Improving Cross-Lingual Transfer Learning for Event Detection
Loading...
Date
2024-01-09
Authors
Guzman Nateras, Luis
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
The widespread adoption of applications powered by Artificial Intelligence (AI) backbones has unquestionably changed the way we interact with the world around us. Applications such as automated personal assistants, automatic question answering, and machine-based translation systems have become mainstays of modern culture thanks to the recent considerable advances in Natural Language Processing (NLP) research. Nonetheless, with over 7000 spoken languages in the world, there still remain a considerable number of marginalized communities that are unable to benefit from these technological advancements largely due to the language they speak. Cross-Lingual Learning (CLL) looks to address this issue by transferring the knowledge acquired from a popular, high-resource source language (e.g., English, Chinese, or Spanish) to a less favored, lower-resourced target language (e.g., Urdu or Swahili). This dissertation leverages the Event Detection (ED) sub-task of Information Extraction (IE) as a testbed and presents three novel approaches that improve cross-lingual transfer learning from distinct perspectives: (1) direct knowledge transfer, (2) hybrid knowledge transfer, and (3) few-shot learning.
Description
Keywords
Adversarial Learning, Cross-Lingual Learning, Event Detection