POLYNOMIAL ROOT DISTRIBUTION AND ITS IMPACT ON SOLUTIONS TO THUE EQUATIONS by GREG KNAPP A DISSERTATION Presented to the Department of Mathematics and the Division of Graduate Studies of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2023 DISSERTATION APPROVAL PAGE Student: Greg Knapp Title: Polynomial Root Distribution and Its Impact on Solutions to Thue Equations This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Mathematics by: Shabnam Akhtari Chair Ellen Eischen Core Member Weiyong He Core Member Ben Young Core Member Brittany Erickson Institutional Representative and Krista Chronister Vice Provost for Graduate Studies Original approval signatures are on file with the University of Oregon Division of Graduate Studies. Degree awarded June 2023. 2 ยฉ 2023 Greg Knapp 3 DISSERTATION ABSTRACT Greg Knapp Doctor of Philosophy Department of Mathematics June 2023 Title: Polynomial Root Distribution and Its Impact on Solutions to Thue Equations In this study, we focus on two topics in classical number theory. First, we examine Thue equationsโ€”equations of the form ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž where ๐น (๐‘ฅ, ๐‘ฆ) is an irreducible, inte- gral binary form and โ„Ž is an integerโ€”and we give improvements to both asymptotic and explicit bounds on the number of integer pair solutions to Thue equations. These improved bounds largely stem from improvements to a counting technique associated with โ€œThe Gap Principle,โ€ which describes the gap between denominators of good rational approximations to an algebraic number. Next, we will take inspiration from the impact of polynomial root distribution on solutions to Thue equations and we examine polynomial root distribution as its own topic. Here, we will look at the relation between the separation of a polynomialโ€” the minimal distance between distinct rootsโ€”and the Mahler measure of a polynomialโ€”a height function which connects the roots of a polynomial with its coefficients. We make a conjecture about how separation can be bounded above by the Mahler measure and we give data supporting that conjecture along with proofs of the conjecture in some low-degree cases. 4 ACKNOWLEDGMENTS I would like to thank my advisor, Shabnam Akhtari, for her help in selecting interesting and accessible problems and for all of her support throughout the challenges of graduate school. She showed me, above all, how to be an incredible mentor. I would like to thank the others who contributed to the mathematics contained in this dissertation. Ben Young gave helpful feedback on the code that went into optimizing the parameters ๐‘‡ and ๐‘ . JoeWebster gave me the regular reminder to look at as many examples as possible and he inspired much of the progress that I made on relating Mahler measure and separation. Chris Sinclair gave me specific suggestions to enable my work on Mahler measure and separation. This research was supported by NSF grant number 2001281. I would like to thank my more general mathematical role models. Cathy Hsu was incredibly supportive throughout my time in graduate school, from helping me find a social group in my first year, to helping me get myself organized in my fourth year, to helping me with my job application materials in my sixth year (among many other things). Ellen Eischen set a great example of what a successful researcher and effective teacher looks like. Joe Webster always modeled the value of being a clear expositor and teacher. Ken Barrett gave me the drive to open up every black box and ask why the metaphorical machinery is constructed the way it is. I would like to thank my therapist for regularly reminding me about the importance of balance. He helped me make the last six years bearable (and more than that, fun) and showed me that the best dissertation is a done dissertation. I would like to thank my family and friends for continuously being there for me. Jake Anderson, Kyle Bahnsen, Marissa Masden, Johanna Meven, Kelly Pohland, Austin Ray, Melissa Ruszczyk, Joseph Tate, Steven Tokar, Michael Volkovitsch, and Eli Wolff have consistently been able to pull me away from my work to play games and Iโ€™m so happy that they try so hard to do that. Samantha Platt asked hard questions and helped me reflect on so many issues I didnโ€™t know I was taking for granted. Alex Roesch was the one person outside of math who was genuinely excited about my research in pure mathematics. Gabrielle Cohen helped me stay in shape and reminded me that thereโ€™s a lot that happens outside of the math department. Jamie Piatka was my confidante long before graduate school and I am grateful for her steadfast presence in my life. Kyla Pohl has been an incredible partner and she does a great job cheering me up after tough days. My parents have continued to be role models and have done so much to help me grow into a more mature person. 5 TABLE OF CONTENTS Chapter Page TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1. Using Approximation to Categorize Real Numbers . . . . . . . . . . . 11 1.2. (In)effectiveness of Approximation Results . . . . . . . . . . . . . . . 15 1.3. Thue Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Connecting Thue Equations to Diophantine Approximation . . . . . 16 1.3.2 New Results on Thue Equations . . . . . . . . . . . . . . . . . . . 19 1.4. Root Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.1 Number of Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4.2 Roots in a Compact Region . . . . . . . . . . . . . . . . . . . . . . 23 1.4.3 Separation of Polynomial Roots . . . . . . . . . . . . . . . . . . . 24 1.4.4 New Results on Polynomial Root Separation . . . . . . . . . . . . . 27 2. THUE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2. Conjectures and Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3. Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4. Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 Large Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.2 Medium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.3 Small Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5. Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6. Asymptotic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.1 Improved Bounds on the Number of Medium Solutions to Thueโ€™s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.2 Proofs of Lemmas 2.23 and 2.24 . . . . . . . . . . . . . . . . . . . 45 2.6.3 Improving Akhtari and Bengoecheaโ€™s Medium Solution Bound . . . 50 2.6.4 Proof of Theorem 1.16 . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7. Explicit Results for Trinomials . . . . . . . . . . . . . . . . . . . . . . 53 2.7.1 Small Special Solutions . . . . . . . . . . . . . . . . . . . . . . . . 55 2.7.2 Large Special Solutions . . . . . . . . . . . . . . . . . . . . . . . . 59 2.7.3 Choosing Parameters for Large Degrees . . . . . . . . . . . . . . . 64 6 2.7.4 Choosing Parameters for Small Degrees . . . . . . . . . . . . . . . 68 2.7.5 Attaining Bounds With Examples . . . . . . . . . . . . . . . . . . . 70 3. ROOT SEPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.1 Lower Bounds on Separation . . . . . . . . . . . . . . . . . . . . . 73 3.2.2 Upper Bounds on Separation . . . . . . . . . . . . . . . . . . . . . 75 3.3. Data and Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4. Proof of Theorem 1.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 APPENDICES A. PARAMETER CHOICES FOR SECTION 2.7.4 . . . . . . . . . . . . . . . . . . 96 B. PYTHON AND SAGE CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 B.1. Python Code for Section 2.7.4 . . . . . . . . . . . . . . . . . . . . . . . 112 B.2. Sage Method For Section 2.7.5 . . . . . . . . . . . . . . . . . . . . . . 115 B.3. Sage Methods for Section 3.3 . . . . . . . . . . . . . . . . . . . . . . . 116 REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7 LIST OF FIGURES Figure Page 3.1. Separation against Mahler measure for monic quadratic polynomials with two real roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2. Separation against Mahler measure for monic quadratic polynomials with no real roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3. Separation against Mahler measure for monic cubic polynomials with three real roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4. Separation against Mahler measure for monic cubic polynomials with one real root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5. Logarithmic separation against logarithmicMahlermeasure formonic quadratic polynomials with no real roots . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.6. Logarithmic separation against logarithmicMahlermeasure formonic quadratic polynomials with two real roots . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.7. Logarithmic separation against logarithmic Mahler measure for monic cubic polynomials with three real roots . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.8. Logarithmic separation against logarithmic Mahler measure for monic cubic polynomials with one real root . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.9. Logarithmic separation against logarithmic Mahler measure for monic quartic polynomials with four real roots . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.10. Logarithmic separation against logarithmic Mahler measure for monic quartic polynomials with two real roots . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.11. Logarithmic separation against logarithmic Mahler measure for monic quartic polynomials with no real roots . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.12. Mahler measure against separation for monic quadratic polynomials with two real roots and the sharp upper bound of ๐‘ฆ = ๐‘ฅ + 1. . . . . . . . . . . . . . . . . 87 3.13. Mahler measure against separation for monic quadratic polynomials with no real roots and the sharp upper bound of ๐‘ฆ = 2๐‘ฅ1/2. . . . . . . . . . . . . . . . . 87 3.14. Mahler measure against separaโˆš๏ธƒtion for monic cubic polynomials with 3 realโˆš โˆš โˆš roots and the upper bound ๐‘ฆ = 10 ๐œ‹/(3 7) โˆ— ๐‘ฅ. . . . . . . . . . . . . . . . 90 3.15. Mahler measure against separationโˆš๏ธfor monic quartic polynomials with 4 realโˆš roots and the upper bound ๐‘ฆ = log( 2 ๐œ‹/3) + ๐‘ฅ/2. . . . . . . . . . . . . . . . 90 3.16. Mahler measure against separationโˆšfor monic cubic polynomials with only one real root and the upper bound ๐‘ฆ = 3๐‘ฅ. . . . . . . . . . . . . . . . . . . . . . . 93 8 3.17. Logarithmic Mahler measure against logarithmic separation โˆšfor monic quartic polynomials with no real roots and the upper bound ๐‘ฆ = log( 2) + ๐‘ฅ/4 . . . . . 95 9 LIST OF TABLES Table Page 2.1. Summary of parameter choices which minimize ๐‘‡ + ๐‘ . . . . . . . . . . . . . . 70 2.2. The maximal number of solutions to equation (2.4) for a trinomial ๐น (๐‘ฅ, ๐‘ฆ) of degree ๐‘› and height ๐ป โฉฝ 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.3. The maximal number of solutions to equation (2.4) for a trinomial ๐น (๐‘ฅ, ๐‘ฆ) of degree ๐‘› and height ๐ป โฉพ 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.1. Parameter choices which minimize ๐‘‡ + ๐‘ . . . . . . . . . . . . . . . . . . . . . 111 10 CHAPTER 1 INTRODUCTION The main thesis of our study is that properties of polynomial roots can be understood through knowledge about the coefficients of the polynomial. It is well known that the the roots of a polynomial of degree at least five cannot necessarily be expressed in an elementary way in terms of the coefficients of that polynomial, but the inability to express the roots of the polynomial exactly does not prohibit us from understanding certain features of the roots. One of the interesting properties we can ask about is which rational numbers are close to the roots of a polynomial. The question of finding good rational approximations to real numbers has been thoroughly explored through the field of Diophantine approximation, which we describe in the introduction. Chapter 2 will discuss an application of Diophantine approximation to the study of Thue equations and we will prove some new results bounding the number of solutions to Thue equations. Another question we can ask about the roots of a polynomial is how they are distributed in the complex plane. In Chapter 3, we discuss previous work finding lower bounds on the distance between roots of polynomials in terms of the coefficients and we turn that question around to ask about upper bounds on the distances between roots. We show how those upper bounds provide us with some ability to quantify the statement โ€œthe roots of polynomials are not randomly distributed,โ€ we conjecture what the sharpest upper bounds might look like, and we prove sharp upper bounds in some low-degree settings. 1.1 Using Approximation to Categorize Real Numbers We begin our exploration of Diophantine approximation by showing how approximation results can be used to classify real numbers. One of the foundational theorems in this area is Dirichletโ€™s Approximation Theorem. Theorem 1.1 (Dirichlet). Let ๐›ผ โˆˆ R and ๐‘„ โˆˆ Z>0. Then there exist integers ๐‘, ๐‘ž โˆˆ Z with 1 โฉฝ ๐‘ž โฉฝ ๐‘„ so that |๐‘ž๐›ผ โˆ’ | 1๐‘ < . ๐‘„ Dirichletโ€™s proof of this theorem is clever [Dir42]. Proof. For any real number ๐‘ฅ, let {๐‘ฅ} denote the fractional part of ๐‘ฅ, namely {๐‘ฅ} := ๐‘ฅ โˆ’ โŒŠ๐‘ฅโŒ‹ . Subdivide the half-open unit interval [0, 1) into ๐‘„ intervals of the form 11 [ ) ๐ฝ = ๐‘›โˆ’1๐‘› , ๐‘› . Now consider the sequence of ๐‘„ + 1 numbers 0, {๐›ผ}, {2๐›ผ}, . . . , {๐‘„๐›ผ}.๐‘„ ๐‘„ These ๐‘„ + 1 numbers all lie in [0, 1) and by the pigeonhole principle (also known as Dirichletโ€™s box principle), there exist ๐‘›, ๐‘ 1, ๐‘ 2 โˆˆ N with 0 โฉฝ ๐‘ 1 < ๐‘ 2 โฉฝ ๐‘„ so that {๐‘ 1๐›ผ}, {๐‘ 2๐›ผ} โˆˆ ๐ฝ๐‘›. Hence, |{๐‘ 1๐›ผ} โˆ’ {๐‘ 2๐›ผ}| 1 < . ๐‘„ But writing {๐‘ 1๐›ผ} = ๐‘ 1๐›ผ โˆ’ ๐‘Ÿ1 and {๐‘ 2๐›ผ} = ๐‘ 2๐›ผ โˆ’ ๐‘Ÿ2 for integers ๐‘Ÿ1 and ๐‘Ÿ2 yields | (๐‘ 2 โˆ’ ๐‘ 1)๐›ผ โˆ’ (๐‘Ÿ2 โˆ’ ๐‘Ÿ1) | 1 < ๐‘„ and so we take ๐‘ž = ๐‘ 2 โˆ’ ๐‘ 1 and ๐‘ = ๐‘Ÿ2 โˆ’ ๐‘Ÿ1. We note that the fact that 1 โฉฝ ๐‘ž โฉฝ ๐‘„ follows from the fact that 0 โฉฝ ๐‘ 1 < ๐‘ 2 โฉฝ ๐‘„. โ–ก On the face of it, it is not immediately obvious that Dirichletโ€™s Theorem has anything to do with approximation. However, it has the following immediate corollary. Before stating the corollary, we give a quick definition. Definition 1.2. A pair (๐‘, ๐‘ž) โˆˆ Z2 is primitive if gcd(๐‘, ๐‘ž) = 1. Corollary 1.3. Let ๐›ผ โˆˆ R. Then ๐›ผ is irrational if and only if there are infinitely many primitive pairs (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž > 0 so that โˆ’ ๐‘๐›ผ 1< 2 . (1.1)๐‘ž ๐‘ž Proof. Suppose first that ๐›ผ is rational, so write ๐›ผ = ๐‘Ÿ for integers ๐‘Ÿ and ๐‘ . Note that for ๐‘  any integers ๐‘ and ๐‘ž with ๐‘ โ‰  ๐‘Ÿ = ๐›ผ, w e h ave๐‘ž ๐‘  ๐‘ ๐‘Ÿ๐‘ž โˆ’ ๐‘ ๐‘ โˆ’ 1๐›ผ = โฉพ๐‘ž ๐‘ž๐‘  |๐‘ž๐‘  | since |๐‘Ÿ๐‘ž โˆ’ ๐‘ ๐‘ | is a nonzero, positive integer. Hence, if the primitive pair (๐‘, ๐‘ž) satisfies inequality (1.1), then it must satisfy 1 1 | <๐‘ž๐‘  | ๐‘ž2 , implying that |๐‘ž | < |๐‘  |. Then there are only finitely many possible values for ๐‘ž. It is now easy to check that for each ๐‘ž there are only finitely many possible values of ๐‘ that satisfy (1.1) and hence, there are only finitely many primitive pairs (๐‘, ๐‘ž) that satisfy (1.1). 12 Next, suppose that ๐›ผ is irrational. Suppose by contradiction that there are only finitely many primitive pairs (๐‘1, ๐‘ž1), . . . , (๐‘๐‘›, ๐‘ž๐‘›) satisfying (1.1). Observe first that because ๐›ผ is irrational, ๐‘š := min |๐‘ž๐‘–๐›ผ โˆ’ ๐‘๐‘– | > 0. 1โฉฝ๐‘–โฉฝ๐‘› Then set + โŒˆ 1๐‘„ := 1 โŒ‰ ๐‘š so that 1 < |๐‘ž๐‘–๐›ผ โˆ’ ๐‘๐‘– | ๐‘„ for all 1 โฉฝ ๐‘– โฉฝ ๐‘›. Apply Dirichletโ€™s Theorem to this value of ๐‘„ to find ๐‘, ๐‘ž โˆˆ Z so that 1 โฉฝ ๐‘ž โฉฝ ๐‘„ and for all 1 โฉฝ ๐‘– โฉฝ ๐‘›, | 1๐‘ž๐›ผ โˆ’ ๐‘ | < < |๐‘ž๐‘–๐›ผ โˆ’ ๐‘๐‘– |. ๐‘„ Writing ๐‘‘ = gcd(๐‘, ๐‘ž) and setting ๐‘โ€ฒ = ๐‘/๐‘‘ and ๐‘žโ€ฒ = ๐‘ž/๐‘‘, we see that the pair (๐‘โ€ฒ, ๐‘žโ€ฒ) is primitive and we have โ€ฒ = ๐‘ž๐‘ž โฉฝ ๐‘„. Further, ๐‘‘ |๐‘žโ€ฒ๐›ผ โˆ’ ๐‘โ€ฒ| โฉฝ ๐‘‘ |๐‘žโ€ฒ๐›ผ โˆ’ 1๐‘โ€ฒ| = |๐‘ž๐›ผ โˆ’ ๐‘ | < ๐‘„ implying that โ€ฒ ๐‘๐›ผ โˆ’ ๐‘žโ€ฒ 1 1< ๐‘„๐‘žโ€ฒ โฉฝ .(๐‘žโ€ฒ)2 Hence, the pair (๐‘โ€ฒ, ๐‘žโ€ฒ) satisfies (1.1). Moreover, (๐‘โ€ฒ, ๐‘žโ€ฒ) is distinct from all of the pairs (๐‘ , ๐‘ž ) because |๐‘žโ€ฒ๐›ผ โˆ’ ๐‘โ€ฒ๐‘– ๐‘– | < |๐‘ž๐‘–๐›ผ โˆ’ ๐‘๐‘– |. This contradicts the hypothesis that we had listed all pairs satisfying (1.1); hence, there must be infinitely many primitive pairs satisfying (1.1). โ–ก Note that the โ€œifโ€ direction of the corollary can actually be improved somewhat: ๐›ผ is irrational if for any ๐œ€ > 0, there are infinitely many primitive pairs (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž โ‰  0 so that |๐›ผ โˆ’ ๐‘ | < 1 ๐‘ž ๐‘ž1+๐œ€ . Corollary 1.3 gives our first indication that the classification of ๐›ผ as rational or irrational can be encoded in the language of rational approximation. The first question one might ask about this corollary is if it can be improved. The answer is yes, but only by a constant factor. This combines Theorem 5B with Lemma 2E in Chapter I.2 of [Sch80]. 13 Proposition 1.4. Let ๐›ผ โˆˆ R. Then ๐›ผ is irrational if and only if there are infinitely many primitive pairs (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž > 0 so that ๐›ผ โˆ’ ๐‘ 1< โˆš .๐‘ž 5๐‘ž2 โˆš Moreover, the golden ratio ๐œ‘ = 1+ 52 is irrational, yet for any constant ๐ถ < โˆš 1 , there 5 are only finitely many primitive primiti ve pair s (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž > 0 so that ๐‘ ๐œ‘ โˆ’ ๐‘ž ๐ถ< ๐‘ž2 . There is another sense in which Corollary 1.3 can be somewhat improved. Observe that since irrational numbers comprise almost all of the real line according to Lebesgue measure, Corollary 1.3 implies that for almost all real numbers ๐›ผ, there are infinitely many primitive pairs (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž > 0 so that (1.1) holds. However, Khinchin in [Khi64] shows that Theorem 1.5 (Khinchin). For almost all real numbers ๐›ผ, there are infinitely many primitive pairs (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž > 0 so that โˆ’ ๐‘๐›ผ 1<๐‘ž ๐‘ž2 .log ๐‘ž From these results, it is natural to ask what sort of information we can learn about rational approximations if we start with finer hypotheses about the algebraicity of ๐›ผ. Liouvilleโ€™s Theorem on approximation is one of the first along these lines. This is Theorem 1A of Chapter V.1 in [Sch80]. Theorem 1.6 (Liouville). Suppose that ๐›ผ โˆˆ R is algebraicโˆ— of degree ๐‘›. Then there exists a constant ๐ถ (๐›ผ) > 0 so that for any p rimitiv e pair (๐‘, ๐‘ž) โˆˆ Z 2 with ๐‘ž > 0, โˆ’ ๐‘ ๐ถ (๐›ผ)๐›ผ > .๐‘ž ๐‘ž๐‘› Liouvilleโ€™s Theorem indicates that a real algebraic ๐›ผ of degree ๐‘› cannot be approximated by infinitely many rationals according to the law | โˆ’ ๐‘๐›ผ | < 1 ๐‘ž ๐‘ž๐‘›+๐œ€ when ๐œ€ is any positive real number. However, Liouvilleโ€™s Theorem can be radically improved, as Roth showed in [Rot55]. โˆ—Of course, Liouvilleโ€™s Theorem also holds for algebraic ๐›ผ โˆ‰ R, but we will generally not focus on this case in this chapter. 14 Theorem 1.7 (Roth). Suppose that ๐›ผ โˆˆ R is algebraic and ๐œ€ > 0. Then there are only finitely many primitive pairs (๐‘, ๐‘ž) โˆˆ 2 Z with ๐‘ž > 0 so that ๐‘ 1๐›ผ โˆ’ <๐‘ž ๐‘ž2+ . (1.2)๐œ€ In summary, we note that if ๐›ผ is rational, then for any ๐ถ > 1, there are infinitely many rationals ๐‘ which satisfy | ๐‘๐›ผ โˆ’ | < ๐ถ . However, there are only finitely many rationals ๐‘ž ๐‘ž ๐‘ž which satisfy | โˆ’ ๐‘๐›ผ | < ๐ถ1+๐œ€ . If ๐›ผ is an irrational algebraic number, then for any ๐ถ > 1,๐‘ž ๐‘ž there are infinitely many rationals ๐‘ which satisfy |๐›ผ โˆ’ ๐‘ | < ๐ถ2 . However, there are only๐‘ž ๐‘ž ๐‘ž finitely many rationals ๐‘ which satisfy | ๐‘๐›ผ โˆ’ | < ๐ถ ๐‘ž ๐‘ž ๐‘ž2+๐œ€ . Based on this pattern, one might expect that if ๐›ผ is transcendental, then there would be infinitely many solutions to some inequality like |๐›ผ โˆ’ ๐‘ | < ๐ถ3 . However, a law like this is๐‘ž ๐‘ž dramatically false. Theorem 32 in Khinchinโ€™s [Khi64] implies that Theorem 1.8 (Khinchin). For almost all real numbers ๐›ผ, there are only finitely many primitive pairs (๐‘, ๐‘ž) โˆˆ Z2 with ๐‘ž > 0 so that โˆ’ ๐‘ ๐›ผ ๐‘ž 1< .๐‘ž2(log ๐‘ž)1+๐œ€ So while the theory of rational approximation is currently able to completely distinguish between rational and irrational numbers, we do not currently have a way of completely distinguishing between algebraic and transcendental numbers. 1.2 (In)effectiveness of Approximation Results Note that the proof of Corollary 1.3 is effective for rational ๐›ผ in the sense that it gives a method for finding the finitely many primitive pairs (๐‘, ๐‘ž) which can satisfy (1.1): the size of ๐‘ž can be bounded in terms of the denominator of ๐›ผ and for each ๐‘ž, one can easily bound the size of ๐‘ in terms of ๐‘ž and ๐›ผ. Hence, there are not only finitely many primitive pairs (๐‘, ๐‘ž) satisfying (1.1), they all live in a finite search space which can be easily expressed in terms of ๐›ผ. Liouvilleโ€™s Theorem is also effective in the sense that ๐ถ (๐›ผ) can be expressed in terms of ๐›ผ (see Theorem 6.1 in [Eve21]). However, Rothโ€™s Theorem is highly ineffective: the proof gives no method of finding the finitely many solutions to (1.2). One of the main goals of modern Diophantine approximation is then to find effective improvements of Liouvilleโ€™s Theorem. Felโ€™dman manages to improve Liouvilleโ€™s general theorem in an effective way. 15 Theorem 1.9 (Felโ€™dman). Let ๐›ผ be algebraic of degree ๐‘› โฉพ 3. Then there exist effectively computable constants ๐ถ (๐›ผ) > 0 and ๐‘Ž(๐›ผ) > 0 so that for any primitive pair (๐‘, ๐‘ž) โˆˆ Z2with ๐‘ž > 0, โˆ’ ๐‘ ๐ถ (๐›ผ)๐›ผ >๐‘ž ๐‘ž๐‘›โˆ’๐‘Ž(๐›ผ) . In [Fel71], Felโ€™dman notes that he plans to estimate the sizes of ๐ถ (๐›ผ) and ๐‘Ž(๐›ผ) in a future paper, but no such paper later appears, nor do other authors appear to take up this task. As it stands then, we shall have to be satisfied with knowing that ๐ถ (๐›ผ) and ๐‘Ž(๐›ผ) can be computed with enough patience. That said, even if it is quite difficult to improve upon Felโ€™dmanโ€™s result about all rational approximations to ๐›ผ in an effective way, there are effective methods which can improve upon Felโ€™dmanโ€™s result in certain settings. In particular, solutions to Thue equations provide a natural setting where the quality of the corresponding rational approximations can be effectively measured. 1.3 Thue Equations 1.3.1 Connecting Thue Equations to Diophantine Approximation Of course, before we can see how solutions to Thue equations give rise to good rational approximations of algebraic numbers which can be effectively described, we must first discuss what a Thue equation is. Our first definition will help us concisely state the hypotheses we regularly assume: Definition 1.10. An integral binary form is a homogeneous polynomial in two variables with integer coefficients. Next, we define what a Thue equation is. Definition 1.11. Let ๐น (๐‘ฅ, ๐‘ฆ) โˆˆ Z[๐‘ฅ, ๐‘ฆ] be an irreducible integral binary form of degree ๐‘› โฉพ 3 and let โ„Ž โˆˆ Z. Then the equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž (1.3) is known as a Thue equation. A major number-theoretic goal is to find all of the solutions to (1.3) in integers. In this document, whenever we refer to a solution to a Thue equation, we specifically mean a pair 16 of integers (๐‘, ๐‘ž) for which ๐น (๐‘, ๐‘ž) = โ„Ž. The solutions to Thue equations tend to produce good rational approximations to the roots of the one-variable polynomials ๐น (๐‘ฅ, 1) and ๐น (1, ๐‘ฆ). For instance, by dehomogenizin(g, co)nsider that a solution (๐‘, ๐‘ž) โˆˆ Z 2 to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž with ๐‘ž โ‰  0 yields ๐‘ โ„Ž ๐น , 1 = . ๐‘ž ๐‘ž๐‘› Writing ๐‘“ (๐‘ฅ) = ๐น (๐‘ฅ, 1) and factoring ๐‘“ (๐‘ฅ) oโˆver C[๐‘ฅ] as๐‘› ๐‘“ (๐‘ฅ) = ๐‘ (๐‘ฅ โˆ’ ๐›ผ๐‘–), ๐‘–=1 we note that this implies that | | โˆ๐‘›โ„Ž = |๐‘ | | | ๐‘ โˆ’ ๐›ผ๐‘–๐‘ž ๐‘› ๐‘ž ๐‘–=1 and hence, for sufficiently large ๐‘ž, ๐‘ gives a good rational approximation of some root ๐›ผ ๐‘ž ๐‘– of ๐‘“ (๐‘ฅ). Likewise, by reversing the roles of ๐‘ฅ and ๐‘ฆ, one can see that for sufficiently large ๐‘, ๐‘ž gives a good rational approximation of some root ๐›ผโˆ— of ๐น (1, ๐‘ฆ). ๐‘ ๐‘– The rational approximations to a root ๐›ผ of ๐น (๐‘ฅ, 1) which arise from solutions to Thue equations tend to satisfy much stronger approximation laws than a generic rational approximation to ๐›ผ. Moreover, those laws tend to include effective constants, like the height of the polynomial ๐‘“ (๐‘ฅ). The following definition is the only definition of height that we will use throughout this paper. However, it is worth observing that this height is the naรฏve height of a polynomial and this is related to, but not identical to, other heights such as the Weil height. Definition 1.12. Given a polynomial ๐‘”(๐‘ฅ1,โˆ‘๏ธ. . . , ๐‘ฅ๐‘›) โˆˆ C[๐‘ฅ1, . . . , ๐‘ฅ๐‘›] of the form ๐‘– ๐‘”(๐‘ฅ 1 ๐‘–1, . . . , ๐‘ฅ๐‘›) = ๐‘Ž ๐‘›๐‘–1,...,๐‘– ๐‘ฅ ยท ยท ยท ๐‘ฅ ,๐‘› 1 ๐‘› ๐‘–1,...,๐‘–๐‘› the height of ๐‘”(๐‘ฅ1, . . . , ๐‘ฅ๐‘›) is ๐ป (๐‘”) = max |๐‘Ž๐‘–1,...,๐‘– |.๐‘› ๐‘–1,...,๐‘–๐‘› The height of a polynomial with integer coefficients gives a sense of its complexity: the larger the height, the more bits of information required to represent the polynomial. The height of a single-variable polynomial ๐‘“ (๐‘ฅ) is a useful, effectively computable constant often found in results about approximations of the roots of ๐‘“ (๐‘ฅ). Consider this result from Bombieri and Schmidt in [BS87] on the rational approximations one can obtain from solutions to Thue equations: 17 Proposition 1.13 (Bombieri and Schmidt). Suppose that (๐‘, ๐‘ž) โˆˆ Z2 is a solution to the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž, where ๐‘› โฉพ 3 denotes the degree of ๐น and ๐‘, ๐‘ž โ‰  0. Then there exists a root ๐›ผ of ๐น (๐‘ฅ, 1) with( )โˆ’ ๐‘ ((2๐‘› + 2)๐ป (๐น))๐‘› โ„Žmin 1, ๐›ผ โฉฝ | | . (1.4)๐‘ž ๐‘ž ๐‘› By symmetry, there exists a ro(ot ๐›ฝ of ๐น ( 1), ๐‘ฆ) with โˆ’ ๐‘ž ((2๐‘› + 2)๐ป (๐น))๐‘› โ„Žmin 1, ๐›ฝ โฉฝ | | . (1.5)๐‘ ๐‘ ๐‘› Note that the exponents on |๐‘ž | and |๐‘ | in this theorem are far better than we would expect from something like Dirichletโ€™s Theorem. In fact, Rothโ€™s Theorem guarantees that there can be only finitely many rational numbers satisfying inequalities (1.4) and (1.5)โ€  and hence, finitely many integer-pair solutions to the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž.โ€ก It was Mahlerโ€™s realization in [Mah33] that inequalities like (1.4) can actually provide bounds on the number of solutions to the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž. Mahler did not give any kind of method for finding the solutions, but instead found bounds for the number of good rational approximations to the roots of ๐น (๐‘ฅ, 1) and ๐น (1, ๐‘ฆ) and translated those into bounds on the number of solutions to the Thue inequality ๐น (๐‘ฅ, ๐‘ฆ) = 1. From there Mahler was able to estimate the number of solutions to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž. This exploration instigated one of the major projects in the study of Thue equations: finding good bounds on the number of solutions to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž, which is the topic we analyze in chapter 2. Given the large size of the constant factor ((2๐‘› + 2)๐ป (๐น))๐‘›โ„Ž, Proposition 1.13 only gives tight bounds on the quality of the approximation (and hence, the number of solutions to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž) when |๐‘ž | is large. For smaller values of ๐‘ž, Mueller and Schmidt in [MS88] are able to improve the size of the constant at the cost of reducing the exponent on |๐‘ž |: Proposition 1.14 (Mueller and Schmidt). Suppose that (๐‘, ๐‘ž) โˆˆ Z2 is a solution to the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž where ๐‘› โฉพ 3 denotes the degree of ๐น (๐‘ฅ, ๐‘ฆ), ๐‘  + 1 denotes the โ€ Rothโ€™s Theorem only guarantees that there are finitely many rationals with |๐›ผโˆ’ ๐‘/๐‘ž | < ((2๐‘› + 2)๐ป (๐น))๐‘›โ„Ž/|๐‘ž |๐‘› and in fact, it is not hard to see that there are infinitely many rationals satisfying (1.4). However, those infinitely many rationals have bounded |๐‘ž | and hence unbounded |๐‘ |. Only finitely many of those rationals can then satisfy (1.5). โ€กBoth Rothโ€™s Theorem and Bombieri and Schmidtโ€™s lemma came rather later than Thueโ€™s realization that the equations bearing his name have only finitely many solutions, but they provide a quick proof here so we will not worry overmuch about this. 18 number of nonzero coefficients of ๐น (๐‘ฅ, ๐‘ฆ), and ๐‘ž โ‰  0 with |๐‘ž | larger than an explicit constant depending only on ๐น and โ„Ž.ยง Then there is a set ๐‘† of roots of ๐น (๐‘ฅ, 1) and a set ๐‘†โˆ— of roots of ๐น (1, ๐‘ฆ), both with cardin alities less than or equal to 6๐‘  + 4 so that either ๐‘๐›ผ โˆ’ ๐พ (๐น, โ„Ž)<๐‘ž |๐‘ž |๐‘›/๐‘  for some ๐›ผ โˆˆ ๐‘† or ๐›ผโˆ— โˆ’ ๐‘ž ๐พ (๐น, โ„Ž)<๐‘ |๐‘ |๐‘›/๐‘  for some ๐›ผโˆ— โˆˆ ๐‘†โˆ—. In Mueller and Schmidtโ€™s proposition, the value of ๐พ (๐น, โ„Ž) is explicit and it is meaningfully smaller than the constant ((2๐‘› + 2)๐ป (๐น))๐‘›โ„Ž that appears in Bombieri and Schmidtโ€™s proposition. Moreover, ๐พ (๐น, โ„Ž) is a multiple of a negative power of ๐ป (๐น), indicating that for polynomials with large height, solutions to the corresponding Thue equation must produce particularly good rational approximations of the roots of ๐น (๐‘ฅ, 1) and ๐น (1, ๐‘ฆ). The role of the parameter ๐‘  is not apparent, but it will be explained in chapter 2. However, it is worth noting that ๐‘  can be small while ๐‘› is large, so the Mueller and Schmidtโ€™s proposition still provides a good exponent on |๐‘ž | (or |๐‘ |, depending on which is the denominator) and it has a smaller constant than Bombieri and Schmidtโ€™s proposition. 1.3.2 New Results on Thue Equations In chapter 2, we will explore how this parameter ๐‘  impacts the number of solutions to Thue equations. In particular, we will improve bounds on the number of solutions to general Thue equations given by Mueller and Schmidt in [MS88], and Saradha and Sharma in [SS17]. The following theorem is our main asymptoticยถ result. Before we state the result, however, we introduce some notation that will be useful throughout the remainder of this paper. ยงThis constant is smaller than the constant needed to make Bombieri and Schmidtโ€™s result useful. ยถOur use of the word โ€œasymptoticโ€ does not always indicate that some parameter is going to infinity. Rather, we use the word โ€œasymptoticโ€ to refer to a bound where we only give the main term and we disregard error terms and constants. 19 Notation 1.15. For any set ๐‘‹ and functions ๐‘“ : ๐‘‹ โ†’ R and ๐‘” : ๐‘‹ โ†’ R, the notation ๐‘“ (๐‘ฅ) โ‰ช ๐‘”(๐‘ฅ) means that there exists a constant ๐ถ > 0 so that ๐‘“ (๐‘ฅ) โฉฝ ๐ถ๐‘”(๐‘ฅ) for all ๐‘ฅ โˆˆ ๐‘‹ . Sometimes, we will also write ๐‘“ (๐‘ฅ) = ๐‘‚ (๐‘”(๐‘ฅ)) to mean ๐‘“ (๐‘ฅ) โ‰ช ๐‘”(๐‘ฅ) or we may simply write ๐‘‚ (๐‘”(๐‘ฅ)) to refer to some function ๐‘“ (๐‘ฅ) which satisfies ๐‘“ (๐‘ฅ) โ‰ช ๐‘”(๐‘ฅ). If ๐‘“ (๐‘ฅ) and ๐‘”(๐‘ฅ) both depend on some parameter ๐‘›, then the notation ๐‘“ (๐‘ฅ) โ‰ช๐‘› ๐‘”(๐‘ฅ) means that there exists a constant ๐ถ > 0 which may depend on ๐‘› so that ๐‘“ (๐‘ฅ) โฉฝ ๐ถ๐‘”(๐‘ฅ) for all ๐‘ฅ โˆˆ ๐‘‹ . In these cases, when using big-oh notation, we will write ๐‘‚๐‘› (๐‘”(๐‘ฅ)) to indicate that the implicit constant depends on ๐‘›. The following theorem makes use of the parameter ฮฆ, which will be defined at the beginning of Section 2.3. For now, it is only important to know that it satisfies log3(๐‘ ) โ‰ช ๐‘’ฮฆ โ‰ช ๐‘ . Theorem 1.16. Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 with ๐‘  + 1 nonzero coefficients and let โ„Ž be a positive integer. Then if ๐‘› > 4๐‘ ๐‘’2ฮฆ, the total number of primitive solutions to |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž satisfies ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘›. We will also examine the case where ๐‘  = 2 (in this case, ๐น (๐‘ฅ, ๐‘ฆ) is called a trinomial because it is the sum of three nonzero terms) and improve explicit bounds on the number of solutions to the particular Thue equations ๐น (๐‘ฅ, ๐‘ฆ) = ยฑ1. The following theorem is our main explicit result: Theorem 1.17. Let ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž ๐‘ฅ๐‘› + โ„Ž ๐‘ฅ๐‘˜ ๐‘ฆ๐‘›โˆ’๐‘˜๐‘› ๐‘˜ + โ„Ž0๐‘ฆ๐‘› where โ„Ž๐‘›, โ„Ž๐‘˜ , โ„Ž0, ๐‘›, ๐‘˜ โˆˆ Z with 0 < ๐‘˜ < ๐‘›. Suppose that ๐น (๐‘ฅ, ๐‘ฆ) is irreducible over Z[๐‘ฅ, ๐‘ฆ] and ๐‘› โฉพ 6. Then there are at most 2๐‘ฃ(๐‘›)๐‘ง(๐‘›) + 8 distinct integer pair s๏ฃด๏ฃฑolutions to the equation |๐น (๐‘ฅ, ๐‘ฆ) | = 1 where๏ฃฒ๏ฃด๏ฃด๏ฃด3 if ๐‘› is odd๐‘ฃ(๐‘›) = ๏ฃณ4 if ๐‘› is even and ๐‘ง(๐‘›) is defined by the following table. ๐‘› 6 7 8 9 10โ€“11 12โ€“16 17โ€“37 38โ€“216 โฉพ 217 ๐‘ง(๐‘›) 15 12 11 9 8 7 6 5 4 The main method by which we are able to achieve these results is an improvement in a counting technique associated with The Gap Principle. The Gap Principle is not a single explicit result, but rather a series of related results that states that when two rational 20 numbers approximate the same algebraic number, their denominators must be exponentially far apart. The counting technique improvement is Lemma 2.19. We apply this technique to the versions of The Gap Principle which we give towards the beginning of the proof of Lemma 2.23 and which we give as Theorem 2.42. 1.4 Root Distribution Another feature to observe about Proposition 1.14 is that solutions to the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž provide good rational approximations to one of relatively few roots of ๐น (๐‘ฅ, 1) or ๐น (1, ๐‘ฆ). There are 2๐‘› such roots, but solutions to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž provide good rational approximations (in the sense of Proposition 1.14) to elements of some subset of those roots with size at most 12๐‘  + 8. This gives us some information about how the roots of ๐น (๐‘ฅ, 1) and ๐น (1, ๐‘ฆ) are distributed in the complex plane when ๐‘  is small relative to ๐‘›: either 1. there are few roots which are able to be well-approximated by rational numbers or 2. the roots come in clusters so that a good rational approximation of one such root is a good approximation of the roots in the nearby cluster. While we do not discuss the full generality needed to understand root clustering and equidistribution, we will explore the notion of root distribution by studying how near two roots of the same polynomial can get. The study of polynomial root distribution originates in the broader undertaking to find solutions to equations. Of course, in antiquity, โ€œequationsโ€ referred to โ€œpolynomial equationsโ€ and as we now know, โ€œfinding solutionsโ€ is often too much to ask. However, we can glean information about the roots of a polynomial from information about the coefficients, and that is the essence of the study of polynomial root distribution. Major questions of this field include: Question 1.18. For a polynomial ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ], how many of its roots are real? Question 1.19. For a polynomial ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ], is there an โ€œeasily computedโ€ compact region of the plane in which its roots must live? Question 1.20. For a polynomial ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ], how close together can its roots be? 21 Our goal for this discussion will be to understand polynomials with integer coefficients, but as is often the case in number theory, it is helpful to consider the fields C and R. 1.4.1 Number of Real Roots We can address Question 1.18 without introducing any new terminology. Let ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] be a polynomial of degree ๐‘›. We begin by examining upper bounds on the number of real roots of ๐‘“ (๐‘ฅ). Naรฏvely, ๐‘“ (๐‘ฅ) can have no more than ๐‘› real roots because ๐‘“ (๐‘ฅ) has no more than ๐‘› roots. However, this is not necessarily a good bound and in many cases, we can do better. The following lemma is a corollary of Descartesโ€™ rule of signs and is also given in [Sch87]. Lemma 1.21. Suppose that ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] is a polynomial with ๐‘  + 1 nonzero summands. Then ๐‘“ (๐‘ฅ) has no more than 2๐‘  + 2 real roots. This lemma gives some indication of why Proposition 1.14 is true. After all, solutions to the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž produce good rational approximations of the roots of ๐น (๐‘ฅ, 1) and ๐น (1, ๐‘ฆ). However, rational numbers can only produce arbitrarily good approximations of real numbers, so we expect that solutions to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž produce good rational approximations to only the roots of ๐น (๐‘ฅ, 1) and ๐น (1, ๐‘ฆ) that lie near or on the real axis. Lemma 1.21 indicates that the number of such roots is controlled by ๐‘ , so we would expect that solutions to ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž produce approximations to some number of roots of ๐น (๐‘ฅ, 1) or ๐น (1, ๐‘ฆ) where that number is controlled by ๐‘ . On the other hand, finding lower bounds on the number of real roots of ๐‘“ (๐‘ฅ) is a much more difficult subject. It is difficult in general to detect if ๐‘“ (๐‘ฅ) has any real roots at all. Of course, if the degree of ๐‘“ (๐‘ฅ) is odd, then ๐‘“ (๐‘ฅ) has real roots, but if the degree of ๐‘“ (๐‘ฅ) is even, this becomes much more difficult. However, it is possible to do this for ๐‘“ (๐‘ฅ) with rational coefficients in an effective manner. The polynomial ๐‘“ (๐‘ฅ) has a real root if and only if theโˆ‘number field ๐พ := Q[๐‘ฅ] / ( ๐‘“ (๐‘ฅ)) has an embedding into R. Letting ๐‘„(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ4, ๐‘ฅ ) = 5 25 ๐‘–=1 ๐‘ฅ , Meyerโ€™s Theorem๐‘– combined with the Hasse-Minkowski Theorem (see [Ser73]) combine to indicate that there exists an embedding ๐พ โ†’ R if and only if ๐‘„ does not nontrivially represent 0 over ๐พ . However, Raghavan in [Rag75] gives an effective algorithm for detecting whether or not ๐‘„ represents 0 nontrivially over ๐พ and so we have an effective method for checking whether or not ๐‘“ (๐‘ฅ) has a real root. 22 1.4.2 Roots in a Compact Region Question 1.19 is also straigโˆ‘htforward to address. Proposition 1.22. Let ๐‘“ (๐‘ฅ) = ๐‘› ๐‘—๐‘—=0 ๐‘Ž ๐‘—๐‘ฅ โˆˆ C[๐‘ฅ] where ๐‘Ž๐‘›, ๐‘Ž0 โ‰  0. If ๐›ผ โ‰  0 is a root of ๐‘“ (๐‘ฅ), then 1 ๐ป ( ๐‘“ ) + ( )/| | < |๐›ผ | < 1 +1 ๐ป ๐‘“ ๐‘Ž0 |๐‘Ž๐‘› | . Proof. Note that since ๐›ผ is a root of ๐‘“ (๐‘ฅ), weโˆ‘๏ธcan write๐‘›โˆ’1 โˆ’๐‘Ž๐‘›๐›ผ๐‘› = ๐‘Ž ๐‘—๐›ผ ๐‘— . ๐‘—=0 Taking absolute valuโˆ‘๏ธes on both sides andโˆ‘๏ธapplying the triangle inequality yields๐‘›โˆ’1 ๐‘›โˆ’1 ๐‘› ๐‘› |๐‘Ž๐‘› | |๐›ผ |๐‘› โฉฝ |๐‘Ž ๐‘— | |๐›ผ | ๐‘— โฉฝ ๐ป ( ๐‘“ ) |๐›ผ | ๐‘— ๐ป ( ๐‘“ ) ( |๐›ผ | โˆ’ 1) ๐ป ( ๐‘“ ) |๐›ผ | = 0 0 | | โˆ’ < | | โˆ’ .๐›ผ 1 ๐›ผ 1 ๐‘—= ๐‘—= Dividing | | | |๐‘› ๐ป ( ๐‘“ ) |๐›ผ | ๐‘› ๐‘Ž๐‘› ๐›ผ < |๐›ผ | โˆ’ 1 by |๐›ผ |๐‘› and rearranging yields the desired inequality | | + ๐ป ( ๐‘“ )๐›ผ < 1 | .๐‘Ž๐‘› | To get the lower bound on ๐›ผ, observe that the reciprocal polynomial ๐‘“ ๐‘… (๐‘ฅ) = ๐‘ฅ๐‘› ๐‘“ (1/๐‘ฅ) has height ๐ป ( ๐‘“ ๐‘…) = ๐ป ( ๐‘“ ) and has 1/๐›ผ as a root. By the first part of the proof then, 1 ๐ป ( ๐‘“ ๐‘…) | < 1 +๐›ผ | |๐‘Ž0 | and taking reciprocals yields the desired lower bound on |๐›ผ |. โ–ก Moreover, it is not difficult to see that these are good bounds on the roots of ๐‘“ (๐‘ฅ). For example, for ๐‘ก โฉพ 1, the family of polynomials ๐‘“๐‘ก (๐‘ฅ) = (๐‘ฅ๐‘›โˆ’1 โˆ’ 1) (๐‘ฅ โˆ’ ๐‘ก) has height ๐‘ก, leading coefficient 1, and a root located at ๐‘ฅ = ๐‘ก. Proposition 1.22 indicates that the roots of ๐‘“๐‘ก (๐‘ฅ) must live in the circle with radius 1 + ๐‘ก centered at 0. As ๐‘ก tends to infinity then, the ratio of the size of the largest root of ๐‘“๐‘ก (๐‘ฅ) to the upper bound on root size given by Proposition 1.19 tends to 1, so the bound is sharp. A similar construction can be given to show that the lower bound is sharp. 23 1.4.3 Separation of Polynomial Roots Question 1.20 is trickier to address and we give an overview to this question here before covering it in more depth in chapter 3. We want to understand the question more precisely, however, so we will introduce the following quantities. Definition 1.23. Given a polynomial ๐‘“ (๐‘ฅ1, . . . , ๐‘ฅ๐‘š) โˆˆ C[๐‘ฅ1, . . . , ๐‘ฅ๐‘š], the Mahler measure of ๐‘“ (๐‘ฅ1, . . . , ๐‘ฅ๐‘š) is the(โˆซquanโˆซtity1 1 โˆซ 1 ) ๐‘€ ( ๐‘“ ) = exp ยท ยท ยท log | ๐‘“ (๐‘’2๐œ‹๐‘–๐‘ก1 , . . . , ๐‘’2๐œ‹๐‘–๐‘ก๐‘š) | ๐‘‘๐‘ก1 ๐‘‘๐‘ก2 ยท ยท ยท ๐‘‘๐‘ก๐‘š . 0 0 0 Definition 1.24. Given a polynomial ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] of degree ๐‘›, with roots ๐›ผ1, . . . , ๐›ผ๐‘› โˆˆ C, and with leading coefficient ๐‘, the discriminโˆant of ๐‘“ (๐‘ฅ) is the quantity ฮ” = ๐‘2๐‘›โˆ’2๐‘“ (๐›ผ๐‘– โˆ’ ๐›ผ ๐‘— )2. 1โฉฝ๐‘–< ๐‘—โฉฝ๐‘› Definition 1.25. Given a polynomial ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] with roots ๐›ผ1, . . . , ๐›ผ๐‘› โˆˆ C, the separation of ๐‘“ (๐‘ฅ) is the quantity sep( ๐‘“ ) = min |๐›ผ๐‘– โˆ’ ๐›ผ ๐‘— |. ๐›ผ๐‘–โ‰ ๐›ผ ๐‘— Before giving any answers to Question 1.20, we will address some of the connections between the roots, the height, the Mahler measure, and the discriminant of a polynomial ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ]. Lemma 1.26. For a single-variable polynomial ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] with roots ๐›ผ1, . . . , ๐›ผ๐‘› โˆˆ C and leading coefficient ๐‘, we have โˆ๐‘› ๐‘€ ( ๐‘“ ) = |๐‘ | max(1, |๐›ผ ๐‘— |). ๐‘—=1 This is Proposition 1.6.5 in [BG06]. This result is a corollary of the more general Jensenโ€™s formula (see [Rud74]) and it gives an important connection between the Mahler measure of a polynomial and the polynomialโ€™s roots. Moreover, the Mahler measure satisfies the following dual inequalities, stated as Lemma 1.6.7 in [BG06]: Lemma 1.27. Su(ppose t)hat ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] has degree ๐‘› and ๐‘  + 1 nonzero summands. Thenโˆ’1 ๐‘› โˆš โˆš โŒŠ ๐ป ( ๐‘“ ) โฉฝ ๐‘€ ( ๐‘“ ) โฉฝ ๐ป ( ๐‘“ ) ๐‘  + 1 โฉฝ ๐ป ( ๐‘“ ) ๐‘› + 1. (1.6)๐‘›/2โŒ‹ 24 This lemma shows that, up to a constant factor depending on the degree of ๐‘“ (๐‘ฅ), the Mahler measure and height of ๐‘“ (๐‘ฅ) are the same. This is what makes the Mahler measure a key quantity in number theory: it connects the known coefficients to the unknown roots. The discriminant of ๐‘“ (๐‘ฅ) is important for the same reason. Its definition is given in terms of the roots of ๐‘“ (๐‘ฅ), but it has a key connection to the coefficients of ๐‘“ (๐‘ฅ) as well. Note that the definition of the discriminant given in 1.24 has ฮ” 2๐‘›โˆ’2๐‘“ /๐‘ given as a polynomial in ๐›ผ1, . . . , ๐›ผ๐‘›. Moreover, ฮ” ๐‘“ /๐‘2๐‘›โˆ’2 is a symmetric polynomial in ๐›ผ1, . . . , ๐›ผ๐‘› and hence, by Milneโ€™s proof of the Fundamental Theorem of Symmetric Polynomials (see Theorem 2.2 in [Mil20]), ฮ” /๐‘2๐‘›โˆ’2๐‘“ can be expressed as a polynomial of degree equal to 2๐‘› โˆ’ 2 in the elementary symmetric polynomials, ๐‘’1(๐›ผ1, . . . , ๐›ผ๐‘›), . . . , ๐‘’๐‘› (๐›ผ1, . . . , ๐›ผ๐‘›). However, if the leading coefficient of ๐‘“ (๐‘ฅ) is ๐‘, then the coefficients of ๐‘“ (๐‘ฅ) are equal to (up to sign) ๐‘๐‘’1(๐›ผ1, . . . , ๐›ผ๐‘›), . . . , ๐‘๐‘’๐‘› (๐›ผ1, . . . , ๐›ผ๐‘›). Letting ๐‘๐‘– denote ๐‘๐‘’๐‘– (๐›ผ1, . . . , ๐›ผ๐‘›), we find that ฮ” /๐‘2๐‘›โˆ’2๐‘“ can be expressed as a polynomial of degree 2๐‘› โˆ’ 2 in the variables ๐‘๐‘–/๐‘. Hence, ฮ” ๐‘“ can be expressed as a polynomial of degree 2๐‘› โˆ’ 2 in the variables ๐‘๐‘–, i.e. the coefficients of ๐‘“ (๐‘ฅ). While it is helpful to know that the discriminant can be defined in terms of the roots or in terms of the coefficients of ๐‘“ (๐‘ฅ), the previous paragraph gives no indication of how the discriminant can be expressed in terms of the coefficients. A tool known as the resultant helps with that particular conโˆ‘cern: โˆ‘ Definition 1.28. Let ๐‘“ (๐‘ฅ) = ๐‘› ๐‘–๐‘–=0 ๐‘Ž๐‘–๐‘ฅ and ๐‘”(๐‘ฅ) = ๐‘š ๐‘— ๐‘—=0 ๐‘ ๐‘—๐‘ฅ be polynomials with complex coefficients with ๐‘Ž๐‘›, ๐‘๐‘š โ‰  0. Then the resultant of ๐‘“ (๐‘ฅ) and ๐‘”(๐‘ฅ) is the determinant of the (๐‘› + ๐‘š) ร— (๐‘› + ๐‘š) Sylvester matrix ยญยญยฉ ๐‘Ž๐‘› 0 ยท ยท ยท 0 ๐‘๐‘š 0 ยท ยท ยท 0ยญ ยชยญ . . . . ยฎยญ๐‘Ž๐‘›โˆ’1 ๐‘Ž .๐‘› . .. ๐‘๐‘šโˆ’1 ๐‘ .๐‘š . .. ยฎยญ ยฎยญ . . 0 . ยฎยญ๐‘Ž๐‘›โˆ’2 ๐‘Ž .๐‘›โˆ’1 . ๐‘๐‘šโˆ’2 ๐‘๐‘šโˆ’1 . 0 ยฎยญยญ . ยฎ .. . . . . . . ๐‘Ž . . . . ยฎ ( ) ยญ ๐‘› . .. . . ๐‘ Res ๐‘šยฎ๐‘“ , ๐‘” := det ยญยญ . . ยฎ . ๐‘Ž0 ๐‘Ž1 ยท ยท ยท .. ๐‘0 ๐‘1 ยท ยท ยท .. ยฎ ยญยญ ยฎยฎ ยญ 0 .๐‘Ž0 . .. .. 0 .๐‘0 . ... . ยฎยญ ยฎ.. . . . . . ยฎยซ . .. . . ๐‘Ž1 .. .. . . ๐‘1 ยฎยฎ0 0 ยท ยท ยท ๐‘Ž0 0 0 ยท ยท ยท ๐‘0 ยฌ It turns out that the discriminant of a polynomial ๐‘“ (๐‘ฅ) is closely related to the resultant of ๐‘“ (๐‘ฅ) and its derivative ๐‘“ โ€ฒ(๐‘ฅ). The following lemma can be found after the proof of Proposition 2.34 in [Mil20]. 25 Lemma 1.29. If ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] is a polynomial with degree ๐‘› and leading coefficient ๐‘ โ‰  0, then โ€ฒ ฮ” = (โˆ’1)๐‘›(๐‘›โˆ’1)/2 ยท Res( ๐‘“ , ๐‘“ )๐‘“ . ๐‘ This gives a straightforward way to compute the discriminant as a polynomial in the coefficients of ๐‘“ (๐‘ฅ). Before we begin to address Question 1.20, we will look at an important class of examples. Example 1.30. Consider the family of polynomials ๐‘„๐‘›,๐‘Ÿ (๐‘ฅ) = ๐‘ฅ๐‘› โˆ’ ๐‘Ÿ for real ๐‘Ÿ โฉพ 1 and integer ๐‘› โฉพ 2. Let ๐œ๐‘› denote a primitive ๐‘›th root of unity. Then we have: ๐ป (๐‘„๐‘›,๐‘Ÿ) =โˆmax(1, ๐‘Ÿ) = ๐‘Ÿ๐‘› ๐‘€ (๐‘„๐‘›,๐‘Ÿ) = max(1, | ๐‘—๐œ๐‘›๐‘Ÿ1/๐‘› |) = ๐‘Ÿ ๐‘—=1 ฮ” = (โˆ’1)๐‘›โˆ’1๐‘›๐‘›๐‘Ÿ๐‘›โˆ’1๐‘„๐‘›,๐‘Ÿ sep(๐‘„ 1/๐‘›๐‘›,๐‘Ÿ) = ๐‘Ÿ โˆš๏ธƒ|๐‘’2๐œ‹๐‘–/๐‘› โˆ’ 1| = ๐‘Ÿ1/๐‘›โˆš๏ธ (1 โˆ’ cos(2๐œ‹/๐‘›))2 + sin2(2๐œ‹/๐‘›) = ๐‘Ÿ1/๐‘›โˆš๏ธƒ2 โˆ’ 2 cos(2๐œ‹/๐‘›) = ๐‘Ÿ1/๐‘› 2 โˆ’ 2(cos2(๐œ‹/๐‘›) โˆ’ sin2(๐œ‹/๐‘›)) = 2๐‘Ÿ1/๐‘› sin(๐œ‹/๐‘›) Importantly, note that for this class of examples, ๐ป (๐‘„๐‘›,๐‘Ÿ = ๐‘€ (๐‘„๐‘›,๐‘Ÿ) and (๐œ‹ ) sep(๐‘„ 1/๐‘›๐‘›,๐‘Ÿ) = 2 sin ยท ๐‘€ (๐‘„๐‘›,๐‘Ÿ) . ๐‘› A key relation which helps to address Question 1.20 was shown by Mahler in [Mah64]: Theorem 1.31 (Mahler). Let ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] havโˆš๏ธe degree ๐‘› โฉพ 2. Then 3|ฮ” | sep( ) ๐‘“๐‘“ > . ๐‘›(๐‘›+2)/2๐‘€ ( ๐‘“ )๐‘›โˆ’1 In particular, if we suppose that ๐‘“ (๐‘ฅ) is separable, then |ฮ” ๐‘“ | > 0 by Definition 1.24. Furthermore, |ฮ” ๐‘“ | is a polynomial in the coefficients of ๐‘“ (๐‘ฅ). So if ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ]โ€”the primary case we are interested inโ€”then |ฮ” ๐‘“ | must be a positive integer. Hence, we must have |ฮ” ๐‘“ | โฉพ 1. As a result, we have the following corollary. 26 Corollary 1.32 (Mahler). Suppose that ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ] is separable of degree ๐‘› โฉพ 2. Then โˆš 3 sep( ๐‘“ ) > . ๐‘›(๐‘›+2)/2๐‘€ ( ๐‘“ )๐‘›โˆ’1 This corollary is the standard to which other theorems on polynomial root separation are often compared. Philosophically, it indicates that the roots of polynomials with integer coefficients repel each other to some extent. 1.4.4 New Results on Polynomial Root Separation In Chapter 3, we reverse the question that Mahler answers with Theorem 1.31 and we ask about upper bounds for sep( ๐‘“ ) in terms of ๐‘€ ( ๐‘“ ). Naรฏvely, Lemma 1.22 gives an upper bound on separation in terms of the height of the polynomial, which can then be translated into a bound on separation in terms of the Mahler measure. Lemma 1.22 indicates that any two roots of ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] of degree ๐‘› must satisfy |๐›ผ โˆ’ ๐›ฝ | < 2 + 2๐ป ( ๐‘“ ) and by Lem(ma 1.2)7, we find that ๐‘› sep( ๐‘“ ) < 2 + 2 โŒŠ / ๐‘€ ( ๐‘“ ). (1.7)๐‘› 2โŒ‹ However, this is a crude estimate and can be dramatically improved, as we will show in Proposition 3.4. We conjecture that this estimate can be improved in the following way: Conjecture 1.33. Suppose ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] is monic and separable of degree ๐‘› โฉพ 2. If ๐‘“ (๐‘ฅ) has any real roots, then sep( ๐‘“ ) โ‰ช๐‘› ๐‘€ ( ๐‘“ )1/(๐‘›โˆ’1) . If ๐‘“ (๐‘ฅ) has only nonreal roots, then sep( ๐‘“ ) โ‰ช 1/๐‘›๐‘› ๐‘€ ( ๐‘“ ) . We support this conjecture with data, families of examples, and the following theorem. Theorem 1.34. Let ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] be monic and separable with deg( ๐‘“ ) = ๐‘› โฉพ 2 and suppose that any of the following conditions is met. 1. deg( ๐‘“ ) = 2. 2. deg( ๐‘“ ) = 3. 3. deg( ๐‘“ ) = 4 and ๐‘“ (๐‘ฅ) has no real roots. 27 4. Every root of ๐‘“ (๐‘ฅ) is real. Then if ๐‘“ (๐‘ฅ) has any real roots, sep( ๐‘“ ) โ‰ช ๐‘€ ( ๐‘“ )1/(๐‘›โˆ’1)๐‘› . If ๐‘“ (๐‘ฅ) has only nonreal roots, then sep( ๐‘“ ) โ‰ช ๐‘€ ( ๐‘“ )1/๐‘›๐‘› . We prove this theorem in pieces and we consider each condition separately. We mainly prove this by analyzing the geometry of possible root locations in the complex plane. 28 CHAPTER 2 THUE EQUATIONS 2.1 Introduction Axel Thue, in [Thu09], showed that when โ„Ž is an integer and when ๐น (๐‘ฅ, ๐‘ฆ) is an irreducible integral binary form (recall Definition 1.10) with degree ๐‘› โฉพ 3, the equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž has only finitely many integer-pair solutions. We have previously stated this equation as equation (1.3) and we will continue to use this number to refer to it during this chapter. Recall that we will only use the word โ€œsolutionโ€ to refer to integer-pair solutions. It is worth noting first that the each of the hypotheses is necessary. The famous Pell equation ๐‘ฅ2 โˆ’ ๐‘‘๐‘ฆ2 = 1 has infinitely many integer solutions and it meets every hypothesis except for deg(๐น) โฉพ 3. If ๐น (๐‘ฅ, ๐‘ฆ) is not required to be irreducible, then it may have a linear factor, say ๐‘š๐‘ฅ โˆ’ ๐‘›๐‘ฆ. But then any multiple of the pair (๐‘›, ๐‘š) will satisfy ๐น (๐‘ฅ, ๐‘ฆ) = 0 and this will give infinitely many solutions to ๐น (๐‘ฅ, ๐‘ฆ) = 0. If ๐น (๐‘ฅ, ๐‘ฆ) is not required to be homogeneous, then again we can acquire infinitely many solutions to ๐น (๐‘ฅ, ๐‘ฆ) = 0 as, for example, the equation ๐‘ฅ6 + ๐‘ฆ3 = 0 has infinitely many solutions of the form (๐‘›,โˆ’๐‘›2). As a consequence of Thueโ€™s result, the inequality |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž (2.1) also has finitely many integer-pair solutions. This inequalityโ€”called Thueโ€™s Inequalityโ€”can often be easier to work with because it treats the solutions to the equations |๐น (๐‘ฅ, ๐‘ฆ) | = 1, . . . , |๐น (๐‘ฅ, ๐‘ฆ) | = โ„Ž in aggregate so we deal primarily with Thueโ€™s inequality in this paper. Several natural questions arise from Thueโ€™s results such as 1. How many solutions are there to (2.1)? 2. How large are solutions to (2.1)? 3. On which features of ๐น and โ„Ž do the solutions to (2.1) depend? This chapter largely handles the first question, though of course the second and third questions are related. In particular, the number of nonzero summands of ๐น (๐‘ฅ, ๐‘ฆ) significantly impacts the number of solutions to (2.1). 29 The rough reasoning for this is as follows: a solution (๐‘, ๐‘ž) to (2.1) gives a good rational approximation ๐‘/๐‘ž to a root of ๐‘“ (๐‘‹) := ๐น (๐‘‹, 1) as we saw previously in Proposition 1.13. The only roots of ๐‘“ (๐‘‹) which ought to allow good rational approximations are the real roots of ๐‘“ (๐‘‹). It is the number of nonzero coefficients of ๐‘“ (๐‘‹) that controls the number of real roots of ๐‘“ (๐‘‹), as we previously saw in Lemma 1.21, so we expect the number of nonzero summands of ๐‘“ (๐‘‹) to play a role in bounding the number of solutions to (2.1). Moreover, this connection between solutions to (2.1) and rational approximations to roots of ๐‘“ (๐‘‹) gives us reason to initially count only the solutions (๐‘, ๐‘ž) with gcd(๐‘, ๐‘ž) = 1: pairs (๐‘, ๐‘ž) with gcd(๐‘, ๐‘ž) = 1 and ๐‘ž > 0 are in bฤณection with rational numbers ๐‘/๐‘ž. This motivates the following definition. Definition 2.1. A pair (๐‘, ๐‘ž) โˆˆ Z2 is said to be primitive if gcd(๐‘, ๐‘ž) = 1. Once we have a bound on the number of primitive solutions to (2.1), we can often use these to bound the total number of solutions to (2.1) with partial summation techniques (see the discussion after the statement of Proposition 3 in [MS88], for instance). Our first theorem regards asymptotic bounds on the number of primitive solutions to (2.1), so take a moment to review the definition of theโ‰ช symbol from Notation 1.15. Additionally, we introduce the following piece of notation: Notation 2.2. Let ๐‘ (๐น, โ„Ž) denote the total number of primitive integer-pair solutions to (2.1). Mueller and Schmidt in [MS88] prove that Theorem 2.3 (Mueller and Schmidt). Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 with ๐‘  + 1 nonzero coefficients and let โ„Ž be a positive integer. The number of primitive integer solutions of the inequality |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž satisfies ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ 2โ„Ž2/๐‘› (1 + log โ„Ž1/๐‘›). (2.2) Moreover, if ๐‘› โฉพ ๐‘  log3 ๐‘ , then ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ 2โ„Ž2/๐‘›. In the same paper, Mueller and Schmidt conjecture that the exponent on ๐‘  can be improved. We later explain the heuristics behind this conjecture and state their conjecture as Conjecture 2.5. Our theorem (which is stated first as Theorem 1.16, but reprinted here for convenience) improves the exponent on ๐‘  at the cost of a stronger assumption on ๐‘›. 30 The parameter ฮฆ will be defined at the beginning of Section 2.3 and it satisfies log3(๐‘ ) โ‰ช ๐‘’ฮฆ โ‰ช ๐‘ . Theorem. Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 with ๐‘  + 1 nonzero coefficients and let โ„Ž be a positive integer. Then if ๐‘› > 4๐‘ ๐‘’2ฮฆ, the total number of primitive solutions to |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž satisfies ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘›. (2.3) Since the number of nonzero summands plays such an important role, we have names for polynomials which meet specific values of ๐‘ . Definition 2.4. If a polynomial has exactly two nonzero summands, it is called a binomial; if it has exactly three nonzero summands, it is called a trinomial; and if it has exactly four nonzero summands, it is called a tetranomial. Authors such as Bennett [Ben01], Evertse [Eve82], Grundman and Wisniewski [GW13], Hyyrรถ [Hyy64], Mueller [Mue87], Mueller and Schmidt [MS87], and Thomas [Tho00] have examined binomial, trinomial, and tetranomial Thue equations in hopes to get a better handle on how the number of nonzero summands of ๐น (๐‘ฅ, ๐‘ฆ) affect the number of solutions to Thue equations. In particular, Bennettโ€™s result that there is at most one solution in positive integers to ๐น (๐‘ฅ, ๐‘ฆ) = 1 for binomial ๐น (๐‘ฅ, ๐‘ฆ) is worth mentioning because that is the best possible result: the infinite family of binomial Thue equations (๐‘Ž + 1)๐‘ฅ๐‘› โˆ’ ๐‘Ž๐‘ฆ๐‘› = 1 always has a solution at ๐‘ฅ = 1, ๐‘ฆ = 1. In this chapter, we will also improve explicit bounds for the number of solutions to the Thue equation |๐น (๐‘ฅ, ๐‘ฆ) | = 1 (2.4) in the particular case that ๐น (๐‘ฅ, ๐‘ฆ) is a trinomial. The case where โ„Ž = ยฑ1 is foundational to the study of Thue equations as many bounds for general โ„Ž can be derived from knowing the number of solutions to |๐น (๐‘ฅ, ๐‘ฆ) | = 1. We will discuss this in more detail at the beginning of Section 2.2. 31 In the setting where ๐น (๐‘ฅ, ๐‘ฆ) is a trinomial, Thomas showed in [Tho00] that there are no more than 2๐‘ฃ(๐‘›)๐‘ค(๐‘›) + 8 distinct integer pair solutions to |๐น (๐‘ฅ, ๐‘ฆ) | = 1 when ๐น (๐‘ฅ, ๐‘ฆ) โˆˆ Z[๐‘ฅ, ๐‘ฆ] is a trinomial irreducib๏ฃด๏ฃฑle binary form of degree ๐‘› โฉพ 3 where๏ฃด๏ฃฒ๏ฃด๏ฃด3 if ๐‘› is odd๐‘ฃ(๐‘›) = ๏ฃณ4 if ๐‘› is even and ๐‘ค(๐‘›) is defined by the following table. ๐‘› 51 6 7 8 9 10โ€“11 12โ€“16 17โ€“37 โฉพ 38 ๐‘ค(๐‘›) 271 16 13 11 9 8 7 6 5 1 There is an error in the proof of Lemma 4.1 in [Tho00]: it is claimed that ๐‘๐‘กโˆ’1 ๐‘กโˆ’1 < ๐‘ which is not the case for the choice of๐‘ ๐‘ = 1.5when ๐‘› = 5. Tracing this error through to its conclusion, the author believes that this is not correctable and that Thomasโ€™ work does not yield a result when ๐‘› = 5. We are able to improve the bounds that Thomas provides and we have the following theorem (stated first as Theorem 1.17, but reprinted here for convenience). Theorem. Let ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž ๐‘› ๐‘˜ ๐‘›โˆ’๐‘˜ ๐‘›๐‘›๐‘ฅ + โ„Ž๐‘˜๐‘ฅ ๐‘ฆ + โ„Ž0๐‘ฆ where โ„Ž๐‘›, โ„Ž๐‘˜ , โ„Ž0, ๐‘›, ๐‘˜ โˆˆ Z with 0 < ๐‘˜ < ๐‘›. Suppose that ๐น (๐‘ฅ, ๐‘ฆ) is irreducible over Z[๐‘ฅ, ๐‘ฆ] and ๐‘› โฉพ 6. Then there are at most 2๐‘ฃ(๐‘›)๐‘ง(๐‘›) + 8 distinct integer pair s๏ฃฑ๏ฃดolutions to the equation |๐น (๐‘ฅ, ๐‘ฆ) | = 1 where๏ฃด๏ฃฒ๏ฃด๏ฃด3 if ๐‘› is odd๐‘ฃ(๐‘›) = ๏ฃณ4 if ๐‘› is even and ๐‘ง(๐‘›) is defined by the following table. ๐‘› 6 7 8 9 10โ€“11 12โ€“16 17โ€“37 38โ€“216 โฉพ 217 ๐‘ง(๐‘›) 15 12 11 9 8 7 6 5 4 Both of our main results are primarily derived from an improvement in efficiency to a counting technique associated with the gap principle (see Lemma 2.19). 2.2 Conjectures and Heuristics Baker in [Bak67] showed that integer solutions to (2.1) all satisfy max( |๐‘ฅ |, |๐‘ฆ |) < ๐ถ๐‘’(log โ„Ž)๐œ… where ๐œ… is any real number larger than the degree of ๐น and ๐ถ is an effectively computable constant depending only on ๐น and ๐œ…. This result provides some 32 insight to the number of solutions to (2.1) in that it gives an upper bound for the number of solutions. Explicitly, the total number of integer pairs (๐‘ฅ, ๐‘ฆ) satisfying ๐œ… max( |๐‘ฅ |, |๐‘ฆ |) < ๐ถ๐‘’(log โ„Ž) is (2โŒŠ๐ถ๐‘’(log โ„Ž)๐œ… โŒ‹ + 1)2. Then the number of integer pair solutions to (2.1) must also be no larger than (2โŒŠ ๐œ…๐ถ๐‘’(log โ„Ž) โŒ‹ + 1)2, though this upper bound is not sharp. In particular, we can see that the dependence of the upper bound on โ„Ž can be much improved by considering the geometry of the situation. The set ๐‘†(๐น, โ„Ž) := {(๐‘ฅ, ๐‘ฆ) โˆˆ R2 : |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž} is a star body of finite volume (the latter claim is true, though non-obvious) and intuition from the geometry of numbers indicates that the number of integer pair solutions to (2.1)โ€”which correspond exactly to the integer lattice points inside ๐‘†(๐น, โ„Ž)โ€”should be approximately equal to vol(๐‘†(๐น, โ„Ž)). But if ๐น has degree ๐‘›, then vol(๐‘†(๐น, โ„Ž)) = vol{{(๐‘ฅ, ๐‘ฆ) โˆˆ R2 : | ๐น ((๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž} )๐‘ฅ ๐‘ฆ } = vol (๐‘ฅ, ๐‘ฆ) โˆˆ R2 : ๐น , 1/ โฉฝ 1โ„Ž ๐‘› โ„Ž1/๐‘› = vol{(โ„Ž1/๐‘›๐‘ฅ, โ„Ž1/๐‘›๐‘ฆ) โˆˆ R2 : |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ 1} = โ„Ž2/๐‘› vol(๐‘†(๐น, 1)). Based on this fact, we might guess that the number of solutions to to (2.1) is bounded above by a constant depending on ๐น times โ„Ž2/๐‘›. This turns out to be the case as Mahler in [Mah33] showed that the number of solutions to (2.1) is equal to vol(๐‘†(๐น, 1))โ„Ž2/๐‘› +๐‘‚ (โ„Ž1/(๐‘›โˆ’1)๐น ). Since this essentially gives the dependence on โ„Ž of the number of solutions to (2.1) when โ„Ž is large, it more or less remains to examine how many solutions there are to (2.4) and multiply that result by โ„Ž2/๐‘›. From here, note that we have already observed in our discussion after Lemma 1.21 that solutions to (2.4) yield good rational approximations of relatively few roots of ๐น (๐‘ฅ, 1) 33 and ๐น (1, ๐‘ฆ). Specifically, solutions yield good rational approximations to one of no more than 8๐‘  + 12 algebraic numbers in the sense of Proposition 1.14. If there are boundedly many good rational approximations per root (as seems plausible, though we have not argued for this) and the number of roots which solutions can approximate is no more than a constant times ๐‘ , then we would expect that the number of solutions to (2.4) would be no more than a constant times ๐‘ . Adding in dependence on โ„Ž, we arrive at the following conjecture which Mueller and Schmidt made in [MS88]. Conjecture 2.5 (Mueller and Schmidt). Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 with ๐‘  + 1 nonzero coefficients and let โ„Ž be a positive integer. The number of primitive solutions of |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž satisfies ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ โ„Ž2/๐‘›. This remains a conjecture at the moment, though there are quite a few results moving in the direction of this bound. Initial work was done by Schmidt in [Sch87] to show that the total number of solutions to (2.1) satisfies ๐‘ (๐น, โ„Ž) โ‰ช (๐‘›๐‘ )1/2โ„Ž2/๐‘› (1 + log โ„Ž2/๐‘›). (2.5) Mueller and Schmidt later eliminated the dependence of the bound on the degree ๐‘› and replaced it by a more suitable dependence on ๐‘ . This is where Theorem 2.3, which is from [MS88], enters the picture. Thunder improves the logarithmic factor of (2.2) in [Thu95] when โ„Ž is large relative to the discriminant of ๐น and Akhtari and Bengoechea in [AB20] have improved both the exponent on ๐‘  and the logarithmic factor when โ„Ž is small relative to the discriminant of ๐น. Saradha and Sharma in [SS17] improve the exponent on ๐‘  without assuming any restrictions on โ„Ž. When โ„Ž is small compared to the coefficients of ๐น, one might expect that neither โ„Ž nor the specific coefficients of ๐น play a serious role in the number of solutions to (2.1). To that end, letting ๐ป (๐น) denote the height of ๐น (๐‘ฅ, ๐‘ฆ) (recall Definition 1.12), Mueller and Schmidt in [MS88] gave the following conjecture: Conjecture 2.6 (Mueller and Schmidt). Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 with ๐‘  + 1 nonzero coefficients and let โ„Ž be a positive integer. If ๐œŒ > 0 and ๐‘  โ„Ž โฉฝ ๐ป (๐น)1โˆ’ โˆ’๐œŒ๐‘› , then the number of primitive solutions to |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž is less than or equal to a function of only ๐‘  and ๐œŒ. 34 Mueller in [Mue87] and Mueller and Schmidt in [MS87] have confirmed Conjecture 2.6 in the cases of ๐‘  = 1, 2 while Thomas in [Tho00], and Grundman and Wisniewski in [GW13] provide evidence for this conjecture in the cases of ๐‘  = 2, 3, but the conjecture remains open otherwise. Techniques in these cases are varied and often rely on the improved approximation results one can acquire by fixing a small value of ๐‘ . Alternatively, one could compare the size of โ„Ž to the discriminant of ๐น and in that case, Akhtari and Bengoechea in [AB20] show that Theorem 2.7 (Akhtari and Bengoechea). Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 with ๐‘  + 1 nonzero coefficients and let โ„Ž be a positive integer. If ๐น has discriminant ฮ”๐น and 1 |ฮ” | 8(๐‘›โˆ’1) 0 ๐น< โ„Ž < , (3 2๐‘›800 log ๐‘›)๐‘›/2(๐‘›๐‘ )2๐‘ +๐‘› then the number of primitive solutions to the ine(quality |๐น (๐‘ฅ, ๐‘ฆ) |)โฉฝ โ„Ž satisfies ๐‘ ( 1๐น, โ„Ž) โ‰ช ๐‘  log ๐‘ min 1, . log ๐‘› โˆ’ log ๐‘  2.3 Notation and Definitions Throughout the chapter,โˆ‘we use the following notation. Suppose that ๐น (๐‘ฅ, ๐‘ฆ) = ๐‘ ๐‘–=0 ๐‘Ž ๐‘›๐‘– ๐‘›โˆ’๐‘›๐‘–๐‘–๐‘ฅ ๐‘ฆ โˆˆ Z[๐‘ฅ, ๐‘ฆ] is an irreducible binary form of degree ๐‘› โฉพ 3 with each ๐‘Ž๐‘– โ‰  0 so that ๐น (๐‘ฅ, ๐‘ฆ) has exactly ๐‘  + 1 nonzero coefficients. Set ๐ป = ๐ป (๐น) to be the height of ๐น and let โ„Ž be a positive integer. Following Akhtari and Bengoechea in [AB20], define 2 3 ๐‘… = ๐‘›800 log โˆš๏ธ๐‘› = ๐‘’800 log ๐‘›, ๐ถ = ๐‘…โ„Ž(2๐ป ๐‘›(๐‘› + 1))๐‘›. Following Saradha and Sharma in [SS(1โˆ‘๏ธ7], define )๐‘–โˆ’1 1 โˆ‘๏ธ๐‘  1 ฮจ = max max , , 0โฉฝ๐‘–โฉฝ๐‘  0 ๐‘›๐‘– โˆ’ ๐‘›= ๐‘ค = +1 ๐‘›๐‘ค โˆ’ ๐‘›๐‘–๐‘ค ๐‘ค ๐‘– ฮฆ = max(ฮจ, 3 log log ๐‘ ). Saradha and Sharma in [SS17] note that ๐‘’ฮจ โ‰ช ๐‘ , so that log3 ๐‘  โ‰ช ๐‘’ฮฆ โ‰ช ๐‘ . 35 Again followingโˆšAโˆškhtari and Bengoechea in [AB20], select constants ๐‘Ž and ๐‘ so that 0 < ๐‘Ž < ๐‘ < 1 and 2 3+๐‘Ž21โˆ’ < 3โˆš๏ธ. Then set๐‘ 2(๐‘› + ๐‘Ž2) ๐œ† = ( โˆ’ ,1 ๐‘ ) 1 ๐‘Œ๐‘† = (12 ๐‘›โˆ’2๐‘  ๐‘’ฮจ)๐‘›๐‘…2๐‘ โ„Ž , 1 โˆš ๐‘Œ = (2๐ถ) โˆ’ (4๐ป ๐‘› + 1๐‘’๐‘›/2)๐œ†/((๐‘›โˆ’๐œ†)๐‘Ž2)๐ฟ ๐‘› ๐œ† , ( )2( ฮจ)๐‘›/๐‘  1/๐‘  1โˆ’ 1๐พ = 2๐‘… ๐‘›๐‘  12๐‘’ โ„Ž ๐ป ๐‘› ๐‘  . For a pair x = (๐‘ฅ, ๐‘ฆ) โˆˆ Z2, define โŸจxโŸฉ = min( |๐‘ฅ |, |๐‘ฆ |), |x| = max( |๐‘ฅ |, |๐‘ฆ |). Then we make the following definitions. Definition 2.8. A pair x โˆˆ Z2 is small if โŸจxโŸฉ โฉฝ ๐‘Œ๐‘†, medium if ๐‘Œ๐‘† โฉฝ โŸจxโŸฉ and |x| < ๐‘Œ๐ฟ , and large if |x| โฉพ ๐‘Œ๐ฟ . To count the solutions of each type, we use the following notation. Notation 2.9. Let ๐‘๐ฟ (๐น, โ„Ž) denote the number of primitive large solutions to (2.1). Let ๐‘๐‘€ (๐น, โ„Ž) denote the number of primitive medium solutions to (2.1). Let ๐‘๐‘† (๐น, โ„Ž) denote the number of primitive small solutions to (2.1). Observe that the terms โ€œsmall,โ€ โ€œmedium,โ€ and โ€œlargeโ€ are all dependent on ๐น (๐‘ฅ, ๐‘ฆ) and โ„Ž and moreover, they are not necessarily disjoint categories. The essential strategy for counting solutions to (2.1) is to find bounds separately for the numbers of primitive small, medium, and large solutions. Even though there is some overlap in the classification of large, medium, and small solutions (and hence, some overcounting of the number of solutions), the existing techniques for counting the different types of solutions are so disparate that it is difficult to count the overlap in any meaningful way. 2.4 Previous Results Describing the best existing results is difficult because of the issue of โ€œmoving goalposts.โ€ Authors often try to prove something along the lines of โ€œthe number of 36 solutions to (2.1) is bounded by ๐‘“ (๐‘›, ๐‘ , โ„Ž)โ€ for an appropriate function ๐‘“ (๐‘›, ๐‘ , โ„Ž). To do this, they come up with an appropriate function ๐‘”(๐‘ ) and note something like โ€œif ๐‘› โฉฝ ๐‘”(๐‘ ), then (2.5) immediately implies that the number of solutions is bounded by ๐‘“ (๐‘›, ๐‘ , โ„Ž).โ€ Then the author will proceed to count small, medium, and large solutions under the assumption that ๐‘› > ๐‘”(๐‘ ). Hence, the โ€œbest countsโ€ for small, medium, and large solutions often depend on the authorโ€™s intended upper bound, ๐‘“ (๐‘›, ๐‘ , โ„Ž) and the best counts often have the form โ€œif ๐‘› > ๐‘”(๐‘ ), then the number of small/medium/large solutions is bounded ๐‘“ (๐‘›, ๐‘ , โ„Ž).โ€ In particular, if we wish to prove something like Conjecture 2.5, then we first must eliminate the logarithmic factor from (2.5) and even then, we can only use (2.5) to show Conjecture 2.5 under the assumption that ๐‘› โ‰ช ๐‘ . What follows is a necessarily incomplete list of some of the best existing bounds for counts of (primitive) large, medium, and small solutions, where we make sure to be clear about what assumptions the authors use when it comes to the size of ๐‘› relative to ๐‘ . Recall that ๐‘๐ฟ (๐น, โ„Ž), ๐‘๐‘€ (๐น, โ„Ž), and ๐‘๐‘† (๐น, โ„Ž) denote the number of primitive large, medium, and small solutions to (2.1) respectively. For each type of solution, we make sure to include a result where the author merely assumes ๐‘› โ‰ซ ๐‘ . 2.4.1 Large Solutions Mueller and Schmidt in [MS88] show that Lemma 2.10 (Mueller and Schmidt). For all ๐‘›, ๐‘๐ฟ (๐น, โ„Ž) โ‰ช ๐‘ . Of the three types of solutions, this is the smallest upper bound and also the one most closely aligned with Conjectures 2.5 and 2.6, so it has received little more attention than what is stated here. 2.4.2 Medium Solutions Turning our attention to medium solutions, Saradha and Sharma in [SS17] show that Lemma 2.11 (Saradha and Sharma). Whe(n ๐‘› > 4๐‘ ๐‘’2ฮฆ,๐‘  ( )) ๐‘ (๐น, โ„Ž) โ‰ช log ๐‘  + log 1 + โ„Ž1/๐‘›๐‘€ .ฮฆ Alternatively, Bengoechea in [Ben22] shows that 37 Lemma 2.12 (Bengoechea). When ๐‘› โฉพ 3๐‘ , ๏ฃด๏ฃฒ๏ฃด๏ฃด๏ฃด๏ฃฑ๏ฃด ( )1 + log โ„Ž1/๐‘›๐‘  4๏ฃด lo(g if ๐‘› โฉพ ๐‘  ๐ป ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๏ฃด๏ฃด๏ฃด๏ฃด(๐‘  log ๐‘ )๏ฃณ ( log โ„Ž1/ ) ๐‘› 1 + 2log ) if 9๐‘  โฉฝ ๐‘› < ๐‘ 4 .๐ป ( log ) 1 + ๐‘ +log โ„Ž 1/๐‘› ๐‘  ๐‘  log if ๐‘› < 9๐‘  2 ๐ป These two counts of medium solutions are hard to compare since log log ๐‘  โ‰ช ฮฆ โ‰ช log ๐‘ , so Saradha and Sharmaโ€™s result is better when 4๐‘ ๐‘’2ฮฆ < ๐‘› < ๐‘ 4 and Bengoecheaโ€™s is better otherwise. Additionally, Bengoecheaโ€™s result also incorporates the height ๐ป, which is advantageous toward proving Conjecture 2.6. Akhtari and Bengoechea in [AB20] consider the special case when โ„Ž is small relative to the discriminant of ๐น. They show the following lemma. Lemma 2.13 (Akhtari and Bengoechea). If ๐น has discriminant ฮ”๐น and 1 |ฮ”๐น | 8(๐‘›โˆ’1)0 < โ„Ž < , (3๐‘›800 log2 ๐‘›)๐‘›/2(๐‘›๐‘ )2๐‘ +๐‘› then ( ) ๐‘๐‘€ ( 1 ๐น, โ„Ž) โ‰ช ๐‘  log ๐‘ min 1, . log ๐‘› โˆ’ log ๐‘  2.4.3 Small Solutions Next, we examine results for small solutions. Saradha and Sharma in [SS17] show Lemma 2.14 (Saradha and Sharma). There exist constants ๐‘7 and ๐‘8 so that if ๐‘› > 4๐‘ ๐‘’2ฮฆ, then ๐‘ ๐‘7 (log ๐‘ )๐‘’ โˆ’2ฮฆ 2 ฮฆ+๐‘8(log3 ๐‘ )๐‘’โˆ’ฮฆ 1 ๐‘† (๐น, โ„Ž) โ‰ช ๐‘’ โ„Ž ๐‘› + ๐‘ ๐‘’ โ„Ž ๐‘›โˆ’2๐‘  . After simplifying, we get Corollary 2.15. When ๐‘› > 4๐‘ ๐‘’2ฮฆ, ๐‘๐‘† (๐น, โ„Ž) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘›. 38 With fewer restrictions on the values of ๐‘›, Mueller and Schmidt in [MS88] show that Lemma 2.16 (Mueller and Schmidt). Let 3๐‘2 = (๐‘›๐‘ 2)2๐‘ /๐‘› and ๐‘ = ๐‘ 2๐‘’(3300๐‘  log ๐‘›)/๐‘›3 . When ๐‘› โฉพ 4๐‘ , ๐‘ 2/๐‘›๐‘† (๐น, โ„Ž) โ‰ช ๐‘2โ„Ž + ๐‘ โ„Ž1/(๐‘›โˆ’2๐‘ )3 . If in addition ๐‘› โฉพ ๐‘  log3 ๐‘ , then ๐‘๐‘† (๐น, โ„Ž) โ‰ช โ„Ž2/๐‘› + ๐‘ 2โ„Ž1/(๐‘›โˆ’2๐‘ ) . In the most general ๐‘› โฉพ 4๐‘  case, we may use the fact that ๐‘2 and ๐‘3 are decreasing functions of ๐‘› to acquire the corollary Corollary 2.17 (Mueller and Schmidt). When ๐‘› โฉพ 4๐‘ , ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ 2๐‘’825 log3 4๐‘ ๐‘† โ„Ž2/๐‘›. Again, when โ„Ž is small relative to the discriminant of ๐น, Akhtari and Bengoechea show in [AB20] that Lemma 2.18 (Akhtari and Bengoechea). If ๐น has discriminant ฮ”๐น and 1 |ฮ” | 8(๐‘›โˆ’1) 0 ๐น< โ„Ž < , (3๐‘›800 log2 ๐‘›)๐‘›/2(๐‘›๐‘ )2๐‘ +๐‘› then ๐‘๐‘† (๐น, โ„Ž) โฉฝ 12๐‘  + 16. 2.5 Technical Results The main technical accomplishment of this chapter is the following version of a counting technique often used in conjunction with โ€œThe Gap Principle.โ€ Lemma 2.19. Suppose that ๐ฟ, ๐‘€,๐‘‡, ๐‘, ๐‘ฆ0, . . . , ๐‘ฆโ„“ are positive real numbers satisfying the following conditions: 1. ๐ฟ โฉฝ ๐‘ฆ0 โฉฝ . . . โฉฝ ๐‘ฆโ„“ โฉฝ ๐‘€ 2. ๐‘ > 2 3. ๐ฟ๐‘โˆ’2 > ๐‘‡ 39 4. ๐‘โˆ’1๐‘ฆ๐‘–+1 โฉพ ๐‘‡โˆ’1๐‘ฆ for each 0 โฉฝ ๐‘– < โ„“๐‘– Then [ log(๐‘€๐‘‡โˆ’1/(๐‘โˆ’2) ] log )log(๐ฟ๐‘‡โˆ’1/(๐‘โˆ’2)) โ„“ โฉฝ . log(๐‘ โˆ’ 1) The purpose of this lemma is to bound the number of real numbers ๐‘ฆ0, . . . , ๐‘ฆโ„“ that could live between two fixed bounds ๐ฟ and ๐‘€ under certain assumptions on how far apart ๐‘ฆ0, . . . , ๐‘ฆโ„“ must be. If, for instance, we knew that ๐ฟ โฉฝ ๐‘ฆ0 < ๐‘ฆ1 < ยท ยท ยท < ๐‘ฆโ„“ โฉฝ ๐‘€ and we knew that there were a ๐›ฟ > 0 so that ๐‘ฆ๐‘– โฉพ ๐‘ฆ๐‘–โˆ’1 + ๐›ฟ (the condition giving the โ€œgapโ€), then we would know that โ„“ โฉฝ ๐‘€โˆ’๐ฟ+1 . Lemma 2.19 instead counts the number of ๐‘ฆ๐‘– which could๐›ฟ live between ๐ฟ and ๐‘€ under the gap condition that โˆ’1 ๐‘โˆ’1๐‘ฆ๐‘–+1 โฉพ ๐‘‡ ๐‘ฆ .๐‘– Lemma 2.19 is comparable to Lemma 1 in [SS17]. However, by fixing any ๐ฟ > 0, ๐‘ > 2, โ„“ โˆˆ Z>0, and 0 < ๐‘‡ < ๐ฟ๐‘โˆ’2, then setting ๐‘ฆ0 = ๐ฟ, = โˆ’1 ๐‘โˆ’1๐‘ฆ๐‘– ๐‘‡ ๐‘ฆ โˆ’1 , and ๐‘€ = ๐‘ฆโ„“, one๐‘– can see that this upper bound is sharp where the upper bound in Lemma 1 of [SS17] is not. Proof. We first argue by induction that for each 1 โฉฝ ๐‘– โฉฝ โ„“, we have โˆ‘ (๐‘โˆ’1) ๐‘– ๐‘ฆ โฉพ โ„“โˆ’๐‘–๐‘ฆโ„“ ๐‘–โˆ’1 . (2.6) ๐‘—=0 (๐‘โˆ’1) ๐‘—๐‘‡ This is clearly true for ๐‘– = 0 so now suppose that it is true for generic 0 โฉฝ ๐‘– < โ„“. Then we have (๐‘โˆ’1)๐‘– ๐‘ฆ โฉพ โˆ‘ โ„“โˆ’๐‘–๐‘ฆโ„“ ( ๐‘–โˆ’1 (๐‘)โˆ’1) ๐‘—๐‘‡ ๐‘—=0 ๐‘โˆ’1 (๐‘โˆ’1)๐‘– ๐‘ฆ โ„“โˆ’๐‘–โˆ’1 โฉพ โˆ‘๐‘‡๐‘–โˆ’1 ๐‘—=0 (๐‘โˆ’1) ๐‘—๐‘‡ โˆ‘(๐‘โˆ’1) ๐‘–+1 ๐‘ฆ = โ„“โˆ’๐‘–โˆ’1 ๐‘– ๐‘—=0 (๐‘โˆ’1) ๐‘—๐‘‡ which completes the induction. Hence, we can take ๐‘– = โ„“ in inequality (2.6) to get ๐‘€ โฉพ ๐‘ฆโ„“ โ„“ โฉพ โˆ‘ (๐‘โˆ’1)๐‘ฆ0โ„“โˆ’1 ๐‘— ๐‘‡ ๐‘—=0 (๐‘โˆ’1) 40 (๐‘โˆ’1)โ„“ ๐‘ฆ = 0 (๐‘โˆ’1)โ„“โˆ’1 ๐‘‡ ๐‘โˆ’2 ๐ฟ (๐‘โˆ’1) โ„“ โฉพ . (๐‘โˆ’1)โ„“โˆ’1 ๐‘‡ ๐‘โˆ’2 We then multiply both sides of ๐ฟ (๐‘โˆ’1) โ„“ ๐‘€ โฉพ (๐‘โˆ’1)โ„“โˆ’1 ๐‘‡ ๐‘โˆ’2 by ๐‘‡โˆ’1/(๐‘โˆ’2) to get ( ) โ„“ ๐‘€๐‘‡โˆ’1/(๐‘โˆ’2) โˆ’1/( (๐‘โˆ’1) โฉพ ๐ฟ๐‘‡ ๐‘โˆ’2) . Taking a log on both sides (and usi(ng the fact th)at ๐ฟ๐‘‡โˆ’1/(๐‘โˆ’2) > 1) yields log (๐‘€๐‘‡โˆ’1/(๐‘โˆ’2) โ„“ log ๐ฟ๐‘‡โˆ’1/( โˆ’2) ) โฉพ (๐‘ โˆ’ 1) ๐‘ and taking logs again and using the fact that ๐‘ > 2 yields the desired inequality. โ–ก There is another technical lemma that we will regularly use in our later estimations. In the following lemma, the condition that ๐‘”(๐‘ฅ) > 1 + ๐›ฟ is necessary and it adds unfortunate complication to the statements of some later results. Lemma 2.20. Suppose that ๐‘“ (๐‘ฅ) and ๐‘”(๐‘ฅ) are functions Rโ†’ R>0 and that there exist absolute constants ๐›ฟ, ๐‘˜ > 0 so that ๐‘”(๐‘ฅ) > 1 + ๐›ฟ for all ๐‘ฅ and ๐‘“ (๐‘ฅ) โ‰ช ๐‘”(๐‘ฅ)๐‘˜ . Then log ๐‘“ (๐‘ฅ) โ‰ช log ๐‘”(๐‘ฅ). Proof. The statement ๐‘“ (๐‘ฅ) โ‰ช ๐‘”(๐‘ฅ)๐‘˜ means that there exists ๐‘ so that ๐‘“ (๐‘ฅ) โฉฝ ๐‘๐‘”(๐‘ฅ)๐‘˜ . Taking logs of both sides gives log ๐‘“ (๐‘ฅ) โฉฝ ๐‘˜ log ๐‘”(๐‘ฅ) + log ๐‘ and dividing by log ๐‘”(๐‘ฅ) gives log ๐‘“ (๐‘ฅ) ๐‘˜ log ๐‘”(๐‘ฅ) + log ๐‘ log ๐‘ log ๐‘ ( ) โฉฝ ( ) = ๐‘˜ + ( ) โฉฝ ๐‘˜ +log ๐‘” ๐‘ฅ log ๐‘” ๐‘ฅ log ๐‘” ๐‘ฅ log(1 + ๐›ฟ) which implies that log ๐‘“ (๐‘ฅ) โ‰ช log ๐‘”(๐‘ฅ). โ–ก We next prove a technical inequality that we will use later. Lemma 2.21. Suppose that ๐‘Ž, ๐‘ > 0. Then log(๐‘Ž + ๐‘) โฉฝ log+ ๐‘Ž + log+ ๐‘ + log 2. 41 Proof. Suppose that ๐‘Ž < 1. If ๐‘ < 1, then log(๐‘Ž + ๐‘) < log(2) and we are done. Hence, we may assume that ๐‘ โฉพ 1. Then we have log(๐‘Ž + ๐‘) โฉฝ log(1 + ๐‘) โฉฝ log(2๐‘) = log ๐‘ + log 2 โฉฝ log+ ๐‘Ž + log+ ๐‘ + log 2 and we are done. A similar argument works if ๐‘ < 1, so assume that ๐‘Ž, ๐‘ โฉพ 1 for the rest of the proof. Note that ๐‘Ž + ๐‘ โฉฝ 2 max(๐‘Ž, ๐‘) โฉฝ 2๐‘Ž๐‘ and taking logs on both sides yields the desired result. โ–ก Finally, we separate out another technical lemma that will be useful exactly once later. Lemma 2.22. Suppose that ๐ด,๐ถ > 0, ๐ต โฉพ 1 and that ๐ด๐ถ > 1. Let ๐œ€1, ๐œ€2 > 0 and suppose further that ๐ด๐œ€2/๐œ€1 โฉฝ ๐ถ. Then log(๐ด๐ต๐œ€1) ๐œ€1 โฉฝ . log(๐ด๐ต๐œ€1+๐œ€2๐ถ) ๐œ€1 + ๐œ€2 Proof. Observe that since ๐ด๐œ€2/๐œ€1 โฉฝ ๐ถ, we have ๐œ€1+๐œ€2 ๐ด ๐œ€1 โฉฝ ๐ด๐ถ and hence, ๐œ€1+๐œ€2 ๐ด ๐œ€1 ๐ต๐œ€1+๐œ€2 โฉฝ ๐ด๐ต๐œ€1+๐œ€2๐ถ. Taking logs on both sides yields ๐œ€1+๐œ€2 log(๐ด ๐œ€1 ๐ต๐œ€1+๐œ€2) โฉฝ log(๐ด๐ต๐œ€1+๐œ€2๐ถ) and using the facts that ๐ด๐ถ > 1 and ๐ต โฉพ 1 to conclude that the log on the right-hand side is positive, we then con(clude)that ( ๐œ€1+๐œ€2 ) ๐œ€1+๐œ€2 log(๐ด๐ต๐œ€1) log ๐ด ๐œ€1 ๐ต๐œ€1+๐œ€2 ๐œ€1 log( + = โฉฝ 1.๐ด๐ต๐œ€1 ๐œ€2๐ถ) log (๐ด๐ต๐œ€1+๐œ€2๐ถ) Therefore, log(๐ด๐ต๐œ€1) ๐œ€1 log( โฉฝ๐ด๐ต๐œ€1+๐œ€2๐ถ) ๐œ€1 + ๐œ€2 as desired. โ–ก 42 2.6 Asymptotic Results 2.6.1 Improved Bounds on the Number of Medium Solutions to Thueโ€™s Inequality In this section, we focus on improving the bounds on the number of primitive medium solutions to (2.1). This will eventually allow us to prove Theorem 1.16 by using our new bounds for the number of primitive medium solutions along with othersโ€™ bounds for the number of primitive small and large solutions. The least restrictive claim we are able to make about the number of primitive medium solutions to (2.1) is the following: Lemma 2.23. Let ๐‘๐‘€ (๐น, โ„Ž) be the number of primitive medium solutions of |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž. Suppose further that ๐‘› โฉพ 3๐‘ . T(hen ) log 3/2 + log โ„Ž๐‘› max(1,log๐ป) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท log( ๐‘› โˆ’ ) .1 ๐‘  After showing this lemma, we will show: Lemma 2.24. In the region of the ๐‘›๐‘ -plan(e cut out by ๐‘› โฉพ 3๐‘ ), ๐‘  โฉพ 1, the function log 3/2 + log โ„Ž๐‘› max(1,log๐ป) ๐‘”(๐‘›, ๐‘ ) = ( ) log ๐‘› โˆ’ 1 ๐‘  has ๐œ•๐‘” < 0. Hence, for any fixed ๐‘  and subset ๐ผ โІ [3๐‘ ,โˆž) with ๐ผ having a minimal ๐œ•๐‘› element ๐‘›0, max ๐‘”(๐‘›, ๐‘ ) = ๐‘” (๐‘›0, ๐‘ ) . ๐‘›โˆˆ๐ผ From this, we will acquire a number of corollaries, including the following theorem, which we will immediately prove. Theorem 2.25. Let ๐น (๐‘ฅ, ๐‘ฆ) be an irreducible integral binary form of degree ๐‘› โฉพ 3 which has ๐‘  + 1 nonzero coefficients. Let ๐ป( be a po(sitive integer. Then if ๐‘›))โฉพ 3๐‘ , ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  1 + log โ„Ž log ๐‘  + ( ( )) . (2.7)max 1, log๐ป ๐น Proof. By Lemma 2.24 with ๐ผ = [3๐‘ ,โˆž), we can substitute ๐‘› = 3๐‘  into the result from Lemma 2.23 and follow that with an applicatio(n of Lemma 2.20 us)ing ๐‘“ (๐‘ ) = 33/2 3/2 + log โ„Ž๐‘  ( ) , ๐‘”( ) + log โ„Ž 3 ๐‘  = ๐‘’ ๐‘  , ๐‘˜ = , and ๐›ฟ = 1. max 1, log๐ป max(1, log๐ป) 2 43 This yields log(33/2๐‘ 3/2 + log โ„Ž ( ) โ‰ช ยท( ( max(1,log ) ๐ป) ๐‘๐‘€ ๐น, โ„Ž ๐‘  log 2 )) โ‰ช + + log โ„Ž๐‘  1 log ๐‘  ( ) .max 1, log๐ป โ–ก In the context of trying to prove Conjecture 2.6 and in analogue to Lemma 2.13, we can say Corollary 2.26. In addition to the hypotheses of Theorem 2.25, suppose that โ„Ž โฉฝ ๐ป. Then ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘ (1 + log ๐‘ ). This means that in pursuit of Conjecture 2.6, one only need prove the conjecture for small solutions. Corollary 2.27. In addition to the hypotheses of Theorem 2.25, suppose that ๐‘› โฉพ ๐‘ 1+๐œ€ where ๐œ€ > 0. Then ( ( )) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช๐œ€ ๐‘  1 + log โ„Ž log max( .1, log๐ป) Proof. By Lemma 2.24, we can substitute ๐‘› = ๐‘ 1+๐œ€ into the result from Lemma 2.23. โ–ก Corollary 2.28. In addition to the hypotheses of Theorem 2.25, suppose that ๐‘› โฉพ ๐‘ 1+๐œ€ and โ„Ž โฉฝ ๐ป. Then ๐‘๐‘€ (๐น, โ„Ž) โ‰ช๐œ€ ๐‘ . Note that these corollaries together give a strict improvement on Lemma 2.12 when ๐‘› < ๐‘ 4 and they give a comparable result when ๐‘› โฉพ ๐‘ 4. Also observe that this corollary yields the expected heuristic for medium solutions from our discussion before Conjecture 2.5 and from the statement of Conjecture 2.6. In other contexts (with other assumptions), we can acquire more specific results. In direct comparison to Lemma 2.11, we have Corollary 2.29. Under the assumption( that ๐‘› >( 4๐‘ ๐‘’2ฮฆ, )) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  + + log โ„Ž1 log ๐‘  . ฮฆ max(1, log๐ป) 44 Proof. If ๐‘› โฉฝ ๐‘ 2, then from Lemma 2.23, we h(ave ) log 3 + log โ„Ž๐‘  max(1,log๐ป) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท .log( ๐‘› โˆ’ 1) ๐‘  Now we can apply the fact that ๐‘› > 4๐‘ ๐‘’ฮฆ to acqu(ire ) 1 + log + log โ„Ž๐‘  max(1,log๐ป) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท .ฮฆ โˆš If ๐‘› > ๐‘ 2, then ๐‘› > ๐‘› and we have ๐‘  ( ) log ๐‘›3/2 + log โ„Žmax(1,log๐ป) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท โˆš .log( ๐‘› โˆ’ 1) Now substituting ๐‘› = m(ax(4๐‘ ๐‘’ 2ฮฆ, ๐‘ 2), usin)g the fact that ฮฆ โ‰ช max(1, log ๐‘ ), andobserving that + log 3 โ„Ž log โ„Ž ๐‘  ( ) โฉพ ๐‘  3 + , max 1, log๐ป ( max(1, log๐ป)we find ) 1 + log + log โ„Ž๐‘  max(1,log๐ป) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท .ฮฆ โ–ก 2.6.2 Proofs of Lemmas 2.23 and 2.24 Before we prove Lemmas 2.23 and 2.24, it is helpful to set up some initial estimates. โˆš Lemma 2.30. log๐‘Œ๐ฟ โ‰ช log๐ป + log โ„Ž1/๐‘› + ๐‘›. โˆš โˆš Proof. We have ๐œ† โ‰ ๐‘› and ๐‘› โˆ’ ๐œ† โ‰ ๐‘› โˆ’ ๐‘›, so we can conclude that 1 ( ) + ๐œ†log๐‘Œ๐ฟ = โˆ’ log 2๐ถ 2 log(4๐ป (๐‘› + 1) 1/2โˆš๏ธ๐‘’๐‘›/2)๐‘› ๐œ† (๐‘› โˆ’ ๐œ†)๐‘Ž1 1 ๐‘› = โˆ’ log 2 + โˆ’ log(๐‘…โ„Ž) + โˆ’ log(2๐ป ๐‘›(๐‘› + 1))+๐‘› ๐œ† ๐‘› ๐œ† ๐‘› ๐œ† + ๐œ† log(4๐ป (๐‘› + 1)1/22 โˆš๏ธ๐‘’๐‘›/2)(๐‘› โˆ’ ๐œ†)๐‘Ž โ‰ช + log ๐‘… + log โ„Ž1 โˆš โˆš + log๐ป + log( ๐‘›(๐‘› + 1))+ ๐‘› โˆ’ ๐‘› ๐‘› โˆ’ ๐‘› 45 โˆš โˆš + ๐‘› + ๐‘› โˆš ( + ) + ๐‘› 3/2 โˆš log๐ป โˆš log ๐‘› 1 โˆš . ๐‘› โˆ’ ๐‘› ๐‘› โˆ’ ๐‘› 2(๐‘› โˆ’ ๐‘›) โˆš We next apply the facโˆš๏ธts that โˆš๐‘›โˆ’ log๐ป โ‰ช log๐ป andโˆš โˆš ๐‘› ๐‘› โˆš๐‘› โˆ’ log( ๐‘› + 1) โ‰ช log( ๐‘›(๐‘› + 1)). Then we have๐‘› ๐‘› โ‰ช + log 3 ๐‘› + log โ„Ž โˆš๏ธ ๐‘›3/2 log๐‘Œ๐ฟ 1 โˆš โˆš + log๐ป + log( ๐‘›(๐‘› + 1)) + โˆš . ๐‘› โˆ’ ๐‘› ๐‘› โˆ’ ๐‘› 2(๐‘› โˆ’ ๐‘›) Using the fact that log3 ๐‘› โˆš๏ธ ๐‘›3/2 โˆš 1, โˆš , log( ๐‘›(๐‘› + 1)), โˆš โ‰ช ๐‘›, ๐‘› โˆ’ ๐‘› 2(๐‘› โˆ’ ๐‘›) we get log๐‘Œ โ‰ช log๐ป + log โ„Ž1/ โˆš ๐‘› ๐ฟ + ๐‘›. โ–ก Using this result, we conclude that there exists an absolute constant ๐‘ so that โˆš ๐‘Œ โฉฝ (๐ปโ„Ž1/๐‘› ๐‘›๐ฟ ๐‘’ )๐‘ . (2.8) Now we prove Lemma 2.23 Proof of Lemma 2.23. We want to apply Lemma 2.19 to count primitive medium solutions to |๐น (๐‘ฅ, ๐‘ฆ) | โฉฝ โ„Ž. Saradha and Sharmaโ€™s Lemma 4.4 in [SS17] gives that there exists a set ๐‘† of roots of ๐น (๐‘ฅ, 1) and a set ๐‘†โˆ— of roots of ๐น (1, ๐‘ฆ) with cardinalities |๐‘† |, |๐‘†โˆ— | โฉฝ 6๐‘  + 4 so that any solution (๐‘ฅ, ๐‘ฆ) of (2.1) with min( |๐‘ฅ |, |๐‘ฆ |) โฉพ 12๐‘’ฮจ (๐‘›๐‘ )2๐‘ /๐‘›โ„Ž1/๐‘› either has ๐›ผ โˆ’ ๐‘ฅ ๐‘ฆ ๐พโฉฝ 2|๐‘ฆ |๐‘›/๐‘  or โˆ— โˆ’ ๐‘ฆ๐›ผ ๐พโฉฝ ๐‘ฅ 2|๐‘ฅ |๐‘Ÿ/๐‘  for some ๐›ผ โˆˆ ๐‘† or ๐›ผโˆ— โˆˆ ๐‘†โˆ—. Since ๐‘Œ โฉพ 12๐‘’ฮจ (๐‘›๐‘ )2๐‘ /๐‘›๐‘† โ„Ž1/๐‘›, Saradha and Sharmaโ€™s Lemma 4.4 applies to any medium solution to (2.1). Fix an ๐›ผ โˆˆ ๐‘† and enumerate all of the primitive medium solutions (๐‘ฅ๐‘–, ๐‘ฆ๐‘–) which satisfy โˆ’ ๐‘ฅ ๐›ผ ๐‘ฆ ๐พโฉฝ (2.9)2|๐‘ฆ |๐‘›/๐‘  46 so that ๐‘Œ๐‘† โฉฝ |๐‘ฆ0 | โฉฝ |๐‘ฆ1 | โฉฝ ยท ยท ยท โฉฝ |๐‘ฆ๐‘ก | โฉฝ ๐‘Œ๐ฟ . For any 0 โฉฝ ๐‘– < ๐‘ก, we can conclude that๐พ ๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–+1โฉพ |๐‘ฆ |๐‘›/๐‘ ๐‘– ๐‘ฆ ๐‘– ๐‘ฆ๐‘–+1 ๐‘ฅ ๐‘ฆ = ๐‘– ๐‘–+1 โˆ’ ๐‘ฆ ๐‘ฅ +1 ๐‘– ๐‘–๐‘ฆ ๐‘ฆ + ๐‘– ๐‘– 1 1 โฉพ | .๐‘ฆ๐‘–๐‘ฆ๐‘–+1 | Rearranging yields โ€œThe Gap Principle,โ€ |๐‘ฆ |๐‘›/๐‘ โˆ’1|๐‘ฆ๐‘–+1 | ๐‘–โฉพ ๐พ and we are now in a position to apply Lemma 2.19 with ๐ฟ = ๐‘Œ๐‘†, ๐‘€ = ๐‘Œ๐ฟ , ๐‘‡ = ๐พ , and ๐‘ = ๐‘› .๐‘  We first observe that ๐‘ > 2 because ๐‘› โฉพ 3๐‘ . Next, we have that ๐ฟ๐‘โˆ’2 > ๐‘‡ because โˆ’ โˆ’ ๐‘›โˆ’2๐‘ ๐ฟ๐‘ 2๐‘‡ 1 = ๐‘Œ ๐‘  ๐พโˆ’1 (2.10) ๐‘† (12๐‘’ฮจ)๐‘›/๐‘ ๐‘…2โ„Ž1/๐‘  = 2๐‘…(๐‘›๐‘ )2(12๐‘’ฮจ)๐‘›/ 1๐‘ โ„Ž1/๐‘ ๐ป โˆ’ 1๐‘› ๐‘  ๐‘… 1 = ๐ป โˆ’ 1 ๐‘  ๐‘› 2(๐‘›๐‘ )2 800 log2๐‘› ๐‘› 1โˆ’ 1โฉพ ๐‘  ๐‘›4 ๐ป (2.11)2๐‘› > 1. Hence, we can apply Lemma 2.19 and we find that if there are ๐‘ก + 1 primitive medium solutions which give good rational approxi[mations of ๐›ผ], then๐‘› log log( ๐‘  โˆ’2๐‘Œ ๐พโˆ’1) ๐ฟ ๐‘› log( โˆ’2๐‘Œ ๐‘  ๐พโˆ’1) ๐‘† ๐‘ก โ‰ช ( ๐‘› โˆ’ ) . (2.12)log 1 ๐‘  To get an upper bound on the right-hand side of this inequality, it is easiest to manipulate the individual pieces one at a time. Handling the ca(se where ๐ป) > 1 fi(rs(t, we can a)pply equation)(2.8) to get๐‘› โˆš ( ๐‘›โˆ’2)๐‘ 1 1 log โˆ’2๐‘Œ ๐‘  ๐พโˆ’1 โฉฝ (lo(g ๐‘  ๐ป)โ„Ž1/๐‘›๐‘’ ๐‘› ) ๐ป โˆ’๐‘  ๐‘›๐ฟ ๐‘› 1 1 = โˆ’ 2 ๐‘ + โˆ’ log๐ป+ ๐‘  ๐‘  ๐‘› 47 ( ) ๐‘› โˆ’ 2 ๐‘ ( ) + ๐‘  ๐‘› โˆš log โ„Ž + ๐‘ โˆ’ 2 ๐‘›. (2.13) ๐‘› ๐‘  ๐‘› To get a lower bound on log( โˆ’2๐‘Œ ๐‘  ๐พโˆ’1), we note that equations (2.10) and (2.11) imply ๐‘† that ( ) ๐‘› ( ) log( โˆ’2 โˆ’1) 1 โˆ’ 1 ๐‘› โˆ’ ๐‘ ๐‘Œ ๐‘  ๐พ โฉพ log๐ป = log๐ป. (2.14) ๐‘† ๐‘  ๐‘› ๐‘›๐‘  Now we com(bine equa)tions( ((2.13))and (2.14)( ๐‘›โˆ’ ) ) to find ๐‘› ( ) โˆš log 2๐‘Œ ๐‘  ๐พโˆ’1 ๐‘› โˆ’ 2 ๐‘ + 1 โˆ’ 1 log( +) ( โˆ’2๐‘  )๐‘๐ป log โ„Ž + ๐‘ ๐‘› โˆ’ 2 ๐‘›๐ฟ ๐‘  ๐‘  ๐‘› ๐‘› ๐‘ ๐‘› โฉฝ ๐‘›โˆ’๐‘  log โˆ’2๐‘Œ ๐‘  ๐พโˆ’1 log๐ป๐‘›๐‘  ๐‘† โˆš โ‰ช ๐‘›(๐‘› โˆ’ 2๐‘ )๐‘ + ๐‘› โˆ’ ๐‘  + (๐‘› โˆ’ 2๐‘ )๐‘ log โ„Ž + ๐‘๐‘›(๐‘› โˆ’ 2๐‘ ) ๐‘› ๐‘› โˆ’ ๐‘  ๐‘› โˆ’ ๐‘  log๐ป ๐‘› โˆ’ ๐‘  โ‰ช ๐‘›3/2 + log โ„Ž log๐ป and inserting this result along with a use of[ Le(mma 2.20] into equation (2.12) yields log( ๐‘›๐‘  โˆ’2 )๐‘Œ ๐พโˆ’1log ๐ฟ๐‘› ) log( ๐‘  โˆ’2๐‘Œ ๐พ)โˆ’1๐‘ ๐‘ก โ‰ช l(og ๐‘› โˆ’ 1๐‘  log 3( )/2 + log โ„Ž๐‘› logโ‰ช ) ๐ป . log ๐‘› โˆ’ 1 ๐‘  Next, we handle the ๐ป = 1 case. Here, we return to equations (2.10), (2.11), (2.12), and (2.13) with ๐ป = 1 and again [use(Lemma 2].20 to find๐‘› log( ๐‘  โˆ’2 )๐‘Œ ๐พโˆ’1log ๐ฟ( ๐‘›log ๐‘  โˆ’2 ) )๐‘Œ ๐พโˆ’1๐‘ก โ‰ช ๐‘† l๏ฃฎ๏ฃฏog ( ๐‘› โˆ’ 1 ๐‘  ๐‘› ) ๏ฃฏ๏ฃฏ ( โˆš )๐‘( โˆ’2)๏ฃฏ log 1/๐‘› ๐‘› ๐‘  ๏ฃนโ„Ž ๐‘’ ๏ฃบ log ๏ฃฐ ๏ฃบ800 lo(g3 ๐‘›โˆ’log)(2๐‘›4) ๏ฃบ๏ฃป๏ฃบโ‰ช [ l(og ๐‘› โˆ’) 1๐‘  1 2 ( ) โˆš ( ) ]log ๐‘ โˆ’ log(โ„Ž) + ๐‘ ๐‘› ๐‘› โˆ’ 2๐‘  ๐‘› ๐‘ โ‰ช log ๐‘› โˆ’ 1 ๐‘  48 ( ( ) )log log(โ„Ž) + ๐‘›3/2โ‰ช . log ๐‘› โˆ’ 1 ๐‘  For every ๐ป then, we conclude that ( ) log ๐‘›3/2 + log โ„Žmax(1,log๐ป) ๐‘ก โ‰ช ( ) . log ๐‘› โˆ’ 1 ๐‘  By Lemma 2.24 (whose proof is indep(endent of this proo)f), the quantity log log โ„Ž๐‘›3/2 +( max(1),log๐ป)๐‘”(๐‘›, ๐‘ ) = log ๐‘› โˆ’ 1 ๐‘  decreases to 3/2 as ๐‘› โ†’โˆž for any fixed ๐‘ . In particular, there exists a ๐›ฟ > 0 so that ๐‘”(๐‘›, ๐‘ ) > ๐›ฟ for all ๐‘  โฉพ 1 and ๐‘› โฉพ 3๐‘ , implying that we can safely conclude ๐‘ก + 1 โ‰ช ๐‘”(๐‘›, ๐‘ ). The upper bound ๐‘ก + 1 โ‰ช ๐‘”(๐‘›, ๐‘ ) on the number of medium solutions which yield good rational approximations to ๐›ผ in the sense of (2.9) is independent of ๐›ผ. The same bound on the number of medium solutions which yield good rational approximations of any ๐›ผโˆ— โˆˆ ๐‘†โˆ— holds by symmetry. Since |๐‘† | + |๐‘†โˆ— | โ‰ช ๐‘  and since we have an upper bound on the number of good rational approximation(s to ๐›ผ โˆˆ ๐‘† and ๐›ผโˆ—)โˆˆ ๐‘†โˆ—, we conclude that log 3/2 + log โ„Ž๐‘› max(1,log๐ป) ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท log( ๐‘› โˆ’ 1) . ๐‘  โ–ก Next, we proceed to prove Lemma 2.24. Proof of Lemma 2.24. For ease of notation, set = log โ„Ž๐ฟ max(1,log๐ป) so we have ( ) log(๐‘› 3/2 + ๐ฟ) ๐‘” ๐‘›, ๐‘  = . log( ๐‘› โˆ’ 1) ๐‘  Note that we have ๐œ•๐‘” log( ๐‘› โˆ’ 1) 3๐‘›1/22( 3/2+ ) โˆ’ log(๐‘› 3/2 + ๐ฟ) 1 1 ๐‘  ๐‘›๐‘› ๐ฟ โˆ’1 ๐‘  = ๐‘  ๐œ•๐‘› log2( ๐‘› โˆ’ 1) ๐‘  3 log( ๐‘› โˆ’ 1) (๐‘› โˆ’ ๐‘ ) โˆ’ 2(๐‘› + ๐ฟ๐‘›โˆ’1/2) log(๐‘›3/2 + ๐ฟ) = ๐‘  2(๐‘› + ๐ฟ๐‘›โˆ’1/2) (๐‘› โˆ’ ๐‘ ) log2( ๐‘› โˆ’ 1) ๐‘  log(( ๐‘› โˆ’ 1)3) (๐‘› โˆ’ ๐‘ ) โˆ’ (๐‘› + ๐ฟ๐‘›โˆ’1/2) log((๐‘›3/2 + ๐ฟ)2) = ๐‘  . 2(๐‘› + ๐ฟ๐‘›โˆ’1/2) (๐‘› โˆ’ ๐‘ ) log2( ๐‘› โˆ’ 1) ๐‘  49 Since the denominator in the above expression is positive, ๐œ•๐‘” has the same sign as its ๐œ•๐‘› numerator. Upon checking that ( ๐‘› โˆ’ 1)3 < (๐‘›3/2 + ๐ฟ)2 and observing that ๐‘  ๐‘› โˆ’ ๐‘  < ๐‘› + ๐ฟ๐‘›โˆ’1/2, we find that ๐œ•๐‘” < 0. โ–ก ๐œ•๐‘› 2.6.3 Improving Akhtari and Bengoecheaโ€™s Medium Solution Bound In the context of trying to prove something like Conjecture 2.6, Akhtari and Bengoechea have changed the conditions slightly so that โ„Ž is assumed to be small relative to |ฮ”๐น | rather than being small relative to ๐ป (๐น). These new assumptions on โ„Ž yield additional information about the size of ๐‘Œ๐ฟ , which they leverage to improve bounds on the number of primitive solutions. Our approach to bounding the number of medium solutions can be applied to their context and we have the following slight improvement of Proposition 3.2 in [AB20].โˆ— The proof of this theorem will also use a different technique than Akhtari and Bengoechea used in their paper. Theorem 2.31. Suppose that โ„Ž satisfies 1 |๐ท | 8(๐‘›โˆ’1) 0 < โ„Ž < (2๐‘›800 log2 ๐‘›)๐‘›/2(๐‘›๐‘ )2๐‘ +๐‘› and that ๐‘› > 3๐‘ . Then ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  log(๐‘ ). In addition, if ๐‘› โฉพ ๐‘ 1+๐œ€ for some ๐œ€ > 0, then ๐‘๐‘€ (๐น, โ„Ž) โ‰ช๐œ€ ๐‘ . Proof. The first several lines of this proof are identical to the first several lines of the proof of Lemma 2.23. We modify the proof beginning at the observation that if there are ๐‘ก + 1 primitive medium solutions corresponding[ to a root ๐›ผ o]f ๐น (๐‘ฅ, 1) or ๐น (1, ๐‘ฆ), then๐‘› log log( ๐‘  โˆ’2๐‘Œ ๐พโˆ’1) ๐ฟ ๐‘› log( ๐‘  โˆ’2๐‘Œ ๐พโˆ’1) ๐‘† ๐‘ก โ‰ช . log( ๐‘› โˆ’ 1) ๐‘  โˆ—The improvement lies in reducing the assumption that ๐‘› > 10๐‘  to ๐‘› > 3๐‘  and also in the fact that the definition of a medium solution in this paper is slightly broader than the definition of a medium solution in [AB20]. 50 We now apply equation (17) from [AB20], namely that ๐‘Œ 2๐ฟ โ‰ช ๐ป , so that there exists a constant ๐‘ so that ๐‘Œ๐ฟ โฉฝ ๐‘๐ป2: [ ๐‘› โˆ’2 ]log(๐‘Œ ๐‘  ๐พโˆ’1log )๐ฟ๐‘› log( ๐‘  โˆ’2๐‘Œ ๐พโˆ’1[ )๐‘†๐‘ก โ‰ช log( ๐‘› โˆ’ 1)๐‘  ] ( 2) ๐‘›log ๐‘๐ป ๐‘  โˆ’2log ๐พ โˆ’1 ๐‘› log( โˆ’2๐‘Œ ๐‘  ๐พ)โˆ’1โฉฝ ๐‘† . (2.15) log ๐‘› โˆ’ 1 ๐‘  ๐‘› In the case that ๐ป = 1, we can use equation (2.11) to obtain that โˆ’2 796๐‘Œ ๐‘  ๐พโˆ’1 โฉพ ๐‘› so that [ ] [ ] ๐‘† 2 ๐‘› log log ๐‘ ๐‘  โˆ’2๐พโˆ’1 ( ๐‘›log โˆ’2) log(๐‘)๐‘ ๐‘› log ๐‘  โˆ’2๐‘Œ ๐พโˆ’1 log( ๐‘›7962 ) log(( ๐‘› โˆ’ 2) log(๐‘))โ‰ช ๐‘† โฉฝ โฉฝ ๐‘ ๐‘ก โ‰ช 1. log( ๐‘› โˆ’ 1) log( ๐‘› โˆ’ 1) log( ๐‘› โˆ’ 1) ๐‘  ๐‘  ๐‘  In the case that ๐ป > 1, we return[ to (equation (2.15) )] to get log (๐‘๐ป2) ๐‘› โˆ’2 1๐‘  ๐ป ๐‘  โˆ’ 1๐‘› log ( 1 1log๐ป ๐‘  โˆ’ ๐‘›๐‘ก โ‰ช [ )log ๐‘› โˆ’ 1๐‘  ] log ( ๐‘›โˆ’2) log(๐‘) 2๐‘›โˆ’4+ 1โˆ’ 1 ๐‘  ๐‘  ๐‘  ๐‘› ( 1โˆ’ 1 ) log( ) +๐ป 1โˆ’ 1 [ ๐‘  ๐‘› ๐‘  ๐‘›= log( ๐‘› โˆ’ 1)๐‘  ] ( 2๐‘›log โˆ’4) log(๐‘) 2๐‘›โˆ’4 ๐‘  ๐‘  1โˆ’ 1 + 1โˆ’ 1 + 1 [ ๐‘  ๐‘› ๐‘  ๐‘›โฉฝ log( ๐‘› โˆ’ 1)๐‘  ] log (log(๐‘) + 1) 2๐‘›(2๐‘›โˆ’2๐‘ ) + 1 ๐‘›โˆ’๐‘  โฉฝ log( ๐‘› โˆ’ 1) ๐‘  โ‰ช log(๐‘›) log( ๐‘› โˆ’ 1) . ๐‘  Defining ๐‘”(๐‘›, ๐‘ ) := log(๐‘›)log( ๐‘›โˆ’1) , we can show as in the proof of Lemma 2.23 that ๐‘  ๐‘ก + 1 โ‰ช ๐‘”(๐‘›, ๐‘ ) also holds. Additionally, for fixed ๐‘ , the function ๐‘”(๐‘›, ๐‘ ) is minimized when ๐‘› = 3๐‘ . Since there are |๐‘† | + |๐‘†โˆ— | โ‰ช ๐‘  roots ๐›ผ of ๐น (๐‘ฅ, 1) or ๐น (1, ๐‘ฆ) to which primitive medium solutions produce good rational approximations, we may conclude that ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท ๐‘”(๐‘›, ๐‘ ) โฉฝ ๐‘  ยท ๐‘”(3๐‘ , ๐‘ ) ยท log(3๐‘ ) = ๐‘  log( ) โ‰ช ๐‘  log(๐‘ ).2 51 Likewise, an identical argument will show that ๐‘”(๐‘›, ๐‘ ) is minimized at ๐‘› = ๐‘ 1+๐œ€ when ๐‘› โฉพ ๐‘ 1+๐œ€. In the case when ๐‘› โฉพ ๐‘ 1+๐œ€ then, we acquire 1+๐œ€ ๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  ยท ( 1+๐œ€ ) ยท log(๐‘  ) ๐‘” ๐‘  , ๐‘  = ๐‘  โ‰ช ๐‘ . log( ๐œ€ โˆ’ 1) ๐œ€๐‘  โ–ก 2.6.4 Proof of Theorem 1.16 Finally, we want to prove our main asymptotic theorem, Theorem 1.16. Proof. Suppose that ๐‘› > 4๐‘ ๐‘’2ฮฆ. From Lemma 2.10, we have that ๐‘๐ฟ (๐น, โ„Ž) โ‰ช ๐‘ . From Lemma 2.23 and Lemma 2.24, we h(ave that ) log 8 3/2 (3ฮฆ + log โ„Ž๐‘  ๐‘’ max()1,log๐ป)๐‘๐‘€ (๐น, โ„Ž) โ‰ช ๐‘  .log 4๐‘’2ฮฆ โˆ’ 1 Finally, from Lemma 2.15, we have ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘›๐‘† . Combining these three inequalities y(ields thatยฉ )log 8๐‘ 3/2 3ฮฆ + log โ„Ž๐‘’ max(1,log๐ป) ยช ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘› ยซยญยญ โˆ’ฮฆ โˆ’2/๐‘› ยฎ(1 + ๐‘’ โ„Ž ( log(4๐‘’2ฮฆ โˆ’ 1) )ยฌยฎ) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘› (1 + ๐‘’โˆ’ฮฆโ„Žโˆ’2/๐‘› log โ„Žlog 8( ๐‘ 9/2 + max(1, log๐ป( ) ) )) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘› 1 + logโˆ’3(๐‘ )โ„Žโˆ’2/๐‘› log+( 9/2) + + log โ„Ž8๐‘  log + log 2 max(1, log๐ป) where the last step uses Lemma 2.21. From this last step, we now see ๐‘ (๐น, โ„Ž) โ‰ช ๐‘ ๐‘’ฮฆโ„Ž2/๐‘› and this concludes the proof. โ–ก 52 2.7 Explicit Results for Trinomials Now consider the particular case where ๐‘  = 2, i.e. ๐น (๐‘ฅ, ๐‘ฆ) is a trinomial. In addition, we only examine the Thue equation (2.4). In this section, we follow Thomas in [Tho00] for much of our reasoning. However, we use different notation: the parameters which Thomas calls ๐‘ข and ๐‘ฃ, we call ๐‘Ž and ๐‘โ€  and the parameters which Thomas calls ๐‘ and ๐‘0, we will call ๐‘‘ and ๐‘‘0. Throughout the remainder of this section, suppose that ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž๐‘›๐‘ฅ๐‘› + โ„Ž๐‘˜๐‘ฅ๐‘˜ ๐‘ฆ๐‘›โˆ’๐‘˜ + โ„Ž ๐‘ฆ๐‘›0 where โ„Ž๐‘›, โ„Ž๐‘˜ , โ„Ž0, ๐‘›, ๐‘˜ โˆˆ Z, 0 < ๐‘˜ < ๐‘›, and ๐‘› โฉพ 6. Suppose further that ๐น (๐‘ฅ, ๐‘ฆ) is irreducible over Z[๐‘ฅ, ๐‘ฆ]. Let ๐ป = max( |โ„Ž๐‘› |, |โ„Ž๐‘˜ |, |โ„Ž0 |) be the height of ๐น (๐‘ฅ, ๐‘ฆ). Any time we refer to a โ€œsolution,โ€ we specifically mean a solution to equation (2.4) in Z2. We will not give a sophisticated bound on the number of solutions (๐‘, ๐‘ž) with |๐‘๐‘ž | โฉฝ 1 and we will consider (๐‘, ๐‘ž) and (โˆ’๐‘,โˆ’๐‘ž) to be equivalent solutions, spurring the following definition. Definition 2.32. A pair (๐‘, ๐‘ž) โˆˆ Z2 is called regular if ๐‘ โ‰  0, ๐‘ž > 0, and |๐‘ | โ‰  ๐‘ž. If there are ๐‘Ÿ regular solutions to (2.4), then there will be at most 2๐‘Ÿ + 8 distinct solutions since for every solution (๐‘, ๐‘ž) with |๐‘๐‘ž | > 1, either (๐‘, ๐‘ž) or (โˆ’๐‘,โˆ’๐‘ž) is regular and there are at most 8 solutions with |๐‘๐‘ž | โฉฝ 1. From this fact and Theorem 2.33 below, Theorem 1.17 will follow. Theorem 2.33. Equation (2.4) has at most ๐‘ฃ(๐‘›)๐‘ง(๐‘›) regular solutions where ๐‘ฃ(๐‘›) and ๐‘ง(๐‘›) are defined in Theorem 1.17. More specifically, let ๐‘“ (๐‘ฅ) := ๐น (๐‘ฅ, 1) and set ๐‘…๐น to be the number of real roots of ๐‘“ . We also wish to include certain critical points, so we make the following definition: Definition 2.34. A critical point ๐œ โˆˆ R of ๐‘”(๐‘ฅ) โˆˆ R[๐‘ฅ] is proper if there exists a neighborhood๐‘ˆ of ๐œ for which ๐‘”โ€ฒโ€ฒ(๐‘ฅ)๐‘”(๐‘ฅ) > 0 for all ๐‘ฅ โˆˆ ๐‘ˆ \ {๐œ}. Now let ๐ถ๐น to be the number of proper critical points of ๐‘“ (๐‘ฅ). Setting ๐‘๐น to be the number of regular solutions to (2.4), we will show the following theorem. โ€ This aligns with similar notation used in [AB20] for instance, and also makes clear the difference between these parametersโ€”whose choice will depend on ๐‘›โ€”and the values ๐‘ข๐‘› to be defined later and ๐‘ฃ(๐‘›) defined in Theorem 1.17 53 Theorem 2.35. Let ๐น (๐‘ฅ, ๐‘ฆ) be a trinomial of degree ๐‘› โฉพ 6. Then ๐‘๐น โฉฝ ๐‘ง(๐‘›)๐‘…๐น + โ„“(๐‘›)๐ถ๐น where โ„“(๐‘›) is defined by the following table. ๐‘› 6โ€“7 8 โฉพ 9 โ„“(๐‘›) 4 3 2 We first show that Theorem 2.35 implies Theorem 2.33. Since โ„“(๐‘›) is less than ๐‘ง(๐‘›), we have that ๐‘ง(๐‘›)๐‘…๐น + โ„“(๐‘›)๐ถ๐น โฉฝ ๐‘ง(๐‘›) (๐‘…๐น + ๐ถ๐น). Moreover, one can check with calculus that polynomials with at most four real roots have ๐‘…๐น + ๐ถ๐น โฉฝ ๐‘ฃ(๐‘›). Since irreducible trinomials have at most four real roots, we get Theorem 2.33 from Theorem 2.35. To prove Theorem 2.35, we need some additional setup. Definition 2.36. For a polynomial ๐‘”(๐‘ฅ) โˆˆ R[๐‘ฅ], an exceptional point of ๐‘“ is either a real root or a proper critical point of ๐‘”(๐‘ฅ) Let E( ๐‘“ ) be the set of exceptional points, ๐œ1 < ๐œ2 < ยท ยท ยท < ๐œ๐‘, of ๐‘“ . Note that there exist improper critical points ๐œ‚1 < ๐œ‚2 < ยท ยท ยท < ๐œ‚๐‘โˆ’1 so that ๐œ1 < ๐œ‚1 < ๐œ2 < ๐œ‚2 < ยท ยท ยท < ๐œ‚๐‘โˆ’1 < ๐œ๐‘. Setting ๐œ‚0 = โˆ’โˆž and ๐œ‚๐‘ = +โˆž, we can define ๐ฝ1 = (โˆ’โˆž, ๐œ‚1) and ๐ฝ๐‘– = [๐œ‚๐‘–, ๐œ‚๐‘–+1) for 1 โฉฝ ๐‘– โฉฝ ๐‘. Definition 2.37. A real number ๐œŒ belongs to ๐œ๐‘– (and ๐œ๐‘– belongs to ๐œŒ) if ๐œŒ โˆˆ ๐ฝ๐‘–. Thomas, in [Tho00], shows that the number of regular solutions (๐‘, ๐‘ž) of (2.4) for which there exists a critical point of ๐‘“ (๐‘ฅ) = ๐น (๐‘ฅ, 1), ๐œ, so that ๐‘ belongs to ๐œ is no larger ๐‘ž than โ„“(๐‘›) (see the completion of the proof of Thomasโ€™ Theorem 2.2, given after the statement of Theorem 7.1). So it only remains to show Lemma 2.38. The number of regular solutions, (๐‘, ๐‘ž), of (2.4) for which ๐‘ belongs to a ๐‘ž real root of ๐‘“ is no larger than ๐‘ง(๐‘›). By Theorem 2.2 in [Tho00], it suffices to show Lemma 2.38 for real roots of ๐‘“ which are greater than 1. Then by Lemma 2.4 of [Tho00], we conclude that any regular (๐‘, ๐‘ž) for which ๐‘ belongs to an exceptional point greater than 1 has ๐‘ > ๐‘ž โฉพ 1 and so we may ๐‘ž assume that ๐‘ > ๐‘ž โฉพ 1. Defining ๏ฃด๏ฃด๏ฃฒ๏ฃฑ๏ฃด๏ฃด3 if 6 โฉฝ ๐‘› โฉฝ 8๐‘0(๐‘›) := ๏ฃณ ,2 if ๐‘› โฉพ 9 54 we note that any regular solution (๐‘, ๐‘ž) with ๐‘ > ๐‘ž โฉพ 1 must satisfy ๐‘ โฉพ ๐‘0(๐‘›) (2.16) except for possibly (2, 1) when ๐‘› โฉฝ 8. Definition 2.39. A solution, (๐‘, ๐‘ž) to equation (2.4) with ๐‘ > ๐‘ž โฉพ 1 and ๐‘ โฉพ ๐‘0(๐‘›) is called special. Since at most one solution is not special in the case that 6 โฉฝ ๐‘› โฉฝ 8, it suffices to show the following lemma, which will be our final reduction. Lemma 2.40. Let ๐›ผ > 1 be a real root of ๐‘“ (๐‘ฅ). Then the number of special solutions (๐‘, ๐‘ž) of (2.4) for which ๐‘ belongs to ๐›ผ is no greater than ๐‘ง(๐‘›) โˆ’ 1 if 6 โฉฝ ๐‘› โฉฝ 8 and no ๐‘ž greater than ๐‘ง(๐‘›) if ๐‘› โฉพ 9. To prove Lemma 2.40, we split solutions into two cases: small and large. For ๐น (๐‘ฅ, ๐‘ฆ) of degree ๐‘› and height ๐ป = ๐ป (๐น), we choose a constant ๐‘Œ = ๐ป๐œ’๐‘› ยท ๐‘’๐œ‹๐‘›๐น (for some values ๐œ’๐‘› and ๐œ‹๐‘› to be specified later, but which depend only on ๐‘›) and make the following definition. Definition 2.41. A special solution (๐‘, ๐‘ž) to (2.4) is small if ๐‘ž โฉฝ ๐‘Œ๐น and is large otherwise. 2.7.1 Small Special Solutions One of Thomasโ€™ main achievements in [Tho00] is the following theorem (numbered 4.1 in [Tho00]), which is a version of the โ€œGap Principle:โ€ Theorem 2.42 (Thomas). Suppose that ๐น (๐‘ฅ, ๐‘ฆ) โˆˆ Z[๐‘ฅ, ๐‘ฆ] is an irreducible (over Z) trinomial binary form of degree ๐‘› โฉพ 5 and height ๐ป = ๐ป (๐น). Let (๐‘, ๐‘ž) and (๐‘โ€ฒ, ๐‘žโ€ฒ) be special solutions to (2.4) which belong to a real root and suppose ๐‘žโ€ฒ > ๐‘ž. Then ๐‘‘/๐‘› ๐‘›โˆ—๐ป ๐‘ โˆ’๐‘‘๐‘ž๐‘‘ ๐‘žโ€ฒ > (2.17) ๐พ๐‘‘ (๐‘›) where โˆ— ๐‘› โˆ’ 2๐‘› := , (2.18) 2 ๐‘‘ is chosen to be any real number satisfying 0 โฉฝ ๐‘‘ โฉฝ ๐‘›โˆ—, and ๐พ๐‘‘ (๐‘›) := ๐‘š๐‘› (๐‘Ÿ (1 + ๐‘ข ))๐‘‘๐‘› ๐‘› (2.19) 55 where โˆš๏ธ„ โˆš๏ธ„ 2๐‘› ๐‘š = 2 , ๐‘Ÿ = (2.032)1/๐‘› 2๐‘› ( โˆ’ 1) ( โˆ’ 2) ๐‘› , ๐‘ข๐‘› =๐‘› ๐‘› (๐‘› โˆ’ 2) . (2.20)๐‘๐‘›0 This approximation result will be helpful in proving the following proposition: Proposition 2๏ฃฏ.43. Let ๐›ผ(> 1 be a re)al roo(t of ๐‘“ (๐‘ฅ). There are no more than๏ฃฏ๏ฃฏ๏ฃฏ ยญยฉ ) ยญ ๏ฃบ๐œ‹ ๐‘‘๏ฃฏ๏ฃฏ ยญยญ log ๐œ’๐‘›๐‘›(๐‘‘โˆ’1)+๐‘‘ log ๐‘› + ๐‘‘ (๐‘‘โˆ’1)+ 1๐‘‘ log ( )โˆ’ โˆ’1 ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘0 ๐พ ๐‘› ๐‘‘ ๐‘„ ยฎยช ๐‘‡ := ๏ฃฏ ๐‘‘ 1๏ฃฏmax , ยฎlog log ยฎยฎ๏ฃบ ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ + 2 (2.21)๏ฃฐ ยซ ๐‘‘ ๐‘‘ ยฌ๏ฃป small special solutions (๐‘, ๐‘ž) where ๐‘/๐‘ž belongs to ๐›ผ. Proof. If there less than 2 special solutions (๐‘, ๐‘ž) where ๐‘/๐‘ž belongs to ๐›ผ, then we are done. Otherwise, suppose that there are exactly ๐‘ก + 2 small special solutions (๐‘, ๐‘ž) where ๐‘/๐‘ž belongs to ๐›ผ and ๐‘ก โฉพ 0. Label those ๐‘ก + 2 solutions as (๐‘0, ๐‘ž0), . . . , (๐‘๐‘ก+1, ๐‘ž๐‘ก+1) ordered so that 1 โฉฝ ๐‘ž0 < ๐‘ž1 < . . . < ๐‘ž๐‘ก+1 โฉฝ ๐‘Œ๐น (the strict inequality follows from the fact that the ๐‘๐‘– are principal convergents to ๐›ผ by ๐‘ž๐‘– Corollary 3.2 in [Tho00]). Choose numbers ๐‘‘0, ๐‘‘ โˆˆ R โˆ—>0 and recall the definition of ๐‘› from equation (2.18) before making the following definitions: ๐‘ ๐‘ := โˆ— โˆ’ := ( ) := 0(๐‘›) 0 ๐‘0 ๐‘› ๐‘‘0, ๐พ0 ๐พ๐‘‘0 ๐‘› , ๐‘„1 .๐พ0 In particular, choose ๐‘‘ and ๐‘‘0 so that 1 < ๐‘‘ โฉฝ ๐‘›โˆ—, (2.22) 0 โฉฝ ๐‘‘0 โฉฝ min(๐‘›โˆ— โˆ’ 1.4, ๐‘‘), (2.23) ๐‘„๐‘‘โˆ’11 > max(1, ๐พ๐‘‘ (๐‘›)). (2.24) In the proof of Proposition 2.47 and in the computations in Section 2.7.4, we show by example that choosing such ๐‘‘ and ๐‘‘0 are possible. First, observe that by Theorem 2.42 applied to ๐‘ž1 > ๐‘ž0 โฉพ 1 (and using the observation that ๐‘0 โฉพ ๐‘0(๐‘›)), we get ๐‘ž ๐‘‘1 > ๐ป 0/๐‘›๐‘„1. 56 Here is where we depart from Thomasโ€™ method. We now aim to apply Lemma 2.19 to the inequalities ๐ป๐‘‘0/๐‘›๐‘„1 < ๐‘ž1 < ๐‘ž2 < ยท ยท ยท < ๐‘ž๐‘ก+1 โฉฝ ๐‘Œ๐น and ๐ป๐‘‘/๐‘›๐‘ž๐‘‘ ๐‘– ๐‘ž๐‘–+1 > ๐พ๐‘‘ (๐‘›) . In the notation of Lemma 2.19, we have ๐ฟ = ๐ป๐‘‘0/๐‘›๐‘„1, ๐‘€ = ๐พ๐‘‘ (๐‘›)๐‘Œ๐น , ๐‘ = ๐‘‘ + 1, and ๐‘‡ = ๐ป๐‘‘/๐‘› . To apply the conclusion of Lemma 2.19, we need to check that ๐‘ > 2 (trivial based on the fact that ๐‘‘ is chosen to be greater than 1 from (2.22)) and we need to check that ๐ฟ๐‘โˆ’2 > ๐‘‡ . But this occurs if and only if ( )๐‘‘โˆ’1 ๐พ๐‘‘ (๐‘›) ๐ป๐‘‘0/๐‘›๐‘„1 > , ๐ป๐‘‘/๐‘› i.e. ๐ป (๐‘‘0 (๐‘‘โˆ’1)+๐‘‘)/๐‘›๐‘„๐‘‘โˆ’11 > ๐พ๐‘‘ (๐‘›), which is guaranteed by (2.24). Now applying๏ฃฎLemm( a 2.19 and u)sing๏ฃน the fact that ๐‘ก is an integer yields โŒŠ ๏ฃฏ๏ฃฏ๏ฃฏ ( ) ๐พ (๐‘›) โˆ’ 1 ๐‘‘โˆ’1 ๏ฃฏ l(og ๐‘Œ ๐‘‘๐น ๐‘‘/๐‘›log ๏ฃฐ๏ฃฏ ๐ป( ) )โˆ’ 1 log ๐‘‘ /๐‘› ๐พ๐‘‘ (๐‘›) ๐‘‘โˆ’1 ๏ฃบ๏ฃบ๏ฃบ ๏ฃบ โŒ‹ ๐ป 0 ๐‘„1 ๐ป๐‘‘/๐‘› ๏ฃป๏ฃบ ๐‘ก โฉฝ ๏ฃฎ๏ฃฏ ( log ๐‘‘ โŒŠ ๏ฃฏ๏ฃฏ ) 1 ๐‘‘ ๏ฃน ๏ฃฏ lo(g ๐‘Œ ๐พ (๐‘›)โˆ’ ๐‘‘โˆ’1 ๐ป ๐‘›(๐‘‘โˆ’1) ๏ฃบlog ๏ฃฏ ๐น ๐‘‘๏ฃฐ ) ๏ฃบ ๐‘‘ ๏ฃบ log ( )โˆ’ 1 0 + ๐‘‘ ๐พ ๐‘› ๐‘‘โˆ’1 ๐ป ๐‘› ๐‘›(๐‘‘โˆ’1)๐‘‘ ๐‘„1 ๏ฃป๏ฃบ๏ฃบ โŒ‹ = ๏ฃฏ๏ฃฎ log ๐‘‘ ( )โˆ’ 1 ๐‘‘ ๏ฃบ๏ฃนlog ๐พ (๐‘›) ๐‘‘โˆ’1 ๐ป ๐‘›(๐‘‘โˆ’1)โŒŠ log ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ ( log(๐‘Œ๐น )๏ฃฐ ) ( ๐‘‘ + ) ๏ฃบ 1 ๐‘‘0 ๐‘‘ 1 ๐‘‘ ๏ฃบ 0 ๐‘‘ log ๐พ (๐‘›)โˆ’ +๐‘‘โˆ’1 ๐ป ๐‘› ๐‘›(๐‘‘โˆ’1)๐‘‘ ๐‘„1 log ๐พ๐‘‘ (๐‘›)โˆ’ + ๐‘‘โˆ’ ๏ฃบ1 ๐ป ๐‘› ๐‘›(๐‘‘โˆ’1) ๐‘„1 ๏ฃป๏ฃบ โŒ‹ = . (2.25) log ๐‘‘ We now claim that we can apply (Lemma 2.22 to the)logarithmic quantity lo( ๐‘‘g โˆ’ 1๐พ ๐‘›(๐‘‘โˆ’1)๐‘‘ (๐‘›) ๐‘‘โˆ’1๐ป ) ๐‘‘0 ๐‘‘ log ๐พ โˆ’ 1๐‘‘ (๐‘›) ๐‘‘โˆ’1 +๐ป ๐‘› ๐‘›(๐‘‘โˆ’1)๐‘„1 57 with 1๐ด = ๐พ โˆ’ ๐‘‘ ๐‘‘๐‘‘ (๐‘›) ๐‘‘โˆ’1 , ๐ต = ๐ป, ๐ถ = ๐‘„ 01, ๐œ€1 = ( โˆ’1) , and ๐œ€2 = . All of the hypotheses are๐‘› ๐‘‘ ๐‘› clear except possibly that ๐ด๐ถ > 1 which follows from (2.24) and ๐ด๐œ€2/๐œ€1 < ๐ถ. To verify this second hypothesis, we want to first note that ๐œ€2 ๐‘‘0(๐‘‘ โˆ’ 1)= ๐œ€1 ๐‘‘ and so, recalling the definition of ๐พ๐‘‘ (๐‘›) from (2.19), ๐‘‘ ๐ด๐œ€2/๐œ€1 = ๐พ๐‘‘ (๐‘›)โˆ’ 0 ๐‘‘ . ๐‘‘ ( 0= ๐‘š๐‘› (๐‘Ÿ๐‘› (1 + ๐‘ข ๐‘‘ โˆ’๐‘›)) ) ๐‘‘ โˆ’ ๐‘‘0 = ๐‘š ๐‘‘๐‘› (๐‘Ÿ๐‘› (1 + ๐‘ข โˆ’๐‘‘0๐‘›)) whereas ๐ถ = ๐‘„1 ๐‘0(๐‘›)๐‘0= ๐พ๐‘‘0 (๐‘›) = ๐‘ (๐‘›)๐‘›โˆ—โˆ’๐‘‘0๐‘šโˆ’1(๐‘Ÿ (1 + ๐‘ข ))โˆ’๐‘‘0 0๐‘› ๐‘› ๐‘› . Hence, ๐ด๐œ€2/๐œ€1 < ๐ถ if and only if 1โˆ’ ๐‘‘0 ๐‘š ๐‘‘๐‘› < ๐‘0(๐‘›)๐‘› โˆ—โˆ’๐‘‘0 . But this follows from the selection of ๐‘‘0 โฉฝ ๐‘‘ (by (2.23)) along with the fact that ๐‘š๐‘› is a decreasing function of ๐‘› for ๐‘› โฉพ 6 (which weโˆš๏ธcan see from (2.20)), so1โˆ’ ๐‘‘0 โˆ— ๐‘š ๐‘‘๐‘› < max(1, ๐‘š ) โฉฝ 2 3/5 < 21.4 < ๐‘ (๐‘›)๐‘› โˆ’๐‘‘0 0๐‘› . Now that we have verified that we may apply Lemma 2.22, we continue the estimation we left off in inequalit๏ฃฎy (2.25):๏ฃฏ โŒŠ log ๏ฃฏ๏ฃฏ ( ) 1 ๐‘‘ ๏ฃน ๏ฃฏ๏ฃฏ ( log ๐พ ( โˆ’๐‘›) ๐‘‘โˆ’1 ๐ป ๐‘›(๐‘‘โˆ’1) ๏ฃบ log(๐‘Œ๐น ) ๐‘‘ ๏ฃบ ๏ฃฐ ) + ( ) ๏ฃบ1 ๐‘‘0log ( )โˆ’ ๐‘› + ๐‘‘ ๐‘‘โˆ’ 1 0 ๐‘‘๐พ ๐‘› ๐‘‘โˆ’1 ๐ป ๐‘›(๐‘‘โˆ’1) ๐‘„ log ๐พ (๐‘›) ๐‘‘โˆ’1 ๐ป ๐‘› +1 ๐‘›(๐‘‘โˆ’1) ๏ฃบ๐‘‘ ๐‘‘ ๐‘„1 ๏ฃบ๏ฃป โŒ‹ ๐‘ก โฉฝ ๏ฃฎ๏ฃฏ log ๐‘‘ โŒŠ log ๏ฃฏ๏ฃฏ๏ฃฏ ( ๏ฃบ๏ฃน ๏ฃฏ log( ) ) ๐‘‘ ๐‘Œ๐น + ๐‘›(๐‘‘โˆ’1) ๏ฃบ๏ฃฐ ๏ฃบโˆ’ 1 ๐‘‘0 ๐‘‘ ๐‘‘+ 0 + ๐‘‘log ( ) โˆ’ ๐‘› ( โˆ’1) ๏ฃบ๐พ ๐‘› ๐‘‘ 1 ๐ป ๐‘› ๐‘‘ ๐‘„1 ๐‘› ๐‘›(๐‘‘โˆ’1)๐‘‘ ๏ฃป๏ฃบ โŒ‹ โฉฝ log ๐‘‘ 58 โŒŠ log ๏ฃฏ ๏ฃฎ๏ฃฏ๏ฃฏ๏ฃฏ ๏ฃน๏ฃบ ๏ฃฏ ( log(๐‘Œ๐น )๏ฃฐ ) + ๐‘‘ ๏ฃบ๏ฃบ โˆ’ 1 ๐‘‘0 + ๐‘‘ ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘log ๐พ (๐‘›) ๏ฃบ๐‘‘โˆ’1 ๐ป ๐‘› ๐‘›(๐‘‘โˆ’1)๐‘‘ ๐‘„1 ๏ฃป๏ฃบ โŒ‹ = . log ๐‘‘ Now using the definition ๐‘Œ = ๐ป๐œ’๏ฃฎ ๐‘› ยท ๐‘’ ๐œ‹๐‘› ๐น , we have โŒŠ ๏ฃฏ ๏ฃน๏ฃบlog ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฐ ๐œ’๐‘› log๐ป(+๐œ‹๐‘› ) + ๐‘‘ ๏ฃบ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘ โˆ’ 1 ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘ ๏ฃบ โŒ‹๐‘›( โˆ’1) log๐ป+log ๐พ๐‘‘ (๐‘›) ๐‘‘โˆ’1 ๐‘„๐‘‘ 1 ๏ฃป๏ฃบ ๐‘ก โฉฝ ๏ฃฏ๏ฃฏ log ๐‘‘๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ ยฉยญ ( ) ( ) ๏ฃบ ยญยญ log ๐œ’๐‘› ๐‘‘ ๐œ‹๐‘› ๐‘‘ ๏ฃบ ยญ ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘ + ๐‘‘0 (๐‘‘โˆ’1)+ ยช๐‘‘ log 1 + ๏ฃบ ๏ฃฏmax ๐‘›(๐‘‘โˆ’1) log ( ) โˆ’ โˆ’1 ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘๐พ ๐‘› ๐‘‘ ๐‘„1 ยฎ๐‘‘ ๏ฃบ โฉฝ ๏ฃฏ , ยฎlog ๐‘‘ log ๏ฃบ๐‘‘ ยฎยฎ๏ฃบ๏ฃบ๏ฃบ ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฐ ยซ๏ฃฏ ยฉยญยญ ( ) ( ) ๏ฃบ ยฌ๏ฃป ๏ฃฏ ยญ log ๐œ’๐‘›๐‘›(๐‘‘โˆ’1)+๐‘‘ log ๐œ‹๐‘› + ๐‘‘๏ฃฏ ยช ๏ฃบ ๏ฃฏ ยญ ๐‘‘0 ( 1 ๏ฃบ ๐‘‘โˆ’1)+๐‘‘ max log ( ) โˆ’ โˆ’1 ๐‘‘0 (๐‘‘โˆ’1)+๐‘‘๐พ = ๐‘‘ ๐‘› ๐‘‘ ๐‘„1 ยฎ๏ฃบ ๏ฃฐ๏ฃฏ , ยฎ ยซ log ๐‘‘ log ยฎยฎ ๏ฃบ ๐‘‘ ยฌ๏ฃบ๏ฃบ๏ฃบ๏ฃป = ๐‘‡ โˆ’ 2. Therefore, the number of small special solutions (๐‘, ๐‘ž) for which ๐‘/๐‘ž belongs to ๐›ผ is ๐‘ก + 2 โฉฝ ๐‘‡ . โ–ก 2.7.2 Large Special Solutions Here we follow Thomas in [Tho00] as he follows Bombieri-Schmidt in [BS87]. If we choose numbers ๐‘Ž and ๐‘ satisfying โˆš๏ธ‚ ๐‘› + ๐‘Ž2 0 < ๐‘Ž < ๐‘ < 1 โˆ’ 2 ยท ๐‘›2 (2.26) then we can โˆš๏ธdefine 2(๐‘› + ๐‘Ž2) ๐ฟ 1 1 ๐ฟ = ๐ท = ๐ด = 1 โˆ’ ๐‘ ๐‘› โˆ’ ๐ฟ ๐‘Ž2 ๐ธ = 2 2 .2(๐‘ โˆ’ ๐‘Ž ) Now we choose ๐œ’๐‘› = ๐ท (๐ด + 1) + 1, (2.27) 59 ( ( + ) + ) ( ) + (๐ท + 1) log(๐‘›) ๐‘›๐ด๐ท๐œ‹๐‘› = ๐ท 4 ๐ด 2 log 2 + . (2.28)2 2 With these choices of ๐œ‹๐‘› and ๐œ’๐‘›, we aim to apply Lemma 2 of [BS87] and conclude the following: Proposition 2.44. Suppose ๐›ผ > 1 is a real root of ๐‘“ (๐‘ฅ). If ๐œ’๐‘› โฉพ 2 and ๐œ‹๐‘› โฉพ 5 log(2) + 2 log(๐‘›), thenโŒŠthere are at most โŒ‹ log ๐ธ + 2 log(๐‘›) โˆ’ log(๐ฟ โˆ’ 2) ๐‘ := ( + 2 (2.29)log ๐‘› โˆ’ 1) large special solutions belonging to ๐›ผ. The proof of this proposition relies on the two following lemmas: Lemma 2.45. ๐‘Œ๐น as defined here is greater than or equal to ๐‘Œ0 as defined in [BS87]. Lemma 2.45 ensures that any large solution in the sense of this paper is a large solution in the sense of Bombieri and Schmidt. Lemma 2.46. Suppose that ๐œ’๐‘› โฉพ 2 and ๐œ‹๐‘› โฉพ 5 log(2) + 2 log(๐‘›). If ๐›ผ > 1 is a real root of ๐‘“ (๐‘ฅ) and (๐‘, ๐‘ž) is a large special solution of (2.4) so that ๐‘/๐‘ž belongs to ๐›ผ, then ๐›ผ is the closest (complex) root of ๐‘“ (๐‘ฅ) to ๐‘/๐‘ž. Given an algebraic ๐›ฝ, Lemma 2 of [BS87] only counts the number of rational numbers which are nearest to ๐›ฝ out of all of the conjugates of ๐›ฝ and which form good approximations of ๐›ฝ. If there were a real root ๐›ผ > 1 of ๐‘“ (๐‘ฅ) and a large special solution (๐‘, ๐‘ž) of (2.4) for which ๐‘/๐‘ž belonged to ๐›ผ yet there was a root ๐›ฝ of ๐‘“ (๐‘ฅ) with ๐›ฝ closer to ๐‘/๐‘ž than ๐›ผ, Lemma 2 of [BS87] would not count ๐‘/๐‘ž. However, Lemma 2.46 confirms that this is not the case if we choose ๐‘Ž and ๐‘ carefully enough to make ๐œ’๐‘› โฉพ 2 and ๐œ‹๐‘› โฉพ 5 log(2) + 2 log(๐‘›). We first prove these two lemmas: Proof of Lemma 2.45. ๐‘Œ0 depends on the Mahler measure ๐‘€ (๐น) rather than the height ๐ป (๐น). These are related (for trinomials ๐น (๐‘ฅ, ๐‘ฆ)) by ๐‘€ (๐น) โฉฝ 31/2๐ป (๐น), which follows from the fact that ๐‘€ (๐น) โฉฝ โ„“2(๐น) (see Lemma 1.6.7 in [BG06]). Now, using Thomasโ€™ notation in Bombieri and Schmidtโ€™s notation, we( have) that๐œ† 1 : ๐‘›โˆ’๐œ†๐‘Œ0 = (2๐ถ) ๐‘›โˆ’๐œ† 4๐‘’๐ด1 60 where ๐ถ =โˆš๏ธ‚(2๐‘›1/2๐‘€ (๐น))๐‘›, 2 ๐‘ก = , ๐‘› + ๐‘Ž2 ๐‘ก2 ( ) ๐ด1 = log ๐‘€ (๐น) + ๐‘› , 2 โˆ’ ๐‘›๐‘ก2 2 2 ๐œ† = ๐‘ก ( .1 โˆ’ ๐‘) Some of our other constants regularly appear in the estimation which shows ๐‘Œ0 < ๐‘Œ๐น and we list them here for simplicity: 1 2 2 1 ๐‘ก2 ๐ด = โˆš๏ธ2 = = ยท = ,๐‘Ž 2(๐‘› + ๐‘Ž2) โˆ’ 2๐‘›โˆš๏ธ‚ ๐‘› + ๐‘Ž2 2 โˆ’ 2๐‘› 2๐‘›+๐‘Ž2 2 โˆ’ ๐‘›๐‘ก 2(๐‘› + ๐‘Ž2) 2 ๐‘› + ๐‘Ž2 2 ๐ฟ = โˆ’ = โˆ’ = = ๐œ†,1 ๐‘ 1 ๐‘ 2 ๐‘ก (1 โˆ’ ๐‘) ๐ฟ ๐œ† ๐ท = โˆ’ = .๐‘› ๐ฟ ๐‘› โˆ’ ๐œ† Note also that this implies that ๐ท + 1 = ๐‘› ๐‘›โˆ’ .๐œ† Before making the final estimat(e, w)e take a moment to observe thatโˆš ๐‘› ๐‘›โˆ’ +๐ด๐ท๐œ† ๐‘›โˆ’13 < 2 ๐‘›โˆ’๐œ† . This estimate is tedious, but not diffi(culโˆš )t. One can show that๐‘› 3 ๐‘›โˆ’ +๐ด๐ท ๐œ† ๐‘›โˆ’1 < 2 ๐‘›โˆ’๐œ† occurs if and only if ( ) 2 ๐‘›+๐ด๐œ† 2 < โˆš . 3 Estimating ๐ด from below by โˆš๏ธ 1๐ด > (1 โˆ’ 2(๐‘› + 1)/๐‘›2)2 โˆš and estimating ๐œ† from below by ๐œ† > 2๐‘› g(ives)that 2 ๐‘›+๐ด๐œ† 2 < โˆš 3 61 is implied by ( ) + ๐‘›2โˆš๐‘› 2๐‘›2 ๐‘›2 โˆšโˆ’2๐‘› 2๐‘›+2+2๐‘›+2 2 < โˆš . 3 Upon observing that โˆš + ๐‘› 2 2๐‘› ๐‘› โˆš โฉพ 20 ๐‘›2 โˆ’ 2๐‘› 2๐‘› + 2 + 2๐‘› + 2 when ๐‘› โฉพ 6 for instance, one can now(see )that โˆš 2 ๐‘›+ ๐‘›2 2๐‘› ๐‘›2 โˆš โˆ’2๐‘› 2๐‘›+2+2๐‘›+2 2 < โˆš 3 and as a result, we must have (โˆš ) ๐‘›โˆ’ +๐ด๐ท๐‘› ๐œ† ๐‘›โˆ’13 < 2 ๐‘›โˆ’๐œ† . We can now conclude 1 ๐œ† ๐‘Œ0 = (2๐ถ) ๐‘›โˆ’๐œ† (4๐‘’๐ด1) ๐‘›โˆ’๐œ† ( ( 1= 2 2๐‘›1/2๐‘€ (๐น))๐‘›) โˆ’ (4๐‘’๐ด(log ๐‘€ (๐น)+ ๐‘›2 )๐‘› ๐œ† ) ๐œ†๐‘›โˆ’๐œ† 1+๐‘›+2๐œ† ๐‘› = 2 ๐‘›โˆ’๐œ† ยท ยท ( ) ๐‘› ๐ด๐ท (log ๐‘€ (๐น)+ ๐‘›๐‘› 2(๐‘›โˆ’๐œ†) ๐‘€ ๐น )๐‘›โˆ’๐œ† ๐‘’ 2 1+๐‘›+2๐œ† ๐‘›ยท ยท ( ) ๐‘›= 2 โˆ’ ๐‘› 2(๐‘›โˆ’๐œ†) ๐‘€ ๐น โˆ’ +๐ด๐ท๐‘› ๐œ† ๐‘› ๐œ† ยท ๐ด๐ท๐‘›๐‘’ 2 1+๐‘›+2๐œ† ๐‘› โˆš โฉฝ( 2 )๐‘›โˆ’๐œ† ยท ๐‘› ๐ด๐ท๐‘› ๐‘› 2(๐‘›โˆ’๐œ†) ยท ( 3๐ป (๐น)) ๐‘›โˆ’ +๐ด๐ท๐œ† ยท ๐‘’ 2 . โˆš ๐‘› +๐ด๐ท Next we use the fact that 3 ๐‘›โˆ’๐œ† < 2 ๐‘›โˆ’1๐‘›โˆ’๐œ† to find that 1+๐‘›+2๐œ†+ ๐‘›โˆ’1 ๐‘› ๐‘› ๐ด๐ท๐‘›๐‘Œ0 < 2 ๐‘›โˆ’๐œ† ๐‘›โˆ’ +๐ด๐ท๐œ† ยท ๐‘› 2(๐‘›โˆ’๐œ†) ยท ๐ป (๐น) โˆ’ +๐ด๐ท๐‘› ๐œ† ยท ๐‘’ 2 2๐‘›+2๐œ† = 2 โˆ’ +๐ด๐ท ยท ๐ท(+1๐‘› ๐œ† ๐‘› 2 ( ยท ๐ด๐ท๐‘›๐ป (๐น)1+๐ท+๐ด๐ท)ยท ๐‘’ 2 ) ( )๐œ’ ยท ((2๐‘› + 2๐œ†= ๐ป ๐น ๐‘› exp โˆ’ + ๐ท + 1 ๐ด๐ท๐‘›๐ด๐ท log(2)) + log ๐‘› +๐‘› ๐œ† 2 2 ) = ๐ป (๐น)๐œ’ 4๐œ† + 2(๐‘› โˆ’ ๐œ†)๐‘› ยท exp ( โˆ’ + ( ) + ๐ท + 1 ๐ด๐ท๐‘›๐ด๐ท log 2 log ๐‘› +๐‘› ๐œ† 2 ) 2 ๐ท + 1 ๐ด๐ท๐‘› = ๐ป (๐น)๐œ’๐‘› ยท exp (4๐ท + 2 + ๐ด๐ท) log(2) + log ๐‘› + 2 2 = ๐ป (๐น)๐œ’๐‘› ยท ๐‘’๐œ‹๐‘› = ๐‘Œ๐น . โ–ก 62 Proof of Lemma 2.46. Since ๐‘ is a large special solution, we have ๐‘ž ๐‘ > ๐‘ž โฉพ ๐‘Œ = ๐ป๐œ’๐‘›๐‘’๐œ‹๐‘›๐น . Since ๐‘ belongs to ๐›ผ, Thomasโ€™ C orollar y 3.1 in [Tho00] indicates that๐‘ž ๐‘ โˆ’ 1 1๐›ผ < < .๐‘ž ๐‘๐‘›โˆ—๐‘ž ๐‘›/2๐‘Œ ๐น i f we recall that ๐‘› โˆ— ๐‘›โˆ’2 = 2 by its definition in (2.18). Su ppo se, by contradiction, that there exists ๐›ฝ โˆˆ C with ๐‘“ (๐›ฝ) = 0 and๐‘ โˆ’ ๐‘๐›ฝ < โˆ’ ๐›ผ . Then by the triangle eq uality, we find that๐‘ž ๐‘ž ๐‘ |๐›ผ โˆ’ ๐›ฝ | โฉฝ โˆ’ ๐›ฝ + ๐‘ โˆ’ ๐›ผ ๐‘ž ๐‘ž 2 < /2 . (2.30)๐‘› ๐‘Œ ๐น Since ๐›ผ and ๐›ฝ are distinct roots of ๐‘“ , Theorem 4 in [Rum79] indicates that | 1 1๐›ผ โˆ’ ๐›ฝ | > 2๐‘›๐‘›/2+2 = (4๐ป)๐‘› 22 . (2.31) ๐‘›+1๐‘›๐‘›/2+2๐ป๐‘› Combining (2.30) and (2.31), we find that 1 2 22๐‘›+1๐‘›๐‘›/2+2 < ๐ป๐‘› ๐‘›/2๐‘Œ ๐น and rearranging yields ๐‘›/2 ๐‘Œ ๐น 22๐‘›+2๐‘›๐‘›/2+2 < 1. ๐ป๐‘› From here, we can use the fact that ๐‘Œ๐น = ๐ป๐œ’๐‘›๐‘’๐œ‹๐‘› to find ๐ป๐‘›(๐œ’๐‘›/2โˆ’1)๐‘’๐‘›๐œ‹๐‘›/2 1 > 22๐‘›+2๐‘›๐‘›/2+2 ๐‘’๐‘›๐œ‹๐‘›/2 โฉพ 22๐‘›+2๐‘›๐‘›/2+2 where the last inequality follows because ๐œ’๐‘› โฉพ 2. After rearranging, this implies that (4๐‘› + 4) log(2) + (๐‘› + 4) log(๐‘›) ๐œ‹๐‘› < ๐‘› โฉฝ 5 log(2) + 2 log(๐‘›) where the last inequality follows from the fact that ๐‘› โฉพ 6. However, the last inequality contradicts our hypothesis that ๐œ‹๐‘› โฉพ 5 log(2) + 2 log(๐‘›), so no such ๐›ฝ can exist and the closest root of ๐‘“ (๐‘ฅ) to ๐‘/๐‘ž is ๐›ผ. โ–ก 63 Finally, we prove Proposition 2.44. Proof of Proposition 2.44. Let ๐›ผ > 1 be a real root of ๐‘“ (๐‘ฅ). By Lemma 2.45, every large special solution (๐‘, ๐‘ž) so that ๐‘/๐‘ž belongs to ๐›ผ is large in the sense of [BS87]. Moreover, by Lemma 2.46, any large specia l soluti on (๐‘, ๐‘ž) so that ๐‘/๐‘ž belongs to ๐›ผ has ๐‘ โˆ’ ๐‘๐›ผ = min โˆ’ ๐›ฝ .๐‘ž ๐‘“ (๐›ฝ)=0 ๐‘ž Hence, every large special solution (๐‘, ๐‘ž) so that ๐‘/๐‘ž belongs to ๐›ผ is large (in the sense of [BS87]) and is nearest to ๐›ผ among all the roots of ๐‘“ (๐‘‹). Lemma 2 of [BS87] indicates that there are no more than โŒŠ โŒ‹ log ๐ธ + 2 log(๐‘›) โˆ’ log(๐ฟ โˆ’ 2) ๐‘ = + 2 log(๐‘› โˆ’ 1) large solutions (๐‘, ๐‘ž) so that ๐‘/๐‘ž is nearest to ๐›ผ among all the roots of ๐‘“ (๐‘‹) and so we conclude that there are no more than ๐‘ large special solutions (๐‘, ๐‘ž) with ๐‘/๐‘ž belonging to ๐›ผ. โ–ก 2.7.3 Choosing Parameters for Large Degrees Begin by assuming ๐‘› โฉพ 507. We handle all smaller instances of ๐‘› computationally. Recall that ๐‘›โˆ— = ๐‘›โˆ’22 from its definition in (2.18). Propositโˆš๏ธƒion 2.47. โˆ—For ๐‘› โฉพ 507, we can take ๐‘‘0 = ๐‘›2 , ๐‘‘ = ๐‘›โˆ—, ๐‘Ž = 14 , ๐ถ = 7/6, ๐‘ = 89๐ถ2โˆ’1 , 2๐‘›+ 1 = 1 โˆ’ 8๐‘ 2 and obtain ๐‘‡ = 2 and ๐‘ = 2.๐‘๐‘› ๐‘›โˆ’1+2 Observe first that these are the smallest possible values of ๐‘‡ and ๐‘ . Proof. To show this, we first must show that these choices of ๐‘‘0, ๐‘‘, ๐‘Ž, and ๐‘ meet the requirements listed in (2.22), (2.23), (2.24), and (2.26). Certainly 0 โฉฝ ๐‘‘0 โฉฝ min(๐‘›โˆ— โˆ’ 1.4, ๐‘‘) and 1 < ๐‘‘ โฉฝ ๐‘›โˆ—. All that remains to show for ๐‘‘0 and ๐‘‘ is (2.24). We have ( ) ๐‘0 ๐‘‘โˆ’1 ๐‘„๐‘‘โˆ’1 ๐‘ 1 = 0 (๐พ0 ๐‘›โˆ— 2๐‘›โˆ—/2 ) 2 โˆ’1 โฉพ . ๐พ๐‘›โˆ—/2(๐‘›) 64 But observe that โˆš๏ธ„ ( ( โˆš๏ธ„ ))๐‘›โˆ—/2 2๐‘› 2 ๐พ๐‘›โˆ—/2(๐‘›) = 2 ( โˆ’ () ( โˆ’ ) 2.032 1/๐‘› ) 1 +๐‘› 1 ๐‘› 2 (๐‘› โˆ’ 2)๐‘๐‘›0โˆš๏ธ ๐‘›โˆ’2ยท + 1 4โฉฝ 2 (2.032 1 ) (๐‘› โˆ’ 2)2๐‘›โˆ’1๐‘›โˆ’2 1 4 โฉฝ 5 1 + ๐‘› โˆ’ 2 โฉฝ 5๐‘’1/4 so ๐‘„๐‘‘โˆ’11 is certainly greater than 1. Similar reasoning shows that ๐พ๐‘‘ (๐‘›) โฉฝ 5๐‘’ 1/2, so it is certainly also the case that ( โˆ—/2 ) ๐‘›โˆ— โˆ’1 ( ๐‘›โˆ—2๐‘› 2 2๐‘›โˆ—/2 ) 2 โˆ’1 ๐พ (๐‘›) โฉฝ 5๐‘’1/2 < ๐‘‘โˆ’1๐‘‘ 5๐‘’1/4 โฉฝ = ๐‘„ . ๐พ 1๐‘›โˆ—/2(๐‘›) Hence, our choices of ๐‘‘ and ๐‘‘0 are valid. Next, we wish to check that our choices for ๐‘Ž and ๐‘ are valid. To check 0 < ๐‘Ž < ๐‘, note that โˆš๏ธƒ 2๐‘› + 1 โˆš โˆš โˆ’ 8 โˆ’ 2 ๐‘›๐‘ = 1 2 โฉพ 1 = 1 โˆ’ 2(๐‘› โˆ’ 1) ๐‘› โฉพ 1 โˆ’ 2โˆš ๐‘๐‘› โˆ’1 + 2 ๐‘๐‘›2 ๐‘๐‘›2 ๐‘› ๐‘›โˆ’ ๐‘ ๐‘›1 โˆ’ 2 1โฉพ 1 โˆš > = ๐‘Ž. (2.32) ๐‘ 507 4 โˆš To check that ๐‘ < 1 โˆ’ 2๐‘›+2๐‘Ž2 , it suffices tโˆšo show that ๐‘๐‘›2๐‘› > โˆ’1 + 2. But this occurs if and๐‘› ๐‘› only if (1 โˆ’ ) 2 โˆ’ 3 + 2 0, i.e. 3+ 9โˆ’8(1โˆ’๐‘)๐‘ ๐‘› ๐‘› > ๐‘› > 2(1โˆ’ โ‰ˆ 9.66, which we certainly have.๐‘) To show that ๐‘‡ = 2, we claim that we have the following two inequalities (and from equation (2.21) together with the fact that ๐‘‘( โˆ’1)+ โฉฝ 1, it will follow that ๐‘‡ = 2):๐‘‘0 ๐‘‘ ๐‘‘ ๐œ’๐‘›๐‘›(๐‘‘ โˆ’ 1) ๐‘‘0(๐‘‘ โˆ’ 1) + + 1 < ๐‘‘, (2.33) ๐‘‘ ๐œ‹๐‘› 1 + 1 < ๐‘‘. (2.34)log๐พ โˆ’๐‘‘ (๐‘›) ๐‘‘โˆ’1๐‘„1 We first show (2.33). Sub(stitut)ing โˆ— ( ๐‘‘ ๐‘› 0 = )2 and ๐‘‘ = ๐‘› โˆ—, observe that (2.33) is equivalent to ๐‘›โˆ’2 ๐‘›โˆ’4 4 2 โˆ’ 1 + ๐‘›โˆ’2 2 ๐‘› โˆ’ 2 ๐‘›โˆ— ๐œ’๐‘› < = = . ๐‘› 8 4 65 Keeping an eye on the definition of ๐œ’๐‘› given in equation (2.27), we have that ๐ด = 16, 7 ๐ถ = , 6 8 32 ๐‘ = = , 9๐ถ2 (โˆš๏ธƒ โˆ’ 1 45 2๐‘› + 1 โˆ’ 8๐‘ = 1 ) . ๐‘๐‘›2 โˆ’1 + 2๐‘› All of these together yield ๐‘๐‘›2 ( ) + 32 1๐ฟ = โˆ’ 2 = ๐‘› + 1 + โˆ’ + 2 (2.35)๐‘› 1 45 ๐‘› 1 and it is now easy to check that 32 32 ๐‘› โฉฝ ๐ฟ โฉฝ ๐‘› + 3. 45 45 From here we have 3 ๐ฟ = โฉฝ 4๐ท โˆ’ (25๐‘› + 3 ) 3245๐‘› + 3 32 6075=๐‘› ๐ฟ โˆ’ 32 + 13 = + โฉฝ 2.54๐‘› ๐‘› 3 45๐‘› โˆ’ 3 13 13(13๐‘› โˆ’ 135)45 32 โฉพ 45 ๐‘› 32 ๐ท 32 = โ‰ˆ 2.46๐‘› โˆ’ 45๐‘› 13 when we use the fact that ๐‘› โฉพ 507. To convert these into estimates on ๐œ’๐‘›, we have 94853 ๐œ’๐‘› = 17๐ท + 1 โฉฝ โฉฝ 44.08, (2.36)2152 + 557๐œ’๐‘› = 17๐ท 1 โฉพ โฉพ 42.8. (2.37)13 Since ๐‘› โฉพ 507, we now have ๐œ’๐‘› โฉฝ 44.08 < ๐‘›โˆ’28 which confirms equation (2.33). Equation (2.34) is more complicated to handle. Observe that by equation (2.28), we have ( ( + ) + ) + (๐ท + 1) log ๐‘› + ๐ด๐ท๐‘›๐œ‹๐‘› = ๐ท 4 ๐ด 2 log 2 2 2 โฉฝ 36.6 + 1.77 log ๐‘› + 20.28๐‘› โฉฝ 37 + 21๐‘›. (2.38) 66 For reference later, we will also note ๐œ‹๐‘› โฉพ 35.5 + 1.7 log ๐‘› + 19.6๐‘› โฉพ 46 + 19๐‘›. (2.39) It will additionally be helpโˆš๏ธ„ful for us to have (an estimat(e onโˆš๏ธ„๐พ๐‘‘ (๐‘›). We h)a)ve๐‘‘ ( ) 2๐‘› 2๐พ๐‘‘ ๐‘› = 2โˆš๏ธ„( โˆ’ )( โˆ’ ) (2.032 1/๐‘› 1 + ๐‘› 1 ๐‘› 2 โˆš๏ธ„ ()๐‘› โˆ’ 2)๐‘๐‘›0๐‘‘ 3๐‘› โˆ’ 3 + 2๐‘› โˆ’ 4โฉฝ 4โˆš๏ธ‚ (๐‘› โˆ’ 1() (๐‘› โˆ’โˆš๏ธ„ 12) ) (๐‘› โˆ’ 2)๐‘๐‘›0๐‘›โˆ— 3 2 โฉฝ 4 1 + . ๐‘› โˆ’ 2 ๐‘๐‘›0 Now, since ๐‘0 โฉพ 2, we haโˆš๏ธ‚ve ( โˆš๏ธ‚ ) ๐‘›โˆ’2 โˆš๏ธ‚ 2 ( ) ๐‘›โˆ’23 2 3 1 2 ๐พ๐‘‘ (๐‘›) โฉฝ 4 โˆ’ 1 + โฉฝ 4 โˆ’ 1 +๐‘› 2 2๐‘›โˆš๏ธ‚ ๐‘› 2 2 ๐‘›โˆ’2 2 3 ยฉ 1 โฉฝ 4 ยญยซยญ1 + ( ) ยฎ ยช ๐‘›โˆ’2ยฎ 2 โˆš๏ธ‚ 3โˆ’ ยฌ โฉฝ 4๐‘’ (2.40)๐‘› 2 ๐‘›โˆ’2 ๐‘› โˆ’ 22 and similar reasoning yields โˆš๏ธ‚ ( ) 3 1 ๐‘› โˆ—/2 ๐พ๐‘‘0 (๐‘›) โฉฝ 4 ๐‘› โˆ’ 1 + โˆ— . (2.41)2 2๐‘› Combining the upper bounds in equation (2.38) with the fact that for ๐‘› โฉพ 270, 37 + log 1.921๐‘› < (๐‘› โˆ’ 2) (๐‘› โˆ’ 4) 8 yields log(1.9) ๐œ‹๐‘› < (๐‘› โˆ’ 2) (๐‘› โˆ’ 4).8 Now ine[qualities (2.40]) and (2[.41) give ( โˆ’ ) ( 1 ] ๐‘‘ 1 log ๐พ๐‘‘ ๐‘›)โˆ’ โˆ’1๐‘„ = log ๏ฃฎ๐พ (๐‘›)โˆ’1๐‘„(๐‘‘โˆ’1๐‘‘ 1 ๏ฃฏ ๐‘‘ 1 ) ( )1/2 ๐‘0 ๐‘›โˆ—โˆ’1๏ฃน1 ๐‘ ๏ฃบ โฉพ log ๏ฃฏ๏ฃฏ๏ฃฐ๏ฃฏ ยท ๐‘’โˆ’1 ยท ๐‘› โˆ’ 2 ยท 0 ๏ฃบ 4 3 ๐พ ๏ฃบ0 ๏ฃบ๏ฃป 67 [ ( )1/2 ( โˆ—/2 ) โˆ—โˆ’1]1 ๐‘› โˆ’ 2 2๐‘› ๐‘› โฉพ log ยท ๐‘’โˆ’1 ยท ๏ฃฎ๏ฃฏ4 ( 3 ) (๐พ๐‘‘0 (๐‘›) ) ๐‘›โˆ’4 ( โˆš๏ธ‚ ) ๐‘›โˆ’41/2 โˆ—/2 2 2 ๏ฃบ๏ฃน1 ๐‘› โฉพ log ๏ฃฏ๏ฃฐ๏ฃฏ๏ฃฏ[ ยท ๐‘’ โˆ’1 ยท ๐‘› โˆ’ 2 2 1 ๐‘› โˆ’ 2 ๏ฃบ (4 ) 3 ( + โˆ—1 2โˆ’๐‘›โˆ—)๐‘› /2 4 3 ๏ฃบ๏ฃบ๏ฃป๐‘›โˆ’2 ( ) ๐‘›โˆ’2 ( ) ( ๐‘›โˆ’2 ) ( ๐‘›โˆ’4 ]1 2 ๐‘› โˆ’ 2 4 โˆ’ 2 4 2 )โฉพ log [ 1( ๐‘’4 ) 3 1 + 2โˆ’๐‘›โˆ—๐‘›โˆ’2 ] ๐‘› โˆ’ 2 4 (๐‘›โˆ’2) (๐‘›โˆ’4) โฉพ log ๐‘’โˆ’1 ยท 1.9 8 48 ( ) log 1.9 ( โˆ’ )( โˆ’ ๐‘› โˆ’ 2 ๐‘› โˆ’ 2โฉพ ๐‘› 2 ๐‘› 4) + log โˆ’ 1 8 4 48 log(1.9) โฉพ (๐‘› โˆ’ 2) (๐‘› โˆ’ 4) 8 > ๐œ‹๐‘› which now implies that equation (2.34) is satisfied. Hence, we conclude that ๐‘‡ = 2. Finally, we check that ๐‘ = 2. In order to use Proposition 2.44, we must verify that ๐œ’๐‘› โฉพ 2 and ๐œ‹๐‘› โฉพ 5 log(2) + 2 log(๐‘›). However, these quickly follow from (2.37) and (2.39). As before in equation (2.32), we have ๐‘ โฉพ 1 โˆ’ โˆš2 > 0.87509, so ๐‘ 507 1 ๐ธ = < 0.711 < ๐‘ 2(๐‘2 โˆ’ ๐‘Ž2) and so (also using (2.35)) ( ) log ๐‘๐‘›2log ๐ธ + 2 log(๐‘›) โˆ’ log(๐ฟ โˆ’ 2) ๐ฟโˆ’2 log(๐‘› โˆ’ ) < = 1.1 log(๐‘› โˆ’ 1) Therefore, by (2.29), we note that ๐‘ = 2. โ–ก Note that Proposition 2.47 proves Lemma 2.40 for ๐‘› โฉพ 507. 2.7.4 Choosing Parameters for Small Degrees For ๐‘› โฉฝ 506, we make parameter choices listed in table A.1. One can check that the parameter choices satisfy (2.24), (2.26), (2.22), and (2.23) along with the necessary bounds on ๐œ‹๐‘› and ๐œ’๐‘› in order to use Proposition 2.44, and yield the ๐‘‡ and ๐‘ values giving 68 ๐‘ง(๐‘›) = ๐‘‡ + ๐‘ + 1 when 6 โฉฝ ๐‘› โฉฝ 8 and ๐‘ง(๐‘›) = ๐‘‡ + ๐‘ for ๐‘› โฉพ 9. A Jupyter notebook, whose code is contained in appendix B.1 produced these parameters and verified that these parameters are valid and yield the conclusion of Lemma 2.40 for ๐‘› โฉฝ 506, which concludes our investigation. In brief, the code picks a value of ๐‘›, sets ๐‘‘ = ๐‘›โˆ—, brute force loops over a number of valid values for the parameters ๐‘‘0, ๐‘Ž, ๐‘, computes the corresponding ๐‘‡ and ๐‘ values defined in equations (2.21) and (2.29), and records the values of ๐‘‘0, ๐‘Ž, and ๐‘ which minimize ๐‘‡ + ๐‘ . The following table contains some of the more interesting data points in table A.1. ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 6 0 2 0.18 0.29 10 4 7 0.539 2.5 0.2 0.28 7 4 8 0.992 3 0.16 0.41 7 3 9 0.882 3.5 0.17 0.4 6 3 10 1.17 4 0.23 0.41 5 3 11 1.674 4.5 0.14 0.37 5 3 12 2.088 5 0.27 0.41 4 3 13 2.255 5.5 0.2 0.37 4 3 14 2.484 6 0.16 0.35 4 3 15 2.958 6.5 0.13 0.34 4 3 16 3.136 7 0.11 0.32 4 3 17 3.904 7.5 0.32 0.42 3 3 18 4.158 8 0.27 0.39 3 3 .. . . . . . .. .. .. .. .. .. .. 36 8.268 17 0.08 0.26 3 3 37 7.728 17.5 0.08 0.25 3 3 38 11.454 18 0.44 0.48 2 3 39 11.799 18.5 0.4 0.45 2 3 .. .. .. .. . . . . . . .. . . . .. 215 59.907 106.5 0.03 0.87 3 2 216 59.136 107 0.03 0.87 3 2 217 67.3735 107.5 0.389816 0.881816 2 2 218 67.9042 108 0.399038 0.883038 2 2 .. .. . . . . . . . . . .. .. .. .. 69 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 506 218.022 252 0.517076 0.927076 2 2 507 218.457 252.5 0.517138 0.927138 2 2 Table 2.1. Summary of parameter choices which minimize ๐‘‡ + ๐‘ 2.7.5 Attaining Bounds With Examples Theorem 1.17 indicates that for ๐‘› โฉพ 217, there are no more than 40 distinct solutions to equation (2.4) when ๐น (๐‘ฅ, ๐‘ฆ) is a trinomial. For smaller ๐‘›, this upper bound is even larger. Of interest is whether or not it is possible to find a particular trinomial for which (2.4) has 40 distinct solutions. The computer algebra system GP has a method called thue which, on input a Thue equation, will output the solutions to that Thue equationโ€ก. The author has used this method to create a function in Sage which, on input a degree ๐‘› and height ๐ป, will compute the solutions to every trinomial Thue equation of degree ๐‘› and height ๐ป. The method can be found in appendix B.1 and the raw data can be found on the authorโ€™s website at: https://pages.uoregon.edu/gknapp4/files/trinomial_solution_data.zip The maximal number of solutions to equation (2.4) for a trinomial ๐น (๐‘ฅ, ๐‘ฆ) of degree ๐‘› and height ๐ป are found in the two tables below. Notably, no trinomial has been found with more than 12 solutions to (2.4), which is far from the upper bound of 40. Moreover, while much of the data in the tables give the notion that the maximal number of solutions only depends on ๐ป, the column ๐ป = 16 confirms that the data supporting such a hypothesis is coincidental. A hyphen in the table means that the case in question has not yet been computed. โ€กWhile the accuracy ofGPโ€™sthuemethod relies on theGeneralizedRiemannHypothesis to solve the Thue equation ๐น (๐‘ฅ, ๐‘ฆ) = โ„Ž, our use of it does not because thue does not assume GRH when solving the specific equation ๐น (๐‘ฅ, ๐‘ฆ) = ยฑ1. 70 ๐ป = 1 ๐ป = 2 ๐ป = 3 ๐ป = 4 ๐ป = 5 ๐ป = 6 ๐ป = 7 ๐ป = 8 ๐ป = 9 ๐‘› = 6 8 6 8 8 6 6 6 6 8 ๐‘› = 7 8 6 8 8 6 6 6 6 8 ๐‘› = 8 8 6 8 8 6 6 6 6 8 ๐‘› = 9 8 6 8 8 6 6 6 6 8 ๐‘› = 10 8 6 8 8 6 6 6 6 8 ๐‘› = 11 8 6 8 8 6 6 6 6 8 ๐‘› = 12 8 6 8 8 6 6 6 - - ๐‘› = 13 8 6 8 8 6 6 - - - ๐‘› = 14 8 6 8 8 6 6 - - - ๐‘› = 15 8 6 8 8 6 - - - - ๐‘› = 16 8 6 8 8 6 - - - - ๐‘› = 17 8 6 8 8 - - - - - ๐‘› = 19 8 6 8 - - - - - - ๐‘› = 20 8 6 8 - - - - - - Table 2.2. The maximal number of solutions to equation (2.4) for a trinomial ๐น (๐‘ฅ, ๐‘ฆ) of degree ๐‘› and height ๐ป โฉฝ 9. ๐ป = 10 ๐ป = 11 ๐ป = 12 ๐ป = 13 ๐ป = 14 ๐ป = 15 ๐ป = 16 ๐ป = 17 ๐‘› = 6 6 6 6 6 - 6 12 6 ๐‘› = 7 6 6 6 6 6 6 8 6 ๐‘› = 8 6 6 6 6 6 - 12 - ๐‘› = 9 6 6 6 - - - 8 - ๐‘› = 10 - 6 - - - - - - Table 2.3. The maximal number of solutions to equation (2.4) for a trinomial ๐น (๐‘ฅ, ๐‘ฆ) of degree ๐‘› and height ๐ป โฉพ 10. 71 CHAPTER 3 ROOT SEPARATION 3.1 Introduction Recall that we used Rumpโ€™s result (2.31) in our proof of Lemma 2.46. Rumpโ€™s result bounding the distances between distinct roots of a given polynomial is not just useful as a technical tool, but also is part of a well-studied tradition regarding the geometry of roots of polynomials. This tradition includes Descartesโ€™ Rule of Signs, the Gauss-Lucas Theorem, and the Schinzel-Zassenhaus Conjecture, to name a few key results. Bounds on root separation in particular have computational applications to root-finding algorithms as Koiran outlines in [Koi19]. In this chapter, we focus primarily on bounding the separation between roots of a fixed polynomial. Recall the definition of a polynomialโ€™s separation, given in Definition 1.25 and restated here for convenience. Definition. Given a polynomial ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] with roots ๐›ผ1, . . . , ๐›ผ๐‘› โˆˆ C, the separation of ๐‘“ (๐‘ฅ) is the quantity sep( ๐‘“ ) = min |๐›ผ๐‘– โˆ’ ๐›ผ ๐‘— |. ๐›ผ๐‘–โ‰ ๐›ผ ๐‘— In particular, we look at upper bounds on the separation of a polynomial. Our main conjecture is Conjecture 1.33, which is reprinted here for convenience: Conjecture. Suppose ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] is monic and separable of degree ๐‘› โฉพ 2. If ๐‘“ (๐‘ฅ) has any real roots, then sep( ๐‘“ ) โ‰ช๐‘› ๐‘€ ( ๐‘“ )1/(๐‘›โˆ’1) . If ๐‘“ (๐‘ฅ) has only nonreal roots, then sep( ๐‘“ ) โ‰ช๐‘› ๐‘€ ( ๐‘“ )1/๐‘›. In the course of this chapter, we prove Theorem 1.34, which we restate here for convenience. Theorem. Let ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] be monic and separable with deg( ๐‘“ ) = ๐‘› โฉพ 2 and suppose that any of the following conditions is met. 1. deg( ๐‘“ ) = 2. 2. deg( ๐‘“ ) = 3. 72 3. deg( ๐‘“ ) = 4 and ๐‘“ (๐‘ฅ) has no real roots. 4. Every root of ๐‘“ (๐‘ฅ) is real. Then if ๐‘“ (๐‘ฅ) has any real roots, sep( ๐‘“ ) โ‰ช ๐‘€ ( ๐‘“ )1/(๐‘›โˆ’1)๐‘› . If ๐‘“ (๐‘ฅ) has only nonreal roots, then sep( ๐‘“ ) โ‰ช๐‘› ๐‘€ ( ๐‘“ )1/๐‘›. In fact, we prove something more precise: Propositions 3.7 through 3.10 give (sometimes sharp) explicit bounds on sep( ๐‘“ ) for the cases given in Theorem 1.34. 3.2 Context 3.2.1 Lower Bounds on Separation The starting point for much research around bounds on separation is Corollary 1.32, stated again here for convenience. Theorem (Mahler). Suppose that ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ] is separable of degree ๐‘› โฉพ 2. Then โˆš 3 sep( ๐‘“ ) > . ๐‘›(๐‘›+2)/2๐‘€ ( ๐‘“ )๐‘›โˆ’1 Mahlerโ€™s theorem gives an important lower bound for separation in terms of Mahler measure. Many others have developed this theory further. For example, Rump removed the separability hypothesis when he proved in [Rum79] that Theorem 3.1 (Rump). Suppose that ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ] has degree ๐‘› and let ๐‘† denote the sum of the absolute values of the coefficients of ๐‘“ (๐‘ฅ). Then 1 sep( ๐‘“ ) > 2๐‘›๐‘›/2+2 . (๐‘† + 1)๐‘› Since ๐‘† โฉฝ 2๐‘›๐‘€ ( ๐‘“ ), this yields the relation 1 sep( ๐‘“ ) > 2๐‘›๐‘›/2+2(2๐‘›๐‘€ ( ๐‘“ ) + 1)๐‘› which is numerically worse than Mahlerโ€™s theorem, but does encompass more cases. Othersโ€”especially Bugeaud, Dujella, Pejkoviฤ‡โ€”have focused on improving the numerics of Mahlerโ€™s theorem. To examine their results, we introduce some new notation. 73 Notation 3.2. Let ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] be a polynomial. Then let ( ) โˆ’ log sep( ๐‘“ )๐‘’ ๐‘“ := log ๐‘€ ( ๐‘“ ) (3.1) so that ๐‘’( ๐‘“ ) always satisfies the relation 1 sep( ๐‘“ ) = . ๐‘€ ( ๐‘“ )๐‘’( ๐‘“ ) Then, for an integer ๐‘› โฉพ 2, let ๐‘’(๐‘›) := sup{๐‘’( ๐‘“ ) : ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ], deg( ๐‘“ ) = ๐‘›, ๐‘“ is separable}, ๐‘’irr(๐‘›) := sup{๐‘’( ๐‘“ ) : ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ], deg( ๐‘“ ) = ๐‘›, ๐‘“ is irreducible}, ๐‘’โˆ—red(๐‘›) := sup{๐‘’( ๐‘“ ) : ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ], deg( ๐‘“ ) = ๐‘›, ๐‘“ is reducible and monic} Now, ๐‘’(๐‘›) represents the minimal value of ๐‘’ which makes the following statement true: there exists a constant ๐ถ (๐‘›) so that for every separable ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ] of degree ๐‘›, ( ) ๐ถ (๐‘›)sep ๐‘“ > ๐‘€ ( ๐‘“ ) .๐‘’ The quantity ๐‘’irr(๐‘›) plays the same role, but for the more restrictive class of irreducible polynomials, so ๐‘’irr(๐‘›) โฉฝ ๐‘’(๐‘›) for all ๐‘›. Mahlerโ€™s theorem then implies that ๐‘’(๐‘›) โฉฝ ๐‘› โˆ’ 1, but it remains possible that ๐‘’(๐‘›) could be smaller. Likewise, Theorem 3.1 implies that ๐‘’โˆ—red(๐‘›) โฉฝ ๐‘›. By constructing families of examples, Bugeaud and Dujella in [BD11] showed that ๐‘› ๐‘› โˆ’ 2 ๐‘’irr(๐‘›) โฉพ +2 4(๐‘› โˆ’ 1) , demonstrating that ๐‘› is at least the right order of magnitude for ๐‘’(๐‘›) and ๐‘’irr(๐‘›). On the other hand, Dujella and Pejkoviฤ‡ in [DP17] showed that ๐‘’โˆ—red(๐‘›) โฉฝ ๐‘› โˆ’ 2, which indicates that Rumpโ€™s Theorem 3.1 can very likely be improved. Of course, the degree is not the only quantity which impacts the separation of a polynomial. The number of nonzero summands of ๐‘“ (๐‘ฅ) also impacts the separation, as we note that Example 1.30 shows that for m(onic bi(nom)i)als ๐‘“ (๐‘ฅ), sep( ๐‘“ ) ๐œ‹ 1> 2 +๐‘‚ 3 ๐‘€ ( ๐‘“ ) 1/๐‘›. ๐‘› ๐‘› Koiran, in [Koi19], uses Bakerโ€™s bounds on linear forms in logarithms to show: 74 Theorem 3.3 (Koiran). Suppose ๐‘“ (๐‘ฅ) โˆˆ Z[๐‘ฅ] is a trinomial and let ๐‘Œ = log max(๐ป ( ๐‘“ ), deg( ๐‘“ )). Then for some absolute constant ๐ถ, sep( ๐‘“ ) > exp(โˆ’๐ถ๐‘Œ3). Each of these results has thus far explored lower bounds on the separation in terms of the Mahler measure. In the next section, we turn the question around and ask about upper bounds on separation in terms of the Mahler measure. 3.2.2 Upper Bounds on Separation In the introduction to this dissertation, we noted that there is a trivial upper bound on separation given by the Mahler measure via inequality (1.7). This can be improved upon without too much work from a surprising source. Theorem 1.31 gives a lower bound on separation prima facie, but can be manipulated to produce an upper bound on separation. Proposition 3.4. Suppose that ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] is separable of degree ๐‘› โฉพ 2 and leading coefficient ๐‘ โ‰  0. Then ๐‘›+2 ( ) 2(๐‘›โˆ’1) ๐‘› ๐‘›2โˆ’๐‘›โˆ’2 ๐‘€ ( ๐‘“ ) ๐‘›2โˆ’๐‘›โˆ’2 sep( ๐‘“ ) < ยท . 31/(๐‘›2โˆ’๐‘›โˆ’2) |๐‘ | If ๐‘› โฉพ 4, then ( ) ( 2/(๐‘›โˆ’ 1 ) ( ) 1 ๐‘€ ๐‘“ ) 2 sep ๐‘“ < ๐‘› ๐‘›โˆ’3 | .๐‘ | Proof. Observe first that since ๐‘“ (๐‘ฅ) is separabโˆle, we have |ฮ” ๐‘“ | = |๐‘ |2๐‘›โˆ’2 |๐›ผ 2๐‘– โˆ’ ๐›ผ ๐‘— | 1โฉฝ๐‘–< ๐‘—โฉฝ๐‘› โฉพ |๐‘ |2๐‘›โˆ’2 2sep( ๐‘“ )๐‘› โˆ’๐‘›. We can apply this fact along with Theoโˆš๏ธrem 1.31 to find that 3|ฮ” | sep( ๐‘“๐‘“ ) > ๐‘›(๐‘›+2)/2โˆš ๐‘€ ( ๐‘“ ) ๐‘›โˆ’1 3|๐‘ |๐‘›โˆ’1 sep( 2๐‘“ ) (๐‘› โˆ’๐‘›)/2 โฉพ ๐‘›(๐‘›+2)/2๐‘€ ( ๐‘“ )๐‘›โˆ’1 75 and rearranging yields ๐‘›+2 ( ) 2(๐‘›โˆ’1) ๐‘› ๐‘›2โˆ’๐‘›โˆ’2( ) ยท ๐‘€ ( ๐‘“ ) ๐‘›2โˆ’๐‘›โˆ’2 sep ๐‘“ < . 31/(๐‘›2โˆ’๐‘›โˆ’2) |๐‘ | If ๐‘› โฉพ 4, it is easy to verify that ๐‘›+2 12โˆ’ โˆ’2 โฉฝ โˆ’3 and 2(๐‘›โˆ’1) 2 2โˆ’ โˆ’2 โฉฝ โˆ’ 1 , which concludes the๐‘› ๐‘› ๐‘› ๐‘› ๐‘› ๐‘› 2 proof. โ–ก Observe that Proposition 3.4 gives a much better bound that we found in (1.7). Moreover, Proposition 3.4 lends more credence to the philosophy that โ€œpolynomial roots are not randomly distributed.โ€ Vaguely, what we mean by this is that while the roots of ๐‘“ (๐‘ฅ) must lie in the complex disk of radius 1 + ๐ป ( ๐‘“ )| | , they are not uniformly distributed๐‘ within that disk. If they were, separation would satisfy a much different bound. Here, we examine the expected value of the minimum separation between two points when ๐‘› random points are selected inside a disk of specified radius. We follow a similar line of reasoning that can be found in Hernan Gonzalazโ€™ StackExchange answer given at the URL in the footnotes.โˆ— Proposition 3.5. Suppose that ๐‘› points ๐‘† = {๐›ผ1, . . . , ๐›ผ๐‘›} are scattered independently with uniform probability in the complex disk of radius ๐‘… > 0, centered at 0. Then the expected value of sep(๐‘†) := min๐‘–โ‰  ๐‘— |๐›ผ๐‘– โˆ’ ๐›ผ ๐‘— | is at least โˆš 2 2 ยท ๐‘… . 3 ๐‘› Proof. Let ๐‘๐‘› (๐‘ฅ) denote the probability thโˆซat sep(๐‘†) โฉพ ๐‘ฅ. Then the expected separation isโˆž ๐ธ๐‘›,๐‘… := ๐‘๐‘› (๐‘ฅ) ๐‘‘๐‘ฅ. 0 We will place ๐‘› balls with diameter ๐‘ฅ randomly uniformly inside ๐ต๐‘… (0). Say that those balls are ๐ต1, . . . , ๐ต๐‘› which have respective centers ๐›ผ1, . . . , ๐›ผ๐‘›. For every ๐‘— โˆˆ {{๐‘–, ๐‘˜} : 1 โฉฝ ๐‘– < ๐‘˜ โฉฝ ๐‘›}, let ๐‘† ๐‘— = ๐‘†๐‘–,๐‘˜ denote the event that ๐ต๐‘– โˆฉ ๐ต๐‘˜ โ‰  โˆ…. Now, ๐‘ƒ(๐‘† ๐‘— ) is equal to the probability that ๐›ผ๐‘˜ is placed within distance ๐‘ฅ of ๐›ผ๐‘–, which is at most ๐œ‹๐‘ฅ2 ๐‘ฅ2 ( ) 2 = 2 . Hence, ๐‘ƒ(๐‘† ๐‘— ) โฉฝ ๐‘ฅ 2. ๐œ‹๐‘… ๐‘… ๐‘… Then we note that ๐‘๐‘› (๐‘ฅ) = ๐‘ƒ(โˆฉ ๐‘†c๐‘— ๐‘— ) โˆ—https://math.stackexchange.com/questions/2005775/average-minimum-distance- between-n-points-generate-i-i-d-uniformly-in-the-bal 76 = 1 โˆ’ ๐‘ƒโˆ‘๏ธ(โˆช ๐‘—๐‘† ๐‘— ) โฉพ 1 โˆ’ ( ๐‘ƒ(๐‘† ๐‘— )๐‘— ( ) ๐‘› ( ๐‘ฅ ) )2 โฉพ max 1 โˆ’ , 0 . 2 ๐‘… Therefore, โˆซ โˆž ๐ธ๐‘›,๐‘… = โˆซ ๐‘๐‘› (๐‘ฅ) ๐‘‘๐‘ฅ0 โˆš/ (๐‘›) ( )๐‘… 2 โˆ’ ๐‘› ( ๐‘ฅ )2 โฉพ 1 ๐‘‘๐‘ฅ 2 ๐‘… โˆš๏ธ0 โˆš2 2๐‘…= 3 ๐‘›(๐‘› โˆ’ 1) โˆš 2 2 ยท ๐‘…โฉพ . 3 ๐‘› โ–ก Hence, if the roots of monic ๐‘“ (๐‘ฅ) โˆˆ C[๐‘ฅ] of degree ๐‘› were randomly uniformly distributeโˆšd in the complex ball of radius 1 + ๐ป ( ๐‘“ ), we would expect their separation to be at least 2 2 ยท 1+๐ป ( ๐‘“ )3 . However, Proposition 3.4 shows this not to be the case: the separation๐‘› is always much smaller for polynomials of large height. The main question that we explore is whether or not Proposition 3.4 can be improved. Like those who study lower bounds on separation, we largely focus on the exponent of ๐‘€ ( ๐‘“ ) in the relation sep( ๐‘“ ) < ๐ถ (๐‘›)๐‘€ ( ๐‘“ )๐‘’. This will give us a quantification for how nonuniform the distribution of polynomial roots is. 3.3 Data and Conjectures For the remainder of this chapter, we will examine polynomials with real coefficients, keeping in mind the fact that our ultimate goal is to understand polynomials with integer coefficients. We are searching for upper bounds on separation in terms of the Mahler measure and we aim to produce those bounds by selecting a large number of โ€œrandomโ€ polynomials with a certain set of characteristics, plotting the separations against the Mahler measures of those polynomials, then examining the data to see what region of the plane these points can lie in. One of the major challenges with this approach is determining what we mean by a โ€œrandomโ€ polynomial. For polynomials in R[๐‘ฅ], one could choose a polynomial of degree 77 ๐‘› by choosing a random vector from a box in R๐‘›+1 to use as the coefficients. Alternatively, one could select a polynomial of degree ๐‘› by choosing a random element of the star-body of polynomials of degree ๐‘› with Mahler measure at most 1 (or some other bound), as Sinclair and Yattselev do in [SY15]. Here, we choose to select a random polynomial by choosing its roots uniformly from a specified compact subset of the complex plane. The major advantage of this approach is the speed with which we can compute Mahler measure and separation. Were we to select the coefficients of the random polynomial, we would first have to find the roots of the polynomial before we could compute the separation and Mahler measure, a notoriously difficult problem. To produce this data, we wrote Sage code which is fully specified and documented in Appendix B.3. The most important method in that Appendix is PlotMahlerVSep which takes as input a number of trials ๐‘ , a number of roots ๐‘›, a โ€œradiusโ€ ๐‘…, a number of real roots ๐‘Ÿ (which defaults to ๐‘Ÿ = 0), a discriminant lower bound ๐‘‘ (which defaults to ๐‘‘ = 0), and a string indicating the region of the complex plane from which the roots will be chosen. The method then creates an empty plot ๐‘ƒ and conducts the following experiment ๐‘ times: 1. Select ๐‘Ÿ random elements from the specified region of R uniformly and select ๐‘›โˆ’๐‘Ÿ2 random elements and their complex conjugates from the specified region of C uniformly. 2. Set ๐‘“ (๐‘ฅ) to be the monic polynomial with those ๐‘› elements as roots. If |ฮ” ๐‘“ | โฉพ ๐‘‘, proceed to the next step. Otherwise, return to the previous step. 3. Compute the separation and Mahler measure of ๐‘“ (๐‘ฅ) and add the point (๐‘€ ( ๐‘“ ), sep( ๐‘“ )) to the plot ๐‘ƒ. If the region is selected to be a box, the real roots are chosen from the interval [โˆ’๐‘…, ๐‘…] while the complex roots are chosen from the box max ( |โ„œ[๐‘ง] |, |โ„‘[๐‘ง] |) โฉฝ ๐‘…. If the region is selected to be a ball, the real roots are chosen from the interval [โˆ’๐‘…, ๐‘…], while the complex roots are chosen from the ball |๐‘ง | โฉฝ ๐‘…. If the region is selected to be an annulus, the real roots are chosen from the set [โˆ’๐‘…,โˆ’1/๐‘…] โˆช [1/๐‘…, ๐‘…] while the complex roots are chosen from the region 1/๐‘… โฉฝ |๐‘ง | โฉฝ ๐‘…. The user is able to specify an annular region because Sinclair and Yattselev show in [SY15] that a โ€œtypicalโ€ polynomial has roots clustering around the unit circle in C. This allows us to potentially spot differences between data sets for typical and atypical 78 polynomials. However, since we want to prove results for all polynomials, we typically select our region to be a box or a ball. Finally, we note that since we are interested in identifying the optimal exponent ๐‘’ in a relation like sep( ๐‘“ ) < ๐ถ (๐‘›) ยท ๐‘€ ( ๐‘“ )๐‘’, we often find it helpful to plot separation against Mahler measure on log-log axes. To identify the most general patterns available, we begin with the least restrictive computations in the least expensive cases. Figure 3.1 comes from the command PlotMahlerVSep(50000,2,2,numRealRoots=2), which selects 50,000 quadratic polynomials whose roots lie in the real interval [โˆ’2, 2] and plots their separations against their Mahler measures: Figure 3.1. Separation against Mahler measure for monic quadratic polynomials with two real roots In contrast, Figure 3.2 comes from the command PlotMahlerVSep(50000,2,2,numRealRoots=0), which selects 50,000 quadratic polynomials whose roots are distinct complex conjugates which lie in the complex ball of radius 2, and plots their separations against their Mahler measures. Immediately, we can see the role that the presence of real roots plays in determining the relation between separation and Mahler measure. Some of these differences are caused by the anomalies present in the degree two case: for instance, the โ€œemptyโ€ space in Figure 3.1 comes from the fact that attaining a Mahler measure near four for a degree two polynomial requires both roots to have absolute value approximately two, so the two roots must be either very close together (both near 2 or both near โˆ’2) or very far apart (one root 79 Figure 3.2. Separation against Mahler measure for monic quadratic polynomials with no real roots near 2 and the other near โˆ’2). If we alโˆšlowed larger roots, no such โ€œempty spaceโ€ would appear: the polynomial ๐‘”(๐‘ฅ) = ๐‘ฅ2 โˆ’ 2 5๐‘ฅ + 4 has ๐‘€ (๐‘”) = 4 and sep(๐‘”) = 2, for instance. However, the sense that the real roots impact the relationship between separation and Mahler measure is borne out in further examples. Consider the degree three case, where a polynomial in R[๐‘ฅ] can either have one real root or three real roots. Figure 3.3 displays the results of the command PlotMahlerVSep(50000,3,2,numRealRoots=3), which selected 50,000 cubic polynomials with three real roots coming from the interval [โˆ’2, 2]. In some contrast, Figure 3.4 displays the results of the command PlotMahlerVSep(50000,3,2,numRealRoots=1), which selected 50,000 cubic polynomials with one real root from the interval [โˆ’2, 2] and a single pair of complex conjugate roots from the complex ball |๐‘ง | โฉฝ 1. Some of the differing appearance on these two plots comes from the different scaling factors on the axes and some is due to a weaker version of the โ€œempty space effectโ€ that we saw in the degree two case, but there are meaningful differences between the graphs that are easy to spot: one of those is that the curve which bounds the blue region from above appears to pass through the point (1, 1) in Figure 3.3 in contrast to the point (1.7, 1) in Figure 3.4. In fact, this is because a polynomial ๐‘“ (๐‘ฅ) with ๐‘€ ( ๐‘“ ) = 1 must have all of its roots satisfying |๐›ผ | โฉฝ 1. The maximum separation of the roots of a cubic polynomial if all three roots are real is then 1 (if the roots are located at โˆ’1, 0, 1). On the other hand, if one 80 Figure 3.3. Separation against Mahler measure for monic cubic polynomials with three real roots Figure 3.4. Separation against Mahler measure for monic cubic polynomials with one real root โˆš root is real and two are complex, the maximum separation is then 2 sin(๐œ‹/3) = 3 when the roots are the three cube roots of unity. Hence, if we are trying to understand the relation sep( ๐‘“ ) < ๐ถ (๐‘›)๐‘€ ( ๐‘“ )๐‘’(๐‘›) , we should aim to incorporate differences for polynomials with different signatures. Definition 3.6. For a polynomial ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ], the signature of ๐‘“ (๐‘ฅ) is the pair (๐‘Ÿ, ๐‘ ) if ๐‘“ (๐‘ฅ) has exactly ๐‘Ÿ roots in R and ๐‘  pairs of distinct complex conjugate roots. Moreover, we should begin using log-log plots to illustrate our data if we specifically want to examine the relation sep( ๐‘“ ) < ๐ถ (๐‘›)๐‘€ ( ๐‘“ )๐‘’(๐‘›) since on a log-log plot, this bound is linear with slope ๐‘’(๐‘›): log sep( ๐‘“ ) < log๐ถ (๐‘›) + ๐‘’(๐‘›) log ๐‘€ ( ๐‘“ ). 81 In fact, this is the exact behavior we see when plotting data on log-log axes. Figure 3.5 is the result of the same operation as Figure 3.2, but plotted on log-log axes and Figure 3.6 is the result of the same operation as Figure 3.1, but plotted on log-log axes. Figure 3.5. Logarithmic separation against logarithmicMahler measure for monic quadratic polynomials with no real roots Figure 3.6. Logarithmic separation against logarithmicMahler measure for monic quadratic polynomials with two real roots As expected, the upper bounds on these two regions appears to be linear. More than that, the upper bound on the blue region in Figure 3.5 appears to approximately be the line ๐‘ฆ = ๐‘ฅ + 0.7 and the upper bound on the blue region in Figure 3.6 appears to approximately be the line ๐‘ฆ = ๐‘ฅ2 + 0.6. Because this is the relatively simple quadratic case, we are able to precisely determine these bounds later and we do so later in Proposition 3.7. Continuing to the cubic case, we again see that when plotted on log-log axes, the upper bound on the blue region appears linear. Figure 3.7 recreates the data of Figure 3.3 on log-log axes and Figure 3.8 recreates the data of Figure 3.4 on log-log axes. 82 Figure 3.7. Logarithmic separation against logarithmic Mahler measure for monic cubic polynomials with three real roots Figure 3.8. Logarithmic separation against logarithmic Mahler measure for monic cubic polynomials with one real root Very loose estimates of the upper bounds for the blue regions in these figures indicate that the blue region in Figure 3.7 is bounded above by the line ๐‘ฆ = ๐‘ฅ/2 and the blue region in Figure 3.8 is bounded above by the line ๐‘ฆ = ๐‘ฅ/2 + 0.5. We continue to the quartic case to finish identifying the pattern. Figure 3.9 shows the results of selecting 100,000 polynomials of degree 4 with four real roots in the interval [โˆ’10, 10] and plotting their logarithmic separations against their logarithmic Mahler measures. Figure 3.10 does the same thing, but for polynomials with two real roots in the interval [โˆ’10, 10] and a single pair of complex conjugate roots in the ball |๐‘ง | โฉฝ 10. Figure 3.11 does the same, but for polynomials with two pairs of complex conjugate roots in the ball |๐‘ง | โฉฝ 10. Again eyeballing the upper bounds of the blue region, it appears that the blue region in Figure 3.9 is bounded above by the line ๐‘ฆ = ๐‘ฅ/3 โˆ’ 1/6, the blue region in Figure 3.10 is bounded above by the line ๐‘ฆ = ๐‘ฅ/3 + 1/6, yet the blue region in Figure 3.11 is bounded 83 Figure 3.9. Logarithmic separation against logarithmic Mahler measure for monic quartic polynomials with four real roots Figure 3.10. Logarithmic separation against logarithmic Mahler measure for monic quartic polynomials with two real roots Figure 3.11. Logarithmic separation against logarithmic Mahler measure for monic quartic polynomials with no real roots above by the line ๐‘ฆ = ๐‘ฅ/4 + 1/3. Since the slope of the linear upper bound corresponds to the exponent ๐‘’(๐‘›) in the relation sep( ๐‘“ ) < ๐ถ (๐‘›)๐‘€ ( ๐‘“ )๐‘’(๐‘›) , we are now able to see the data that led to (and supports) 84 Conjecture 1.33. This conjecture is true in certain cases and we verify this in our proof of Theorem 1.34. 3.4 Proof of Theorem 1.34 Our main goal of this section is to prove Theorem 1.34, which we will do in pieces. We will moreover give specific constants for various degrees and signatures of ๐‘“ (๐‘ฅ) in the inequality sep( ๐‘“ ) โ‰ช๐‘› ๐‘€ ( ๐‘“ )1/(๐‘›โˆ’1) . We prove the following propositions: Proposition 3.7. Let ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] have degre(e 2 and) leading coefficient ๐‘. If ๐‘“ (๐‘ฅ) has noreal roots, then ( ) 1/2๐‘€ ๐‘“ sep( ๐‘“ ) โฉฝ 2 | .๐‘ | If ๐‘“ (๐‘ฅ) has two real roots, then ( ) ๐‘€ ( ๐‘“ ) sep( ๐‘“ ) โฉฝ | | + 1.๐‘ Moreover, these bounds are sharp. Proposition 3.8. Let ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] be separable of degree ๐‘› โฉพ 3 with leading coefficient ๐‘. Suppose further that all ๐‘› of the roots of ๐‘“ ar(e real. T)hen 8 2 ( ) 1/(๐‘›โˆ’1)( . ๐‘€ ๐‘“sep ๐‘“ ) โฉฝ ยท . ๐‘› |๐‘ | Proposition 3.9. Let ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] have degree( 3 and)leading coefficient ๐‘. If ๐‘“ (๐‘ฅ) hasexactly one real root, then โˆš 1/2 ( ) ๐‘€ ( ๐‘“ )sep ๐‘“ < 3 |๐‘ | . Proposition 3.10. Suppose that ๐‘“ (๐‘ฅ) โˆˆ R[๐‘ฅ] has degree 4, leading coefficient ๐‘ and no real roots. Then โˆš ( )1/4 ( ) ๐‘€ ( ๐‘“ )sep ๐‘“ โฉฝ 2 |๐‘ | . Moreover, this bound is sharp. These propositions cover each of the cases stated in Theorem 1.34, so once we have given proofs of these four propositions, we will have proved Theorem 1.34. 85 Proof of Proposition 3.7. Suppose that the two roots of ๐‘“ (๐‘ฅ) are ๐›ผ1 and ๐›ผ2. Case 1: First, suppose that ๐‘“ (๐‘ฅ) has no real roots. In this case, |๐›ผ( 1 | = |๐›ผ)2 | and hence, ( ) 1/2๐‘€ ๐‘“ sep( ๐‘“ ) = |๐›ผ 1/2 1/21 โˆ’ ๐›ผ2 | โฉฝ 2|๐›ผ1 | = 2|๐›ผ1 | |๐›ผ2 | โฉฝ 2 | | .๐‘ This bound is achieved by the family of polynomials ๐‘ƒ๐‘Ÿ (๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘–๐‘Ÿ) (๐‘ฅ + ๐‘–๐‘Ÿ) for ๐‘Ÿ โฉพ 1. Case 2: Second, suppose that ๐‘“ (๐‘ฅ) has two real roots. Without loss of generality, we can assume that ๐›ผ2 โฉพ max(1, |๐›ผ1 |). If ๐›ผ1 โฉพ โˆ’1, then we have sep( ๐‘“ ) โฉฝ ๐›ผ2 + ๐‘€ ( ๐‘“ ) 1 โฉฝ | + 1๐‘ | and we are done. Else, ๐›ผ1 < โˆ’1 and we now have sep( ๐‘“ ) = ๐›ผ2 โˆ’ ๐›ผ1 and ๐‘€ ( ๐‘“ ) | | + 1 = โˆ’๐›ผ1๐›ผ2 + 1.๐‘ We now observe that the inequality sep( ) โฉฝ ๐‘€ ( ๐‘“ )๐‘“ | | + 1 is equivalent to the inequality๐‘ ๐›ผ2 โˆ’ 1 โฉฝ โˆ’๐›ผ1(๐›ผ2 โˆ’ 1), which is true by virtue of the fact that ๐›ผ2 โฉพ 1 and ๐›ผ1 โฉฝ โˆ’1. This bound is achieved by the family of polynomials ๐‘„๐‘Ÿ (๐‘ฅ) = (๐‘ฅ + 1) (๐‘ฅ โˆ’ ๐‘Ÿ) for ๐‘Ÿ โฉพ 1. โ–ก With the proof of Proposition 3.7, we can now re-consider Figures 3.1 and 3.2 with the added upper bounds. In Figure 3.12, we can see that the upper bound ๐‘ฆ = ๐‘ฅ + 1 is attained regularly; it only doesnโ€™t appear sharp for ๐‘€ ( ๐‘“ ) > 2 for the following reason. If you choose a polynomial ๐‘“ (๐‘ฅ) with ๐‘€ ( ๐‘“ ) > 2 where both roots are chosen from the interval [โˆ’2, 2], this forces both roots to have opposite signs and live outside the interval [โˆ’1, 1], which artificially inflates the Mahler measure relative to the separation. โˆš In Figure 3.13, we can see that the upper bound ๐‘ฆ = 2 ๐‘ฅ is attained regularly. We next consider the totally real case for polynomials of degree at least 3. Proof of Proposition 3.8. We may assume that |๐‘ | = 1; if not, replace ๐‘€ ( ๐‘“ ) everywhere in this proof by ๐‘€ ( ๐‘“ )| | and all statements will still be true.๐‘ First, denote the closest root of ๐‘“ (๐‘ฅ) to 0 by ๐›ผ and let ๐‘Ÿ = sep( ๐‘“ ). Suppose that there are ๐‘  roots of ๐‘“ (๐‘ฅ) which are less than ๐›ผ and ๐‘ก roots of ๐‘“ (๐‘ฅ) which are greater than ๐›ผ. Define โˆ๐‘ก โˆ๐‘  ๐‘”(๐‘ฅ) = (๐‘ฅ โˆ’ ๐›ผ โˆ’ ๐‘Ÿ๐‘–) ยท (๐‘ฅ โˆ’ ๐›ผ) ยท (๐‘ฅ โˆ’ ๐›ผ + ๐‘Ÿ ๐‘—) ๐‘–=1 ๐‘—=1 86 Figure 3.12. Mahler measure against separation for monic quadratic polynomials with two real roots and the sharp upper bound of ๐‘ฆ = ๐‘ฅ + 1. Figure 3.13. Mahler measure against separation for monic quadratic polynomials with no real roots and the sharp upper bound of ๐‘ฆ = 2๐‘ฅ1/2. and observe that we have ๐‘€ ( ๐‘“ ) โฉพ ๐‘€ (๐‘”) because the roots of ๐‘” are no further from the origin than the corresponding roots of ๐‘“ . Furthermore, we have sep( ๐‘“ ) = ๐‘Ÿ = sep(๐‘”), so it suffices to prove the Proposition for ๐‘”(๐‘ฅ). Let ๐›ฝ be the closest rooโˆt of ๐‘”(๐‘ฅ) to the origin and write๐‘‡ โˆ๐‘† ๐‘”(๐‘ฅ) = (๐‘ฅ โˆ’ ๐›ฝ โˆ’ ๐‘Ÿ๐‘–) ยท (๐‘ฅ โˆ’ ๐›ฝ) ยท (๐‘ฅ โˆ’ ๐›ฝ + ๐‘Ÿ ๐‘—). ๐‘–=1 ๐‘—=1 Since ๐›ฝ is the closest root of ๐‘”(๐‘ฅ) to 0, we note that |๐›ฝ | โฉฝ ๐‘Ÿ/2. We may also assume without loss of generality that ๐›ฝ โฉฝ 0 (else, we may apply the same proof to ๐‘”(โˆ’๐‘ฅ)). We now have โˆ๐‘‡ โˆ๐‘† ๐‘€ (๐‘”) โฉพ |๐›ฝ + ๐‘Ÿ๐‘– | ยท |๐›ฝ โˆ’ ๐‘Ÿ ๐‘— | ๐‘–=1 ๐‘—=1 87 โˆ๐‘‡ ( ๐‘Ÿ ) โˆ๐‘† ( ) โฉพ ๐‘Ÿ๐‘– โˆ’ ยท ๐‘Ÿ๐‘Ÿ ๐‘— + ๐‘–=1 โˆ 2( ๐‘—=)1๐‘‡ โˆ๐‘† ( 2 ) = ๐‘Ÿ๐‘›โˆ’1 ยท ๐‘– โˆ’ 1 ยท ๐‘— + 1 . (3.2) 2 ๐‘–=1 ๐‘—=1 2 Getting a handle on the lower bound giv(en)in equation (3.2) will require some use ofโˆš the gamma function. We use the fact that ฮ“ 12 = ๐œ‹ together with the usual fact that ฮ“(๐‘ฅ) = (๐‘ฅ โˆ’ 1)ฮ“(๐‘ฅ โˆ’ 1) to note that โˆ( ) ( )๐‘‡ 1 ฮ“ ๐‘‡ + 12 ๐‘– โˆ’ = 2 โˆš =1 ๐œ‹๐‘– and โˆ๐‘† ( ) ( )1 2ฮ“ ๐‘† + 32 ๐‘— + = โˆš . ๐‘—=1 2 ๐œ‹ Now applying Gautsch(iโ€™s ine)quality( yield)sโˆ๐‘‡ 1 ฮ“ ๐‘‡ + 12โˆ’ โˆš๏ธฮ“(๐‘‡ + 1) ๐‘‡!๐‘– = โˆš > = โˆš๏ธ , โˆ๐‘–=1๐‘† ( 2 ) ( ๐œ‹ ) ๐œ‹(๐‘‡ + 1) ๐œ‹(๐‘‡ + 1)31 2ฮ“ ๐‘† + 2 2ฮ“(๐‘† + 2) 2(๐‘† + 1)! ๐‘— + = โˆš > = . 1 2 โˆš๏ธ โˆš๏ธ ๐‘—= ๐œ‹ ๐œ‹(๐‘† + 2) ๐œ‹(๐‘† + 2) Now we have ( ) ๐‘›โˆ’1 ยท โˆš๏ธ ๐‘‡! ยท โˆš๏ธ2(๐‘† + 1)!๐‘€ ๐‘” โฉพ ๐‘Ÿ (3.3) ๐œ‹(๐‘‡ + 1) ๐œ‹(๐‘† + 2) from inequality (3.2) and we aim to estimate the right-hand side of this inequality from below in terms of ๐‘›. We have the restrictions 0 โฉฝ ๐‘†, ๐‘‡ โฉฝ ๐‘› and ๐‘† + ๐‘‡ + 1 = ๐‘›, so we can replace ๐‘† + 1 in equation (3.3) by ๐‘› โˆ’ ๐‘‡ to find โˆš๏ธ ๐‘‡! ยท โˆš๏ธ2(๐‘† + 1)! โˆš๏ธ ๐‘‡! ยท โˆš๏ธ 2(๐‘› โˆ’ ๐‘‡)!= ๐œ‹(๐‘‡ + 1) ๐œ‹(๐‘† + 2) ๐œ‹(๐‘‡ + 1) ๐œ‹(๐‘› โˆ’ ๐‘‡ + 1) 2๐‘›! = (๐‘›)โˆš๏ธ ๐œ‹ ( ()๐‘‡โˆš๏ธ+ 1) (๐‘› โˆ’ ๐‘‡ + 1)๐‘‡ 2๐‘›!โฉพ ๐‘› ๐œ‹ โŒŠ /2โŒ‹ (๐‘›/2 + 1) (๐‘› โˆ’ ๐‘›/2 + 1)๐‘› 88 ( Now, using the fact that ๐‘› ) โˆš 2๐‘›+1โŒŠ /2โŒ‹ โฉฝ gives๐‘› ๐œ‹(2๐‘›+1) โˆš๏ธ ๐‘‡! ยท โˆš๏ธ2(๐‘† + 1)! ( )โˆš๏ธ 2๐‘›!โฉพ ( + 1) ๐‘›๐œ‹ ๐‘‡ ๐œ‹(๐‘† + 2) ๐œ‹ โŒŠ /2 (๐‘›/2 + 1) (๐‘› โˆ’ ๐‘›/2 + 1)๐‘› โˆšโŒ‹ ๐‘›! ยท 2๐‘› + 1 โฉพ โˆš ๐œ‹2๐‘›โˆ’1(๐‘› + 2) โˆš โˆš 2 1๐‘›(๐‘›/๐‘’)๐‘›๐‘’ 12๐‘›+1 2๐‘› + 1 > 2๐‘›โˆ’1(๐‘› + 2) 1 ๐‘›(๐‘›/๐‘’)๐‘›๐‘’ 12๐‘›+1 โฉพ 2(๐‘›โˆ’2()๐‘› + 2) ( )๐‘› ๐‘›( ) 1 2โฉพ 4 ๐‘’ 12๐‘›+1 1 โˆ’2๐‘’ ๐‘› + 2๐‘› ๐‘› โฉพ 2.4 2๐‘’ by way of Stirlingโ€™s approximation and the fact that ๐‘› โฉพ 3. Finally, we are able to return to (3.3) to find that that โˆš ๐‘›! ยท 2๐‘› + 1 ๐‘€ (๐‘”) โฉพ ๐‘Ÿ๐‘›โˆ’1 ยท โˆš โˆ’1( ) (3.4)๐œ‹2๐‘› (๐‘› + 2)๐‘› โฉพ sep(๐‘”)๐‘›โˆ’1 ๐‘›2.4 2๐‘’ which concludes the p(roof. I)n particular, it yields1 ( ) ๐‘› ๐‘›โˆ’1 ๐‘›โˆ’1 3/2 sep( ) ๐‘€ (๐‘”) 2๐‘’ (2๐‘’) ( 1 8.2 1๐‘” โฉฝ โฉฝ โˆš ๐‘› ๐‘€ ๐‘”) ๐‘›โˆ’1 โฉฝ ๐‘€ (๐‘”) ๐‘›โˆ’12.4 ๐‘› 2.4๐‘› ๐‘›โˆ’1 ๐‘› under the assumption that ๐‘› โฉพ 3. โ–ก With this proof complete, this gives us a chance to revisit Figures 3.3 and 3.9. We can replicate the results of the degree 3 case in Figure 3.3 with the upper bound given by the more precise bound (โˆš โˆ’1 )๐‘› ( ) ๐œ‹2 (๐‘› + 2) 1/(๐‘›โˆ’1) sep ๐‘“ โฉฝ โˆš ๐‘€ ( ๐‘“ )1/(๐‘›โˆ’1) (3.5) ๐‘›! ยท 2๐‘› + 1 given as inequality (3.4) in the proof of Proposition 3.8. However, Figure 3.14 indicates that the constant is not optimal. Similarly, we replicate the results of the degree 4 case in Figure 3.9 with the upper bound coming from (3.5) and again, Figure 3.15 demonstrates that the constant is not optimal. However, we suspect that for large ๐‘›, the inequality becomes sharper. Next, we consider cubic polynomials which have only 1 real root. 89 Figure 3.14. Mahler measure aโˆš๏ธƒgainst separation for monic cubic polynomials with 3 realโˆš โˆš โˆš roots and the upper bound ๐‘ฆ = 10 ๐œ‹/(3 7) โˆ— ๐‘ฅ. Figure 3.15. Mahler measure againโˆš๏ธst sโˆšeparation for monic quartic polynomials with 4 real roots and the upper bound ๐‘ฆ = log( 2 ๐œ‹/3) + ๐‘ฅ/2. Proof of Proposition 3.9. We may assume that |๐‘ | = 1; if not, replace ๐‘€ ( ๐‘“ ) everywhere in this proof by ๐‘€ ( ๐‘“ )| | and all statements will still be true. Suppose that the real root of ๐‘“ (๐‘ฅ)๐‘ is ๐›ผ and without loss of generality, we may assume that ๐›ผ โฉพ 0. Let ๐›ฝ denote the complex root of ๐‘“ (๐‘ฅ) with positive imaginary part. We claim that we may assume thatโ„œ[๐›ฝ] โฉฝ 0. If not, then set ๐›ฝโ€ฒ = โˆ’โ„œ[๐›ฝ] + ๐‘–โ„‘[๐›ฝ] and ๐‘”(๐‘ฅ) = (๐‘ฅ โˆ’ ๐›ผ) (๐‘ฅ โˆ’ ๐›ฝโ€ฒ) (๐‘ฅ โˆ’ ๐›ฝโ€ฒ). Since sep(๐‘”) โฉพ sep( ๐‘“ ) and ๐‘€ (๐‘”) = ๐‘€ ( ๐‘“ ), proving the proposition for ๐‘”(๐‘ฅ) will prove it for ๐‘“ (๐‘ฅ). Hence, we only need prove the proposition under the assumption thatโ„œ[๐›ฝ] โฉฝ 0. We next make a few reductions. โˆš Let ๐‘… = |๐›ฝ |. Note that if โ„‘[๐›ฝ] โฉฝ 3๐‘…2 , then โˆš โˆš sep( ๐‘“ ) โฉฝ |๐›ฝ โˆ’ ๐›ฝ | = 2โ„‘[๐›ฝ] โฉฝ 3๐‘… โฉฝ 3๐‘€ ( ๐‘“ )1/2 and we are done. 90 โˆš Hence, for the rest of the proof, assume that โ„‘[๐›ฝ] > 3๐‘…2 . Note that this automatically implies that |โ„œ[๐›ฝ] | < ๐‘…2 . This m{eans that โˆš } ๐›ฝ โˆˆ ๐‘† := ๐‘ง โˆˆ C | โ„œ[๐‘ง] โฉฝ 0,โ„‘[ ] 3|๐‘ง |๐‘ง โฉพ 2 whichโˆš, in the real plane, is the slice of the second quadrant bounded by the lines ๐‘ฅ = 0 and ๐‘ฆ = โˆ’ 3๐‘ฅ. Our next goal is to reduce to the case where ๐›ผ, ๐›ฝ, and ๐›ฝ form an equilateral triangle in the complex plane. Before we can do this, we claim that if ๐‘ก is the unique point in R with ๐‘ก > โ„œ[๐›ฝ] whichโˆšforms an equilateral triangle with ๐›ฝ and ๐›ฝ, then ๐‘กโˆšโฉพ 0. It can be easily checked that ๐‘ก = 3โ„‘[๐›ฝ] + โ„œ[๐›ฝ] and using the fact that โ„‘[๐›ฝ] โฉพ 3๐‘…2 andโ„œ[๐›ฝ] โฉพ โˆ’ ๐‘… 2 shows that in fact, ๐‘ก โฉพ ๐‘…2 > 0. Suppose then, that ๐›ผ โฉพ ๐‘ก. Then set โ„Ž(๐‘ฅ) = (๐‘ฅ โˆ’ ๐‘ก) (๐‘ฅ โˆ’ ๐›ฝ) (๐‘ฅ โˆ’ ๐›ฝ). Then sep(โ„Ž) = 2โ„‘[๐›ฝ] = sep(โ„Ž) and ๐‘€ ( ๐‘“ ) โฉพ ๐‘€ (โ„Ž), so it suffices to prove the proposition for โ„Ž(๐‘ฅ). Hence, we may assume that ๐›ผ โฉฝ ๐‘ก. Suppose that 0 โฉฝ ๐›ผ โฉฝ ๐‘ก so that |๐›ผ โˆ’ ๐›ฝ | = sep( ๐‘“ ). Let ๐›ฝโ€ฒ be the unique complex number withโ„œ[๐›ฝโ€ฒ] = โ„œ[๐›ฝ], which has โ„‘[๐›ฝ] > 0, and which forms aโˆšn equilateral triangle with ๐›ผ and ๐›ฝโ€ฒ. Note that this point is the intersection of the lines ๐›ผ = 3โ„‘[๐‘ง] + โ„œ[๐‘ง] and โ„œ[๐‘ง] = โ„œ[๐›ฝ]. Note also that โ„‘[๐›ฝโ€ฒ] โฉฝ โ„‘[๐›ฝ] because โˆš โˆš 3โ„‘[๐›ฝโ€ฒ] + โ„œ[๐›ฝโ€ฒ] = ๐›ผ โฉฝ ๐‘ก = 3โ„‘[๐›ฝ] + โ„œ[๐›ฝ] andโ„œ[๐›ฝโ€ฒ] = โ„œ[๐›ฝ]. Set ๐‘— (๐‘ฅ) = (๐‘ฅ โˆ’ ๐›ผ) (๐‘ฅ โˆ’ ๐›ฝโ€ฒ) (๐‘ฅ โˆ’ ๐›ฝโ€ฒ) and note that sep( ๐‘—) = |๐›ผ โˆ’ ๐›ฝ | = sep( ๐‘“ ) and ๐‘€ ( ๐‘—) โฉฝ ๐‘€ ( ๐‘“ ) sinceโ„œ[๐›ฝโ€ฒ] = โ„œ[๐›ฝ] and โ„‘[๐›ฝโ€ฒ] โฉฝ โ„‘[๐›ฝ], so |๐›ฝโ€ฒ| โฉฝ |๐›ฝ |. Hence, it suffices to prove the proposition for ๐‘— (๐‘ฅ) and we may assume that ๐›ผ โฉพ ๐‘ก. โˆš For the remainder of the proof then, we hโˆšave ๐›ผ = ๐‘ก = 3โ„‘[๐›ฝ] + โ„œ[๐›ฝ]. So ๐›ฝ lies on the line inโˆšthe complex plane defined by ๐›ผ = 3โ„‘[๐‘ง] + โ„œ[๐‘ง] and above the line โ„‘[๐‘ง] = โˆ’ 3โ„œ[๐‘ง]. Letting ๐‘ฅโˆšdenote the real parโˆšt of ๐›ฝ and letting ๐‘ฆ denote the imaginary part of ๐›ฝ, we theโˆšn have ๐›ผ = 3๐‘ฆ + ๐‘ฅ and ๐‘ฆ โฉพ โˆ’ 3๐‘ฅ. The intersection of these two lines is the point โˆ’๐›ผ + ๐‘– 3๐›ผ2 2 . Since ๐‘ฅ โฉฝ 0, iโˆšt must be the case that ๐›ฝ lies on the line segment between the points ๐‘–โˆš๐›ผ and โˆ’๐›ผ2 + ๐‘– 3๐›ผ 2 . This implies that |๐›ฝ | โฉฝ ๐›ผ and moreover, that3 โˆš 3๐›ผ ๐‘ฆ โฉฝ . 2 โˆš Note also that if ๐‘ฆ < 32 , then โˆš โˆš sep( ๐‘“ ) โฉฝ 2๐‘ฆ < 3 โฉฝ 3๐‘€ ( ๐‘“ )1/2 91 โˆš and we are done. So we may assume that ๐‘ฆ โฉพ 3โˆš2 . Hence, we are left to prove that sep( ๐‘“ ) โฉฝ 3๐‘€ ( ๐‘“ )1/2 under the assumption that โˆš โˆš 3 3๐›ผ โฉฝ ๐‘ฆ โฉฝ . 2 2 We consider the ratio 3๐‘€ ( ๐‘“ ) 3๐›ผ |๐›ฝ |2 โฉพ := ๐‘Œ sep( ๐‘“ )2 4๐‘ฆ2 and we aim to show that ๐‘Œ โฉพ 1. We first wish to express ๐‘Œ in terms of ๐›ผ and ๐‘ฆ: 3๐›ผ |๐›ฝ |2 ๐‘Œ = 4๐‘ฆ2 3๐›ผ((๐‘ฅ 2 + ๐‘ฆ2) = 4๐‘ฆ2 โˆš ) 3๐›ผ (๐›ผ โˆ’ 3๐‘ฆ)2 + ๐‘ฆ2 = 2 3 โˆš 4๐‘ฆ 3(๐›ผ โˆ’ 2 3๐›ผ2๐‘ฆ + 4๐‘ฆ2๐›ผ) = . 4๐‘ฆ2 We claim that under our assumptions, ๐‘Œ is a nondecreasing function of ๐›ผ. To see this, note that โˆš ๐œ•๐‘Œ 9๐›ผ2 โˆ’ 12 3๐›ผ๐‘ฆ + 12๐‘ฆ2 = ๐œ•๐›ผ ( 4๐‘ฆ2โˆš )2 3๐›ผ โˆ’ 2 3๐‘ฆ = 4๐‘ฆ2 is never negative. Since ๐›ผ โฉพ โˆš2 ๐‘ฆ, we must have 3 2 โˆš3๐›ผ โˆ’ 2 3๐›ผ๐‘ฆ + 4๐‘ฆ2 ๐‘Œ = 4๐‘ฆ2 ๐›ผ 4๐‘ฆ2 โˆ’ 4๐‘ฆ2 + 4๐‘ฆ2 ยท 2โฉพ 2 โˆš ๐‘ฆ4๐‘ฆ 3 โฉพ 1 โˆš โˆš since ๐‘ฆ โฉพ 32 , which concludes the proof that sep( ๐‘“ ) โฉฝ 3๐‘€ ( ๐‘“ ) 1/2. โ–ก With this proof complete, we have the chance to revisit Figure 3.4 along with its upper bound. We recreate this in Figure 3.16. 92 Figure 3.16. Mahler measure againโˆšst separation for monic cubic polynomials with only one real root and the upper bound ๐‘ฆ = 3๐‘ฅ. Here, we see different behavior than we saw in Figures 3.14 and 3.15. In Figure 3.16, we see that the constant is optimal, though it appears that the exponent is not optimal. However, the family of polynomi(als โˆš ) ( โˆš ) ๐‘“๐‘ก (๐‘ฅ) = (๐‘ฅ โˆ’ 1) ๐‘ฅ โˆ’ (1 โˆ’ ๐‘ก 3 + ๐‘–๐‘ก) ๐‘ฅ โˆ’ (1 โˆ’ ๐‘ก 3 โˆ’ ๐‘–๐‘ก) has sep( ๐‘“๐‘ก) โˆผ ๐‘€ ( ๐‘“ )1/2๐‘ก , so the exponent is also optimal. As a result, we see that a relation of the form sep( ๐‘“ ) โฉฝ ๐‘Ž ยท ๐‘€ ( ๐‘“ )๐‘ is not subtle enough to capture the relation between separation and Mahler measure for cubic polynomials with signature (1, 1). This also explains why the proof of Proposition 3.9 is as complicated as it is. However, the proof of Proposition 3.10 is more natural and this will show up in the sharpness of the bound we prove. Proof of Proposition 3.10. For simplicity, assume |๐‘ | = 1. If |๐‘ | โ‰  1, replace every instance of ๐‘€ ( ๐‘“ ) by ๐‘€ ( ๐‘“ )| and the proof is identical. Suppose that the roots of ๐‘“ (๐‘ฅ) are๐‘ | ๐›ผ, ?ฬ„?, ๐›ฝ, ๐›ฝ where โ„‘[๐›ผ],โ„‘[๐›ฝ] > 0 and |๐›ผ | = ๐‘Ÿ โฉฝ |๐›ฝ | = ๐‘…. We first note that sep( ๐‘“ ) = min(2โ„‘[๐›ผ], 2โ„‘[๐›ฝ], |๐›ผ โˆ’ ๐›ฝ |). We have the following two cases: Case 1: 2๐‘Ÿ โฉฝ ๐‘… In this case, we note that ( )1/2 โˆš โˆš sep( ๐‘…๐‘“ ) โฉฝ 2โ„‘[๐›ผ] โฉฝ 2๐‘Ÿ โฉฝ 2๐‘Ÿ1/2 = 2๐‘Ÿ1/2๐‘…1/2 โฉฝ 2๐‘€ ( ๐‘“ )1/4. 2 Case 2: ๐‘Ÿ โฉฝ ๐‘… < 2๐‘Ÿ 93 โˆš โˆš In this case, we first observe that if โ„‘[๐›ผ] < 2 1/2 1/22 ๐‘Ÿ ๐‘… or if โ„‘[๐›ฝ] < 2๐‘Ÿ1/2๐‘…1/22 , then we are done because โˆš โˆš sep( ๐‘“ ) โฉฝ min(2โ„‘[๐›ผ], 2โ„‘[๐›ฝ]) โฉฝ 2๐‘Ÿ1/2๐‘…1/2 โฉฝ 2๐‘€ ( ๐‘“ )1/4. Hence, { โˆš } ๐›ผ โˆˆ ๐‘ง โˆˆ 2C : |๐‘ง | = ๐‘Ÿ and โ„‘[๐‘ง] โฉพ ๐‘Ÿ1/2๐‘…1/2 =: ๐‘† 2 and { โˆš } ๐›ฝ โˆˆ ๐‘ง โˆˆ 2C : |๐‘ง | = ๐‘… and โ„‘[๐‘ง] โฉพ ๐‘Ÿ1/2๐‘…1/2 =: ๐‘‡. 2 As a result, we have sep( ๐‘“ ) โฉฝ |๐›ผ โˆ’ ๐›ฝ | โฉฝ sup |๐‘ง1 โˆ’ ๐‘ง2 | ๐‘ง1โˆˆ๐‘† ๐‘ง2โˆˆ๐‘‡= (โˆš๏ธ‚ โˆš ) ( โˆš๏ธ‚ โˆš ) ๐‘Ÿ๐‘… โˆš๏ธ‚ ๐‘Ÿ2 โˆ’ +โˆš๏ธ‚๐‘– ยท 2 ๐‘Ÿ1/2๐‘…1/2 โˆ’ โˆ’ 2 โˆ’ ๐‘Ÿ๐‘… + ยท 2๐‘… ๐‘– ๐‘Ÿ1/2๐‘…1/2 2 2 2 2 = ๐‘Ÿ2 โˆ’ ๐‘Ÿ๐‘… + ๐‘Ÿ๐‘…๐‘…2 โˆ’ . 2 2 We claim that โˆš๏ธ‚ โˆš๏ธ‚ โˆš ๐‘Ÿ2 โˆ’ ๐‘Ÿ๐‘… + 2 โˆ’ ๐‘Ÿ๐‘…๐‘… โฉฝ 2๐‘Ÿ1/2๐‘…1/2. 2 2 To see this, divide both sides ofโˆš๏ธ‚the inequalโˆš๏ธ‚ity by ๐‘Ÿ 1/2๐‘…1/2 to obtain the equivalent inequality ๐‘Ÿ โˆ’ 1 + ๐‘… โˆ’ 1 โˆš โฉฝ 2. ๐‘… 2 ๐‘Ÿ 2 Observe that this new inequality only depends on the ratio ๐‘ฅ = ๐‘… , which we have bounded ๐‘Ÿ by 1 โฉฝ ๐‘ฅ < 2. It is now a simpleโˆš๏ธ‚calculus proโˆš๏ธ‚blem to show that 1 โˆ’ 1 1 โˆš + ๐‘ฅ โˆ’ โฉฝ 2 ๐‘ฅ 2 2 โˆš for all 1 โฉฝ ๐‘ฅ < 2 and the proof that sep( ๐‘“ ) โฉฝ 2๐‘€ ( ๐‘“ )1/4 is complete. To see that the bound is sharp, consider the family of polynomials given in Example 1.30. โ–ก 94 Finally, we revisit Figure 3.11 and add on the upper bound from Proposition 3.10. As we predictโˆšed before beginning the proof, Figure 3.17 shows that the bound sep( ๐‘“ ) โฉฝ 2๐‘€ ( ๐‘“ )1/4 is attained regularly. Figure 3.17. Logarithmic Mahler measure against logarithmicโˆšseparation for monic quartic polynomials with no real roots and the upper bound ๐‘ฆ = log( 2) + ๐‘ฅ/4 We conclude by noting that these proofs are more or less the limits of the elementary approach. An elementary proof of Conjecture 1.33 is likely possible for quartic polynomials with signature (2, 1), but will be tedious and long. A full proof of Conjecture 1.33 is likely to require a more clever approach: perhaps an induction which relates sep( ๐‘“ ) to sep( ๐‘“ โ€ฒ) and ๐‘€ ( ๐‘“ ) to ๐‘€ ( ๐‘“ โ€ฒ) or an appeal to a sphere-packing problem that has already been solved. However, it is encouraging for the truth of the conjecture that it holds in nontrivial, low-degree cases. 95 APPENDIX A PARAMETER CHOICES FOR SECTION 2.7.4 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 6 0 2 0.18 0.29 10 4 7 0.539 2.5 0.2 0.28 7 4 8 0.992 3 0.16 0.41 7 3 9 0.882 3.5 0.17 0.4 6 3 10 1.17 4 0.23 0.41 5 3 11 1.674 4.5 0.14 0.37 5 3 12 2.088 5 0.27 0.41 4 3 13 2.255 5.5 0.2 0.37 4 3 14 2.484 6 0.16 0.35 4 3 15 2.958 6.5 0.13 0.34 4 3 16 3.136 7 0.11 0.32 4 3 17 3.904 7.5 0.32 0.42 3 3 18 4.158 8 0.27 0.39 3 3 19 4.544 8.5 0.23 0.36 3 3 20 4.712 9 0.21 0.35 3 3 21 4.86 9.5 0.19 0.33 3 3 22 5.418 10 0.17 0.32 3 3 23 5.369 10.5 0.16 0.31 3 3 24 5.664 11 0.15 0.31 3 3 25 5.858 11.5 0.14 0.3 3 3 26 6.148 12 0.13 0.29 3 3 27 6.66 12.5 0.12 0.29 3 3 28 7.308 13 0.11 0.28 3 3 29 6.776 13.5 0.11 0.28 3 3 30 7.56 14 0.1 0.27 3 3 31 7.074 14.5 0.1 0.27 3 3 32 8.296 15 0.09 0.27 3 3 33 7.614 15.5 0.09 0.26 3 3 34 7.154 16 0.09 0.26 3 3 35 8.758 16.5 0.08 0.26 3 3 96 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 36 8.268 17 0.08 0.26 3 3 37 7.728 17.5 0.08 0.25 3 3 38 11.454 18 0.44 0.48 2 3 39 11.799 18.5 0.4 0.45 2 3 40 11.968 19 0.38 0.43 2 3 41 11.946 19.5 0.37 0.42 2 3 42 12.462 20 0.35 0.41 2 3 43 12.797 20.5 0.33 0.39 2 3 44 12.936 21 0.32 0.38 2 3 45 13.266 21.5 0.31 0.37 2 3 46 13.596 22 0.3 0.37 2 3 47 13.926 22.5 0.29 0.36 2 3 48 14.256 23 0.28 0.35 2 3 49 14.144 23.5 0.28 0.35 2 3 50 14.464 24 0.27 0.34 2 3 51 15.015 24.5 0.26 0.33 2 3 52 14.868 25 0.26 0.33 2 3 53 15.183 25.5 0.25 0.32 2 3 54 15.006 26 0.25 0.32 2 3 55 16.064 26.5 0.24 0.32 2 3 56 16.64 27 0.23 0.31 2 3 57 16.443 27.5 0.23 0.31 2 3 58 17.29 28 0.22 0.3 2 3 59 17.073 28.5 0.22 0.3 2 3 60 16.836 29 0.21 0.8 3 2 61 16.579 29.5 0.2 0.8 3 2 62 16.588 30 0.19 0.8 3 2 63 16.878 30.5 0.18 0.8 3 2 64 17.168 31 0.17 0.8 3 2 65 18.06 31.5 0.16 0.8 3 2 66 18.972 32 0.15 0.8 3 2 67 17.416 32.5 0.15 0.8 3 2 68 18.644 33 0.14 0.8 3 2 97 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 69 17.655 33.5 0.14 0.8 3 2 70 19.234 34 0.13 0.8 3 2 71 19.86 34.5 0.15 0.81 3 2 72 18.144 35 0.15 0.81 3 2 73 19.437 35.5 0.14 0.81 3 2 74 18.338 36 0.14 0.81 3 2 75 20.007 36.5 0.13 0.81 3 2 76 18.868 37 0.13 0.81 3 2 77 20.938 37.5 0.12 0.81 3 2 78 19.764 38 0.12 0.81 3 2 79 22.26 38.5 0.11 0.81 3 2 80 21.056 39 0.11 0.81 3 2 81 19.812 39.5 0.11 0.81 3 2 82 23.16 40 0.1 0.81 3 2 83 21.896 40.5 0.1 0.81 3 2 84 20.988 41 0.1 0.81 3 2 85 20.05 41.5 0.1 0.81 3 2 86 21.924 42 0.11 0.82 3 2 87 20.961 42.5 0.11 0.82 3 2 88 24.128 43 0.1 0.82 3 2 89 22.734 43.5 0.1 0.82 3 2 90 21.726 44 0.1 0.82 3 2 91 25.86 44.5 0.09 0.82 3 2 92 24.852 45 0.09 0.82 3 2 93 23.814 45.5 0.09 0.82 3 2 94 22.746 46 0.09 0.82 3 2 95 22.099 46.5 0.09 0.82 3 2 96 26.904 47 0.08 0.82 3 2 97 25.816 47.5 0.08 0.82 3 2 98 25.164 48 0.08 0.82 3 2 99 24.021 48.5 0.08 0.82 3 2 100 23.324 49 0.08 0.82 3 2 101 22.607 49.5 0.08 0.82 3 2 98 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 102 28.674 50 0.07 0.82 3 2 103 27.987 50.5 0.08 0.83 3 2 104 27.28 51 0.08 0.83 3 2 105 26.052 51.5 0.08 0.83 3 2 106 25.3 52 0.08 0.83 3 2 107 24.528 52.5 0.08 0.83 3 2 108 30.96 53 0.07 0.83 3 2 109 29.697 53.5 0.07 0.83 3 2 110 28.93 54 0.07 0.83 3 2 111 28.143 54.5 0.07 0.83 3 2 112 27.336 55 0.07 0.83 3 2 113 26.509 55.5 0.07 0.83 3 2 114 25.662 56 0.07 0.83 3 2 115 24.795 56.5 0.07 0.83 3 2 116 32.804 57 0.06 0.83 3 2 117 31.977 57.5 0.06 0.83 3 2 118 31.13 58 0.06 0.83 3 2 119 30.263 58.5 0.06 0.83 3 2 120 29.376 59 0.06 0.83 3 2 121 29.05 59.5 0.06 0.83 3 2 122 28.128 60 0.06 0.83 3 2 123 26.595 60.5 0.07 0.84 3 2 124 35.164 61 0.06 0.84 3 2 125 34.257 61.5 0.06 0.84 3 2 126 33.33 62 0.06 0.84 3 2 127 32.383 62.5 0.06 0.84 3 2 128 31.416 63 0.06 0.84 3 2 129 30.429 63.5 0.06 0.84 3 2 130 30.048 64 0.06 0.84 3 2 131 29.026 64.5 0.06 0.84 3 2 132 28.62 65 0.06 0.84 3 2 133 27.563 65.5 0.06 0.84 3 2 134 27.132 66 0.06 0.84 3 2 99 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 135 38.409 66.5 0.05 0.84 3 2 136 37.392 67 0.05 0.84 3 2 137 36.355 67.5 0.05 0.84 3 2 138 35.964 68 0.05 0.84 3 2 139 34.892 68.5 0.05 0.84 3 2 140 34.476 69 0.05 0.84 3 2 141 33.369 69.5 0.05 0.84 3 2 142 32.928 70 0.05 0.84 3 2 143 31.786 70.5 0.05 0.84 3 2 144 31.32 71 0.05 0.84 3 2 145 30.844 71.5 0.05 0.84 3 2 146 30.358 72 0.05 0.84 3 2 147 38.394 72.5 0.05 0.85 3 2 148 37.948 73 0.05 0.85 3 2 149 36.771 73.5 0.05 0.85 3 2 150 36.3 74 0.05 0.85 3 2 151 35.088 74.5 0.05 0.85 3 2 152 34.592 75 0.05 0.85 3 2 153 34.086 75.5 0.05 0.85 3 2 154 32.824 76 0.05 0.85 3 2 155 32.293 76.5 0.05 0.85 3 2 156 31.752 77 0.05 0.85 3 2 157 31.201 77.5 0.05 0.85 3 2 158 30.64 78 0.05 0.85 3 2 159 30.069 78.5 0.05 0.85 3 2 160 46.56 79 0.04 0.85 3 2 161 45.298 79.5 0.04 0.85 3 2 162 44.802 80 0.04 0.85 3 2 163 43.505 80.5 0.04 0.85 3 2 164 42.984 81 0.04 0.85 3 2 165 42.453 81.5 0.04 0.85 3 2 166 41.912 82 0.04 0.85 3 2 167 40.55 82.5 0.04 0.85 3 2 100 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 168 39.984 83 0.04 0.85 3 2 169 39.408 83.5 0.04 0.85 3 2 170 38.822 84 0.04 0.85 3 2 171 38.226 84.5 0.04 0.85 3 2 172 37.62 85 0.04 0.85 3 2 173 37.004 85.5 0.04 0.85 3 2 174 36.378 86 0.04 0.85 3 2 175 35.742 86.5 0.04 0.85 3 2 176 35.096 87 0.04 0.85 3 2 177 44.772 87.5 0.04 0.86 3 2 178 44.166 88 0.04 0.86 3 2 179 43.55 88.5 0.04 0.86 3 2 180 42.924 89 0.04 0.86 3 2 181 42.288 89.5 0.04 0.86 3 2 182 41.642 90 0.04 0.86 3 2 183 40.986 90.5 0.04 0.86 3 2 184 40.32 91 0.04 0.86 3 2 185 39.644 91.5 0.04 0.86 3 2 186 38.958 92 0.04 0.86 3 2 187 38.262 92.5 0.04 0.86 3 2 188 37.556 93 0.04 0.86 3 2 189 36.84 93.5 0.04 0.86 3 2 190 36.114 94 0.04 0.86 3 2 191 36.309 94.5 0.04 0.86 3 2 192 35.568 95 0.04 0.86 3 2 193 34.817 95.5 0.04 0.86 3 2 194 34.056 96 0.04 0.86 3 2 195 34.236 96.5 0.04 0.86 3 2 196 33.46 97 0.04 0.86 3 2 197 32.674 97.5 0.04 0.86 3 2 198 31.878 98 0.04 0.86 3 2 199 57.289 98.5 0.03 0.86 3 2 200 56.608 99 0.03 0.86 3 2 101 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 201 55.917 99.5 0.03 0.86 3 2 202 54.23 100 0.03 0.86 3 2 203 53.514 100.5 0.03 0.86 3 2 204 52.788 101 0.03 0.86 3 2 205 52.052 101.5 0.03 0.86 3 2 206 52.312 102 0.03 0.86 3 2 207 51.561 102.5 0.03 0.86 3 2 208 50.8 103 0.03 0.86 3 2 209 50.029 103.5 0.03 0.86 3 2 210 49.248 104 0.03 0.86 3 2 211 48.457 104.5 0.03 0.86 3 2 212 47.656 105 0.03 0.86 3 2 213 47.886 105.5 0.03 0.86 3 2 214 47.07 106 0.03 0.86 3 2 215 59.907 106.5 0.03 0.87 3 2 216 59.136 107 0.03 0.87 3 2 217 67.3735 107.5 0.389816 0.881816 2 2 218 67.9042 108 0.399038 0.883038 2 2 219 68.4369 108.5 0.408258 0.884258 2 2 220 69.0792 109 0.408477 0.884477 2 2 221 69.4002 109.5 0.417694 0.885694 2 2 222 70.047 110 0.417909 0.885909 2 2 222 69.504 110 0.404909 0.884909 2 2 223 69.824 110.5 0.405123 0.885123 2 2 224 70.144 111 0.405336 0.885336 2 2 225 70.464 111.5 0.405547 0.885547 2 2 226 71.89 112 0.405757 0.885757 2 2 227 72.215 112.5 0.405966 0.885966 2 2 228 72.54 113 0.406173 0.886173 2 2 229 73.986 113.5 0.406379 0.886379 2 2 230 74.316 114 0.406583 0.886583 2 2 231 74.646 114.5 0.406786 0.886786 2 2 232 74.976 115 0.406988 0.886988 2 2 102 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 233 76.447 115.5 0.407188 0.887188 2 2 234 76.782 116 0.407387 0.887387 2 2 235 77.117 116.5 0.407585 0.887585 2 2 236 77.452 117 0.407782 0.887782 2 2 237 78.948 117.5 0.407977 0.887977 2 2 238 79.288 118 0.408171 0.888171 2 2 239 79.628 118.5 0.408364 0.888364 2 2 240 79.968 119 0.408556 0.888556 2 2 241 81.489 119.5 0.408747 0.888747 2 2 242 81.834 120 0.408936 0.888936 2 2 243 82.179 120.5 0.409124 0.889124 2 2 244 82.524 121 0.409311 0.889311 2 2 245 84.07 121.5 0.409497 0.889497 2 2 246 84.42 122 0.409682 0.889682 2 2 247 84.77 122.5 0.409865 0.889865 2 2 248 85.12 123 0.410048 0.890048 2 2 249 85.47 123.5 0.410229 0.890229 2 2 250 87.046 124 0.410409 0.890409 2 2 251 87.401 124.5 0.410588 0.890588 2 2 252 87.756 125 0.410766 0.890766 2 2 253 88.111 125.5 0.410943 0.890943 2 2 254 88.466 126 0.411119 0.891119 2 2 255 90.072 126.5 0.411294 0.891294 2 2 256 90.432 127 0.411468 0.891468 2 2 257 90.792 127.5 0.411641 0.891641 2 2 258 91.152 128 0.411813 0.891813 2 2 259 91.512 128.5 0.411984 0.891984 2 2 260 93.148 129 0.412154 0.892154 2 2 261 93.513 129.5 0.412323 0.892323 2 2 262 93.878 130 0.412491 0.892491 2 2 263 94.243 130.5 0.412658 0.892658 2 2 264 94.608 131 0.412824 0.892824 2 2 265 96.274 131.5 0.412989 0.892989 2 2 103 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 266 96.644 132 0.413153 0.893153 2 2 267 97.014 132.5 0.413316 0.893316 2 2 268 97.384 133 0.413479 0.893479 2 2 269 97.754 133.5 0.41364 0.89364 2 2 270 98.124 134 0.413801 0.893801 2 2 271 99.825 134.5 0.41396 0.89396 2 2 272 100.2 135 0.414119 0.894119 2 2 273 100.575 135.5 0.414277 0.894277 2 2 274 100.95 136 0.414434 0.894434 2 2 275 101.325 136.5 0.41459 0.89459 2 2 276 88.14 137 0.494745 0.904745 2 2 277 88.465 137.5 0.4949 0.9049 2 2 278 88.79 138 0.495053 0.905053 2 2 279 89.115 138.5 0.495206 0.905206 2 2 280 90.816 139 0.495358 0.905358 2 2 281 91.146 139.5 0.495509 0.905509 2 2 282 91.476 140 0.49566 0.90566 2 2 283 91.806 140.5 0.495809 0.905809 2 2 284 92.136 141 0.495958 0.905958 2 2 285 93.867 141.5 0.496106 0.906106 2 2 286 94.202 142 0.496253 0.906253 2 2 287 94.537 142.5 0.4964 0.9064 2 2 288 94.872 143 0.496545 0.906545 2 2 289 95.207 143.5 0.49669 0.90669 2 2 290 96.968 144 0.496834 0.906834 2 2 291 97.308 144.5 0.496978 0.906978 2 2 292 97.648 145 0.49712 0.90712 2 2 293 97.988 145.5 0.497262 0.907262 2 2 294 98.328 146 0.497403 0.907403 2 2 295 98.668 146.5 0.497544 0.907544 2 2 296 100.464 147 0.497684 0.907684 2 2 297 100.809 147.5 0.497823 0.907823 2 2 298 101.154 148 0.497961 0.907961 2 2 104 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 299 101.499 148.5 0.498099 0.908099 2 2 300 101.844 149 0.498236 0.908236 2 2 301 103.67 149.5 0.498372 0.908372 2 2 302 104.02 150 0.498508 0.908508 2 2 303 104.37 150.5 0.498642 0.908642 2 2 304 104.72 151 0.498777 0.908777 2 2 305 105.07 151.5 0.49891 0.90891 2 2 306 105.42 152 0.499043 0.909043 2 2 307 107.281 152.5 0.499176 0.909176 2 2 308 107.636 153 0.499307 0.909307 2 2 309 107.991 153.5 0.499438 0.909438 2 2 310 108.346 154 0.499569 0.909569 2 2 311 108.701 154.5 0.499698 0.909698 2 2 312 109.056 155 0.499827 0.909827 2 2 313 110.952 155.5 0.499956 0.909956 2 2 314 111.312 156 0.500084 0.910084 2 2 315 111.672 156.5 0.500211 0.910211 2 2 316 112.032 157 0.500338 0.910338 2 2 317 112.392 157.5 0.500464 0.910464 2 2 318 112.752 158 0.500589 0.910589 2 2 319 113.112 158.5 0.500714 0.910714 2 2 320 115.048 159 0.500838 0.910838 2 2 321 115.413 159.5 0.500962 0.910962 2 2 322 115.778 160 0.501085 0.911085 2 2 323 116.143 160.5 0.501208 0.911208 2 2 324 116.508 161 0.50133 0.91133 2 2 325 116.873 161.5 0.501451 0.911451 2 2 326 117.238 162 0.501572 0.911572 2 2 327 119.214 162.5 0.501692 0.911692 2 2 328 119.584 163 0.501812 0.911812 2 2 329 119.954 163.5 0.501931 0.911931 2 2 330 120.324 164 0.50205 0.91205 2 2 331 120.694 164.5 0.502168 0.912168 2 2 105 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 332 121.064 165 0.502286 0.912286 2 2 333 121.434 165.5 0.502403 0.912403 2 2 334 123.45 166 0.502519 0.912519 2 2 335 123.825 166.5 0.502635 0.912635 2 2 336 124.2 167 0.502751 0.912751 2 2 337 124.575 167.5 0.502866 0.912866 2 2 338 124.95 168 0.50298 0.91298 2 2 339 125.325 168.5 0.503094 0.913094 2 2 340 125.7 169 0.503207 0.913207 2 2 341 126.075 169.5 0.50332 0.91332 2 2 342 128.136 170 0.503433 0.913433 2 2 343 128.516 170.5 0.503545 0.913545 2 2 344 128.896 171 0.503656 0.913656 2 2 345 129.276 171.5 0.503767 0.913767 2 2 346 129.656 172 0.503878 0.913878 2 2 347 130.036 172.5 0.503988 0.913988 2 2 348 130.416 173 0.504097 0.914097 2 2 349 130.796 173.5 0.504206 0.914206 2 2 350 132.902 174 0.504315 0.914315 2 2 351 133.287 174.5 0.504423 0.914423 2 2 352 133.672 175 0.504531 0.914531 2 2 353 134.057 175.5 0.504638 0.914638 2 2 354 134.442 176 0.504745 0.914745 2 2 355 134.827 176.5 0.504851 0.914851 2 2 356 135.212 177 0.504957 0.914957 2 2 357 135.597 177.5 0.505062 0.915062 2 2 358 135.982 178 0.505167 0.915167 2 2 359 138.138 178.5 0.505272 0.915272 2 2 360 138.528 179 0.505376 0.915376 2 2 361 138.918 179.5 0.505479 0.915479 2 2 362 139.308 180 0.505583 0.915583 2 2 363 139.698 180.5 0.505685 0.915685 2 2 364 140.088 181 0.505788 0.915788 2 2 106 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 365 140.478 181.5 0.50589 0.91589 2 2 366 140.868 182 0.505991 0.915991 2 2 367 141.258 182.5 0.506092 0.916092 2 2 368 141.648 183 0.506193 0.916193 2 2 369 143.859 183.5 0.506293 0.916293 2 2 370 144.254 184 0.506393 0.916393 2 2 371 144.649 184.5 0.506493 0.916493 2 2 372 145.044 185 0.506592 0.916592 2 2 373 145.439 185.5 0.506691 0.916691 2 2 374 145.834 186 0.506789 0.916789 2 2 375 146.229 186.5 0.506887 0.916887 2 2 376 146.624 187 0.506984 0.916984 2 2 377 147.019 187.5 0.507081 0.917081 2 2 378 147.414 188 0.507178 0.917178 2 2 379 147.809 188.5 0.507274 0.917274 2 2 380 150.08 189 0.50737 0.91737 2 2 381 150.48 189.5 0.507466 0.917466 2 2 382 150.88 190 0.507561 0.917561 2 2 383 151.28 190.5 0.507656 0.917656 2 2 384 151.68 191 0.50775 0.91775 2 2 385 152.08 191.5 0.507844 0.917844 2 2 386 152.48 192 0.507938 0.917938 2 2 387 152.88 192.5 0.508032 0.918032 2 2 388 153.28 193 0.508125 0.918125 2 2 389 153.68 193.5 0.508217 0.918217 2 2 390 154.08 194 0.508309 0.918309 2 2 391 156.411 194.5 0.508401 0.918401 2 2 392 156.816 195 0.508493 0.918493 2 2 393 157.221 195.5 0.508584 0.918584 2 2 394 157.626 196 0.508675 0.918675 2 2 395 158.031 196.5 0.508766 0.918766 2 2 396 158.436 197 0.508856 0.918856 2 2 397 158.841 197.5 0.508946 0.918946 2 2 107 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 398 159.246 198 0.509035 0.919035 2 2 399 159.651 198.5 0.509124 0.919124 2 2 400 160.056 199 0.509213 0.919213 2 2 401 160.461 199.5 0.509302 0.919302 2 2 402 160.866 200 0.50939 0.91939 2 2 403 163.262 200.5 0.509478 0.919478 2 2 404 163.672 201 0.509565 0.919565 2 2 405 164.082 201.5 0.509652 0.919652 2 2 406 164.492 202 0.509739 0.919739 2 2 407 164.902 202.5 0.509826 0.919826 2 2 408 165.312 203 0.509912 0.919912 2 2 409 165.722 203.5 0.509998 0.919998 2 2 410 166.132 204 0.510083 0.920083 2 2 411 166.542 204.5 0.510169 0.920169 2 2 412 166.952 205 0.510254 0.920254 2 2 413 167.362 205.5 0.510338 0.920338 2 2 414 167.772 206 0.510423 0.920423 2 2 415 168.182 206.5 0.510507 0.920507 2 2 416 168.592 207 0.51059 0.92059 2 2 417 171.063 207.5 0.510674 0.920674 2 2 418 171.478 208 0.510757 0.920757 2 2 419 171.893 208.5 0.51084 0.92084 2 2 420 172.308 209 0.510922 0.920922 2 2 421 172.723 209.5 0.511005 0.921005 2 2 422 173.138 210 0.511086 0.921086 2 2 423 173.553 210.5 0.511168 0.921168 2 2 424 173.968 211 0.51125 0.92125 2 2 425 174.383 211.5 0.511331 0.921331 2 2 426 174.798 212 0.511411 0.921411 2 2 427 175.213 212.5 0.511492 0.921492 2 2 428 175.628 213 0.511572 0.921572 2 2 429 176.043 213.5 0.511652 0.921652 2 2 430 176.458 214 0.511732 0.921732 2 2 108 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 431 179.004 214.5 0.511811 0.921811 2 2 432 179.424 215 0.51189 0.92189 2 2 433 179.844 215.5 0.511969 0.921969 2 2 434 180.264 216 0.512048 0.922048 2 2 435 180.684 216.5 0.512126 0.922126 2 2 436 181.104 217 0.512204 0.922204 2 2 437 181.524 217.5 0.512282 0.922282 2 2 438 181.944 218 0.512359 0.922359 2 2 439 182.364 218.5 0.512436 0.922436 2 2 440 182.784 219 0.512513 0.922513 2 2 441 183.204 219.5 0.51259 0.92259 2 2 442 183.624 220 0.512667 0.922667 2 2 443 184.044 220.5 0.512743 0.922743 2 2 444 184.464 221 0.512819 0.922819 2 2 445 184.884 221.5 0.512894 0.922894 2 2 446 185.304 222 0.51297 0.92297 2 2 447 185.724 222.5 0.513045 0.923045 2 2 448 188.36 223 0.51312 0.92312 2 2 449 188.785 223.5 0.513194 0.923194 2 2 450 189.21 224 0.513269 0.923269 2 2 451 189.635 224.5 0.513343 0.923343 2 2 452 190.06 225 0.513417 0.923417 2 2 453 190.485 225.5 0.513491 0.923491 2 2 454 190.91 226 0.513564 0.923564 2 2 455 191.335 226.5 0.513637 0.923637 2 2 456 191.76 227 0.51371 0.92371 2 2 457 192.185 227.5 0.513783 0.923783 2 2 458 192.61 228 0.513855 0.923855 2 2 459 193.035 228.5 0.513927 0.923927 2 2 460 193.46 229 0.513999 0.923999 2 2 461 193.885 229.5 0.514071 0.924071 2 2 462 194.31 230 0.514143 0.924143 2 2 463 194.735 230.5 0.514214 0.924214 2 2 109 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 464 195.16 231 0.514285 0.924285 2 2 465 195.585 231.5 0.514356 0.924356 2 2 466 198.316 232 0.514426 0.924426 2 2 467 198.746 232.5 0.514497 0.924497 2 2 468 199.176 233 0.514567 0.924567 2 2 469 199.606 233.5 0.514637 0.924637 2 2 470 200.036 234 0.514707 0.924707 2 2 471 200.466 234.5 0.514776 0.924776 2 2 472 200.896 235 0.514845 0.924845 2 2 473 201.326 235.5 0.514914 0.924914 2 2 474 201.756 236 0.514983 0.924983 2 2 475 202.186 236.5 0.515052 0.925052 2 2 476 202.616 237 0.51512 0.92512 2 2 477 203.046 237.5 0.515188 0.925188 2 2 478 203.476 238 0.515256 0.925256 2 2 479 203.906 238.5 0.515324 0.925324 2 2 480 204.336 239 0.515391 0.925391 2 2 481 204.766 239.5 0.515459 0.925459 2 2 482 205.196 240 0.515526 0.925526 2 2 483 205.626 240.5 0.515593 0.925593 2 2 484 206.056 241 0.515659 0.925659 2 2 485 206.486 241.5 0.515726 0.925726 2 2 486 209.322 242 0.515792 0.925792 2 2 487 209.757 242.5 0.515858 0.925858 2 2 488 210.192 243 0.515924 0.925924 2 2 489 210.627 243.5 0.51599 0.92599 2 2 490 211.062 244 0.516055 0.926055 2 2 491 211.497 244.5 0.516121 0.926121 2 2 492 211.932 245 0.516186 0.926186 2 2 493 212.367 245.5 0.51625 0.92625 2 2 494 212.802 246 0.516315 0.926315 2 2 495 213.237 246.5 0.51638 0.92638 2 2 496 213.672 247 0.516444 0.926444 2 2 110 ๐‘› ๐‘‘0 ๐‘‘ ๐‘Ž ๐‘ ๐‘‡ ๐‘ 497 214.107 247.5 0.516508 0.926508 2 2 498 214.542 248 0.516572 0.926572 2 2 499 214.977 248.5 0.516635 0.926635 2 2 500 215.412 249 0.516699 0.926699 2 2 501 215.847 249.5 0.516762 0.926762 2 2 502 216.282 250 0.516825 0.926825 2 2 503 216.717 250.5 0.516888 0.926888 2 2 504 217.152 251 0.516951 0.926951 2 2 505 217.587 251.5 0.517014 0.927014 2 2 506 218.022 252 0.517076 0.927076 2 2 507 218.457 252.5 0.517138 0.927138 2 2 Table A.1. Parameter choices which minimize ๐‘‡ + ๐‘ . 111 APPENDIX B PYTHON AND SAGE CODE B.1 Python Code for Section 2.7.4 Here are the sequence of methods which minimize the value of ๐‘‡ + ๐‘ for a given parameter ๐‘›. For brevity, the version here does not include the clarifying comments which are present in the actual Jupyter notebook. from math import sqrt,floor,log from collections import deque import decimal decimal.getcontext().prec = 10**4 def pZero(n): if (n <= 8): return 3.0 else: return 2.0 def K(d,n): return 2*sqrt(float((2*n)/((n-1)*(n-2))))*(2.032**(1/n)*(1+sqrt( float(2/((n-2)* pZero(n)**n)))))**d def star(n): return (n-2) * 0.5 def qOne(dZero,d,n): return pZero(n)**(star(n)-dZero)/K(dZero,n) def validSmall(dZero,d,n): return (0<=dZero) and (dZero <= star(n)-1.4) and (dZero <= d) and (1 < d) and (d <= star(n)) and (qOne(dZero,d,n)>max(1,K(d,n)**(1/(d-1) ))) def validLarge(a,b,n): return (0 4)): while ((dZero <= nStar - 1.4) and (tempMinSum > 4)): while ((b < 1-sqrt(2*(n + a**2)/n**2)) and (tempMinSum > 4)): tempT = T(dZero,nStar,a,b,n) tempZ = Z(dZero,nStar,a,b,n) if (tempT + tempZ < tempMinSum): tempMinA = a tempMinB = b tempMinDZero = dZero tempMinT = tempT tempMinZ = tempZ tempMinSum = tempT + tempZ b += prec dZero += prec * (nStar - 1.4) b = a + prec a += prec dZero = 0 b = a + prec assert validSmall(tempMinDZero ,nStar,n), "d0,d,n are invalid" assert validLarge(tempMinA,tempMinB ,n), "a,b,n are invalid" assert chiN(tempMinA,tempMinB,n) >= 2, "chiN is too small" assert piN(tempMinA,tempMinB,n) >= 5*log(2) + 2*log(n), "piN is too small" toReturn.append([n,tempMinDZero ,nStar,tempMinA,tempMinB,tempMinT ,tempMinZ]) return toReturn def minNWithMinTPlusZ(nMax,prec): n = nMax nStar = star(n) aUpper = (2*n**2 - sqrt(4*n**4 - 4*(n**2 - 2*n)*(n**2 - 2)))/(2*(n **2 - 2)) a = aUpper - prec b = aUpper dZero = nStar - 1.4 tempTPlusZ = 4 listOfParams = deque([]) while ((n >= 6) and (tempTPlusZ == 4)): tempT = T(dZero,nStar,a,b,n) tempZ = Z(dZero,nStar,a,b,n) tempTPlusZ = tempT + tempZ 114 while ((a > 0) and (tempTPlusZ > 4)): while ((b > a) and (tempTPlusZ > 4)): while ((dZero >= 0) and (tempTPlusZ > 4)): tempT = T(dZero,nStar,a,b,n) tempZ = Z(dZero,nStar,a,b,n) tempTPlusZ = tempT + tempZ if (tempTPlusZ == 4): assert validSmall(dZero,nStar,n), "d0,d,n are invalid" assert validLarge(a,b,n), "a,b,n are invalid" assert chiN(a,b,n) >= 2, "chiN is too small" assert piN(a,b,n) >= 5*log(2) + 2*log(n), "piN is too small" listOfParams.appendleft([n,dZero,nStar,a,b,tempT ,tempZ]) dZero -= prec*(nStar - 1.4) b -= prec dZero = nStar - 1.4 a -= prec b = aUpper n -= 1 aUpper = (2*n**2 - sqrt(4*n**4 - 4*(n**2 - 2*n)*(n**2 - 2))) /(2*(n**2 - 2)) nStar = star(n) a = aUpper - prec b = aUpper dZero = nStar - 1.4 return listOfParams B.2 Sage Method For Section 2.7.5 Here is the specific command which takes as input a degree ๐‘› and height ๐ป. It finds every irreducible trinomial ๐น (๐‘ฅ, ๐‘ฆ) with degree ๐‘› and height ๐ป, solves the Thue equation |๐น (๐‘ฅ, ๐‘ฆ) | = 1, then stores the trinomials and their solution lists in a .csv file called degree_n_height_H_thue_equations.csv. import itertools import csv R. = ZZ[] 115 def TrinomialThueWriter(degree,height): filename = "thue_equation_solution_data/degree_{}_height_{} _thue_equations.csv".format(degree,height) columnHeads = ["Number of Solutions to |F(x,y)| = 1", "Leading Coefficient", "Middle Coefficient", "Constant Coefficient", "Middle Degree", "List of Solutions to |F(x,y)| = 1"] rows = [] # Note that we only need to check positive leading coefficients since F(x,y) will have the same solutions as -F(x,y). # Note also that if the leading coefficient is larger than the absolute value of the constant coefficient , then we will have already computed the reciprocal polynomial F(y,x). Hence, we can skip polynomials where the constant coefficient has absolute value less than the leading coefficient. for leadCoeff in range(1,height + 1): for midCoeff in itertools.chain(range(-height ,0),range(1,height +1)): for constantCoeff in itertools.chain(range(-height,- leadCoeff+1), range(leadCoeff ,height+1)): if (abs(leadCoeff) == height or abs(midCoeff)== height or abs(constantCoeff)== height) and (gcd(gcd(leadCoeff ,midCoeff), constantCoeff)==1): for midDegree in range(1,degree): P = leadCoeff * x^degree + midCoeff * x^ midDegree + constantCoeff if P.is_irreducible(): thueInfo = gp.thueinit(P) negSolns = gp.thue(thueInfo ,-1) posSolns = gp.thue(thueInfo ,1) totalSolns = len(negSolns)+len(posSolns) rows.append([totalSolns , leadCoeff , midCoeff , constantCoeff , midDegree , gp.concat(posSolns,negSolns)]) with open(filename ,โ€™wโ€™) as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(columnHeads) csvwriter.writerows(rows) B.3 Sage Methods for Section 3.3 The following methods, written for Sage, produce a specified number of polynomials of fixed degree whose roots come from a specified region of the complex plane and may 116 satisfy have other specified properties (e.g. exceed a specified bound on the discriminant or have a particular signature). These methods allow one to then plot those polynomialsโ€™ Mahler measures against their separations. import itertools # The below function computes the absolute value of the discriminant based on the entries of roots (accounting for multiple roots). def AbsoluteDiscriminantFromRoots(roots): n = len(roots) return abs(prod([(roots[i] - roots[j])^2 for i,j in itertools. product(range(n),range(n)) if i < j])) # On input $n$ (an even integer) and $R$, the function below generates a set of $n/2$ points uniformly distributed in the box $|\Im[z]| < R, |\Re[z]| < R$ and returns the list of those points and their complex conjugate. If a number of real roots is specified , it chooses that number of real values in the interval $[-R,R]$ and then chooses the remaining roots from the same complex box and includes their complex conjugates. Finally, if a lower bound on the ( absolute) discriminant is specified , the method will ensure that the absolute discriminant of the set of roots is large enough before returning the set of roots. def GenerateComplexRootsInBox(n, R, numRealRoots = 0, discriminantLowerBound = 0): assert (n - numRealRoots) % 2 ==0, "invalid signature chosen" listOfRoots = [] while (len(listOfRoots) < numRealRoots): listOfRoots.append(RR.random_element(-R,R)) while(len(listOfRoots) < n): listOfRoots.append(CDF.random_element(-R,R,-R,R)) if AbsoluteDiscriminantFromRoots(listOfRoots) >= discriminantLowerBound: return listOfRoots else: return GenerateComplexRootsInBox(n,R,numRealRoots , discriminantLowerBound) # Same as the previous method, but now chooses points in the annulus $1/ R < |z| < R$ def GenerateComplexRootsInAnnulus(n, R, numRealRoots = 0, discriminantLowerBound = 0): 117 assert (n - numRealRoots) % 2 ==0, "invalid signature chosen" assert R > 1, "invalid annulus chosen" listOfRoots = [] while (len(listOfRoots) < numRealRoots): testPoint = RR.random_element(-R,R) if abs(testPoint) >= 1/R: listOfRoots.append(testPoint) while(len(listOfRoots) < n): testPoint = CDF.random_element(-R,R,-R,R) tpnorm = testPoint.norm() if tpnorm <= R^2 and tpnorm >= 1/R^2: listOfRoots.append(testPoint) listOfRoots.append(testPoint.conj()) if AbsoluteDiscriminantFromRoots(listOfRoots) >= discriminantLowerBound: return listOfRoots else: return GenerateComplexRootsInAnnulus(n,R,numRealRoots , discriminantLowerBound) # Same as the previous method, but now chooses points in the ball $|z| < R$ def GenerateComplexRootsInBall(n, R, numRealRoots = 0, discriminantLowerBound = 0): assert (n - numRealRoots) % 2 ==0, "invalid signature chosen" listOfRoots = [] while (len(listOfRoots) < numRealRoots): listOfRoots.append(RR.random_element(-R,R)) while(len(listOfRoots) < n): testPoint = CDF.random_element(-R,R,-R,R) tpnorm = testPoint.norm() if tpnorm <= R^2: listOfRoots.append(testPoint) listOfRoots.append(testPoint.conj()) if AbsoluteDiscriminantFromRoots(listOfRoots) >= discriminantLowerBound: return listOfRoots else: return GenerateComplexRootsInBall(n,R,numRealRoots , discriminantLowerBound) 118 # The below method takes a list of complex numbers as input and outputs the minimal distance between distinct elements. def SeparationFromRoots(listOfRoots): return min([abs(i - j) for i,j in itertools.product(listOfRoots , listOfRoots) if i < j]) # The below method takes a list of complex numbers as input and outputs the Mahler measure of the monic polynomial with those roots. def MahlerMeasureFromRoots(listOfRoots): return prod([abs(listOfRoots[i]) for i in range(len(listOfRoots)) if abs(listOfRoots[i]) > 1]) # The following method takes as input a number of trials to run the following experiment. Randomly choose numRoots points from the specified region (default: ball) satisfying the specified constraints , then plot the Mahler measure of the polynomial with those points as roots versus the separation of that same polynomial def PlotMahlerVSep(numTrials ,numRoots ,radius,numRealRoots = 0, discriminantLowerBound = 0,region = "ball"): heightVSsepList = [] if region == "ball": for j in range(numTrials): roots = GenerateComplexRootsInBall(numRoots,radius, numRealRoots ,discriminantLowerBound) mahlerMeasure = MahlerMeasureFromRoots(roots) sep = SeparationFromRoots(roots) heightVSsepList.append((mahlerMeasure ,sep)) return point(heightVSsepList ,axes_labels = ["Mahler measure"," separation"]) if region == "annulus": for j in range(numTrials): roots = GenerateComplexRootsInAnnulus(numRoots,radius, numRealRoots ,discriminantLowerBound) mahlerMeasure = MahlerMeasureFromRoots(roots) sep = SeparationFromRoots(roots) heightVSsepList.append((mahlerMeasure ,sep)) return point(heightVSsepList ,axes_labels = ["Mahler measure"," separation"]) if region == "box": for j in range(numTrials): roots = GenerateComplexRootsInBox(numRoots,radius, numRealRoots ,discriminantLowerBound) 119 mahlerMeasure = MahlerMeasureFromRoots(roots) sep = SeparationFromRoots(roots) heightVSsepList.append((mahlerMeasure ,sep)) return point(heightVSsepList ,axes_labels = ["Mahler measure"," separation"]) # Same as the previous method, but plotted on log-log axes def PlotLogMahlerVLogSep(numTrials ,numRoots ,radius,numRealRoots = 0, discriminantLowerBound = 0,region = "ball"): heightVSsepList = [] if region == "ball": for j in range(numTrials): roots = GenerateComplexRootsInBall(numRoots,radius, numRealRoots ,discriminantLowerBound) mahlerMeasure = MahlerMeasureFromRoots(roots) sep = SeparationFromRoots(roots) heightVSsepList.append((log(mahlerMeasure),log(sep))) return point(heightVSsepList ,axes_labels = ["log Mahler measure" ,"log separation"]) if region == "annulus": for j in range(numTrials): roots = GenerateComplexRootsInAnnulus(numRoots,radius, numRealRoots ,discriminantLowerBound) mahlerMeasure = MahlerMeasureFromRoots(roots) sep = SeparationFromRoots(roots) heightVSsepList.append((log(mahlerMeasure),log(sep))) return point(heightVSsepList ,axes_labels = ["log Mahler measure" ,"log separation"]) if region == "box": for j in range(numTrials): roots = GenerateComplexRootsInBox(numRoots,radius, numRealRoots ,discriminantLowerBound) mahlerMeasure = MahlerMeasureFromRoots(roots) sep = SeparationFromRoots(roots) heightVSsepList.append((log(mahlerMeasure),log(sep))) return point(heightVSsepList ,axes_labels = ["log Mahler measure" ,"log separation"]) 120 REFERENCES CITED [AB20] S. Akhtari and P. Bengoechea, Representation of integers by sparse binary forms, Trans. Amer. Math. Soc. 374 (2020), no. 3, 1687โ€“1709, doi: 10.1090/tran/8241, arXiv: 1906.03705. [Bak67] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. R. Soc. Lond. A 263 (1967), no. 1139, 173โ€“191, doi: 10.1098/rsta.1968.0010, MR228424. [BD11] Y. Bugeaud and A. Dujella, Root separation for irreducible integer polynomials, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1239โ€“1244, doi: 10.1112/blms/bdr085, MR2861545. [Ben01] M. A. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation |๐‘Ž๐‘ฅ๐‘› โˆ’ ๐‘๐‘ฆ๐‘› | = 1, J. Reine Angew. Math 535 (2001), 1โ€“49, doi: 10.1515/crll.2001.044, MR1837094. [Ben22] P. Bengoechea, Thue inequalities with few coefficients, Int. Math. Res. Not. (2022), no. 2, 1217โ€“1244, doi: 10.1093/imrn/rnaa136, MR4368884. [BG06] E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Vol. 4, New Mathematical Monographs, Cambridge University Press, 2006, xvi+652, doi: 10.1017/CBO9780511542879, MR2216774. [BS87] E. Bombieri and W. M. Schmidt, On Thueโ€™s equation, Invent. Math. 88 (1987), no. 1, 69โ€“81, doi: 10.1007/BF01405092, MR877007. [Dir42] P. G. L. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrรผchen nebst einigen Anwendungen auf die Theorie der Zahlen, G. Lejeune Dirichletโ€™s Werke, Vol. 1, Cambridge Library Collection - Mathematics, Cambridge University Press, 1842, 633โ€“638, doi: 10.1017/CBO9781139237338.037. [DP17] A. Dujella and T. Pejkoviฤ‡, Root separation for reducible monic polynomials of odd degree, Rad Hrvatske Akademฤณe Znanosti i Umjetnosti. Matematiฤke Znanosti 21(532) (2017), 21โ€“27, doi: 10.21857/mnlqgcj04y, MR3697893. [Eve21] J.-H. Evertse, Diophantine Approximation, 2021. [Eve82] , On the equation ๐‘Ž๐‘ฅ๐‘› โˆ’ ๐‘๐‘ฆ๐‘› = ๐‘, Compos. Math. 47 (1982), no. 3, 289โ€“315, MR681611. 121 [Fel71] N. I. Felโ€™dman, An effective power sharpening of a theorem of Liouville, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 973โ€“990, MR0289418. [GW13] H. G. Grundman and D. P. Wisniewski, Tetranomial Thue equations, J. Number Theory 133 (2013), no. 12, 4140โ€“4174, doi: 10.1016/j.jnt.2013.06.005, MR3165633. [Hyy64] S. Hyyrรถ, รœber die Gleichung ๐‘Ž๐‘ฅ๐‘› โˆ’ ๐‘๐‘ฆ๐‘› = ๐‘ง und das Catalansche Problem, Ann. Acad. Sci. Fenn. Ser. A I No. 355 (1964), 50, MR0205925. [Khi64] A. Y. Khinchin, Continued fractions, University of Chicago Press, Chicago, Ill.-London, 1964, xi+95, MR0161833. [Koi19] P. Koiran, Root separation for trinomials, J. Symbolic Comput. 95 (2019), 151โ€“161, doi: 10.1016/j.jsc.2019.02.004, MR3951553. [Mah33] K. Mahler, Zur Approximation algebraischer Zahlen. I - รœber den grรถรŸten Primteiler binรคrer Formen, Math. Ann. 107 (1933), no. 1, 691โ€“730, doi: 10.1007/BF01448915, MR1512822. [Mah64] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257โ€“262, MR166188. [Mil20] J. Milne, Algebraic Number Theory, 2020. [MS87] J. Mueller and W. M. Schmidt, Trinomial Thue equations and inequalities, J. Reine Angew. Math. 379 (1987), no. 379, 76โ€“99, doi: 10.1515/crll.1987.379.76, MR903635. [MS88] , Thueโ€™s equation and a conjecture of Siegel, Acta Math-djursholm 160 (1988), no. 3-4, 207โ€“247, doi: 10.1007/BF02392276, MR945012. [Mue87] J. Mueller, Counting Solutions of |๐‘Ž๐‘ฅ๐‘Ÿ โˆ’ ๐‘๐‘ฆ๐‘Ÿ | โฉฝ โ„Ž, Q. J. Math. 38 (1987), no. 152, 503โ€“513. [Rag75] S. Raghavan, Bounds for minimal solutions of diophantine equations, Nachr. Akad. Wiss. Gottingen Math-Phys. Kl. 2 (1975), no. 9, 109โ€“114. [Rot55] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1โ€“20, corrigendum, 168, doi: 10.1112/S0025579300000644, MR72182. 122 [Rud74] W. Rudin, Real and complex analysis, Second, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Dรผsseldorf-Johannesburg, 1974, xii+452, MR0344043. [Rum79] S. M. Rump, Polynomial minimum root separation, Math. Comp. 33 (1979), no. 145, 327โ€“336, doi: 10.2307/2006045, MR514828. [Sch80] W. M. Schmidt, Diophantine approximation, Vol. 785, Lecture Notes in Mathematics, Springer, Berlin, 1980, x+299, MR568710. [Sch87] , Thue equations with few coefficients, Trans. Amer. Math. Soc. 303 (1987), no. 1, 241โ€“255, doi: 10.2307/2000791, MR896020. [Ser73] J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973, viii+115, MR0344216, Translated from the French. [SS17] N. Saradha and D. Sharma, Contributions to a conjecture of Mueller and Schmidt on Thue inequalities, Proc. Indian Acad. Sci. Math. Sci. 127 (2017), no. 4, 565โ€“584, doi: 10.1007/s12044-017-0353-4, MR3692450. [SY15] C. D. Sinclair and M. L. Yattselev, Root statistics of random polynomials with bounded Mahler measure, Adv. Math. 272 (2015), 124โ€“199, doi: 10.1016/j.aim.2014.11.022, MR3303231. [Tho00] E. Thomas, Counting solutions to trinomial Thue equations: a different approach, Trans. Amer. Math. Soc. 352 (2000), no. 8, 3595โ€“3622, doi: 10.1090/S0002-9947-00-02437-5, MR1641119. [Thu09] A. Thue, รœber Annรคherungswerte algebraischer Zahlen, J. Reine Agnew. Math 135 (1909), no. 135, 284โ€“305, doi: 10.1515/crll.1909.135.284, MR1580770. [Thu95] J. L. Thunder, On Thue inequalities and a conjecture of Schmidt, J. Number Theory 52 (1995), no. 2, 319โ€“328, doi: 10.1006/jnth.1995.1073, MR1336753. 123