with 

free carboxylate groups of nearby particles in solution. As a result, surface coverage by 

the incoming ligand is limited, since cross-linking partially blocks potential binding sites. 

Consequently, the particles exist in clusters and present fewer pendant functional groups 

than otherwise expected. 

The TEM images of DNA-nanoparticle composites presented here have features 

consistent with previously observed cross-linked particles resulting from reactions with 

TMAT. In order to use these structures as optical waveguides, individual particles must 

be arranged in a periodic structure, free of cross-linked clusters and irregular spacing. A 

possible solution to the problem of cross-linking could involve capping the free 

carboxylate groups of gold cores prepared by the citrate reduction route. Esterification 

under mild conditions is promising, as it can be performed in aqueous media with a 
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Scheme 4.1. Mild esterification reactions can be used to cap free carboxylates prior to 
functionalization by TMAT. The suggested conditions are compatible with the gold cores, and the 
ester should help maintain water solubility. 

slightly basic pH by the route proposed in scheme 4.1. The esterified gold cores should 

remain stable and water soluble under these conditions, permitting the binding of 

incoming TMAT without the possibility of cross-linking. 

4. Conclusions 

DNA was arranged on silanized TEM grids to create aligned scaffolds for 

nanoparticle self-assembly. Electrostatic interactions between cationic quaternary 

ammonium groups present on the surface of functionalized gold nanoparticles drove 

electrostatic interactions with the DNA, leading to linear arrays. However, these arrays 

lack the periodicity necessary for their application as optical waveguides, due to apparent 

cross-linking amongst particles occurring during the functionalization process. 

The application of efficient particle assembly methods will remain an area of 

focus in the pursuit of waveguides produced by green chemistry inspired routes. 

Continued challenges in this area are likely to include refinement of functionalization 

methods such that the particles remain free in solution prior to and during assembly upon 

a DNA scaffold. In the absence of cross-linking, DNA-nanoparticle composites may rival 

analogous waveguides produced by materials- and energy-intensive lithographic 
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techniques. Molecularly defined substrates will enable this level of sophistication in self­

assembly, allowing the total application of green nanoscience throughout product 

fabrication, beginning with greener syntheses of nanoparticle building blocks and 

finishing with processing steps that yield completely green, innovative nanoproducts. 

5. Bridge to Chapter V 

Chapter IV described the assembly of large gold nanoparticles on DNA scaffolds, 

in an attempt to fabricated waveguiding materials using greener techniques. Additional 

studies are needed to refine the nanoparticle "building blocks" in order to obtain the 

desired periodic structures. Chapter V concludes this dissertation, providing the outlook 

for the future of all the work described in previous chapters, as well as offering possible 

solutions to some of the challenges encountered throughout. 
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CHAPTER V 

OUTLOOK AND CONCLUSIONS 

Although nanoscience has recently emerged as a unique discipline of research, the 

technology is still fairly young and the field remains loosely defined, presenting an 

opportunity to incorporate new concepts within the existing methodology. Utilizing green 

chemistry principles in both the design and application of nanomaterials ensures that this 

technology is approached in a responsible manner, minimizing risks to health and the 

environment while improving overall efficiency without compromising quality and 

performance. Because the field is still in its infancy, the circumstances favor the 

acceptance of greener ideas and principles within the scientific community, since their 

incorporation is not necessarily coupled to the replacement or retrofitting of well­

established synthetic techniques. The benefits of greener nanosynthesis are likely to 

extend well beyond the laboratory, since green principles are viewed favorably by the 

public, and thus their implementation will aid public perception of nanotechnology. 

Chapter I introduced the basic premise of greener nanosynthesis, describing the 

principles of green chemistry and the immediate benefits of their application to the 

synthesis of metal nanoparticles. Because green nanosynthesis is novel concept rather 
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than an existing field, proposing ways to incorporate green chemistry whenever possible 

is necessary to fuel the imaginations of those currently performing nanosynthesis by more 

traditional methods. To further inspire the interested reader, the serendipitous presence of 

green chemistry principles in recent literature was reviewed, demonstrating how simple 

changes in reagents, solvent systems, and reaction conditions can be combined to 

improve existing methods, yielding greener products from a benign origin. While the 

production of optimal materials through entirely is a noble goal, the chance to improve 

the syntheses of materials with unfortunate (yet accepted) side-properties should not be 

overlooked. To this end, the somewhat unlikely coupling of greener nanosynthesis with 

inherently toxic synthetic targets (such as quantum dots) was presented, highlighting the 

role of green chemistry in minimizing negative aspects of materials production. Finally, 

functionalization chemistry was reviewed, providing a means of controlling how 

nanomaterials interact with their environment. The ability to control the surface 

chemistry is a key design aspect that must be addressed in order to use nanomaterials in 

more advanced applications. 

In Chapter II, the production of large, functionalizable gold cores from greener 

methods was presented. Gold nanoparticles have been synthesized by the citrate 

reduction route for decades, yielding relatively monodisperse particles with desirable 

optical properties. Citrate-stabilized gold nanoparticles are produced by an entirely green 

method, requiring only citrate, water, and a gold salt, but their utilization has been greatly 

limited by the presence of a poorly defined surface. We discovered that extensive 

functionalization by incoming thiols is possible after excess ions are removed, revealing a 
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more tractable gold core. After treatment with a range of water-soluble thiols, we found 

that the extent of functionalization was influenced by both the presence of a native 

dicarboxyacetone monolayer as well as the nature of the incoming ligand. Rather than 

treating it as an exchangeable ligand, future work could take advantage of the intact 

dicarboxyacetone species, which presents free carboxylate moieties useful for coupling 

reactions under mild conditions. The concept of removing unwanted ligands by 

diafiltration in order to facilitate secondary functionalization could be extended to other 

nanomaterials having weakly bound stabilizing shells. Silver nanoparticles produced by 

citrate reduction are an obvious choice, since they feature optical properties similar in 

nature to those of gold, as are metal particles created by reduction with other mild organic 

acids and carbohydrates. Anisotropic nanoparticles could also benefit from this method, 

as they are often stabilized by large amounts of surfactant, hindering ligand exchange. 

The removal of surfactants provides another green benefit, ensuring that excess 

surfactants are not released into the general environment, should these materials find 

widespread application in consumer goods. With further refinement of this technique, 

large noble metal nanoparticles will enable the development of optical waveguiding 

devices, single molecule sensors, and advanced imaging and spectroscopic techniques. 

Chapter III described the use of Bunte salts as a shelf-stable alternative to thiols in 

the direct synthesis of functionalized nanoparticles. Gold salts can be reduced by sodium 

borohydride in the presence of a thiol capping agent, imparting functionality and stability 

to the newly formed particles. Unfortunately, thiols tend to suffer from rapid oxidation to 

disulfides, reducing their reactivity in ligand exchange processes. Previously, thiols were 
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often freshly synthesized or stored under stringent inert atmosphere to avoid this 

shortcoming, yet this solution is inadequate if ligand exchange reactions or direct 

syntheses are carried out under conditions that promote disulfide formation, including 

aqueous, biphasic, and basic environments. As an alternative to thiols, Bunte salts are 

readily synthesized from an organohalide and sodium thiosulfate, yielding an odorless, 

shelf-stable salt. Bunte salts analogous to the thiols used in the work featured in Chapter 

II were synthesized, having water-soluble cationic, anionic, and neutral pendant groups. 

We discovered that Bunte salts can be used in the place of thiols in the direct synthesis of 

gold nanoparticles. By varying the ratio of reagents, one can simultaneously control both 

core size and functionality of the products, eliminating the need for ligand exchange and 

extensive purification. The results of this work provided several clues to the unique 

kinetics of direct syntheses that substitute Bunte salts for thiols. While thiols bond to gold 

in a single step, monolayers resulting from the association of Bunte salts have an 

additional reaction step, where sulfite and excess borohydride are eliminated to yield a 

thiol. We suspect that this difference in mechanism is responsible for the apparent 

polydispersity of the nanoparticle products, having the likely consequence of inferior 

surface passivation. While nucleation events are probably unaffected, exposed surface 

gold atoms permit the nuclei to grow without the boundaries imposed by a tightly packed 

ligand shell of thiols. Future investigations could involve simple variations to the reaction 

conditions, limiting borohydride to equimolar ratios with respect to gold to prevent early 

suiface passivation (since borohydride acts as a complexing agent as well as a reductant), 

in turn promoting ligand binding. Alternatively, competition with a thiol during 
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nanoparticle synthesis would provide a clear understanding of the relative affinity for the 

gold nuclei. Provided the Bunte salt and the thiol have differing pendant groups (for easy 

spectroscopic analysis) yet similar sterics and solution dynamics, comparison of the 

products resulting from mixed ligand solutions should offer further insight. Beyond 

kinetics and mechanistic investigations, the full scope of this reaction has yet to be 

demonstrated. Future studies should include elucidation of the scope and mechanism of 

this method, followed by the extension of this reaction to other materials, including noble 

metal particles and bimetallic materials, as well as the synthesis of new Bunte salts with 

functional groups specific to a given application. 

A route to greener device fabrication was described in Chapter IV, via the 

assembly of large gold nanoparticles functionalized with ligands having quaternary 

ammonium groups (TMAT). Since these gold nanoparticles feature optical properties 

including strong extinction coefficients and facile, yet tightly confined distance­

dependent pIasmonic coupling abilities, we proposed a simple waveguide structure 

consisting of nanoparticles assembled through electrostatic interactions upon 

biomolecular scaffolds. As a scaffold, DNA has been used successfully in similar 

applications with smaller nanoparticles. Recently, new TEM grids featuring Si02 viewing 

windows were developed, providing superior imaging capability while also providing a 

readily modifiable substrate for nanomaterials assembly. DNA was stretched over the 

surface of such a TEM grid, and nanoparticles were allowed to self assemble upon the 

scaffold in a second step. The resulting arrays were not continuous, composed of clusters 

rather than individual nanoparticles. This is likely a consequence of the incomplete 
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functionalization by TMAT described in Chapter II, which leads to cross-linked 

structures. It is possible that these arrays may possess the optical properties of an array of 

even larger particles, since clusters often mimic the properties of their single-particle 

counterparts; further assessment of these arrays is warranted. 

The problem of cross-linking during functionalization may be prevented by 

capping the reactive surface groups of the gold cores prior to functionalization. 

Alternatively, analogous materials produced by the direct synthesis described in Chapter 

III may be suitable for creating linear arrays with DNA. Although these particular 

products tend to have polydisperse size distributions, one could sort the particles using 

appropriately-sized diafiltration membranes to remove smaller particles. 

Many of the challenges described in the previous chapters could be remediated by 

borrowing a key principle from another, demonstrating that new materials are rarely 

produced from entirely green methods at inception, yet many of the processes are easily 

improved. As green chemistry principles are applied to individual aspects of 

nanosynthesis, whether it is particle synthesis, functionalization, or purification, their 

combination and use in materials production holds the key to realizing completely green 

nanodevice processing and applications. 
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