Computer Science Theses and Dissertations
Permanent URI for this collection
This collection contains some of the theses and dissertations produced by students in the University of Oregon Computer Science Graduate Program. Paper copies of these and other dissertations and theses are available through the UO Libraries.
Browse
Browsing Computer Science Theses and Dissertations by Subject "anomaly detection"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Fine-grained, Content-agnostic Network Traffic Analysis for Malicious Activity Detection(University of Oregon, 2024-01-09) Feng, Yebo; Li, JunThe rapid evolution of malicious activities in network environments necessitates the development of more effective and efficient detection and mitigation techniques. Traditional traffic analysis (TA) approaches have demonstrated limited efficacy and performance in detecting various malicious activities, resulting in a pressing need for more advanced solutions. To fill the gap, this dissertation proposes several new fine-grained network traffic analysis (FGTA) approaches. These approaches focus on (1) detecting previously hard-to-detect malicious activities by deducing fine-grained, detailed application-layer information in privacy-preserving manners, (2) enhancing usability by providing more explainable results and better adaptability to different network environments, and (3) combining network traffic data with endpoint information to provide users with more comprehensive and accurate protections. We begin by conducting a comprehensive survey of existing FGTA approaches. We then propose CJ-Sniffer, a privacy-aware cryptojacking detection system that efficiently detects cryptojacking traffic. CJ-Sniffer is the first approach to distinguishing cryptojacking traffic from user-initiated cryptocurrency mining traffic, allowing for fine-grained traffic discrimination. This level of fine-grained traffic discrimination has proven challenging to accomplish through traditional TA methodologies. Next, we introduce BotFlowMon, a learning-based, content-agnostic approach for detecting online social network (OSN) bot traffic, which has posed a significant challenge for detection using traditional TA strategies. BotFlowMon is an FGTA approach that relies only on content-agnostic flow-level data as input and utilizes novel algorithms and techniques to classify social bot traffic from real OSN user traffic. To enhance the usability of FGTA-based attack detection, we propose a learning-based DDoS detection approach that emphasizes both explainability and adaptability. This approach provides network administrators with insightful explanatory information and adaptable models for new network environments. Finally, we present a reinforcement learning-based defense approach against L7 DDoS attacks, which combines network traffic data with endpoint information to operate. The proposed approach actively monitors and analyzes the victim server and applies different strategies under different conditions to protect the server while minimizing collateral damage to legitimate requests. Our evaluation results demonstrate that the proposed approaches achieve high accuracy and efficiency in detecting and mitigating various malicious activities, while maintaining privacy-preserving features, providing explainable and adaptable results, or providing comprehensive application-layer situational awareness. This dissertation significantly advances the fields of FGTA and malicious activity detection. This dissertation includes published and unpublished co-authored materials.Item Open Access The Applications of Machine Learning Techniques in Networked Systems(University of Oregon, 2020-12-08) Jamshidi, Soheil; Rejaie, RezaMany large networked systems ranging from the Internet to ones deployed atop the Internet (e.g., Amazon) play critical roles in our daily lives. In these systems, individual nodes (e.g., a computer) establish a physical or virtual connection/relationship to form a networked system and exchange data. An important task in these systems is the timely and accurate detection of security or management events, e.g. a denial of service attack on campus. Machine learning (ML) models offer a promising data-driven method to learn the ``signature'' of these events from the past instances and use that to detect future events. While ML models have been very successful in other domains (e.g., image processing), there are clear challenges in using them for event detection in networked systems including (i) limited availability of large scale labeled dataset, (ii) subtle and changing signature of target event, (iii) selecting and capturing proper traffic features for (re)training, (iv) ``black-box'' nature of ML models. This dissertation presents three different applications of ML models for event detection based on exchanged messages in networked systems that tackle the above challenges. First, we develop an ML-based method to identify incentivized Amazon reviews. To this end, we present a heuristic-based signature to identify explicitly incentivized reviews (EIRs) and characterize related reviews, products, and reviewers. We use EIRs to train an ML model for detecting implicitly incentivized reviews. Second, we examine how casting and training strategies of unsupervised ML (and statistical) model affects their accuracy and overhead (and thus feasibility) for forecasting network data streams. In particular, we study the impact of the size, selection, and recency of the training data on accuracy and overhead. Third, we design and evaluate anomaly detection mechanisms based on an unsupervised ML-based method that takes input data streams from network traffic, end-system, and application load. Furthermore, we leverage model interpretation to identify the most important input data streams and deploy model extraction to infer the rules that represent model behavior. Overall, these three cases studies result in numerous insightful findings on a range of practical issues that arise in deploying ML models for event detection in networked systems.