The Evolution of Metal and Peptide Binding in the S100 Protein Family

dc.contributor.advisorHarms, Michael
dc.contributor.authorWheeler, Lucas
dc.date.accessioned2018-04-10T15:09:02Z
dc.date.available2018-04-10T15:09:02Z
dc.date.issued2018-04-10
dc.description.abstractProteins perform an incredible array of functions facilitated by a diverse set of biochemical properties. Changing these properties is an essential molecular mechanism of evolutionary change, with major questions in protein evolution surrounding this topic. How do new functional biochemical features evolve? How do proteins change following gene duplication events? I used the S100 protein family as a model to probe these aspects of protein evolution. The S100s are signaling proteins that play a diverse range of biological roles binding Calcium ions, transition metal ions, and other proteins. Calcium drives a conformational change allowing S100s to bind to diverse peptide regions of target proteins. I used a phylogenetic approach to understand the evolution of these diverse biochemical features. Chapter I comprises an introduction to the disseration. Chapter II is a co-authored literature review assessing available evidence for global trends in protein evolution. Chapter III describes mapping of transition metal binding onto a maximum likelihood S100 phylogeny. Transition metal binding sites and metal-driven structural changes are a conserved, ancestral features of the S100s. However, they are highly labile at the amino acid level. Chapter IV further characterizes the biophysics of metal binding in the S100A5 lineage, revealing that the oft–cited Ca2+/Cu2+ antagonism of S100A5 is likely due to an experimental artifact of previous studies. Chapter V uses the S100 family to investigate the evolution of binding specificity. Binding specificity for a small set of peptides in the duplicate S100A5 and S100A6 clades. Ancestral sequence reconstruction reveals a pattern of clade-level conservation and apparent subfunctionalization along both lineages. In chapter VI, peptide phage display, deep-sequencing, and machine-learning are combined to quantitatively reconstruct the evolution of specificity in S100A5 and S100A6. S100A5 has subfunctionalized from the ancestor, while S100A6 specificity has shifted. The importance of unbiased approaches to measure specificity are discussed. This work highlights the lability of conserved functions at the biochemical level, and measures changes in specificity following gene duplication. Chapter VII summarizes the results of the dissertation, considers the implications of these results, and discusses limitations and future directions. This dissertation includes both previously published/unpublished and co- authored material.en_US
dc.identifier.urihttps://hdl.handle.net/1794/23178
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectMetal bindingen_US
dc.subjectPhage displayen_US
dc.subjectProtein biochemistryen_US
dc.subjectProtein evolutionen_US
dc.subjectS100 proteinsen_US
dc.subjectSpecificityen_US
dc.titleThe Evolution of Metal and Peptide Binding in the S100 Protein Family
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Chemistry and Biochemistry
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wheeler_oregon_0171A_12060.pdf
Size:
31.08 MB
Format:
Adobe Portable Document Format