Tyler, DavidEvans, Paul2015-08-182015-08-182015-08-18https://hdl.handle.net/1794/19282Cycloparaphenylenes (CPPs) represent the unit-cycles of conductive armchair carbon nanotubes (CNTs). In addition to their utility for the bottom-up synthesis of CNTs with discrete diameter and chirality, these strained hydrocarbon macrocycles have attractive properties of their own for material science and organic electronics. Herein I report research focused on advancing the synthetic technology behind CPPs, culminating in the synthesis of [5]CPP, the smallest and most highly-strained member of the CPP series to date, as well as the derivitization of the CPP platform to include chiral nanohoops with a spiral carbon backbone and photoswitchable nanohoops based on azobenzene incorporation into the CPP architecture. The synthesis and characterization of [5]CPP, 1,5-naphthyl[6]CPP, azo[11]CPP, and azo[9]CPP are reported along with advanced intermediates towards rotationally restricted 2,6-naphthyl[6]CPP and preliminary photoisomerization results for azo[11]CPP and azo[9]CPP. This dissertation contains both previously published and unpublished co-authored material.en-USAll Rights Reserved.cycloparaphenylenesynthesisSynthesis of Small, Chiral, and Photoswitchable CycloparaphenylenesElectronic Thesis or Dissertation