Robustness of Neural Networks for Discrete Input: An Adversarial Perspective
dc.contributor.advisor | Lowd, Daniel | |
dc.contributor.author | Ebrahimi, Javid | |
dc.date.accessioned | 2019-04-30T21:09:38Z | |
dc.date.available | 2019-04-30T21:09:38Z | |
dc.date.issued | 2019-04-30 | |
dc.description.abstract | In the past few years, evaluating on adversarial examples has become a standard procedure to measure robustness of deep learning models. Literature on adversarial examples for neural nets has largely focused on image data, which are represented as points in continuous space. However, a vast proportion of machine learning models operate on discrete input, and thus demand a similar rigor in understanding their vulnerabilities and robustness. We study robustness of neural network architectures for textual and graph inputs, through the lens of adversarial input perturbations. We will cover methods for both attacks and defense; we will focus on 1) addressing challenges in optimization for creating adversarial perturbations for discrete data; 2) evaluating and contrasting white-box and black-box adversarial examples; and 3) proposing efficient methods to make the models robust against adversarial attacks. | en_US |
dc.identifier.uri | https://hdl.handle.net/1794/24535 | |
dc.language.iso | en_US | |
dc.publisher | University of Oregon | |
dc.rights | All Rights Reserved. | |
dc.subject | Adversarial machine learning | en_US |
dc.subject | Graph neural networks | en_US |
dc.subject | Machine translation | en_US |
dc.title | Robustness of Neural Networks for Discrete Input: An Adversarial Perspective | |
dc.type | Electronic Thesis or Dissertation | |
thesis.degree.discipline | Department of Computer and Information Science | |
thesis.degree.grantor | University of Oregon | |
thesis.degree.level | doctoral | |
thesis.degree.name | Ph.D. |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Ebrahimi_oregon_0171A_12374.pdf
- Size:
- 1.45 MB
- Format:
- Adobe Portable Document Format