Chambers Node Reconsidered

Operational and Pedestrian Safety Analysis

May 27, 2005

Prepared for: City of Eugene Eugene, OR

Prepared by:
PTV America, Inc.
1128 NW 2nd Street, Suite 204
Corvallis, OR 97330
(541) 754-6836
FAX (541) 754-6837

TABLE OF CONTENTS

INTRODUCTION	1
STUDY AREA	2
TRAFFIC OPERATIONS ANALYSIS	3
Performance Measures	3
Base Scenario	5
Lane Geometry	5
Volumes	
Intersection Control	8
Analysis Results	10
Future No Build	13
Lane Geometry	13
Volumes	13
Intersection Control	14
Analysis Results	14
PEDESTRIAN ANALYSIS	18
Pedestrian Signal Control	18
Crosswalks	18
Sidewalks	19
Transit	20
SAFETY ANALYSIS	21
RECOMMENDATIONS	25
Policy vs. Context Sensitive Driven Design	25
Policy Driven Solution	25
Context Sensitive Driven Design	
Traffic	28

7 th at Chambers	
d.	.34
11 th at Garfield	
11 th at Chambers	. 35
13 th at Garfield	. 37
11 th – Garfield to Chambers	. 37
Pedestrians	. 38
7 th at Garfield	. 38
11 th at Garfield	. 38
13 th at Garfield	. 39
Summary	. 40

Appendix A – Scenario Data – BASE (2004)

Appendix B - Scenario Data - FUTURE (2024) NO BUILD

Appendix C – Obstacles in Sidewalk Width

Appendix D – Transit Data

Appendix E - Collision Data

Appendix F - Scenario Data - FUTURE (2024) MITIGATION

INTRODUCTION

The Operational and Pedestrian Safety Analysis for the Chambers Node Reconsidered project analyzes both traffic and pedestrian aspects of the transportation system within the Chambers Node study area. The analysis addresses three primary elements: traffic operations, pedestrians and safety. The results of these analyses are then used to recommend improvements.

A peak hour traffic operations analysis is performed for the following scenarios:

- 1. Base (2004)
- 2. Future (2024) No Build
- 3. Future (2024) Mitigation

Level-of-service (LOS) and volume-to-capacity (v/c) ratio are the performance measures used to assess traffic operations. When intersections exceed performance thresholds established by the City of Eugene and the Oregon Department of Transportation (ODOT) mitigation measures are then considered. The mitigation measures are designed to enhance pedestrian movements, improve traffic flow and ultimately maintain the integrity of the neighborhood.

Pedestrian enhancements are a major focus of this study. Specifically, the study investigates means to improve pedestrian crossings at the seven study area intersections. In addition, a sidewalk inventory is performed at the seven study intersection to identify missing sidewalk segments and any obstructions that restrict the sidewalk width. Transit it also a major generator of pedestrians. Therefore, transit stops in the immediate vicinity are surveyed to determine if any treatments can be implemented to improve the pedestrian experience at these stops.

The safety analysis reviews the collision history involving pedestrians, bicyclists and traffic at the seven study area intersections during a five year period extending from 1998 through 2002. Collisions are summarized and potential solutions recommended where definitive patterns are observed and correctable by traffic control measures.

Before delving into the analysis, it is important to mention that improvements for traffic can have a secondary benefit for pedestrians as well as the neighborhood as a whole. A number of traffic improvements are targeted at the signalized intersections in the study area. Improving traffic operations at these signals will make it less rewarding for motorists to cut through the neighborhood to avoid delays and congestion. The intention is to keep unnecessary traffic out of the neighborhood, but rather on roadways that are designed to carry higher volumes of traffic at higher speeds. As a result, the neighborhood streets will feel more like neighborhood streets (low traffic volumes and

speeds). They will be much more conducive to walking, biking and many other activities that are not as compatible with high volume high speed streets.

STUDY AREA

The study area is located in west Eugene and includes seven intersections. These intersections are listed below and highlighted with a red circle in Figure 1.

- West 7th Avenue/Highway 99 and Garfield Street
- West 7th Avenue/Highway 99 and Chambers Street
- West 7th Avenue/Highway 99 and Polk Street
- West 11th Avenue/Highway 126 at Garfield Street/Highway 126
- West 11th Avenue at Chambers Street
- West 13th Avenue at Garfield Street
- West 13th Avenue at Chambers Street

Figure 1. Study Area

With the exception of 13th at Garfield, all intersections are signalized. 13th at Garfield is controlled by stop signs on the eastbound and northbound approaches. The southbound approach is uncontrolled and thus traffic flows freely through the intersection

TRAFFIC OPERATIONS ANALYSIS

Performance Measures

Each intersection was analyzed in terms of LOS (delay), v/c-ratio and number of stops. Highway Capacity Manual (HCM) procedures available in SYNCHRO were used for the signalized intersections. HCM procedures available in the Highway Capacity Software were used for the unsignalized intersection.

The City of Eugene and ODOT have established performance measures that are used to determine if mitigation measures are necessary. The ODOT's criteria is based on the intersection's v/c-ratio (Oregon Highway Plan, Table 6) while the City's is based on LOS. ODOT's criteria requires first identifying the highway category of the roadway. Study area roadways that would fall under ODOT's criteria are shown in Table 1 along with their Highway Category designation. All other roadway sections would fall only under the City of Eugene criteria.

Table 1. Study Area Roadways Under ODOT Performance Criteria

Roadway	Section	ODOT Highway Category (MPO)
7 th /Hwy. 99	Garfield – Polk	Statewide NHS Freight Route
11 th /Bus. 126/ORE 126	West leg at Garfield	Regional Highway Segment
Garfield/Bus. 126/ORE 126	7 th – 11 th	Regional Highway Segment

Based on Table 1, mitigation measures would need to be studied at intersections along these roadways that exceed a v/c-ratio of 0.80. The City of Eugene's LOS criteria requires investigating mitigation measures when signals operate above a LOS D and unsignalized intersections above LOS E. A summary of the criteria that triggers the need to investigate mitigation measures is provided in Table 2. Table 3 provides the HCM relationship between LOS and delay.

Table 2. Performance Criteria – Need for Mitigation

	Criteria Triggering Need for Mitigation						
Intersection	ODOT v/c-ratio	City of Eugene LOS					
7 th at Garfield	0.80	D					
7 th at Chambers	0.80	D					
7 th at Polk	0.80	D					
11 th at Garfield	not applicable	D					
11 th at Chambers	not applicable	D					
13 th at Garfield ¹	not applicable	Е					
13 th at Chambers	not applicable	D					

^{1.} Unsignalized intersection

Table 3. LOS Criteria

LOS	Intersection Control Delay (seconds/vehicle)					
LOS	Signalized	Unsignalized				
А	≤ 10	< 10				
В	> 10 and ≤ 20	> 10 and ≤ 15				
С	> 20 and ≤ 35	> 15 and ≤ 25				
D	> 35 and ≤ 55	> 25 and ≤ 35				
E	> 55 and ≤ 80	> 35 and ≤ 50				
F	> 80	> 50				

Once the need for mitigation is determined, strategies are investigated to bring the intersections performance into compliance. The ODOT compliance criteria, however, differs from the criteria in Table 2. Based on the ODOT Highway Design Manual (Table 10-1), 7th/Highway 99 would have to be mitigated to a 0.75 v/c-ratio. The City of Eugene criteria is LOS D for signalized intersections and LOS E for unsignalized intersections. A summary of the minimum performance standards after mitigation are shown in Table 4.

	3							
	Criteria To Mitigate To							
Intersection	ODOT v/c-ratio	City of Eugene LOS						
7 th at Garfield	0.75	D						
7 th at Chambers	0.75	D						
7 th at Polk	0.75	D						
11 th at Garfield	not applicable	D						
11 th at Chambers	not applicable	D						
13 th at Garfield ¹	not applicable	Е						
13 th at Chambers	not applicable	D						

Table 4. Performance Criteria – Minimum After Mitigation

Base Scenario

The Base scenario reflects 2004 conditions in the study area. Data used for the Base analysis are presented in the following sections followed by the analysis results.

Lane Geometry

Lane configurations at the study area intersections are shown in Figure 2 with details shown in Appendix A. Speeds were 30 mph on all approaches to the study area intersections. Each roadway is briefly described below. All references to the functional classification of the roadways are based on the 2004 Regional Transportation Plan.

West 7th Avenue/Highway 99 is a 4-lane major arterial. It forms a 1-way couplet with West 6th Avenue. West 7th Avenue services traffic traveling in the eastbound direction.

West 11th Avenue is a minor arterial that varies in the number of lanes through the study area. From Polk Street to a point 100 feet west of Fillmore Street, West 11th is 1-way westbound with two lanes. From 100 feet west of Fillmore to Garfield, it remains a 1-way westbound street, but with three lanes. West of Garfield, 11th carries 2-way traffic with a 5-lane cross section. Eastbound traffic is forced to make either a right or left turn at Garfield.

West 13th Avenue is a 2-lane minor arterial. It is primarily 1-way eastbound through the study area. It becomes a 2-way local street west of Garfield.

^{1.} Unsignalized intersection

Figure 2. Existing Intersection Lane Configurations and Control

Garfield Street is classified as a major arterial north of 11th Avenue and a minor arterial south of 11th Avenue. The number of lanes along Garfield varies through the study area. North of 11th Avenue it is a 4-lane facility carrying 2-way traffic. Traveling southbound from 11th Avenue, Garfield has two lanes with the inside lane becoming an exclusive left-turn lane at 13th Avenue. Traveling southbound from 11th Avenue to 13th Avenue, Garfield widens from one lane northbound to two lanes. South of 13th Avenue, Garfield is a 2-lane, 2-way major collector.

Chambers Street is classified as a major arterial north of 7th Avenue and a minor arterial to the south. Throughout the study area it is a 3-lane facility with the center lane serving as a 2-way left turn lane. Bike lanes are provided on both sides of the street.

Polk Street is classified as a major collector. It is a 2-lane facility carrying 2-way traffic.

Volumes

Base scenario volumes were collected in 2004. The PM-Peak hour volumes for the study area intersections are shown in Figure 3 and Table 5.

Figure 3. Base (2004) Scenario PM-Peak Hour Volumes

Table 5. Base (2004) PM-Peak Hour Pedestrian and Bicycle Volumes

	Pedestrians				Bicyclists					
Intersection	Leg Being Crossed			T-1-1	Leg Being Crossed					
	N	Е	S	W	- Total	N	Е	S	W	Total
7 th at Garfield	2	1	2	0	5	1	1	3	2	7
7 th at Chambers	2	3	3	1	9	0	5	6	8	19
7 th at Polk	3	1	9	5	18	8	0	8	2	18
11 th at Garfield	3	0	4	2	9	4	2	4	5	15
11 th at Chambers	4	3	4	6	17	7	3	6	7	23
13 th at Garfield ¹	Data Unavailable			ailable			Data	unavai	lable	II.
13 th at Chambers	5	2	4	3	14	6	9	2	7	24
Total		1	1	72	Total		1		1	106

Note: N = north, E = east, S = south, W = west

Lane utilization data was collected and reduced for the following intersections and movements:

- Garfield at 11th
 - o Eastbound lefts
 - Northbound through
 - Westbound through
- Chambers at 11th
 - Westbound through

Lane utilization data provides information about the unequal distribution of volume across multiple lanes within a lane group. For example, an eastbound dual left turn lane exists at a signal. Downstream of the left turn movement is a shopping mall on the east side of the roadway. The shopping mall attracts a substantial number of trips. In this case, motorists choose to be in the right most lane of the dual left turn to make it easier to access the mall. This choice results in the right most lane of the dual left turn lanes carrying a greater percentage of traffic than the left most lane. This unequal distribution of traffic across al lane group has an impact on traffic operations, capacity and signal timing. The resulting lane utilization factors (refer to Appendix A) are then used to provide a more accurate analysis of field conditions.

Intersection Control

Six of the seven study intersections are signalized while the remaining one is unsignalized. A summary of the control for these intersections is provided in Table 6. The signal timing plans provided by the City of Eugene were entered into SYNCHRO and provided in Appendix A.

Table 6. Base (2004) PM-Peak Hour Intersection Control

Intersection	Control	Type of Operation	Cycle Length	Left Turn Phasing	Overlap Phases	Pedestrian Signal Heads	Pedestrian Push Buttons	Marked Crosswalks
7 th at Garfield	Signalized	Actuated Coordinated	72	All Permissive	None	Yes	Yes	Yes
7 th at Chambers	Signalized	Actuated Coordinated	72	SB: permissive followed by lagging protected	None	Yes	Yes	Yes
7 th at Polk	Signalized	Actuated Coordinated	72	All Permissive	None	Yes	Yes	Yes
11 th at Garfield	Signalized	Actuated Uncoordinated	97	All Permissive	SB right turn overlap with EB movements	Yes	Yes	Yes
11 th at Chambers	Signalized	Semi-Actuated Uncoordinated	65	NB: Protected/ Permissive	None	Yes	NB+SB only	Yes
13 th at Garfield ¹	Unsignalized -SB flows free -EB+NB stop	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	No
13 th at Chambers	Signalized	Pre-timed Uncoordinated	60	All Permissive	None	Yes	No	Yes

Analysis Results

Performance results for the Base scenario are shown in Table 7. Details on the analysis results are provided in Appendix A.

Table 7. Base (2004) Performance Results

Intersection	Delay (sec/veh)	LOS	v/c Ratio	Stops (stops/hr)
7 th at Garfield	20.0	В	0.78	2714
7 th at Chambers	27.5	С	0.90	3156
7 th at Polk	7.7	А	0.59	966
11 th at Garfield	42.3	D	0.90	2181
11 th at Chambers	55.8	Е	1.06	2913
13 th at Garfield ¹	219.3	F	0.64	199
13 th at Chambers	14.3	В	0.64	1371

^{1.} Unsignalized intersection, delay reported for worst performing movement - Eastbound

Four of the seven study intersections do not satisfy the delay and/or v/c-ratio criteria:

- 7th at Chambers
- 11th at Garfield
- 11th at Chambers
- 13th at Garfield

 7^{th} at Chambers operates at a 0.90 v/c-ratio which exceeds the 0.85 criteria. The northbound and eastbound through movements are the primary movements that result in the intersections exceeding the v/c-ratio criteria.

11th at Garfield operates at a LOS D which satisfies the City's criteria. Critical movements at this intersection are: eastbound right and westbound through.

11th at Chambers exceeds both the delay and v/c-ratio criteria. It operates at a LOS E and a v/c-ratio of 1.06. The movement contributing to this performance is the southbound through. It operates at LOS F and a v/c-ratio of 1.25.

13th at Garfield is an unsignalized intersection. The southbound movements flow freely while northbound and eastbound movements must stop. For unsignalized intersections,

the worst operating movement is used to report intersection performance. The eastbound through and left movements are the worst performing movements at LOS F which exceeds the LOS E delay criteria. These two movements have a total of approximately 30 vehicles/hour during the PM-peak hour. Therefore, the volume is extremely low. These vehicles, which most are likely to originate in the residential area west of the intersection, however, can take an alternate route along Arthur to West 11th to travel in the eastbound direction. The land use along this route is mix-use commercial, industrial and residential.

The number of stops at an intersection can be compared between alternatives to provide an indirect measure of safety performance. Reducing the number of stops reduces the potential for rear-end collisions. The number of stops per hour is reported in Table 7 and will be used to compare other scenarios.

Queue lengths and the available storage for each movement are shown in Table 8. The available storage equals either the upstream distance to the next signal or the length of the storage bay for a turning movement. Queue lengths represent the 95th percentile queue. In other words, the queue length is expected to be less than this measurement 95 percent of the time. None of the reported queue lengths exceed the available storage.

Table 8. Base (2004) Queue Lengths

Intersection	Storage (feet)	Queue Length (feet)	Intersection	Storage (feet)	Queue Length (feet)
7 th at Garfield			11 th at Chambers ²		
EB Thru	350	262	WB LT	1000+	112
NB Thru	1500	407	WB Thru	1000+	451
NB RT	1500	293	WB RT	120	34
SB Thru ¹	350	149	NB LT	750	63
7 th at Chambers			NB Thru	750	243
EB Thru	1100	438	SB Thru	1150	572
NB Thru	400	316	13 th at Garfield		
SB LT	300	82	EB Thru	350	91
SB Thru	300	292	NB Thru	1000+	60
7 th at Polk			NB RT	200	3
EB Thru	1500	135	13 th at Chambers		
NB Thru	400	62	EB Thru	1300	118
NB RT	250	68	EB RT	250	35
SB LT	150	33	NB Thru	1000+	253
SB Thru	300	86	NB RT	250	41
11 th at Garfield			SB LT	750	26
EB LT	1000+	321	SB Thru	750	311
EB RT	310	143			
WBLT	1250	106			
WB Thru	1250	537			
NB Thru	800	82			
SB Thru	1500	126			
SB RT	1500	244			

^{1.} Unequal lane distribution results in the queue occupying the entire right lane between 6th and 7th.

^{2. 11&}lt;sup>th</sup> at Chambers was modeled as two westbound through lanes with an exclusive right turn bay and exclusive left turn bay. This approach best reflected through vehicles avoiding the third through lane due to left turn queues.

Future No Build

The Future No Build scenario reflects anticipated 2024 conditions in the study area. The data and analysis results for this scenario are presented in the following sections.

Lane Geometry

For the 2024 Future No Build scenario, the lane geometry remained the same as 2004. Therefore, Figure 2 is used here as the reference for 2024 lane geometry.

Currently, there is a safety improvement project on Garfield extending from 6th Avenue to 7th Avenue that is underway. A number of preliminary geometric changes have been proposed for this section (refer to Appendix B). At the time of this study, a set of improvements had not been selected for implementation. The analysis of the Future No Build Scenario does not include any of these proposed improvements in the analysis.

Volumes

Future No Build volumes (refer to Figure 4) were estimated by applying a growth rate to the 2004 Base volumes. To arrive at a growth rate, 2002 and 2025 PM-peak hour turning movement volumes were provided by Lane Council of Governments. These volumes were used to estimate an annual growth rate for each movement. The growth rates were then applied to the 2004 Base volumes to arrive at 2024 No Build volumes.

Figure 4. Future (2024) No Build PM-Peak Hour Volumes

Intersection Control

Signal timings were optimized for the Future No Build scenario. Results from the optimization are provided in Appendix B with primary changes listed below:

- Cycle length on 7th Avenue increased from 72 seconds to 100 seconds
- Garfield and Chambers along 11th were coordinated
- Cycle length for 11th at Garfield increased from 97 seconds to 100 seconds
- Cycle length for 11th at Chambers increased from 65 seconds to 100 seconds
- Cycle length for 13th at Chambers increased from 60 seconds to 100 seconds

Analysis Results

Analysis results for the Future No Build scenario are provided in Table 9. Additional details from the analysis are provided in Appendix B.

Table 9. Future (2024) No Build Performance Results

Intersection	Delay (sec/veh)		LOS		v/c-ratio		Stops (stops/hr)	
intersection	2004	2024 No Build	2004	2024 No Build	2004	2024 No Build	2004	2024 No Build
7 th at Garfield	20.0	23.0	В	С	0.78	0.89	2714	2745
7 th at Chambers	27.5	46.5	С	D	0.90	1.01	3156	4722
7 th at Polk	7.7	5.7	Α	Α	0.59	0.69	966	713
11 th at Garfield	42.3	105.4	D	F	0.90	1.15	2181	4613
11 th at Chambers	55.8	86.8	Е	F	1.06	1.15	2913	3454
13 th at Garfield ¹	219.3	Not available	F	F	0.64	2.07	199	209
13 th at Chambers	14.3	17.4	В	В	0.64	0.70	1371	1527
	Total							17983

^{1.} Unsignalized intersection, delay reported for worst performing movement - Eastbound

The LOS increases for three intersections between 2004 and 2024: 7th at Garfield, 7th at Chambers and Garfield at 11th. The v/c-ratios increased at every intersection. Five of the seven study intersections exceeded the delay and/or v/c-ratio criteria:

- 7th at Garfield
- 7th at Chambers
- 11th at Garfield
- 11th at Chambers
- 13th at Garfield

7th at Garfield operates at a 0.89 v/c-ratio which exceeds the 0.80 criteria. The eastbound through and northbound through are the movements that cause the intersection to exceed the v/c-ratio criteria.

7th at Chambers operates at a demand v/c-ratio of 1.01. All movements at this intersection operate above a 0.80 v/c-ratio. These movements include the northbound though, eastbound through, southbound left and southbound through.

11th at Garfield operates at a demand v/c-ratio of 1.15 which exceeds the 0.80 criteria. The critical movements contributing to this performance include: eastbound left, eastbound right and westbound through.

 11^{th} at Chambers exceeds the delay threshold. It operates at a LOS F and a demand v/cratio of 1.15. The movements contributing to this performance are: westbound through, northbound left and southbound through.

13th at Garfield continues to exhibit poor performance on the eastbound approach. The eastbound demand v/c-ratio exceeds 2.0. In reality, this v/c-ratio will not be observed in the field. Instead of enduring the associated delays, eastbound left and through vehicles will take an alternate path (e.g., 11th via Arthur) to their destination and avoid this intersection. The eastbound left and through volume remains low at 30 vph.

The number of stops per hour increased by approximately 33 percent between 2004 and 2024. This entire increase in stops was primarily attributed to the increase in stops at two signals: 7th at Chambers and 11th at Garfield.

Queue lengths are reported in Table 10 for the Future No Build scenario. In a number of instances, the queue length is reported as being metered by an upstream signal. If an upstream intersection is operating at a v/c-ratio equal to or greater than 1.0, it will limit the number of vehicles that arrive at the downstream intersection where queues are being reported. This situation is referred to as metering and is labeled as such in Table

- 10. The "Metered" queues are not expected to exceed the storage capacity. Movements where the queues exceed storage capacity are highlighted with a bold box. These movements include:
- 7th at Garfield
 - o Eastbound through
- 7th at Chambers
 - o Northbound through
 - o Southbound through

Table 10. Future (2024) No Build Queue Lengths

	Chances	Queue Length (feet)			
Intersection	Storage (feet)	Base (2004)	Future No Build (2024)		
7 th at Garfield					
EB Thru	350	262	504		
NB Thru	1500	407	Metered		
NB RT	1500	293	Metered		
SB Thru ¹	350	149	141		
7 th at Chambers					
EB Thru	1100	438	674		
NB Thru	400	316	501		
SB LT	300	82	208		
SB Thru	300	292	666		
7 th at Polk					
EB Thru	1500	135	Metered		
NB Thru	400	62	125		
NB RT	250	68	105		
SB LT	150	33	58		
SB Thru	300	86	156		
11 th at Garfield	000	- 00	100		
EB LT	1000+	321	796		
EB RT	310	143	212		
WB LT	1250	106	Metered		
WB Thru	1250	537	Metered		
NB Thru	800	82	85		
SB Thru	1500	126	Metered		
SB RT	1500	244	Metered		
11 th at Chambers					
WB LT	1000+	112	184		
WB Thru	1000+	451	936		
W B RT	120	34	79		
NB LT	750	63	Metered		
NB Thru	750	243	529		
SB Thru	1150	572	Metered		
13 th at Garfield					
EB Thru	350	91	298		
NB Thru	1000+	60	134		
NB RT	200	3	8		
13 th at Chambers					
EB Thru	1300	118	282		
EB RT	250	35	95		
NB Thru	1000+	253	432		
NB RT	250	41	73		
SB LT	750	26	Metered		
SB Thru	750	311	Metered		

^{1.} Current unequal lane distribution in 2004 will likely result in the queue occupying the entire right lane between 6th and 7th in 2024.

PEDESTRIAN ANALYSIS

The pedestrian analysis involved a thorough review of pedestrian facilities in the immediate vicinity of the seven study area intersections. At each intersection, the pedestrian signal control was reviewed, crosswalks inventoried and sidewalks evaluated for width and obstructions that would impede the movement of people.

Pedestrian Signal Control

Pedestrian signal heads were present at all signals. Pedestrians also were allowed to cross every leg of each signalized and unsignalized intersection. Pedestrian push-buttons were available at each signal with two exceptions. At 11th and Chambers, pedestrian push-buttons were only installed for northbound and southbound pedestrians. The eastbound and westbound pedestrian phases are active each cycle, thus push-buttons are not needed. For similar reasons, pedestrian push-buttons are not provided at 13th and Chambers since this signal operates on a fixed timing plan. This type of timing plan automatically activates the pedestrian signal for each phase which eliminates the need for push-buttons.

During a field visit to 7th at Garfield, an issue regarding pedestrian safety was mentioned for northbound pedestrians crossing the east leg. The dual right movement can result in the vehicle in the inside lane obstructing the driver's view in the outside lane. Thus, the visibility of pedestrians in the crosswalk is reduced. One potential solution is to provide an early WALK signal for the pedestrians that allows them to get further into the intersection before the right turns receive a green signal.

The WALK signal for a pedestrian crossing can begin when all conflicting through movements and protected turning movements across the crossing have ended. The signal operations at 11th and Garfield operate slightly different. Pedestrians crossing the east leg only receive the WALK signal when the northbound and southbound throughs receive a green signal. An opportunity exists to reduce the delay for these pedestrians. All eastbound movements are forced to turn either left or right. Therefore, neither movement conflicts with the pedestrians. A WALK signal could be displayed when the eastbound movements initially receive a green.

Crosswalks

Crosswalks are marked at all six signalized intersections. During a field study, however, it was noted that crosswalks are not marked at the unsignalized intersection of 13th and Garfield. Since the southbound throughs and lefts flow freely, marking the crosswalk on the north leg has the potential to create an unsafe situation for pedestrians. In locations where two lanes flow freely in the same direction, a situation could result where a vehicle in one lane stops for a pedestrian in the crosswalk. The

pedestrian begins to cross in front of the stopped vehicle. A vehicle in the adjacent lane approaches and does not see the pedestrians since the motorist's visibility is obstructed by the stopped vehicle. This scenario can result in a collision between a vehicle and pedestrian. Therefore, marking a crosswalk on the legs with free flow movements should be avoided. Marking crosswalks on the west leg of the intersection does not create the situation described above.

(a) West + North Leg

(b) South Leg

(c) East Leg

Figure 5. Pedestrian Crossings at 13th and Garfield

Sidewalks

Sidewalks were inventoried in the vicinity of the seven study area intersections. Missing linkages in the sidewalk system and any obstructions that would restrict the sidewalk width were documented.

The <u>ODOT Highway Design Manual</u> (2003, Chapter 11) identifies the following requirements for sidewalk widths:

- Standard and curb-side sidewalk width 6 feet
- Minimum sidewalk width 5 feet
- Minimum passage width 3 feet (very constrained areas, such as around obstacles that cannot be moved)

All sidewalk widths were at least five feet wide where planting strips existed between the roadway and sidewalk. All curb-side sidewalks were at least six feet wide. Signal and utility poles were the primary obstacles that either encroached or were completely within the sidewalk width. None of these physical obstacles reduced the passage width below three feet (refer to Appendix C for more details on obstacles and available passage distances). The only roadway segment without sidewalks was 7th west of Garfield. Both sides of 7th had a missing sidewalk segment.

Vegetation reduced the clear width of the sidewalk at 11th and Garfield to approximately two feet (refer to Figure 6). The sidewalk is located on the west side of Garfield south of 11th.

Figure 6. Vegetation Encroaching on Sidewalk

Vegetation from overhanging limbs also encroached on the vertical clear space above the sidewalk. This scenario was observed at 13th and Garfield on the south side of 13th west of the intersection. The overhanging limbs are shown in Figure 7. The limbs are roughly six feet above the sidewalk.

Figure 7. Vegetation Restricting
Vertical Clear Distance

Transit

Only one bus stop was located in the vicinity of the seven study area intersections. The stop was located on the north side of 11th west of Chambers (refer to Figure 8). The American with Disabilities Act requires a 8.5 foot landing for passengers entering and exiting a bus (ODOT Highway Design Manual, 2003, Chapter 11). The sidewalk at the transit stop is nine feet wide, which satisfies the ADA requirement. Additional transit data is provided in Appendix D.

Figure 8. Transit Stop

SAFETY ANALYSIS

The traffic safety analysis is based on DMV reported collision data for the study area from 1998 through 2002 that the City of Eugene provided to the consultant team. Additional details regarding collision statistics can be found in Appendix E. An annual average of 55 collisions per year was observed at the seven study area intersections between 1998 and 2002. This corresponds to an annual intersection average of 7.8 collisions per intersection. Figure 9 depicts the annual collision frequency within the study area. While the number of collisions declined over the time period of 1998 through 2000, it increased again in 2001 before dropping back to the 1999 level in 2002.

Figure 9. Annual Collision Frequency

When taking into account the traffic volumes at the seven study intersections, the 5-year average collision rate computes to a value between 0.30 and 1.10, with two intersections (7th at Garfield and 11th at Chambers) slightly above the commonly accepted standard of 1.0 collisions per million entering vehicles. Figure 10 below depicts the 5-year collision summary and collision rate for each study intersection.

Collision severity for all seven study intersections is reported in Figure 11 from 1998 to 2002. During this period, no fatalities were reported. Eighty-six injury collisions were report while the remaining 187 collisions were property damage only.

Figure 10. Intersection Collisions and Collision Rates (1998 – 2002)

Figure 11. Collision Severity (1998-2002)

A collision classification from 1998 to 2002 reveals that 261 of the 273 reported collisions involved vehicles. Two of the 273 collisions involved pedestrians and 10 involved bicyclists. Figure 12 classifies collisions by mode during this 5-year period.

Figure 12. Collisions by Mode of Travel (1998-2002)

Evaluating the past collision history for collision types reveals that rear-end collisions are the predominant collision type at the study intersections. The main reason for rear-end collisions is traffic congestion. The only exception to this finding is the intersection of 13th and Garfield, which also exhibits a significantly lower peak flow than all other studied intersections. Furthermore, the analysis shows that side-swipe collisions are very common at the intersection of 7th and Garfield. Many of those collisions appear to have occurred at the eastbound exit of the actual intersection and thus are most likely the result of weaving maneuvers for downstream intersection lane utilization. At the intersection of 7th and Chambers, right angle collisions show a significant frequency which could be the result of red light running associated with the intersection operating at a high degree of saturation. Figure 13 below depicts the number of collisions by collision type for each of the study intersections.

Figure 13. 5-Year Collision Type Summary

RECOMMENDATIONS

A summary of the operational and safety issues is shown in Table 11. A section is dedicated to traffic and pedestrian mitigation measures. All mitigation analysis results related to traffic operations are located in Appendix F.

Policy vs. Context Sensitive Driven Design

Prior to discussing the results, it is important to present the approach used to develop the recommendations presented in the following sections. An initial set of recommendations were developed for each intersection that warranted improvements. This initial set is referred to as the Policy Driven Solution since it strives to satisfy traffic operations standards outlined in policy documents (e.g., Oregon Highway Plan). Realizing that the resulting Policy Driven Solutions are not compatible with the desires of the neighborhood, a second analysis is performed that considers the desires of the neighborhood and the environment they want to maintain. This second set is referred to as the Context Sensitive Solution. It is also the solution that is recommended for implementation at each intersection. Some additional background on the differences between a Policy and Context Sensitive Driven design are presented prior to presenting the recommendations.

Policy Driven Design

Recommendations to improve mobility within an area such as Chambers need to consider the multi-modal nature of the transportation system. Today, however, the Policy driven analysis requirements and resulting design recommendations do not consider the context of the area being studied. Instead, they primarily focus on vehicular traffic. The result is less traffic congestion (commonly through the addition of more lanes), but typically at the expense of a pedestrian friendly environment (refer to Figure 14). Improving traffic operations also makes it less rewarding for motorists to cut through the neighborhood to avoid delays and congestion.

Figure 14. Policy Driven Design – Weighted Toward Vehicular Traffic

Context Sensitive Driven Design

A Context Sensitive analysis and design are aimed at providing a greater balance between the needs of pedestrians and vehicular traffic (refer to Figure 15). The result leads to a more pedestrian friendly set of recommendations than the Policy driven approach. Consequently, the trade-offs are usually a greater degree of traffic congestion and an increased potential for neighborhood cut through traffic. Disincentives on the local street network may be required to make it less rewarding to cut through the neighborhood.

Figure 15. Context Sensitive Driven Design – Balanced Between Pedestrians and Vehicular Traffic

Table 11. Summary of Operational and Safety Issues

		Ol	PERATIO	ONAL ISS	UES				
Intersection ¹	Delay > LOS D		v/c-Ratio > 0.85		Queue Lengths > Storage		SAFETY ISSUES		
	2004	2024	2004	2024	2004	2024			
7 th at Garfield				Х			- Right angle		
EB Thru						Х	- Side-swipe-NB, EB		
7 th at Chambers			Х	Х			- Right angle		
EB Thru							5 5		
NB Thru						Х			
SB LT									
SB Thru						Х			
11 th at Garfield		Х	Х	Х					
EB LT									
EB RT									
WB Thru									
11 th at Chambers	Х	Х	Х	Х			- Right angle		
WB Thru							- Side-swipe-WB		
NB LT									
SB Thru									
13 th at Garfield	Х	Х		Х					
EB Thru									

^{1.} Movements contributing to the operational issues at the intersection are listed in the first column.

Traffic

7th at Garfield

The eastbound through and northbound through are the primary movements contributing to the operational issues at this intersection in 2024. By operating at a v/c-ratio of 0.89, the intersection as a whole exceeds the 0.80 v/c-ratio criteria.

One method to reduce the v/c-ratio at an intersection, and the potential for cut-through traffic, is to increase geometric capacity. Increasing the geometric capacity (e.g., adding turn lanes) for a given movement can simultaneously result in a reduction in green time while still reducing the v/c-ratio. Expanding the northbound approach to an exclusive through lane and two exclusive right turn lanes was analyzed as a potential Policy mitigation strategy (refer to Figure 16). This strategy reduced the intersection v/c-ratio to 0.79 (refer to Appendix F). It also allowed the green time for the eastbound through to be increased by five seconds which reduced its v/c-ratio to 0.83. The five seconds came from the northbound and southbound phases. Even with the 5-second reduction in green time, the v/c-ratios for these movements were reduced due to the increased capacity added by the change in lane configurations. This strategy, however, did not reduce the eastbound queue to a point where it would not extend into the West 7^{th} Place intersection on occasion.

Realizing the importance of pedestrian mobility within the Chambers study area, a more pedestrian friendly approach was considered for the south and east legs of the intersection. It is shown in Figure 16 and was originally conceived in Proposal 1 of the Safety Improvement Project illustrated in Appendix B. The design would physically remove the issues that restrict the visibility of pedestrians for motorists in the northbound dual right turn lanes. It would also reduce the pedestrian crossing distance on the south leg.

Right-angle and side-swipe collisions were also frequent at 7th and Garfield. Twelve right angle collisions occurred at this intersection during the five year review period. Providing an all red clearance interval is a proven strategy to reduce right angle collisions. Therefore, a ½-second all red clearance interval following the amber for each phase is recommended.

Side-swipe overtaking collisions were also prevalent on the eastbound and northbound approaches. The eastbound collisions are possibly due to weaving from traffic entering from West 7th Place which is approximately 350 east of Garfield on 7th. West 7th Place is a three lane facility where it enters West 7th Avenue at an angle. A potential solution is to guide the three lanes of traffic entering from West 7th Place by using dashed lines as they transition onto West 7th Avenue. The dashed lines are intended to keep the motorists in their lane during this transition.

The northbound side-swipe collisions are likely due to the right turn trap lane. Once northbound through motorists realize they are in the right turn trap lane, they attempt to change lanes. This maneuver when done with a sense of urgency in close proximity to the intersection can result in side-swipe collisions. A potential solution is to extend and to modify the solid white lane line delineating the right turn lane further to the south. To further increase awareness of the trap lane the four inch solid white line could be replaced with lane drop markings ("elephant tracks") that are eight inches wide and three feet long with a nine foot gap. Right turn lane markings and signing already exist on the approach.

As summarized in Table 12, the proposed mitigation measures achieve the delay and v/c-ratio criteria. In addition, the number of stops at the intersection are reduced which has the potential to reduce rear-end collisions.

Table 12. 7th at Garfield Performance Summary with Mitigation

Measures of Effectiveness	2004	2024 No Build	2024 Context Sensitive
Delay (sec/veh)	20.0	23.0	18.8
LOS	В	С	В
v/c-ratio	0.78	0.89	0.79
Stops (stops/hr)	2714	2745	2589

(a) Policy Driven Solution

(b) Context Sensitive Solution - Recommended

Figure 16. Lane Configurations – 7th at Garfield

7th at Chambers

This intersection operates at a LOS D and a v/c-ratio of 1.01 in 2024. All movements operate above a 0.90 v/ c-ratio.

The Policy strategy (refer to Figure 17) requires a rather substantial increase in right-of-way at the intersection in order to approach a v/c-ratio of 0.80. Even with the following geometric improvements (in order of preference), the intersection remained above the v/c-ratio criteria of 0.80:

- Southbound through lane
- Northbound right turn bay
- Eastbound right turn bay
- Eastbound left turn bay

The Context Sensitive solution which does not involve any widening of 7^{th} , reduces the intersection v/c-ratio to 0.90. These mitigation measures also result in the southbound queue not exceeding the storage area. The northbound queue is also reduced. However, since this movement is at capacity, the queue may still extend into West 8^{th} Avenue.

Adding an additional southbound through lane on Chambers would likely be the most challenging improvement. Currently, northbound Chambers flares to two northbound lanes (though, through and right) at West 7th. Adding the southbound through lane would balance the lanes at this intersection. However, continuing the lane further south would require at a minimum restriping Chambers between 7th and 8th. A concrete and painted median exist on the south leg (refer to Figure 18) that could be removed to

provide a second through lane. The additional through lane could be terminated (1) at 8th as either a left turn or right turn trap lane or (2) prior to 8th by merging the two lanes to one.

7th at Chambers had the highest number of right-angle collisions of the seven study area intersections with 19. Providing a ½-second all red clearance interval following the amber for each phase is recommended.

Table 13 summarizes the improvements resulting from the mitigation measures.

Figure 18. 7th at Chambers – South Leg Looking South

Intersection operations satisfy both the LOS and v/c-ratio criteria. The number of stops at the intersection are also reduced which reduces the potential for rear-end collisions.

Table 13. 7th at Chambers Performance Summary with Mitigation

Measures of Effectiveness	2004	2024 No Build	2024 Context Sensitive
Delay (sec/veh)	27.5	46.5	28.1
LOS	С	D	С
v/c-ratio	0.90	1.01	0.90
Stops (stops/hr)	3156	4722	3275

- Optimize timings
- Add ½ second all red (19 right angle collisions)

(a) Policy Driven Solution

- Optimize timings
- Add ½ second all red (19 right angle collisions)

(b) Context Sensitive Solution - Recommended

Figure 17. Lane Configurations – 7th at Chambers

11th at Garfield

11th at Garfield currently operates LOS D and a v/c-ratio of 0.94, which already exceeds the v/c-ratio criteria. The intersection operates at LOS F and a demand v/c-ratio of 1.15 in 2024. The primary movements contributing to this performance are the eastbound lefts and westbound throughs.

A number of strategies were considered to improve intersection operations. These strategies included:

- Adding eastbound through lanes and converting 11th between Garfield and Chambers to 2-way
- Rerouting portions of the eastbound lefts and rights at Garfield to eastbound lefts and rights at Chambers
- Increasing the cycle length
- Rearranging the phasing
- Adding a westbound right turn bay

None of these strategies resulted in the intersection operating below capacity. Additional discussions with the City of Eugene regarding this intersection are recommended. Since the potential strategies above did not produce meaningful benefits, improvements are not recommended at this time.

11th at Chambers

11th at Chambers operates at LOS E in 2004 and Los F in 2024. The v/c-ratio increases from 1.06 in 2004 to 1.15 in 2024. The main movements responsible for this operation are the westbound through, southbound through and northbound left.

Adding a westbound left turn bay (refer to Figure 19) improved the intersection to LOS D and a v/c-ratio to 0.96. Even though the intersection as a whole satisfies the City's LOS criteria, SB motorists will experience roughly 1 minute of delay on average. The queues will also back up and block motorists who live on 10th and 9th from getting onto and off of Chambers. Therefore, the context sensitive solution also recommends converting the center 2-way left turn lane to a southbound through lane to improve mobility within the vicinity of 11th and Chambers and improve access to businesses. This improvement also requires removing northbound left turns from the intersection. Combined, these improvements reduce southbound delay to less than 10 seconds per vehicle and queues are consistently shorter than the distance to 10th.

Eleven right angle collisions were reported at this intersection during the 5-year review period. An all-red clearance of a ½-second is recommended after the amber of each phase to address this collision type.

The other reported collision pattern was eight westbound sideswipe collisions. There were three sideswipes in 1998 and 1999. This collision pattern tapered off to one in 2000 and one in 2002. A field investigation did not reveal any potential reason for these collisions. Due to the reduction in this collision pattern, mitigation measures are not recommended at this time.

Table 14 summarizes the improved performance resulting from the mitigation measures. The mitigation measures satisfy the LOS and v/c-ratio criteria and reduce the number of stops.

Table 14. 11th at Chambers Performance Summary with Mitigation

Measures of Effectiveness	2004	2024 No Build	2024 Context Sensitive
Delay (sec/veh)	55.8	86.8	21.8
LOS	E	F	С
v/c-ratio	1.06	1.15	0.81
Stops (stops/hr)	2913	3454	1985

(b) Context Sensitive Solution – Recommended

Figure 19. Lane Configurations – 11th at Chambers

13th at Garfield

The eastbound through and left turn movements cause 13th at Garfield to operate at LOS F and above capacity in 2004 and 2024. The total volume for the eastbound lefts and throughs is below 30 vph in PM-peak hour. Given the relatively low volume and alternate route along Arthur to West 11th for these movements, no traffic improvements are recommended at this time.

11th - Garfield to Chambers

The Draft Chambers Nodal Development Plan (June, 1999) included a recommendation to convert West 11th Avenue from one-way to two-way traffic between Chambers and Garfield. The recommended conversion was part of a strategy to revitalize the commercial area by improving pedestrian conditions along the street by introducing on-street parking within parking bays, street tree plantings, pedestrian islands at intersections, and curb extensions where possible to reduce the length of crosswalks. Because the plan was abandoned before it went to public hearing, the recommendation was never brought forward.

The pedestrian crossing improvement at Garfield and West 11th suggested above would be negated and, frankly, would be made unnecessary by a two-way conversion of 11th. The two-way conversion proposal should be reintroduced at some point to stimulate further discussion and allow continued analysis of the impacts of that improvement.

The traffic analysis, which typically focuses on capacity and level of service aspects of the roadway network, did not indicate any perceptible benefits to the conversion of West 11th between Garfield and Chambers to two-way operation. However, while benefits may be difficult to quantify from a level of service standpoint, there are advantages to reducing turning movements, simplifying circuitous routing and providing additional circulation for traffic particularly when adjacent land uses are commercial or mixed use in nature. For instance, eastbound traffic destined for Chambers Street south of 13th Avenue must currently turn right from West 11th to Garfield, weave one lane over to turn left at West 13th Avenue, weave one lane over to turn right at Chambers Street. The three block conversion of West 11th to two-way operation would replace this movement with a single right turn and no subsequent weaving maneuvers or additional turns.

Pedestrians

7th at Garfield

During a field visit, an issue regarding pedestrian safety was mentioned for northbound pedestrians crossing the east leg of the intersection. The dual right movement can result in the vehicle in the inside lane obstructing the driver's view in the outside lane. Thus, the visibility of pedestrians in the crosswalk is reduced. One solution is to provide an early WALK signal for the pedestrians that allows them to get further into the intersection before the right turns receive a green signal. An early green of five seconds would allow the pedestrians adequate time to establish themselves in the crosswalk prior to the right turns receiving a green signal.

If the above strategy does not produce the desired safety improvement for pedestrians, a more substantial improvement would be implementing Proposal 1 of the Safety Improvement Project illustrated in Appendix B. The design would remove the issues that restrict the visibility of pedestrians for the dual right.

Sidewalks should be added to the north and south side of 7th west of Garfield. These sidewalk sections would complete the linkage between the existing sidewalks to the east and further to west at 7th Place.

11th at Garfield

The firmware used at 11th and Garfield to control the signal timing should be investigated to determine if it can provide a pedestrian overlap phase on the east leg. The pedestrians on this leg currently only receive a WALK signal when the northbound and southbound traffic movements receive a green signal. If possible with the controller firmware, these pedestrians could receive a substantially longer WALK signal by allowing them to cross when the eastbound movements receive a green signal. This operation would reduce pedestrian delay on this leg of the intersection.

Vegetation reduces the clear width of the sidewalk to roughly two feet on the west side of Garfield south of 11th. This vegetation should be cut back to provide the full 5-foot sidewalk width.

13th at Garfield

Sidewalk bulbs are recommended to shorten the pedestrian crossing distances. These bulbs are recommended in the northwest and southwest corners (refer to Figure 20). A bulb is not recommended for the southeast corners since the resulting turning radius would be too short for a bus to make a northbound right turn.

In addition, to enhance the awareness of pedestrians, a crosswalk should be painted on the west leg. Painting crosswalks on the other legs that service free flow movements could potentially reduce the safety for pedestrians.

Currently, limbs overhang into the space above the sidewalk on the south side of 13th west of Garfield. Although these limbs are not a major hindrance to pedestrians using the sidewalk, they should be trimmed and maintained to provide at least seven feet of clear distance.

Figure 20. Context Sensitive Design – 13th at Garfield

Summary

Recommendations to improve operations and pedestrian safety are summarized in Table 15 and illustrated in Figure 21. It is important to mention that many of the recommendations that reduce traffic congestion and delays also have the benefit of reducing the potential for neighborhood cut-through traffic. Any recommendations aimed at improving operations, and especially safety, should be reviewed after implementation to monitor their success in achieving the desired performance and safety.

Table 15. Operations and Pedestrian Safety Recommendations

Intersection	Traffic	Pedestrians
7 th at Garfield	 Expand northbound approach from a shared through and right and exclusive right to an exclusive through lane and dual right turn lanes with island Optimize signal timings Add ½-second all red clearance for each phase Add markings to guide eastbound traffic from West 7th Place onto West 7th Avenue Extend and modify ("elephant tracks") northbound solid white lane line to the south 	 Shorten pedestrian crossing distance by adding an island to channelize dual northbound right turn Control northbound right turn with a signal Add sidewalks on north and south sides of 7th west of Garfield
7 th at Chambers	 Add northbound right turn bay Add southbound through lane Optimize signal timing Add ½-second all red clearance for each phase 	
7 th at Polk	Intersection operates satisfactorily – optimize timings	
11 th at Garfield	 Although intersection operates below LOS and v/c-ratio criteria, all analyzed strategies did not improve operations. Other than optimizing timings, no other traffic improvements are recommended at this time. 	 Provide pedestrian overlap phase for pedestrians crossing east leg Remove vegetation overgrowing on sidewalk on the west side of Garfield south of 11th
11 th at Chambers	 Add westbound left turn bay Add southbound through lane carried through intersection Remove northbound left turn movement Optimize timings Add ½-second all red clearance for each phase 	
13 th at Garfield ¹		 Add sidewalk bulbs in northwest and southwest corners Stripe crosswalk on west leg Cut back limbs overgrowing above sidewalk on the south side of 13th west of Garfield
13 th at Chambers	Intersection operates satisfactorily – optimize timings	
11 th : Garfield to Chambers	Further investigate converting 11 th to 2-way between Garfield and Chambers	

^{1.} Unsignalized intersection.

13th

TRIM

Figure 21. Operations and Pedestrian Safety Recommendations

APPENDIX A

BASE (2004)

Scenario Data

7th at Garfield – Existing (2004) Geometry

7th at Chambers – Existing (2004) Geometry

7th at Polk – Existing (2004) Geometry

11th at Garfield – Existing (2004) Geometry

11th at Chambers – Existing (2004) Geometry

PTV America, Inc. Page 46 May 27, 2005

13th at Chambers – Existing (2004) Geometry

Lane Utilization Factors¹

			11 th at (Garfield			11 ^{tl}	at Chamb	ers
Measure	ЕВ	Left	NB ⁻	Thru	WB	Thru		WB Thru	
	Left Lane	Right Lane	Left Lane	Right Lane	Left Lane	Right Lane	Left Lane	Center Lane	Right Lane
Volume	406	264	31	65	570	441	70	419	457
Proportion	61%	39%	32%	68%	56%	44%	7%	44%	48%
Lane Utilization Factor (fLU)2	0.8	83	0.	74	0.	89		0.69	

^{1.} PM-peak hour

^{2.} Lane utilization factor is equal to the total volume divided by the highest volume lane multiplied by the number of lanes.

										2/20	/2005
۴	→	`~	*	-	4,	4	†	*	`	ţ	-√
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4im						15	T.		44	
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	4.0						4.0	4.0		4.0	
	0.86						0.95	0.95		0.95	
	1.00						0.99	0.99		1.00	
	1.00						1.00	1.00		1.00	
	0.99						0.91	0.85		1.00	
	1.00						1.00	1.00		1.00	
	6321						1611	1498		3530	
	1.00						1.00	1.00		0.78	
	6321						1611	1498		2749	
81	1766	109	0	0	0	0	208	763	49	536	0
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
88	1920	118	0	0	0	0	226	829	53	583	0
0	2126	0	0	0	0	0	574	481	0	636	0
2		2						1			
		3						1			2
2%	2%	6%	2%	2%	2%	2%	1%	1%	0%	2%	2%
								Perm	Perm		
	2						8			4	
2								8	4		
	32.0						32.0	32.0		32.0	
							32.0	32.0		32.0	
								0.44			
	4.0						4.0	4.0			
	3.0						2.0	2.0			
	0.34							0.32		0.23	
							0.80				
	В						С	С		В	
				0.0							
	В			Α			С			В	
Delay		20.0	H	ICM Le	vel of S	ervice		В			
		0.78									
ary rath	V	0.70									
ity ratio (s)	•	72.0	9	um of l	lost tim	e (s)		8.0			
	1900 81 0.92 88 0 2 2% Perm 2	1900 1900 4.0 0.86 1.00 0.99 1.00 6321 1.00 6321 81 1766 0.92 0.92 88 1920 0 2126 2 2 2 32.0 32.0 0.44 4.0 3.0 2809 0.34 0.76 16.7 1.00 2.0 18.7 B 18.7 B Delay	1900 1900 1900 4.0 0.86 1.00 0.99 1.00 6321 1.00 6321 81 1766 109 0.92 0.92 88 1920 118 0 2126 0 2 2 3 2% 2% 6% Perm 2 2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.	1900 1900 1900 1900 4.0 0.86 1.00 0.99 1.00 6321 1.00 6321 81 1766 109 0 0.92 0.92 0.92 88 1920 118 0 0 2126 0 0 2 2 2 3 3 2% 2% 6% 2% Perm 2 2 32.0 32.0 0.44 4.0 3.0 2809 0.34 0.76 16.7 1.00 2.0 18.7 B 18.7 B 18.7 B	1900 1900 1900 1900 1900 4.0 0.86 1.00 0.99 1.00 6321 1.00 6321 81 1766 109 0 0 0.92 0.92 0.92 0.92 88 1920 118 0 0 0 0 2126 0 0 0 0 2 2 2 3 3 2% 2% 6% 2% 2% Perm 2 32.0 32.0 32.0 32.0 33.0 2809 0.94 4.0 3.0 2809 0.94 0.76 16.7 1.00 2.0 18.7 B 18.7 B 18.7 C 10.0 B A Delay 0.86 1900 1900 1900 1900 1900 1900 1900 1900	1900 1900 1900 1900 1900 1900 4.0 4.0 4.0 0.86 1.00 1.00 6321 1.00 6321 81 1766 109 0 0 0 0 0 0.92 0.92 0.92 0.92 0.92 0.92 88 1920 118 0 0 0 0 0 2 2 2 3 3 2% 2% 6% 2% 2% 2% Perm 2 2 32.0 32.0 32.0 0.44 4.0 3.0 2809 0.34 0.76 16.7 1.00 2.0 18.7 8 18.7 8 18.7 9 A	1900 1900 1900 1900 1900 1900 1900 1900			1900 1900	Bel Bel Bel Wel Wel Wel Wel Nel Nel Nel Nel Mel Mel

o Critical Lane Group

HCM Signalized Inte	ersecti	ion Ca	pacity	Analys	sis							
2: 7th & Chambers											2726	/2005
	٠	-	\rightarrow	*	•	4	4	†	1	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		वाक						† 1>		La La	+	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0						4.0		4.0	4.0	
Lane Util. Factor		0.86						0.95		0.97	1.00	
Frpb, ped/bikes		1.00						1.00		1.00	1.00	
Flpb, ped/bikes		1.00						1.00		1.00	1.00	
Frt		0.99						0.97		1.00	1.00	
Fit Protected		1.00						1.00		0.95	1.00	
Satd. Flow (prot)		6157						3219		3433	1827	
FIt Permitted		1.00						1.00		0.18	1.00	
Satd. Flow (perm)		6157						3219		657	1827	
Volume (vph)	212	2091	105	0	0	0	0	592	178	403	536	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	230	2273	114	0	0	0	0	643	193	438	583	0
Lane Group Flow (vph)		2617	0	ō	ō	ō	ō	836	0	438	583	ō
Confl. Peds. (#/hr)	3		2	2		3	1		3	3		1
Confl. Bikes (#/hr)	•		_	_		6	•		5	•		8
Heavy Vehicles (%)	4%	5%	4%	2%	2%	2%	2%	8%	7%	2%	4%	2%
Turn Type	Perm	0.10	110	2 10	2 10	2.10	2 10	0 14		pm+pt		2 10
Protected Phases	ı emi	2						8		7	4	
Permitted Phases	2	_								4	7	
Actuated Green, G (s)		32.9						18.0		31.1	31.1	
Effective Green, g (s)		32.9						18.0		31.1	31.1	
Actuated g/C Ratio		0.46						0.25		0.43	0.43	
Clearance Time (s)		4.0						4.0		4.0	4.0	
Vehicle Extension (s)		3.0						2.0		2.0	2.0	
Lane Grp Cap (vph)		2813						805		635	789	
v/s Ratio Prot		0.40						c0.26		0.09	c0.32	
v/s Ratio Perm		0.43						102		0.21	0.74	
v/c Ratio		0.93						1.04		0.69	0.74	
Uniform Delay, d1		18.5						27.0		24.7	17.1	
Progression Factor		0.80						1.00		1.00	1.00	
Incremental Delay, d2		4.8						42.1		2.5	3.1	
Delay (s)		15.9						69.1		27.2	20.2	
Level of Service		В						E		С	С	
Approach Delay (s)		15.9 B			0.0 A			69.1 E			23.2 C	
Approach LOS		В										
Intersection Summary												
HCM Average Control (27.5	H	ICM Le	vel of S	ervice		С			
HCM Volume to Capao		0	0.90									
Actuated Cycle Length			72.0		um of				8.0			
Intersection Capacity U	tilizati:	on :	86.5%	- 1	CU Lev	el of Se	ervice		D			

c Critical Lane Group

Timings					
2: 7th & Chambers					
	→	†	>	ţ	
Lane Group	EBT	NBT	SBL	SBT	
ane Configurations	4111b	1 15	44	•	
olume (vph)	2091	592	403	536	
urn Type			pm+pt		
otected Phases	2	8	7	4	
ermitted Phases			4		
tector Phases	2	8	7	4	
inimum Initial (s)	10.0	3.0	5.0	3.0	
inimum Split (s)	29.0	22.0	9.0	22.0	
otal Split (s)	33.0	22.0	17.0	39.0	
otal Split (%)	46%	31%	24%	54%	
aximum Green (s)	29.0	18.0	13.0	35.0	
ellow Time (s)	4.0	4.0	4.0	4.0	
l-Red Time (s)	0.0	0.0	0.0	0.0	
ad/Lag		Lead	Lag		
ad-Lag Optimize?		Yes	Yes		
hicle Extension (s)	3.0	2.0	2.0	2.0	
nimum Gap (s)	3.0	2.0	2.0	2.0	
me Before Reduce (s	,	0.0	0.0	0.0	
me To Reduce (s)	0.0	0.0	0.0	0.0	
	Coord		None		
alk Time (s)	7.0	6.0		6.0	
ash Dont Walk (s)	18.0	12.0		12.0	
destrian Calls (#/hr)	0	0		0	
ersection Summary					
de Length: 72					
uated Cycle Length	:72				
et: 17 (24%), Refer		to phas	e 2:EB	TL, Star	t of Yellow
ral Cycle: 70					
ntrol Type: Actuated	d-Coord	inated			
lits and Phases: 2	:7th &	Chamb	ers		
4 02				i⊪ at	
338			3	38	
			- 1	↑	_
				a 8	₩ a7

HCM Signalized Intersection Capacity Analysis

Intersection Capacity Utilization

Critical Lane Group

1: 7th & Polk 2/25/2005 EBL Movement EBT WBT NBT NBR SBR Lane Configurations aire 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 ideal Flow (vphpl) 1900 Total Lost time (s) 4.0 4.0 4.0 4.0 4.0 Lane Util. Factor 0.86 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 0.99 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 1.00 0.851.00 Fit Protected 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 6381 1863 1562 1803 1863 FIt Permitted 1.00 1.00 1.00 0.69 1.00 Satd. Flow (perm) 6381 1863 1562 1314 1863 31 2501 0 100 39 135 0 Volume (vph) 59 0 0 0 92 Peak-hour factor, PHF 0.92 0.92 0.920.92 0.920.92 0.920.92 0.920.920.920.92Adj. Flow (vph) 34 2718 64 0 0 0 0 100 109 42 147 0 2816 100 Lane Group Flow (vph) 0 0 0 0 0 0 109 42 147 0 Confl. Peds. (#/hr) 9 5 2% 2% 2% 2% 2% Heavy Vehicles (%) 0% 2% 0% 2% 0% 2% 2% Turn Type Perm Perm Perm Protected Phases 2 8 4 Permitted Phases Actuated Green, G (s) 39.0 25.0 25.0 25.0 25.0 Effective Green, g (s) 39.0 25.0 25.0 25.0 25.0 Actuated g/C Ratio 0.54 0.35 0.350.350.35Clearance Time (s) 4.0 4.0 4.0 4.0 4.0 2.0 2.0 Vehiole Extension (s) 3.0 2.0 2.0 Lane Grp Cap (vph) 3456 647 542 456 647 w/s Ratio Prot 0.05 ം.08 0.44 w/s Ratio Perm 0.07 0.03 w/c Ratio 0.81 0.15 0.20 90.0 0.23 Uniform Delay, d1 13.5 16.2 16.5 15.8 16.7 Progression Factor 0.391.00 1.00 1.00 1.00 Incremental Delay, d2. 0.8 1.0 0.5 0.0 0.1 15.9 6.4 16.7 17.3 16.7 Delay(s)Level of Service А в В Approach Delay (s) 6.4 0.0 17.0 16.5 Approach LOS В В Intersection Summary HCM Average Control Delay 7.7 HCM Level of Service Α HCM Volume to Capacity ratio 0.59Actuated Cycle Length (s) 72.0 Sum of lost time (s) 8.0

ICU Level of Service

С

74.3%

Timings 1: 7th & Polk 2/25/2005

	→	Ť	*	\	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Configurations	ain-	+	ſ	ሻ	+
Volume (vph)	2501	92	100	39	135
Turn Type			Perm	Perm	
Protected Phases	2	8			4
Permitted Phases			8	4	
Detector Phases	2	8	8	4	4
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	21.0	22.0	22.0	22.0	22.0
Total Split (s)	43.0	29.0	29.0	29.0	29.0
Total Split (%)	60%	40%	40%	40%	40%
Maximum Green (s)	39.0	25.0	25.0	25.0	25.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0
Lead/Lag					
Lead-Lag Optimize?					
Vehicle Extension (s)	3.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	2.0	2.0	2.0	2.0
Time Before Reduce ((s) 0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0
Recall Mode	Coord	Max	Max	None	None
Walk Time (s)	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	10.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0
Interception Summany					

Intersection Summary

Cycle Length: 72

Actuated Cycle Length: 72

Offset: 48 (67%), Referenced to phase 2:EBTL, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Splits and Phases: 1: 7th & Polk

HCM Signalized Intersection Capacity Analysis
12: 11th & Chambers

Base (2004) 4/20/2005

	٠	→	*	•	-	•	4	Ť	*	->	ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	44	f	ሻ	•			1	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0	4.0			4.0	
Lane Util. Factor				1.00	*0.69	1.00	1.00	1.00			1.00	
Frpb, ped/bikes				1.00	1.00	0.98	1.00	1.00			1.00	
Flpb, ped/bikes				1.00	1.00	1.00	1.00	1.00			1.00	
Frt				1.00	1.00	0.85	1.00	1.00			0.98	
FIt Protected				0.95	1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)				1796	2571	1551	1805	1863			1839	
FIt Permitted				0.95	1.00	1.00	0.17	1.00			1.00	
Satd. Flow (perm)				1796	2571	1551	314	1863			1839	
Volume (vph)	0	0	0	218	921	184	143	501	0	0	558	115
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	237	1001	200	155	545	0	0	607	125
Lane Group Flow (vph)		0	0	237	1001	200	155	545	0	0	732	0
Confl. Peds. (#/hr)	4		4	4		4	6		3	3		6
Confl. Bikes (#/hr)			6			7			3			7
Heavy Vehicles (%)	2%	2%	2%	0%	2%	2%	0%	2%	2%	2%	0%	3%
Turn Type				Perm		Perm	pm+pt					
Protected Phases					6		3	8			4	
Permitted Phases				6		6	8					
Actuated Green, G (s)				25.7	25.7	25.7	29.6	29.6			20.2	
Effective Green, g (s)				25.7	25.7	25.7	29.6	29.6			20.2	
Actuated g/C Ratio				0.41	0.41	0.41	0.47	0.47			0.32	
Clearance Time (s)				4.0	4.0	4.0	4.0	4.0			4.0	
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)				729	1044	630	274	871			587	
v/s Ratio Prot					œ.39		0.05	c0.29			c0.40	
v/s Ratio Perm				0.13		0.13	0.22					
v/c Ratio				0.33	0.96	0.32	0.57	0.63			1.25	
Uniform Delay, d1				12.9	18.3	12.8	14.4	12.7			21.6	
Progression Factor				1.00	1.00	1.00	1.00	1.00			1.00	
Incremental Delay, d2				0.3	18.5	0.3	2.7	1.4			124.9	
Delay (s)				13.1	36.8	13.1	17.1	14.1			146.5	
Level of Service				В	D	В	В	В			F	
Approach Delay (s)		0.0			29.6			14.8			146.5	
Approach LOS		Α			С			В			F	
Intersection Summary												
HCM Average Control I			55.8	ŀ	ICM Le	vel of S	Service		E			
HCM Volume to Capac	ity ratio	0	1.06									
Actuated Cycle Length	(s)		63.3	9	Sum of	lost tim	e (s)		12.0			
Intersection Capacity U	tilizati	on :	85.9%	- 1	CU Lev	el of Se	ervice		D			
c Critical Lane Group)											

Timings Base (2004) 12: 11th & Chambers 4/20/2005

	*	+	4	4	†	ļ
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT
Lane Configurations	ሻ	44	ř	ሻ	+	15
Volume (vph)	218	921	184	143	501	558
Turn Type	Perm		Perm	pm+pt		
Protected Phases		6		3	8	4
Permitted Phases	6		6	8		
Detector Phases	6	6	6	3	8	4
Minimum Initial (s)	10.0	10.0	10.0	3.0	3.0	3.0
Minimum Split (s)	20.0	20.0	20.0	7.0	20.0	20.0
Total Split (s)	30.0	30.0	30.0	11.0	35.0	24.0
Total Split (%)	48%	46%	46%	17%	54%	37%
Maximum Green (s)	26.0	26.0	26.0	7.0	31.0	20.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lead/Lag				Lead		Lag
Lead-Lag Optimize?				Yes		Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0
Time Before Reduce ((s) 0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Ped	Ped	Ped	None	None	None
Walk Time (s)	5.0	5.0	5.0		5.0	5.0
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	0	0	0		0	0

Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 62.3

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Splits and Phases: 12: 11th & Chambers

HCM Signalized Intersection Capacity Analysis
13: 11th & Garfield

2/27/2005

13. I Till & Galileiu												.2000
	*	-	~	1	•	•	4	†	*	~	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	166		7	ħ	415			at t			+ +	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	*0.83		1.00	1.00	*0.89			*0.74			0.95	1.00
Frpb, ped/bikes	1.00		0.98	1.00	1.00			1.00			1.00	1.00
Flpb, ped/bikes	1.00		1.00	1.00	1.00			1.00			1.00	1.00
Frt	1.00		0.85	1.00	0.99			1.00			1.00	0.85
Fit Protected	0.95		1.00	0.95	1.00			0.99			1.00	1.00
Satd. Flow (prot)	2938		1553	1762	3279			2781			3471	1599
FIt Permitted	0.95		1.00	0.95	1.00			0.80			1.00	1.00
Satd. Flow (perm)	2938		1553	1762	3279			2250			3471	1599
Volume (vph)	684	0	503	140	1032	62	27	95	0	0	273	419
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	743	0	547	152	1122	67	29	103	0	0	297	455
Lane Group Flow (vph)		0	547	152	1189	0	0	132	0	0	297	455
Confl. Peds. (#/hr)	3		4	4		3	2					2
Confl. Bikes (#/hr)			4			4			2			5
Heavy Vehicles (%)	2%	2%	2%	2%	2%	5%	0%	0%	2%	2%	4%	1%
Turn Type	Prot		custom	Perm			Perm					pt+ov
Protected Phases	5				6			8			4	45
Permitted Phases	_		5	6	_		8	_				
Actuated Green, G (s)	24.8		24.8	33.8	33.8			11.0			11.0	39.8
Effective Green, g (s)	24.8		24.8	33.8	33.8			11.0			11.0	39.8
Actuated g/C Ratio	0.30		0.30	0.41	0.41			0.13			0.13	0.49
Clearance Time (s)	4.0		4.0	4.0	4.0			4.0			4.0	
Vehicle Extension (s)	1.5		1.5	1.5	1.5			1.5			1.5	
Lane Grp Cap (vph)	893		472	730	1358			303			468	780
v/s Ratio Prot	0.25				c0.36						0.09	c0.28
v/s Ratio Perm			c0.35	0.09				0.06				
v/c Ratio	0.83		1.16	0.21	0.88			0.44			0.63	0.58
Uniform Delay, d1	26.5		28.4	15.3	22.0			32.4			33.4	15.0
Progression Factor	1.00		1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	6.4		92.9	0.1	6.4			0.4			2.1	0.7
Delay (s)	32.8		121.3	15.4	28.4			32.8			35.5	15.7
Level of Service	C		F	В	C			C			D	В
Approach Delay (s)		70.4			26.9			32.8			23.5	آ
Approach LOS		E			С			C			C	
Intersection Summary												
HCM Average Control	Delay		42.3	H	ICM Le	vel of S	ervice		D			
HCM Volume to Capac	city ratio	0	0.90									
Actuated Cycle Length			81.6	9	Sum of	lost tim	e (s)		8.0			
Intersection Capacity U	Itilizatio	on	75.3%	1	CU Lev	el of Se	ervice		С			

c Critical Lane Group

Timings 13: 11th & Garfield 2/27/2005 t WBT NBL NBT SBT SBR EBR 44 đŧ 44 Lane Configurations 140 1032 95 419 684 503 27 Volume (vph) 273 Turn Type Protoustom Perm Perm pt+ov Protected Phases 8 45 Permitted Phases 5 6 8 Detector Phases 5 5 6 8 4 45 2.0 2.0 2.0 2.0 2.0 2.0 Minimum Initial (s) 2.0 24.0 Minimum Split(s) 26.0 26.0 26.0 26.0 19.0 19.0 Total Split (s) 34.0 34.0 39.0 39.0 24.0 24.0 24.0 58.0 Total Split (%) 35% 35% 40% 40% 25% 25% 25% 60% 30.0 30.0 35.0 35.0 20.0 20.0 Maximum Green (s) 20.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 0.0 All-Red Time (s) 0.0 0.0 0.0 0.0 0.0 0.0 Lead/Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Minimum Gap (s) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0.0 0.0 0.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Recall Mode None None None None None None None Walk Time (s) 7.0 7.0 7.0 7.0 5.0 5.0 5.0 Flash Dont Walk (s) 15.0 10.0 10.0 15.0 15.0 15.0 15.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Intersection Summary Cycle Length: 97 Actuated Cycle Length: 81.9 Natural Cycle: 90 Control Type: Actuated-Uncoordinated Splits and Phases: 13: 11th & Garfield **a**4

HCM Signalized Intersection Capacity Analysis

Critical Lane Group

2/25/2005 7: 13th & Chambers t NBT Movement EBL EBT EBR WBL WBT WBR NBL NBR SBI Lane Configurations đŧ ٠ ħ 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Ideal Flow (vphpl) 1900 Total Lost time (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Util, Factor 0.95 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 0.98 1.00 1.00 1.00 0.97 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Fπt 1.00 0.85 1.00 0.85 1.00 1.00 Fit Protected 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 3567 1804 1523 1863 1587 1881 FIt Permitted 1.00 1.00 1.00 1.00 0.26 1.00 Satd. Flow (perm) 3567 1523 1863 1587 498 1881 697 Volume (vph) 23 461 154 0 0 0 615 202 48 0 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Peak-hour factor, PHF 0.92 0.92Adj. Flow (vph) 501 0 0 668 220 758 25 167 52 Lane Group Flow (vph) 526 167 0 0 0 0 668 220 52 758 0 5 2 5 3 2 3 Confl. Peds. (#/hr) 2 7 6 9 Confl. Bikes (#/hr) 0% 2% 2% 2% 2% 2% 0% Heavy Vehicles (%) 3% 0% 2% Turn Type Perm Perm Perm Perm Protected Phases 8 4 Permitted Phases 2 8 Actuated Green, G (s) 19.0 19.0 33.0 33.0 33.0 33.0 19.0 19.0 33.0 33.0 33.0 33.0 Effective Green, g (s) Actuated g/C Ratio 0.32 0.32 0.550.55 0.55 0.55 Clearance Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 1035 Lane Grp Cap (vph) 1130 482 1025 873 274 v/s Ratio Prot 0.36c0.40 v/s Ratio Perm 0.15 0.11 0.14 0.10 0.47 0.65 0.25 0.73 w/c Ratio 0.35 0.197.1 Uniform Delay, d1 16.4 15.7 9.5 6.8 10.2 1.00 1.00 1.00 1.00 1.00 Progression Factor 1.00 1.4 2.0 0.7 Incremental Delay, d2 1.5 4.6 3.2 17.8 17.7 12.7 7.7 8.3 14.8 Delay (s) Level of Service В В В 17.8 0.0 14.3 Approach Delay (s) 11.5 Approach LOS В в В Intersection Summary В HCM Average Control Delay 14.3 HCM Level of Service HCM Volume to Capacity ratio 0.64 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 8.0 Intersection Capacity Utilization 64.0% ICU Level of Service В

_								
Т	ĺ	n	n	İ	ľ	1	a	S

7: 13th & Chambers 2/25/2005

	→	~	t	*	- 🐆	ļ
Lane Group	EBT	EBR	NBT	NBR	SBL	SBT
Lane Configurations	đ†	ř	+	ř	ሻ	+
Volume (vph)	481	154	615	202	48	697
Turn Type		Perm		Perm	Perm	
Protected Phases	2		8			4
Permitted Phases		2		8	4	
Detector Phases	2	2	8	8	4	4
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	23.0	23.0	37.0	37.0	37.0	37.0
Total Split (%)	38%	38%	62%	62%	62%	62%
Maximum Green (s)	19.0	19.0	33.0	33.0	33.0	33.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce(s)	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0

Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Yellow

Natural Cycle: 60 Control Type: Pretimed

Splits and Phases: 7: 13th & Chambers

	TWO	-WAY ST	OP CONTE	ROL SU	JMMAR	Y			
Intersection Orie	entation:	NS		S	Study	period	(hrs):	1.00)
	Vehi	cle Vol	umes and	d Adju	ıstme	nts			
Major Street: Ap	proach		rthbound				thbound		
	vement	1	2	3	- 1	4	5	6	
		L	Т	R	İ	L	T	R	
Volume						661	320	80	
Peak-Hour Factor,	PHF					0.92	0.92	0.92	
Hourly Flow Rate,	HFR					718	347	86	
Percent Heavy Veh	nicles					2			
Median Type	Undi	vided							
RT Channelized?									
Lanes						1	1 0		
Configuration						L	TR		
Upstream Signal?			No				No		
Minor Street: Ap	proach	We	stbound			Eas	tbound		
	vement	7	8	9		10	11	12	
		L	Т	R	j	L	T	R	
 Volume		147				3	23	3	
Peak Hour Factor,	DHE	0.92				0.92	0.92	0.92	
Hourly Flow Rate,		159				3	24	3	
Percent Heavy Veh		2				2	2	2	
Percent Grade (%)		_	0			_	0	_	
Median Storage									
Flared Approach:	Exists?								
11	Storage								
RT Channelized?								No	
Lanes		1				0	1 1		
Configuration		L				$_{ m LT}$	R		
-									
	Delay, Q	ueue Le	ngth, ar	nd Lev	rel o	f Servi	ce		
Approach	NB	SB		bound			Eastb	ound	
Movement	1	4	7	8	9	1	0 1	1	12
Lane Config		L	L			L	Т		R
v (vph)		718	159				7		3
C(m) (vph)		1617	21			4	2		653
V/C							.64		0.00
95% queue length							.64		0.01
Control Delay							19.3		10.5
LOS							F		В
Approach Delay								98.4	
Approach LOS								F	

HCS2000: Unsignalized Intersections Release 4.1

ncszooo: onsig			TOP CONTE						
Intersection 0					udy perio	d (hrs): 1.00		
	Veh	icle Vo	lumes and	d Adius	stments				
Major Street:			astbound	_		stboun	d		
_	Movement	1	2	3	4	5	6		
		L	Т	R	L	Т	R		
Volume			661						
Peak-Hour Fact	or, PHF		0.92						
Hourly Flow Ra			718						
Percent Heavy									
Median Type		ivided							
RT Channelized	1.?		1						
Lanes Configuration			1 T						
Upstream Signa	12		No			No			
Minor Street:			orthbound			uthbou			
	Movement	7	8	9	10	11	12		
		L	Т	R	L	Т	R		
Volume			147	17	26				
Peak Hour Fact	or, PHF		0.92	0.92	0.92				
Hourly Flow Ra	te, HFR		159	18	28				
Percent Heavy			2	2	2				
Percent Grade			0			0			
Median Storage									
Flared Approac	h: Exists? Storage								
RT Channelized	_			No					
Lanes	•		1 1		1				
Configuration			T R		L				
	Delay,	Oueue L	ength, ar	nd Leve	el of Serv	ice			
Approach	EB	~ WB		hbound			thbound		
Movement	1	4	7	8	9	10	11 12		
Lane Config		1		Т	R :	L			
v (vph)				159	18				
C(m) (vph)				352	426				
v/c				0.45	0.04				
95% queue leng	th			2.41	0.13				
Control Delay				23.6	13.8				
LOS				С	В				
Approach Delay				22.6					
Approach LOS				С					

APPENDIX D

Transit Data

Chambers Node Transit Summary

Bus stop #	Location	Existing Conditions	Current LTD Facility	Dir*	Weekday Frequency of Senice Route (minutes betw trips)	Avg. Wkday Boardings +		Desired City Improvement #	Proposed LTD Improvement
972	S/S of 8th E of Garfield	6' sidewalk	small Branch shelter	ES	41 (30), 43 (30)	62	23	None	replace with WBGS type shelter
973	N/S of 6th E of Garfield	8' sidewalk	sign and seat	08	41 (:30)	14	44	None	
974	S/S of 8th E of Chambers	5' sidewalk, 8' setback	sign and seat	ES	41 (30), 43 (30)	21	8	None	
975	N/S of 8th W of Chambers	8' sidewalk	sign only	OB	41 (:30)	3	11	None	
976	S/S of 8th W of Almaden	5' sidewalk, 8' setback	sign and seat	ES	41 (30), 43 (30)	22	7	None	
977	N/S of 8th W of Almanden	5' sidewalk, 5' setback	sign only	OB	41 (30)	3	16	None	
978	N/S of 8th W of Polk	5' sidewalk, 5' setback	sign only	OB	41 (:30)	6	32	None	
979	S/S of 8th E of Polk	5' sidewalk, 8' setback	sign and seat	ES	41 (30), 43 (30)	38	13	None	monitor boardings for future new shelter
992	N/S of 11th W of Polk	5' sidewalk, 8' setback	sign and seat	08	30 (30), 32 (limited), 43 (30), 76 (30), 93 (limited)	14	34	None	
993	N/S of 11th W of Almaden	5' sidewalk, 8' setback	sign only	08	30 (30), 32 (limited), 43 (30), 76 (30), 93 (limited)	10	29	None	
994	N/S of 11th W of Chambers	10° sidewalk	sign and seat	OB	30 (:30), 32 (limited), 43 (:30), 76 (:30), 93 (limited)	13	34	None	
995	N/S of 11th W of Grant	6' sidewalk	sign and seat	OB	30 (:30), 32 (limited), 43 (:30), 76 (:30), 93 (limited)	15	34	None	
1031	S/S of 13th E of Polk	5' sidewalk, 10' setback	WBGS shelter	ES	30 (:30), 32 (limited), 76UO (:30), 93 & 430 (limited)	45	8	None	
1029	S/S of 13th E of Chambers	4' sidewalk, 10' setback	WBGS shelter	ES	30 (30), 32 (limited), 76UO (30), 93 & 430 (limited)	40	16	Increase s/w width	
1028	S/S of 13th E of Hayes	4' sidewalk, 10' setback	Branch shelter	ES	30 (30), 32 (limited), 76UO (30), 93 & 430 (limited)	32	6	Increase s/w width	replace with WBGS type shelter
1027	W/S of Garfield S of 12th	5' sidewalk, 5' setback	sign and seat	ES	30 (30), 32 (limited), 76UO (30), 93 (limited)	7	9	None	

^{*} OB = outbound (westbound)

ES = Eugene Station is terminal point UO = UO is terminal point

⁺ APC counts # ADA ramp access at all nearby intersections is adequate from Feb 2005

APPENDIX B

FUTURE (2024) NO BUILD Scenario Data

Safety Improvement Project

Garfield: West 6th to West 7th

Proposed Configurations Source: City of Eugene

FUTURE (2024) NO BUILD Scenario PM-Peak Hour – Signal Timing Plans

HCM Signalized Intersection Capacity Analysis
10: 7th & Garfield

FUTURE NO BUILD (2024) 2/25/2005

10: 7th & Garfield											2)25	72005
	٠	→	`*	€	-	4.	4	t	*	->	ţ	4
Movement	EBL	EBT	EBR	WBL	WET	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ™						1∍	ř		d†	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0						4.0	4.0		4.0	
Lane Util. Factor		0.86						0.95	0.95		0.95	
Frpb, ped/bikes		1.00						0.99	0.99		1.00	
Flpb, ped/bikes		1.00						1.00	1.00		1.00	
Frt		0.98						0.94	0.85		1.00	
Fit Protected		1.00						1.00	1.00		1.00	
Satd. Flow (prot)		6215						1675	1498		3530	
FIt Permitted		1.00						1.00	1.00		0.73	
Satd. Flow (perm)		6215						1675	1498		2571	
Volume (vph)	139	2046	337	0	0	0	0	362	720	35	380	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	151	2223	366	0	0	0	0	393	783	38	413	0
Lane Group Flow (vph)		2740	0	Ö	ō	Ö	ō	640	536	0	451	ō
Confl. Peds. (#/hr)	2		2		T.	Ť			1			, i
Confl. Bikes (#/hr)	_		3						1			2
Heavy Vehicles (%)	2%	2%	6%	2%	2%	2%	2%	1%	1%	0%	2%	2%
Turn Type	Perm		- 0 10		210		2.00	110	Perm		2.0	
Protected Phases		2						8	i ciiii	1 61111	4	
Permitted Phases	2	_							8	4	-	
Actuated Green, G (s)		48.0						44.0	44.0		44.0	
Effective Green, g (s)		48.0						44.0	44.0		44.0	
Actuated g/C Ratio		0.48						0.44	0.44		0.44	
Clearance Time (s)		4.0						4.0	4.0		4.0	
Lane Grp Cap (vph)		2983						737	659		1131	
v/s Ratio Prot		2000						ω.38	000		1101	
v/s Ratio Perm		0.44						00.50	0.36		0.18	
v/c Ratio		0.92						0.87	0.81		0.40	
Uniform Delay, d1		24.2						25.4	24.4		19.0	
Progression Factor		1.00						0.27	0.25		1.00	
Incremental Delay, d2		5.9						1.4	1.1		1.1	
Delay (s)		30.0						8.3	7.3		20.1	
Level of Service		C						Α.	A		C	
Approach Delay (s)		30.0			0.0			7.8	_ ^		20.1	
Approach LOS		C			Α.			A			C	
		ŭ			_^			_^				
Intersection Summary	D - 1		00.0		ION C.							
HCM Average Control I			23.0	H	ICM Le	vel of S	ervice		С			
HCM Volume to Capao		0	0.89		_ ,,							
Actuated Cycle Length			100.0		Sum of lost time (s) ICU Level of Service				8.0			
Intersection Capacity U		on!	95.6%		CU Lev	elofSe	rvice		E			
 Critical Lane Group)											

FUTURE (2024) NO BUILD Scenario PM-Peak Hour – Signal Timing Plans

Timings 10: 7th & Garfield						FUTURE NO BUILD (2024) 2/25/2005
To. Till a Galliola	→	t	^	\	1	
Lane Group	EBT	NBT	NBR	SBL	SBT	
Lane Configurations	4im-	1+	ř		đ†	
Volume (vph)	2045	362	720	35	380	
Turn Type			Perm	Perm		
Protected Phases	2	8			4	
Permitted Phases			8	4		
Detector Phases	2	8	8	4	4	
Minimum Initial (s)	10.0	3.0	3.0	3.0	3.0	
Minimum Split(s)	22.0	29.0	29.0	29.0	29.0	
Total Split (s)	52.0	48.0	48.0	48.0	48.0	
Total Split (%)	52%	48 %	48%	48%	48%	
Maximum Green (s)	48.0	44.0	44.0	44.0	44.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	2.0	2.0	2.0	2.0	
Minimum Gap (s)	3.0	2.0	2.0	2.0	2.0	
Time Before Reduce (s) 0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	
Recall Mode	Max	Max	Max	Max	Max	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)		0	0	0	0	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length	n: 100					
Offset: 8 (8%), Referen		phase 2	2:EBTL	. Start c	of Yello	W
Natural Cycle: 70						
Control Type: Pretime	d					
Splits and Phases: 1	10: 7th 8	& Gartis	ald			
·	o. rui	a vaiii	-14	þi		
						
52s				4B:	3	
				1	a8	
				48:		

2/25/2005

FUTURE NO BUILD (2024)

3

8

3

1

5

HCM Signalized Intersection Capacity Analysis

2

3

6

3

2

2: 7th & Chambers

Confl. Peds. (#/hr)

Confl. Bikes (#/hr)

FUTURE (2024) NO BUILD Scenario PM-Peak Hour – Signal Timing Plans

Movement **EBL** EBT EBR WBL WBR NBL NBT NBR SBL SBT SBR Lane Configurations 41III 44 1900 1900 1900 1900 1900 1900 1900 1900 1900 Ideal Flow (vphpl) 1900 1900 1900 4.0 4.0 Total Lost time (s) 4.0 4.0 Lane Util. Factor 0.86 0.950.97 1.00 Frpb, ped/bikes 1.00 0.99 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 Frt 1.00 0.971.00 1.00 Fit Protected 1.00 1.00 0.951.00 Satd. Flow (prot) 6177 3216 3433 1827 FIt Permitted 1.00 1.00 0.121.00 Satd. Flow (perm) 6177 3216 425 1827 Volume (vph) 179 2590 85 708 213 421 667 0 0 0 0 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.920.92 0.92 Adj. Flow (vph) 195 2815 92 0 0 770 232 458 725 0 Lane Group Flow (vph) 0 3102 0 0 0 0 0 1002 0 458 725 0

4% 5% 4% 2% 2% 2% 2% 8% 7% 4% 2% Heavy Vehicles (%) 2% Perm Turn Type pm+pt Protected Phases 2 4 8 Permitted Phases 2 4 49.0 Actuated Green, G (s) 30.0 43.0 43.0 Effective Green, g (s) 49.0 30.0 43.0 43.0 0.49 Actuated g/C Ratio 0.30 0.43 0.43 Clearance Time (s) 4.0 4.0 4.0 4.0 2.0 2.0 Vehicle Extension (s) 3.0 2.0 965 453 786 Lane Grp Cap (vph) 3027 v/s Ratio Prot 0.31 0.09 60.40 w/s Ratio Permi 0.50 c0.34 w/o Ratio 1.02 1.04 1.01 0.92 35.0 Uniform Delay, d1 25.5 40.0 26.9 Progression Factor 0.581.01 1.00 1.00 Incremental Delay, d2 18.2 38.0 45.1 16.0 85.1 42.9 32.9 73.3 Delay(s)Level of Service С Ε F D 73.3 Approach Delay (s) 32.9 0.0 59.2 Approach LOS Ε Е

Intersection Summary

HCM Average Control Delay 46.5 HCM Level of Service D

HCM Volume to Capacity ratio 1.01

Actuated Cycle Length (s) 100.0 Sum of lost time (s) 8.0

Intersection Capacity Utilization 98.8% ICU Level of Service E

Critical Lane Group

Timings FUTURE NO BUILD (2024) 2/25/2005 2: 7th & Chambers Lane Group EBT NBT SBT 4iii 11 PΓ Lane Configurations Volume (vph) 2590 708 421 667 Turn Type pm+pt 8 Protected Phases 7 Permitted Phases 4 7 Detector Phases 8 4 Minimum Initial (s) 10.0 3.0 5.0 3.0 Minimum Split (s) 29.0 22.0 9.0 22.0 Total Split (s) 53.0 34.0 13.0 47.0 Total Split (%) 53% 34% 47% 13% Maximum Green (s) 49.0 30.0 9.0 43.0 4.0 4.0 4.0 4.0 Yellow Time (s) All-Red Time (s) 0.0 0.0 0.0 0.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 2.0 2.0 2.0 3.0 2.0 Minimum Gap (s) 3.0 2.0 2.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 Recall Mode Max None None Coord Walk Time (s) 7.0 6.0 6.0 Flash Dont Walk (s) 18.0 12.0 12.0 Pedestrian Calls (#/hr) 0 0 0 Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 27 (27%), Referenced to phase 2:EBTL, Start of Yellow Natural Cycle: 100 Control Type: Actuated-Coordinated Splits and Phases: 2: 7th & Chambers **→** ₀2

HCM Signalized Intersection Capacity Analysis 1: 7th & Polk

c Critical Lane Group

FUTURE NO BUILD (2024) 2/25/2005

	٠	→	\rightarrow	•	•	•	4	t	*	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		diffe						+	T.	T ₁	+	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0						4.0	4.0	4.0	4.0	
Lane Util. Factor		0.86						1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00						1.00	0.99	1.00	1.00	
Flpb, ped/bikes		1.00						1.00	1.00	1.00	1.00	
Frt		1.00						1.00	0.85	1.00	1.00	
Fit Protected		1.00						1.00	1.00	0.95	1.00	
Satd. Flow (prot)		6383						1863	1562	1803	1863	
FIt Permitted		1.00						1.00	1.00	0.61	1.00	
Satd. Flow (perm)		6383						1863	1562	1154	1863	
Volume (vph)	32	3095	59	0	0	0	0	125	100	46	160	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	3364	64	0	0	0	0	136	109	50	174	0
Lane Group Flow (vph)		3463	0	0	0	0	0	136	109	50	174	0
Confl. Peds. (#/hr)	4		11	11		4	6		1	1		6
Confl. Bikes (#/hr)			10			10						2
Heavy Vehioles (%)	0%	2%	0%	2%	2%	2%	2%	2%	2%	0%	2%	2%
Turn Type	Perm								Perm	Perm		
Protected Phases		2						8			4	
Permitted Phases	2								8	4		
Actuated Green, G (s)		68.0						24.0	24.0	24.0	24.0	
Effective Green, g (s)		68.0						24.0	24.0	24.0	24.0	
Actuated g/C Ratio		0.68						0.24	0.24	0.24	0.24	
Clearance Time (s)		4.0						4.0	4.0	4.0	4.0	
Vehicle Extension (s)		3.0						2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)		4340						447	375	277	447	
v/s Ratio Prot								0.07			60.09	
v/s Ratio Perm		0.54							0.07	0.04		
w/c Ratio		0.80						0.30	0.29	0.18	0.39	
Uniform Delay, d1		11.2						31.2	31.0	30.2	31.9	
Progression Factor		0.17						1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.1						1.8	2.0	0.1	0.2	
Delay (s)		2.0						32.9	33.0	30.3	32.1	
Level of Service		A						С	С	С	С	
Approach Delay (s)		2.0			0.0			32.9			31.7	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM Average Control I			5.7	H	ICM Le	vel of S	ervice		Α			
HCM Volume to Capac		0	0.69									
Actuated Cycle Length			100.0			lost tim			8.0			
Intersection Capacity U	Itilizati	on :	83.7%	li li	CU Lev	el of Se	rvice		D			

HCM Signalized Intersection Capacity Analysis
13: 11th & Garfield

FUTURE NO BUILD (2024) 2/28/2005

	۶	-	\rightarrow	•	•	4	4	Ť	*	>	ţ	∢′
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Jak.		Ţ	ď	1 1			đ†			44	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	*0.83		1.00	1.00	*0.89			*0.74			0.95	1.00
Frpb, ped/bikes	1.00		0.98	1.00	1.00			1.00			1.00	1.00
Flpb, ped/bikes	1.00		1.00	0.99	1.00			1.00			1.00	1.00
Frt	1.00		0.85	1.00	0.99			1.00			1.00	0.85
FIt Protected	0.95		1.00	0.95	1.00			0.99			1.00	1.00
Satd. Flow (prot)	2938		1548	1758	3264			2775			3471	1599
FIt Permitted	0.95		1.00	0.95	1.00			0.69			1.00	1.00
Satd. Flow (perm)	2938	_	1548	1758	3264			1938			3471	1599
Volume (vph)	1183	. 0	539	132	1277	110	31	89	0	. 0	360	341
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1286	0	586	143	1388	120	34	97	0	0	391	371
Lane Group Flow (vph)		0	586	143	1508	0	0	131	0	0	391	371
Confl. Peds. (#/hr)	3		5	5		3	2					2
Confl. Bikes (#/hr)	2%	2%	5 2%	200	2%	5 5%	0.00	0%	2 200	2%	4%	400
Heavy Vehicles (%)				2%	∠70	0.89	0%	0.40	2%	∠ 70	479	1%
	sustom 5	(custom	Perm	6		Perm	8			4	pt+ov 45
Protected Phases Permitted Phases	5		5	6	0		8	ŏ			4	45
Actuated Green, G (s)	33.0		33.0	40.2	40.2		°	14.8			14.8	51.8
Effective Green, g (s)	33.0		33.0	40.2	40.2			14.8			14.8	51.8
Actuated g/C Ratio	0.33		0.33	0.40	0.40			0.15			0.15	0.52
Clearance Time (s)	4.0		4.0	4.0	4.0			4.0			4.0	0.02
Vehicle Extension (s)	1.5		1.5	1.5	1.5			1.5			1.5	
Lane Grp Cap (vph)	970		511	707	1312			287			514	828
w/s Ratio Prot	ο0.44		011	707	o0.46			207			σ0.11	0.23
v/s Ratio Perm	ω.π		0.38	0.08	00.40			0.07			ω	0.20
w/c Ratio	1.33		1.15	0.20	1.15			0.48			0.76	0.45
Uniform Delay, d1	33.5		33.5	19.5	29.9			38.9			40.9	15.1
Progression Factor	1.00		1.00	0.44	0.42			1.00			1.08	1.23
Incremental Delay, d2			87.0	0.1	68.2			0.4			4.6	0.1
Delay (s)	187.3		120.5	8.7	80.7			39.3			48.6	18.7
Level of Service	F		F	Α	F			D			D	В
Approach Delay (s)		166.4			74.5			39.3			34.0	
Approach LOS		F			E			D			С	
Intersection Summary												
HCM Average Control	Delay		105.4	H	ICM Le	vel of S	ervice		F			
HCM Volume to Capa	city ratio	0	1.15									
Actuated Cycle Length			100.0	8	Sum of	lost tim	e (s)		12.0			
Intersection Capacity U	Jtilizati:	on 1	00.1%	Į.	CU Lev	el of Se	rvice		F			
c - Critical Lane Group	Р											

Phasings FUTURE NO BUILD (2024) 2/28/2005 13: 11th & Garfield Lane Group EBL WBL WBT NBT SBT SBR Lane Configurations J. 14 đŧ 44 f Volume (vph) 1183 539 132 1277 31 89 360 341 Turn Type Perm custom custom Perm pt+ov Protected Phases 6 8 45 5 5 6 Permitted Phases 5 8 5 5 4 Detector Phases 6 45 2.0 2.0 2.0 2.0 Minimum Initial (s) 2.0 2.0 2.0 Minimum Split (s) 26.0 26.0 26.0 26.0 19.0 19.0 24.0 Total Split(s) 37.0 37.0 39.0 39.0 24.0 24.0 24.0 61.0 Total Split (%) 37% 37% 39% 39% 24% 24% 24% 61% Maximum Green (s) 33.0 0.88 35.0 35.0 20.0 20.0 20.0 4.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 All-Red Time (s) Lead/Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Minimum Gap (s) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Recall Mode None None Coord Coord None None None Walk Time (s) 7.0 7.0 7.0 7.0 5.0 5.0 5.0 Flash Dont Walk (s) 15.0 15.0 15.0 15.0 10.0 10.0 15.0 0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 80 (80%), Referenced to phase 2: and 6:WBTL, Start of Yellow Natural Cycle: 150 Control Type: Actuated-Coordinated Splits and Phases: 13: 11th & Garfield

HCM Signalized Intersection Capacity Analysis 12: 11th & Chambers

FUTURE NO BUILD (2024) 4/20/2005

	٠	→	~	•	←	•	4	Ť	*	>	ţ	∢/
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ď	- ++	f	ħ	•			15	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0	4.0			4.0	
Lane Util. Factor				1.00	*0.69	1.00	1.00	1.00			1.00	
Frpb, ped/bikes				1.00	1.00	0.97	1.00	1.00			0.99	
Flpb, ped/bikes				0.99	1.00	1.00	1.00	1.00			1.00	
Frt				1.00	1.00	0.85	1.00	1.00			0.97	
FIt Protected				0.95	1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)				1788	2571	1543	1805	1863			1829	
FIt Permitted				0.95	1.00	1.00	0.09	1.00			1.00	
Satd. Flow (perm)				1788	2571	1543	177	1863			1829	
Volume (vph)	0	0	0	241	1178	209	183	568	0	0	585	143
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	262	1280	227	199	617	0	0	636	155
Lane Group Flow (vph)	0	0	0	262	1280	227	199	617	0	0	791	0
Confl. Peds. (#/hr)	- 5		5	5		5	7		4	4		7
Confl. Bikes (#/hr)			7			8			8			4
Heavy Vehicles (%)	2%	2%	2%	0%	2%	2%	0%	2%	2%	2%	0%	3%
Turn Type				Perm		Perm	pm+pt					
Protected Phases					6		3	8			4	
Permitted Phases				6		6	8					
Actuated Green, G (s)				39.1	39.1	39.1	52.9	52.9			39.0	
Effective Green, g (s)				39.1	39.1	39.1	52.9	52.9			39.0	
Actuated g/C Ratio				0.39	0.39	0.39	0.53	0.53			0.39	
Clearance Time (s)				4.0	4.0	4.0	4.0	4.0			4.0	
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)				699	1005	603	255	986			713	
v/s Ratio Prot					c0.50		c0.08	0.33			c0.43	
v/s Ratio Perm				0.15		0.15	0.34					
w/c Ratio				0.37	1.27	0.38	0.78	0.63			1.11	
Uniform Delay, d1				21.7	30.4	21.7	45.6	16.6			30.5	
Progression Factor				1.00	1.00	1.00	0.74	1.23			0.32	
Incremental Delay, d2				1.5	131.0	1.8	10.7	0.9			57.0	
Delay (s)				23.3	161.4	23.5	44.6	21.4			66.7	
Level of Service				С	F	С	D	С			Е	
Approach Delay (s)		0.0			123.3			27.0			66.7	
Approach LOS		Α			F			С			Е	
Intersection Summary												
HCM Average Control I	Delay		86.8	I	HCM Le	vel of S	Service		F			
HCM Volume to Capac		0	1.15									
Actuated Cycle Length	(s)		100.0		Sum of	lost tim	e (s)		12.0			
Intersection Capacity U	tilizati	on !	99.5%	I	CU Lev	el of Se	ervice		Е			
c Critical Lane Group	1											

Plans

Timings FUTURE NO BUILD (2024)
12: 11th & Chambers 4/20/2005

12: 11th & Chambe	ers						4/20/2005
	•	•	•	4	Ť	ţ	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Configurations	T T	+ +	7	ሻ	+	1,	
Volume (vph)	241	1178	209	183	568	585	
Turn Type	Perm		Perm	pm+pt			
Protected Phases		6		3	8	4	
Permitted Phases	6		6	8			
Detector Phases	6	6	6	3	8	4	
Minimum Initial (s)	10.0	10.0	10.0	3.0	3.0	3.0	
Minimum Split (s)	20.0	20.0	20.0	7.0	20.0	20.0	
Total Split (s)	43.0	43.0	43.0	14.0	57.0	43.0	
Total Split (%)	43%	43%	43%	14%	57%	43%	
Maximum Green (s)	39.0	39.0	39.0	10.0	53.0	39.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag				Lead		Lag	
Lead-Lag Optimize?				Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Time Before Reduce	(s) 0.0	0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Recall Mode	Coord	Coord	Coord	None	None	None	
Walk Time (s)	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)) 0	0	0		0	0	
Intersection Summary	•						
Cycle Length: 100							
Actuated Cycle Lengt	h: 100						
Offset: 51 (51%), Refe		to phas	e 2: an	d 6:WB	TL. Sta	irt of Ye	ellow
Natural Cycle: 100							
Control Type: Actuate	d-Coore	dinated					
,,							
Splits and Phases:	12: 11tl	h & Cha	mbers				
			- K	a 3	↓ _	4	
			148	0.3	438	4	
44			- A		, iou		
¥ a6			7	2 8			
43s			57 s				

HCM Signalized Intersection Capacity Analysis 7: 13th & Chambers

FUTURE NO BUILD (2024) 4/20/2005

r. Tour & Chambers	,											12000
	۶	→	~	*	-	4	4	Ť	<i>></i>	\	ļ	₹
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4t	f					+	7	ሻ	+	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0					4.0	4.0	4.0	4.0	
Lane Util. Factor		0.95	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	0.96					1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
FIt Protected		1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		3568	1511					1863	1584	1805	1881	
FIt Permitted		1.00	1.00					1.00	1.00	0.22	1.00	
Satd. Flow (perm)		3568	1511					1863	1584	415	1881	
Volume (vph)	23	622	230	0	0	0	0	731	198	47	770	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	25	676	250	0	0	0	0	795	215	51	837	0
Lane Group Flow (vph)		701	250	0	0	ō	0	795	215	51	837	0
Confl. Peds. (#/hr)	6		5	5		6	4		2	2		4
Confl. Bikes (#/hr)	-		2	_		7	•		11	_		8
Heavy Vehicles (%)	0%	1%	3%	2%	2%	2%	0%	2%	0%	0%	1%	2%
Turn Type	Perm	1 10	Perm	- 17	- 17		- 0.10	2.17	Perm	Perm	1 10	
Protected Phases		2	1 61111					8		1 61111	4	
Permitted Phases	2	_	2					·	8	4	-	
Actuated Green, G (s)		29.0	29.0					63.0	63.0	63.0	63.0	
Effective Green, g (s)		29.0	29.0					63.0	63.0	63.0	63.0	
Actuated g/C Ratio		0.29	0.29					0.63	0.63	0.63	0.63	
Clearance Time (s)		4.0	4.0					4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)		1035	438					1174	998	261	1185	
v/s Ratio Prot		1000	700					0.43	990	201	σ0.44	
v/s Ratio Perm		d0.20	0.17					0.40	0.14	0.12	w	
v/c Ratio		0.68	0.57					0.68	0.22	0.20	0.71	
Uniform Delay, d1		31.4	30.2					11.9	7.9	7.8	12.3	
Progression Factor		0.82	0.47					1.00	1.00	0.65	1.09	
Incremental Delay, d2		3.2	4.8					3.1	0.5	0.7	1.6	
Delay (s)		29.0	19.0					15.1	8.4	5.8	15.0	
Level of Service		20.0	18.0					В	Α.	Α.	В.	
Approach Delay (s)		26.4	- 0		0.0			13.7	_ ^	_ ^	14.5	
Approach LOS		20.4 C			Α.			В			14.5	
								-			-	
Intersection Summary												
HCM Average Control I			18.2	H	ICM Le	vel of S	ervice		В			
	HCM Volume to Capacity ratio 0.70											
Cycle Length (s)			100.0			lost tim	/		8.0			
Intersection Capacity U		on	73.5%	I	CU Lev	el of Se	rvice		С			
 Critical Lane Group)											

FUTURE NO BUILD (2024) Timings 4/20/2005 7: 13th & Chambers t EBT EBR NBT SBL Lane Group NBR SBT Lane Configurations đŧ Volume (vph) 622 230 731 198 47 770 Turn Type Perm Perm Perm Protected Phases 8 4 2 8 4 Permitted Phases Detector Phases 2 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split(s) 22.0 22.0 22.0 22.0 22.0 22.0 Total Split(s) 33.0 33.0 67.0 67.0 67.0 67.0 Total Split (%) 33% 33% 67% 67% 67% 67% Maximum Green (s) 29.0 29.0 63.0 63.0 63.0 63.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 0.0 0.0 0.0 0.0 0.0 0.0 Lead/Lag Lead-Lag Optimize? 3.0 3.0 3.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 Recall Mode Max Max Max Max Max. Max 7.0 7.0 Walk Time (s) 7.0 7.0 7.0 7.0 11.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 Intersection Summary Cycle Length: 100 Offset: 3 (3%), Referenced to phase 2:EBTL, Start of Yellow Natural Cycle: 60 Control Type: Pretimed Splits and Phases: 7: 13th & Chambers Pog.

	٠	→	\sim	•	•	•	4	t	<i>></i>	\	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		41	f					+	7	ካ	+	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0					4.0	4.0	4.0	4.0	
Lane Util. Factor		0.95	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	0.96					1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
FIt Protected		1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		3568	1511					1863	1584	1805	1881	
FIt Permitted		1.00	1.00					1.00	1.00	0.22	1.00	
Satd. Flow (perm)		3568	1511					1863	1584	415	1881	
Volume (vph)	23	622	230	0	0	0	0	731	198	47	770	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	25	676	250	0	0	0	0	795	215	51	837	0
Lane Group Flow (vph)	0	701	250	0	0	0	0	795	215	51	837	C
Confl. Peds. (#/hr)	- 6		5	5		6	4		2	2		4
Confl. Bikes (#/hr)			2			7			11			8
Heavy Vehicles (%)	0%	1 %	3%	2%	2%	2%	0%	2%	0%	0%	1%	2%
	Perm		Perm						Perm	Perm		
Protected Phases		2						8			4	
Permitted Phases	2		2						8	4		
Actuated Green, G (s)		29.0	29.0					63.0	63.0	63.0	63.0	
Effective Green, g (s)		29.0	29.0					63.0	63.0	63.0	63.0	
Actuated g/C Ratio		0.29	0.29					0.63	0.63	0.63	0.63	
Clearance Time (s)		4.0	4.0					4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)		1035	438					1174	998	261	1185	
v/s Ratio Prot								0.43			c0.44	
v/s Ratio Perm		0.20	0.17						0.14	0.12		
v/c Ratio		0.68	0.57					0.68	0.22	0.20	0.71	
Uniform Delay, d1		31.4	30.2					11.9	7.9	7.8	12.3	
Progression Factor		0.82	0.47					1.00	1.00	0.66	0.99	
Inoremental Delay, d2		3.2	4.8					3.1	0.5	0.2	0.3	
Delay (s)		29.0	19.1					15.1	8.4	5.3	12.5	
Level of Service		С	В					В	Α	A	В	
Approach Delay (s)		26.4			0.0			13.7			12.1	
Approach LOS		С			A			В			В	
Intersection Summary												
HCM Average Control D	elav)		17.4	Н	ICM Le	vel of S	ervice		В			
HCM Volume to Capac		0	0.70									
Actuated Cycle Length			100.0	9	ium of l	lost tim	e (s)		8.0			
Intersection Capacity U			73.5%		CU Levi				C			

HCS2000: Unsignalized Intersections Release 4.1 ____TWO-WAY STOP CONTROL SUMMARY_ Intersection Orientation: NS Study period (hrs): 1.00 __Vehicle Volumes and Adjustments_ Major Street: Approach Northbound Southbound 2 5 6 Movement 1 Т Т R L L R 903 264 Volume Peak-Hour Factor, PHF 0.92 0.92 0.92 Hourly Flow Rate, HFR 981 286 92 Percent Heavy Vehicles 2 Median Type Undivided RT Channelized? Lanes 0 1 1 Configuration L TR Upstream Signal? No No Minor Street: Approach Westbound Eastbound Movement 8 10 11 12 L Т R Т R Volume 152 26 3 Peak Hour Factor, PHF 0.92 0.92 0.92 0.92 Hourly Flow Rate, HFR 28 165 3 3 Percent Heavy Vehicles 2 2 0 0 Percent Grade (%) Median Storage Flared Approach: Exists? Storage RT Channelized? No Lanes 1 1 Configuration LTR _Delay, Queue Length, and Level of Service_ Eastbound Approach NB SB Westbound 4 7 10 Movement 1 8 12 11 Lane Config L L LTR v (vph) 981 165 C(m) (vph) 1617 15 704 0.61 2.07 0.00 v/c 95% queue length 4.56 11.91 0.01 Control Delay 10.6 10.1 LOS В F F В Approach Delay

F

Approach LOS

	TW0	YAW-C	STOP	CONTR	OL SUM	MAR	Y			
Intersection Orie	entation:	EW			St	udy	perio	od (hrs)	1.0	0
	Veh	icle V	/olume	es and	Adjus	tmei	nts			
Major Street: Ap			Eastk			001		stbound		
	vement	1	2		3	1	4	5	6	
	, v Ciliciic	L	ī		R		L	T	R	
Volume			g	003						
Peak-Hour Factor,	PHF		C	.92						
Hourly Flow Rate,	HFR		9	81						
Percent Heavy Veh			_	-						
Median Type		ivideo	i							
RT Channelized?										
Lanes			1							
Configuration			Γ							
Upstream Signal?			N	Io				No		
Minor Street: An	proach		North	bound			Sc	uthbound	 i	
-	vement	7	8		9	1	10	11	12	
110	Velliene	, L	ī		R	-	L	T	R	
		ш		•	10	1	ш	1		
Volume			1	.52	25		29			
Peak Hour Factor,	PHF		C	0.92	0.92		0.92			
Hourly Flow Rate,	HFR		1	.65	27		31			
Percent Heavy Veh	nicles		2	2	2		2			
Percent Grade (%)			C)				0		
Median Storage										
Flared Approach:										
RT Channelized?	Storage				NT o					
			-	-	No		-			
Lanes			1				1_			
Configuration			Ί	R			L	1		
	_Delay, (Queue	Lengt	h, an	ıd Leve	1 oi	f Serv	rice		
Approach	EB	WB		Nort	hbound				nbound	
Movement	1	4	7		8	9	ļ		L1	12
Lane Config					Т	R		L		
v (vph)					165	27		31		
C(m) (vph)					247	300	0	82		
v/c					0.67	0.0	09	0.38		
95% queue length					5.34	0.3	30	1.71		
Control Delay					47.6	18	. 2	75.0		
LOS					E	С		F		
Approach Delay					43.5			-	75.0	
Approach LOS					E				F	

APPENDIX C

Obstacles in Sidewalk Width

Obstacles Located in Sidewalk in Vicinity of Study Intersections

Intercetion		Co	rner	
Intersection	Northwest	Northeast	Southeast	Southwest
7 th at Garfield				
	Pedestrian push- button pole			
7 th at Chambers				
		Signal shaft	Signal shaft	
7 th at Polk				
	Controller cabinet	Signal shaft	Signal shaft	Signal shaft
		Pedestrian push- button pole	Pedestrian push- button pole	Pedestrian push- button pole
			Sign post	
11 th at Garfield				
	Signal shaft	Signal shaft	Signal shaft	Signal shaft
		Pedestrian push- button pole	2 Pedestrian push- button poles	
			Sign post	
			Utility pole	
			Signal cabinet	
11 th at Chambers				
	Signal shaft	Signal shaft	Pedestrian push- button pole	Utility pole
		Fire hydrant		Controller cabinet
13 th at Garfield				
	Utility pole	Sign Post	Sign post	
13 th at Chambers				
	Signal shaft	Signal shaft		Signal shaft

Appendix D

Transit Data

Chambers Node Transit Summary

Bus stop #	Location	Existing Conditions	Current LTD Facility	Dir*	Weekday Frequency of Sentce Route (minutes betw trips)	Avg. Wkday Boardings +			Proposed LTD Improvement
972	S/S of 8th E of Garfield	6' sidewalk	small Branch shelter	ES	41 (30), 43 (30)	62	23	None	replace with WBGS type shelter
973	N/S of 8th E of Garfield	8' sidewalk	sign and seat	08	41 (:30)	14	44	None	
974	S/S of 8th E of Chambers	5' sidewalk, 8' setback	sign and seat	ES	41 (30), 43 (30)	21	8	None	
975	N/S of 8th W of Chambers	8' sidewalk	sign only	OB	41 (:30)	3	11	None	
976	S/S of 8th W of Almaden	5' sidewalk, 8' setback	sign and seat	ES	41 (30), 43 (30)	22	7	None	
977	N/S of 8th W of Almanden	5' sidewalk, 5' setback	sign only	OB	41 (30)	3	16	None	
978	N/S of 8th W of Polk	5' sidewalk, 5' setback	sign only	OB	41 (:30)	6	32	None	
979	S/S of 8th E of Polk	5' sidewalk, 8' setback	sign and seat	ES	41 (30), 43 (30)	38	13	None	monitor boardings for future new shelter
992	N/S of 11th W of Polk	5' sidewalk, 8' setback	sign and seat	08	30 (30), 32 (limited), 43 (30), 76 (30), 93 (limited)	14	34	None	
993	N/S of 11th W of Almaden	5' sidewalk, 8' setback	sign only	08	30 (30), 32 (limited), 43 (30), 76 (30), 93 (limited)	10	29	None	
994	N/S of 11th W of Chambers	10' sidewalk	sign and seat	OB	30 (:30), 32 (limited), 43 (:30), 76 (:30), 93 (limited)	13	34	None	
995	N/S of 11th W of Grant	6' sidewalk	sign and seat	OB	30 (:30), 32 (limited), 43 (:30), 76 (:30), 93 (limited)	15	34	None	
1031	S/S of 13th E of Polk	5' sidewalk, 10' setback	WBGS shelter	ES	30 (:30), 32 (limited), 76UO (:30), 93 & 430 (limited)	45	8	None	
1029	S/S of 13th E of Chambers	4' sidewalk, 10' setback	WBGS shelter	ES	30 (30), 32 (limited), 76UO (30), 93 & 430 (limited)	40	16	Increase s/w width	
1028	S/S of 13th E of Hayes	4' sidewalk, 10' setback	Branch shelter	ES	30 (30), 32 (limited), 76UO (30), 93 & 430 (limited)	32	6	Increase s/w width	replace with WBGS type shelter
1027	W/S of Garfield S of 12th	5' sidewalk, 5' setback	sign and seat	ES	30 (30), 32 (limited), 76UO (30), 93 (limited)	7	9	None	

^{*} OB = outbound (westbound)

ES = Eugene Station is terminal point UO = UO is terminal point

⁺ APC counts # ADA ramp access at all nearby intersections is adequate from Feb 2005

APPENDIX E

COLLISION DATA

1998 - 2002

COLLISION SUMMARY: 1998 - 2002

Name of the last o	-			18				WB					40	-			EB		Total	Night	Ped	Bke	injury	Fatality	Property Damage Only
N. F. Ave. Herr SS & Poix St.	100	- 63	-5	-53	584	-	12	5.3	2 06	- 10	4.6	45	-22	Cent	BA.	CT I	5,23	Otto	Total		-			-	Desirely (Ma)
V. J. Ave. Perk St. S. Pook St.	-	H	÷	H	1.0	+	н	H		٠,	1	÷	H									1	-		0
200 200 200 199						+				1	4								1			1	1		- 4
200	ol -					-								DA.	1			PC	1				-		
199	9												1	-	3				6	2	+				1
100	0											ь					1 1		2	. 1			1		1
Total			4							1		4	1	. 1	3				12	3	7	1			
A STATE OF THE PARTY OF THE PAR	-		-			-				4	4	-	•		100		11		10000	Care	300	1000	ACCUSED THE	CONTRACTOR OF THE PERSON OF TH	-01
W. I* Ave Fire 99 5 Chambers St.	L					-	ш			4	4	1							-						
200 200 200	3	1	13	4		-	н	-	-	-		13	13.		3.			-	17			2	- 6		12 0 0
200	1	4	12			-	÷		-		4	1				1	14		10		_	-	1		- 9
200	1	-8	44			+-	. 1			+	4	1	+		2	-	143		.11	2	-	-	6	_	14
199	1	۳	+4			+1	н			+	+		-		1		1 2		17				3		- 7
Total		7	-			17				1		7	7			1	9 7		62			1	19		44
A Commission of the Commission	17			H	_	T		2		T	_		11		1		33		20/20	72.00	200	teans.		(Carrier of	
W. 7th Ave Hey 99 f. Gartino St										Т					0.1				1000						
200	2		17					1			1	3	1.1		+		3 5		360	7 2			. 8		16 -
200			. 2	1	90					-10	L.	. 3	1.2				2 4		37	. 2		1.	- 6		12
200						-	н			4		13	12		-	1.	1.			- 1			2		
199		- 2	13	10		+	н			-	4	-8	2		1		. 3		13	-2-	1		1		-
Total				+			100	2.1				1	7		1	-			47	1	.9		12		44
Fotal		-4		N N		+5	4	+		+	-		12		3	-	29		-	-	-	-	22		
Cartiels St. Proy. 128 S. W. 11 th Ave. Play 120 200		T	7	-			т		T			1	-				-	11							
300	9		1			1		3			1	1							7				1		
200	9		10					2		1	ď,	13		DA			1 1								
300			2					1		-				177		7							2		- 2
100				1		12	2	1				1					1		. 11	.3			5		- 9
199		Ш	11	1		_	ш	3		4	_	Jä.	1		1		1.1		11				3		- 8
Total	9					7	12	88 1		4			_	1		1	1 7		43	1			- 11		14
	+	_	_		_	+	_	33	_	+	-	_	!!_	_	-	_	71	_			_	-	-		
Garfield St.Phy. 126 and W. 13 th Ave.						-	н			4	4	4					-								
200 200 200	3			11.		-	н			-	+	+			-		-				-	-	-		
200	3		4Α			-			-						3.				2	1		-	2		-
200						+			roo	٧.	+,						-			-			-		- 1
199			17			+				+	+1				Н										
Total			1	7		1			,	1									- 7	7			1		
7,0000	+	_	-	3	_	+*	-	-		7	-	-	ř	_	-		,		lating.	1000	٠.		io inc		10
W. Ti [®] Ave. and Chambers St.	т			1		т				т					П		77								
200	2					- 1		1			Т	1			1								2		- 6
200	1		2					1						BANK					1	15.			2		4
200			14		FQ. 8	H 2	1	3.3			1							PC	- 63	-4		3	.4		16
199			18	2		-14	Ŀ	2 1	P0	4	4	13	3.8		ш		4		- 54	- 3		1	- 5		
_199		+		-	-	+-	+	-	-	+	+	++	-		-	-		-	11	-	-	-	- 5		- 6
Total	12		- 4		- 1	14			- 7	+1		11		- 1	1			,	33				**		. 36
W 13 th Are and Champers St	+			*		+		- 22		+	+	7	11			_	1				-			_	
TV 15. Are and Champes of	4		1			-				-		١.								-	-		-		- 4
200			18									1				- 1	1						-t-		
200 200	6		+2	7		+				1							10	FOOLE		2			2		- 0
199	9 1	۲		T.			т				1	T^					1	1	1	-					3
199												1			9		- 2		4	1			4		3
Fotali	1		- 3	2				8.4		- 1		1			1				21				-		37
			-									111	1			11	19		EGG!	10.31	100	I AT		No.	A SE
70. 00 to 100	-	_	-	10			_	WD		-	_		40				63				20	-		201-100	Property
Annual Totals	100	1.1	1 100	100	Other	100	1.7	DE 19	8. (38-	e p		E IN	198	Cities	50	17.1	16 44	Other	Total	Night	Fed	Bike	injury	Fatality	Property Damage Only
	2 3	1	-	17	. 0	11	0			1	1 2				4	8 1	2 6	-	59	- 3	-	3	20	0	36
	9 3				1			1.1			0			7	4		8 3		53	6		2	11	. 0	42
300	0 1	1	1.4		2	12		7		1					2		3 3	3	43	9	-	3	15	0	32
100	0 3		- 6	1.0	. 1	19		1 1			1				8		N A	10	100	11	2		73	0	44
199	9 4		7	2	3		10	111	1 0		Ш	II B	1		8		1.0	-	41	1	. 1	1	1/	0	. 36
Total	l N				-	1		20 0					10	1	29		9 13	1	27.5	.31	2	16	81		187
		_	_	54		-	_	41		-	_	_	14	_	-	_	102	_	1						
	10		-																						
		ger	here:	54						-															
			Mys.																						
				re Cojec	i i																				
					io Nort D	ide	طرط	refue	NO.																
				İψ		-																			
					ims Pa	est!	lar.																		

APPENDIX F

FUTURE (2024) MITIGATION
Scenario Data

HCM Signalized Intersection Capacity Analysis FUTURE (2024) Pol 10: 7th & Garfield

FUTURE (2024) Policy/Context Sensitive 4/20/2005

To. Tall & Callicia												
	۶	-	~	*	-	•	4	Ť	-	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		điii∌						•	77		đ†	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0						4.0	4.0		4.0	
Lane Util. Factor		0.86						1.00	0.88		0.95	
Frpb, ped/bikes		1.00						1.00	0.99		1.00	
Flpb, ped/bikes		1.00						1.00	1.00		1.00	
Frt		0.98						1.00	0.85		1.00	
FIt Protected		1.00						1.00	1.00		1.00	
Satd. Flow (prot)		6215						1881	2775		3530	
FIt Permitted		1.00						1.00	1.00		0.88	
Satd. Flow (perm)		6215						1881	2775		3102	
Volume (vph)	139	2045	337	0	0	0	0	362	720	35	380	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	151	2223	366	0	0	0	0	393	783	38	413	0
Lane Group Flow (vph)		2740	0	0	0	0	0	393	783	0	451	0
Confl. Peds. (#/hr)	2		2						1			
Confl. Bikes (#/hr)			3						1			2
Heavy Vehicles (%)	2%	2%	6%	2%	2%	2%	2%	1%	1%	0%	2%	2%
	Perm	_						_	Perm	Perm		
Protected Phases	_	2						8			4	
Permitted Phases	2	E0 E						00 F	8	4	00.5	
Actuated Green, G (s)		52.5						38.5	38.5		38.5	
Effective Green, g (s)		53.0 0.53						39.0	39.0		39.0	
Actuated g/C Ratio		4.5						4.5	4.5		0.39 4.5	
Clearance Time (s)												
Lane Grp Cap (vph)		3294						734	1082		1210	
v/s Ratio Prot v/s Ratio Perm		c0.44						0.21	c0.28		0.15	
ws Ratio Ferm		0.83						0.54	0.72		0.15	
Uniform Delay, d1		19.8						23.5	25.9		21.8	
Progression Factor		1.00						0.37	0.34		1.00	
Incremental Delay, d2		2.6						0.3	0.34		0.9	
Delay (s)		22.4						8.9	9.2		22.7	
Level of Service		C						A.	Α.		C	
Approach Delay (s)		22.4			0.0			9.1	_ ^		22.7	
Approach LOS		C			A			A			C	
Intersection Summary												
HCM Average Control [Delay		18.8	F	ICM Le	vel of S	ervice		В			
HCM Volume to Capac		0	0.79									
Cycle Length (s)			100.0	9	Sum of	lost tim	e (s)		8.0			
Intersection Capacity U	tilizati	on :	90.7%		CU Lev				E			
c - Critical Lane Group												

FUTURE (2024) POLICY and CONTEXT SENSITIVE Scenarios

PM-Peak Hour - Signal Timing Plans Timings FUTURE (2024) Policy/Context Sensitive

10: 7th & Garfield						4/20/2005
	-	Ť	*	>	ţ	
Lane Group	EBT	NBT	NBR	SBL	SBT	
Lane Configurations	đitt⊨	+	1919		đ†	
Volume (vph)	2045	362	720	35	380	
Turn Type			Perm	Perm		
Protected Phases	2	8			4	
Permitted Phases			8	4		
Detector Phases	2	8	8	4	4	
Minimum Initial (s)	10.0	3.0	3.0	3.0	3.0	
Minimum Split(s)	57.0	43.0	43.0	43.0	43.0	
Total Split (s)	57.0	43.0	43.0	43.0	43.0	
Total Split (%)	57%	43%	43%	43%	43%	
Maximum Green (s)	52.5	38.5	38.5	38.5	38.5	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	2.0	2.0	2.0	2.0	
Minimum Gap (s)	3.0	2.0	2.0	2.0	2.0	
Time Before Reduce (s) 0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	
Recall Mode	Max	Max	Max	Max	Max	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Intersection Summary						
Cycle Length: 100						
Offset: 7.5 (8%), Refer	enced t	o phas	e 2:EBT	L, Star	t of Yel	low
Natural Cycle: 100						
Control Type: Pretime	d					
Splits and Phases: 1	10: 7th 8	& Garfi	eld			
- 4 ₀2					₽ ⊩	4
57 s					43 s	
					↑ a	8
					43s	

HCM Signalized Intersection Capacity Analysis 2: 7th & Chambers

FUTURE (2024) Policy 4/20/2005

	۶	→	*	€	+	4	4	Ť	<i>></i>	>	ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	mı	f					+ +	f	A L	44	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	0.86	1.00					0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.97					1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00					1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
FIt Protected	0.95	1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1732	6225	1507					3343	1472	3433	3471	
FIt Permitted	0.95	1.00	1.00					1.00	1.00	0.15	1.00	
Satd. Flow (perm)	1732	6225	1507	_	_	_	_	3343	1472	535	3471	_
Volume (vph)	179	2590	85	0	0	0	0	708	213	421	667	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	195	2815	92	0	0	0	0	770	232	458	725	0
Lane Group Flow (vph)		2815	92	0	0	0	0	770	232	458	725	0
Confl. Peds. (#/hr)	2		3	3		2	1		3	3		1
Confl. Bikes (#/hr)	400	EM	6	0.00	0.00	0.00	0.00	0.00	8	0.00	201	5
Heavy Vehicles (%)	4%	5%	4%	2%	2%	2%	2%	8%	7%	2%	4%	2%
Turn Type	Perm		Perm						Perm	pm+pt		
Protected Phases	_	2	2					8		7	4	
Permitted Phases	54.5	54.5	54.5					22.5	22.5	4 36.5	36.5	
Actuated Green, G (s) Effective Green, g (s)	55.0	55.0	55.0					23.0	23.0	37.0	37.0	
Actuated g/C Ratio	0.55	0.55	0.55					0.23	0.23	0.37	0.37	
Clearance Time (s)	4.5	4.5	4.5					4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0	3.0					2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	953	3424	829					769	339	488	1284	
v/s Ratio Prot	900	d0.45	028					d0.23	338	60.09	0.21	
v/s Ratio Perm	0.11	ωω	0.06					W.23	0.16	0.25	0.21	
w/c Ratio	0.20	0.82	0.11					1.00	0.68	0.94	0.56	
Uniform Delay, d1	11.4	18.5	10.8					38.5	35.2	39.3	25.1	
Progression Factor	0.66	0.52	0.44					0.90	0.88	1.00	1.00	
Incremental Delay, d2	0.2	1.1	0.1					31.2	9.8	25.6	0.3	
Delay (s)	7.7	10.7	4.9					65.9	40.7	64.9	25.4	
Level of Service	Α	В	Α					Е	D	Е	С	
Approach Delay (s)		10.4			0.0			60.1			40.7	
Approach LOS		В			Α			Е			D	
Intersection Summary												
HCM Average Control	Delay		26.6	H	ICM Le	vel of S	ervice		С			
HCM Volume to Capac		0	0.85									
Actuated Cycle Length	(s)		100.0	S	ium of	lost tim	e (s)		8.0			
Intersection Capacity U	Itilizati	on	85.1%	10	CU Lev	el of Se	rvice		D			
 Critical Lane Group 												

FUTURE (2024) Policy Timings 2: 7th & Chambers 4/20/2005 NBT Lane Group EBT EBR 44 Lane Configurations ٩ Шţ Volume (vph) 179 2590 85 708 213 421 667 Turn Type Perm Perm Perm pm+pt Protected Phases Permitted Phases 2 2 8 4 Detector Phases 2 2 2 8 8 7 Minimum Initial (s) 10.0 10.0 10.0 3.0 3.0 3.0 5.0 Minimum Split(s) 59.0 59.0 59.0 26.0 26.0 14.0 40.0 Total Split (s) 59.0 59.0 59.0 27.0 27.0 14.0 41.0 59% Total Split (%) 59% 59% 27% 27% 14% 41% 54.5 Maximum Green (s) 54.5 54.5 22.5 22.5 9.5 36.5 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Lead/Lag Lead Lead Lag Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 2.0 2.0 2.0 2.0 Minimum Gap (s) 3.0 3.0 3.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Recall Mode Max Max None None Coord Coord Coord Walk Time (s) 7.0 7.0 7.0 6.0 6.0 6.0 Flash Dont Walk (s) 21.0 21.0 12.0 12.0 18.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 26.5 (27%), Referenced to phase 2:EBTL, Start of Yellow Natural Cycle: 100 Control Type: Actuated-Coordinated Splits and Phases: 2: 7th & Chambers ₽⊩ ո4 **→** a2 59s <u> ₽ a8</u>

HCM Signalized Intersection Capacity Analysis 2: 7th & Chambers

FUTURE (2024) Context Sensitive 4/20/2005

	۶	→	*	1	+	4	4	1	*	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		điii∌						44	f	A L	44	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0						4.0	4.0	4.0	4.0	
Lane Util. Factor		0.86						0.95	1.00	0.97	0.95	
Frpb, ped/bikes		1.00						1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00						1.00	1.00	1.00	1.00	
Frt		1.00						1.00	0.85	1.00	1.00	
FIt Protected		1.00						1.00	1.00	0.95	1.00	
Satd. Flow (prot)		6177						3343	1472	3433	3471	
FIt Permitted		1.00						1.00	1.00	0.15	1.00	
Satd. Flow (perm)		6177						3343	1472	535	3471	
Volume (vph)	179	2590	85	0	0	0	0	708	213	421	667	0
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	195	2815	92	0	0	0	0	770	232	458	725	0
Lane Group Flow (vph)		3102	0	0	0	0	0	770	232	458	725	0
Confl. Peds. (#/hr)	2		3	3		2	1		3	3		1
Confl. Bikes (#/hr)	201	EM	6	0.00	0.00	0.00	0.07	0.00	8	0.00	201	5
Heavy Vehicles (%)	4%	5%	4%	2%	2%	2%	2%	8%	7%	2%	4%	2%
Turn Type	Perm	_							Perm	pm+pt		
Protected Phases	2	2						8	8	7	4	
Permitted Phases Actuated Green, G (s)	2	54.5						22.5	22.5	36.5	36.5	
Effective Green, g (s)		55.0						23.0	23.0	37.0	37.0	
Actuated g/C Ratio		0.55						0.23	0.23	0.37	0.37	
Clearance Time (s)		4.5						4.5	4.5	4.5	4.5	
Vehicle Extension (s)		3.0						2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)		3397						769	339	488	1284	
v/s Ratio Prot		3387						d0.23	338	d0.09	0.21	
ws Ratio Perm		c0.50						W.23	0.16	0.25	0.21	
w/c Ratio		0.91						1.00	0.68	0.94	0.56	
Uniform Delay, d1		20.3						38.5	35.2	39.3	25.1	
Progression Factor		0.51						0.90	0.88	1.00	1.00	
Incremental Delay, d2		2.5						31.2	9.8	25.6	0.3	
Delay (s)		12.9						65.9	40.7	64.9	25.4	
Level of Service		В						E	D	E	С	
Approach Delay (s)		12.9			0.0			60.1			40.7	
Approach LOS		В			Α			E			D	
Intersection Summary												
HCM Average Control (Delay		28.1	H	ICM Le	vel of S	ervice		С			
HCM Volume to Capac		0	0.90									
Actuated Cycle Length			100.0	9	Sum of	lost tim	e (s)		8.0			
Intersection Capacity U		on !	91.3%			el of Se			Е			
c. Critical Lane Group												

4/20/2005

FUTURE (2024) POLICY and CONTEXT SENSITIVE Scenarios PM-Peak Hour – Signal Timing Plans

FUTURE (2024) Context Sensitive Timings

Z. Turk Originiscro						
	→	Ť	<i>></i>	->	ţ	
Lane Group	EBT	NBT	NBR	SBL	SBT	
Lane Configurations	đim	44	T.	La La	44	
Volume (vph)	2590	708	213	421	667	
Turn Type			Perm	pm+pt		
Protected Phases	2	8		7	4	
Permitted Phases			8	4		
Detector Phases	2	8	8	7	4	
Minimum Initial (s)	10.0	3.0	3.0	5.0	3.0	
Minimum Split (s)	59.0	26.0	26.0	14.0	40.0	
Total Split (s)	59.0	27.0	27.0	14.0	41.0	
Total Split (%)	59%	27%	27%	14%	41%	
Maximum Green (s)	54.5	22.5	22.5	9.5	36.5	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	
Lead/Lag		Lead	Lead	Lag		
Lead-Lag Optimize?		Yes	Yes	Yes		
Vehicle Extension (s)	3.0	2.0	2.0	2.0	2.0	
Minimum Gap (s)	3.0	2.0	2.0	2.0	2.0	
Time Before Reduce i	(s) 0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	
Recall Mode	Coord	Max	Max	None	None	
Walk Time (s)	7.0	6.0	6.0		6.0	
Flash Dont Walk (s) 👚	21.0	12.0	12.0		12.0	
Pedestrian Calls (#/hr)) 0	0	0		0	

Intersection Summary

2: 7th & Chambers

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 26.5 (27%), Referenced to phase 2:EBTL, Start of Yellow

Natural Cycle: 100

Control Type: Actuated-Coordinated

Splits and Phases: 2: 7th & Chambers

HCM Signalized Intersection Capacity Analysis 12: 11th & Chambers

FUTURE (2024) Policy 4/20/2005

<u>12: 11th & Chambei</u>	rs										4/20	1/2005
	۶	→	*	*	+	•	4	†	<i>></i>	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations				Ţ,	ተተተ	ř	Ţ,	+			15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0	4.0			4.0	
Lane Util. Factor				1.00	*0.69	1.00	1.00	1.00			1.00	
Frpb, ped/bikes				1.00	1.00	0.97	1.00	1.00			0.99	
Flpb, ped/bikes				0.99	1.00	1.00	1.00	1.00			1.00	
Frt				1.00	1.00	0.85	1.00	1.00			0.97	
FIt Protected				0.95	1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)				1788	3856	1543	1805	1863			1829	
FIt Permitted				0.95	1.00	1.00	0.09	1.00			1.00	
Satd. Flow (perm)				1788	3856	1543	177	1863			1829	
Volume (vph)	0	0	0	241	1178	209	183	568	0	0	585	143
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	262	1280	227	199	617	0	0	636	155
Lane Group Flow (vph)	0	0	0	262	1280	227	199	617	0	0	791	0
Confl. Peds. (#/hr)	5		5	5		5	7		4	4		7
Confl. Bikes (#/hr)			7			8			8			
Heavy Vehicles (%)	2%	2%	2%	0%	2%	2%	0%	2%	2%	2%	0%	3%
Turn Type				Perm		Perm	pm+pt					
Protected Phases					6		3	8			4	
Permitted Phases				6		6	8					
Actuated Green, G (s)				37.7	37.7	37.7	53.3	53.3			38.5	
Effective Green, g (s)				38.2	38.2	38.2	53.8	53.8			39.0	
Actuated g/C Ratio				0.38	0.38	0.38	0.54	0.54			0.39	
Clearance Time (s)				4.5	4.5	4.5	4.5	4.5			4.5	
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)				683	1473	589	271	1002			713	
v/s Ratio Prot					œ.33		ø0.08	0.33			c0.43	
v/s Ratio Perm				0.15		0.15	0.32					
v/c Ratio				0.38	0.87	0.39	0.73	0.62			1.11	
Uniform Delay, d1				22.4	28.6	22.4	44.7	16.0			30.5	
Progression Factor				1.00	1.00	1.00	0.74	1.28			0.30	
Incremental Delay, d2				1.6	7.2	1.9	7.3	0.8			57.0	
Delay (s)				24.0	35.8	24.3	40.2	21.2			66.3	
Level of Service				С	D	С	D	С			E	
Approach Delay (s)		0.0			32.6			25.8			66.3	
Approach LOS		Α			С			С			E	
Intersection Summary												
HCM Average Control [Delay		38.9	H	ICM Le	vel of 9	Service		D			
HCM Volume to Capac	ity ratio	0	0.96									
Actuated Cycle Length			100.0	9	Sum of	lost tim	e (s)		12.0			
Intersection Capacity U		on	88.8%		CU Lev				D			
c. Critical Lane Group												

c Critical Lane Group

FUTURE (2024) Policy Timings 12: 11th & Chambers 4/20/2005 t Lane Group Lane Configurations ተተተ ٦ 1 Volume (vph) 241 1178 209 183 568 585 Turn Type Perm Perm pm+pt Protected Phases Permitted Phases 6 6 8 Detector Phases 6 6 6 3 8 Minimum Initial (s) 10.0 10.0 10.0 4.0 3.0 3.0 12.0 Minimum Split(s) 20.5 20.5 20.5 20.5 20.5 Total Split(s) 42.0 42.0 42.0 15.0 58.0 43.0 Total Split (%) 42% 42% 42% 15% 58% 43% 37.5 37.5 10.5 38.5 Maximum Green (s) 37.5 53.5 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes 3.0 3.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 Recall Mode Coord Coord None None None Walk Time (s) 5.0 5.0 5.0 5.0 5.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 50.5 (51%), Referenced to phase 2: and 6:WBTL, Start of Yellow Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 12: 11th & Chambers ъЗ

HCM Signalized Intersection Capacity Analysis
12: 11th & Chambers

FUTURE (2024) Context Sensitive 4/21/2005

	۶	→	*	*	-	4	4	†	*	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ተተተ	Į.		•			↑ 1∌	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0		4.0			4.0	
Lane Util. Factor				1.00	*0.69	1.00		1.00			0.95	
Frpb, ped/bikes				1.00	1.00	0.98		1.00			0.99	
Flpb, ped/bikes				0.99	1.00	1.00		1.00			1.00	
Frt				1.00	1.00	0.85		1.00			0.97	
Fit Protected				0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)				1788	3856	1544		1863			3465	
FIt Permitted				0.95	1.00	1.00		1.00			1.00	
Satd. Flow (perm)				1788	3856	1544		1863			3465	
Volume (vph)	0	0	0	241	1178	209	0	705	0	0	585	143
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	262	1280	227	0	766	0	0	636	155
Lane Group Flow (vph)		0	0	262	1280	227	0	766	0	0	791	0
Confl. Peds. (#/hr)	5		5	5		5	7		4	4		7
Confl. Bikes (#/hr)			7			8			8			4
Heavy Vehicles (%)	2%	2%	2%	0%	2%	2%	0%	2%	2%	2%	0%	3%
Turn Type				Perm		Perm						
Protected Phases					6			8			4	
Permitted Phases				6		6						
Actuated Green, G (s)				46.0	46.0	46.0		45.0			45.0	
Effective Green, g (s)				46.5	46.5	46.5		45.5			45.5	
Actuated g/C Ratio				0.48	0.46	0.46		0.46			0.46	
Clearance Time (s)				4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)				3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)				831	1793	718		848			1577	
v/s Ratio Prot					œ.33			d0.41			0.23	
ws Ratio Perm				0.15		0.15						
w/c Ratio				0.32	0.71	0.32		0.90			0.50	
Uniform Delay, d1				16.8	21.4	16.8		25.2			19.2	
Progression Factor				1.00	1.00	1.00		1.05			0.34	
Incremental Delay, d2				1.0	2.5	1.2		9.9			0.2	
Delay (s)				17.8	23.9	17.9		36.2			6.7	
Level of Service				В	С	В		D			Α	
Approach Delay (s)		0.0			22.2			36.2			6.7	
Approach LOS		Α			С			D			Α	
Intersection Summary												
HCM Average Control (Delay		21.8	H	ICM Le	vel of S	Service		С			
HCM Volume to Capac	ity ratio	0	0.81									
Actuated Cycle Length	(s)		100.0			lost tim			8.0			
Intersection Capacity U	tilizati	on	71.7%	- 1	CU Lev	el of Se	ervice		С			
a California de Carre												

Timinas FUTURE (2024) Context Sensitive 12: 11th & Chambers 4/21/2005 t SBT WBL WBT NBT WBR Lane Group 111 113 Lane Configurations 241 1178 Volume (vph) 209 705 585 Perm Turn Type Perm Protected Phases 8 6 6 Permitted Phases 4 Detector Phases 6 6 Minimum Initial (s) 10.0 10.0 10.0 3.0 3.0 Minimum Split(s) 20.5 20.5 20.5 20.5 20.5 Total Split(s) 42.0 42.0 42.0 58.0 58.0 Total Split (%) 42% 42% 42% 58% 58% Maximum Green (s) 37.5 37.5 37.5 53.5 53.5 4.0 Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 Lead/Lag Lead-Lag Optimize? 3.0 3.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Minimum Gap (s) Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode Coord Coord None None Walk Time (s) 5.0 5.0 5.0 5.0 5.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 0 Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 50.5 (51%), Referenced to phase 2: and 6:WBTL, Start of Yellow Natural Cycle: 55 Control Type: Actuated-Coordinated Splits and Phases: 12: 11th & Chambers