The Examination of Inflammation, Iron Availability, and Patent Foramen Ovale as Factors that Influence Variability in Erythropoietin, Hemoglobin Mass, and Pulmonary Vascular

dc.contributor.advisorLovering, Andrew
dc.contributor.authorDiMarco, Kaitlyn
dc.date.accessioned2024-03-25T17:24:13Z
dc.date.available2024-03-25T17:24:13Z
dc.date.issued2024-03-25
dc.description.abstractIndividual variability in the cardiopulmonary system is often ignored in favor of focusing on group or treatment means. Erythropoietin (EPO) concentrations in response to renal hypoxemia, sea level hemoglobin (Hb) mass (Hb mass), and pulmonary vascular pressure changes in response to environmental stimuli are known to be markedly varied among individuals, yet very little research examines factors that may be responsible for that variability. Iron availability, immune system activity, and the presence or absence of a patent foramen ovale (PFO) are all factors that may play a modulatory role in EPO regulation, Hb mass, and pulmonary vascular tone regulation, yet our understanding of these factors in humans is largely unknown. In Chapter IV, we demonstrate that carbon monoxide (CO) inhalation (COi) and hot water immersion (HWI) independently and in combination (COi + HWI) increased EPO concentration to the same degree. Importantly, the increase in EPO was driven by females. Baseline iron availability and inflammatory cytokine concentrations did not predict EPO concentration in response to COi or HWI. This study emphasizes the need for future studies to examine mechanisms underlying sex differences in EPO concentrations in response to COi and HWI. In Chapter V, we show that some inflammatory cytokine concentrations and white blood cell counts moderately predicted Hb mass, but iron availability was the strongest predictor of Hb mass. The presence of a PFO did not alter Hb mass, although we do report lower ferritin in males with a PFO compared to males without a PFO. This study provides novel information that will provide direction to future research looking to utilize interventions aimed to alter Hb mass. Lastly, in Chapter VI, we demonstrated that SCUBA dives not requiring decompression on the ascent do not increase pulmonary pressure or resistance. However, some cytokine concentrations increased post SCUBA diving, so future research should examine the role of inflammatory cytokines in modulating pulmonary pressure during SCUBA dives requiring decompression that elicit increases in pulmonary pressure and resistance. This dissertation includes previously unpublished co-authored material.en_US
dc.identifier.urihttps://hdl.handle.net/1794/29280
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectErythropoietinen_US
dc.subjectInflammationen_US
dc.subjectIron statusen_US
dc.subjectPulmonary vascular toneen_US
dc.subjectRed blood cellen_US
dc.subjectSCUBA diving physiologyen_US
dc.titleThe Examination of Inflammation, Iron Availability, and Patent Foramen Ovale as Factors that Influence Variability in Erythropoietin, Hemoglobin Mass, and Pulmonary Vascular
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Human Physiology
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DiMarco_oregon_0171A_13744.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format