Chemistry Theses and Dissertations
Permanent URI for this collection
This collection contains some of the theses and dissertations produced by students in the University of Oregon Chemistry Graduate Program. Paper copies of these and other dissertations and theses are available through the UO Libraries.
Browse
Browsing Chemistry Theses and Dissertations by Subject "2D materials"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Characterization of the Local Structure and Composition of Low Dimensional Heterostructures and Thin Films(University of Oregon, 2016-10-27) Ditto, Jeffrey; Johnson, DavidThe observation of graphene’s extraordinary electrical properties has stirred great interest in two dimensional (2D) materials. The rapid pace of discovery for low dimensional materials with exciting properties continue with graphene allotropes, multiple polymorphs of borophene, germanene, and many others. The future of 2D materials goes beyond synthesis and characterization of free standing materials and on to the construction of heterostructures or sophisticated multilayer devices. Knowledge about the resulting local structure and composition of such systems will be key to understanding and optimizing their performance characteristics. 2D materials do not have a repeating crystal structure which can be easily characterized using bulk methods and therefore a localized high resolution method is needed. Electron microscopy is well suited for characterizing 2D materials as a repeating coherent structure is not necessary to produce a measureable signal as may be the case for diffraction methods. A unique opportunity for fine local scale measurements in low dimensional systems exists with a specific class of materials known as ferecrystals, the rotationally disordered relative of misfit layer compounds. Ferecrystals provide an excellent test system to observe effects at heterostructure interfaces as the whole film is composed of interdigitated two dimensional layers. Therefore bulk methods can be used to corroborate local scale measurements. From the qualitative interpretation of high resolution scanning transmission electron microscope (STEM) images to the quantitative application of STEM energy dispersive X-ray spectroscopy (EDX), this thesis uses numerous methods electron microscopy. The culmination of this work is seen at the end of the thesis where atomically resolved STEM-EDX hyperspectral maps could be used to measure element specific atomic distances and the atomically resolved fractional occupancies of a low dimensional alloy. These local scale measurements are corroborated by additional experimental data. The input of multiple techniques leads to improved certainty in local scale measurements and the applicability of these methods to non-ferecrystal low dimensional systems.Item Open Access Synthesis and Characterization of Transition Metal Dichalcogenide Heterostructures(University of Oregon, 2023-03-24) Miller, Aaron; Johnson, DavidSynthesis of new materials drives technological advances, but the ability to consistently predict and synthesize a material with specific properties remains unrealized, especially for metastable materials. Using the modulated elemental reactants (MER) method provides additional experimental parameters that can be used to drive the reaction towardsformation of the desired product. This work leverages the MER synthetic approach to study a variety of transition metal dichalcogenide (TMD) thin films and heterostructures based on TMD’s. This work begins with an overview of conventional synthetic approaches used to grow TMD thin films – highlighting the advantages and disadvantages of each technique, along with key reaction steps and examples of typical reaction conditions. After this introductory section, a method to extract the maximum possible quantity of structural information from x-ray diffraction patterns containing Laue oscillations is presented. Next, an automated system to measure the temperature-dependent electrical resistivity and Hall Effect for thin film samples, which is utilized in subsequent experimental chapters to characterize electrical transport properties, is discussed. The latter half of this dissertation contains several experimental synthetic investigations of TMD thin film and TMD heterostructure systems leveraging the MER synthetic method – including synthesis and characterization of a family of [(PbSe)1+δ]4[TiSe2]4 isomers, a novel compound (BiSe)0.97(Bi2Se3)1.26(BiSe)0.97(MoSe2) containing metallic 1TMoSe2, and a metastable heterostructure based on intergrowths of crystalline TiSe2 and amorphous Si layers.Item Open Access Synthesis of Multiple Constituent Ferecrystal Heterostructures(University of Oregon, 2016-02-23) Westover, Richard; Boettcher, ShannonThe ability to form multiple component heterostructures of two-dimensional materials promises to provide access to hybrid materials with tunable properties different from those of the bulk materials or two-dimensional constituents. By taking advantage of the unique properties of different constituents, numerous applications are possible for which none of the individual components are viable. The synthesis of multiple component heterostructures, however, is nontrivial, relying on either the cleaving and stacking of bulk materials in a “scotch tape” type technique or finding coincidentally favorable growth conditions which allow layers to be grown epitaxially on each other in any order. In addition, alloying of miscible materials occurs when the modulation wavelength is small. These synthetic challenges have limited the ability of scientists to fully utilize the potential of multiple component heterostructures. An alternative synthetic route to multiple component heterostructures may be found through expansion of the modulated elemental reactant technique which allows access to metastable products, known as ferecrystals, which are otherwise inaccessible. This work focuses on the expansion of the modulated elemental reactants technique for the formation of ferecrystals containing multiple constituents. As a starting point, the synthesis of the first alloy ferecrystals (SnSe)1.16-1.09([NbxMo1-x]Se2) will be discussed. The structural and electrical characterization of these compounds will then be used to determine the intermixing of the first three component ferecrystal heterojunction ([SnSe]1+δ)([{MoxNb1-x}Se2]1+γ)([SnSe]1+δ)({NbyMo1-y}Se2). Then, by synthesizing ([SnSe]1+δ)m([{MoxNb1-x}Se2]1+γ)1([SnSe]1+δ)m({NbxMo1-x}Se2)1 (m = 0 - 4) compounds with increasing thicknesses of SnSe, the interdiffusion of miscible constituents in ferecrystals will be studied. In addition, by comparison of the ([SnSe]1+δ)m ([{MoxNb1-x}Se2]1+γ)1([SnSe]1+δ)m({NbxMo1-x}Se2)1 (m = 0 - 4) compounds to the ([SnSe]1+δ)m(NbSe2)1 (m = 1 - 8) compounds the electronic interactions of the MoSe2 and NbSe2 layers will be determined. Finally, the effects of different alloying strategies and the interdiffusion of miscible constituents will be further examined by the synthesis of ordered ([SnSe]1.15)1([TaxV1-x]Se2)1([SnSe]1.15)1([VyTa1-y]Se2)1 and ([SnSe]1+δ) ([TaxV1-x]Se2) compounds with the effect of isoelectric doping on the charge density wave transition in (SnSe)1.15(VSe2) also being explored. This work contains previously published and unpublished co-authored material.