Incorporating High Dimensional Data Vectors into Structural Macroeconomic Models

Loading...
Thumbnail Image

Date

2016-10-27

Authors

Gelfer, Sacha

Journal Title

Journal ISSN

Volume Title

Publisher

University of Oregon

Abstract

In this dissertation I incorporate high dimensional data vectors in estimated Dynamic Stochastic General Equilibrium (DSGE) models, evaluating the labor market dynamics incorporated inside such data vectors, out-of-sample forecasting performance of many models estimated with such data vectors and analytically examining the reduction of macroeconomic volatility that can occur when such data vectors are used in the formation of expectations about the future. The second chapter investigates the extent to which modern DSGE models can produce labor market dynamics in response to a financial crisis that are consistent with the experience of the Great Recession. I estimate two New-Keynesian models, one with and one without financial frictions, in a data-rich environment. I find that negative financial shocks are associated with longer recoveries in real investment, capital-intensive sectors of the labor market and average unemployment duration. I also find the model with a financial accelerator is equipped with better tools to identify the dynamics associated with the Great Recession and its recovery in regard to many labor and financial metrics. The third chapter compares the out-of-sample forecasting performance of the two DSGE models of Chapter II when they are estimated both out of and in a data-rich environment. This chapter finds that many financial time series variance decomposition are significantly better explained using the structural set-up of the New-Keynesian model with financial frictions. DSGE models estimated with high dimensional data vectors significantly out forecast their regularly estimated counterpart in regard to output, investment and consumption growth. Lastly, the use of real-time optimal pool model weighting significantly out-forecasts traditional macroeconomic models as well as an equally weighted weighting scheme in terms of many macroeconomic variables. The fourth chapter examines the role forecasts derived by high dimensional data vectors can have on lowering macroeconomic volatility. Bounded rational agents are introduced into the Chapter II DSGE model with financial frictions and are given the option to use or ignore professionally generated forecasts from a dynamic factor model in their perceived forecasting model. In simulations, I find that professionally generated forecasts can significantly lower the volatility of many macroeconomic variables including inflation and hours worked.

Description

Keywords

Adaptive learning, Data-rich, DSGE, DSGE-DFM, Financial accelerator, Financial shocks

Citation