Comparison of Functional Dependency Extraction Methods and an Application of Depth First Search

dc.contributor.advisorWilson, Christopheren_US
dc.contributor.authorSood, Kanikaen_US
dc.date.accessioned2014-09-29T17:51:44Z
dc.date.available2014-09-29T17:51:44Z
dc.date.issued2014-09-29
dc.description.abstractExtracting functional dependencies from existing databases is a useful technique in relational theory, database design and data mining. Functional dependencies are a key property of relational schema design. A functional dependency is a database constraint between two sets of attributes. In this study we present a comparative study over TANE, FUN, FD_Mine, FastFDs and Dep_Miner, and we propose a new technique, KlipFind, to extract dependencies from relations efficiently. KlipFind employs a depth-first, heuristic driven approach as a solution. Our study indicates that KlipFind is more space efficient than any of the existing solutions and highly efficient in finding keys for relations.en_US
dc.identifier.urihttps://hdl.handle.net/1794/18413
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.subjectDatabasesen_US
dc.subjectExtractingen_US
dc.subjectFunctional dependenciesen_US
dc.subjectKlipFinden_US
dc.titleComparison of Functional Dependency Extraction Methods and an Application of Depth First Searchen_US
dc.typeElectronic Thesis or Dissertationen_US
thesis.degree.disciplineDepartment of Computer and Information Scienceen_US
thesis.degree.grantorUniversity of Oregonen_US
thesis.degree.levelmastersen_US
thesis.degree.nameM.S.en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sood_oregon_0171N_11030.pdf
Size:
782.5 KB
Format:
Adobe Portable Document Format