Structure-Stabilizing RNA Modifications Prevent MBNL Binding to Toxic CUG and CCUG Repeat RNA in Myotonic Dystrophy

Loading...
Thumbnail Image

Authors

Delorimier, Elaine

Journal Title

Journal ISSN

Volume Title

Publisher

University of Oregon

Abstract

Myotonic dystrophy is a genetic neurodegenerative disease caused by repeat expansion mutations. Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the 3’ UTR of the dystrophia myotonia protein kinase (DMPK) gene, while myotonic dystrophy type 2 (DM2) is caused by a CCTG repeat expansion in intron 1 of the zinc finger protein nine (Znf9) gene. When expressed, these genes produce long CUG/CCUG repeat RNAs that bind and sequester a family of RNA-binding proteins known as muscleblind-like 1, 2 and 3 (MBNL1, MBNL2, MBNL3). Sequestration of these proteins plays a prominent role in pathogenicity in myotonic dystrophy. MBNL proteins regulate alternative splicing, and myotonic dystrophy symptoms are a result of mis-spliced transcripts that MBNL proteins regulate. MBNL proteins bind to a consensus sequence YGCY (Y = pyrimidine), which is found in CUG and CCUG repeats, and cellular RNA substrates that MBNL proteins bind and regulate. CUG and CCUG repeats can form A-form helices, however it is hypothesized that MBNL proteins bind to the helices when they are open and the YGCY binding site is single-stranded in nature. To evaluate this hypothesis, we used structure-stabilizing RNA modifications pseudouridine (Ψ) and 2’-O-methylation to determine if stabilization of CUG and CCUG repeat helices affected MBNL1 binding and toxicity. We also used Ψ to determine if the structure-stabilizing modification affected MBNL binding to single-stranded YGCY RNA. CUG repeats modified with Ψ or 2’-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Ψ also stabilized the structure of CCUG repeats and rigidified single-stranded YGCY RNA and inhibited MBNL1 binding to both of these RNAs. Binding data from CCUG repeats and single-stranded YGCY RNA suggest that both pyrimidines in the YGCY motif must be modified for significant inhibition. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Molecular dynamics simulations suggest that Ψ increases base-stacking interactions, and reducing the flexibility of single-stranded RNA leads to reduced MBNL1 binding. Ψ modification rescued mis-splicing in a cellular DM1 model and prevented CUG repeat toxicity in zebrafish embryos. This dissertation includes previously published and unpublished coauthored material.

Description

Keywords

Muscleblind, Myotonic dystrophy, Pseudouridine

Citation

Endorsement

Review

Supplemented By

Referenced By