Hypoxic gene regulation and high-throughput genetic mapping

dc.contributor.authorBaird, Nathan Alder, 1979-
dc.date.accessioned2008-10-16T17:33:30Z
dc.date.available2008-10-16T17:33:30Z
dc.date.issued2008-03
dc.descriptionxi, 52 p. ; ill. (some col.) A print copy of this title is available through the UO Libraries under the call number: SCIENCE QH445.2 .B35 2008en
dc.description.abstractActivation of Heat shock proteins (Hsps) is critical to adaptation to low oxygen levels (hypoxia) and enduring the oxidative stress of reoxygenation. Hsps are known to be regulated by Heat shock factor (Hsf), but my results demonstrate an unexpected regulatory link between the oxygen sensing and heat shock pathways. Hsf transcription is upregulated during hypoxia due to direct binding by Hypoxia-inducible Factor-1 (HIF-1) to HIF-1 response elements in an Hsf intron. This increase in Hsf transcripts is necessary for full Hsp induction during hypoxia and reoxygenation. The HIF-1-dependent increase in Hsps has a functional impact, as reduced production of Hsps decreases viability of adult flies exposed to hypoxia and reoxygenation. Thus, HIF-1 control of Hsf transcriptional levels is a regulatory mechanism for sensitizing heat shock pathway activity in order to maximize production of protective Hsps. This cross-regulation represents a mechanism by which the low oxygen response pathway has assimilated complex new functions by regulating the heat shock pathway's key transcriptional activator. Beyond studying the regulation of specific genes. I have also developed a method to identify small, yet important, changes within entire genomes. Genetic variation is the foundation of phenotypic traits, as well as many disease states. Variation can be caused by inversions, insertions, deletions, duplications, or single nucleotide polymorphisms (SNPs) within a genome. However, identifying a genetic change that is the cause of a specific phenotype or disease has been a difficult and laborious task for researchers. I developed a technique to quickly and accurately map genetic changes due to natural phenotypic variation or produced by genetic screens. I utilized massively parallel, high-throughput sequencing and restriction site associated DNA (RAD) markers, which are short tags of DNA adjacent to the restriction sites. These RAD markers generate a genome-wide signature of fragments for any restriction enzyme. Taken together with the fact that the vast majority of organisms have SNPs that disrupt restriction site sequences, the differences in the restriction fragment profiles between individuals can be compared. In addition, by using bulk segregant analysis, RAD tags can be used as high-density genetic markers to identify a genetic region that corresponds to a trait of interest. This dissertation includes both previously published and unpublished co-authored materials.en
dc.description.sponsorshipAdviser: Eric Johnsonen
dc.format.extent2773751 bytes
dc.format.extent57087 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/1794/7505
dc.language.isoen_USen
dc.publisherUniversity of Oregonen
dc.relation.ispartofseriesUniversity of Oregon theses, Dept. of Biology, Ph. D., 2008en
dc.subjectGenetic mappingen
dc.subjectHypoxiaen
dc.subjectHIF-1en
dc.subjectGenomicsen
dc.subjectHeat shock proteinsen
dc.titleHypoxic gene regulation and high-throughput genetic mappingen
dc.typeThesisen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nathan_Alder_Baird_doctoral_thesis_winter2008.pdf
Size:
2.65 MB
Format:
Adobe Portable Document Format
Description:
thesis
License bundle
Now showing 1 - 2 of 2
Name:
Baird_Nathan_approval_form.pdf
Size:
55.75 KB
Format:
Item-specific license agreed upon to submission
Description:
author's permission
Name:
license.txt
Size:
2.21 KB
Format:
Item-specific license agreed upon to submission
Description: