PONDS, RIVERS AND BISON FREEZERS : EVALUATING A BEHAVIORAL ECOLOGICAL MODEL OF HUNTER-GATHERER MOBILITY ON IDAHO'S SNAKE RIVER PLAIN by LAEL SUZANN HENRIKSON A DISSERTATION Presented to the Department of Anthropology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2002 ''Ponds, Rivers and Bison Freezers: Evaluating a Behavioral Ecological Model of Hunter-Gatherer Mobility on Idaho's Snake River Plain," a dissertation prepared by Lael Suzann Henrikson in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Anthropology. This dissertation has been approved and accepted by: Dr. C. Melvin Aikens, Chair of the Examining Committee /)_- 2-02 Date Committee in charge: Accepted by: Dean of the Graduate School Dr. C. Melvin Aikens, Chair Dr. Lawrence Sugiyama Dr. Jon Erlandson Dr. Dennis Jenkins Dr. Cathy Whitlock 11 l11 An Abstract of the Dissertation of Lael Suzann Henrikson for the degree of Doctor of Philosophy In the Department of Anthropology to be taken December 2002 Title: PONDS, RIVERS AND BISON FREEZERS: EVALUATING A BEHAVIORAL ECOLOGICAL MODEL OF HUNTER-GATHERER MOBILITY ON IDAHO'S SNAKE RIVER PLAIN Approved: -----=---=---------'=----- -- Dr. C. Melvin Aikens Archaeological evidence indicates that cold storage of bison meat was consistently practiced on the eastern Snake River Plain over the last 8000 years. Recent excavations in three cold lava tube caves have revealed a distinctive artifact assemblage of elk antler tines, broken handstones, and bison bone in association with frozen sagebrush features. Similar evidence has also been discovered in four other caves within the region. A patch choice model was utilized in this study to address how the long-term practice of caching bison meat in cold caves may have functioned in prehistoric subsistence patterns. Because the net return rate for bison was critical to the model, the hunting success of fur trappers occupying the eastern Snake River Plain during the early 1 800s, as recorded in their daily journals, was examined and quantified. According to the model, the productivity of cold storage caves must be evaluated against the productivity of other patches on the eastern Snake River Plain, such as ephemeral ponds and linear river corridors from season to season and year to year. The model suggests that residential bases occurred only within river resource patches while ephemeral ponds and ice caves would contain sites indicative of seasonal base camps. iv The predictions of the model were tested against documented archaeological data from the Snake River Plain through the examination of Geographic Information Systems data provided by the Idaho Bureau of Land Management. The results of this analysis indicate that seasonal base camps are directly associated with both ephemeral and perennial water sources, providing strong support for the model's predictions. Likewise, the temporal distribution of sites within the study area indicates that climate change over the last 8000 years was not dramatic enough to alter long-term subsistence practices in the region. The long-term use of multiple resource patches across the region also confirms that, although the high return rates for bison made them very desirable prey, the over-all diet breadth for the eastern Snake River Plain was broad and included a variety of large and small game and plant foods. Bison and cold storage caves were a single component in a highly mobile seasonal round that persisted for some 8000 years, down to the time of written history in the 19th Century. CURRICULUM VITA NAME OF AUTHOR: Lael Suzann Henrikson DATE OF BIRTH: December 9, 1 959 PLACE OF BIRTH: Klamath Falls, Oregon GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon Idaho State University DEGREES AWARDED: Doctor of Philosophy in Anthropology, 2002, University of Oregon Master of Arts in Anthropology, 1 991 , Idaho State University Bachelor of Arts in Anthropology, 1 986, Idaho State University AREAS OF SPECIAL INTEREST: Great Basin Prehistory Zoo archaeology Behavioral Ecology PROFESSIONAL EXPERIENCE: Instructor, Archaeological Field School, University of Oregon, Eugene, 1 999- 2002. Instructor, Department of Sociology, Lane Community College, Eugene, 200 1 . Instructor, Archaeological Field School, University of Oregon, Eugene, 2001 . Teaching Assistant, Department of Anthropology, University o f Oregon, Eugene, 1 998-2002. Archaeologist, Bureau of Land Management, Shoshone, Idaho, 1 99 1 -2000. v Instructor, Department of Anthropology, Idaho State University, Pocatello, 1 996. Project Archaeologist, Idaho Museum of Natural History, Pocatello, 1 989-91 . GRANTS: Bureau of Land Management Challenge Cost Share Grant, 2001 Bureau of Land Management Cave Research Grant, 2000 Bureau of Land Management Cave Research Grant, 1 999 PUBLICATIONS: Y ohe, R. M. II, and L. S. Henrikson Vl 1 998 Late Holocene Grizzly Bear (Ursus Arctos) Remains from Scaredy Cat Cave ( 1 0MA143), Snake River Plain, Idaho (with Robert Yohe). In "And Whereas . . . " Papers on the Vertebrate Paleontology of Idaho Honoring John A. White, Volume 1 , pp. 1 86- 1 92. Idaho Museum of Natural History Occasional Paper 36, Pocatello. Henrikson, L.S., R. M. Yohe II, M. Druss and M. Newman 1 998 Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin (with Robert Yohe, Margaret Newman and Mark Druss). Journal qf California and Great Basin Anthropology 20: 72-87. Henrikson, L.S. 1 996 Prehistoric Cold Storage on the Snake River Plain: Archaeological Investigations at Bobcat Cave. Monographs in Idaho Archaeology and Ethnology No. 1 . Archaeological Survey of ldaho. Boise, Idaho. ACKNOWLEDGEMENTS I wish to extend my gratitude to Lisa Cresswell, Bill Baker, Richard Hill, Stan McDonald, Michael Saras and a host of other individuals from the Idaho Bureau of Land Management for all of the generous financial and logistical support that has made this research possible. Thanks are also due to Dr. Richard Holmer, Brenda Ringe, Mark Luther and the Idaho State University archaeological fteld school participants in 1987 and 1989 who assisted with the research at Bobcat Cave. These include: Andrew Adolphson, Doug Bird, Marty Boudreau, Peter Cook, Lisa Cresswell, Paul Desfosses, Sandy Dexter, Cindy Green, Bob Harper, Bradley Howe, Karen Marshall, Bill Marshall, Sharon Michaelson, Karen Seaman, Jeff Shelton, Jay Trowbridge, Duane Wilson and Kalie Wood. The 1996 fteld season at Scaredy Cat Cave and Tomcat Cave could not have been completed without the assistance of Lisa Cresswell, Jim McLaughlin, Mark Munch, Brenda Ringe, Gene Titmus and Dr. Robert Yohe. Dr. Mel Aikens, Dr. Dennis Jenkins and University of Oregon archaeological fteld school students Kim Cobb, Don Day, Jonathan Hardes, Christina Kobel, JeffKnoblich, Ian Harris, Barbara Malinky, Mark O'Brien and Eric White were essential to the completion of the 2000 and 2001 fteld seasons. I would also like to sincerely thank Gene Titmus, Tom Burnham and Jim Woods for donating their time and energy during the fteld research at Tomcat Cave. Vll Phyllis Oppenheim and the Herrett Center assisted in the preservation and conservation of fragile artifacts from Scaredy Cat and Tomcat caves. Deana Dart illustrated the elk antler tines from Tomcat Cave and Pam Raynor illustrated the projectile points, antler tips and ground stone from Scaredy Cat Cave and Bison Heights. Elizabeth Land, Pam Raynor and Eric White assisted in the analysis of artifacts and ecofacts from the 2000 and 2001 field seasons. Dr. Brian O'Neill willingly shared his Geographic Information Systems and Freehand expertise and provided extremely helpful suggestions. I would also like to thank Dr. Margaret Helzer, Patrick O'Grady, and Dr. Pam Endzweig for their strong emotional support. Frances White, Alyce Branigan and Brenda Ringe-Pace provided valuable assistance in the statistical analyses presented here. I would like to extend my gratitude to my committee members, Dr. Lawrence Sugiyama, Dr. Jon Erlandson, Dr. Dennis Jenkins and Dr. Cathy Whitlock for all of their valuable guidance. I am deeply indebted and eternally beholden to my committee chair, Dr. C. Melvin Aikens, who has been a profound source of knowledge, strength and inspiration throughout this endeavor. Lastly, I am extremely grateful to my family for their endless support and patience during the last four years. viii Dedicated to the memory of my mother, Roxanna Pauline Nelson IX TABLE OF CONTENTS Chapter Page I . INTRODUCTION............................ ....... . . ........... .......... 1 II. FIELD RESEARCH. .... .............. ................... . ..... .... ....... . 1 0 Research History....... .................................................. 11 Bobcat Cave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 Faunal Assemblage .... ....... . ............ ............... ........ 2 0 Radiocarbon Dates . . . .. . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 Scaredy Cat Cave . . . . . . . . .. . . . . . .. . .. . .. . . . . . . .. . . . .. . .. . . . . . . .. .. . . . . . . 22 Faunal Assemblage . .. . . .. . . . . . . .. . . . .. . .. . .. . .. . . . .. .. . .. .. . .. ... 28 Radiocarbon Dates ...... .... ................. .... ................. 28 Tomcat Cave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 Faunal Assemblage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 35 Radiocarbon Dates .. . .... .. .. ... . . . . . . . . .. ...... . .. . . . . . . . . . . ..... 36 Pollen Analyses ................... . ............... ... . . . . . ........ 37 Synthesis ofRadiocarbon Dates ....................... ............... 39 Summary: Evaluating the Evidence for Cold Storage . . . . . . .. . . . . . 41 Testing Above Ground at Scaredy Cat Cave 2 000/2 001 ..... .... 44 Above Ground Excavations near the Mouth of Tomcat Cave (10LN74)....... ... ...... ........ ... . .. ........... . . . . . . . .... 5 6 Excavations at Bison Heights ( 1 OLN 63 6) - 2 000/2001 ... . . . . . . .... 59 Summary of Artifacts and Debris............................... 65 Faunal Assemblage..................... ................ ........... 67 Features.. .................... ... .. . . ... . ........... . .. .......... .... 69 Discussion... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Excavations at Wilson Butte Cave in 2 001 .. .... ................. .... 73 A BriefNote on Fortress Cave.................................... ..... 77 Discussion............... .. ......................................... ...... 78 Inferences Regarding Cold Storage and Transport Decisions..... 79 Bison Hunting on the Eastern Snake River Plain................... 84 Conclusion........... ............................... . .... ........... ... . .. 85 III. BEHAVIORAL ECOLOGY: A THEORETICAL APPROACH...... 87 Prey Choice and Diet Breadth Models... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Patch Choice Models.................................................. ... 92 X Chapter Page IV. BUILDING A MODEL OF SNAKE RIVER PLAIN SUBSISTENCE ECOLOGY............................................. 99 Holocene Paleoclimate and Resource Patches on the Eastern Snake River Plain........................................... 100 Ethnographic Data on Food Resources................................. 104 Calculating Return Rates for Bison..................................... 108 Historic Journals and Bison Encounters............................ 109 Making the Calculations.............................................. 116 Calculating the Return Rates for other Animal Resources.......... 123 Calculating Return Rates for Plant Resources........................ 124 Calculating Return Rates for Resource Patches . . . . . . . . . . . . . . . . . . . . . . 124 Calculating the Optimal Diet Curve................................. 126 Return Rates for Linear River Patches.............................. 129 Return Rates for Ephemeral Pond Patches........................ 130 Return Rates for Cold Storage Cave Patches...................... 132 Summary and Conclusion: A Predictive Model of Site Location on the Eastern Snake River Plain........................ 133 V. OVERVIEW OF REGIONAL PREHISTORY............................. 136 Projectile Point Chronology............................................... 137 Excavated Archaeological Sites on the Eastern Snake River Plain..................................................................... 140 The Early Holocene................................................. 142 The Middle Holocene............................................... 145 The Late Holocene................................................... 147 Archaeological Sites with Bison in Adjacent Regions................ 150 Temporal Distribution of Bison Sites.................................... 152 Notes on the19th Century Shoshone-Bannock Seasonal Round................................................................... 154 Notes on Regional Volcanism and its Possible Impact On Prehistoric Subsistence Rounds.................................. 156 Conclusions.................................................................. 162 xi Chapter Page VI. GEOGRAPHIC IMFORMATION SYSTEMS ANALYSIS OF ARCHAEOLOGICAL SITES ON THE EASTERN SNAKE RIVER PLAIN................................................... 165 Methods..................................................................... 168 Residential Bases...................................................... 173 Short Term Base Camps............................................. 173 Field Camps............................................................ 174 Hunting Blinds......................................................... 174 Isolated Finds.......................................................... 175 Projectile Point Chronology and Temporal Distribution of Sites in the Study Area...................................................... 176 Variables Considered in the Predictive Model........................ 177 Distance to Water...................................................... 178 Residential Bases in the Study Area... . . . .. . . . . .. . . .. . . . .. .. . .. .. .. . 181 Base Camps in the Study Area........................................ 182 Field Camps in the Study Area....................................... 190 Analysis of the Temporal Distribution of Archaeological Sites in the Study Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Lava Flows................................................................. 195 Discussion and Conclusions............................................. 1% VII. SUMMARY AND CONCLUSIONS...................................... 199 APPENDIX A. OGDEN, RUSSELL AND TOWNSEND'S DAILY JOlJRNAL ENTRIES REGARDING HUNTING ACTIVITIES................................................ 207 B. PREHISTORIC SITE DATABASE FOR SIX COUNTIES ON THE EASTERN SNAKE RIVER PLAIN........................ 220 BIBLIOGRAPHY.................................................................... 314 Xll LIST OF FIGURE S Figure Page 1. Cold Storage Caves on the Eastern Snake River Plain............. 13 2. Plan view and profile of Bobcat Cave (10BM56) .................. 15 3. Schematic Profile of Area A Sediments in Bobcat Cave .......... 17 4. Plan View of the Surface of Stratum III in Area A . . . . . . . . . . . . . . . . 19 5. Plan View and Profile of Scaredy Cat Cave (10MA143).......... 23 6. Distribution of Surface Artifacts in the Central Chamber of Scaredy Cat Cave (10MA143)..................................... 24 7. Exposed Surface of Storage Feature Showing Sagebrush Stalks, Sagebrush Fragments and Charcoal Concentration in Test Unit 1............................................................ 26 8. Profile of Test Unit 4 in Scaredy Cat Cave .. .. .. .. . .. . ... . .. . .. . . .. 27 9. Plan View andProfile of Tomcat Cave (10LN74).................. 30 10. Profile of Test Unit 4 in Tomcat Cave............................... 32 11. Elk Antler Tines Recovered from Tomcat Cave . . . . . . . . . . . . . . . . . . . 33 12. Projectile Points Recovered from Tomcat Cave.................... 33 13. Distribution of Calibrated Radiocarbon Dates from Idaho's Cold Storage Caves................................................. 40 14. Antler Tips Recovered from the Test Excavations at Scaredy Cat Cave.............................................................. 42 15. Surface Projectile Points from Scaredy Cat Cave................. 45 16. Plan View of Scaredy Cat Cave showing Collapsed Lava Tube and Location of Test Units................................. 46 17. Plan View of 2001 Test Excavations in the Depression near Scaredy Cat Cave................................................... 49 18. Profile of Test Unit 3 in Depression near Scaredy Cat Cave.... 50 19. Projectile Points Recovered from Test Unit 3..................... 52 20. Plan Map of Site 10LN74 Showing the Location of Tomcat Cave and the Surface Test Unit................................... 57 Xlll XIV Figure Page 21 . Plan View of Bison Heights (1 OLN636) Showing the Location of Hunting Blinds and Test Probes . . . . . . . . . . . . . . . . . . . . 60 22 . Plan View of Rock Features at Bison Heights . . . . . . . . . . . .. . . . . . . . . 61 2 3 . Location of2 001 Test Excavations at Bison Heights .. . . . . . . . . . . . 62 24. North Wall Profile of Test Unit 7 at Bison Heights . . . . . . . . . . . . . . . 64 25 . Projectile Points and Tools Recovered from Bison Heights . . . . . . 66 2 6. Hearth Feature Location in Test Units 9 and 11 , Area C . . . . . . .. 70 2 7. Grinding S lab Recovered from Hearth at Bison Heights .. . . . . . . . 71 28. Location of2 001 Test Probes in Narrow Topographic Feature East of Wilson Butte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 29. Hunting Blind on East Side ofNarrow Topographic Feature near Wilson Butte Cave .. . . . . . . . . . . . . . . . . . . . . . ... .. . . . . . . 75 30. Frequency of Bison bison and Large Mammal Elements from the Three Caves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 31 . Contrasting Energy Returns for Patchy Environments . . . . . . . . . . . 94 32 . Location of Rattlesnake and Middle Butte Caves on the Eastern Snake River Plain . .. . .. . . . . . .. . .. . .. . .. . . . . . . . . ... ... . .. .. 1 02 33. Optimal Diet Curve for the Eastern Snake River Plain . . . . . . . . . . . 12 7 34. Projectile Point Chronology for the Eastern Snake River Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 1 38 35 . Excavated Sites in Southeastern Idaho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 41 36. Temporal Distribution of Bison Assemblages on the Eastern Snake River Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 37. Location of Late Pleistocene and Holocene Lava Flows on The Eastern Snake River Plain . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . 159 38 . Eruptive Periods on the Craters of the Moon Lava Field . . . . . . . . 1 61 39. Location of Study Counties in Southern Idaho . . . . . . . . . . . . . . . .. . 1 69 40. Study Area Showing Distribution of Sites and Isolated Finds . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . .. . .. . . . . . . .. 1 72 41 . Close Up View ofPonds near Craters of the Moon Showing Variation in Pond Size . . . . . . . . . .. . ; . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Figure 42. Distribution of Base Camps (Including Cold Storage Caves) in the Study Area ................................................ . 43. Cumulative Graph Showing the Location of Base Camps and Random UTM Points in Relation to Permanent Page 183 and Perennial Water Sources................................... 187 44. 45. Cumulative Graph Showing the Location of Field Camps and Random Points in Relation to Permanent and Perennial Water Sources ...................................... .. Cumulative Graph Showing the Location of Middle Holocene and Late Holocene Sites in Relation to Permanent and Perennial Water Sources .................... . 191 194 XV Table 1. 2. 3. 4. 5. 6. 7. LIST OF TABLES Artifacts and Ecofacts Recovered from Area A ................. . Identifiable Bison and Large Artiodactyl Elements from Bobcat Cave ................................................. . Radiocarbon Dates from Bobcat Cave ............................ . Artifacts and Ecofacts Recovered from Test Unit 4 in Scaredy Cat Cave .............................................. . Identifiable Bison and Large Artiodactyl Bones from Scaredy Cat Cave .......................................... . Radiocarbon Dates from Scaredy Cat Cave ..................... . Artifacts and Ecofacts recovered from Area A in Tomcat Cave ................................................... . Page 20 21 21 25 28 29 34 8. Artifacts and Ecofacts recovered from Area B 9. 10. 11. 12. 13. 14. 15. in Tomcat Cave.................................................... 34 Identifiable Bison and Large Artiodactyl Elements from Tomcat Cave ............................................... . Radiocarbon Dates from Tomcat Cave .......................... .. Artifacts and Ecofacts from 2000 Surface Test Probes at Scaredy Cat Cave .................................... . Flaked Stone Tools from Test Unit 3, Grid A .................. . Flaked Stone Tools from Test Unit 3, Grid B .................. . Flaked Stone Tools from Test Unit 3, Grid C .................. . Waste Flakes Recovered from the 2001 Excavations Near the Mouth of Scaredy Cat Cave ....................... . 36 36 47 53 53 53 54 16. Faunal Remains Recovered from the 2001 17. 18. 19. Excavations... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Artifacts and Ecofacts Recovered from the Surface Test Unit at Tomcat Cave .................................... .. 58 Debitage Recovered from 2001 Excavations at Bison Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. · 65 Numbers of Large Mammal Remains from Bison Heights ............................ : ... . ... . . ... . .. ........ . ..... . 68 XVI Table 20. Numbers of Small Mammal Remains from Bison Heights . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 21. Debitage Recovered from Shovel Probes near Wilson Butte ..................................................... . 22. Ml'ffi and MAU of Bison bison from the Idaho Cold Storage Caves ............................................ . 23. Animals with Edible Parts ......................................... . 24. Plants with Edible Parts ............................................ . 25. Plants and Animals Available in Snake River Plain Resource Patches ................................................ . 26. Ogden's Journal Entries noting Bison Encounters ............. .. 27. Captain Bonneville's Encounters with Bison ................... .. 28. Journal Entries of Russell noting Bison Encounters ............ . 29. Townsend's Journal Entries of Bison Encounters .............. . 30. Total Man-Hours and Bison Killed Estimated from Trapper Journals ................................................. . 31. Net Return Rates for Bison ......................................... . 32. Usable Meat Weights for Game Animals Commonly Available in Southern Idaho ................................... . 33. Return Rates for Plant Foods Commonly Available in Southern Idaho ............................................... . 34. Return Rates for Common Eastern Snake River Plain Food Resources .......................................... .. 35. Return Rates for Resources Found within Linear River Patches ................................................... .. 36. Return Rates for Resources Found in Ephemeral Pond Patches .................................................... . 37. Return Rates for Resources at Cold Storage Caves ........... . 38. Codes and Numbers of Site Types Recorded in 39. Study Area ...................................................... . Projectile Points and Corresponding Code Combinations Used to Assign Periods of Occupation at V arlo us Sites .................................. .. xvii Page 68 76 83 105 105 106 111 112 114 114 121 122 123 124 125 130 131 132 175 177 Table 40. Location of Base Camps within the Study Area ................ . 41. Comparison of Base Camps and Random UTM Points in the Study Area .............. ......................... .. 42. Periods of Occupation of Base Camps within the Study Area . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . 43. Comparison of Field Camps and Random UTM Points in the Study Area ........................................ . 44. Cumulative Distribution of Middle and Late Holocene Sites in Relation to Water .......................... . A Ogden� Russell and Townsend's Daily Journal Entries Regarding Hunting Activities ................................. . B Prehistoric Site Database for Six Counties on the Eastern Snake River Plain ..................................... .. xviii Page 184 186 189 190 195 207 220 CHAPTER I INTRODUCTION Archaeological investigations of cold lava tube caves on the eastern Snake River Plain in southern Idaho have revealed evidence of long-term cold storage of meat by prehistoric hunter-gatherers living in the region (Henrikson 1 996). The use of these cold caves as "freezers" appears to be a unique phenomenon never before documented in North America. However, the significance of these caves rests not in the surprise they engender but in their contribution to our understanding of how storage practices influence the mobility of hunter-gatherers. Storage is generally accepted to be a labor-intensive "coping strategy" that reduces the risks associated with seasonal or long-term fluctuations in resource availability (Binford 1980, Ingold 1983, Thomas 1983, Rowley-Conwy and Zvelebil 1989, Goland 1 99 1). These "bison freezers" have important implications for understanding the long-term development of aboriginal lifeways and they challenge Steward's (1938) contention that the subsistence patterns of the contact period Shoshone-Bannock tribes contrasted strongly with those of earlier occupants of the eastern Snake River Plain. Although wintertime frozen meat caches have been documented among hunter­ gatherers in far northern climates (Binford 1978), the cold caves on the mid-latitude Snake River Plain provided the means to freeze meat throughout the year, despite significantly warmer temperatures during the summer months. Evidence of storage in the Great Basin has consistently been equated with "settling down", and storage caches have been found in association with numerous sedentary and semi-sedentary communities within the region (O'Connell 1 975, Oetting 1989, Kelly 1 995 , Prouty 1995). However, the cave sites are devoid of structures or features that would suggest long-term residence. Instead, the artifact scatters that surround the caves are indicative of short-term encampments. It appears that storage of bison meat, consistently practiced on the eastern Snake River Plain over the last 8000 years, was an enduring component of the highly mobile lifestyle of the aboriginal inhabitants. This unique and intriguing adaptation therefore has the potential to provide archaeologists with a greater understanding of the factors that influence hunter­ gatherer mobility strategies. Because it is critical to present assurances at an early stage of the analysis that these sites were indeed used for cold storage and not for some other purpose, the results of archaeological research conducted at Bobcat, Scaredy Cat and Tomcat Caves are presented in Chapter II. This information is followed by theoretical and analytical elaboration in Chapters III through VII. Briefly, all three caves revealed elk antler tines, broken hand stones, and bison bones in association with masses of frozen sagebrush stalks. Analysis of the artifacts suggested that antler tine "ice 2 picks" and ground stone "hammers" had been used to recover frozen bison meat as needed from these elaborate sagebrush storage features. Although research has focused mainly on the three caves mentioned above, at least four more apparent cold lava tube "meat lockers" have been found on the eastern Snake River Plain in the last 10 years. These include Fortress , Alpha, Wolffang and Bearpaw caves. All seven caves exhibit unique structural features that set them apart from other caves in the region in that they appear to maintain a constant ambient temperature that hovers near freezing the year around and either have visible ice accumulations or frozen sediment deposits on the floor (Henrikson 1996). Further research at these caves will surely yield additional insights, but my purpose here is to summarize the available data and examine their implications. For my study, additional research was conducted in the immediate vicinity of four different caves to gain information on site function and gather insights on why bison appear to be the preferred source of meat for cold storage. Test excavations were conducted outside Scaredy Cat Cave (10MA143), Tomcat Cave ( 10LN74), Bison Heights (10LN636) and Wilson Butte Cave (10JE4). This research, which contributed clues to regional bison procurement strategies, is also reported in Chapter II. To address why deliberate efforts to place bison meat in cold storage did not "contribute to" sedentism in regional settlement patterns, I seek insights from the theoretical approach of behavioral ecology. In investigating the role of bison and storage in aboriginal subsistence, hypotheses generated through the quantitative 3 analysis of behavioral ecological models can be evaluated against the archaeological evidence within the caves and throughout the region. In evaluating what model might be most applicable to the eastern Snake River Plain, it is necessary to assess the region's environment. The area is a cold desert with elevations ranging from 1500 to 2000 meters a.s.l. and winter snow and early spring rains produce less than 10 inches of annual precipitation (Butler 1978). The region, bordered by the Basin and Range Province to the south and Northern Rocky Mountain Province to the north, is a lava plain given limited contrast by landforms of low topographic relief. These include rolling basalt pressure ridges, shallow basins, swales, knolls, buttes, vegetated areas surrounded by and isolated by lava flows ("kipukas"), and hundreds of lava tube caves. These features were created primarily by pahoehoe basalt flows from low shield volcanoes and fissure eruptions ranging from Pliocene to Holocene in age (Greeley and King 1977). The Snake River, the region 's only major waterway, transects the Plain in an east to west arc. Because of the incline of the plain and catastrophic events such as the Bonneville Flood around 14,000 years ago (Currey and James 1982), much of the river corridor is characterized by deep, narrow gorges. Although simple models focused on diet breadth and prey choice have been commonly used in archaeological research in the Great Basin, the Snake River Plain environment is best suited to the application of a patch choice model. The region is comprised of a variety of relatively rich resource patches, including linear corridors along perennial water sources, ephemeral ponds, and cold storage caves surrounded 4 by less productive sagebrush steppe. Patch choice models evaluate how long a forager should remain within a patch, and rank the return rates for different resource patches. These differ from diet-breadth models because search and travel times are included in estimating the return rate of an entire patch (Kelly 1995: 91 ). These models also predict that in situations where different resources are distributed in various i solated locales across the landscape, foragers will select the patch or patches that generate the highest average energy return rate when travel, search and handling time are all considered (Hawkes et al . 1 982). While the return rates of some resources may remain constant until exhausted, most are characterized by decelerating returns. The resource patches on the Snake River Plain are all comprised of resources with such diminishing return rates. Thus, the patch choice model would predict the decision to relocate to an alternate patch when the return rates for the occupied patch fall "below the average return rate for the entire environment" (Kelly 1995). A key element of my research is a quantitative examination of the potential tradeoffs and decisions involved in the selection of resource patches on the eastern Snake River Plain. Chapters III and IV are devoted to this task. The productivity of river corridors, ephemeral ponds and ice cave patches, (i .e., the net caloric return rates of resources available within each of these patches), are presented and compared on a seasonal basis. Another critical component of the model includes assessing the role of bison in aboriginal subsistence. The cave research indicates that only bison meat was kept in 5 cold storage. The remains of other ungulates are virtually absent from the faunal assemblages. This is in strong contrast to Julian Steward's ( 1938) arguments that bison were not an important resource to the aboriginal inhabitants of the region until equestrian hunters could travel across the continental divide to access the large herds of plains bison in Wyoming and Montana. Although (as will be shown) Steward's claim was largely supposition, it raises the potential relevance of examining the seasonal round of the 191h Century Shoshone-Bannock in this study. Steward argued that the seasonal round of the equestrian Shoshone-Bannock was significantly different from the prehistoric seasonal round because he believed that pedestrian hunters could not successfully acquire bison. Chapter V i s partly devoted to an examination of the ethnographic seasonal round and an evaluation of Steward's contentions. Although large "plains-style" bison jumps have yet to be found in Idaho, bison have been recovered from numerous localities in the region, including Wilson Butte Cave (Gruhn 196 1 ), Owl Cave (Butler 1968), the Birch Creek Rockshelters (Swanson 1972) and Baker Cave (Plew et al. 1987). In fact, based on the many bison bones found at these sites, Gruhn, Butler and Swanson were all argued that bison were a significant economic resource to the ancient inhabitants of the region. But, despite their observations, the relative importance of bison in the prehistoric diet has yet to be demonstrated. The patch choice model presented here will address net caloric return rates of bison in comparison with other resources and investigate aspects of bison behavior and hunting techniques specific to the eastern Snake River 6 Plain that may be relevant to understanding why bison would have been exclusively selected for cold storage. To evaluate the viability of the patch choice model, it will be critical to quantitatively consider archaeological site distributions across the eastern Snake River Plain. Over the past 1 5 years, intensive archaeological surveys of large public land tracts have been conducted on Bureau of Land Management (BLM) land in southeastern Idaho in order to plan for the protection of significant archaeological sites from disturbance during range fire rehabilitation efforts. While these surveys do not represent a random or stratified sample of the research area, they do represent a large and varied sample. The total area covered over the past decade exceeds 500,000 acres and involves a variety of topographic features, including lava flows, rivers, ephemeral ponds and broad expanses of sagebrush steppe. Through data sharing efforts with the Archaeological Survey of Idaho, all of the recorded archaeological data collected on the eastern Snake River Plain have been entered into the BLM's Geographic Information Systems (GIS) database for management and research purposes. Although older site records are missing some critical information, these make up only a small percentage of the data. Most of the sites have been recorded within the last 1 5 years and, in keeping with a quite detailed and specific protocol, contain useful descriptions of diagnostic artifacts, assemblages and general information regarding site types. Diagnostic artifacts such as projectile points and pottery provide relative dates for site occupation, and the range of artifacts represented provide clues to site function. While there are some inherent 7 problems associated with using surface data in the study of prehistoric subsistence patterns, reviewing the existing archaeological data for the eastern Snake River Plain nevertheless provides a useful test of the proposed model. Chapters VI and VII are devoted to this research task. I conclude this introduction with a summary overview of the contentions and structure of the dissertation, as follows. Physical evidence from Bobcat, Scaredy Cat and Tomcat Caves indicates that cold storage of bison meat was consistently practiced on the Snake River Plain over the last 8000 years. Storage caves functioned as resource patches that, along with ephemeral ponds and linear river corridors, were regularly included in the seasonal round of the aboriginal inhabitants. Chapter II describes and interprets the physical features of Bobcat, Scaredy Cat and Tomcat Caves and the distinctive archaeological remains they contain. It also reports the results of field research conducted outside the caves and at nearby sites in the course of investigating bison procurement techniques. Chapter III presents the theoretical assumptions of behavioral ecology and describes how models based on this approach can be used to i lluminate the issues at hand. Chapter IV presents a quantitative patch choice model for the eastern Snake River Plain, including net return rates for many resources potentially available within linear river corridors, ephemeral ponds and cold storage caves. In this chapter, the net return rate of bison hunting is extrapolated from fur trappers' narratives of the early 1 800s and make it possible to estimate the place of bison in 8 the relative ranking of resources potentially available on the eastern Snake River Plain prehistorically. Topics associated with bison acquisition in the region are also discussed. Chapter V presents the regional prehistory of the eastern Snake River Plain and the ethnographic data pertinent to this study, giving special attention to the bearing of both classes of evidence on Steward's contentions about late historic changes in Shoshone-Bannock cultural ecology. It also specifies the projectile point chronology that is used in the GIS analysis (below). Chapter VI presents a Geographic Information Systems analysis of archaeological survey data from the eastern Snake River Plain. The GIS analysis defines and examines similarities and differences in the distribution of sites across the landscape during Early, Middle and Late Holocene time periods. It also examines differential site distlibutions associated with significant topographic features. Chapter VI also compares the patch choice model of Chapter IV against the results of the GIS analysis to evaluate how well the distlibution of sites corresponds with the predictions of the model, and thus helps to elucidate the role of bison and cold storage in aboriginal subsistence strategies. Chapter VII summarizes the physical evidence for cold storage, significant factors associated with bison hunting in the region, and the influence of storage on other elements of the subsistence pattern. It shows how attention to these valiables provides important insights into eastern Snake River Plain prehistory and hunter­ gatherer lifeways in general. 9 CHAPTER II FIELD RESEARCH The lava tube caves and open sites reported in this research are all located on the sagebrush steppe of the eastern Snake River Plain. Sediments consist primarily of aeolian deposited silty or sandy loams, with most accumulations occurring on the lee sides of prominent land features. The native vegetation includes Artemisia tridentata (big sagebrush), Artemisia tripartita (three-tip sagebrush), Purshia tridentata (bitterbrush), Tetradymia canescens (horsebrush), Chrysothamnus puberulus (rabbitbrush), and Gutierrezia sarothrae (snakeweed) as the dominant shrubs. Common native grasses include Agropyron spicatum (bluebunch wheatgrass), Koeleria cristata Gunegrass), Oryzopsis hymenoides (ricegrass), Poa nevadensis (poa), Poa secunda (common poa), and Stipa comata (needle and thread grass) (Franzen 1980). Common mammals exploited by the historical inhabitants include Antilocapra americana (pronghorn antelope), Odocoileus hemionus (mule deer), Bison bison (buffalo), Cervus elaphus (elk), Lepus califomicus (blacktailed jackrabbit), Sylvilagus nuttalli (cottontail), S. idahoensis (pygmy rabbit), Dendragapus obscurus (blue grouse), and Centrocerous urophasianus (sage grouse). 1 0 Although much of the eastern Snake River Plain is devoid of permanent water sources (except the Snake, Big Wood and Little Wood rivers), many swales and basins serve as natural catchme�t areas for winter snowmelt and spring rains (Henrikson et al . 1998). During the spring and early summer months, these ponds are a magnet for vast numbers of waterfowl, including Anas crecca (green-winged teal), A. acuta (northern pintail), A. cyanoptera (cinnamon teal), A. clypeata (northern shoveler) and Branta canadensis (Canada goose), which feed on the indigenous fresh water crustaceans. The cold lava tube caves included in this study were formed during Pleistocene pahoehoe and a'a basalt flows that cover most of the eastern portion of the plain (Greeley and King 1977). While hundreds of lava tube caves have been documented in the region, only a few exhibit unique structural features that allow them to maintain a constant ambient temperature of 2 degrees Celsius or below the year round and sustain visible ice accumulations or frozen sediment deposits in the deepest zones. Cultural deposits indicative of storage are located only in such caves. Research History In 1 987 a joint research project was initiated between the Bureau of Land Management and Idaho State University to conduct test excavations at Bobcat Cave (10BM56), located south of Atomic City, Idaho. These tests revealed elk antler tines, broken handstones, and bison bones contained within a frozen feature of sagebrush stalks. Analysis of the artifacts from the cave suggested that antler tine 1 1 "ice picks" and stone "hammers" had been used to extract frozen bison meat from the sagebrush feature, where it had been put in cold storage roughly 4200 years ago (Henrikson 1996). Since the discovery at Bobcat Cave, at least 6 more apparent lava tube "meat lockers" have been found on the Snake River Plain (Figure 1 ). These include Alpha ( 10PR64 1), Wolffang (10PR188) and Bearpaw (10PR3 19) caves managed by the BLM Idaho Falls Field Office and Scaredy Cat (10MA 143), Tomcat ( 10LN74) and the Fortress caves ( 10LN267) administered by the BLM Shoshone Field Office. Similar artifact assemblages, including antler tines, broken handstones, bison bone and sagebrush stalks, have been documented in all seven caves (Henrikson 2000). Scaredy Cat Cave was the subject of follow-up investigations in 1996 because of its relatively pristine condition and accessibility. Based on the radiocarbon dates from Scaredy Cat Cave, it appeared that the sites were primarily used during the Middle Holocene between 8000 and 4000 years ago (Yohe and Henrikson 1998). Although I initially argued that these storage facilities likely represented a "coping strategy" for seasonal and perhaps long-term fluctuations in resource availability during the climatically stressful Middle Holocene, this hypothesis has not been supported by the most recent evidence. Test excavations conducted at Tomcat Cave in the summer of 2000 also revealed the remains of extensive charcoal and sagebrush deposits, antler, handstones and bison bone. However radiocarbon dates indicate that the earliest evidence of cold storage occurred there only 2000 years ago, several thousand years later than at 12 · .Bobcat escaredy Cat 13 Cold Lava Tubes on the Eastern Snake River Plain Containing Bison Remains ... ... ... -x ' --- ---·-- -··---·· -.. ·-------.. ·-·---------_.. .. _________ .... _ .. _____ .. __ ·------- -- __.L __ l ____ j Figure 1. Cold Storage Caves on the Eastern Snake River Plain (modified from Butler 1978). Scaredy Cat and Bobcat Caves. An antler tine from the Fortress Cave recently produced a date of roughly 1400 years BP. The other three caves have yet to be investigated beyond an initial recording. To further understand the function of these cave sites and how they may have been integrated in aboriginal settlement and subsistence patterns, my research expanded in the summer of 2000 and 2001 to include surface artifact scatters immediately outside the caves and in the surrounding region. In the summer of 2000, test excavations were conducted immediately outside the entrance of Tomcat Cave and at Bison Heights, a lithic scatter with associated rock features located roughly one mile south of Tomcat Cave. In the summer of 2001 , additional test excavations were performed in a narrow draw near the entrance of Scaredy Cat Cave, within a similar feature near Wilson Butte Cave and at selected locations at Bison Heights. A summary of the research within the caves is presented below, followed by a discussion of the results generated from the 2000 and 200 1 field seasons. Bobcat Cave Bobcat Cave is located on open sagebrush steppe about eight miles from Big Southern Butte. The cave includes two separate lava tubes, with upper and lower chambers connected by a narrow tunnel (Figure 2). Accessible portions of the cave extend for a length of roughly 70 meters, with a maximum width of about 20 meters. The lower chamber forms a U shape, and the center is occupied by roof fall. 14 Key &,. Datum t2l [3 D Test Units Basalt Rooffall I Bobcat Cave (10BM56) Plan View - , I' ' ' ' . ·' ' . I' I' ' . I' I' ' I' ' I' ' ' ' I' I' ' I' ' . "' "' ... · ' '\. ' ' I' ' . I' ' ' ' I' ' I' ' "· I' . . .,. ,., , , . . , ... · -' ' � , , , , , , , , , " " "' "' ' "' ' ... ... ' ' ' ... ... ... ' ... ... ... ... ... ... ... ... ... ... ... ... ' ... ... ... ' ... ... ... ... ... ... ' ... ... ... ... ... ... ... ... ' ' ... ' ... ' ' ... ... ... ... ... ... ... ... \ � , , , , , , , , , , , � , , � , � � � � � � , "' , , , , , , , , "' , , , , , , , , , , , , , , , , , , , , ... ... ... ... ... ... ... ... ' ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ' ... ... ... ... "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' � "' � '_,'_,'.,'_,'.,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,','�' ·' ·','.,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'_,'.,'�· ... ' ... ' ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ' ... ' ... ... ... ... ... � . . � ' ' � . . . . � , "' , , , , , "' "' "' "' , , "' "' "' , , , , "' "' , , , , .· ... ... ... ... ' ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... , "' "' , , , , "' , , , , ... ... ... ... ... ... ... ... . � , , , , , , , , ... ... ... ... ... ... ... ... .. . , , _, , , , , .!' , , , , .,. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .. . ... ... . . . ... ... ... ... .!' o' .!' .!' -' -' -' "' "' "' "' "' "' "' "' "' "' "' "' "' "' ,. , , , , ., , , ... ... ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Profile • .!' .!' .!' .!' "' .!' .!' .!' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' , • • • • • • • ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . � "' "' "' .!' "' "' .!' "' .!' "' "' .!' .!' "' .!' .!' .!' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' .!' "' "' "' "' "' "' "' "' "' • . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ... � . .. .!' "' .!' "' .!' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' Scale ------ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' • .!' .!' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' I ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' � .!' "' "' "' "' "' "' "' "' "' ' ' ' ' ' ' ' ' ' ' ' 10»»1 � Sagebrush Feature 0 10m • .!' "' "' .!' "' "' "' "' "' "' , , , , , , , ,,, , ' ' ' "' , � .!' "' "' "' "' "' "' "' "' "' .!' "' "' "' "' "' .!' "' "' D Silt Deposits . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' � . � "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . • "' "'· .!'. "'· "'· "' · "' "' "' � .. . . Figure 2. Plan view and profile of Bobcat Cave (1 OBM56). -Ul the other. The resulting cave is complex , with upper and lower chambers connected by a narrow "squeeze". The west-facing cave entrance is narrow, rocky and steep, and must be "dropped" into from a basalt rubble depression above. The temperature in the upper chamber of the cave is at least 20 degrees warmer than that of the lower chamber, hovering at 55 degrees Fahrenheit during summer and early fall; no readings have been taken during winter. The tunnel leading to the lower chamber opens from the northeast corner of the upper chamber (see Figure 2) and must be entered in a crouching position. The lower chamber forms a U shape, with the center occupied by a large amount of roof fall. The chamber floor surrounding the roof fall is comprised of small basalt pebbles and cobbles mixed with fine silt deposits. Approximately three cubic meters of sediment were excavated in the lower chamber of the cave during the 1987 and 1989 seasons. A total of six 1x1 -meter grid units were opened, four in Area A and two in Area B (see Figure 2). Area B was excavated to a depth of 30 centimeters below the surface. The sediments in this test unit consisted of a gray si lt (which appears to filter through cracks in the ceiling), burned and unburned fragments of sagebrush, and angular basalt cobbles and boulders. The excavation was halted when basalt bedrock was encountered. The surface sediments in the vicinity of Area A were much higher in organic content and noticeably darker than in other parts of the lower chamber. They were primarily composed of burned and unburned sagebrush fragments (Figure 3). An ash concentration located on the surface of Stratum II appeared to be an informal fire basin. The Area A test excavations also revealed a purposefully constructed 1 6 Bobcat Cave (10BM56) Area A Profile Stratum 1: Loose silt and partially burned sagebrush stalks. Stratum II: Frozen silt and burned sagebrush fragments. Stratum III: Sagebrush Feature (frozen burned sagebrush and ash). Stratum IV: Sagebrush Feature (frozen sagebrush stalks). Stratum V: Ice � Ash Concentration/Hearth Figure 3 . Schematic Profile of Area A sediments in Bobcat Cave. 17 sagebrush feature at a depth of 30 centimeters below ground surface. This feature, referred to as Stratum III and IV in Figure 3 , consisted of three layers of sagebrush stalks laid at right angles to each other in a "cross-hatch" fashion then capped by a 5 centimeter layer of burned and unburned sagebrush bark and ash. This uniform arrangement of sagebrush stalks had also been placed directly above a layer of clear ice. Because this sagebrush feature was completely frozen, it was removed from only one grid unit to avoid damaging unidentified and undetected artifactual material. Figure 4 presents a plan view of the surface of Stratum III in Area A showing the arrangement of the sagebrush stalks directly above the ice. A total of 166 antler tines and 95 stone hammers (most of which are broken pestles), were recovered from the surface of the lower chamber of Bobcat Cave during 1987 and 1989. In addition, over 100 antler tine fragments and eight antler fragments were collected from the excavated deposits. Chipped stone artifacts recovered from the lower chamber test units include three lanceolate projectile points and a number of secondary and tertiary volcanic glass flakes that exhibit intentional pressure "retouching" or usewear along one or more margins (see Henrikson 1996). Two projectile points and two expedient tools from the 1989 test excavations at Bobcat Cave were submitted to Margaret Newman at the University of Calgary for immunological protein residue analysis. No protein residues were identified on three of the artifacts. However, Field Specimen 414- 1 , a lanceolate projectile point, recovered from the sagebrush feature reacted positively to bovine antiserum. According to Newman ( 1 993, 1994), the blood residue could only have originated 1 8 Bobcat Cave (10BM56) Plan View of Area A Key ["?:l Burned Sagebrush and Ash W (Surface of Storage Feature) � Sagebrush Stalks [J Ice � Ground Stone G Basalt Boulders and Cobbles Scale - - - 0 50 cm Figure 4. Plan view of the surface of Stratum III in Area A showing the arrangement of sagebrush stalks. 19 from bison, muskox, or cow. The artifacts and ecofacts recovered from Area A are presented in Table 1 below. Table 1 . Artifacts and Ecofacts recovered from Area A Materials Stratum I Hearth Stratum II Stratum III Stone Hammers 3 - - 2 Antler Fragments 73 - 6 8 Antler Tips 7 - - 5 Points/Knives I - - I Expedient Tools 1 - - 3 Waste Flakes 7 - 2 I Lg. Mammal Bone 35 1 l 1 57 Rodent Bone 14 - 1 4 4 Total 14 1 I I 23 8 1 Faunal Assemblage Total 5 87 1 2 2 4 1 0 1 04 32 256 A total of 220 well preserved bone fragments were recovered from the lower chamber test units of Bobcat Cave. Of these, 39 are rodent remains that exhibit no evidence of butchering marks, charring, or breakage indicative of human modification or consumption and appear to be of natural origin. Of the remaining specimens, 1 9 1 range from 2.0 to 30.0 centimeters long and appear from their size and cortical thickness to be artiodactyl or large mammal long bone fragments. The largest quantity of long bone fragments was collected from the sagebrush feature in Area A, of which only a small fraction was excavated - indicating that a much higher proportion of such remains is located within the feature than in strata above. A total of 29 diagnostic faunal remains were recovered from the test units within the lower chamber of the cave and are listed in Table 2. While most have been identified as Bison bison, some could only be designated as large artiodactyl. 20 Table 2. Identifiable Bison and Large Artiodactyl Elements from Bobcat Cave i Element Total Fragment Complete Proximal Distal Left Right Rib 9 9 - - - - - Calcaneus I l - . . . Hom Core I - l - . . . Humerus 1 1 - . 1 . 1 Innominate 1 1 - 1 . l . Metapodial 2 2 - I I . - Radius 5 5 - 3 2 3 2 Tibia 5 5 . - 5 2 3 Ulna 2 2 . 2 . 2 - Ungual I I - I . . . Vertebrae 1 I - - . . . Totals 29 27 2 8 9 8 6 Radiocarbon Dates Two charcoal samples were collected from concentrations of burned sagebrush in the lower levels of Area A (see Figure 2). The radiocarbon dates produced from these samples are presented in Table 3. Table 3 . Radiocarbon Dates from Bobcat Cave (10B M56) Lab No. Depth Stratum C- 14 Age Calibrated Age (BP) at 2 Sigma B eta-2398 1 lO cm I 4360±70 5074 4826 Beta-23982 35 em IV 4 1 10±70 4827 - 4502 Although these dates may suggest a single brief storage episode, a student's t- test indicates that the dates are statistically different at the 95% confidence interval. An older date recovered from the upper deposits may be indicative of the removal of a previous storage feature and its contents to make room for new sagebrush stalks. 2 1 Scaredy Cat Cave Scaredy Cat Cave (Figure 5) is located in a large kipuka surrounded by Holocene lava flows. The terrain immediately surrounding the cave is composed of open sagebrush steppe. The cave is roughly 50 meters long and between 10 and 20 meters wide. The ceiling height ranges from less than 2 to over 5 meters. The cave has a west-facing entrance chamber with a high ceiling and a moderate downward slope. A wall of boulders separates the entrance from the central chamber. This wall may have been constructed by prehistoric groups attempting to prevent warm drafts from entering the central chamber. The relatively level central chamber is partially covered with roof fall but also includes areas where fine silt and cultural deposits are exposed. The rear chamber slopes steeply upward and is covered with massive roof fall boulders. As in Scaredy Cat Cave, the central chamber is 34 degrees Fahrenheit while both the entrance and rear chambers are between 50-60 degrees Fahrenheit during the summer months. The central chamber of Scaredy Cat Cave also contained a scatter of surface artifacts when discovered in 1996 (see Figure 6). These included 29 stone hammer fragments, 1 6 antler tines, 20 bones identified as bison, bear and coyote, 1 1 bone fragments of large mammals, three "digging" sticks and 1 small fragment of coiled basketry. Because the cave also appears to have been used as a bear den prehistorically (Yohe and Henrikson 1998), the bone fragments of Ursus and Canis found on the surface of the central chamber are not considered to be associated with 22 " Scaredy Cat Cave . ' , - , ' , (10MA143) ,1' ,. � ... ... .1' • • ... ... ... ' .... ... ' .... . .. ... ' ... ... . ,. ,. " " " " " " " , - " " " " " " - Plan V1ew .. ... ... , ... , ... ... .... .... ... . ... ... ... , ... ... ... ... , ... ... .1' ... ... .1' ... .1' .! ,;- .1' .. ' _, ... .1' ; ;' ... ,. .1' .! J ... ... ... ... .... ... ... ' ... ... ... ... ' ... ... ... ... ' .... ... ... ... ... ', ... ... ... ... .1' ... .t' _, " Jl' I' .1' ; ... ... ... ... ,/' ... ... ,/' ... . ... ... ... ... ... ... ... ... ... ... . . .... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .1' ... ... ... ... ... / ... , ... ... ... ... ... ... ... ... ... ... ... .1' ... ... .i' ... ... ... ... ... ... .... ... ... ' . ' ... ... ... ... ... ... ' ... ... ... ... ... ... ... ... ... ... � ... ... ... ... ... .1' ... ... .i' ... ... � • ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... � ... ... ... ... ... ... ... ... ... ... ' ... ... ... ... ... ... ... ... ' ... ... ... � ... ... ... ... ... .i' ... ... ... ... .i' ... ... ... ... ... ... ... ... ... ... ... ... . . . ... .i' .i' ... ; ... , � ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ' ... ... ... ... ... .i' .1' ... ... ... ... ... ... ... ... ,. ... ... ... ... ... ... ... .1' ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ; .1' ... ... ... ... ... .1' ... ... .1' .1' ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .t .1' .t F ,/ .t .1' .1' ,I .i' .1' .1' .1' .1' ,/' , ... ... ... ... ... ... .... ... · :-. ... ... ... ... ... ,t .1' .1' .1' a • • ,I .i' ,I ,/' .J1 ,I ... ... ... ... ... ' ... • .1' ... -,/' .i' ... .I ,/' .1' .1' ' � ... ... ...... ............ ,.x ............... ............ , ' ... ... ... ... ... ... ... ... ... ... ... .t ,/' .f "' .1' ., ... ... ,I ... ... ... , ... ... ... ... ... ... , ... ,. .t ... .f ... / .t ,/' ' ... ... ... ... ... , ... ... ... ... ... .;1' .I ... ... .t .1' ... ,/' ... .,. .I .i' , , , , , , , , , , ... ... ... ",","..,"..,",",",", Rear Chamber ,",","· � ' F � � � ,/' ,/' � � ... ... ... ... � ... ... ... . /' ,. "' "" ,; ... ... ... ... ... ... ... ... ... • .,. ,. ,. ,1" .1' ,/' J' .,. ,. ... ... ... ... ... ... ' "' ... ' ... .I .1' .;' .I F .I F .I .I ,; ,; ... ... ' ' ... ... ... . . . .. . .. . ... ... ... • .I .1' / ; / ,; Jl' /' F #' ... F ... ... , ... ... ... , ... ... ... ... , , . ,; ,/' "' .1' ,/' " ,/' " .I " :.1 ,. " " , , , ... ... , ... ... ... .... ... .... ... • I' .I .1' F F ,1" .;' .I .1' .I .;' ,; . ... ... ... ... ... .... ... ' ... ... ... ... "' . .. .1 / / J' F .l' .l .t / .1 .1' ,1 1' ,/' / ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... � • .-� ; ,. ;� ,; ; ; ; ; ; ; ,; ; ,; ; (" ,; .t ,; .A. 12 1"':'1 � D D . KEY Datum Test Units Basalt Roof Fall Exposed Sagebrush Feature ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... . � , " , , ,; ; , , , , ; , ,; . . . ... ... ... ' ... ... ... ... ... .. . .. ... ,t ; .I Jl .. " Scale - --:= - tO m � Rock Wall 0 .1' , --if ... ... ... ... ... ... ... ... .. . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... - -, .1' ; " .1' ,/' " ; ,/' " .1' ; ; ; , " ; ,; , " , , , ; ,/' ; / " , .1' , , , ; ,/' ... ,/' ; ; ; ; ; ; " . .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ; .I .1' ; ,/' .1' ; ,/' , ; , .1' ; ; ; , ; .1' , ; ; , ; ; .1' " , ; ; ; , " , ; , ; .1' , ; , , ; � ... ... � ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... � .1' ; , " .1' .1' ; , ; ; ; , " ; ; ; .1' " ; ; , , , " ; , ; ,/' ; " , " .1' " ... ... ... ' ' ' ' ' ' ' ' ' ' ' ' ... ' ' ' ' ' ' ' ' ' ' ' ' ... ' ... ' .. " ; I' " I' I' I' .I I' I' I' I' I' ... I' ... .1' I' I' ,.,.. .1' I' .,. I' " I' I' I' ... ' ' ... ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ; .I I' .1' .1' .1' .1' I' .1' .I ,.,.. I' I' .t I' ./' I' I' .1' .1' .1' .1' .1' .1' I' I' .1' .1' .t I' I' ' ... ' ' ' ' ' ' ' ' ' ' ... ' ' ... ' ... ... ' ' ' ' ' ... ' ' ' ' ... ... ' ' ' � ... I' I' I' I' I' .1' ./' .1' .t ,.,.. .1' I' I' I' ./' I' .t .t .,. I' .1' .t .I I' I' I' .t I' I' I' .t I' , , , , , , 11\, , , , , , , , , , , ... , , , , , , , , , , , , , , , , , . » I' .1' .t I' I' I' .,. I' I' " I' ,. " ,j' " I' " .I .1' I' .1' I' I' I' I' I' ... .1' " .1' .1' I' I' ,; , ' ' ' ' ... ... ' ' ' ' ' ... ' ' ' ' ' ' ' ' ' ' ' ' ' � ' ... . .1' .1' .1' F I' I' F I , .t I' I' .1' I' .1' .1' .t I' , . ' ' ' ' ' ' ' ... . . . ... , , , , . . "' .1' .1' I' " ... I' ,j' " .t .t .t ... "' " ,. ... ... ... ... ... ... ... ... ... ... ... ... ... , I' I' .1' I' " ... ... ,j' " " ,j' .1' " I' ,j' " .1' ... " " , ... ... ... " �. ' ,'" '"'"\.a' ... '; ' ... '/'"',' ... '.�'.,.'"' ... '"',';' ... '.�' ... ' ... '/ Prorue ' ... ' ' ' ... ' ... ' ' ... ... ' ' ' ' ' ' ... ... ... ... � I' " ... I' ... ... I' , . ,. .1' " I' I' " I' ... " ... .I " . � ' ' ' ' ' ' ' ' ... ' ... ... ... ... ... ' ... . � I' " I' ... ,.,.. I' I' .1' , I' , ... , . .. ... , , ... , , , , , , • "' I' .i' � � .1' " Figure 5 . Plan view and profile of Scaredy Cat Cave (1 0MA1 43) showing location of test excavations. N w Scaredy Cat Cave (10MA143) Roof Fall Zone Key A Datum ' Antler Tines � Ground Stone Bone Fragments Digging Sticks a Basket Fragment ' Surface Artifacts in Central Chamber ' lit ... .. \ J> f1 \ ""' � ' " ' , .... , '\, <= e '\:, - ""' 0 e lit - ' ' - · · fill J> • • ' Figure 6. Distribution of surface artif�cts in the central chamber of Scaredy Cat Cave. 24 2.5 the cultural occupation of the cave. The surface fragments of other large mammals may be the result of both cultural and carnivore activity. A total of six lxl-meter test units were placed in the front and rear portions of the central chamber where the spongy, "buoyant" feel of the sediments indicated the presence of sagebrush features (see Figure 5). Rows of sagebrush stalks could also be seen between roof fall boulders in the central portion of the chamber. After removing roughly 5 centimeters of aeolian sediments from the surface of Test Unit 1 , the surface of the sagebrush feature was still apparent (Figure 7). Although sagebrush stalks, bone fragments, antler and ground stone fragments were recovered from all of the test units, Test Unit 4 exhibited the deepest and most intact accumulation of cultural deposits (see Figure 8). The contents of Test Unit 4 consisted of seven distinct strata, presenting an alternating series of complete and decomposed sagebrush stalks, charcoal and ash. Although the cultural deposits may extend beyond a depth of 70 centimeters, excavation ceased in Test Unit 4 because the deposits were too frozen to continue. The artifacts and ecofacts recovered from Test Unit 4 are presented in Table 4 below. Table 4. Artifacts and Ecofacts recovered from Test Unit 4 in Scaredy Cat Cave Materials 0-lO cm l 0-20 20-30 30-40 40-50 50-60 60-70 Total Stone Hammers 2 3 2 3 - 1 - 1 1 Antler Fragments 2 1 1 4 6 3 - 17 Antler Tips 2 :m - - 2 2 6 Points/Knives 2 - - 1 - 2 Waste Flakes 8 2 �: - 1 6 Lg. Mammal Bone 1 9 1 - 34 Rodent Bone 14 - 14 Total 49 1 3 1 2 1 0 2 1 0 1 25 Scaredy Cat Cave ( 1 0MA143) Surface of Storage Feature in Test Unit 1 Key Sagebrush Stalks Bone fragment Partially burned sagebrush fragments Q Charcoal and asb concentration Q Basalt cobbles and boulders Scale 0 26 50 em Figure 7 . Exposed surface of storage feature showing sagebrush stalks, sagebrush fragments and charcoal concentration in Test Unit 1 . Scaredy Cat Cave (10MA143) Test Unit 4 Profile O cm 70 cm Stratum I: Loose brown silt and sagebrush charcoal (20% organic content). Stratum II: Compacted brown silt and unburned sagebrush fragments. Stratum III: Ash, charcoal and partially burned sagebrush stalks. Stratum IV: Charcoal concentration. Stratum V: Partially burned sagebrush stalks and gray ash. Stratum VI: Partially burned sagebrush stalks. Stratum VII: Ice, frozen sagebrush. 4l Angular basalt cobbles. Figure 8. Profile of Test Unit 4 in Scaredy Cat Cave. 27 Faunal Assemblage An analysis of the faunal material from Scaredy Cat Cave identified 1 82 individual fragments. Of these, three are unmodified rodent remains and 53 are canid and ursid remains that were recovered from the surface of the cave floor. A total of 33 diagnostic faunal remains recovered from the 1 996 and 2000 test units are listed in Table 5 . While many of these could be identified as Bison bison, some could only be designated as large artiodactyl or large mammal. The remaining 96 specimens appear to be artiodactyl or large mammal long bone fragments. Element Rib Hom Core Cranial Ia Meta podia! Radius Femur Tibia Ulna Vertebrae Totals Table 5 . Identifiable Bison and Large Artiodactyl Bones from Scaredy Cat Cave Total Fragment Complete Proximal Distal Left 1 5 1 5 - - - - I 1 1 - - - 1 1 - - - 2 2 - 1 - 1 3 3 - 3 - 1 1 - 1 - 1 4 4 - 4 - 2 3 3 - - 3 3 1 1 - 1 - 1 2 2 - - - - 33 33 1 7 6 8 Radiocarbon Dates Right - - - - - 2 - - 2 Ten samples of burned sagebrush taken from the storage features were submitted for standard radiocarbon dating (Table 6). 28 Table 6. Radiocarbon Dates from Scaredy Cat Cave L f oca ton C 14 A - ,ge TU I 15 em b.s. 4210±60 BP TUI 55 em b.s. 5740±80 BP TU2 1 0 em b.s. 3900±70 BP TU2 30 em b.• �BP TU2 50 em b.s. 0 BP TU3 I 0 em b.s. 3840±70 BP TU4 Strat. I I 6370±90 BP TU4 Strat. III 6680±80 BP TU4 Strat. V 6850±70 BP TU4 Strat. VI 6930±60 BP s l #ff ample ype Beta -9754 1/Chareoal o 1 3C -24.3 Beta -975� -25.6 Beta -9754 -26.2 Beta -97543/ Ash -26.8 Beta -97544/Chareoal -25.8 Beta -97546/Chareoal -25.4 Beta -97547/Chareoal -24.3 Beta -97548/ Ash -25.3 Beta- ! 07793/Chareoal -25.0 Beta- 107794/Charcoal -25.0 C l 'b A (BP) a 1 • ,ge 4862 - 4604 6685 - 6395 4450 - 4 146 441 2 - 4067 9436 - 8979 4421 - 4076 7432 - 7 154 7664 - 7430 7792 - 757 1 7867 - 7660 Based on a student' s t-test, the radiocarbon dates indicate at least six distinct storage episodes in the central chamber. The earliest episode is represented by a single date with a calibrated age ranging between 9400 and 8900 years ago from the bottom of Test Unit 2. The dates from Test Unit 4 represent at least two separate storage episodes between 7000 and 7800 years ago. Two individual episodes occurring at roughly 6500 and 4700 years ago are represented in the Test Unit 1 deposits. The last episode of cold storage is represented by a cluster of three dates between 4400 and 4000 years ago from Test Units 2 and 3. These dates are statistically similar at the 95% confidence interval and may represent a single storage event. Tomcat Cave Tomcat Cave (Figure 9) is located in open sagebrush steppe to the north of B lack Ridge Crater. The cave is roughly 70 meters in length and 4 to 10 meters wide. The ceiling ranges from 2 to 7 meters in height. Tomcat Cave has the largest entrance chamber, which reaches nearly 6 meters high and slopes steeply downward 29 0 (") ·sUO'fll:!Al:!OX� lS�l JO UO'fll:!OOI i3U�A\Ol{S (PLN10 l ) �At:!:) ll:!OUIO..L JO �HJOJd pUB M�!A UBld .6 �ID8!d M.uoo tooa.toqorqsll.lqallus O &ouv J>3J""-""":il o:::J �·« , W j; 0 I M M I �i �' o ��('� � Scaredy Cat Cave 10MA143 Co� �8� 0 Test Unit 4 Figure 1 7 . Plan view of 2001 test excavations in the depression near Scaredy Cat Cave. -!:> \0 O cm 20 40 80 Scaredy Cat Cave Depression Test Unit 3 - Grid B North Wall Profile Unexcavated Stratum 1: Light brown, loosely compacted, fine sandy silt with organics (grass rootlets and plant debris). Stratum II: Light brown, moderately compacted, medium sandy silt. Stratum III: Orange-brown, moderately compacted, medium sandy silt. Stratum IV: Gray-brown, moderately compacted, m edium sandy silt. Stratum V: Light brown, moderately compacted, medium sandy silt with small, angular basalt pebbles. Basalt cobbles @ Krotovina Figure 1 8 . Profile of Test Unit 3 in depression near Scaredy Cat Cave. 50 At least two possible hearths were encountered in Grid A of Test Unit 3 . These included a small circular ash and charcoal concentration situated at a depth of 10 centimeters below surface and a circular ash and charcoal concentration at a depth of 20 centimeters below ground surface. Both "hearths" were less than 40 centimeters in diameter and less than five centimeters thick. Because the upper ash concentration was so close to the surface, it was decided that a date would be processed from a single fragment of bitterbrush charcoal from the lower hearth. An AMS date of 130 ± 40 radiocarbon years B .P. was generated from the charcoal fragment (Beta - 1 64592), which produced a calibrated date of AD 1 660 to 1950 (Cal BP 290 to 0). Cultural deposits were primarily contained within the upper 30 centimeters of Tests 1 , 2 and 4 and further excavation of these units was hindered by highly compacted silt deposits. The only flaked stone tools recovered from Test Units 1 , 2 and 4 include a silicate scraper from the 40-50 centimeter level of Test Unit 1 and a silicate perforator from the 20-30 centimeter level of Test Unit 4. The diagnostic projectile points and most of the stone tools were recovered from Test Unit 3 , located in the rockshelter. Diagnostic projectile points from Test Unit 3 include one volcanic glass Desert Side-notched point from the 0- 1 0 centimeter level of Grid B, one Rosespring point from the 10-20 centimeter level of Grid C, one Eastgate point from the 20-30 centimeter level of Grid C (Figure 1 9) , and one McKean lanceolate point from the 60-70 centimeter level of Grid C (Figure 15) . Other stone tools include eight non-diagnostic projectile point fragments, twelve biface fragments, and flake tools . The stone tools recovered from Test Unit 3 are listed in Tables 1 2 5 1 a b c d 0 5 cm Figure 1 9. Projectile points recovered from Test Unit 3 at Scaredy Cat Cave ( 10MA143): a) 537-1 ; b)536- 1 ; c) 5 14- 1 ; d) 535- 1 . 52 through 14 below. All tools are volcanic glass with the exception of three silicate bifaces, one from Grid B and two from Grid C. Table 12. Flaked Stone Tools from Test Unit 3, Grid A at 10MA 143 Type 0-JO cm 10-20 20-30 30-40 40-50 50-60 60-70 Total Point 2 3 Biface 3 4 EMF I 1 Total 4 0 0 0 3 0 8 Table 13 . Flaked Stone Tools From Test Unit 3 , Grid B at 10MA 143 T e Point Biface EMF Total T e Point Biface EMF Total 0-JO cm I (DSN) 10-20 0 20-30 30-40 3 0 3 40-50 50-60 60-70 70-80 80-90 1 0 0 Table 14. Flaked Stone Tools from Test Unit 3, Grid C at 10MA 143 0-JO cm 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 2 I (RS) 1 (EG) 1 (MK) 1 2 3 3 0 0 0 0 Total 3 3 I 7 Total 5 4 0 9 A total of 1094 waste flakes were recovered from the test units in 2001 (Table 15). Of these, 98.5% are interior (tertiary) flakes, 1% are secondary and 0.5% are primary flakes. Material types include volcanic glass (84% of the assemblage), cryptocrystalline silicate ( 1 5%) and basalt (1 %). A total of five Intermountain Ware ceramic sherds were also recovered from the test units. These include a large body sherd (roughly five centimeters long) from the 10-20 centimeter level of Test Unit 4 and four small body sherds (less than a centimeter in size) from the 10-20 centimeter level of Test Unit 1 . 5 3 Table 15 . Waste Flakes Recovered from the 2001 Excavations Near the Mouth of Scaredy Cat Cave (10MA143) Level TU I TU 2 TU 3A TU 3B TU 3C TU 4 Total 0-10 em 37 interior 14 interior 3 1 interior 33 interior 14 interior 6 interior 1 39 �·· 2 secondary I secondary I primary I 0-20 cm 89 interior 22 interior 52 interior 49 interior 70 interior 2 interior 288 I secondary 2 secondary 1 secondary 20-30 em 62 interior 23 interior I 20 interior 26 interior 60 interior 9 interior 200 30-40 cm 62 interior 25 interior 28 interior 24 interior 32 interior 3 interior 175 I secondary 40-SO cm 14 interior 19 interior 1 3 interior 25 interior 48 interior 6 interior 129 2 secondary 1 secondary l primary 50-60 em - - 23 interior 33 interior 20 interior - 76 60-70 em - - 10 interior 15 interior 18 interior 43 1 secondary 70-80 em - - - 4 interior 1 8 interior - 23 I primary 80-90 cm - - - 4 interior 17 interior - 2 1 Total 265 107 1 8 1 2 15 301 26 1094 Of the 167 faunal remains recovered from the 2001 test excavations (Table 1 6) , 22 are artiodactyl tooth enamel fragments and 140 are shattered bits of bone that, for the most part, could not be classified as either small or large mammal. None of the fragments exhibited evidence of charring. One fragment of burned long bone from a large mammal was exposed in the 10-20 centimeter level of Test Unit 3 (Grid A). It was extremely friable and could not be recovered intact. A total of four fragments have been identified as rodent bone. Table 16 . Faunal Remains Recovered from the 2001 Excavations near the Mouth of Scaredy Cat Cave ( 10MA143) Level TU 1 TU 2 TU3A TU3B TU3C TU4 Total 0- 10 em 4 I 2 8 2 0 1 7 10-20 em 1 2 1 9 1 1 0 0 0 42 20-30 cm 10 6 2 3 4 0 25 30-40 em 3 1 24 5 0 0 33 40-SO cm 4 0 5 1 4 9 0 32 50-60 em - 0 6 2 - 8 60-70 cm - - I 7 0 - 8 70-80 cm - - - 0 0 - 0 I 80-90 cm - - - I I - 2 Total 33 27 35 54 1 8 0 1 67 54 Discussion The projectile points and ceramics recovered from the depression adjacent to the mouth of Scaredy Cat Cave in 2000 and 2001 do not correspond well with the radiocarbon dates generated from excavations inside the cave. Although earlier projectile points such as Northern Side-notched, McKean and Stemmed Indented­ base points have been recovered from the ground surface surrounding the cave mouth, a component corresponding in age to the cold storage activities in the cave is essentially absent, although one McKean point came from the 60-70 centimeter level of Test Unit 3 . No cultural features are present in the lower levels of the rockshelter and there is a decrease in the number of waste flakes. Faunal remains are virtually absent, although a large fragment of artiodactyl tooth enamel was recovered from the 80-90 centimeter level of Grid C. If earlier cultural deposits are present in the floor of the depression, they are contained within or below the unexcavated, highly compacted si lt. Greater depths in Test Unit 3 (in the rockshelter) could not be reached because of large boulders in the floor. It is also possible that, as is common on the eastern Snake River Plain, thousands of years of cultural deposition are conflated within very shallow aeolian deposits. These findings would indicate that the depression and alcove were not intensively used as processing locations or habitation areas. Instead, the interior waste flakes and projectile fragments recovered from Test Unit 3 indicate hunting and resharpening activities. This contrasts with the archaeological remains 55 surrounding the cave mouth, which include stone tools and artifacts more suggestive of a base camp where a broader range of activities likely occurred. Above Ground Excavations near the Mouth of Tomcat Cave (10LN74) The archaeological remains surrounding the mouth of Tomcat Cave consist of a large, dense scatter of waste flakes, biface fragments, utilized flakes, point fragments, Intermountain Ware and fragments of ground stone. Unfortunately, the site has been heavily surface collected over the years and few diagnostic projectile points have been recovered in recent years. Despite the lack of many projectile points, the physical evidence strongly suggests that the site surrounding Tomcat Cave served as a base camp where tool making, animal/plant processing and cooking likely took place. To gain insights regarding correlations between the interior and exterior assemblages, a lx2 meter test unit was placed in a depression just outside the cave entrance (Figure 20) before concluding the 2000 research at Tomcat Cave. This depression is a collapsed portion of the lava tube system that created Tomcat Cave. The depression runs south of the cave mouth for roughly 100 meters and is about 50 meters wide. Table 17 presents the artifacts and ecofacts recovered from the above-ground test excavation. 56 Tomcat Cave (10LN74) Depression . . . . . . . . . . .. _ . . . . .. . . . . . . � . .. . . . . . . . . . . . .. .. .. .. . .. . . . ·. · .... · .. ·.·.· .. · .. ·.·.·.· .. ·�·-·.� .. ·.·.·.-. . Key .._ Datum 57 < a vg DSN point x b vg DSN point )( c pot sherds )( d silicate scraper Bison Heights (10LN636) 60 Figure 21 . Plan view of Bison Heights ( 1 OLN636) showing the location of hunting blinds and test probes (modified from USGS quad). Bison Heights (10LN636) Scale 0 Rock Features 15 rn Key: /:l Datum aPt» Rock Features Figure 22. Plan view of rock features at Bison Heights ( 1 OLN636). 6 1 · . · · . · · . · · . · · . · · . · · . · · . · · . · · . · · . · 12 9 . .. " . . . � .. . . . . . .. . .. . . . . . . . . . Bison Heights (10LN636) 2001 Test Excavations Area D l l Area C 0 l 3 Area A Area B 0 Sandy Rise 62 Scale 10 m Figure 23 . Location of 2001 test excavations at Bison Heights ( 10LN636}. four in Area B, four in Area C and two in Area D). In comparison with the other excavation areas, little cultural debris was recovered from Area A on the eastern side of the sandy zone. The sandy sediments in this area appear to be accumulating and cultural deposits are perhaps more deeply buried. The units in Area A were excavated to a depth of 40 centimeters in loamy sand with no indication of increased compaction. Sediments in the area consisted of a fine, light brown sandy loam. No stratigraphy was discemable in the deposits, although increased compaction of the sediments was noted with depth. Figure 24 is a profile of Test Unit 7, showing the amount of basalt cobbles and small boulders encountered in Test Area B . In Test Units 1 , 2, 4 and 6, relatively few basalt cobbles were encountered but the deposits were similar. The percentage of sand content in Test Units 1 and 2 was slightly higher. Test units in Areas B , C, and D were excavated to a depth of 30 centimeters in most cases, unless rocks or compacted soil created excessive difficu1ties. Bioturbation appeared to be limited due to the density of basalt cobbles and boulders just below the ground surface. A large hearth feature was encountered in Area C and large quantities of charred faunal remains were removed from Area B . Flaked stone tools, debitage and a single Intermountain Ware sherd were also recovered. 63 Bison Heights 10LN636 Test Unit 7 North Wall Profile 0 em ---h:!:!z�::-'!"!". · .�. ---...., 10 20 30 Unexcavated Figure 24. North wall profile of Test Unit 7 at Bison Heights ( 1 0LN636). 1·:·�·:·:·] Silt Loam � Basalt Cobbles flt!!/1 � Summary of Artifacts and Debris Stone tools recovered from the test excavations include four volcanic glass point fragments, two volcanic glass Desert Side-notched points (see Figure 25, b and d), one silicate knife or drill fragment and one volcanic glass core. All of the tools were recovered in the 0- 10 centimeter level except for the Desert-Side-notched point found in a hearth in Area C. A total of 568 waste flakes were recovered, of which 75% are volcanic glass, 25% are crypocrystalline silicate and less than 1 % are basalt. Over 98% of the debitage is comprised of interior flakes and 1 % are secondary flakes. No primary decortication flakes were recovered. As indicated in Table 18 , the highest density of waste flakes (over 30%) were recovered from Test Unit 4, situated in the northern part of the sheltered area. Higher densities were also noted in units 1 1 and 13 , adjacent to the hearth. Table 1 8. Debitage Recovered from 2001 Excavations at Bison Heights Level U 1 U2 U3 U4 us U6 U7 U9 U I O U l l U 1 2 U l 3 0-10 2 20 1 0 1 0 1 3 9 36 9 3 47 2 56 10-20 I 3 1 4 73 9 2 1 1 7 1 0 3 1 7 1 8 20-30 0 3 8 66 8 2 4 1 2 10 30-40 0 4 I 26 3 Total 3 30 33 175 30 32 60 3 1 3 78 1 9 74 Most of the debitage was recovered from the top twenty centimeters below Total 2 1 7 204 1 13 34 568 ground surface. However, deposits deeper than thirty centimeters were not sampled in Units 10, 1 1 and 1 3 . Rocks and compacted soil prevented additional excavation 65 b a c -� d 0 5 cm Figure 25 . Projectile points and tools recovered from Bison Heights ( 10LN636): a) 1 16- 1 ; b) 1 37- 1 ; c) surface; d) 1 23- 1 . 66 in Area B . Units 1 1 and 1 3 were not excavated below 20 centimeters because of time constraints. Faunal Assemblage A total of 3893 bone fragments was recovered from the twelve 1 x 1 meter test units at Bison Heights. Of these, 2499 (64%) bone fragments were identified as large mammaL Although these remains were highly fragmented, the thickness of the diaphyses are suggestive of large artiodactyls in the size range of cow and bison. A total of 78 fragments of artiodactyl tooth enamel were also identified. Over 2000 large mammal fragments (roughly 80%) are burned or charred. A smaller percentage exhibited evidence of green fractures. This could be a byproduct of stone boiling or bone soup making. Roasting bone prior to bone soup manufacture produces fracture patterns that resemble dry rather than green fractures and fragments often exhibit exfoliation similar to that found at Bison Heights. Roughly 70% of the large mammal bone fragments were concentrated in Area B and strongly suggests a midden or discard area in the vicinity. Significantly fewer large mammal remains were recovered from Areas A, C and D. Over 800 bone fragments identified as small mammal or rodent were recovered. Most of these were extremely small and very fragmented. While some appear to be long bone fragments in the size range of rabbits or marmots, many specimens have been identified as Peromyscus or Microtus sp. Roughly 70% of these unburned remains were recovered from Area C, near a basalt outcrop and small alcove that 67 likely provides raptors and carnivores with shelter. Therefore, it is assumed that many of the small rodent remains were naturally deposited in the site. A total of 457 bone fragments were too small to be identified. Most of these remains may be fragments of exfoliated long bone. Table 19. Numbers of Large Mammal Remains from Bison Heights (IOLN636) Test Unit B urned Unburned Green Dry Total A -1 17 50 16 5 1 67 A - 2 64 1 46 46 164 2 1 0 B - 3 50 1 1 96 408 289 697 B - 5 214 0 177 37 214 B - 7 738 0 52 686 738 B -10 69 6 1 7 5 8 75 C - 9 1 9 1 3 1 1 2 1 32 C - 1 1 26 1 1 26 27 C -12 16 4 0 20 2 C -1 3 78 0 3 1 47 78 D - 4 123 0 99 24 123 D - 6 2 1 8 0 129 89 2 1 8 Total 2083 4 1 6 987 1 5 1 3 2499 Table 20. Numbers of Small Mammal Remains from Bison Heights ( IOLN636) Test Unit B urned Unburned Total A 1 0 0 0 A -2 0 0 0 B - 3 3 1 4 B -5 24 3 27 B -7 47 2 1 68 B -10 1 5 1 16 C - 9 1 7 1 5 32 C - 1 1 1 09 45 154 C -12 35 33 1 366 C -1 3 1 0 8 1 8 D - 4 28 4 32 D -6 32 59 9 1 Total 320 488 808 68 Features A rock-lined hearth was exposed at a depth of 20-30 centimeters in Test Units 9 and 1 1 near the base of the basalt outcrop in Area C (see Figure 26). The hearth was roughly one meter in diameter and 10- 15 centimeters thick as indicated by the distribution of stained and discolored soil and charcoal. The densest concentration of charcoal was situated directly above the blackened basalt slabs. Two large fragments of a schist grinding slab (Figure 27) were also incorporated into the cluster of rocks in the floor of the hearth. Relatively few faunal remains were recovered from the immediate vicinity of the hearth. Of these, 22 were charred long bone fragments from large mammals and 32 were identified as burned and unburned bone fragments from small mammals. The low density of faunal material recovered from the immediate vicinity of the hearth may indicate that bone was perhaps cooked and processed elsewhere or roasted in the hearth and removed before processing. The large number of charred bone fragments from Area B is suggestive of bone soup manufacturing. Fracturing bone into small fragments creates more surface area and maximizes the amount of fat extracted and decreases cooking time (Oliver 1993). However, the limited amount of bone recovered from the hearth is puzzling unless pots were used in the boiling process. The bone refuse could then have been discarded away from the cooking area. While it is assumed that pot boiling would 69 Bison Heights (10LN636) Hearth Feature in Area C ---==--===-- Test Unit 1 1 .. 0 50 cm #\ � Charred Basalt Slabs � Slab Metate Fragments Q Unburned Basalt Cobbles ltJ Charred Soil Figure 26. Hearth feature located in Test Units 9 and 1 1 , Area C at Bison Heights. <:5 (' "-" •"' . .. . � . . - \, '\ ........, · : .::. ·;i· ' . r ; .. #. . �· :.· .. / . .:� :· .. .... ·.� � - "•'":* '\ / � ' . '· ( �.. .. ... . . . · : .,. . . · . . . : . 0 . / • e . . . . . . ' . . · · . " . � . .. .. . 1 5 em - I Figure 27. Grinding slab recovered from hearth at Bison Heights ( 1 0LN636). -...1 result in a moderate amount of breakage, no ceramic fragments were recovered near the hearth. A single Intermountain Ware sherd was found in Area D. It is also possible that the hearth was used to generate heated stones for use in boiling pits. If so, these pits were not encountered during the 200 1 excavations. Two Desert Side Notched points were recovered from the units adjacent to the hearth (Figure 25). A charcoal sample from the hearth was dated to 240 ± 50 radiocarbon years B.P. (Beta-64591), with a calibrated age of 34 1 to 257 calendar years B.P. (at 2 sigma). One Intermountain Ware sherd was recovered from Area D. Discussion The number of faunal remains recovered from the test excavations at Bison Heights indicates that artiodactyls and perhaps small mammals were being processed and consumed at the site. Although little diagnostic bone was recovered, many of the long bone fragments were thick enough to fall within the bovid size range. The concentration of bone from Area B , in comparison with the other excavation areas, is indicative of a midden where bone refuse was discarded. The highly fragmented nature of the bone also suggests the manufacture of bone grease, an activity that may have occurred during late winter or early spring when animals were at their leanest. However, bone grease manufacture may have been profitable throughout the year. The formal hearth exposed in Area C contained relatively little bone and, as discussed earlier, may not have been directly associated with activities that created 72 the bone concentration in Area B. The radiocarbon date recovered from the hearth, the Desert Side-notched points and the Intermountain Ware ceramic sherd provide strong evidence for a Late Prehistoric occupation of the site, although a Rosespring point was recovered from the surface during 2000. The high percentage of interior flakes recovered from 10LN636 indicate that tool sharpening and refurbishing was one of the primary activities occurring at the site. Excavations at Wilson Butte Cave in 2001 Although studies at Wilson Butte Cave were not planned for my research, Ruth Gruhn communicated to me in 2000 that she suspected there was a bison kill site in the immediate vicinity of the cave. This personal communication, in view of Gruhn's previous recovery of large quantities of bison remains from Wilson Butte Cave, prompted a field reconnaissance in the area surrounding the cave in the summer of 200 1 . Examination of landforms east of the cave led to the discovery of a narrow, linear depression bordered by the two prominent basalt ridges that comprise Wilson Butte. This depression, located roughly 300 meters east of the cave entrance (Figure 28), is bounded by rocky basalt outcrops much like the narrow depressions noted near Scaredy Cat and Tomcat Caves. The field examination also revealed a well-constructed hunting blind on the eastern rim of the draw (Figure 29) and a number of suspicious depressions in the basalt rubble that may have served as blinds, including one on a small basalt knob south of the depression (see Figure 28). 73 Wilson Butte & Datum • Probe ,-, Hunting Blind Scale - - - 0 10 m Figure 28. Location of 200 1 test probes in narrow topographic feature east of Wilson Butte Cave. 74 Wilson Butte Hunting Blind Scale - - 0 25 cm 75 Figure 29. Hunting blind on east side of narrow topographic feature near Wilson Butte Cave. A total of fifteen 50 by 50 centimeter shovel probes were placed in selected locations in the interior of the depression. Most shovel probes were excavated to a depth of 40-50 centimeters. Because the silt deposits were extremely compacted, Shovel Probes I , 2 and 7 could not be excavated beyond 30 centimeters below surface. A total of 72 waste flakes were recovered from the probes. All of the debitage was volcanic glass except for1 5 cryptocrystalline silicate flakes and one basalt flake. Only two secondary flakes were noted, the remaining are all interior flakes, indicating the final stages of tool manufacture and resharpening activities. The number of flakes recovered from each probe is presented in Table 2 1 . No cultural material was recovered from Shovel Probe 6. Table 2 1 . Debitage recovered from Shovel Probes near Wilson Butte Cave Level SP 1 SP2 SP3 SP4 SP5 SP7 SP9 SP 10 Total 0-10 1 24 0 0 6 1 0 0 32 10-20 0 1 5 0 5 1 0 2 14 20-30 1 1 3 0 8 1 0 0 14 30-40 - - 2 0 2 0 0 4 40-50 - - - 1 4 - 1 2 8 Total 2 26 1 0 1 25 3 1 4 72 Fifteen bone or tooth fragments were recovered from Shovel Probes 3 , 4, 5, 7 and 9. The remaining probes produced no faunal material . Of the 1 5 elements, 5 appear to be artiodactyl tooth enamel. All of the fragments are less than a centimeter in maximum size and the other fragments lack any diagnostic features. Of these, 7 pieces are burned and three appear to have been fractured while "green". 76 My limited testing in the linear feature near Wilson Butte Cave produced little physical evidence to indicate its use as a bison kill site (other than the presence of hunting blinds and small amounts of bone and tooth fragments). However, as wil l be discussed in Chapter V, the cultural deposits at Wilson Butte Cave contained a large number of bison remains, indicating that these animals were being acquired in the surrounding area. A Brief Note on Fortress Cave As mentioned above, a single antler tine recovered from Fortress Cave produced an AMS date of 1430 ± 40 radiocarbon years B.P. (calibrated to 1394 -1285 calendar years B .P. at 2 sigma). While this date indicates a relatively young occupation for the site, it is important to note that the archaeological remains surrounding the cave mouth, as with the other cold storage caves, suggest that the location was used repeatedly as a base camp over thousands of years . The site is located on open sagebrush steppe near Wildhorse Butte. A total of 52 projectile points and point fragments was collected from the surface of the site in 1 992. These include Northern Side-notched, Elko Comer-notched, Stemmed, Rose Spring and Desert Side-notched points, indicating that use of the site began as early as 7500 years ago and continued until very recently. A variety of bifaces, scrapers , expedient tools, ground stone implements and Intermountain Ware ceramics found at the site also attests to its use as a base camp. Although no linear depressions were 77 located in the vicinity, a large circular rock feature roughly 1 5 meters in diameter rests on a low rise about 50 meters northeast of the cave mouth. The stone circle, which is partially collapsed, may have been over a meter high when constructed. Because this feature is much more massive than rock structures that fall within the parameters of what regional archaeologists would consider as hunting blinds, its purpose is currently being debated. Discussion One of my goals was to investigate the narrow draws and depressions in the immediate vicinity of Scaredy Cat Cave, Tomcat Cave and Wilson Butte Cave to determine whether these were connected to cold storage of bison meat. All of these topographic features contain what appear to be hunting blinds, which implies that they aided in dispatching large game. However, very little faunal material was recovered from the test excavations and shovel probes placed in these features. Although numerous waste flakes and tools are located in the immediate vicinity of the cave mouths, the waste flakes recovered from the depressions are limited to interior flakes indicating resharpening activities and tool refurbishing, which would perhaps coincide with the preparations necessary to dispatch game. If these features served to funnel bison and other large game into an enclosed area where they could be dispatched, not much was left behind. This suggests the possibility that relatively limited numbers of animals were dispatched at these 78 locations and processed elsewhere. Based on the physical evidence surrounding Scaredy Cat and Tomcat Caves, processing activities could have taken place closer to the cave mouth. Likewise, the possible evidence of bone soup manufacture at Bison Heights suggests that artiodactyl bone was valued for its fat content. This would lessen the likelihood that any part of a large animal carcass, including bone, would be left the kil l site, as indicated by the ethnoarchaeological studies of Diane Gifford-Gonzalez (1993) and James Oliver ( 1993). These are discussed in the following section. Inferences Regarding Cold Storage and Transport Decisions Hunters in northern climates often dried meat during spring and summer months. Significant energy was expended in removing meat from bone because leaving meat attached to bone increases the rate of spoilage under warm conditions. However, cold storage eliminates the expense of boning meat to aid preservation (Binford 1978, Tatum 1980, Frison 1991), because frozen meat can be stored on bone without the threat of spoilage. Binford ( 1978), in his research among the Nunamiut, looked at temperature thresholds for the development of bacteria necessary to decomposition and found that between 10 and 0 degrees Celsius, essentially no bacteria growth was possible. With temperatures hovering around 2 degrees Celsius year around, the ice caves on the Snake River Plain would have eliminated the expense of drying and made bulk meat storage an economical enterprise. 79 Speth (1983) found that Binford's (1978) Modified General Utility Index (MGUI) for caribou and mountain sheep could be applied to bison remains from the Garnsey Site in New Mexico. Other aspects of Binford's ( 1978) research may also be useful in understanding bison storage on the eastern Snake River Plain. Binford proposed that, under cold storage conditions, high utility and moderate utility body parts of caribou and mountain sheep would likely be cached and decisions about what and how much was stored would be based on the "future food security" needs of the group. However, Lupo and Schmitt (1997) argued that bison, because of their large size, would have been a challenge to transport if there were a limited number of hunters involved and that it may have been necessary to transport only those body parts that were of the highest utility. Research among the Hadza (O'Connell et. al . 1 988) also indicated that, for animals of significant size, the distance to a base camp or storage facility greatly influences how much bone is actually transported. In contrast, based on her research with the Dassanetch in east Africa, Gifford­ Gonzalez ( 1 993) argued that there are benefits to transporting bone rather than leaving it behind. There is a significant difference in how bone is treated between mass kills and kills involving limited numbers of animals. If only a few large animals are killed during a single hunting event, transport costs of hauling both meat and bone from the kill site to the campsite may be negligible, especially if the marrow and fat content in bone from large animals is significant. Transport decisions are also based on what is planned for the various parts of an animal, 80 referred to as "final processing goals" (Oliver 1993:201) . In other words, depending on the options available for preparing and cooking large animals at the base camp, certain decisions will be made regarding which parts to transport and which to leave behind. According to Oliver (1993), the Hadza separated animals into four size classes, with buffalo being the largest. The Hadza transported rib slabs and vertebrae back to camp despite low meat content because additional nutrients could be extracted through boiling. Oliver also observed that low utility parts provided useful "handles" for carrying portions back to base camp. The nutritional value of these items, extractable through roasting or boiling, balanced the minimal transport costs associated with carrying them to camp (Oliver 1993 :210) . If Binford's arguments regarding transport decisions are valid, the faunal assemblage within the caves of the Snake River Plain should contain a preponderance of high utility items. According to Binford (1978) and Speth ( 1983), this would include the femur, tibia, sternum, ribs and pelvis. Brink ( 1997), based on in his analysis of the fat content of bison bone, would also include the humerus and proximal radius/ulna as high utility items. Table 22 below presents the Minimum Number of Elements and Minimal Animal Units (as defined by Binford 1978) from each of the Idaho cold storage caves. High utility items, including ribs, humeri, radii , femora and tibiae make up 75% of the collection, although several mandibles, metapodials, a calcaneous, and an ungual were also recovered (see Figure 30). 8 1 Number of Elements D t - 3 [] 4 - 6 � 7 - 9 Ill 10 + Anatomical Distribution of B. bison and Large Mammal Elements from Bobcat, Scaredy Cat and Tomcat Caves Figure 30. Frequency of B. bison and large mammal elements from the three caves. 00 N Table 22. MNE and MAU of Bison bison from the Idaho Cold Storage Caves Bobcat Scaredy Cat Tomcat Element MNE MAU MNE MAU MNE MAU Total MNE Horn Core l (0.5) 1 (0.5) -- -- 2 Cranial Fragment -· -- l ( 1 ) -- ·- I Mandible -- -- -- -· 2 ( 1 ) 2 Vertebrae l (.04) 2 (.08) -- -- 3 Scapula -- -- I (0.5) 3 ( l .q 4 Ribs (9) (0.35) ( 1 5) (0.58) (9) (0.�5) (23) Innominate l (0.5) -- -- -- I Humerus l (0.5) -- -- 2 ( I ) 3 Radius 3 ( 1 .5) I (0.5) 2 ( I ) 5 Ulna 2 ( l ) I (0.5) 2 ( I ) 5 Femur -- -- 4 (2) -- -- 4 Tibia 3 ( 1 .5) 3 ( 1 .5 ) 2 ( l ) 8 Metapodial 1 (0.5) I (0.5) -- - - 2 Calcaneous I (0.5) -- - - - - -- l Ungual I (0.5) -- -- -- -- I Beyond the identifiable elements of Table 22, the bulk of the faunal remains from the caves (3 10 specimens) consist of green-fractured long bone and rib fragments that could only be identified as large artiodactyl or large mammal. These fragments indicate that processing activities, including marrow extraction, were also taking place in the caves. Further pulverization of bone could have occurred outside the cave for manufacturing bone grease (Vehik 1977). The extensive surface scatters outside all of the caves strongly suggest that they also served as camp sites where the processing and cooking of large game likely occurred. If the observations of Gifford-Gonzalez (1993) and Oliver (1993) can also be applied here, it i s possible that very little bone was left at the kill site and the faunal material recovered from the interior cave excavations likely represent the "leftovers" from multiple storage episodes. 83 Bison Hunting on the Eastern Snake River Plain Frison ( 1991) argued that Plains bison could not be communally hunted unless the herd was of significant size. For jumps to be effective a large number of animals is essential . If Frison is correct, hunting the less abundant bison of the eastern Snake River Plain may have required a different strategy than that common on the Great Plains. Small traps or surrounds that could be controlled by a limited number of hunters, or stalking techniques in broken terrain, may have been more effective. Successful acquisition may have required a natural "funnel" such as an arroyo or other narrow topographic feature that prevented animals' escape until they could be dispatched. In such a situation, it' s most likely that only a few bison could have been procured during a single ambush. This argument is supported by bison kill/processing sites found on the eastern Snake River Plain over the last decade (Gough 1990, Henrikson 1993, Arkush 2002) as well as by an Shoshone-Bannock informant who recalled buffalo hunts from childhood (Butler 197 1 ). According to the informant, four or five pedestrian hunters would drive bison into deep snow to dispatch them or ambush them "along a trail going near a steep grade" (Butler 197 1 : 10). The preliminary investigations of the natural "funnels" at Scaredy Cat Cave and at Bison Heights suggest that kill sites may be situated at convenient locations near at least two of the cold storage caves (Henrikson 2000). 84 The seasonality of bison kills may also be a function of herding behavior (Speth 1 983). The late summer rut appears to have been the most difficult time to attempt drives prior to the acquisition of the horse. Bulls converging with herds of cows and calves during this time are particularly "belligerent" and unpredictable, making pedestrian techniques very difficult and highly dangerous. The most favorable time to hunt bulls would be during spring when cows and calves are in even poorer condition (Speth 1 983). Cow/calf herds could be more easily controlled without the presence of bulls during mid-summer, fall and winter (Tatum 1980). Fall is also an optimum time because cows and calves are at their maximum weight. Although the pollen analysis from Scaredy Cat suggests that some of the features may have been constructed during the fall , seasonality has yet to be determined at the other cold storage caves. Conclusion Based on the evidence presented above, bison were placed in cold storage in a number of lava tube caves on the eastern Snake River Plain. The bones from the excavated caves show that high utility body parts were stored more frequently than were body parts of lower utility. This observation suggests that bison were sometimes procured at a great enough distance from the caves that transporting low utility items was not worth the effort. In regard to bison procurement, the narrow depressions at Scaredy Cat Cave, Wilson Butte and Bison Heights produced little or no bison remains or other cultural 85 materials. This does not eliminate the possibility that they functioned as ambush locations. Probable hunting blinds are located at all three sites and the narrow topographic features would have provided greater hunting advantage over the surrounding landscape. Likewise, the scarcity of cultural debris in these depressions also indicates that they weren't used as encampments despite the fact that they would have provided shelter from the elements. The ethnoarchaeological studies of Gifford-Gonzalez (1993) and Oliver (1993) are pertinent here: it is likely that few animal parts would be left behind at a kill site where only a few animals were acquired. If bison herds on the eastern Snake River Plain consisted of relatively small herds in comparison to the Great Plains, it is l ikely that only a limited number of animals could be procured during a single hunting event. Investigating the role of bison and cold storage in aboriginal subsistence on the eastern Snake River Plain will be pursued in Chapter IV. 86 CHAPTER III BEHAVIORAL ECOLOGY: A THEORETICAL APPROACH In investigating the role of bison and cold storage in aboriginal subsistence on the eastern Snake River Plain. models from behavioral ecology offer productive insights. Behavioral ecology seeks to understand and explain behavior through the application of evolutionary theory within a specific ecological context. It focuses on how behavior is influenced by constraints affecting reproduction and the resources necessary to overcome these constraints. An underlying assumption of behavioral ecology is that humans make choices between behavioral options depending on the costs. benefits and constraints of local socio-ecological contexts. These "decisions" are viewed as the product of pan-human mental processes present because over evolutionary time scales they tended to produce behavior that increased the average relative reproductive success of their bearers. These adaptive behavioral responses to local socio-ecological conditions are the focus of behavioral ecology (Hill and Hurtado 1996). Hominids have been faced with the challenges of hunting and gathering over a tremendously long period, so selection is expected to have honed decision-making 87 processes related to foraging. In the realm of foraging decision making, behavioral ecologists make specific predictions about foraging behavior based on simple, non­ intuitive assumptions derived from evolutionary and economic models (e.g., Hawkes et. al. 1 982; Kaplan and Hill 1 992). Anthropologists have borrowed these models previously developed by biologists and ecologists (e.g., MacArthur and Pianka 1966) and applied them to hunting and gathering societies. These Optimal Foraging models seem justified in using the "phenotypic gambit", the assumption that behavior should yield, on average, results which are locally adaptive within a given domain of activity. Hunter-gatherers continue to make foraging decisions. They have to make these decisions based on local knowledge of the environment, and are clearly aware of many relevant constraints on their behavior, as well as costs and benefits for alternate courses of action. Three basic components common to foraging models include decisions, currencies and constraints (Kaplan and Hill 1992; Krebs and Davies 199 1 ; Stephens and Krebs 1986). Decisions, such as whether to include a resource in the diet, are evaluated by their energy acquisition rate (i .e., net energy acquisition per unit of time expended or kcal/hr). Because the actual fitness effects of different foraging decisions is difficult or impossible to assess directly, this energy acquisition rate is often used as proxy currency for evaluating foraging decisions. It is not unreasonable to suspect that over time foraging efficiency wil l ultimately have effects on fitness. Constraints include other available options such as the 88 seasonal and spatial distribution of food resources in the environment, technology, mobility, and knowledge (Kaplan and Hill 1992). Multiple benefits can be derived from application of these models . They can specify often non-intuitive hypotheses or predictions using a few simple assumptions and parameters that can be tested with quantitative data. They specify how relevant tradeoffs are expected to influence decisions related to foraging, and thus provide the basis for qualitative understanding or explanations of behavior (Kaplan and Hill 1 992). If these models fail to predict or correspond to the observed behavior, this serves as a strong indication that costs, benefits or constraints have not been adequately characterized (Kaplan and Hill l992), or that factors other than economic optimality are at play. They thereby may stimulate a principled search for those other factors affecting the decisions being investigated (Sugiyama 1 996). Prey Choice and Diet Breadth Models S imple models such as diet breadth and prey choice have been the most commonly used in anthropological contexts. The decision being modeled by the diet breadth model is whether or not a forager should pursue acquisition of a resource upon encountering it. According to the diet breadth model, foods are ranked according to their net caloric or energy values divided by handling time (which includes pursuit, dispatching and processing but not search time). These currencies, energy gain and time cost, are assumed to capture important 89 components that affect human decisions. Simplifying assumptions made by this model are that: 1) each food species is encountered randomly in the environment (i.e., they are not clustered in particular locations that can be easily sought out; 2) handling time for each food species is calculated exclusively rather than combined with the search for other prey; and 3) resource abundance is not affected by foraging activities (Kaplan and Hill 1992). Prey choice or optimal diet models propose that foragers will optimize their return rates (calories/handling time) if they "take those resources for which this ratio is equal to or higher than the average returns they get for foraging in general and if they ignore all potential resources for which this ratio is lower than their average returns" (Hawkes et al. 1982:388). Based on this assumption, when encountered, foods that do not meet these requirements will not be taken no matter how abundant they are. Conversely, foods that meet or exceed the average return rates will always be taken, no matter how rare they are. This non-intuitive prediction means that the highest ranked foods may only be rarely encountered and the bulk of the diet may therefore be made up predominately of lower ranked items included in the optimal set. "The ranking shows . . . . which resources are more likely to enter or leave the diet and in what order. If the encounter rate with high­ ranked resources fluctuates widely, the optimal diet will fluctuate, with the very highest ranked resources being the only ones that never go out" (Hawkes et al. 1982:388). In other words, as the frequency of encounter rates for higher ranked resources increases, lower ranked resources will be dropped from the diet. 90 Conversely, as the frequency of encounter rates for higher ranked resources decreases, lower ranked resources will be included in the diet. For this study, variables for determining which resources will be included in the diet involve total foraging time (T) (this includes search time and handling time), total food energy or kilocalories acquired from foraging (E), the caloric value of resource i in kilograms (Ei) and the handling time required for resource i (Hi). These variables are expressed in the following equation (from Kelly 1 995): E/T = �i�--T""'s"'-- ­ Ts + EJ,ti Hi - Ts El:h - Ei = 1 + EJ,ti - Hi As expressed in this equation, resource i will only be included in the diet if its return rates are equal to or greater than the overall return rate for foraging. While return rates can be affected by a number of constraints such as particular hunting methods and animal behavior, applications of optimization models indicate that in general , there is often a positive correlation between prey size and return rates (e.g., Hawkes et al. 1 982). In other words, the larger the prey, the greater the return rates. This generalization may be particularly applicable in interior regions, where aggregated aquatic resources are not available or abundant. 9 1 Patch Choice Models A key element of the diet breadth model is the assumption that resources are dispersed "homogeneously" throughout the environment and will be encountered as a simple function of their relative abundance. Therefore, search time is not factored into the calculation of return rates (i.e., rank) of individual species. However this situation does not apply across the varied environments of the Great Basin or Snake River Plain. The patch choice model may therefore provide more useful insights regarding resource use in this region. The patch choice model applies to environments where resources occur in patches across the landscape. The decision being modeled is which patches a forager should decide to include in a foraging round. Therefore, the patch choice model, instead of ranking the energy return rates for individual resources upon their encounter, rank the return rates for different resource patches. It differs from diet-breadth models because search time and travel time are "included in calculating a patch's overall return rate" (Kelly 1995: 9 1). The model predicts that in situations where different resources are distributed in various isolated locales across the l andscape, foragers will select the patch or patches that generate the highest average energy return rate after travel, search and handling time are factored in (Hawkes et. al 1982). In this kind of heterogenous environment, the patch choice model can be employed to predict which resource patches will be included in the diet. 92 Three basic patterns (Figure 3 1 ) describe the possible changes in total energy returns during the exploitation of a patch. The returns either remain constant (i.e., foraging does not diminish the resource [Graph A]), remain constant until the last unit of a resource is harvested (Graph B), or diminish at a non-linear decelerating rate (i.e., return rates diminish because of longer search time or increasingly wary prey [Graph C)) (Kaplan & Hill 1992). Identifying which of these functions describes a resource patch is critical to understanding the forager' s decision of whether to move to an alternate patch and when. If the resources within a patch decrease at a non-linear decelerating rate, Chamov's marginal value theorum (1976) applies. This theorum predicts that foragers, "to maximize their net rate of resource harvest. . . . . wil l move out of a resource patch when the rate of harvest in that patch falls below the average rate for the entire environment (the entire population of potential resource patches, with travel time included), rather than when the return rate in the current patch has fallen to zero" (Kelly 1995:9 1 ). The marginal value theorum is expressed graphically as "C" in Figure 3 1 . While relocating to another patch may increase return rates, the energy to move must also be included in the equation. Therefore the decision of whether or not to move is based on the benefits of moving minus moving costs weighed against the advantages of staying. Kelly (1990) applied a patch choice model using Charnov's marginal value theorem in his archaeological investigations of the Carson Sink in western Nevada. 93 Contrasting Energy Return Rates for Patchy Environments A: Return Rates Remain Constant B B: Return Rates Remain Constant Until Exhausted c C: Retu rn Rates Diminish at a Non-Linear Decelerating Rate Figure 3 1 . Contrasting energy returns for patchy environments. 94 He argued that the distance between the highly scattered marshes in the area determined how long groups would remain at one marsh before moving on. According to the model, if adjacent marshes were close by, the marginal value of moving to a new patch would be greater than if marshes were far apart. He predicted shorter stays when marshes are close and longer stays when marshes are farther apart. In the case of the Carson Sink marshes, oases were significant distances apart and aboriginal groups appear to have chosen to remain at marshes for long periods. However, a key factor that allowed for extended periods at a single marsh was the availability of storable foods such as bulrush seeds and fish, which could support people as foraging rates decl ined over time. Anthropological tests of the patch-choice model are challenged by the fact that human foragers make deliberate decisions on when and where to move rather than coming across resource patches randomly. However, the model is still useful in assessing whether humans deliberately select the "highest-return-rate patches given their environmental knowledge" (Kelly 1995: 92). Tests of the marginal value theorum are also very difficult in anthropological applications because they require not only the calculation of the return rates for all potential resource patches but travel time as well. The theorum also assumes that travel time between patches is nonproductive, which is usually not the case. Nevertheless, these models make explicit predictions about foraging behavior based on a few simple assumptions, and have proven useful in understanding the foraging patterns of hunters from the 95 Amazon, Africa and the Arctic (Kaplan and Hi11 1 985, Hawkes et. al. 1 982, Hawkes and O'Conne11 1 985, Smith 1 99 1 ). Patch choice and diet breadth models have been combined in fruitful ways. For example, in Simms' ( 1987) simple diet breadth model proposed for Great Basin foragers, he estimated the procurement costs associated with a wide range of hunting situations involving deer, big hom sheep and antelope. However he also recognized that search time, especially associated with big game, must be included in the application of the model. "When search time i s the primary component in the cost/benefit equation with handling time playing a minor role, the abundance and density of the resource becomes an increasingly important factor in determining the overall cost of procurement" (Simms 1 987:72). This amounts to counting each specific game animal as a different resource "patch". To calculate search time from the caloric returns of big game, Simms examined historic population densities of large game, their habits, and various modem and historic hunting techniques. However, even with search time included, Simms argued that the net return rate for large mammals is stil l "extremely high" in comparison with other resources, and in all but the most extreme situations, return rates appear to be relatively constant. "Thus, while large game may have been relatively rare in the diet, they were probably always sought and taken when possible" (Simms 1 987:76). While it is difficult to evaluate this claim directly, we can predict that situations which decrease (through storage) the search, travel, pursuit or handling 96 time, or increase the relative marginal value of bison "patches", would increase the relative desirability of this resource. In a recent Great Basin application of the diet breadth model, Lupo and Schmitt (1997) examined the presence of bison in archaeological assemblages from Fremont sites in Northern Utah. Although they did not calculate return rates per handling time for bison, they argued that the live weight of adults would make them by far the largest terrestrial mammal in the region and therefore easily the highest ranked prey. Although bison may have not been continually available during the Fremont period, specific foraging and butchering strategies may have been adopted on a short term basis to harvest such large game when they were available. In other words, even though bison were sometimes rare and expensive to search for and process, they would always be taken. In conjunction with the use of behavioral ecology models in my research, I uti lize recent ethnoarchaeological studies of big game hunting. These studies indicate that simple models do not account for all of the decisions involved in transporting and processing game. While drying meat may greatly reduce transport costs, the labor costs of drying are high (Gifford-Gonzalez 1 993 : 1 84) . Based on her research with the Dassanetch in east Africa, Gifford-Gonzalez argued that there are benefits to transporting bone rather than leaving it behind. There is a significant difference in how bone is treated between mass kills and kills involving limited numbers of animals. If only a few large animals are killed during a single hunting event, transport costs of hauling both meat and bone from the kill 97 site to the camp site may be negligible, especially when the marrow and fat content in bone from large animals is significant. Transport decisions are also based on what is planned for the various parts of an animal, referred to as "final processing goals" (Oliver 1993:201) . In other words, depending on the options available for preparing and cooking large animals at the base camp, certain decisions will be made regarding which parts to transport and which to leave behind. In the following chapter, I use the assumptions of behavioral ecology to examine cold storage practices and bison hunting on the eastern Snake River Plain. For my analysis , I selected a patch choice model that outlines net caloric return rates for resource patches in the region. Information regarding which resources were potentially used has been gathered from Shoshone-Bannock ethnographic data. In the case of bison, return rates have been generated with the assistance of historic Euroamerican journals from the early 1800s as well as contemporary knowledge about bison behavior. Inferences about the availability of resource patches prehistorically are drawn from existing biotic and paleoclimatic data from the region. 98 CHAPTER IV BUILDING A MODEL OF SNAKE RIVER PLAIN SUBSISTENCE ECOLOGY As discussed in Chapter III, because food resources on the eastern Snake River Plain are concentrated in a variety of relatively rich patches surrounded by less productive sagebrush steppe, the application of a patch choice model is most appropriate for understanding mobility patterns, while a prey choice model can be applied within individual patches to understand human subsistence choices within them. Resource patches on the eastern Snake River Plain consist of linear patches along the few perennial water sources in the region, hundreds of ephemeral ponds, and the cold storage caves, which become "resource patches" when people return to retrieve stored meat. These caves, as has been shown in Chapter II, are also likely sites of bison hunting activity. In applying a patch choice model to evaluate how bison and ice caves fit into the subsistence strategy of aboriginal groups residing in the region, it is essential to identify a comprehensive sample of the potential resources available to the prehistoric inhabitants of the area and thus potentially incorporated into the diet. These can be generated by examining regional environmental data, ethnographic data, historic journals (in regard to 99 bison), archaeological data and modem hunting data. The following sections develop quantitative data that will allow qualitative assessments of how resource patches on the eastern Snake River Plain were used in prehistoric subsistence rounds. The Snake, Big Wood and Little Wood rivers are the only permanent water sources within the confines of the eastern Snake River Plain. However, many swales and basins serve as natural catchment areas for winter snowmelt and spring rains (Henrikson et al . 1998). During spring and early summer, these ephemeral water bodies are attractive oases. Prior to generating a resource model, it is essential to consider whether significant climatic events in the past would have significantly altered this sagebrush steppe environment. Regional paleoclimatic data can provide insights into the vegetation communities present during the Holocene and i lluminate the degree to which climatic fluctuations may have altered the productivity or composition of available resource patches in the region. Holocene Paleoclimate and Resource Patches on the Eastern Snake River Plain Although optimum sites for pollen data, such as permanent lakes and ponds, are scarce in the steppe environment of the Snake River Plain, some critical paleoclimatic research has been conducted in southern Idaho over the last twenty years. Beginning in the late 1 970s, Bright and Davis ( 1982) collected sediments from a variety of sources : dry ephemeral ponds, sand dunes, caves, packrat middens, and beneath lava flows on the eastern Snake River Plain. Although 1 00 sediment samples from open-air sources such as ponds and dunes provided relatively limited information, two lava tube caves (Middle Butte and Rattlesnake caves) located northeast of the cold storage caves produced continuous climatic records (Figure 32). Pollen records from both Middle Butte Cave (5 1 87 ft. asl.) and Rattlesnake Cave (5 177 ft. asl .) indicate that maximum aridity occurred in their immediate surroundings around 7000 years ago (Bright and Davis 1 982, Davis and Bright 1983). The vegetative community that surrounds Rattlesnake Cave is currently an ecotone between shadscale and sagebrush communities. However, pollen samples from 7000 ry B .P. contain higher percentages of Cheno-ams (plants of the amaranth and pigweed families, including shadscale) suggesting that higher temperatures, lower precipitation, or possibly both had resulted in a greater prevalence of shadscale vegetation than exists in the area at present (Bright and Davis 1982:31 ). The plant community currently surrounding Middle Butte Cave is an ecotone between juniper woodland and sagebrush communities. However, around 7000 years ago, the area around the cave was dominated by a more arid sagebrush community. As moisture conditions gradually improved by about 5200 years ago, sagebrush and woodland-sagebrush communities came to characterize to the immediate vicinity of Middle Butte Cave and shadscale communities became established at lower elevations. For the last few thousand years, environmental conditions have remained relatively stable (Bright and Davis 1 982, Davis and Bright 1983). 1 0 1 • • Middle Butte Cave - ... .... 102 ' • I • " I � � - ·· - · - - · ·- ·�--- · · - ·-- -- -- -- - ·-·------- - ---- ---- - --- ------· · - · · - --·- · · - · · _l _ _ l _ _ _ _j Figure 32. Location of Rattlesnake and Middle Butte Caves on the eastern Snake River Plain (modified from Butler 1 978) Likewise, pollen data from Tomcat Cave reveal relatively consistent ratios of arboreal pollen from alder and pine, sagebrush (Artemisia), rabbitbrush (Purshia) and a variety of grasses (Poaceae), suggesting that the sagebrush steppe community surrounding the site has been relatively stable for the last 2500 years (Cummings 2002). Pollen data from Scaredy Cat Cave provide some interesting correlations with the paleoclimatic picture just presented. Pollen ratios from Test Unit 1 (dating between roughly 4700 and 4200 years ago) closely resemble those of the sagebrush community currently surrounding the site, although with higher percentages of Poaceae or grass pollen. According to Wigand ( 1997) these results may indicate more grasses in the local area, suggesting slightly greater spring precipitation. The analysis also noted unusually high pine ratios and lower sagebrush ratios between 7200 and 6500 years ago, which suggests a brief interval of greater moisture. During the same period, pollen of Cyperaceae (sedges) also suggests a water source nearby, at least seasonally. Several large ephemeral ponds just south of the cave now contain dense quantities of sedges in early to mid summer when water levels decrease through evaporation. These observations are congruent with the contentions of Mehringer ( 1 986) and others that short, sharp fluctuations are a common feature of paleoclimatic curves in the interior west, often reversing for brief intervals the dominant trends of long-term climatic changes. 103 Thus, currently available paleoclimatic data from the eastern Snake River Plain show that the trends documented for the early to mid Holocene did not result in the development of plant communities greatly different from those seen in the region today. While some changes occurred, with sagebrush expanding or retreating in relation to juniper and shadscale at different times, in general the Snake River Plain sustained a vegetation cover very similar to that of the present. Sagebrush steppe remained the dominant vegetation cover, and sedges such as those present at Scaredy Cat Cave today were also present there even during the early part of the thermal maximum that developed after about 7000 ry B .P. Ethnographic Data on Food Resources Lowie ( 1 909), Steward ( 1 938) and Murphy and Murphy ( 1960) provided much subsistence information in their ethnographies of the Shoshone-Bannock. Turner et al. ( 1986), building on their work, gathered additional information in the early 1 980s from several Shohsone-Bannock informants regarding geographic place names and natural resources. The research started from the fact that language expresses "cognitive, semantic, or ethnoscientific categories of reality" (Turner et al. 1 986:6). The analysis identified how the Shoshone language organized living creatures according to their specific relationship with water (i .e. , do they live under water or along the shore?). Although this approach has exciting ramifications, for the study at hand I wil l focus only on plants and animals named as having "edible parts". These are listed in Tables 23 and 24. 104 Table 23. Animals with Edible Parts (Turner et al. 1 986) fish elk squirrel duck salmon bison cottontail birds salmon eggs horse jackrabbit crane Dolly varden trout deer snowshoe rabbit goose sucker moose rabbit springtime salmon bighorn sheep mountain squirrel wood salmon antelope rockchuck white fish trout Table 24. Plants with Edible Parts (Turner et al. 1 986) Allium sp. (wild onion) Descurainia sophia (tansy mustard) Ribes aureum (wax currant) Crataegus rivularis (river hawthorn) Prunus virginiana (chokecherry) Malva neglecta (cheese weed, mallow) Vaccinium sp. (huckleberry) Sambucus spp. (elderberry) Perideridia gairdneri (yampa) Urtica dioica (stinging nettle) Camassia quamash (camas) Rubus parvijlorus (thimble berry) Ribes spp. (gooseberry) Rosa sp. (wild rose) Fragaria sp. (wild strawberry) Epilobium angustifolium(fireweed) Asclepias speciosa (milkweed) Lomatium dissectum( desertparsley) Plantago major (indian wheat) The lists offer a good picture of the most important regionally available and ethnographically utilized food resources. As mentioned previously, such food resources are not randomly encountered across the Snake River Plain, but are concentrated in a few relatively rich resource patches. These include linear patches along the few perennial water sources in the region, ephemeral ponds, and the cold storage caves. 105 Table 25 presents a representative list of resources that would have been available in each of the resource patches identified on the eastern Snake River Plain. This list also includes gophers and grasses, which have been identified as being important in other parts of the Great Basin (Simms 1 987) and would likely have been included in the prehistoric Snake River Plain diet. Linear River Corridors Bison Deer Antelope Jackrabbit Marmot Cottontail Rabbit Waterfowl Sage Grouse Fish Gophers Squirrel Sunflower Wild Rye Rice Grass Sedge Squirreltail Grass Table 25. Plants and Animals Available in Snake River Plain Resource Patches Ephemeral Ponds Cold Storage Caves Bison Bison Deer Water Antelope Jackrabbit Marmot Waterfowl Sage Grouse Gopher Squirrel Sunflower Wild Rye Rice Grass Shrimp Sedge Squirreltail Grass The availability of each of these resources would vary according to season. Linear river patches, with their dependable moisture and good soils, would contain the widest variety of resources. In springtime, ephemeral ponds would provide fresh water and a population of freshwater crustaceans (fairy and tadpole shrimp) that would attract waterfowl. The water in tum would attract whatever large and small game species were common to the area. · Cold storage caves would contain 1 06 water at any season and whatever meat stores had been previously cached. Fluctuations in the abundance of resources must have occurred from year to year and over longer intervals as well however, due to short-term fluctuations in moisture regimes. During drought conditions certain ephemeral ponds may not have been available, forcing a heavier reliance on resources at somewhat greater distances, or on linear river corridors. As a basis for calculating search time, pursuit time and net return rates for animals encountered within resource patches on the Snake River Plain in the prehistoric past, my study can fortunately rely on Simms ( 1987), who generated caloric values and return rates for many plant and animal species common to both the Great Basin and the eastern Snake River Plain. As the ethnographic data of Lowie ( 1909), Steward (1938) and Murphy and Murphy ( 1960) show, the people of the Great Basin and Snake River Plain relied on the same plant and animal species to a very great degree. Generating bison return rates, however, is not as straightforward. Bison had disappeared from the Snake River Plain by 1 840, reportedly due to over-hunting by white fur trappers (Townsend 1978). To generate the necessary quantitative data, information on net return rates for bison must be gleaned from fur trapper's journals. Because return rates for bison on the eastern Snake River Plain are so central to this study, I tum next to the task of generating those data, beginning with some basic ecological facts . 1 07 Calculating Return Rates for Bison According to McDonald (198 1 ), modern bison species currently occupying North America, both Bison bison bison (plains bison) and Bison bison athabasacae (woods bison), are thought to have evolved from different populations of Bison antiquus that occupied North American savannas at the end of the Pleistocene. These animals were spared extinction by the expansion of short­ grass communities on the Plains (Guthrie 1980). Bison bison likely evolved on the Great Plains and radiated outward, depending on available habitat. "The short grasses were probably always bison' s dietary mainstay. In many ways the short­ grass communities with their resistance to heavy grazing and trampling may have co-evolved with the bison" (Guthrie 1980: 67). The short grasses that make up the Great Bison Belt (primarily Bouteloua, Agropyron, Stipa, and Buchloe) provided bison with a high protein to carbohydrate ratio even in their dry form, which extended their palatability well into winter (Tatum 1980). Frison (199 1 ) noted that, based on the analysis of archaeological specimens from the Plains, there appears to be a steady decrease in the size of bison through the Holocene that is most likely associated with climatic factors. He agreed with Gruhn's and Swanson 's earlier suggestions that bison populations on the Snake River Plain were severely curtailed because of generally drier climatic conditions during the Middle Holocene. Bison of the Great Plains are thought to have been highly susceptible to both long-term and short-term periods of increased aridity 1 08 because of their heavy reliance on short grasses, which are greatly affected by changes in seasonal precipitation and temperature (Hanson 1984, Bamforth 1987). By 5000 years ago, conditions on the Great Plains had improved sufficiently to allow bison populations to rebound. Archaeological records for the eastern Snake River Plain at Wilson Butte Cave, Owl Cave, and other sites reported in this research, show that bison were effectively present in Idaho throughout the Holocene, though the available data are insufficient to track their population curve with any conviction. However, Daubenmire ( 1985) argued that deep snow and insufficient grass west of Wyoming would not allow large populations of bison in the region. As mentioned above, developing return rates for bison is difficult. While Simms ( 1987) used an experimental approach to generate caloric return rates for plants, he had to rely on modern hunting data for game animals. His return rates for antelope, deer and elk are used here, but since modern hunting data for bison are essentially non-existent, this study approaches the problem through the historical narratives of fur trappers who frequented the eastern Snake River Plain in the early 1800s. Historic Journals and Bison Encounters Journal entries of trappers exploiting the resources of the Snake River Plain during the early 1 800s refer often to bison. In fact, bison appear to have been the preferred subsistence animal because their massive size provided large quantities of 109 meat in a single package. Some earlier travelers, such as the parties of Wilson Price Hunt and Robert Stuart, often stayed close to the Snake River corridor without venturing out onto the sagebrush steppe. Stuart's party in particular relied heavily on fish rather than large game for food. However, fur traders who wanted to explore the tributaries of the Snake in search of beaver spent significantly more time in the region. For this paper, information was gathered from four primary sources. These include the journals of Peter Skene Ogden (who traversed the rivers and streams of the eastern Snake River Plain during 1 825 and 1 826 in search of beaver pelts), Captain Bonneville (who moved to and from the region between 1 832 and 1835) and John Kirk Townsend and Osborne Russell (two of Nathaniel Wyeth's men who traversed the Snake River Plain between the years of 1 834 and 1 843) . Peter Skene Ogden, whose fur trapping party reached the eastern Snake River Plain in 1 825, first entered Idaho from Montana. Coming into the Salmon River area in mid February, he noted "Buffalo by hundreds indeed as far as the eye can reach the plains appear to be covered with them." (Ogden 1 950:21). B y early April , Ogden reached the northern end of the Snake River Plain and headed south for the Snake River intending to trap beaver. However, because the snow was too deep and no grass was sprouting yet for horse feed, he decided to travel west to the Boise River. He did not return to the Snake River Plain until the following spring. No bison were sighted crossing the plain until early April when the party had 1 10 reached Ferry Butte along the Fort Hall Bottoms. The party spent April and May between American Falls and Raft River. Table 26 summarizes the journal notes of bison hunting recorded by Ogden. The entries are often vague and there are few precise references to the number of bison present or the number of hunters involved. Descriptive terms used in the text allude to the number of animals encountered or kil led, though precise enumeration is rare. With one exception, all the entries are limited to the months of April, May and June. i Table 26. Ogden's Journal Entries noting Bison Encounters and Kills on the Eastern Snake River Plain Date Bison Encountered # of B ison Killed April 20, 1 825 Numerous 5 May 1 , 1 825 Numerous Unknown May 13 , 1 825 Numerous Unknown June 16, 1 825 Unknown "Some" June 1 8, 1 825 Numerous "Many" October 9, 1 825 Numerous Unknown April 3, 1 826 Numerous None April 4, 1 826 Numerous "a few" April 6, 1 826 Numerous Unknown April 1 5 , 1 826 Numerous 1 5 April 20, 1 826 Unknown 2 April 24, 1 826 Unknown 2 AQri1 25, 1 826 Unknown 2 Apri l 26, 1 826 Numerous "some" April 27, 1 826 Numerous 1 0 April 29, 1 826 Numerous 1 2 May 9, 1 826 Numerous "some" Captain Bonneville first reached Idaho in early fall of 1832, wintering in the vicinity of Salmon, Idaho. He noted that game was scarce and because of the lack of bison, his party was relying on fish, waterfowl and antelope (Irving 1986:8 1) . 1 1 1 By late December, the group had traveled to the eastern Snake River Plain in the vicinity of the Big Lost River, noting plenty of snow but few game animals (Irving 1986: 1 16). They reached the Fort Hall Bottoms in January, describing the area as lush, with Bannock lodges and bison present along the river banks where snow wasn' t deep (Irving 1 986: 122- 123 ) . In early June, near the Big Wood River, Bonneville 's party staged a "grand buffalo hunt" in a plain that is "absolutely swarming with buffalo" (Irving 1986: 137). This may be a reference to the eastern edge of Camas Prairie in the vicinity of the Timmerman Hills. From there, Bonneville headed into western Idaho and didn' t return to Fort Hall until mid May of 1834. Although he noted that bison were plentiful along the Portneuf River, by late fall the herds had moved into the Bear River country and were no longer accessible because of deep snow. Table 27 presents Captain Bonneville ' s journal entries regarding bison encounters. Table 27 . Captain Bonneville' s Encounters with Bison on the Eastern Snake River Plain Date # of Bison # Killed i Oct. 1 0, 1832 Unknown 1 Oct. 12, 1 832 Unknown 1 Dec. 28, 1832 Unknown 1 Jan. 5 , 1833 Unknown 1 Feb. 28, 1833 Unknown "supply" June 5, 1833 Numerous Unknown May 15, 1 834 Unknown 2 Oct. 26, 1 834 Numerous Unknown Osborne Russell was a member of Nathaniel Wyeth's party who trapped in western Montana, northern Utah and southern Idaho between 1 834 and 1 843 . His 1 12 first journal entry in Idaho mentioned that the party had reached Fort Hall by July 1 8th, 1 834. He noted that the "country is bounding with game" but no animals could be approached. He attributed it to skittishness as a result of too many people in the immediate area. Because of poor hunting luck in the area around Fort Hall, hunting expeditions were sent south along the Portneuf or north along the Blackfoot River in search of bison. Hunting groups also acquired dried bison meat through trade with Shoshone villages located on the B lackfoot River and with large groups of Bannocks who arrived at Fort Hall in the fall . The following spring, Russell noted "thousands of buffaloes carelessly feeding" in a narrow valley south of Fort Hall (Russell 1921 : 1 8). Only bulls were dispatched during spring hunts because the cows were reportedly in extremely poor condition at that season. In the fall of 1835, Wyeth 's party re-entered the northeastern edge of the Snake River Plain following a fur trapping expedition in Montana. Russell made note of large herds throughout the vicinity of Camas Creek and Mud Lake (Russell 192 1 :38) at that time, but during his last trek through southern Idaho in 184 1 , he sadly noted the complete lack of bison and no evidence that they had ever been there. What had happened to bring about this decline is not clear, but it may well have been due to the rapidly increasing presence of Euroamericans and rifles in the region. 1 13 Table 28. Journal Entries of Russell noting Bison Encounters on the Eastern Snake River Plain Date # of Bison # of B ison Killed Aug. 1 2, 1 834 Numerous None Aug. 14, 1 834 Numerous 4 Apri l 27, 1 835 Numerous "some" May 22, 1 835 "thousands" "many" June 17, 1 835 Unknown 2 Sept. 27, 1 835 Numerous "many" Oct. 3, 1 835 Numerous None John Kirk Townsend, also a member of Wyeth's party in 1 834 and 1 835, recorded bison encounters not mentioned by Osborne Russell. He also noted that game was hard to acquire near Fort Hall during the summer of 1 834 and hunting parties were dispatched farther afield. His journal entries describe good fishing along the Portneuf River (Townsend 1978:99) and the density of cottonwoods and grasses in the Fort Hall area. During a summer hunt, the group dispatched cows rather than bulls. Townsend noted that cows are "best food in the world" and bulls were "at this season poor and rather unsavory" (Townsend 1978 : 106). I Table 29. Townsend's Journal Entries of Bison Encounters On the Eastern Snake River Plain Date # of Bison # of B ison Killed July 5, 1 834 Unknown 2 July 8, 1 834 Unknown 2 July 14, 1 834 Unknown 1 July 1 6, 1 834 Unknown 1 July 17, 1 834 "few" 4 July 20, 1 834 Unknown "several" July 2 1 , 1 834 Numerous Unknown July 25, 1 834 Numerous "many" August 9, 1 834 "Scarce" 1 August 10, 1834 "Scarce" 1 August 1 1 , 1 834 Unknown 2 August 12, 1 834 Unknown 1 1 14 Based on the journal narratives, it is also evident that the region was well populated by the Shoshone, Bannock and Blackfeet. Shoshone individuals frequently traveled and hunted with the trapping parties or were often encountered by them while traveling. Trappers also visited villages, some of which were reasonably large, and reported that the inhabitants appeared to be in good health. While trapping near Raft River on March 2 1 , 1 826, Peter Skene Ogden's party encountered "100 Indians" well stocked and ready for trading (Ogden 1950: 144). In mid-January of 1 833, Captain Bonneville and his party arrived in the Fort Hall Bottoms to find a Bannock village of 120 lodges situated in an area "covered with groves of cotton-woods, thickets of willow, tracts of good lowland grass and abundance of green rushes" (Irving 1986: 122). On October 1 , 1 834, Osbourne Russell and a small party of trappers visited a "Snake" village of 60 lodges on the Blackfoot River north of Fort Hall and procured as much bison meat as their horses could carry (Russell 192 1 : 13) . On October 20, 1 834, Russell encountered "250 lodges" belonging to the Bannock near Fort Hall (Russell 192 1 : 14). He saw "300 lodges" near Bear Lake in April of 1835 (Russell 192 1 : 17) and "400 lodges of Snakes and Bannocks" near the Bear River on May 8, 1 836 (Russell 1921 :45). Judging from the journal entries, both people and bison were thriving on the eastern Snake River Plain in the 1 820s and 1830s. As an aside, these entries are significant in documenting a flourishing ethnographic pattern of life, and in showing that the great mortalities that afflicted west coast and other 1 1 5 populations, as a result of white man's diseases, apparently had not decimated the Shoshone and Bannock peoples residing the Snake River Country. In calculating bison return rates, I used only the narratives of Odgen, Townsend and Russell because only these journals provided daily reports on activities for a period of months or years. While Townsend and Russell were both with Nathaniel Wyeth 's party, events documented in their journal entries do not correspond with one another and it appears that, for much of the time, they were in different sub-groups of the original party. Therefore, both journals have been considered in my effort to calculate bison return rates. Making the Calculations To calculate bison return rates, values for a number of specific factors must be provided. While the historic journals can help suggest quantitative information regarding the success rates of hunters, other factors included in the equation must be generated by other means. These factors include the caloric value of bison meat, the amount of edible meat on a bison, the number of hours in a hunter day and the amount of time it takes to process a bison. The following paragraphs discuss each of these factors and explain how specific estimate values were generated. The caloric value of bison meat was obtained from an analysis of the nutritional composition of lean bison cuts, including ribeye and sirloin (Marchello et al. 1998). Standard nutritional analyses are performed on all foods to 1 16 fulfi ll requirements set by the United States Department of Agriculture. These analyses extract and measure the amount of protein, moisture, fat, ash, cholesterol and energy contained in 100 grams of a specific food. The caloric value of a 100 grams of bison meat ranged from 136 calories to 145 calories, depending on the specific cut (Marchello et. al . , 1998). To convert calories to kilocalories, these figures are multiplied by 10 (i.e., caloric value of 1000 grams rather than 100 grams). For the purposes of this study, the higher figure of 1450 is used because it is clear from ethnographic observation that aboriginal people would not have excluded the fattier cuts and indeed appreciated their food value. In a study among the Ache foragers of Paraguay, 4086 total hunting hours (including processing, search and pursuit time) were observed over 674 man-days (Hawkes et. al., 1982), resulting in a rough average daily hunting time of 6 hours. Based on Simms' personal expetience and information generated from modern hunters in Utah, he concluded that five hours was representative of a single "hunter day". Sugiyama, in his research with the Yora of Peru and Shiwar of Ecuador (1 996), generated similar figures. The more conservative figure of 5 hours will be used here. I use Simms' estimate that roughly 60% of an animal 's total weight would be considered edible in the prehistoric diet. These weights were originally generated by White ( 1953), who considered that only 50% of an animal' s flesh was edible. Simms' rationale for the increase stems from his argument that modern butcheting techniques discard flesh that prehistoric groups would have considered edible. 1 17 This rationale is well founded. Calculations based on ethnographically measured edible proportions of game in studies of the Ache of Paraguay and the Piro of Peru yield an estimate of 65% of body weight (Kaplan and Hil l 1985). According to White ( 1953), the average live weight for a male bison is 1 800 pounds and the average live weight for a female bison is 800 pounds. For my study, these figures are averaged and the edible weight calculated using Simms' estimate of 60% of total weight. This calculation generated an average edible bison weight of 354 kilograms. Processing includes the amount of time it takes to "gut, skin, and butcher the animal into sizable portions"(Simms 1987:46). Simms provided no estimate for bison, but a modern hunter can easily gut, skin and cut up a 300 kilogram bull elk in an hour, even while taking great pains to keep the meat clean (Dennis L. Jenkins, personal communication) . I have estimated the processing time for a bison carcass at four hours and consider this to be a generous figure. This information must now be related to quantitative data on the pursuit time involved in bison hunting from the journals of Odgen, Russell and Townsend. The information needed includes the total number of animals taken and the total number of man-hours required to take them. The pursuit time can then be expressed in kilograms of meat obtained per hour of effort expended. The number of hunter days was derived from journal entries that commented on hunting (see Appendix A). Because the number of hunters involved in particular 1 1 8 bison procurement activities was often not given, the number of hunters used in my calculations is based on those entries where the number is specified. Townsend's journal entries were the most informative regarding the actual number of hunters involved in each attempt to acquire bison. The number of hunters ranges in specific cases from one to six; I averaged these and used three hunters in the formula. Ogden's journal mentions 5 hunters involved in a bison hunt in the Lemhi Valley on February 12, 1 825. Because this is the only entry in which the actual number of hunters is listed, I used it in calculating Ogden' s success rate. Russell ' s journal contains three entries in which four hunters were involved. Because no other Russell entries provide a specific number, I used this in the calculations. As previously noted, the journal entries were often vague regarding the number of animals killed. As noted in Tables 27, 28 and 29, the terms "many" or "large numbers" were commonly used. Where these entries were noted, the number of bison killed was assigned a numerical value of "20". When "some" bison were procured, the number "10" was assigned. These may be conservative estimates judging from the sheer size of many of the fur trapping parties. For example, Ogden' s party consisted of at least 58 individuals equipped with 6 1 guns and 268 horses when they departed the Flat Head Post in December of 1 824 (Russell 1950:3). Alexander Ross had left for the "Snake River Country" a year earlier, taking a trapping party of 54 men with 62 guns and 23 1 horses (Ogden 1950:xxxvii ) and Nathaniel Wyeth's party consisted of 58 men (Russell 1921 :7). 1 19 In addition to the trappers, these groups also included families (women and children) of certain trappers, although their actual numbers are not specified. Because journal entries noted that some trappers brought wives and children while others were "single", I have estimated the total group size at 75. Feeding a group of 75 individuals for a month (at 2500 calories a day per person) requires roughly 5 ,625,000 calories. Because bison was preferred over all other foods, it i s assumed that bison meat made up the bulk of the fur trappers' diet. This caloric figure represents the equivalent of 10 bison per month, assuming that 60% of each animal was used. However, it is clear that fur trappers often wasted significant portions of their kills (Townsend 1978: 104, 128) or lost certain kills to wolves (Ogden 1950 : 160). Some journal entries make special note of when "nothing was wasted" due to the overall shortage of bison meat in camp (Townsend 1978: 1 28). If only half of the edible portion of a bison was consistently consumed, it would have required nearly 20 bison to feed a party of 75 for a month. As shown in Appendix A, the frequency of kills involving "10" or "20" animals is low and they were often spaced several months apart. As rough as these estimates are, they do provide reasonable "ballpark" figures to work with. The caloric costs of the total hours estimated for Ogden, Russell and Townsend in both the pursuit and processing of bison must be expressed in kilograms per hour to derive return rates. Table 30 presents the specific numbers needed to make these calculations. 120 1 2 1 Table 30. Total Man-Hours and Bison Killed Estimated from Trapper Journals Journal Hunters Total Man-Hours # Killed Processing Hours Ogden 5 1 1 20 205 820 Russell 4 224 55 220 Townsend 3 240 1 6 64 This calculation requires that the total number of hunter hours be added to the total number of processing hours. (To determine the total number of processing hours, the number of bison acquired was multiplied by four, the number of hours required to process a single bison). Pursuit and processing hours were then divided by the number of bison taken, multiplied by the number of kilograms of edible meat per bison. The character "Hi" represents pursuit and processing time per kilogram, as in the following equation: Total Hunter Hours + Processing Hours N X 354 kg Once pursuit and processing time per kilogram (Hi) has been calculated, the Total Handling Time (THT) must be derived. To do this, Hi be multiplied by the kilograms of meat available per bison. For use in the equation, the 354 kilograms of meat available per bison will be expressed as "IJ{' and the caloric value of bison meat (1450 kilocalories per kilogram) established by Marchello (et al. 1998) will be represented as "E{'. The following equation will then produce the net return rate for each journal account: !(�i X Ei) ------------------ = Net Return Rate !(�i X Hi) Table 3 1 presents the estimated return rates for bison hunting based on the numbers generated from the narratives of Ogden, Russell and Townsend. Table 3 1 . Net Return Rates for Bison Narrative lli E1 Hi lli x H1 Return Rate Ogden 354 kg 1450 .0268 9.487 54, 1 05 kcal/hr Townsend 354 kg 1 450 .0326 1 1 .54 44,480 kcaUhr Russell 354 kg 1450 .0228 8.07 63,606 kcaUhr Because of the crudity of the data and for the sake of simplicity in calculation, the net return rate for bison will be averaged for the three narratives. The round figure of 54,000 kilocalories per hour, which closely matches Ogden's median return rate, will be used as the return rate for bison. However, Simms argued that aboriginal hunters using bows and arrows likely experienced a lower success rate than modem hunters and reduced the return rate for deer and antelope by 40 percent ( 1 987). If the return rate of 54,000 kcal/hr is comparably adjusted to 32,400 kcal/hr to make up for the potential differences in hunting success between aboriginal hunters and fur trappers with horses and rifles, the resulting return rate is roughly 50% higher than deer and antelope. In the following paragraphs, this figure will be used in calculating the optimal diet curve for the eastern Snake River Plain. 122 Calculating Return Rates for other Animal Resources As noted previously, useful information has been generated and applied by Simms ( 1987) in calculating return rates for certain animal species in the Great Basin. Although there may be some variation between regions, many of these species were also available to the aboriginal inhabitants of the eastern Snake River Plain, as identified by Turner's (et al. 1986) list of animals with edible parts from Shoshone-Bannock ethnographic data. Table 32 below summarizes the kilograms of usable meat obtainable from individual game animals that were available in southern Idaho. Table 32. Usable Meat Weights from Game Animals Commonly Available in Southern Idaho (modified from White 1953) ! Animal Kilograms Bison E 364 Bison r 8 18 Moose 218 Elk 1 90 Mule Deer 54 Antelope 50 ! Beaver 15 Porcupine 4.0 Rockchuck 3.27 Jackrabbit 1 .6 Cottontail Rabbit 0.95 Muskrat 0.8 1 Ground Squirrel 0.68 Pocket Gopher 0.27 Canada Goose 2. 1 8 Sage Grouse r 1 .5 Mallard 0.68 123 Calculating Return Rates for Plant Resources As with animal resources, a list of plant resources potentially used in southern Idaho has been generated from Shoshone-Bannock ethnographic data (Turner et al. 1986). Through experimentation, Simms ( 1987) was able to generate return rates for some of these species of plants, and his return rates for potential plant resources are applied here. Table 33 includes only those plants investigated by Simms that would have been available on the sagebrush steppes of southern Idaho. Table 33. Return Rates for Plant Foods Commonly Available in Southern Idaho (from Simms 1987) Species Food Type Calories/Hr Helianthus annus (sunflower) seeds 467-504 Elymus cinereus (GBWR ) seeds 266-473 Oryzopsis hymenoides (IRG) seeds 301-392 Carex (sedge) seeds 202 Sitanion hystriJc (squirrel tail) seeds 9 1 Calculating Return Rates for Resource Patches Because I use a patch choice model to examine mobility patterns and foraging across the environment of the eastern Snake River Plain, it is necessary to consider which resources available within patches, depending on their return rates, would predictably be included in the aboriginal diet. As presented in Chapter III, diet breadth models predict that foragers wil l maximize their return rates if they take only those resources that generate net returns that are equal to or higher than the 124 average returns produced by overall foraging and will ignore resources that fall below their average returns (Hawkes et aL 1982, Kelly 1995). Foods that fall below their average returns will not be taken no matter how abundant they are. Conversely, foods that meet or exceed the average return rates will always be taken, no matter how rare they are. As the frequency of encounter rates for higher ranked resources increases, lower ranked resources will be dropped from the diet. Conversely, as the frequency of encounter rates for higher ranked resources decreases, lower ranked resources will be included in the diet. Table 34 presents my reconstruction of the net return rates and overall ranking of common resources potentially available to the aboriginal inhabitants of the eastern Snake River Plain. Table 34. Return Rates for common eastern Snake River Plain Food Resources (modified from Simms 1987) Resource Kg Kcal/kg Hr/kg Kcallhr Kg x hr/kg Rank Bison 354 1 450 .04 32,400 1 0 I Deer 45 1 258 .06 ' 20,966 3 2 Antelope 25 1 258 .06 20,966 1 .5 2 Jackrabbit 1.4 1 078 .07 15,400 .49 4 Marmot 3.6 1 078 .07 14,400 1 .26 5 Cottontail .80 1078 . 1 2 9,000 .84 6 Waterfowl .90 848 .40 2200 1 .2 7 Sagegrouse .90 848 .40 2 1 20 2.8 8 Trout .50 975 .40 2 1 1 9 .23 9 Gopher .03 1 078 .70 1 540 .021 1 0 Squirrel .45 1 078 .74 1 470 .33 I I Sunflower 3650 7.2 485 2. 1 5 1 2 Wild Rye 2800 5.9 370 2.65 1 3 Rice Grass 2740 6.9 350 2.2 1 4 Shrimp 26 I 252 1 1 5 Sedge 2590 1 2.8 202 1 .75 1 6 Squirreltail 2700 3 1 .0 9 1 .32 1 7 125 Calculating the Optimal Diet Curve To evaluate the net return rates of different kinds of resource patches, it is important to ascertain an optimal diet curve that predicts which resources were included in the diet. To do this, Holling's disc equation is applied (Charnov and Orians 1 973). As Simms ( 1987:80) noted, these estimates have been demonstrated to be "more theoretically robust than initially thought" and have been shown to work in both homogeneous and patchy environments. The equation is expressed as: L (�i x Hi) x E1 L (�i x H) x Ei etc. ------------ + ------------- + ------ = Return Rate 1 + L ([�i x E1] x Hi) L ([�i x E1] x Hi) etc. Holling's disc equation calculates the cumulative handling costs and overall return rate as more resources are added to the diet, beginning with the highest ranked resource. The calculation of values for individual resource types in Table 34 thus yields an "optimal diet curve". Figure 33 shows the optimal diet curve for the eastern Snake River Plain and includes both return rates for bison . The upper curve represents foods in the order in which they are ranked in the diet. The lower curve represents the cumulative handling time involved as each food item is included in the diet. The point at which the two curves intersect marks the point at which the 126 127 Optimal Diet Curve for the Eastern Snake River Plain 40,000 20,000 1 5,000 14,000 � ..c:l 9,0001 ........ fl.) -= u � ....,.,.. 3,000 2,000 1 ,000 500 Optimal Diet 400 300 200 s:: � ll) .';:: - - � ll) � � - ... ll) "' 0 ll) .0 0 ·a 00 II) ·t:�� ;�� · 1·.· _ L -- '� '::.:. �_ -.' . : · , - , :,/ I + :. , _ _ --� � � 1 ! ' - 00 w Site I OBMS6 1 0BN356 IOBN389 1 0BN967 I OBN1 097 I OBT201 3 I OBT2038 I OLN67 J OLN74 l OLN94 1 0LN96 l OLNl l l 1 0LNI42 l OLN267 J OLN280 IOLN302 10LN380 I OLN399 I OLN421 I OLN424 I OLN490 1 0LN623 I OLN63 1 I O LN636 I OMA! O l I OMA1 1 4 IOMA143 Table 40. Location of Base Camps within the Study Area Name!fype Location Pr()j. Points Period Bobcat Cave Cave MK, ECN, RG, DSN Mid-Late Holocene Open Base Camp Camas Creek Unk Open Base Camp Lava Edge SIB RG, DSN Mid-Late Holocene Open Base Camp Pond Unk Open Base Camp Pond DSN Late Holocene Open Base Camp Big Lost River Unk OjJ_en Base Camp Big Lost River Unk Open Base Camp Big Wood River Unk Tomcat Cave Cave MK, RG, DSN Mid-Late Holocene Open Base Camp Little Wood River ECN Late Holocene Open Base Camp Big Wood River Unk Open Base Camp Big Wood River Unk Open Base Camp Pond DSN Late Holocene Fortress Cave Cave NSN SIB ECN,RG,DSN Mid-Late Holocene Open Base Camp Big Wood River Unk Open Base Camp Little Wood River Unk Open Base Camp Depression Unk Open Base Camp Pond SIB, MK, ECN Mid-Late Holocene Open Base Camp Pond Unk Open Base Camp Pond RG Late Holocene Open Base Camp Pond Unk Open Base Camp Pond Unk Open Base Camp Pond Unk Bison Heights Crater DSN Late Holocene Open Base Camp Pond Unk Open Base Camp Pond SIB, ECN DSN Mid-Late Holocene Scaredy Cat Cave Cave NSN, SIB,ECN,RG,DSN Mid-Late Holocene �amp Lava Edge DSN Late Holocene amp Lava Edge ECN,RG,DSN Mid-Late Holocene I OPR1 8 8 Wolf Fang Cave Cave Unk 1 0PR265 Open Base Camp Snake River Unk 1 0PR3 1 9 Bear Paw Cave Cave Unk 1 0PR332 Open Base Camp Snake River ECN DSN Late Holocene I OPR408 Open Base Camp Snake River DSN Late Holocene I OPR465 Open Base Camp Snake River Unk 1 0PR469 Open Base Camp Snake River Unk I OPR472 Open Base Camp Snake River Unk l OPR476 Open Base Camp Snake River Unk l OPR489 Open Base Camp Snake River Unk 10PR501 Open Base Camp Snake River Unk I OPR641 Alpha Cave Cave RG Late Holocene There are base camps directly associated with all seven of the cold storage caves. Because of the availability of ice at these sites, their distance to water was recorded as 0 meters. An additional 1 1 base camps are also located 0 meters from ponds (in all cases, they are positioned right at the water's edge). The base camp at 1 84 I I i I 185 Bison Heights (1 OLN636), described in Chapter II, is not located near an ephemeral pond but its close proximity to Tom cat Cave, and its distinctive topographic features, may have made the location suitable as a base camp. Base Camp 1 0LN380 is situated on the edge of a small depression. Although the current GIS hydrographic layer does not show the location to be an ephemeral water source, the likelihood that it held water in the past is high. Finally, three camps are positioned directly adjacent to the Craters of the Moon lava field rather than near ephemeral ponds. Three of these sites are on the banks of the Big Lost River near Arco, Idaho. Six more are situated along the Big Wood and Little Wood Rivers and nine are located in sandy areas on the north side of the Snake River near American Falls, Idaho. As noted above, the sites located on the Snake and Big Lost rivers have been assigned as base camps from the information provided in the survey database, but I suspect that some of these 1 1 sites may be the remains of residential bases rather than temporary base camps. Although none of the suspected localities have been tested, the formal hearths, charcoal stained soil and density of cultural debris noted on the site forms are not recorded for other sites in the study area identified as base camps. These elements may be an indication that house floors are also present. Although the distribution of base camps appears intuitively to be very non- random, this was further assessed by comparing the base camp locations with an equal number of randomly selected points. In this analysis, 4 1 random Universal Tranverse Mercator (UTM) points were generated using a random number table. To ensure that the random points selected fell within the study area, the first two digits in both the northing and easting coordinates were retained. The location of each random UTM point was then queried to determine its distance to water as indicated by modem GIS data. A graph of the distribution of random points and base camps in relation to water is presented in Figure 43. Because cold storage caves contain water in the form of ice, their distance to water was assigned as zero meters. To measure the significance of what appears to be a nonrandom distribution in the location of base camps, the Kolmogorov-Smimov test was applied. This statistical procedure "examines the difference between two samples which have been measured in ordinal categories [and] arranged into a set of cumulative proportions" (Thomas 1 986:322). The null hypothesis of this test maintains that there will be little difference in relationship to water between the cumulative proportions of the base camp locations and the distribution of random UTM points. The greater the difference between these proportions, the less likely that the null hypothesis is true. Table 41 compares the cumulative proportions of the base camp locations and the random sample of UTM points. Table 41. Comparison of Base Camps and Random UTM points in the Study Area in Relation to Distance to Water Distance to Water Base Camo Locations (N=41) Random Points (N=4l) Difference Raw Cum. % Raw Cum. % 0-250 meters 36 0.878 5 0. 12 1 0.757 0-500 meters 36 0.00 1 1 0.268 0.268 0-7 50 meters 38 0.048 19 0.463 0.4 1 5 0-1000 meters 40 0.048 2 1 0.512 0.464 1000 + meters 41 0.024 20 0.487 0.463 1 86 D is ta nc e to W at er B as e C am ps ( N = 4 1) R an do m P oi nt s ( N = 4 1) 40 35 � 30 � .. ... ... ... 00 25 � 0 - � 20 ..c e = 1 5 z 10 5 0 I I I I O m 2 50 m 50 0 m 75 0 m 10 00 m Fi gu re 4 3 . C um ul at iv e gr ap h sh ow in g th e lo ca tio n of ba se c am ps a nd ra nd om U TM p oi nt s in re la tio n to p er m an en t a nd p er en ni al w at er so ur ce s. Th e ba se c am ps a re n on -r an do m ly d is tr ib ut ed , vi rt ua lly a ll be in g lo ca te d ri gh t a t w at er so ur ce s. - 00 -. .J The largest deviation between the two samples is seen in the number of base camps and random UTM points that are between 0 and 25 0 meters from water. This figure (0.757%), referred to as the "D Statistic" in the Kolmogorov-Smimov test, represents the "observed" difference between the cumulative proportions of base camps and random points that are located within 25 0 meters of water. The observed value of "D" must then be tested against the critical value of "D", which in this case will be set at the 99% confidence interval ( or (){ = 0.0 1 ). The following formula will generate the critical value of"D" under these conditions: 1 .63 n1 + n2 nln2 or 1 .63 4 1 + 4 1 4 1 X 4 1 These calculations resulted in 0.22 0 as the critical value of"D". Because the observed value of"D" (0.757) is well above the critical value of "D", the null hypothesis is rejected. The difference between the locations of base camps and random points that are within 25 0 meters of water is statistically significant at the 99% confidence level, or in other words, the distribution of base camps is emphatically not random (see Figure 43), but strongly biased toward water. It should be noted that water sources used in this analysis are modem sources recorded in the GIS data. Thus, the distribution of ancient sites is biased toward water sources that exist today, indicating that there has been no major shift in the location of water over the period covered by the archaeological sites. 1 88 Of the 4 1 base camps in the study area, 1 7 contain diagnostic artifacts and can be assigned to specific periods (see Table 42). Projectile points found at nine base camps (including four of the cold storage caves) indicate multiple occupations that span the Middle and Late Holocene. Intermountain Ware ceramics and Desert Side- notched points were recovered from eight base camps, indicating use of these sites until very recently . Sites 1 0BN389, 1 0MA163 and 1 0MA168, located along the edge of the Craters of the Moon flow and Bison Heights (IOLN636), near Tomcat Cave, exhibit only late Holocene occupations. Table 42. Periods of Occupation of Base Camps within the Study Area Site Name/Type Location Period d 1 0BM56 Bobcat Cave Cave Middle, Late Holocen 1 0BN389 Open Base Camp Lava Edge Middle, Late Holocene I OBN 1 097 Open Base Camp Pond Late Holocene 10LN74 Tomcat Cave Cave Middle, Late Holocene 1 0LN94 Open Base Camp Little Wood River Late Holocene 1 0LN 1 42 Open Base Camp Pond Late Holocene 1 0LN267 Fortress Cave Cave Middle, Late Holocene I OLN399 Open Base Camp Pond Middle, Late Holocene 1 0LN424 Open Base Camp Pond Late Holocene I OLN636 Bison Heights Crater Late Holocene I OMA 1 1 4 Open Base Camp Pond Middle, Late Holocene IOMA 1 43 Scaredy Cat Cave Cave Middle, Late Holocene I OMA 1 63 Open Base Camp Lava Edge Late Holocene I OMA 1 68 Open Base Camp Lava Edge Late Holocene I OPR332 Open Base Camp Snake River Late Holocene I OPR408 Open Base Camp Snake River Late Holocene I OPR64 1 Alpha Cave Cave Late Holocene Although recent lava flows were not included as a variable in the patch choice model presented in Chapter IV, their potential influence on site distribution will be evaluated in the following paragraphs. 1 89 - I I i Field Camps in the Study Area Although the patch choice model presented in Chapter IV does not provide specific predictions regarding the distribution of field camps, these sites are by definition associated with hunting activities. Therefore, their location could be influenced by topography and other variables, especially if they are related to the procurement of big game. In such cases, their position on the landscape is predicted to be associated with landforms that would facilitate hunting drives or ambushes. Similarly, their location could be influenced by the presence of water. In investigating these issues, I begin by performing a similar exercise with the 128 1 field camps in the study area (Figure 44) as was done with base camps to evaluate their association with water. To do this, 1 2 8 1 random UTM points were generated within the study area, examined in relation to water, and compared with the actual distribution of field camps (Table 43). Table 43. Comparison of Field Camps and Random UTM points in the Study Area in Relation to Distance to Water Distance to Water Field Camps (N�l 28 1) Random Points (N�l28 1) Difference Raw Cum. % Raw Cum. % 0-250 meters 239 0. 1 86 I l l 0.086 0. 1 00 0-500 meters 363 0.283 209 0. 1 63 0. 1 20 0-750 meters 471 0.367 3 1 5 0.245 0.122 0-1000 meters 561 0.437 425 0.33 1 0. 1 06 1 000 + meters 720 0.562 856 0.668 0 . 1 06 In Table 43, the largest deviation between the two samples rests in the number of field camps and random UTM points that are within 750 meters of water. Again, this figure (0. 122%) represents the "observed" difference between the cumulative 1 90 rl.l � .. .... ... ... 00. � 0 - � ,.Q e = z 1 0 -+- -- D is ta nc e to W at er Fi el d C am ps (N = 12 8 1 ) 25 0 m 50 0 m 75 0 m R an do m P oi nt s (N = 12 8 1 ) 10 00 m > 1 00 0 m Fi gu re 4 4. C um ul at iv e gr ap h sh ow in g th e lo ca tio n of fi el d ca m ps a nd ra nd om p oi nt s in re la tio n to pe rm an en t a nd p er en ni al w at er s our ce s on th e ea st ern S na ke R iv er P la in . · .. . .. . , - -- - ·- - -- - ( - \0 - proportions of field camps and random points that are located within 750 meters of water. Testing the observed value of "D" against the critical value of "D" (at the 99% confidence interval, or ()( = 0.0 1 ) is generated according to the following formula: 1 .63 n1 + n2 n1n2 or 1 .63 1 28 1 + 1 28 1 1 28 1 X 1 28 1 These calculations resulted in .00156 as the critical value of "D". Because the observed value of "D" (0. 1 22) is well above the critical value of "D", the null hypothesis is rejected. In other words, the difference between the number of field camps and random points within 750 meters of water is statistically significant at the 99% confidence level. This suggests that, although field camps are not always located in the immediate vicinity of ephemeral ponds or river corridors, distance to water does seem to strongly influence their location (Figure 44). The causal factor might be a reduction in hunting success as distance from water increases or perhaps limitations associated with transporting water to field camps. There are 3 base camps (including Scaredy Cat Cave, Fortress Cave, and Bison Heights) and 33 field camps scattered throughout the study area that contain rock features interpreted as hunting blinds. If success in obtaining bison and other large game animals required narrow draws or "funneling" features on the landscape, I predicted that hunting blinds would be situated near these features. A brief examination of the contour intervals exhibited on the DRGs (USGS 7.5 minute 1 92 quadrangles) indicates that many rock features are located along the edges of prominent basalt ridges and land forms that could have been used by hunters to influence the movements of big game. Detailed analysis of these features is too large a task to be undertaken at present, but will be performed in future research through the examination of Digital Elevation Models (DEMs). Analysis of the Temporal Distribution of Archaeological Sites in the Study Area If resource patches on the eastern Snake River Plain have not been dramatically affected by changes in climatic conditions over the last 8000 years, and if the distribution of sites is largely controlled by environmental variables, the comparative distributions of Middle Holocene and Late Holocene sites should exhibit little variation as well. In other words, the predicted locations of residential bases, base camps and field camps would remain constant during much of the Holocene. In order to test this hypothesis, the sites assigned to each period were examined in relation to their distance to water in a similar fashion to exercises presented above (Table 44). As previously stated, there are 356 sites in the study area that contain diagnostic projectile points. While the Early Holocene is represented by only two sites, there are 81 sites containing Middle Holocene proj ectile points and 275 sites containing Late Holocene projectile points. Because there are more Late Holocene sites than Middle Holocene sites, the raw numbers were converted to proportions to compare the distribution of sites in Figure 45 . 1 93 D is ta nc e to W at er M id dl e H ol oc en e Si te s La te H ol oc en e Si te s 10 0 {1'.1 � .. ... ... rJ'J. 80 � 0 � QJ) 60 � .. = � 40 c:J - � � 20 0 I I I I I 25 0 m 50 0 m 75 0 m 10 00 m > 1 00 0 m Fi gu re 4 5. C um ul at iv e gr ap h sh ow in g th e lo ca tio n of M id dl e H ol oc en e an d La te H ol oc en e si te s in re la tio n to p er m an en t a nd p er en ni al w at er so ur ce s on th e ea st ern S na ke R iv er P la in . T he g ra ph sh ow s th at th e re la tio ns hi p be tw ee n w at er so ur ce s an d si te lo ca tio ns re m ai ne d re m ar ka bl y st ab le be tw ee n M id dl e an d La te H ol oc en e tim es . - � Table 44. Cumulative Distribution of Middle and Late Holocene Sites in Relation to Water Middle Holocene Late Holocene No. of Sites Distance to Water No. of Sites Distance to Water 1 0 (12%) < 250 m 28 (10%) < 250 m 1 8 (22%) < SOO m 56 (20%) < SOO m 27 (33%) < 750 m 75 (27%) < 750 m 33 (40%) < 1000 m 98 (36%) < 1 000 m 48 (59%) > 1 000 m 1 77 (64%) > 1 000 m The proportions of Middle Holocene and Late Holocene sites in relation to water are nearly identical. This indicates that spring-time ponds and caves, as well as river corridors, provided reasonably reliable resource patches throughout the Middle and Late Holocene. The results of this examination suggest that subsistence patterns, as related to the overall availability of water on the eastern Snake River Plain, have not changed significantly over the last 8000 years. Furthermore, as pointed out earlier, the same findings indicate that the distribution of water sources relied on by the human population over this time does not vary significantly from the distribution of modern water sources. Lava Flows As discussed in Chapter V, the Minidoka flow may have curtailed cold storage activities at Scaredy Cat Cave. This information, combined with the presence of a Late Prehistoric residential base and base camps at the Craters of the Moon lava edge, shows that Holocene lava flows need to be considered in any complete investigation of aboriginal settlement and subsistence patterns on the eastern Snake 1 95 " I River Plain. However, because so little of the lava flow margin has been inventoried at this point, it is not currently possible to conduct a meaningful quantitative evaluation of the potential influence that recent lava flows may have had on aboriginal settlement patterns. Discussion and Conclusion The goal of this chapter was to test the predictions of the patch choice model proposed in Chapter IV against archaeological data from the eastern Snake River Plain. The model predicted that residential bases likely occurred only within river resource patches while ephemeral ponds and ice caves would contain sites indicative of seasonal base camps. Open sagebrush steppe is expected to attract only field camps. Besides Wahmuza in the Fort Hall Bottoms, only one other residential base has been confidently identified in the study area. The location of the Lost Lava Rings Site was not predicted by the model, suggesting not only that lava flows need to be considered in studying prehistoric residence patterns, but that factors other than purely economic decisions may also influence site distribution on the eastern Snake River Plain or anywhere, indeed. The Lost Lava Rings Site, situated in a naturally fortified position within the very rugged and rather inhospitable Craters of the Moon flow, may plausibly be understood as a strategic defense location occupied during the Late Prehistoric period of Euroamerican incursion and major intercommunity stress. 196 I � i I It is also suspected that some sites currently identified as base camps on the Snake and Big Lost rivers may be the remains of residential bases. While these sites will have to be investigated further in order to make or rule out this determination, their presence along river corridors is in either case concordant with the model's predictions. The analysis of base camp distribution also provides strong support for the model's predictions. Of the 41 base camps within the study area, 3 7 are directly associated with either ephemeral ponds, ice caves or linear river corridors. Of the four remaining base camps, one is situated at the edge of a depression that may have held water in the past and three are located against the edge of the Craters of the Moon flow, again indicating an attraction for lava edges not considered by the model. In fact, a preference for locating base camps and field camps near lava edges has been noted in prior research on the Idaho National Engineering and Environmental Laboratory, located northeast of the study area. Ringe (1 992) found higher frequencies of sites near the edge of the Cerro Grande flow (see Figure 36) than elsewhere, and argued that the prominent ridgelines that characterize these edges could have formed their own microenvironments by catching drifting snow during the winter. Melting snow would then provide greater moisture for plant growth in the spring and attract animals (and hence people) to these "resource patches". A similar situation may have occurred within the study area, with aboriginal peoples making use of Holocene lava flow "resource patches". This 1 97 � ' scenario may provide an explanation for the presence of seasonal base camps along recent lava margins. Ofthe 41 base camps, 1 7 produced temporally diagnostic projectile points. Of these 1 7, eight sites indicate both Middle and Late Holocene occupations and nine indicate Late Holocene occupations only. Projectile points spanning the Middle and Late Holocene periods were recovered from four of the cold storage caves and it is suspected that a more thorough investigation of the exterior ground surface surrounding Wolf Fang and Bear Paw caves will indicate lengthy occupations there as well. In examining the distribution of all sites containing diagnostic artifacts in the study area, it appears that no significant differences exist between the location of sites during the Middle and Late Holocene periods. This outcome indicates that past climatic events though quite marked in terms of environmental indicators, did not affect the relative distribution of riverine, ephemeral pond and cave resource patches over the last 8000 years in a way sufficient to have altered overall human resource use patterns in the area. These results also suggest that subsistence patterns involving the use of cold storage caves, ephemeral ponds and linear river corridors on the eastern Snake River Plain have not changed significantly over same period. 198 CHAPTER VII SUMMARY AND CONCLUSIONS My investigations at several cold lava tube caves on the Snake River Plain of southern Idaho have generated productive inquiries related to storage practices among hunter-gatherers and the role of stored bison meat in aboriginal subsistence on the eastern Snake River Plain. The unique archaeological assemblages from these caves consist of dozens of elk antler "ice picks", ground stone "hammers", bison bone and arranged masses of sagebrush stalks as evidence that bison meat had been repeatedly cached and removed there over thousands of years. The consistent use of these bison freezers over the last 8000 years suggests that they were an integral part of the prehistoric native peoples' seasonal round. However, the availability of year-around meat lockers did not "trigger" a notable degree of sedentism in the native lifeway. Although an extensive literature suggests that storage features at archaeological sites are usually associated with some form of sedentism, the archaeological sites at and around the cold storage caves of the Snake River Plain are clearly the remains of temporary base camps rather than residential bases. The application of models from behavioral ecology provide a powerful explanation for why this is the case. 199 A patch choice model was applied to the environment of the eastern Snake River Plain, with its biotically rich rivers and ephemeral ponds surrounded by much less productive sagebrush steppe. If the caves are viewed as isolated resource patches on the eastern Snake River Plain, their productivity must be evaluated against the productivity of other patches such as ephemeral ponds and linear river corridors on a season to season and year to year basis. Although cold storage caves would have a lesser marginal value decline than ephemeral pond patches in their immediate area, once stored bison meat was exhausted the return rates of cave patches would drop below that of the surrounding environment. From this perspective, it can be seen that the ability to store bison meat in caves, even indefinitely, would not necessarily be expected to make foragers decide to take up long term residence at or near the storage sites. Bison represent the only identifiable faunal remains recovered from the cold storage caves; a number of other archaeological sites from the eastern Snake River Plain, including Wilson Butte Cave, Owl Cave, the Birch Creek Rockshelters, Baker Cave and the Rock Springs Site, also attest to the successful acquisition of bison by native hunters throughout prehistory. This evidence refutes Steward's (1938) contention that bison were not an important food resource for the ethnographically known Shoshone-Bannock of southern Idaho until they acquired the horse and could travel across the continental divide to access the large herds of plains bison present 200 1 I \ in Wyoming and Montana. However, the presence of bison in archaeological sites on the eastern Snake River Plain is not sufficient to assess their relative importance in the prehistoric diet. To generate key data, ethnographic information was gathered to define the character and breadth of the 1 9th Century Shoshone-Bannock diet, which included a wide variety of plants and animals in additional to the bison. Also, information from trappers' journals of the early 1 800s was used in an effort to calculate the net return rate for bison hunting. These results indicate that bison meat provides higher net returns than does hunting for deer or antelope generated by Simms ( 1987). However, calculations using Holling's disc equation show that even with bison included in the diet, the over-all diet breadth for the eastern Snake River Plain is predicted to have been broad and would likely have included a variety of large and small game animals as well as plant foods. Although bison were probably always taken by hunting parties when encountered, a wide range of other foods would also have been included in the optimal diet, indicating the necessity for regular movement between resource patches as their returns decelerated. Aspects of bison behavior and hunting techniques specific to the eastern Snake River Plain, as well as the huge bulk of even a single kill, may be relevant to understanding why bison seem to have been exclusively selected for cold storage. Subsurface investigations at narrow topographic features and hunting blinds near Scaredy Cat, Tomcat and Wilson Butte caves consistently produced small fragments of bone and artiodactyl tooth enamel. As noted in Chapter V, the acquisition of 20 1 bison in large numbers, as was done on the Great Plains, is not attested anywhere in Idaho, but bison were consistently taken in small numbers. This pattern is congruent with the account of a pedestrian bison hunt given by a Shoshone-Bannock man to Dr. Sven Liljeblad. The man recalled a bison hunt consisting of four or five men on snowshoes driving a small group of bison into deep snow and dispatching some of them with bows and arrows. A good hunter might kill one or two animals and the entire group would help transport the meat and hide back to camp (Butler 1 97 1 : 1 0). While fur trappers reported seeing large numbers of animals in parts of southern Idaho during the early 1 800s, the number of bison that could be supported by the bunch grasses of the sagebrush steppe environment of the Snake River Plain would have been dramatically lower than the bison populations that thrived on the short­ grass prairies of the Great Plains (Mack and Thompson 1 982, Daubenmire 1 985). Apropos of the limited bison bone evidence recovered from hunting locations near Scaredy Cat, Tomcat and Wilson Butte caves, ethnoarchaeological research among the Hadza and Dassanetch indicates that the quantity of bone waste surviving from kills of limited numbers of animals is not great. In sum, although the relatively small bison populations of the eastern Snake River Plain did not allow for mass kills, bison were nonetheless consistently hunted. As demonstrated in Chapter IV, the high net return rate for bison would have strongly encouraged hunters to pursue this animal upon any encounter. The fact that a single bison could provide an average of 354 kilograms of usable flesh likely explains why they were exclusively selected for cold storage. While an 202 · I antelope or deer could be consumed quickly, one or two bison could provide a major surplus of meat that could be stored for the most difficult times of the year. During the long and harsh winters of the eastern Snake River Plain, it seems likely that cached frozen meat could often have been critical to survival, especially as other stores dwindled. Depending on the location of a particular cold storage cave in relation to potential residential bases on the Big Wood, Little Wood or Snake rivers, access to stored meat may have required as little as a two day round trip. The large quantity of previously generated archaeological survey data housed in the Idaho Bureau of Land Management's Geographic Information Systems database provided an excellent tool to test the viability of the patch choice model proposed here. The model predicted that residential bases likely occurred only within river resource patches while ephemeral ponds and ice caves would contain sites indicative of seasonal base camps. These specific predictions were then examined in relation to the distribution of a large sample of archaeological sites and isolated finds on the eastern Snake River Plain. The analysis of base camp distribution showed that base camps are directly associated with both ephemeral and perennial water sources, providing strong support for the model's predictions. However, the location of the Lost Lava Rings residential base on the Craters of the Moon lava flow does not fit in the model' s predictions at all. The selection of such an inhospitable setting for this residential site suggests it may have been founded there not for economic reasons, but out of need for protection or defense from other groups during the tumultuous 203 early ethnographic period, a possibility that must be evaluated in future investigations of regional prehistory. It should also be stressed here that the simple economic models applied in this research are not designed to explain all of human behavior. If a phenomenon is not predicted by such models, it is a good indication that factors other than economic optimality are at play (Sugiyama 1 996). The Lost Lava Rings Site and no doubt other� as yet unrecorded sites on the eastern Snake River Plain indicate that socio­ cultural factors can also influence settlement patterns. The temporal distribution of sites and isolated artifact finds within the study area shows that climatic and vegetational change over the last 8000 years, while unquestionably of some magnitude, did not significantly alter long-term site distribution patterns, and by implication was not sufficient to alter subsistence practices in the region in any major way . It is clear that ephemeral pond and ice cave patches have been used repeatedly throughout the Middle and Late Holocene, giving evidence of long term reliance on the same resource localities over millennia. This study has helped to elucidate the role of bison and cold storage in aboriginal subsistence strategies on the eastern Snake River Plain. In opposition to Steward's ( 193 8) contentions, it has also demonstrated striking similarities between the prehistoric seasonal round over thousands of years and the seasonal movements of the Shoshone-Bannock during the 1 9th century, who wintered in the Fort Hall Bottoms along the Snake River and dispersed every spring in many directions to take advantage of resource patches all across southern Idaho. As is apparent in the 204 205 archaeological record of the eastern Snake River Plain, bison have been successfully hunted, "put on ice" and consumed at need in the region for at least 8000 to 9000 years. I also suspect that cold storage caves have gone undetected in other parts of the northwest. Cold lava tube caves such as Charcoal Cave, Pictograph Cave and Lava River Cave in central Oregon reportedly contained deposits suspiciously similar to those of the storage caves on the eastern Snake River Plain (Cressman 1 938, Claeyssens, personal communication 1 999). While the cultural deposits in many of these Oregon caves apparently have been destroyed by ice mining and vandalism during the last 100 years, other caves may yet be discovered. I'm also certain, given the character of the regional geology, that additional cold storage caves exist on the eastern Snake River Plain and that these will likely provide additional evidence regarding the nature and temporal extent of an ingenious and enduring adaptation. '\ l \ In conclusion, the storage of frozen bison meat in cold lava tube caves has little resemblance to the types of storage that occurred in other parts of the Intermontane West. Instead, this distinctive technology shares more similarities with the hunting economies of the Subarctic and Northern Plains. Cold lava tubes appear to have allowed a much more extended "shelf-life" for meat caches than the winter snow banks that were relied further north and on the Great Plains, but essentially functioned in the same way . If viewed in this light, the cold storage caves of southern Idaho were most certainly critical to the seasonal round and helpful to people during the leanest part of the year, but their isolated, stationary position in a . I l I I I I j I I . I . I sparse and only seasonally productive environment like the sagebrush steppe (even with its ephemeral ponds) would not have encouraged people to settle down. Although the variables that influence hunter-gatherer mobility have been extensively debated, the specific mechanism(s) that "trigger" sedentism have yet to be isolated (Ames 1 994, Kelly 1 995, Rafferty 1 985). In fact, the tremendous variation observable in human mobility patterns suggests that the topic may be much more complex than previously supposed. Meanwhile, this investigation of cold storage caves and their influence on human mobility patterns in southern Idaho contributes toward a more comprehensive understanding of hunter-gather mobility and the diverse factors that have made it such a persistently viable option throughout human history. 206 I APPENDIX A OGDEN, RUSSELL AND TOWNSEND'S DAILY JOURNAL ENTRIES REGARDING HUNTING ACTIVITIES 207 .,;:; -. ··- -- . "" - , - - --=· ·-·y "' - . - - - - -· - - .. � 7 - -- - - · - - - -- --- - - - -- -- Da te Se as on gr ou p # pa rty a ct iv ity 12 -A ug s um m er 58 4 hu nt in g 13 -A ug s um m er 58 4 hu nt in g 20 -A ug s um m er 58 ND 26 -S ep fa ll 58 4 hu nt in g 2- M ar sp rin g 58 15 tr ap pi ng 1- A pr sp rin g 58 15 tr ap pi ng 11 -A pr sp rin g 58 15 tr ap pi ng 1- A pr sp rin g 58 15 tra pp in g 9- M ay sp rin g 58 1 5 tra pp in g 17 -M ay sp rin g 58 1 5 tr ap pi ng 18 -M ay sp rin g 58 15 tra pp in g 16 -J un sp rin g 58 24 tra pp in g 17 -J un sp rin g 58 24 tr ap pi ng 18 -J un sp rin g 58 24 tra pp in g 26 -S ep fa ll 58 24 tr ap pi ng 30 -S ep fa ll 58 1 tra ve lli ng Se p- 31 fa ll 58 1 tra ve lli ng 2- 0 ct fa ll 58 1 tra ve lli ng 3- 0 ct fa ll 58 1 tra ve lli ng 4- 0 ct fa ll 58 1 tra ve lli ng 5- 0 ct fa ll Ba nn oc l hu nt in g 13 -0 ct fa ll 58 1 tra ve lli ng \ O sb ou rn e R us se ll' s Jo urn al A cc ou nt s an im al s pu rs w he re # hu nt ers # ki lle d ho w pa rts ag e/ se x bi so n y Po rtn eu f 4 0 bi so n y Po rtn eu f 4 3 ND ND 1 C , 2 b gr iz zl y y Po rtn eu f nd 1 am bu sh m t & s kn m nd nd Po rtn eu f 4 0 no ne Po rtn eu f 0 no ne Po rtn eu f 0 gr iz zl y y Ca ch e V nd 2 nd nd nd gr iz zl y y Th om as F nd 1 am bu sh m t & s kn m bis on n So da s pr . 0 bi so n y Bl ac kf oo t nd "s uc ce ss " nd nd nd bi so n y Bl ac kf oo t nd "g re at n o. " nd nd bu lls o nly no ne Bl ac kf oo t 0 bi so n y Bl ac kf oo t nd 2 nd "b es t m t" bu lls o nl y no ne G ra ys C k 0 bi so n y Is la nd P k nd "la rg e no ." nd nd nd bi so n n C am as C k 0 no ne Bu tte s 0 bi so n n M ud L ak e 0 bi so n n M ud L ak e 0 bi so n n M ud L ak e 0 bi so n y Lo st R iv er nd 10 00 ifl e, h or S4 nd co ws o nl y bi so n n Sn ak e Rv 0 di st an ce N D 10 0 yd s nd 20 0 yd s nd nd nd nd nd N 0 OQ -- --- -- - - - -- - - \ Jo hn K . T ow ns en d' s J ou rn al 12 -A ug su m m er 35 35 tra ve lin g no ne Lo st R iv er 13 -A ug su m m er 35 35 tra ve lin g bi so n ye s Lo st R iv er 2 1 nd nd 13 -A ug su m m er 35 35 tra ve lin g de er no Lo st R iv er 14 -A ug su m m er 35 35 tra ve lin g no ne Bi g W oo d 15 -A ug su m m er 35 35 tra ve lin g no ne Bi g W oo d 16 -A ug su m m er 35 35 tra ve lin g no ne Bi g W oo d 17 -A ug su m m er 35 35 tra ve lin g ca m as ye s C am as Pr 18 -A ug su m m er 35 35 tra ve lin g no ne C am as Pr 19 -A ug su m m er 35 35 tra ve lin g no ne Bo ise R v N � da te 6- Ju l 7- Ju l 8- Ju l 9- Ju l 10 -J ul 11 -J ul 12 -J ul 13 -J ul 14 -J ul 15 -J ul 16 -J ul 17 -J ul 18 -J ul 19 -J ul 2Q -J ul 21 -J ul 22 -J ul 23 -J ul 24 -J ul 25 -J ul 26 -J ul 27 -J ul 28 -J ul 29 -J ul 30 -J ul 6- A ug 6- A ug 7- A ug 8- A ug 9- Au g 10 -A ug 11 -A ug - - - - - \ Jo hn K . T ow ns en d' s J ou rn al I Se as on I # g ro up I # pa rt y I ac tiv ity I an im al I pu rs I w he re l# hu nt er sl # ki lle d I ho w I pa rts I su m m er 58 58 tra ve lin g be rri es ye s Be ar R iv er su m m er 58 58 tra ve lin g no ne Be ar R iv er su m m er 58 58 tra ve lin g no ne Be ar R iv er su m m er 58 nd hu nt in g bi so n ye s Be ar R iv er 3 2 rif le , h or se t, m ar ro w b su m m er 58 58 tra ve lin g gr izz ly ye s Bl ac kf oo t nd 1 rif le , h or se nd su m m er 58 58 tra ve lin g no ne Bl ac kf oo t su m m er 58 58 tra ve lin g tro ut ye s Bl ac kf oo t nd 'ab un da nc e co rd , h oo k al l su m m er 58 58 ca m pi ng tro ut ye s Bl ac kf oo t nd nd nd nd su m m er 58 3 hu nt in g bi so n ye s Ft H I B ot 3 1 nd nd su m m er 58 58 ca m pi ng no ne Ft H I B ot su m m er 58 12 hu nt in g bi so n ye s Po rtn eu f nd 1 nd "m ea t" su m m er 58 12 hu nt in g bi so n ye s Po rtn eu f 6 4 nd "b est p ar ts ' su m m er 58 12 hu nt in g no ne Po rtn eu f su m m er 58 12 hu nt in g no ne Po rtn eu f su m m er 58 12 hu nt in g bi so n ye s Po rtn eu f 3 2 nd "m ea t" su m m er 58 12 hu nt in g bi so n ye s Po rtn eu f 1 1 ·if le ,a m bu sl nd su m m er 58 12 hu nt in g nd nd Po rtn eu f nd nd nd nd su m m er 58 1 hu nt in g gr izz ly ye s Po rtn eu f 1 0 nd nd su m m er 58 12 hu nt in g nd nd Po rtn eu f nd nd nd nd su m m er 58 12 tra ve lin g no ne Po rtn eu f su m m er 58 12 tra ve lin g no ne Ft H I B ot su m m er 58 58 ca m pi ng no ne Ft H I B ot su m m er 58 58 ca m pi ng no ne Ft H I B ot su m m er 58 58 ca m pi ng no ne Ft H I B ot su m m er 35 35 ca m pi ng no ne Ft H I B ot su m m er 35 35 tra ve lin g gr izz ly ye s Ft H I B ot nd 1 nd nd su m m er 35 35 tra ve lin g gr ou se ye s Ft H I B ot nd 2 nd nd su m m er 35 35 tra ve lin g no ne SR P su m m er 35 35 tra ve lin g no ne SR P su m m er 35 35 tra ve lin g bi so n ye s Lo st R iv er 2 1 rif le s, ho rse nd su m m er 35 10 tra pp in g bi so n ye s Lo st R iv er 2 1 nd "a ll" su m m er 35 1 hu nt in g bi so n ye s Lo st R iv er 1 2 nd "m ost " N - 0 Pe te r Sk en e O gd en 's Jo ur na l 5- M ay 24 sp rin g nd tra pp in g be av er ye s Ra ft Ri ve r nd 4 tra pp ed nd nd 6- M ay 24 sp rin g nd tr ap pi ng be av er ye s Ra ft Ri ve r nd 34 tra pp ed nd nd 7- M ay 24 sp rin g 24 tra pp in g be av er ye s Ra ft Ri ve r nd 23 tra pp ed nd ill ne ss 8- M ay 24 sp rin g 24 tra pp in g be av er ye s Ra ft Ri ve r 11 27 tra pp ed nd ill ne ss 9- M ay 24 sp rin g nd tra pp in g be av er ye s Ra ft Ri ve r nd 12 tra pp ed nd ill ne ss 9- M ay 24 sp rin g nd hu nt in g bi so n ye s Ra ft Ri ve r nd "s om e" nd nd nd N - Pe te r Sk en e O gd en 's J ou rn al 13 -A pr 24 sp rin g 24 ca m pe d bea ve r yes Ft H I B ot nd 8 tra pp ed nd nd 14 -A pr 24 sp rin g 24 tra pp in g be av er ye s Ft H I B ot nd 15 tra pp ed nd nd 15 -A pr 24 sp rin g 24 tr ap pi ng bea ve r ye s Ft H I B ot nd 25 tra pp ed nd nd 15 -A pr 24 sp rin g 24 tr ap pi ng ot te r ye s Ft H I B ot nd 4 tra pp ed nd nd 16- A pr 24 sp rin g 24 tr ap pi ng ott er yes Ft H I B ot nd 4 tra pp ed nd nd 16 -A pr 24 sp rin g 24 tr ap pi ng be av er yes Ft H I B ot nd 3 tra pp ed nd nd 17 -A pr 24 sp rin g 24 tra pp in g be av er yes Ft H I B ot nd 29 tra pp ed nd nd 18 -A pr 24 sp rin g 24 tra pp in g bea ve r ye s Ft H I B ot nd 31 tra pp ed nd nd 18 -A pr 24 sp rin g 24 tr ap pi ng el k ye s Ft H I B ot nd 1 nd nd nd 19 -A pr 24 sp rin g 24 tra pp ing be av er ye s Po rtn eu f nd 28 tra pp ed nd nd 20- A pr 24 sp rin g 24 tra pp in g bi so n ye s Po rtn eu f nd 2 nd nd bu lls o nly 20 -A pr 24 sp rin g 24 tra pp in g be av er yes Po rtn euf nd 17 tra pp ed nd nd 21 -A pr 24 sp rin g 24 tra pp ing be av er ye s Ft H I B ot nd 4 tra pp ed nd nd 22 -A pr 24 sp rin g 24 tr ap pi ng bea ve r ye s A m er Fi s. nd 2 tra pp ed nd nd 23 -A pr 24 sp rin g 24 tra pp in g be av er ye s A m er Fi s. nd 17 tra pp ed nd nd 24 -A pr 24 sp rin g 24 tr ap pi ng bi so n yes A m er Fi s. nd 2 nd nd bu lls o nly 24 -A pr 24 sp rin g 24 tra pp in g be av er yes A m er Fi s. nd 2 tra pp ed nd nd 25 -A pr 24 sp rin g 24 tr ap pi ng bi so n ye s A m er F ls . nd 2 nd nd bu lls o nl y 25 -A pr 24 sp rin g 24 tr ap pi ng be av er ye s A m er Fi s. nd 7 tra pp ed nd nd 25 -A pr 24 sp rin g 24 tra pp in g crayfi sh ye s A m er F ls . nd nd nd "s uff ici en t" nd 26 -A pr 24 sp rin g 24 tra pp in g bi so n ye s Ra ft Ri ve r nd "so m e" nd nd nd 26 -A pr 24 sp rin g 24 tr ap pi ng be av er yes Ra ft Ri ve r nd 8 tra pp ed nd nd 27 -A pr 24 sp rin g nd hu nt in g bi so n ye s Raft R iv er nd 10 nd nd co ws , b ul ls 27 -A pr 24 sp rin g nd tr ap pi ng be av er ye s Raft R iv er nd 17 tra pp ed nd nd 28 -A pr 24 sp rin g 24 tra pp in g bi so n nd Ra ft Ri ve r nd nd nd nd nd 28 -A pr 24 sp rin g 24 tr ap pi ng be av er ye s Ra ft Ri ve r nd 23 tra ppe d nd nd 29 -A pr 24 spr in g 5 hu nt in g bi so n ye s Ra ft Ri ve r 5 12 nd nd nd 29 -A pr 24 sp rin g 19 tra pp in g bea ve r ye s Ra ft Ri ve r 19 26 tra pp ed nd nd 30 -A pr 24 sp rin g nd tra pp in g be av er ye s Raft R iv er nd 12 tra pp ed nd nd 1- M ay 24 sp rin g nd tr ap pi ng be av er ye s Ra ft Ri ve r nd 43 tra pp ed nd nd 2- M ay 24 sp rin g nd tr ap pi ng be av er yes Ra ft Ri ve r nd 13 tra pp ed nd nd 3- M ay 24 sp rin g nd tra pp in g be av er yes Ra ft Ri ve r nd 23 tra pp ed nd nd N - 4- M ay 24 sp rin g nd tra pp in g bea ve r yes Ra ft Ri ve r nd 7 tra pp ed nd nd N Pe te r Sk en e O gd en 's J ou rn al 17 -M ar 23 sp rin g 1 hu nt in g el k ye s Sn ak e Rv 1 4 rif le , h or se nd nd 17 -M ar 23 sp rin g nd hu nt in g bi so n ye s Sn ak e Rv nd 2 rif le , h or SE nd nd 18 -M ar 23 sp rin g 23 tra pp in g be av er ye s Sn ak e Rv nd 2 tra pp ed nd nd 19- M ar 23 sp rin g 23 tra ve lin g dee r ye s Raft R iv er nd no ne 19 -M ar 23 sp rin g 23 tra ve lin g be av er ye s Ra ft Ri ve r nd 2 tra pped nd nd 20 -M ar 23 sp rin g 23 tra pp ing be av er yes Ra ft Ri ve r nd 2 tra pp ed nd nd 21 -M ar 23 sp rin g 23 tr ap pi ng be av er ye s Ra ft Ri ve r nd 6 tra pp ed nd nd 21 -M ar 23 sp rin g 23 tra pp ing ot te r ye s Ra ft Ri ve r nd 1 tra pp ed nd nd 22 -M ar 23 sp rin g 23 tra pp ing be av er ye s Ra ft Ri ve r nd 9 tra pp ed nd nd 23 -M ar 23 sp rin g 23 tra pp in g be av er ye s Ra ft Ri ve r nd 13 tra pp ed nd nd 24 -M ar 23 sp rin g 23 tra pp ing be av er ye s Ra ft Ri ve r nd 36 tra pp ed nd ba d ta st e 25 -M ar 23 sp rin g 23 tra pp ing be av er yes Ra ft Ri ve r nd 45 tra pp ed nd ill ne ss 26 -M ar 23 sp rin g 23 tra pp ing be av er ye s Sn ak e Rv nd 24 tra pp ed nd nd 27 -M ar 23 sp rin g 23 tra pp ing be av er ye s Sn ak e Rv nd 10 tra pp ed nd nd 28 -M ar 23 sp rin g 23 tra ve lin g no ne A m er Fi s. 29 -M ar 23 sp rin g 23 ca m pe d no ne A m er Fi s. 30 -M ar 23 sp rin g 23 tra pp in g bea ve r ye s A m er Fi s. nd 6 tra pp ed nd nd 31 -M ar 23 sp rin g 23 tr ap pi ng bea ve r yes A m er Fi s. nd 27 tra ppe d nd nd 1- A pr 23 sp rin g 23 tr ap pi ng be av er yes A m er Fi s. nd 19 tra pp ed nd nd 2- A pr 23 sp rin g 23 tra pp in g be av er ye s Ft H I B ot nd 27 tra pp ed nd nd 3- A pr 23 sp rin g 23 tra pp ing bi so n yes Ft H I Bo t nd no ne 3- A pr 23 sp rin g 23 tra pp ing be av er yes Ft H I B ot nd 29 tra pp ed nd nd 4- A pr 23 sp rin g nd hu nt in g bi so n ye s Ft H I B ot nd "few" nd nd nd 4- Ap r 23 sp rin g nd tra pp ing be av er ye s Ft H I B ot nd 40 tra ppe d nd nd 5- A pr 23 sp rin g 23 tra pp in g be av er ye s Ft H I B ot nd 20 tra pp ed nd nd 6- A pr 23 sp rin g nd hu nt in g bi so n ye s Ft H I B ot nd nd nd nd "m ea t" 7- A pr 23 sp rin g 23 tra pp ing bea ve r ye s Ft H I B ot nd 1 tra pp ed nd nd 8- A pr 23 sp rin g 23 tra pp ing bea ve r yes Ft H I B ot nd 5 tra ppe d nd nd 9- A pr 23 sp rin g nd hu nt in g bi so n nd Ft H I B ot nd nd nd nd nd 9- A pr 23 sp rin g nd tra pp in g be av er ye s Ft H I B ot nd 5 tra pp ed nd nd 10 -A pr 23 sp rin g nd tr ap pi ng bea ve r ye s Ft H I B ot nd 15 tra pp ed nd nd 11 -A pr 24 sp rin g 24 tra pp ing be av er yes Ft H I B ot nd 14 tra pp ed nd nd N 12 -A pr 24 sp rin g 24 tra pp ing bi so n Ft H I B ot nd 15 nd nd nd - ye s w b Pe te r Sk en e O gd en 's Jo ur na l 6- 0 ct 23 fa ll 23 tra ve lin g no ne Bi rc h C k 7- 0 ct 23 fa ll 23 tra ve lin g no ne Bi rc h C k 8- 0 ct 23 fa ll 23 tra ve lin g be av er ye s Bi rc h C k nd 1 tra pp ed nd nd 9- 0 ct 23 fa ll 23 tra ve lin g bi so n ye s Bi rc h C k nd nd nd nd nd 10 -0 ct 23 fa ll 23 tra ve lin g no ne Lo st R iv er 11 -0 ct 23 fa ll 23 tra ve lin g no ne Lo st R iv er 12 -0 ct 23 fa ll 23 tra ve lin g no ne Lo st R iv er 13 -0 ct 23 fa ll 23 tra ve lin g no ne Bi g W oo d 14 -0 ct 23 fa ll 23 tra ve lin g be av er ye s Bi g W oo d nd 1 tra pp ed nd nd 15 -0 ct 23 fa ll 23 tra ve lin g no ne Bi g W oo d 16 -0 ct 23 fa ll 23 tra ve lin g no ne Bi g W oo d 17 -0 ct 23 fa ll 23 tra ve lin g no ne Bi g W oo d 18 -0 ct 23 fa ll 23 tra ve lin g no ne Bi g W oo d 19 -0 ct 23 fa ll 23 tra ve lin g no ne Bo ise R v 1- M ar 23 sp rin g 23 tra ve lin g be av er ye s G le ns F ry nd 1 tra pp ed nd nd 1- M ar 23 sp rin g 23 tra ve lin g ho rse ye s G le ns F ry nd 1 2- M ar 23 sp rin g 1 hu nt in g de er ye s C lo ve rC k 1 3 rif le ,h or se nd nd 3- M ar 23 sp rin g 1 hu nt in g de er ye s Sn ak e Rv 1 3 rif le , h or SE w ol ve s "p oo r" 3- M ar 23 sp rin g 23 tra pp in g be av er ye s Sn ak e Rv nd 1 tra pp ed nd nd 4- M ar 23 sp rin g 23 hu nt in g de er ye s Sn ak e Rv nd 15 rif le , h or SE nd nd 5- M ar 23 sp rin g 23 hu nt in g de er ye s Sn ak e Rv nd 20 rif le , h or SE nd nd 6- M ar 23 sp rin g 23 hu nt in g de er ye s Sn ak e Rv nd 3 rif le , h or SE nd nd 6- M ar 23 sp rin g 23 tra pp in g be av er ye s Sn ak e Rv nd 1 tra pp ed nd nd 7- M ar 23 sp rin g 23 tra pp in g be av er ye s Sn ak e Rv nd 1 tra pp ed nd nd 8- M ar 23 sp rin g 23 se ar ch in g no ne Sn ak e Rv ho rse s 9- M ar 23 sp rin g 1 hu nt in g an te lo pe ye s Sn ak e Rv 1 3 rif le , h or se nd nd 10 -M ar 23 sp rin g nd hu nt in g el k ye s Sn ak e Rv nd 1 rif le , h or SE nd nd 11 -M ar 23 sp rin g nd hu nt in g no ne Sn ak e R v 12 -M ar 23 sp rin g 2 hu nt in g an te lo pe ye s Sn ak e Rv 2 3 rif le , h or SE nd nd 13 -M ar 23 sp rin g 14 hu nt in g el k ye s Sh os . F ls 14 13 rif le , h or se nd nd 14 -M ar 23 sp rin g 23 tra ve lin g no ne Sn ak e Rv 15 -M ar 23 sp rin g 23 tra pp in g be av er ye s Sn ak e Rv nd 2 tra pp ed nd nd N - 16 -M ar 23 sp rin g 23 tra pp in g be av er ye s Sn ak e Rv nd 4 tra pp ed nd nd � Pe te r S ke ne O gd en 's Jo urn al 6- Ju n 23 sp rin g 23 tra ve lin g no ne SR P 7- Ju n 23 sp rin g 23 tra ve lin g no ne SR P 8- Ju n 23 sp rin g 23 trav el in g no ne SR P 9- Ju n 23 sp rin g 23 tra ve lin g be av er ye s Sn ak e Rv nd 3 tra pp ed nd nd 10 -J un 23 sp rin g 23 trav el in g be av er ye s Sn ak e Rv nd 8 tra pp ed nd nd 11 -J un 23 sp rin g 23 tra ve lin g beav er ye s Sn ak e Rv nd 8 tra pp ed nd nd 12 -J un 23 sp rin g 23 tra ve lin g be av er yes Sn ak e Rv nd 15 tra pp ed nd nd 13 -J un 23 sp rin g 23 tr ap pi ng be av er ye s Sn ak e Rv nd 20 tra pp ed nd nd 14 -J un 23 sp rin g 23 tra ve lin g be av er ye s He nry s Fk nd 28 tra pp ed nd nd 15 -J un 23 sp rin g 23 trav el in g be av er ye s He nr ys F k nd 27 tra pp ed nd nd 16 -J un 23 sp rin g 23 tra ve lin g bi so n ye s He nry s Fk nd "so m e" nd nd bu lls o nly 16 -J un 23 sp rin g 23 tra ve lin g be av er yes He nr ys F k nd 10 tra pped nd nd 17 -J un 23 sp rin g 23 tra ve lin g be av er yes He nry s Fk nd 12 tra pp ed nd nd 18 -J un 23 sp rin g 23 tra ve lin g bi so n ye s He nry s Fk nd "m an y" nd nd nd 19 -J un 23 sp rin g 23 tra pp in g be av er ye s He nry s Fk nd 14 tra pp ed nd nd 20 -J un 23 sp rin g 23 tr ap pi ng be av er ye s He nr ys F k nd 58 tra pp ed nd nd 21 -J un 23 sp rin g 23 tra pp in g be av er ye s He nr ys F k nd 27 tra pp ed nd nd 22 -J un 23 su m m er 23 tra pp in g be av er ye s C am as C k nd 28 tra pp ed nd nd 23 -J un 23 su m m er 23 tr ap pi ng be av er ye s C am as Ck nd 3 tra pped nd nd 24 -J un 23 su m m er 23 tra pp in g be av er ye s Ca m as C k nd 31 tra pp ed nd nd 25 -J un 23 su m m er 23 tr ap pi ng be av er ye s C am as C k nd 16 tra pp ed nd nd 26 -J un 23 su m m er 23 tra pp in g be av er ye s Ca m as C k nd 15 tra pp ed nd nd 27 -J un 23 su m m er 23 tra ve lin g no ne Ca m as Pr nd 28 -J un 23 su m m er 23 tra ve lin g no ne C am as Pr 29 -J un 23 su m m er 23 tra ve lin g no ne G am as Pr 30 -J un 23 su m m er 23 tra ve lin g no ne C am as Pr Ju l-0 2 23 su m m er 23 tra ve lin g no ne Be av er C k 30 -S ep 23 fa ll 23 tra ve lin g bi so n ye s Bi rc h C k nd nd nd nd nd 1- 0 ct 23 fa ll 23 tra ve lin g be av er ye s Bi rc h C k nd 2 tra pp ed nd nd 2- 0ct 23 fa ll 23 tra ve lin g be av er ye s Bi rc h C k nd 2 tra pped nd nd 3- 0 ct 23 fa ll 23 tra ve lin g no ne Bi rc h Ck 4- 0ct 23 fa ll 23 trav el in g no ne Bi rc h C k N - 5- 0 ct 23 fa ll 23 tra vel in g no ne Bi rc h C k Vo · --- -� - - &- M ay 7- M ay 8- M ay 9- M ay 10 -M ay 11 -M ay 11 -M ay 12 -M ay 13 -M ay 13 -M ay 14 -M ay 15 -M ay 16 -M ay 17 -M ay 18 -M ay 19 -M ay 20- M ay 21 -M ay 22 -M ay 23 -M ay 24 -M ay 25 -M ay 26 -M ay 27 -M ay 28 -M ay 29- M ay 30 -M ay 31 -M ay 1- Ju n 2- Ju n 3- Ju n 4- Ju n 5- Ju n 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 20 26 26 26 23 23 23 23 23 23 23 23 sp rin g 57 tra pp in g sp rin g 57 tr ap pi ng sp rin g 57 tra pp in g sp rin g 57 tra pp ing sp rin g 57 tr ap pi ng sp rin g 57 tra pp ing sp rin g 57 tra pp in g sp rin g 57 tra pp in g sp rin g 57 tr ap pi ng sp rin g 57 tra pp ing sp rin g 42 tra pp ing sp rin g 42 tr ap pi ng sp rin g 42 tra pp in g sp rin g 57 tra pp ing sp rin g 57 tra pp ing sp rin g 57 tra pp in g sp rin g 57 tr ap pi ng sp rin g 57 tr ap pi ng sp rin g 57 tr ap pi ng sp rin g 57 in ca m p sp rin g 57 in c am p sp rin g 20 tra ve lin g sp rin g 26 tra ve lin g sp rin g 26 tra ve lin g sp rin g 26 tra ve lin g sp rin g 23 tra ve lin g sp rin g 23 tra ve lin g sp rin g 23 tra ve lin g sp rin g 23 tra ve lin g sp rin g 23 tra ve lin g sp rin g 23 tra pp ing sp rin g 23 tra pp ing sp rin g 23 trav el in g & � Pe te r Sk en e O gd en 's J ou rn al non e Cu b Ri ve r be av er yes Cu b Ri ve r nd be av er ye s Cu b Ri ve r nd bea ve r ye s Be ar R iv er nd be av er yes Be ar R iv er nd be av er yes Be ar R iv er nd gr izz ly ye s Bea r R iv er nd be av er yes Be ar R iv er nd be av er yes Be ar R iv er nd bi so n nd Be ar R iv er nd be av er ye s Be ar R iv er nd be av er ye s Be ar R iv er nd be av er ye s Be ar R iv er nd be av er ye s Be ar R iv er nd be av er yes Be ar R iv er nd be av er ye s Be ar R iv er nd bea ve r ye s Be ar R iv er nd be av er ye s O dg en R v nd be av er ye s O dg en R v nd no ne O dg en Rv no ne O dg en R v no ne Be ar R iv er bea ve r ye s Be ar R iv er nd bea ve r ye s Be ar R iv er nd no ne Be ar R iv er bea ve r ye s Be ar R iv er nd bi so n nd Po rtn eu f nd be av er yes Po rtn eu f nd be av er yes Po rtn eu f nd be av er ye s Po rtn eu f nd bea ve r ye s Po rtn eu f nd be av er ye s Po rtn euf nd bea ve r ye s Sn ak e Rv nd -- - - - -- - - - - - - -- - -- - -- -- - -·- --· 31 tra pp ed nd nd 22 tra pp ed nd nd 9 tra pp ed nd nd 25 tra pp ed nd nd 70 tra ppe d nd nd 3 nd nd nd 52 tra pp ed nd nd 79 tra pp ed nd nd nd nd nd nd 31 tra pp ed nd nd 16 tra ppe d nd nd 52 tra pp ed nd nd 244 tra pp ed nd nd 10 9 tra pp ed nd nd 68 tra pp ed nd nd 67 tra pped nd nd 23 tra pp ed nd nd 27 tra pp ed nd nd 5 tra pp ed nd nd 1 tra pp ed nd nd 2 tra pp ed nd nd nd nd nd nd 7 tra pp ed nd nd 25 tra pp ed nd nd 62 tra pp ed nd nd 47 tra pp ed nd nd 30 tra pp ed nd nd N 6 tra pp ed nd nd .. ... 0'\ Pe te r S ke ne O gd en 's J ou rn al 9- A pr 58 sp rin g 57 tr ap pi ng bea ve r yes S na ke Rv nd 12 tra pp ed nd nd 10 -A pr 57 sp rin g 57 tra pp in g beav er ye s Bl ackf oo t nd 54 tra pp ed nd nd 11 -A pr 57 sp rin g 57 tr ap pi ng bea ve r yes Bl ac kf oo t nd 27 tra pp ed nd nd 12 -A pr 57 sp rin g 57 tr ap pi ng bea ve r ye s Bl ac kf oo t nd 57 tra pp ed nd nd 13 -A pr 57 sp rin g 57 tr ap pi ng bea ve r yes Bl ac kf oo t nd 58 tra pp ed nd nd 14 -A pr 57 sp rin g 57 tr ap pi ng be av er ye s Bl ac kf oo t nd 38 tra ppe d nd nd 15 -A pr 57 sp rin g 57 tra pp in g be av er ye s Bl ac kf oo t nd 11 tra pped nd nd 16 -A pr 57 sp rin g 42 tr ap pi ng be av er yes Bl ac kf oo t nd 40 tra pp ed nd nd 17 -A pr 57 sp rin g 42 tra pp in g be av er ye s Bl ac kf oo t nd 56 tra pp ed nd nd 18 -A pr 57 sp rin g 42 tra pp in g be av er ye s Bl ac kf oo t nd 19 tra pp ed nd nd 19 -A pr 57 sp rin g 42 tra pp in g be av er ye s Bl ac kf oo t nd 6 tra pp ed nd nd 20 -A pr 57 sp rin g 42 tra pp in g be av er yes Po rtn eu f nd 46 tra pp ed nd nd 20 -A pr 57 sp rin g 42 tr ap pi ng bi so n ye s Po rtn eu f nd 5 nd nd nd 21 -A pr 57 sp rin g 42 tra pp in g be av er ye s Po rtn eu f nd 7 tra pp ed nd nd 22 -A pr 57 sp rin g 42 tra pp in g be av er ye s Po rtn eu f nd 27 tra pp ed nd nd 23 -A pr 57 sp rin g 42 tra pp in g be av er ye s Po rtn eu f nd 73 tra pp ed nd nd 24 -A pr 57 sp rin g 42 tra pp in g be av er ye s Po rtn eu f nd 1 tra pp ed nd nd 25 -A pr 57 sp rin g 42 tra ve lin g no ne Po rtn eu f 26 -A pr 57 sp rin g 42 tra pp in g no ne Be ar R iv er 27 -Ap r 57 sp rin g 50 tra pp in g be av er ye s Be ar R iv er nd 13 4 tra pp ed nd nd 28 -A pr 57 sp rin g 50 tra pp in g be av er yes Be ar R iv er nd 20 tr ap pe d nd nd 29 -A pr 57 sp rin g 50 tra pp ing bea ve r yes Be ar R iv er nd 16 tra pp ed nd nd 30 -A pr 57 sp rin g 50 tr ap pi ng be av er ye s Co tto nwd nd 76 tra pp ed nd nd 1- M ay 57 sp rin g 50 tr ap pi ng be av er ye s Co tto nwd nd 40 tra pp ed nd nd 1- M ay 57 sp rin g 50 tr ap pi ng bi so n nd Co tto nwd 1- M ay 57 sp rin g 50 tra pp in g el k nd Co tto nwd 2- M ay 57 sp rin g 50 tr ap pi ng be av er ye s Sn ak e Rv nd 74 tra pp ed nd nd 2- M ay 57 sp rin g 50 tr ap pi ng pe lic an ye s Sn ak e Rv nd 1 tra pp ed nd nd 3- M ay 57 sp rin g 50 tr ap pi ng be av er ye s Sn ak e R v nd 13 tra pp ed nd nd 3- M ay 57 sp rin g 50 tra pp in g bi so n ye s Sn ak e Rv nd "m an y" nd nd nd 4- M ay 57 sp rin g 50 tr ap pi ng bea ve r ye s Sn ak e Rv nd 7 tra pp ed nd nd 5- M ay 57 sp rin g 57 tra pp in g bi so n nd C ub R iv er nd N 5- M ay 57 sp rin g 57 tra pp in g be av er yes C ub R iv er nd 41 tra pp ed nd nd - " Pe te r Sk en e O gd en 's Jo urn al 9- M ar 58 w int er 58 tra pp in g ot te r ye s Le m hi V A nd 1 tra pp ed nd nd 10 -M ar 58 w int er 58 tr ap pi ng be av er ye s Le m hi V A nd 14 tra pp ed nd nd 11 -M ar 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 16 tra pp ed nd nd 12 -M ar 58 w int er 58 tr ap pi ng be av er ye s Le m hi V A nd 4 tra pp ed nd nd 13 -M ar 58 w int er 58 tra pp in g be av er ye s Le m hi VA nd 16 tra pp ed nd nd 14 -M ar 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 7 tra pp ed nd nd 15 -M ar 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 3 tra pp ed nd nd 16 -M ar 58 w int er 58 tr ap pi ng be av er ye s Le m hi V A nd 8 tra pp ed nd nd 17 -M ar 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 3 tra pp ed nd nd 18 -M ar 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 9 tra pp ed nd nd 19 -M ar 58 w int er 58 tra pp in g no ne 20 -M ar 58 sp rin g 58 tra pp in g "b us ta rd " ye s Le m hi V A nd 3 nd nd nd 21 -M ar 58 sp rin g 58 tra pp in g be av er ye s Le m hi V A nd 12 tra pp ed nd nd 22 -M ar 58 sp rin g 58 tra pp in g be av er ye s Le m hi V A nd 4 tra pp ed nd nd 23 -M ar 58 sp rin g 58 tra pp in g be av er ye s Le m hi VA nd 16 tra pp ed nd nd 24 -M ar 58 sp rin g 58 tra ve lin g no ne Le m hi VA nd 25 -M ar 58 sp rin g 58 tra ve lin g no ne Bi rc h C k 26 -M ar 58 sp rin g 58 tra ve lin g no ne Bi rc h C k 27 -M ar 58 sp rin g 58 tra ve lin g bi so n no Bi rc h C k 27 -M ar 58 sp rin g 58 tra ve lin g el k no Bi rc h C k 27 -M ar 58 sp rin g 58 tra ve lin g go at s no Bi rc h C k 28 -M ar 58 sp rin g 58 tra ve lin g bi so n ye s Bi rc h C k nd "m an y" nd nd nd 29 -M ar 58 sp rin g 58 tra ve lin g no ne Bi rc h C k 30 -M ar 58 sp rin g 58 tra ve lin g no ne Bi rc h C k 31 -M ar 58 sp rin g 58 tra ve lin g no ne Bi rc h C k 1- A pr 58 sp rin g 46 tra ve lin g no ne N of B ut te 2- A pr 58 sp rin g 46 tra ve lin g no ne N of B ut te 3- A pr 58 sp rin g 46 tra ve lin g no ne N of B ut te 4- A pr 58 sp rin g 46 tra ve lin g no ne Bu tte s 5- A pr 58 sp rin g 46 tra ve lin g no ne Bu tte s 6- Ap r 58 sp rin g 46 tra ve lin g no ne Sn ak e Rv 7- A pr 58 sp rin g 58 tr ap pi ng be av er ye s Sn ak e Rv nd 58 tra pp ed nd nd N 8- A pr 58 sp rin g 56 tra pp in g be av er Sn ak e Rv nd 54 tra pp ed nd nd .. .... ye s OQ Pe te r Sk en e O gd en 's Jo urn al Da te # gr ou p Seaso n # pa rty act iv ity an im al pu rs ued w he re # hu nt ers # ki lle d ho w pa rts ag e/ se x 11 -F eb 58 w int er 58 tra ve lin g bi so n no Le m hi V A nd 12 -F eb 58 w int er 58 tra ve lin g bi so n ye s Le m hi V a 5 30 hrse ,ri fle 30 0 pd s nd 12 -F eb 58 w int er 58 tra ve lin g du cks ye s Le m hi V a nd 14 nd nd nd 13 -F eb 58 wi nt er 58 tra ve lin g bi so n ye s Le m hi V a nd "so m e" nd nd nd 13 -F eb 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 1 tra pp ed nd nd 14 -F eb 58 w in te r 58 tra pp in g no ne 15- Fe b 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 4 tra pp ed nd nd 16 -F eb 58 wi nt er 58 tra pp in g be av er ye s Le m hi V A nd 1 tr ap pe d nd nd 17 -F eb 58 wi nt er 58 tra pp in g no ne 18 -F eb 58 wi nt er 58 tra pp in g bea ve r ye s Le m hi V A nd 3 tra pp ed nd nd 19 -F eb 58 w int er 58 tra pp in g no ne 20 -F eb 58 w int er 58 tra pp in g no ne 21 -F eb 58 w int er 58 tra pp in g bi so n ye s Le m hi V A nd "m an y" rif le s "a lot le ft" nd 21 -F eb 58 w int er 58 tra pp in g an te lo pe ye s Le m hi VA nd "m an y" rif les "a lo t l eft " nd 22 -F eb 58 w int er 58 tr ap pi ng be av er ye s Le m hi V A nd 2 tra pp ed nd nd 22 -F eb 58 w int er 58 tr ap pi ng ott er ye s Le m hi V A nd 1 tr ap pe d nd nd 23 -F eb 58 w int er 58 tr ap pi ng no ne 24 -F eb 58 w int er 58 tra pp in g m tn s he ep ye s Le m hi V A nd 7 nd "v er y po or " nd 24 -F eb 58 w int er 58 tra pp in g be av er yes Le m hi V A nd 1 tr ap pe d nd nd 25 -F eb 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 1 10 tr ap s nd nd 26 -F eb 58 w int er 58 tra pp in g go at s yes Le m hi V A nd "so m e" nd nd nd 27 -F eb 58 w int er nd hu nt in g no ne 28 -F eb 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 1 12 tr ap s nd nd 1- M ar 58 w int er 58 tr ap pi ng be av er ye s Le m hi V A nd 1 tra pp ed nd nd 2- M ar 58 w int er 58 tr ap pi ng no ne Le m hi V A 3- M ar 58 w int er 58 tr ap pi ng no ne Le m hi V A 4- M ar 58 w int er 58 tr ap pi ng no ne Le m hi V A 5- M ar 58 w int er 58 tra pp in g no ne Le m hi V A 6- M ar 58 wi nt er 58 tr ap pi ng no ne Le m hi V A 7- M ar 58 w int er 58 tr ap pi ng no ne Le m hi V A 8- M ar 58 wi nt er 58 tra pp in g beav er ye s Le m hi V A nd 17 50 tr ap s nd nd N - 9- M ar 58 w int er 58 tra pp in g be av er ye s Le m hi V A nd 16 tra pp ed nd nd \0 � I I APPENDIX B PREIDSTORIC SITE DATABASE FOR SIX COUNTIES ON THE EASTERN SNAKE RIVER PLAIN 220 SI TE N U M BE TY PE 10 BN 10 00 iso lat e 10 BN 10 02 iso la te 10 BN 10 03 iso la te 10 BN 10 04 iso lat e 10 BN 10 05 iso lat e 10 BN 10 08 iso la te 10 BN 10 10 iso lat e 10 BN 10 11 iso la te 10 BN 10 14 iso la te 10 BN 10 15 iso lat e 10 BN 10 27 iso la te 10 BN 10 28 iso la te 10 BN 10 30 iso la te 10 BN 10 36 iso la te 10 BN 104 0 iso la te 10 BN 10 44 iso la te 10 BN 10 45 iso la te 10 BN 10 46 iso la te 10 BN 10 48 iso lat e 10 BN 10 50 iso lat e 10 BN 10 55 iso la te 10 BN 10 57 iso la te 10 BN 10 58 iso la te 10 BN 10 59 iso la te 10 BN 10 60 iso lat e 10 BN 10 61 iso la te 10 BN 16 2 iso la te 10 BN 17 7 iso la te 10 BN 18 4 iso la te 10 BN 18 5 iso la te 10 BN 19 7 iso la te A pp en di x C : P re hi st or ic L oca lit ies in t he S tu dy A re a -Z on e 12 AT TR IB UT ES UT M Z O NE re to uc he d fla ke 12 .0 00 00 I po int 12 .0 00 00 Ro se S pr ing p oi nt 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 I p oi nt 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 bi fa ce 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 re to uc h fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 IS O LA TE D FI ND ; c or e 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 E LE VA TI O N 48 00 .0 00 00 48 50 .0 00 00 48 60 .0 00 00 48 60 .0 00 00 48 60 .0 00 00 48 20 .0 00 00 48 40 .0 00 00 48 15 .0 00 00 48 40 .0 00 00 48 40 .0 00 00 49 30 .0 00 00 49 30 .0 00 00 49 50 .0 00 00 49 50 .0 00 00 496 0. 00 00 0 49 60 .0 00 00 49 50 .0 00 00 49 50 .0 00 00 49 10 .0 00 00 50 20 .0 00 00 52 20 .0 00 00 53 20 .0 00 00 53 20 .0 00 00 53 70 .0 00 00 53 60 .0 00 00 53 70 .0 00 00 66 00 .0 00 00 N N -- - - - -- -- - · - - 10 BN 19 8 10 BN 20 0 10 BN 22 3 10 BN 22 4 10 BN 22 5 10 BN 22 6 10 BN 22 7 10 BN 22 8 10 BN 22 9 10 BN 23 0 10 BN 23 1 10 BN 23 3 10 BN 23 4 10 BN 23 5 10 BN 23 6 10 BN 23 7 10 BN 23 9 10 BN 24 0 10 BN 24 1 10 BN 24 2 10 BN 24 3 10 B N2 44 10 BN 24 5 10 BN 24 6 10 BN 24 7 10 BN 24 8 10 BN 25 4 10 BN 25 5 10 BN 25 6 10 BN 25 7 10 BN 25 8 10 BN 25 9 - -· - ·- ----·--·· ··-·-··· --·- ---- iso la te is ol at e iso la te is ol at e iso la te is ol at e iso la te iso la te iso la te iso la te is ol at e is ol at e is ola te is ol at e iso la te is ol at e iso la te is ol at e is ol at e iso la te iso la te iso la te is ol at e is ola te iso la te iso la te iso la te is ol at e is ol at e is ol at e is ola te is ol at e -· -- -· -- - - - -- -- -- A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 � A pp en di x C : P re hi st or ic: L oc al iti es in tb e St ud y A re a -Z on e 12 10 BN 26 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 26 1 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 26 2 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 26 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 26 4 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 26 5 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BN 26 6 is ol at e IS O LA TE D F IN D 12 .0 00 00 10 BN 26 7 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 26 8 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BN 27 1 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 27 2 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 27 7 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 27 8 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 27 9 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 28 0 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 28 1 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 28 2 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 28 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 30 8 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 31 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 31 1 is ol at e IS O LA T ED F IN D 12 .0 00 00 10 BN 31 4 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 31 5 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 34 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 34 4 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 34 5 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 34 9 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 35 8 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 35 9 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 36 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 36 1 is ol at e IS O LA TE D F IN D 12 .0 00 00 10 BN 36 2 iso la te IS O LA TE D F IN D 12 .0 00 00 � w A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BN 36 3 iso la te IS O LA T ED F IN D 12 .0 00 00 10 BN 364 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 36 5 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 36 6 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 36 7 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 36 9 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BN 37 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 37 1 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 37 2 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 37 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 37 4 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 37 5 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 37 7 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 37 8 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 37 9 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 BN 38 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BN 40 0 is ol at e IS O LA TE D F IN D 12 .0 00 00 10 BN 40 1 iso la te IS O LA TE D FI ND 12 .0 00 00 10 B N4 06 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 41 3 is ol at e IS O LA TE D FI N D 12 .0 00 00 10 B N4 14 iso la te IS O LA TE D FI N D 12 .0 00 00 10 B N4 20 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BN 58 7 iso la te w hit e qu artz ite p es tle 12 .0 00 00 46 00 .0 00 00 10 BN 58 8 iso la te El ko C om er -N ot ch ed p ro je ct ile p oi nt 12 .0 00 00 45 20 .0 00 00 10 BN 58 9 iso la te co m er -n ot ch ed p ro je ct ile p oi nt fr aQ m en t, 12 .0 00 00 47 10 .0 00 00 10 BN 59 0 is ol at e co m er -n ot ch ed p ro je ct ile po int fr aQ m en t, 12 .0 00 00 464 0. 00 00 0 10 BN 59 1 iso la te re co rd er th in ks it a H um bo ld t, pr ob ab ly a 12 .0 00 00 46 80 .0 00 00 10 BN 59 2 iso la te pr oj ec tile po in t m id se ct io n 12 .0 00 00 46 60 .0 00 00 10 BN 59 3 iso la te bifa ce m id se ct io n 12 .0 00 00 46 20 .0 00 00 10 BN 59 4 iso la te po ss ib le A ga te B as in p ro je ct ile p oi nt 12 .0 00 00 47 00 .0 00 00 10 BN 59 5 iso la te bi fa ce 12 .0 00 00 47 60 .0 00 00 10 BN 59 6 iso la te I p ro je ct ile p oi nt m id se ct io n 12 .0 00 00 46 40 .0 00 00 � 10 BN 59 9 iso la te 10 BN 60 0 iso la te 10 BN 60 1 iso la te 10 BN 60 2 iso la te 10 BN 60 4 iso la te 10 BN 60 5 iso la te 10 BN 606 iso la te 10 BN 60 8 iso la te 10 BN 60 9 iso la te 10 BN 61 1 iso la te 10 BN 61 2 iso lat e 10 BN 61 4 iso lat e 10 BN 61 6 iso la te 10 BN 61 7 iso la te 10 BN 61 9 iso la te 10 BN 62 1 iso lat e 10 BN 62 2 iso lat e 10 BN 62 3 iso lat e 10 BN 62 4 iso la te 10 BN 62 5 iso lat e 10 BN 62 7 iso lat e 10 BN 62 8 iso lat e 10 BN 62 9 iso lat e 10 BN 63 0 iso la te 10 BN 63 3 iso la te 10 BN 63 4 iso lat e 10 BN 63 5 iso lat e 10 BN 63 6 iso la te 10 BN 63 8 iso la te 10 BN 63 9 iso la te 10 BN 64 0 iso la te 10 BN 64 1 iso la te b � A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A rea -Z on e 12 El ko C om er -N ot ch ed p ro je ct ile p oi nt 12 .0 00 00 H um bo ld t p ro je ct ile p oi nt 12 .0 00 00 De se rt Si de -N ot ch ed p ro je ct ile p oi nt 12 .0 00 00 bi fa ce m id se ct io n 12 .0 00 00 co m er -n ot ch ed p ro je ct ile p oi nt , R os e Sp ri 12 .0 00 00 st em m ed p ro je ct ile p oi nt . p ro ba bl y an E lko 12 .0 00 00 st em m ed p ro je ct ile p oi nt b as e 12 .0 00 00 sid e- no tc he d pro je ct ile p oi nt , R os e Sp rin g 12 .0 00 00 bi fa ce 12 .0 00 00 Pi nt o po int b as e 12 .0 00 00 bif ac e tip 12 .0 00 00 De se rt Si de -N ot ch ed p ro je ct ile p oi nt 12 .0 00 00 ig ni m br ite b ifa ce m ids ec tio n 12 .0 00 00 w hit e ch er t d ril l 12 .0 00 00 ig ni m br ite p oi nt m id se ct io n 12 .0 00 00 Ro se S pr ing C om er -N ot ch ed p ro je ct ile p oi n 12 .0 00 00 El ko C or ne r -N ot ch ed p ro je ct ile p oi nt 12 .0 00 00 co m er -n ot ch ed p ro je ct ile p oi nt 12 .0 00 00 El ko C or ne r-N ot ch ed p ro je ct ile p oi nt 12 .0 00 00 ob si di an p ro je ct ile p oi nt m ids ec tio n 12 .0 00 00 ob si di an E lko C or ne r -N ot ch ed p ro je ct ile p o 12 .0 00 00 ob si di an p ro je ct ile p oi nt m id se ct io n 12 .0 00 00 ob si di an p ro je ct ile p oi nt m id se ct io n 12 .0 00 00 ob si di an s id e- no tc he d re w or ke d pr oj ect ile 12 .0 00 00 fla ke to ol 12 .0 00 00 bifa ce m id se ct io n 12 .0 00 00 bi fa ce 12 .0 00 00 bi fa ce 12 .0 00 00 I p oi nt 12 .0 00 00 El ko p oi nt 12 .0 00 00 I P oi nt 12 .0 00 00 un ifa ce 12 .0 00 00 46 40 .0 00 00 43 60 .0 00 00 45 00 .0 00 00 46 00 .0 00 00 44 80 .0 00 00 45 40 .0 00 00 44 10 .0 00 00 46 00 .0 00 00 44 30 .0 00 00 44 10 .0 00 00 44 20 .0 00 00 44 40 .0 00 00 44 80 .0 00 00 43 60 .0 00 00 43 80 .0 00 00 43 40 .0 00 00 43 30 .0 00 00 43 30 .0 00 00 43 80 .0 00 00 45 20 .0 00 00 44 60 .0 00 00 43 60 .0 00 00 44 40 .0 00 00 44 40 .0 00 00 44 20 .0 00 00 45 20 .0 00 00 44 60 .0 00 00 43 00 .0 00 00 43 00 .0 00 00 44 00 .0 00 00 45 40 .0 00 00 44 40 .0 00 00 N N Vl A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 BN 64 2 iso la te un ifa ce 12 .0 00 00 44 60 .0 00 00 10 B N6 44 iso la te bifa ce 12 .0 00 00 43 60 .0 00 00 10 BN 64 5 iso la te co re 12 .0 00 00 44 40 .0 00 00 10 BN 64 6 iso la te bifa ce 12 .0 00 00 45 20 .0 00 00 10 BN 65 0 is ol at e m an o 12 .0 00 00 43 60 .0 00 00 10 BN 65 3 iso la te m an o- ha m m er st on e fra g 12 .0 00 00 43 40 .0 00 00 10 B N6 56 iso la te m an o 12 .0 00 00 43 30 .0 00 00 10 BN 65 9 iso la te bif ac e 12 .0 00 00 43 30 .0 00 00 10 BN 66 7 is ol at e fla ke 12 .0 00 00 44 40 .0 00 00 10 BN 67 0 iso la te bifa ce 12 .0 00 00 43 00 .0 00 00 10 BN 67 1 iso la te bifa ce 12 .0 00 00 41 08 .0 00 00 10 BN 67 5 iso la te 1p oi nt 12 .0 00 00 44 00 .0 00 00 10 BN 67 9 iso la te I p os si bl e m an o 12 .0 00 00 44 10 .0 00 00 10 BN 68 2 iso la te co m er -n ot ch ed p ro je ct ile p oi nt , E lko ? 12 .0 00 00 46 50 .0 00 00 10 BN 69 5 iso la te sc ra pe r 12 .0 00 00 47 00 .0 00 00 10 BN 69 9 iso la te bif ac e 12 .0 00 00 45 20 .0 00 00 10 BN 70 8 iso la te bif ac e 12 .0 00 00 44 80 .0 00 00 10 BN 71 1 iso la te bif ac e 12 .0 00 00 45 20 .0 00 00 10 BN 71 2 iso lat e bifa ce 12 .0 00 00 46 00 .0 00 00 10 BN 71 3 iso la te bifa ce fr ag 12 .0 00 00 45 80 .0 00 00 10 BN 71 4 is ol at e bifa ce fr am 12 .0 00 00 47 90 .0 00 00 10 BN 71 5 iso lat e bifa ce fra g 12 .0 00 00 46 20 .0 00 00 10 BN 71 6 iso la te un ifa ce 12 .0 00 00 47 00 .0 00 00 10 B N7 17 is ol at e bifa ce fr ag 12 .0 00 00 45 00 .0 00 00 10 BN 71 8 iso la te en d s cr ap er 12 .0 00 00 46 80 .0 00 00 10 BN 71 9 iso la te pr ef or m 12 .0 00 00 46 00 .0 00 00 10 BN 72 0 iso la te !P Oi nt fr ag 12 .0 00 00 46 19 .0 00 00 10 BN 72 1 iso lat e [p oi nt fr ag 12 .0 00 00 46 60 .0 00 00 10 BN 72 2 iso la te bif ac e fra g 12 .0 00 00 46 40 .0 00 00 10 BN 72 5 iso la te lp oi nt fra g 12 .0 00 00 44 80 .0 00 00 10 BN 72 8 is ol at e bifa ce fra g 12 .0 00 00 44 50 .0 00 00 10 BN 72 9 iso la te bifa ce fr ag 12 .0 00 00 46 00 .0 00 00 N � A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 BN 73 1 iso la te bifa ce 12 .0 00 00 46 30 .0 00 00 10 BN 73 4 iso la te bifa ce 12 .0 00 00 44 20 .0 00 00 10 BN 73 9 iso la te bifa ce fra g 12 .0 00 00 454 0. 00 00 0 10 BN 74 1 iso la te bifa ce fr ag 12 .0 00 00 45 60 .0 00 00 10 BN 74 9 iso la te bifa ce fra g 12 .0 00 00 45 00 .0 00 00 10 BN 75 3 iso la te bif ac e fra g 12 .0 00 00 44 60 .0 00 00 10 BN 75 5 iso la te bif ac e fra g 12 .0 00 00 45 00 .0 00 00 10 BN 75 7 iso la te sc ra pe r 12 .0 00 00 45 40 .0 00 00 10 BN 75 9 is ol at e bifa ce fr ag 12 .0 00 00 45 00 .0 00 00 10 BN 76 1 iso la te bifa ce 12 .0 00 00 45 40 .0 00 00 10 BN 76 4 iso la te PO in t 12 .0 00 00 47 20 .0 00 00 10 BN 76 6 iso la te bi fa ce b as e 12 .0 00 00 46 30 .0 00 00 10 BN 76 7 iso la te po int 12 .0 00 00 47 80 .0 00 00 10 BN 76 8 is ol at e bif ac e 12 .0 00 00 45 50 .0 00 00 10 BN 78 4 iso la te bifa ce tr ag 12 .0 00 00 47 10 .0 00 00 10 BN 79 0 iso la te 2 fla ke s 12 .0 00 00 50 90 .0 00 00 10 BN 79 1 iso la te m ids ec tio n 12 .0 00 00 51 10 .0 00 00 10 BN 79 2 iso la te fla ke 12 .0 00 00 50 90 .0 00 00 10 BN 79 3 is ol at e bif ac e tip 12 .0 00 00 51 30 .0 00 00 10 BN 79 4 iso la te 3 fla ke s 12 .0 00 00 506 0. 00 00 0 10 BN 79 5 iso la te fla ke 12 .0 00 00 51 20 .0 00 00 10 BN 90 6 iso la te co m er -n ot ch ed p oi nt 12 .0 00 00 48 20 .0 00 00 10 BN 90 7 is ol at e co tto nw oo d po int 12 .0 00 00 47 80 .0 00 00 10 BN 96 9 is ol at e El ko e ar ed PO in t 12 .0 00 00 48 80 .0 00 00 10 BN 97 1 iso la te fla ke 12 .0 00 00 48 80 .0 00 00 10 BN 97 2 iso la te fla ke 12 .0 00 00 48 40 .0 00 00 10 BN 97 3 iso la te bif ac e fra g 12 .0 00 00 48 00 .0 00 00 10 BN 97 4 iso la te DS N po in t 12 .0 00 00 49 00 .0 00 00 10 BN 97 5 iso la te po in t 12 .0 00 00 47 80 .0 00 00 10 BN 97 6 is ol at e Ea st aa te PO in t 12 .0 00 00 48 20 .0 00 00 10 BN 97 7 iso la te fla ke 12 .0 00 00 47 60 .0 00 00 10 BN 97 8 iso la te fla ke 12 .0 00 00 49 00 .0 00 00 � 10 BN 97 9 iso la te 10 BN 98 0 iso la te 10 BN 98 2 iso la te 10 BN 98 3 iso la te 10 BN 98 4 iso la te 10 BN 98 7 iso lat e 10 BT 10 00 iso lat e 10 BT 10 01 iso la te 10 BT 10 05 iso la te 10 BT 10 07 iso la te 10 BT 10 10 iso la te 10 BT 10 14 iso lat e 10 BT 10 17 iso la te 10 BT 10 19 iso la te 10 BT 10 23 iso la te 10 BT 10 24 iso lat e 10 BT 10 27 iso lat e 10 BT 10 31 iso lat e 10 BT 10 33 iso la te 10 BT 10 40 iso lat e 10 BT 10 42 iso lat e 10 BT 10 47 iso la te 10 BT 10 48 iso la te 10 BT 10 50 iso la te 10 BT 10 51 iso la te 10 BT 10 54 iso la te 10 BT 10 55 iso la te 10 BT 10 57 iso la te 10 BT 10 58 iso la te 10 BT 10 60 iso lat e 10 BT 106 1 iso la te 10 BT 10 64 iso lat e A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 bifa ce fr ag 12 .0 00 00 bifa ce fr ag 12 .0 00 00 bifa ce fr ag 12 .0 00 00 co re 12 .0 00 00 m od ifie d fla ke 12 .0 00 00 I p oi nt 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 47 50 .0 00 00 47 80 .0 00 00 48 80 .0 00 00 47 60 .0 00 00 47 80 .0 00 00 48 00 .0 00 00 N N 00 10 BT 10 65 iso la te 10 BT 10 67 iso la te 10 BT 10 70 iso la te 10 BT 10 71 iso la te 10 BT 10 72 iso la te 10 BT 10 73 iso la te 10 BT 10 74 iso la te 10 BT 10 77 iso la te 10 BT 10 80 is ol at e 10 BT 10 81 iso la te 10 BT 10 84 iso la te 10 BT 10 88 iso la te 10 BT 10 89 iso la te 10 BT 10 90 iso la te 10 BT 10 92 iso la te 10 BT 10 93 iso la te 10 BT 10 94 iso la te 10 BT 10 95 is ol at e 10 BT 10 96 iso la te 10 BT 10 97 iso la te 10 BT 10 98 iso la te 10 BT 10 99 iso la te 10 BT 11 00 iso lat e 10 BT 11 03 iso lat e 10 BT 11 05 iso la te 10 BT 11 07 iso lat e 10 BT 11 11 iso lat e 10 BT 11 13 iso la te 10 BT 11 14 iso la te 10 BT 11 15 iso la te 10 BT 11 16 iso la te 10 BT 11 17 iso la te A pp en di x C : P re hi st or ie L oe al iti es in t he S tu dy A re a �Z on e 12 IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI ND IS O LA TE D FI ND IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D - - --· ····-. 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 -- - -· · - - - ·- - - .. - - - � 10 BT 11 18 iso la te 10 BT 11 19 iso la te 10 BT 11 2 iso la te 10 BT 11 20 iso la te 10 BT 11 21 iso la te 10 BT 11 24 iso la te 10 BT 11 25 iso la te 10 BT 11 26 iso la te 10 BT 11 27 iso la te 10 BT 11 32 iso la te 10 BT 11 36 iso la te 10 BT 11 38 iso la te 10 BT 11 44 iso la te 10 BT 11 50 iso la te 10 BT 11 51 iso la te 10 BT 11 53 iso la te 10 BT 11 54 iso la te 10 BT 11 55 iso la te 10 BT 11 58 iso la te 10 BT 11 59 iso la te 10 BT 11 6 iso la te 10 BT 11 62 iso la te 10 BT 11 63 iso la te 10 BT 11 64 iso la te 10 BT 11 65 iso la te 10 BT 11 68 iso la te 10 BT 11 69 iso la te 10 BT 11 75 iso la te 10 BT 11 76 iso la te 10 BT 11 78 iso la te 10 BT 11 79 iso la te 10 BT 11 80 iso la te A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND , F ol so m p oi nt 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 N w 0 10 BT 11 82 iso la te 10 BT 11 83 is ol at e 10 BT 11 84 iso la te 10 BT 11 86 iso la te 10 BT 11 87 iso la te 10 BT 11 92 iso la te 10 BT 11 95 iso la te 10 BT 11 96 iso lat e 10 BT 11 97 iso la te 10 BT 11 98 is ol at e 10 BT 11 99 iso la te 10 BT 12 01 iso la te 10 BT 12 03 iso la te 10 BT 12 04 is ol at e 10 BT 12 06 is ol at e 10 BT 12 10 iso la te 10 BT 12 13 iso la te 10 BT 12 17 iso la te 10 BT 12 18 iso la te 10 BT 12 19 iso la te 10 BT 12 20 iso la te 10 BT 12 28 iso la te 10 BT 12 29 is ol at e 10 BT 12 31 iso lat e 10 BT 12 33 iso la te 10 BT 12 35 iso la te 10 BT 12 36 is ol at e 10 BT 12 37 iso lat e 10 BT 12 38 iso la te 10 BT 12 39 iso la te 10 BT 12 40 iso la te 10 BT 12 43 iso la te A pp en di x C: P re hi st or ic L oc al iti es in t be S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 N w - 10 BT 12 44 iso la te 10 BT 12 45 iso la te 10 BT 12 46 iso la te 10 BT 12 48 iso la te 10 BT 12 49 is ol at e 10 BT 12 53 iso la te 10 BT 12 54 iso la te 10 BT 12 55 iso la te 10 BT 12 75 iso la te 10 BT 12 76 iso la te 10 BT 12 77 is ol at e 10 BT 12 78 iso la te 10 BT 12 87 iso la te 10 BT 12 88 iso la te 10 BT 12 90 iso la te 10 BT 12 91 iso la te 10 BT 12 92 iso la te 10 BT 12 98 is ol at e 10 BT 13 11 is ol at e 10 BT 13 12 iso la te 10 BT 13 13 iso la te 10 BT 13 16 is ol at e 10 BT 13 20 iso lat e 10 BT 13 23 iso la te 10 BT 13 25 iso la te 10 BT 13 26 iso lat e 10 BT 13 31 iso lat e 10 BT 13 37 iso la te 10 BT 13 39 iso la te 10 BT 13 40 iso la te 10 BT 13 42 iso la te 10 BT 13 43 iso la te A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 tv w N -, 10 BT 13 44 iso la te 10 BT 13 47 iso lat e 10 BT 13 50 iso la te 10 BT 13 53 iso la te 10 BT 13 55 iso la te 10 BT 13 56 iso lat e 10 BT 13 58 iso la te 10 BT 13 60 iso la te 10 BT 13 61 iso lat e 10 BT 13 62 iso lat e 10 BT 13 64 iso lat e 10 BT 13 65 iso la te 10 BT 13 67 iso la te 10 BT 13 68 iso lat e 10 BT 13 69 iso lat e 10 BT 13 71 iso lat e 10 BT 13 72 iso lat e 10 BT 13 73 iso lat e 10 BT 13 74 iso lat e 10 BT 13 76 iso la te 10 BT 13 79 iso lat e 10 BT 13 81 iso lat e 10 BT 13 84 iso la te 10 BT 13 86 iso lat e 10 BT 13 87 iso la te 10 BT 13 88 iso la te 10 BT 13 91 iso lat e 10 BT 13 92 iso la te 10 BT 13 93 iso la te 10 BT 13 94 iso lat e 10 BT 13 95 iso lat e 10 BT 13 96 iso la te -- -- -- ··- -- -- -·· A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 IS O LA TE D FI N O IS O LA T ED F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA T ED F IN D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA T ED F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D --· -- --- 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 N w w � = - ·· - - ' - - - - - · - ·- - - - - · _ __ - · --- _ -- - - - - ·· ·· -- - - ·- - - - - - - - - � -··· · .. . . . . . . 10 BT 14 00 iso la te 10 BT 14 01 iso lat e 10 BT 14 04 iso la te 10 BT 14 05 iso la te 10 BT 14 06 iso la te 10 BT 14 07 iso la te 10 BT 14 09 iso la te 10 BT 14 11 iso la te 10 BT 14 12 iso la te 10 BT 14 14 iso la te 10 BT 14 15 iso la te 10 BT 14 16 is ol at e 10 BT 14 18 iso la te 10 BT 14 23 iso la te 10 BT 14 30 iso lat e 10 BT 14 33 iso la te 10 BT 14 35 iso la te 10 BT 14 39 iso lat e 10 BT 14 40 iso la te 10 BT 14 41 is ol at e 10 BT 14 42 iso la te 10 BT 14 43 is ol at e 10 BT 14 46 iso la te 10 BT 14 47 iso la te 10 BT 14 52 iso la te 10 BT 14 53 Is ol at e 10 BT 14 59 iso la te 10 BT 14 61 iso la te 10 BT 14 63 iso la te 10 BT 14 65 is ol at e 10 BT 14 70 is ol at e 10 BT 14 72 iso lat e A pp en di x C: P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 pr oj ec til e po int m ids ec tio n 12 .0 00 00 bifa ce fr ag 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 50 40 .0 00 00 52 00 .0 00 00 N !.,;.) .j: :.. 10 BT 14 75 iso la te 10 BT 14 80 iso la te 10 BT 14 81 iso la te 10 BT 14 82 iso la te 10 BT 14 91 iso lat e 10 BT 14 92 iso la te 10 BT 14 93 iso la te 10 BT 14 95 iso lat e 10 BT 14 96 iso la te 10 BT 15 01 iso lat e 10 BT 15 04 iso la te 10 BT 15 06 iso la te 10 BT 15 07 iso la te 10 BT 15 08 iso lat e 10 BT 15 10 iso la te 10 BT 15 11 iso la te 10 BT 15 12 iso lat e 10 BT 15 14 iso lat e 10 BT 15 16 iso la te 10 BT 15 19 iso la te 10 BT 15 20 iso la te 10 BT 15 23 iso la te 10 BT 15 24 iso lat e 10 BT 15 25 iso lat e 10 BT 15 27 iso la te 10 BT 15 28 iso la te 10 BT 15 29 iso la te 10 BT 15 31 iso la te 10 BT 15 32 iso la te 10 BT 15 33 iso la te 10 BT 154 2 iso la te 10 BT 15 43 iso la te -- ------ A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI ND IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI ND ·- -�----- . . ·-- -�- ---·- 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 N w Vo 10 BT 15 47 iso la te 10 BT 15 49 iso la te 10 BT 15 52 iso la te 10 BT 15 55 iso la te 10 BT 15 57 iso la te 10 BT 15 58 iso la te 10 BT 15 64 iso la te 10 BT 15 68 iso la te 10 BT 15 69 iso la te 10 BT 15 70 iso la te 10 BT 15 71 iso la te 10 BT 15 72 iso la te 10 BT 15 75 iso la te 10 BT 15 76 iso la te 10 BT 15 77 iso la te 10 BT 15 78 iso la te 10 BT 15 79 iso la te 10 BT 15 80 iso la te 10 BT 15 83 iso lat e 10 BT 15 84 iso la te 10 BT 15 86 iso la te 10 BT 15 87 iso la te 10 BT 15 88 iso lat e 10 BT 15 89 iso la te 10 BT 15 90 iso lat e 10 BT 15 91 iso la te 10 BT 15 94 iso la te 10 BT 15 97 iso la te 10 BT 15 98 iso la te 10 BT 15 99 iso la te 10 BT 16 00 iso lat e 10 BT 16 01 iso la te - A pp en di x C : P re hi st or ic L oca lit ies in th e St ud y A re a -Z on e 12 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D -- --' 12 .0 00 00 N w 0\ 10 BT 16 02 is ol at e 10 BT 16 03 is ol at e 10 BT 16 04 iso la te 10 BT 16 07 iso la te 10 BT 16 10 iso la te 10 BT 16 11 iso la te 10 BT 16 12 iso la te 10 BT 16 14 iso la te 10 BT 16 15 iso la te 10 BT 16 18 is ol at e 10 BT 16 20 iso la te 10 BT 16 21 is ol at e 10 BT 16 23 iso la te 10 BT 16 24 iso la te 10 BT 16 28 iso la te 10 BT 16 31 is ol at e 10 BT 16 32 is ol at e 10 BT 16 33 is ol at e 10 BT 16 34 is ol at e 10 BT 16 35 is ol at e 10 BT 16 36 iso la te 10 BT 16 37 iso la te 10 BT 16 40 iso lat e 10 BT 16 43 iso la te 10 BT 16 45 iso la te 10 BT 16 48 is ol at e 10 BT 16 49 is ol at e 10 BT 16 50 iso la te 10 BT 16 52 is ol at e 10 BT 16 54 iso la te 10 BT 16 55 is ol at e 10 BT 16 58 iso la te A pp en di x C: P re hi st or ic L oc al iti es in t be S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 sc ra pe r 12 .0 00 00 6 fla ke s 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 49 25 .0 00 00 49 15 .0 00 00 N w -. ..1 � . - . _ _ _ _ " -�- ---� 10 BT 16 61 iso la te 10 BT 16 63 iso la te 10 BT 16 68 iso la te 10 BT 16 69 iso la te 10 BT 16 74 iso la te 10 BT 16 75 iso la te 10 BT 16 80 iso la te 10 BT 16 81 is ol at e 10 BT 16 83 iso la te 10 BT 16 84 is ol at e 10 BT 16 86 is ol at e 10 BT 16 89 iso la te 10 BT 16 91 iso la te 10 BT 17 01 iso la te 10 BT 17 02 iso la te 10 BT 17 03 iso la te 10 BT 17 04 iso la te 10 BT 17 05 iso la te 10 BT 17 06 iso la te 10 BT 17 07 is ol at e 10 BT 17 08 iso la te 10 BT 17 09 iso la te 10 BT 17 10 iso la te 10 BT 17 11 iso lat e 10 BT 17 12 iso la te 10 BT 17 14 is ol at e 10 BT 17 15 is ol at e 10 BT 17 16 is ol at e 10 BT 17 17 is ol at e 10 BT 17 18 is ol at e 10 BT 17 19 iso la te 10 BT 17 20 iso la te A pp en di x C: P re hi st or ic: L oc: :al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 1 IS O LA TE D FI N D 12 .0 00 00 ' IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 N !,;.) 00 10 BT 17 21 iso lat e 10 BT 17 24 iso la te 10 BT 17 25 iso lat e 10 BT 17 26 iso lat e 10 BT 17 27 iso la te 10 BT 17 28 iso lat e 10 BT 17 43 iso lat e 10 BT 17 50 iso lat e 10 BT 17 51 iso lat e 10 BT 17 52 iso lat e 10 BT 17 53 iso la te 10 BT 17 58 iso lat e 10 BT 17 60 iso lat e 10 BT 17 61 iso lat e 10 BT 17 62 iso lat e 10 BT 17 64 iso lat e 10 BT 17 65 iso lat e 10 BT 17 66 iso lat e 10 BT 17 67 iso lat e 10 BT 17 68 iso lat e 10 BT 17 71 iso lat e 10 BT 17 74 iso lat e 10 BT 17 75 iso la te 10 BT 17 77 iso lat e 10 BT 17 78 iso lat e 10 BT 17 82 iso lat e 10 BT 17 85 iso lat e 10 BT 17 87 iso lat e 10 BT 17 89 iso lat e 10 BT 17 95 iso lat e 10 BT 17 96 iso lat e 10 BT 17 99 iso la te A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 pr oj ec tile p oi nt 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 - -·-·- ··-·�- ----·- 49 40 .0 00 00 ' N w \0 A pp en di x C : P re his to ri c L oc al iti es in t he S tu dy A re a -Z on e 12 10 BT 18 01 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 06 iso lat e IS O LA TE D PR O JE C TI LE P O IN T 12 .0 00 00 10 BT 18 07 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 10 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 11 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BT 18 13 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 14 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 17 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 25 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 27 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 28 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 29 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 30 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 38 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 39 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 42 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 45 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 49 iso la te IS O LA TE D FI N D 12 .0 00 00 1Q BT 18 50 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 51 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 52 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 54 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 18 56 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 57 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 58 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 59 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 60 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 63 iso lat e IS O LA TE D F IN D 12 .0 00 00 10 BT 18 80 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 18 81 iso lat e IS O LA TE D FI N D * L IT HI C 12 .0 00 00 10 BT 18 84 iso lat e IS O LA TE D FI N D * L IT HI C 12 .0 00 00 10 BT 18 85 iso la te IS O LA TE D FI N D * L IT HI C 12 .0 00 00 � 0 -- - - 10 BT 18 86 iso la te 10 BT 18 89 iso la te 10 BT 18 90 iso la te 10 BT 18 94 iso la te 10 BT 18 97 iso la te 10 BT 18 99 iso la te 10 BT 19 00 iso la te 10 BT 19 02 iso la te 10 BT 19 05 iso la te 10 BT 19 06 iso la te 10 BT 19 08 iso la te 10 BT 19 09 iso la te 10 BT 19 10 iso la te 10 BT 19 11 iso la te 10 BT 19 13 iso la te 10 BT 19 14 iso la te 10 BT 19 16 iso la te 10 BT 19 19 iso la te 10 BT 19 20 iso la te 10 BT 19 21 iso la te 10 BT 19 23 iso la te 10 BT 19 25 iso la te 10 BT 19 28 iso la te 10 BT 19 30 iso la te 10 BT 19 31 iso la te 10 BT 19 32 iso la te 10 BT 19 33 iso la te 10 BT 19 34 iso la te 10 BT 19 35 iso la te 10 BT 19 37 iso la te 10 BT 19 38 iso la te 10 BT 19 40 iso la te - -- - --- -------- --- - -- -- A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI ND . L IT HI C 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 ! IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 -- ----------- -- ---- � A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 19 43 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 44 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 46 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 47 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 48 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 50 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 51 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 52 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 54 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 55 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 56 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 58 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 59 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 62 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 63 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 64 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 65 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 66 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 68 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 75 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 77 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 78 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 79 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 19 80 iso la te IS O LA TE D F IN D 12 .0 00 00 10 BT 19 81 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 19 82 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 19 84 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 20 01 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 20 02 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 20 03 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 20 04 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 20 05 iso la te IS O LA TE D FI ND 12 .0 00 00 � N - -- - - - 10 BT 20 07 iso la te 10 BT 20 16 is ol at e 10 BT 20 17 iso lat e 10 BT 20 19 iso la te 10 BT 20 31 iso la te 10 BT 20 32 iso la te 10 BT 20 34 iso la te 10 BT 20 35 iso la te 10 BT 20 43 is ol at e 10 BT 20 47 is ol at e 10 BT 20 67 iso la te 10 BT 20 71 iso la te 10 BT 20 72 iso la te 10 BT 20 77 iso la te 10 BT 20 79 iso la te 10 BT 20 81 iso la te 10 BT 20 82 iso la te 10 BT 20 84 iso la te 10 BT 20 88 iso la te 10 BT 20 89 iso la te 10 BT 20 90 is ol at e 10 BT 20 91 iso la te 10 BT 21 26 is ol at e 10 BT 21 34 is ol at e 10 BT 25 8 iso lat e 10 BT 29 9 iso la te 10 BT 37 6 iso la te 10 BT 37 9 iso la te 10 BT 38 1 is ol at e 10 BT 38 2 iso la te 10 BT 384 iso la te 10 BT 38 9 iso la te - - - -- - - --- - A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D P RO JE CT . P T 12 .0 00 00 IS O LA TE D FI N D P RO JE C T. P T 12 .0 00 00 IS O LA TE D FI ND (B IF AC E) 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 bi fa ce tra g 12 .0 00 00 sc ra pe r 12 .0 00 00 po in t 12 .0 00 00 bif ac e 12 .0 00 00 bif ac e 12 .0 00 00 po in t m ids ec tio n 12 .0 00 00 bifa ce ti p 12 .0 00 00 bif ac e 12 .0 00 00 I po in t 12 .0 00 00 bif ac e m ids ec tio n 12 .0 00 00 [p os sib le b la nk 12 .0 00 00 bif ac e fra g 12 .0 00 00 bifa ce 12 .0 00 00 [po in t 12 .0 00 00 El ko c om er -n ot ch ed p oi nt 12 .0 00 00 po in t 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 49 70 .0 00 00 49 15 .0 00 00 59 40 .0 00 00 47 85 .0 00 00 47 85 .0 00 00 49 36 .0 00 00 49 40 .0 00 00 55 60 .0 00 00 57 22 .0 00 00 50 60 .0 00 00 49 80 .0 00 00 49 80 .0 00 00 49 65 .0 00 00 49 70 .0 00 00 62 00 .0 00 00 52 30 .0 00 00 � 10 BT 39 1 iso la te 10 BT 39 2 iso la te 10 BT 39 9 iso la te 10 BT 40 1 iso la te 10 BT 40 2 iso la te 10 BT 40 3 iso la te 10 BT 40 8 iso la te 10 BT 40 9 iso la te 10 BT 41 0 iso la te 10 BT 41 1 iso la te 10 BT 41 2 iso la te 10 BT 41 4 iso la te 10 BT 41 6 iso la te 10 BT 41 8 iso la te 10 BT 41 9 iso la te 10 BT 42 1 iso la te 10 BT 42 8 iso la te 10 BT 43 3 iso la te 10 BT 44 2 iso la te 10 BT 44 9 is ol at e 10 BT 45 1 iso la te 10 BT 45 4 iso la te 10 BT 45 5 iso la te 10 BT 45 6 iso la te 10 BT 58 5 iso la te 10 BT 58 6 is ola te 10 BT 58 7 iso la te 10 BT 59 3 iso la te 10 BT 59 9 iso la te 10 BT 60 1 iso la te 10 BT 60 2 iso la te 10 BT 60 9 iso la te -- -- ·- -- A ppe nd ix C : P re hi st or ic Lo ca lit ie s in t he S tu dy A re a ·Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 t 10 BT 61 1 iso la te 10 BT 61 3 iso la te 10 BT 62 2 iso la te 10 BT 62 4 iso la te 10 BT 62 5 iso la te 10 BT 62 6 iso lat e 10 BT 63 1 iso lat e 10 BT 63 3 iso la te 10 BT 63 4 iso la te 10 BT 63 6 iso lat e 10 BT 63 7 iso lat e 10 BT 63 8 iso lat e 10 BT 64 0 iso lat e 10 BT 64 1 iso la te 10 BT 64 2 iso la te 10 BT 64 3 iso lat e 10 BT 64 4 iso la te 10 BT 64 5 iso la te 10 BT 65 5 iso la te 10 BT 65 6 iso lat e 10 BT 66 0 iso lat e 10 BT 66 4 iso lat e 10 BT 66 6 iso lat e 10 BT 66 7 iso la te 10 BT 67 1 iso la te 10 BT 67 2 iso lat e 10 BT 68 1 iso lat e 10 BT 68 2 iso la te 10 BT 68 6 iso lat e 10 BT 68 7 iso la te 10 BT 68 8 iso la te 10 BT 68 9 iso lat e A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI NO 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI NO 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 -- ----·- -- �- -- tv � Vl A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 69 0 iso la te IS O LA TE O FI N O 12 .0 00 00 10 BT 69 1 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 69 2 iso lat e IS O LA TE D FI N O 12 .0 00 00 10 BT 69 3 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 69 4 iso lat e IS O LA TE D FI N O 12 .0 00 00 10 BT 69 7 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 69 8 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 70 6 iso lat e IS O LA TE O FI NO ; p oi nt 12 .0 00 00 50 20 .0 00 00 10 BT 70 7 iso la te IS O LA TE D FI NO ; po int 12 .0 00 00 50 20 .0 00 00 10 BT 70 9 iso lat e IS O LA TE O FI N O; p oi nt 12 .0 00 00 50 40 .0 00 00 10 BT 71 0 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BT 71 3 iso lat e IS O LA TE D FI N O; b ifa ce 12 .0 00 00 50 20 .0 00 00 10 BT 71 4 iso lat e IS O LA TE D FI N O; p oi nt 12 .0 00 00 50 25 .0 00 00 10 BT 71 5 iso la te IS O LA TE D FI N O; p oi nt 12 .0 00 00 50 30 .0 00 00 10 BT 72 2 iso la te IS O LA TE O FI NO 12 .0 00 00 10 BT 72 3 iso lat e IS O LA TE D FI NO 12 .0 00 00 10 BT 72 4 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BT 72 5 iso lat e IS O LA TE D FI NO 12 .0 00 00 10 BT 72 8 iso lat e IS O LA TE D FI N O 12 .0 00 00 10 BT 73 0 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 73 3 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BT 73 4 iso lat e IS O LA TE O FI NO 12 .0 00 00 10 BT 73 5 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BT 73 6 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 73 7 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 73 9 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BT 74 1 iso la te IS O LA TE D FI NO 12 .0 00 00 10 BT 74 4 iso la te IS O LA TE O FI NO 12 .0 00 00 10 BT 74 6 iso la te IS O LA TE O FI NO 12 .0 00 00 10 BT 76 1 iso lat e IS O LA TE D FI N O 12 .0 00 00 10 BT 77 7 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 82 3 iso la te IS O LA TE D FI N D 12 .0 00 00 1- -J � - -- - -- --- -- _ _ _ __ _,_ A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 82 4 iso la te IS O LA TE O FI N O 12 .0 00 00 10 BT 82 5 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 82 6 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 82 7 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 82 8 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 82 9 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 83 0 iso lat e IS O LA TE D FI ND 12 .0 00 00 10 BT 83 1 iso lat e IS O LA TE D FI N O 12 .0 00 00 10 BT 83 2 iso lat e IS O LA TE D FI ND 12 .0 00 00 10 BT 83 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 83 4 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 83 5 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 83 6 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 83 7 iso la te IS O LA TE D FI N O 12 .0 00 00 10 BT 83 8 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 83 9 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 84 0 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 84 1 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 84 2 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 84 3 iso lat e IS O LA TE D FI ND 12 .0 00 00 10 BT 84 4 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 84 5 iso lat e IS O LA TE D FI ND 12 .0 00 00 10 BT 84 6 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 84 7 iso lat e IS O LA TE D FI N O 12 .0 00 00 1 10 BT 84 9 iso lat e IS O LA TE O F IN D 12 .0 00 00 1 10 BT 85 0 iso lat e IS O LA TE D FI N D 12 .0 00 00 1 10 BT 85 1 iso lat e IS O LA TE D FI N O 12 .0 00 00 10 BT 85 2 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 85 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 85 4 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 85 5 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 85 6 iso lat e IS O LA TE D FI ND 12 .0 00 00 � -.l 10 BT 85 7 iso la te 10 BT 85 8 iso la te 10 BT 85 9 iso la te 10 BT 86 0 iso la te 10 BT 86 1 iso la te 10 BT 86 2 iso la te 10 BT 86 3 iso la te 10 BT 86 4 iso la te 10 BT 86 5 iso la te 10 BT 866 iso la te 10 BT 86 7 iso la te 10 BT 86 8 iso la te 10 BT 86 9 iso la te 10 BT 87 0 iso la te 10 BT 87 1 iso la te 10 BT 87 2 iso la te 10 BT 87 3 iso la te 10 BT 87 4 iso la te 10 BT 87 5 iso la te 10 BT 87 6 iso la te 10 BT 87 7 iso la te 10 BT 87 8 iso la te 10 BT 87 9 iso la te 10 BT 88 0 iso la te 10 BT 88 1 iso la te 10 BT 88 2 iso la te 10 BT 88 3 iso la te 10 BT 88 4 iso la te 10 BT 88 5 iso la te 10 BT 88 6 iso la te 10 BT 88 7 iso la te 10 BT 88 8 iso la te A ppe nd ix C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 - - - - - - N .j:;o. QO A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 88 9 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 89 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 89 1 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 89 2 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 89 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 89 4 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 89 5 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 89 6 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 89 7 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 89 9 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 90 0 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 90 1 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 90 2 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 90 3 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 90 4 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 90 5 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 90 6 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 90 8 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 90 9 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 91 0 iso la te IS O LA TE D FI ND 12 .0 00 00 10 BT 91 1 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 91 2 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 91 3 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 91 8 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 91 9 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 92 0 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 92 1 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 92 2 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 92 3 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 92 4 iso la te IS O LA TE D FI N D 12 .0 00 00 10 BT 92 5 iso lat e IS O LA TE D FI N D 12 .0 00 00 10 BT 92 6 iso lat e IS O LA TE D FI ND 12 .0 00 00 � \() 10 BT 92 7 iso la te 10 BT 92 8 iso lat e 10 BT 92 9 iso la te 10 BT 93 0 iso la te 10 BT 93 1 iso lat e 10 BT 93 2 iso lat e 10 BT 93 5 iso lat e 10 BT 93 6 iso lat e 10 BT 93 8 iso lat e 10 BT 93 9 iso la te 10 BT 94 2 iso lat e 10 BT 94 3 iso lat e 10 BT 94 6 iso lat e 10 BT 95 2 iso lat e 10 BT 95 5 iso lat e 10 BT 96 0 iso lat e 10 BT 96 1 iso lat e 10 BT 96 2 iso lat e 10 BT 96 3 iso lat e 10 BT 96 4 iso lat e 10 BT 96 5 iso lat e 10 BT 96 6 iso lat e 10 BT 96 9 iso la te 10 BT 97 1 iso lat e 10 BT 97 2 iso lat e 10 BT 97 3 iso lat e 10 BT 97 6 iso lat e 10 BT 97 7 iso lat e 10 BT 97 8 iso lat e 10 BT 98 2 iso lat e 10 BT 98 4 iso lat e 10 BT 98 5 iso la te - - --- A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 N VI 0 .. :· - - ·- �- - - - � ·- - - � · � ·· ·- - - - · -- -- --- -- - - - . -- •... ; · � ' .. · �------ - .. 10 BT 98 6 10 BT 98 7 10 BT 98 8 10 BT 98 9 10 BT 99 1 10 BT 99 2 10 BT 99 3 10 BT 99 4 10 BT 99 9 10 JE 99 10 LN 12 0 10 LN 12 2 10 LN 12 3 10 LN 12 4 10 LN 14 1 10 LN 14 4 10 LN 14 5 10 LN 14 6 10 LN 14 7 10 LN 14 8 10 LN 14 9 10 LN 15 0 10 LN 15 1 10 LN 15 3 10 LN 15 4 10 LN 15 5 10 LN 15 6 10 LN 15 8 10 LN 15 9 10 LN 16 2 10 LN 16 3 10 LN 16 4 -- ------------ - iso la te iso la te iso la te iso la te iso la te iso la te iso la te iso la te is ol at e is ol at e iso la te is ol at e iso la te iso la te iso la te iso la te iso la te iso la te is ol at e is ol at e iso la te iso lat e iso lat e iso la te iso la te iso lat e iso lat e iso la te iso la te iso la te iso la te iso la te A ppe nd ix C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA T ED F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 -·- ·-· ·-· -- --·. -- - -- ----------·-· N VI - F- - =� -- ---=-- - - - ----� - - -- -- -= - - --- - ···-� 10 LN 16 5 iso la te 10 LN 16 6 iso la te 10 LN 16 7 iso la te 10 LN 16 8 iso la te 10 LN 16 9 iso la te 10 LN 17 0 iso la te 10 LN 17 1 is ol at e 10 LN 17 2 iso la te 10 LN 17 3 iso la te 10 LN 17 4 iso la te 10 LN 17 5 iso la te 10 LN 23 5 iso la te 10 LN 23 6 is ol at e 10 LN 23 7 iso lat e 10 LN 23 8 iso la te 10 LN 23 9 iso la te 10 LN 24 0 iso la te 10 LN 24 1 iso la te 10 LN 24 2 iso la te 10 LN 24 3 iso la te 10 LN 24 4 iso la te 10 LN 24 5 iso la te 10 LN 24 6 iso la te 10 LN 24 7 iso la te 10 LN 24 8 iso la te 10 LN 24 9 iso la te 10 LN 25 0 iso la te 10 LN 25 1 is ol at e 10 LN 25 2 iso la te 10 LN 25 3 iso la te 10 LN 25 4 iso la te 10 LN 25 5 iso la te A pp en di x C: P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI ND IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA TE D FI N D IS O LA TE D F IN D , L IT HI C S IS O LA TE D FI ND , L IT HI C S IS O LA TE D FI N D , L IT HI C S IS O LA TE D FI N D , L IT HI C S IS O LA TE D FI ND , L IT HI C S IS O LA TE D F IN D , L IT HI C S IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D , L IT HI C S IS O LA TE D F IN D, L IT HI C S IS O LA T ED F IN D , L IT HI C S IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA T ED F IN D , L IT HI C S ISQLATE D F1!4 D , L IT HI C S 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 ! 12 .0 00 00 12 .0 00 00 12 .0 00 00 i 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 -- --- -- ' 12 .0 00 00 N v. N 10 LN 25 6 10 LN 25 7 10 LN 25 8 10 LN 25 9 10 LN 26 1 10 LN 26 2 10 LN 26 3 10 LN 26 4 10 LN 26 5 10 LN 26 8 10 LN 27 1 10 LN 30 8 10 LN 30 9 10 LN 31 0 10 LN 31 1 10 LN 31 2 10 LN 33 4 10 LN 33 5 10 LN 33 7 10 LN 33 8 10 LN 44 4 10 LN 44 6 10 LN 44 9 10 LN 45 0 10 LN 45 1 10 LN 45 4 10 LN 45 8 10 LN 46 1 10 LN 46 2 10 LN 46 7 10 LN 46 8 10 LN 46 9 � ·· ··· -- ----·-- iso la te iso la te iso la te iso la te iso la te iso lat e iso lat e iso la te iso lat e iso la te iso la te iso la te iso lat e iso la te iso la te iso lat e iso lat e iso lat e iso lat e iso lat e iso la te iso lat e iso lat e iso la te iso la te iso la te iso la te iso la te iso la te iso la te iso la te iso la te A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 1l IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND , L IT HI C S 12 .0 00 00 IS O LA TE D FI N D , L IT HI C S 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 5 vo lc an ic g la ss s se co nd ary w as te fl ak es 12 .0 00 00 on e re d vo lc an ic g la ss b ifa ce fr ag m en t 12 .0 00 00 po int m id se cti on 12 .0 00 00 bifa ce m id se ct io n 12 .0 00 00 po in t f ra g 12 .0 00 00 bif ac e m ids ec tio n 12 .0 00 00 De se rt sid e- no tc he d po int 12 .0 00 00 sid e- no tc he d po in t 12 .0 00 00 co m er -n ot ch ed p oi nt 12 .0 00 00 I p oi nt b as e 12 .0 00 00 sc ra pe r 12 .0 00 00 I po int m id se ct io n 12 .0 00 00 I po int 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 po int 12 .0 00 00 po int m id se cti on 12 .0 00 00 fla ke 12 .0 00 00 po int b as e 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 - - 44 30 .0 00 00 45 00 .0 00 00 42 40 .0 00 00 42 45 .0 00 00 42 70 .0 00 00 47 20 .0 00 00 47 30 .0 00 00 47 30 .0 00 00 47 00 .0 00 00 44 05 .0 00 00 44 50 .0 00 00 44 60 .0 00 00 44 05 .0 00 00 42 25 .0 00 00 43 75 .0 00 00 45 18 .0 00 00 44 40 .0 00 00 44 70 .0 00 00 45 10 .0 00 00 42 40 .0 00 00 42 35 .0 00 00 N VI w 10 LN 47 0 iso la te 10 LN 47 6 iso la te 10 LN 48 0 iso la te 10 LN 48 3 iso la te 10 LN 48 6 iso la te 10 LN 48 7 iso la te 10 LN 49 3 iso la te 10 LN 49 7 iso la te 10 LN 49 8 iso lat e 10 LN 50 0 iso la te 10 LN 50 6 iso la te 10 LN 50 8 iso la te 10 LN 51 6 iso la te 10 LN 51 7 iso la te 10 LN 52 0 iso la te 10 LN 52 1 iso la te 10 LN 52 3 iso la te 10 LN 52 4 iso la te 10 LN 52 5 iso la te 10 LN 52 6 iso lat e 10 LN 52 7 iso la te 10 LN 52 8 iso la te 10 LN 53 0 iso la te 10 LN 53 3 iso la te 10 LN 53 7 iso la te 10 LN 53 8 iso la te 10 LN 54 2 iso la te 10 LN 54 3 iso la te 10 LN 54 4 iso lat e 10 LN 54 5 iso la te 10 LN 55 3 iso lat e 10 LN 55 7 iso la te A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 po int ba se 12 .0 00 00 bi fa ce 12 .0 00 00 po int fr ag 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 po int 12 .0 00 00 �)O in t 12 .0 00 00 .p oi nt 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 I po int m id se ct io n 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 sc ra pe r 12 .0 00 00 bi fa ce m id se ct io n 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 po int m id se ct io n 12 .0 00 00 po int 12 .0 00 00 po int 12 .0 00 00 ,po in t ba se 12 .0 00 00 fla ke 12 .0 00 00 bifa ce tr ag 12 .0 00 00 fla ke 12 .0 00 00 sc ra pe r 12 .0 00 00 fla ke 12 .0 00 00 42 30 .0 00 00 44 30 .0 00 00 44 30 .0 00 00 43 70 .0 00 00 43 70 .0 00 00 43 95 .0 00 00 43 75 .0 00 00 44 70 .0 00 00 44 35 .0 00 00 45 05 .0 00 00 44 20 .0 00 00 44 80 .0 00 00 44 40 .0 00 00 44 25 .0 00 00 44 50 .0 00 00 44 70 .0 00 00 44 10 .0 00 00 44 10 .0 00 00 43 65 .0 00 00 43 80 .0 00 00 43 40 .0 00 00 43 90 .0 00 00 44 30 .0 00 00 43 75 .0 00 00 44 60 .0 00 00 45 15 .0 00 00 44 05 .0 00 00 44 25 .0 00 00 43 95 .0 00 00 42 15 .0 00 00 44 00 .0 00 00 - 44§() .0 00 00 IV Vl ..!:> 10 LN 55 8 iso la te 10 LN 55 9 iso la te 10 LN 56 1 iso la te 10 LN 56 3 iso la te 10 LN 56 5 iso la te 10 LN 57 6 iso la te 10 LN 57 7 iso la te 10 LN 57 8 iso la te 10 LN 58 3 iso la te 10 LN 58 5 iso la te 10 LN 59 1 iso la te 10 LN 59 5 iso la te 10 LN 59 7 iso la te 10 LN 59 9 iso la te 10 LN 60 2 iso la te 10 LN 60 9 iso la te 10 LN 61 0 iso la te 10 LN 61 1 iso la te 10 M A 11 6 iso la te 10 M A 11 7 iso la te 10 M A 11 8 iso la te 10 M A 11 9 iso la te 10 M A 12 0 iso la te 10 M A 12 1 iso la te 10 M A 12 2 iso la te 10 M A 12 3 iso la te 10 M A 12 4 iso la te 10 M A 12 5 iso la te 10 M A 12 6 iso la te 10 M A 12 7 iso la te 10 M A 12 8 iso la te 10 M A 12 9 iso la te A pp en di x C: P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 bif ce fr ag 12 .0 00 00 I po in t 12 .0 00 00 po int 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 sc ra pe r 12 .0 00 00 bif ac e 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 bi fa ce m ids ec tio n 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 bi fa ce fr ag 12 .0 00 00 fla ke 12 .0 00 00 fla ke 12 .0 00 00 !p oi nt 12 .0 00 00 I p oi nt 12 .0 00 00 fla ke 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 43 50 .0 00 00 43 45 .0 00 00 42 25 .0 00 00 44 30 .0 00 00 45 20 .0 00 00 44 40 .0 00 00 43 30 .0 00 00 43 90 .0 00 00 44 50 .0 00 00 43 50 .0 00 00 43 95 .0 00 00 42 40 .0 00 00 42 25 .0 00 00 42 25 .0 00 00 42 35 .0 00 00 45 10 .0 00 00 45 90 .0 00 00 44 20 .0 00 00 N u. Vl 10 M A 13 0 iso la te 10 M A 13 1 iso la te 10 M A 13 4 is ol at e 10 M A 13 5 is ol at e 10 M A 13 6 iso la te 10 M A 13 7 iso la te 10 M A 14 0 iso la te 10 M A 14 2 iso la te 10 M A 154 iso la te 10 M A 15 5 is ol at e 10 M A 15 6 iso la te 10 M A 15 7 iso la te 10 M A 15 8 iso la te 10 M A 15 9 iso la te 10 M A 16 0 iso la te 10 M A 16 1 iso la te 10 M A 57 iso la te 10 M A 58 iso la te 10 M A 59 is ol at e 10 M A 60 is ol at e 10 M A6 1 is ol at e 10 M A 62 iso la te 10 M A6 3 iso la te 10 M A6 4 iso lat e 10 M A6 5 iso la te 10 M A6 6 iso la te 10 M A6 7 is ol at e 10 M A 68 iso lat e 10 M A 69 iso la te 10 M A 70 is ol at e 10 M A 71 is ol at e 10 M A 72 is ol at e A pp en di x C: P re hi st or ic L oc al iti es in t he S tu dy A re a ·Z on e 12 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 1 bl ac k v ol ca ni c g la ss b ifa ce m ids ec tio n 12 .0 00 00 1 vo lc an ic g la ss b ifa ce fr ag m en t 12 .0 00 00 1 vo lc an ic g la ss st em m ed p ro je ct ile p oi nt 12 .0 00 00 bif ac e tip 12 .0 00 00 la nc eo lat e pr oj ec tile po in t b as e 12 .0 00 00 po in t 12 .0 00 00 po in t 12 .0 00 00 po in t 12 .0 00 00 bi fa ce 12 .0 00 00 sc ra pe r 12 .0 00 00 po int 12 .0 00 00 po ing 12 .0 00 00 po in t 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN O 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI ND 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 IS O LA TE D F IN D 12 .0 00 00 IS O LA TE D FI N D 12 .0 00 00 -- -- - -- ---· - - 43 15 .0 00 00 43 25 .0 00 00 43 35 .0 00 00 45 60 .0 00 00 45 00 .0 00 00 48 40 .0 00 00 48 40 .0 00 00 48 50 .0 00 00 49 20 .0 00 00 49 10 .0 00 00 48 40 .0 00 00 48 75 .0 00 00 49 00 .0 00 00 N VI 0\ 10 M A 73 iso la te 10 M A7 4 iso la te 10 M A 75 iso la te 10 M A 76 iso lat e 10 M A 77 iso la te 10 M A 13 9 iso la te 10 M A 16 2 la nd sc ap e fe at 10 BT 20 09 la nd sc ap e fe at 10 BN 10 06 op en 10 BN 10 07 op en 10 BN 10 13 op en 10 BN 10 17 op en 10 BN 10 18 op en 10 BN 10 20 op en 10 BN 10 21 op en 10 BN 10 22 op en 10 BN 10 23 op en 10 BN 10 24 op en 10 BN 10 25 op en 10 BN 10 26 op en 10 BN 10 29 o� en 10 BN 10 31 op en 10 BN 10 32 op en 10 BN 10 33 op en 10 BN 10 35 op en 10 BN 10 37 op en 10 BN 10 41 op en 10 BN 10 42 op en 10 BN 10 43 op en 10 BN 10 47 op en 10 BN 10 49 op en 10 BN 10 51 op en A pp en di x C: P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI ND IS O LA TE D FI ND bif ac e ba se a nd a m et hy st w hi sk ey b ot tle lit hic s ca tte r a nd fi ve d ep re ss io ns ; f lak e LI TH IC S/ H IS TO RI C D A M en d sc ra pe r, 11 fla ke s 2 fla ke s lit hic s ca tte r; bifa ce , 1 7 fla ke s, 2 ut ili lit hi c sc at te r; 2 re to uc he d fla ke s, 8 fla k lit hic s ca tte r; H um bo ld t p oi nt , 1 0 fla ke s lith ic sc at te r; po int , b ifa ce , 8 0- pl us fl a lit hi c sc at te r; bif ac e, 2 s cr ap er s, fla ke s lit hi c sc at te r; DS N po int , 7 5- pl us fl ak es lith ic sc at te r; sc ra pe r, bif ac e, fl ak es lit hi c sc at te r; 30 0- pl us fl ak es lit hi c sc at te r; 11 fla ke s 3 fla ke s lit hi c sc at te r; po int , f la ke s 4 fla ke s, co re 5 fla ke s lith ic sc at te r; 10 fla ke s 5 fla ke s lit hic s ca tte r; DS N po int , b ifa ce , s cr ap er 2 fla ke s lit hi c sc at te r; co bb le , f lak es lit hic s ca tte r; El ko p oi nt , f la ke s lit hic s ca tte r; fla ke s, re to uc he d fla ke lit hi c sc at te r; fla ke s 7 fla ke s -- -- ---- --- ----- -----· -- ------ 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 - 45 20 .0 00 00 48 00 .0 00 00 48 60 .0 00 00 48 40 .0 00 00 48 60 .0 00 00 48 40 .0 00 00 48 40 .0 00 00 48 20 .0 00 00 48 30 .0 00 00 48 20 .0 00 00 48 20 .0 00 00 48 20 .0 00 00 49 20 .0 00 00 49 30 .0 00 00 49 30 .0 00 00 49 60 .0 00 00 49 80 .0 00 00 49 60 .0 00 00 49 60 .0 00 00 49 30 .0 00 00 50 00 .0 00 00 50 00 .0 00 00 49 70 .0 00 00 49 50 .0 00 00 49 00 .0 00 00 50 40 .0 00 00 N Vl -.l � .. . . : -� · ... · - . -·- · . - ·- - - - -- -- - -- - ·- - - -- - - - -- - -- - · - - ---- ---- -- -- -3 � � · -� 10 BN 10 52 ope n 10 BN 10 53 ope n 10 BN 10 54 ope n 10 BN 10 56 op en 10 BN 10 62 op en 10 BN 10 63 op en 10 BN 12 5 op en 10 BN 12 6 op en 10 BN 12 7 ope n 10 B N 12 8 op en 10 BN 13 0 op en 10 BN 13 1 op en 10 BN 13 2 ope n 10 BN 13 3 op en 10 BN 13 4 op en 10 BN 13 5 op en 10 BN 13 6 op en 10 BN 13 7 op en 10 BN 14 8 ope n 10 BN 14 9 ope n 10 BN 15 0 op en 10 BN 15 1 ope n 10 BN 15 7 ope n 10 BN 16 0 op en 10 BN 16 1 ope n 10 BN 17 2 op en 10 BN 17 3 ope n 10 BN 17 4 ope n 10 B N 17 6 op en 10 BN 19 9 op en 10 BN 20 3 op en 10 BN 20 4 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 i p oi nt , 3 fl ak es 12 .0 00 00 2 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 lpo int , fl ak e 12 .0 00 00 6 fla ke s 12 .0 00 00 3 fla ke s 12 .0 00 00 LI TH IC S CA TI ER ; fl ak es 12 .0 00 00 LI TH IC S C A TI ER ; po int s, fla ke to ol s, fl ak e 12 .0 00 00 LI TH IC S C A TI ER ; fl ak e to ol s, fla ke s 12 .0 00 00 LI TH IC S CA TI ER ; f lak es 12 .0 00 00 LI TH IC S CA TI ER ; fl ak e to ol s, fla ke s 12 .0 00 00 LI TH IC S C A TI ER ; fl ak e to ol s, u ni fa ce s, bi f 12 .0 00 00 LI TH IC S CA TI ER ; fl ak e to ol s, po int s ( DS N ,E 12 .0 00 00 LI TH IC S CA TI ER ; b ifa ce s, fl ak es 12 .0 00 00 LI TH IC S CA TI ER ; fl ak e too ls , p oi nt s (c ar ne 12 .0 00 00 2 ch al ce do ny fl ak es (o ne h ea t a lte re d) , 1 12 .0 00 00 LI TH IC S CA TI ER ; p oi nt s (tr ia ng ul ar , s id e- n 12 .0 00 00 LI TH IC S CA TI ER ; p oi nt s, fla ke to ol s, fl ak e 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C ATI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER ; b ifa ce 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 50 80 .0 00 00 50 20 .0 00 00 49 80 .0 00 00 53 20 .0 00 00 53 70 .0 00 00 53 70 .0 00 00 51 80 .0 00 00 53 00 .0 00 00 53 60 .0 00 00 53 60 .0 00 00 45 72 .0 00 00 45 72 .0 00 00 46 40 .0 00 00 49 00 .0 00 00 48 85 .0 00 00 51 00 .0 00 00 48 85 .0 00 00 48 60 .0 00 00 52 00 .0 00 00 N Vo QQ 10 BN 20 6 op en 10 BN 20 9 op en 10 BN 21 0 op en 10 BN 21 2 op en 10 BN 21 3 op en 10 BN 21 5 op en 10 BN 21 6 op en 10 BN 21 9 op en 10 BN 22 0 op en 10 BN 24 9 op en 10 BN 25 0 op en 10 BN 25 1 op en 10 BN 25 2 op en 10 BN 27 3 op en 10 BN 27 5 op en 10 BN 27 6 op en 10 BN 30 7 op en 10 BN 31 2 op en 10 BN 31 3 op en 10 BN 31 6 op en 10 BN 33 6 op en 10 BN 38 1 op en 10 BN 38 2 op en 10 BN 38 3 op en 10 BN 38 4 op en 10 BN 38 5 op en 10 BN 38 6 op en 10 BN 38 7 op en 10 BN 38 8 op en 10 BN 39 0 op en 10 BN 39 1 op en 10 BN 39 2 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 , LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC , P O TT ER Y SC AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 tv Vl \0 A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a "Z on e 12 10 BN 39 3 op en LI TH IC S CA TI ER 12 .0 00 00 10 BN 39 5 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BN 39 6 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BN 39 7 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BN 39 8 op en LI TH IC S CA TI ER 12 .0 00 00 10 BN 39 9 op en LI TH IC S CA TI ER 12 .0 00 00 10 BN 41 1 ope n CA M P SI TE 12 .0 00 00 10 BN 46 op en lit hic s ca tte r; fla ke s, po int 12 .0 00 00 48 00 .0 00 00 10 BN 47 op en LI TH IC S CA TI ER ; fl ak es 12 .0 00 00 48 15 .0 00 00 10 BN 50 4 ope n larg e lit hi c sc at te r, m os tly o bs id ia n 12 .0 00 00 47 50 .0 00 00 10 BN 50 5 ope n lith ic sc at te r c on si st ing o f 1 0" 20 o bs id ia 12 .0 00 00 48 20 .0 00 00 10 BN 50 7 ope n lit hi c s ca tte r c om po se d of m os tly o bs id ia n 12 .0 00 00 46 05 .0 00 00 10 BN 50 8 op en lit hi c sc at te r c om po se d of o bs id ia n/ ch er t 12 .0 00 00 46 20 .0 00 00 10 BN 50 9 op en lit hi c sc at te r c om po se d of o bs id ia n/ CC S fl 12 .0 00 00 47 10 .0 00 00 10 BN 51 1 op en lith ic s ca tte r, m os tly o bs id ia n fla ke s 12 .0 00 00 46 40 .0 00 00 10 BN 51 2 op en lit hic s ca tte r- fla ke s, sc ra pe r, an d po ss i 12 .0 00 00 45 70 .0 00 00 10 BN 51 3 op en lit hi c sc att er c on sis tin g of c he rt/ ob si di a 12 .0 00 00 46 55 .0 00 00 10 BN 51 4 op en lit hi c sc at te r c om po se d of o bs id ia n fla ke s 12 .0 00 00 46 75 .0 00 00 10 BN 51 5 op en lit hi c sc at te r- bifa ce s, p ro je ct ile po in ts 12 .0 00 00 46 90 .0 00 00 10 BN 51 8 op en lit hi c sc at te r c om po se d of o bs id ia n fla ke s 12 .0 00 00 47 70 .0 00 00 10 BN 51 9 ope n lith ic sc at te r co m po se d of o bs id ia n/ ch al ce 12 .0 00 00 48 20 .0 00 00 10 BN 52 0 ope n lit hi c sc at te r c om po se d of fl ak es , b ifa ce 12 .0 00 00 47 45 .0 00 00 10 BN 52 1 op en lith ic sc att er c om po se d of fl ak es a nd o ne 12 .0 00 00 48 00 .0 00 00 10 BN 52 2 op en lith ic sc at te r c om po se d of ch al ce do ny /o bs i 12 .0 00 00 46 40 .0 00 00 10 BN 52 4 op en lit hic s ca tte r c om po se d of o bs id ia n fla ke s 12 .0 00 00 47 20 .0 00 00 10 BN 52 6 op en lith ic sc at te r c om po se d of fla ke s, sc ra pe r 12 .0 00 00 46 05 .0 00 00 10 BN 52 7 ope n lit hi c sc att er co m po se d of o bs id ia n fla ke s 12 .0 00 00 45 60 .0 00 00 10 BN 52 8 op en lit hi c sc att er /c am ps ite -a rti fa ct s ar e m os 12 .0 00 00 48 35 .0 00 00 10 BN 52 9 op en lit hi c s ca tte r c om po se d of o bs id ia n fla ke s 12 .0 00 00 46 80 .0 00 00 10 BN 53 2 op en lit hi c sc at te r c om po se d ob si di an fl ak es a n 12 .0 00 00 45 60 .0 00 00 10 BN 53 3 op en lit hi c sc at te r c om po se d of o bs id ia n fla ke s 12 .0 00 00 47 40 .0 00 00 10 BN 53 4 op en m ult i� m po ne nt lit hi c sc at te r h av ing a v a 12 .0 00 00 44 60 .0 00 00 N � -- -- -- - - � --- - - 10 BN 53 8 op en 10 BN 53 9 op en 10 BN 54 op en 10 BN 54 0 op en 10 BN 54 1 op en 10 BN 54 2 op en 10 BN 54 3 op en 10 BN 54 4 op en 10 BN 54 6 op en 10 BN 54 8 op en 10 BN 54 9 op en 10 BN 55 ope n 10 BN 55 0 op en 10 BN 55 2 op en 10 BN 55 3 op en 10 BN 55 4 op en 10 BN 55 5 op en 10 BN 55 7 op en 10 BN 55 8 op en 10 BN 55 9 op en 10 BN 56 op en 10 BN 56 0 op en 10 BN 56 1 op en 10 BN 56 2 op en 10 BN 56 3 op en 10 BN 56 4 op en 10 BN 56 6 ope n 10 BN 56 9 op en 10 BN 57 3 op en 10 BN 57 4 op en 10 BN 57 5 ope n 10 BN 57 6 op en A ppe nd ix C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 lith ic sc att er in cl ud in g fla ke s an d to ol s lit hi c sc att er co m po se d of fla ke s, bi fa ce LI TH IC S C A IT ER ; fl ak es , s ide -n ot ch ed p oi nt lit hi c sc at te r i nc lu di ng fl ak es , t oo l f ra g lit hi c sc at te r c om po se d of o bs di an , C CS , a lith ic sc att er w ith a ss or te d to ol s lit hi c sc att er lit hi c sc at te r c om po se d of c ha lc ed on y fla k lit hi c sc at te r c om po se d of fla ke s, o ne c or lith ic sc at te r c om po se d of fla ke s, b ifa ce lit hi c sc at te r c om po se d of fla ke s, sc ra pe r LI TH IC S CA IT ER ; fl ak es , po int ti p; o n a Ia lit hi c sc at te r wi th la nce ola te -s ha pe d pr oi lit hi c sc at te r w ith p os si bl e pa le o po int a lith ic sc att er w ith o ne p ro je ct ile p oi nt a lith ic sc at te r w ith o ne R os e Sp rin g Co m er lit hi c sc at te r c om po se d of o bs id ia n fla ke s lit hi c sc at te r/c am ps ite lith ic sc att er w ith o ne c he rt ut iliz ed fl a lit hi c sc at te r/c am ps ite w ith o ne p ro je ct il LI TH IC S C A IT ER ; fl ak es , u til iz ed c or e, e nd lit hi c sc at te r lit hi c sc at te r w ith o ne c or e lit hi c sc at te r w ith p ro je ct ile p oi nt s, b if lit hi c sc at te r w ith a n ig ni m br ite c or e lit hi c sc at te r w ith o ne o bs id ia n pr oj ec til lith ic sc att er w ith o ne E lko C or ne r- No tc he lith ic sc at te r w ith o bs id ia n El ko p ro je ct i lit hi c sc at te r w ith o ne o bs id ia n co rn er -n o lit hi c sc at te r w ith s ev er al to ol s lit hi c sc at te r lit hi c sc at te r w ith s ix fl ak ed s to ne to ol s -- ----- . . . . �� - - -- ------ 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 46 25 .0 00 00 45 90 .0 00 00 52 20 .0 00 00 44 90 .0 00 00 46 00 .0 00 00 47 00 .0 00 00 47 40 .0 00 00 44 70 .0 00 00 43 80 .0 00 00 44 15 .0 00 00 46 46 .0 00 00 53 50 .0 00 00 45 00 .0 00 00 46 60 .0 00 00 46 60 .0 00 00 46 50 .0 00 00 47 30 .0 00 00 43 80 .0 00 00 44 30 .0 00 00 44 15 .0 00 00 50 00 .0 00 00 44 30 .0 00 00 44 00 .0 00 00 45 60 .0 00 00 46 10 .0 00 00 43 80 .0 00 00 45 80 .0 00 00 45 82 .0 00 00 43 70 .0 00 00 43 60 .0 00 00 44 85 .0 00 00 42 30 .0 00 00 N 0'1 - 10 BN 57 7 op en 10 BN 57 8 op en 10 BN 57 9 op en 10 BN 58 0 op en 10 BN 58 2 ope n 10 BN 58 3 op en 10 BN 58 4 op en 10 BN 58 5 op en 10 BN 58 6 op en 10 BN 60 op en 10 BN 60 7 op en 10 BN 61 op en 10 BN 61 0 op en 10 BN 61 3 op en 10 BN 61 5 op en 10 BN 61 8 op en 10 BN 62 op en 10 BN 62 0 op en 10 BN 62 6 ope n 10 BN 63 1 ope n 10 BN 63 2 ope n 10 BN 63 7 ope n 10 BN 64 3 ope n 10 BN 64 7 ope n 10 BN 64 8 op en 10 BN 64 9 op en 10 BN 65 1 op en 10 BN 65 2 op en 10 BN 654 op en 10 BN 65 5 ope n 10 BN 65 7 op en 10 BN 65 8 ope n - - - - - - -- - -- - - - -- -- A pp en di x C : P re his to ri c L oc al iti es in th e St ud y A re a -Z on e 12 lit hi c sc att er w ith E lko -e arr ed p ro je ct ile 12 .0 00 00 lith ic sc at te r w ith o bs id ia n pr oj ec tile p o 12 .0 00 00 lit hi c sc at te r w ith o bs id ia n an d ch al ce do n 12 .0 00 00 lit hi c sc att er w ith o bs id ia n an d ig ni m br it 12 .0 00 00 lit hi c sc att er w ith b ifa ce m ids ec tio n, m an 12 .0 00 00 lit hi c sc at te r o f o bs id ia n fla ke s 12 .0 00 00 lit hi c sc att er w ith s ha le a w l a nd o bs id ia n 12 .0 00 00 lit hic s ca tte r w ith o bs id ia n an d C C S fla ke 12 .0 00 00 lit hi c sca tte r 12 .0 00 00 LI T HI C S CA TT ER ; fl ak es 12 .0 00 00 . tw o Pi nt o po int b as es 12 .0 00 00 LI TH IC S CA TT ER ; fl ak es , s ev er al w ith w or ke 12 .0 00 00 sc ra pe r a nd A ga te B as in po in t b as e 12 .0 00 00 th re e ob sd ia n fla ke s a nd a c he rt dr ill 12 .0 00 00 co rn er -n ot ch ed p ro je ct ile p oi nt , b ifa ce ti 12 .0 00 00 ba sa lt te rti ary fl ak e, o bs id ia n se co nd ar y 12 .0 00 00 LI TH IC S CA TT ER ; fl ak es , w or ke d fla ke 12 .0 00 00 ob si di an fl ak e to ol , w hi te c ha lc ed on y kn if 12 .0 00 00 ob si di an p ro je ct ile po int m ids ec tio n, o bs i 12 .0 00 00 ch er t c orn er -n ot ch ed p ro je ct ile p oi nt , p ro 12 .0 00 00 ch er t d ril l a nd fl ak e, A m er ica n Fa lls o bs i 12 .0 00 00 2 Ro se S pr ing p oi nt s 12 .0 00 00 Ro se S pr in g co rn er n ot ch ed p oi nt , b ifa ce , 12 .0 00 00 2 fla ke s 12 .0 00 00 10 fla ke s 12 .0 00 00 4 fla ke s 12 .0 00 00 4 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 14 fla ke s 12 .0 00 00 3 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 8 fla ke s 12 .0 00 00 44 60 .0 00 00 44 40 .0 00 00 44 20 .0 00 00 44 20 .0 00 00 44 00 .0 00 00 43 40 .0 00 00 41 00 .0 00 00 45 15 .0 00 00 42 70 .0 00 00 44 19 .0 00 00 45 40 .0 00 00 42 65 .0 00 00 43 90 .0 00 00 45 00 .0 00 00 44 60 .0 00 00 43 82 .0 00 00 42 65 .0 00 00 43 40 .0 00 00 44 40 .0 00 00 44 40 .0 00 00 44 00 .0 00 00 44 00 .0 00 00 44 40 .0 00 00 43 80 .0 00 00 46 30 .0 00 00 44 40 .0 00 00 43 35 .0 00 00 43 25 .0 00 00 43 40 .0 00 00 43 50 .0 00 00 43 40 .0 00 00 43 40 .0 00 00 N R3 10 BN 66 0 op en 10 BN 66 1 ope n 10 BN 66 2 op en 10 BN 66 3 op en 10 BN 66 5 op en 10 BN 66 6 op en 10 BN 66 8 op en 10 BN 66 9 op en 10 BN 67 2 ope n 10 BN 67 3 op en 10 8N 67 4 op en 10 BN 67 6 op en 10 BN 67 7 ope n 10 BN 67 8 op en 10 BN 68 0 op en 10 BN 68 1 op en 10 BN 68 3 op en 10 8N 68 6 op en 10 BN 68 7 op en 10 8N 68 8 op en 10 8N 68 9 op en 10 8N 69 0 op en 10 BN 69 1 op en 10 BN 69 6 op en 10 BN 69 7 op en 10 BN 69 8 op en 10 BN 70 op en 10 BN 70 0 op en 10 8N 70 1 op en 10 BN 706 op en 10 BN 70 9 op en 10 BN 71 0 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a - Z on e 12 3 fla ke s, co re 12 .0 00 00 3 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 1 fla ke , 1 fl ak e to ol 12 .0 00 00 2 fla ke s 12 .0 00 00 7 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 2 fla ke s, sc ra pe r 12 .0 00 00 4 fla ke s 12 .0 00 00 fla ke , t oo l 12 .0 00 00 5 fla ke s 12 .0 00 00 2 bifa ce s 12 .0 00 00 te n w hi te c he rt fla ke s an d on e ob si di an fl 12 .0 00 00 ob si di an b ifa ce fr ag m en t, se co nd ar y ob sid i 12 .0 00 00 tw o fla ke s 12 .0 00 00 fla ke s- -3 o bs id ia n te rti ary , 1 o bs id ia n se 12 .0 00 00 6 ob si di an fl ak es -1 d ec or t, 2 se co nd ary , 3 12 .0 00 00 4 te rti ary o bs id ia n pr es su re fl ak es 12 .0 00 00 3 ob sid ia n fla ke s- 2 se co nd ar y. 1 te rti ar y 12 .0 00 00 2 te rti ar y fla ke s 12 .0 00 00 2 se co nd ar y ob si di an fl ak es 12 .0 00 00 1 se co nd ar y an d 5 te rti ar y ob si di an fl ak es 12 .0 00 00 1 gr ey c he rt se co nd ary fl ak e an d 1 sh at te r 12 .0 00 00 4 fla ke s 12 .0 00 00 8 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 3 uti liz ed fl ak es 12 .0 00 00 co re , 2 fl ak es 12 .0 00 00 3 fla ke s 12 .0 00 00 3 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 I po int , f la ke 12 .0 00 00 43 80 .0 00 00 44 00 .0 00 00 44 00 .0 00 00 44 00 .0 00 00 43 80 .0 00 00 45 40 .0 00 00 44 80 .0 00 00 44 00 .0 00 00 43 40 .0 00 00 43 40 .0 00 00 44 00 .0 00 00 44 00 .0 00 00 44 80 .0 00 00 43 80 .0 00 00 46 60 .0 00 00 47 00 .0 00 00 47 10 .0 00 00 46 30 .0 00 00 46 15 .0 00 00 47 60 .0 00 00 45 40 .0 00 00 45 60 .0 00 00 45 00 .0 00 00 46 00 .0 00 00 47 80 .0 00 00 46 10 .0 00 00 51 20 .0 00 00 45 80 .0 00 00 46 40 .0 00 00 46 40 .0 00 00 45 60 .0 00 00 45 80 .0 00 00 N 0'1 w 10 BN 72 3 op en 10 BN 72 4 ope n 10 BN 72 6 op en 10 BN 72 7 op en 10 BN 73 op en 10 BN 73 0 op en 10 BN 73 2 op en 10 BN 73 3 o� n 10 BN 73 5 op en 10 BN 73 6 op en 10 BN 73 7 op en 10 BN 73 8 op en 10 BN 74 op en 10 BN 74 0 op en 10 BN 74 2 ope n 10 BN 74 4 op en 10 BN 74 6 op en 10 BN 75 op en 10 BN 75 0 op en 10 BN 75 1 op en 10 BN 75 2 op en 10 BN 75 4 op en 10 BN 75 6 op en 10 BN 75 8 op en 10 BN 76 0 ope n 10 BN 76 3 op en 10 BN 76 5 ope n 10 BN 77 ope n 10 BN 77 4 op en 10 BN 78 op en 10 BN 78 2 op en 10 BN 78 3 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 3 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 6 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 LI TH IC S CA TI ER ; fl ak es 12 .0 00 00 bif ac e, 5 fl ak es 12 .0 00 00 2 fla ke s 12 .0 00 00 bi fa ce , f la ke 12 .0 00 00 4 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 7 fla ke s 12 .0 00 00 2 fla ke s 12 .0 00 00 LI TH IC S C A TI ER ; fl ak es , n od ule s 12 .0 00 00 2 fla ke s 30 m et ers a pa rt 12 .0 00 00 5 fla ke s 12 .0 00 00 bif ac e tra g, fl ak e 12 .0 00 00 5 fla ke s 12 .0 00 00 LI TH IC S C A TI ER ; fl ak es , p oi nt , g ro un d st on 12 .0 00 00 2 fla ke s 12 .0 00 00 fla ke to ol , fl ak e 12 .0 00 00 3 fla ke s 12 .0 00 00 bifa ce fr ag , c hu nk 12 .0 00 00 2 bifa ce fr ag s 12 .0 00 00 bifa ce tr ag , p oi nt 12 .0 00 00 bif ac e tra g, fla ke 12 .0 00 00 bifa ce ti p, 2 fl ak es 12 .0 00 00 bif ac e, 3 fl ak es 12 .0 00 00 LI TH IC S C A TI ER ; fl ak es , b on e, to ot h en am el 12 .0 00 00 6 fla ke s, bifa ce 12 .0 00 00 LI TH IC S C A TI ER ; f la ke s, to ot h en am el 12 .0 00 00 4 fla ke s 12 .0 00 00 lit hi c sc at te r; 6 fla ke s 12 .0 00 00 44 80 .0 00 00 45 40 .0 00 00 44 55 .0 00 00 43 90 .0 00 00 49 50 .0 00 00 46 35 .0 00 00 45 40 .0 00 00 44 20 .0 00 00 47 80 .0 00 00 46 20 .0 00 00 45 80 .0 00 00 45 60 .0 00 00 50 00 .0 00 00 45 80 .0 00 00 45 20 .0 00 00 44 60 .0 00 00 44 00 .0 00 00 52 00 .0 00 00 45 60 .0 00 00 45 40 .0 00 00 44 60 .0 00 00 45 00 .0 00 00 46 40 .0 00 00 46 00 .0 00 00 45 00 .0 00 00 46 20 .0 00 00 47 40 .0 00 00 49 00 .0 00 00 45 35 .0 00 00 49 00 .0 00 00 46 90 .0 00 00 47 10 .0 00 00 · - -- -----·· � 10 BN 78 8 op en 10 BN 78 9 op en 10 BN 79 op en 10 BN 8 op en 10 BN 80 op en 10 BN 81 op en 10 BN 86 1 op en 10 BN 95 6 op en 10 BN 95 7 op en 10 BN 96 5 op en 10 BN 96 8 op en 10 BN 97 0 op en 10 BN 98 5 op en 10 BN 98 6 op en 10 BN 98 8 op en 10 BN 99 9 op en 10 BT 10 0 op en 10 BT 10 02 op en 10 BT 10 03 op en 10 BT 10 04 op en 10 BT 10 06 op en 10 BT 10 08 op en 10 BT 10 09 op en 10 BT 10 1 op en 10 BT 10 11 op en 10 BT 10 12 op en 10 BT 10 13 op en 10 BT 10 15 op en 10 BT 10 16 op en 10 BT 10 18 op en 10 BT 10 20 op en 10 BT 10 21 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 lit hic s ca tte r; fla ke s, bif ac e tip , p oi nt 12 .0 00 00 lit hi c sc at te r; fla ke s 12 .0 00 00 LI TH IC S CA TT ER ; f la ke s, no du le s, m ica ce ou s 12 .0 00 00 LI TH IC S CA TI ER ; s ev er al ca m ps ite s w ith p oi 12 .0 00 00 LI TH IC S CA TI ER ; f la ke s, sp a I I, po int s (P in 12 .0 00 00 LI TH IC S CA TT ER ; f la ke s, co rn er -n ot ch ed p oi 12 .0 00 00 lar ge , h ig hl y di sp er se d lit hic s ca tte r 12 .0 00 00 lit hic s ca tte r; po int , m od ifi ed fl ak e, fl a 12 .0 00 00 lit hi c sc at te r; po int , e nd sc ra pe r, fla ke s 12 .0 00 00 lit hi c sc at te r a nd h ist or ic sc at te r; po int 12 .0 00 00 lit hic s ca tte r; po int s, bi fa ce , fl ak es 12 .0 00 00 3 fla ke s 12 .0 00 00 3 fla ke s 12 .0 00 00 co re a nd 3 fl ak es 12 .0 00 00 4 fla ke s 12 .0 00 00 lit hic s ca tte r; fla ke s, po int s, sc ra pe r 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER ,P RO C ES SI NG 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 51 20 .0 00 00 51 35 .0 00 00 48 60 .0 00 00 44 00 .0 00 00 48 60 .0 00 00 49 00 .0 00 00 49 20 .0 00 00 48 40 .0 00 00 48 00 .0 00 00 48 40 .0 00 00 48 20 .0 00 00 49 20 .0 00 00 47 60 .0 00 00 47 60 .0 00 00 48 00 .0 00 00 49 40 .0 00 00 N 0\ Vl 10 BT 10 22 op en 10 BT 10 25 op en 10 BT 10 28 op en 10 BT 10 29 op en 10 BT 10 30 op en 10 BT 10 32 op en 10 BT 10 34 op en 10 BT 10 36 op en 10 BT 10 38 op en 10 BT 10 39 op en 10 BT 10 4 op en 10 BT 10 41 op en 10 BT 10 43 op en 10 BT 10 44 op en 10 BT 10 45 op en 10 BT 10 46 op en 10 BT 10 49 op en 10 BT 10 5 op en 10 BT 10 52 op en 10 BT 10 53 op en 10 BT 10 56 op en 10 BT 10 59 op en 10 BT 10 62 op en 10 BT 10 63 op en 10 BT 10 66 op en 10 BT 10 68 op en 10 BT 10 69 op en 10 BT 10 7 op en 10 BT 10 75 op en 10 BT 10 76 op en 10 BT 10 78 op en 10 BT 10 79 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 PR O C ES SI NG 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI T HI C S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 ! KI LL S IT E 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 KI LL S IT E 12 .0 00 00 KI LL S IT E 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 N 0'1 0'1 10 BT 10 82 op en 10 BT 10 83 op en 10 BT 10 85 op en 10 BT 10 86 op en 10 BT 10 87 op en 10 BT 10 9 op en 10 BT 10 91 ope n 10 BT 11 0 op en 10 BT 11 01 op en 10 BT 11 02 ope n 10 BT 11 04 ope n 10 BT 11 06 ope n 10 BT 11 08 ope n 10 BT 11 09 ope n 10 BT 11 1 o!) en 10 BT 11 10 op en 10 BT 11 12 op en 10 BT 11 22 op en 10 BT 11 23 op en 10 BT 11 28 op en 10 BT 11 29 ope n 10 BT 11 3 ope n 10 BT 11 30 op en 10 BT 11 31 ope n 10 BT 11 33 op en 10 BT 11 34 op en 10 BT 11 35 op en 10 BT 11 37 op en 10 BT 11 39 op en 10 BT 11 4 ope n 10 BT 11 40 op en 10 BT 11 41 op en - - - - - - -- --- -- A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 KI LL S IT E 12 .0 00 00 H U NT IN G C A M P 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C ATT ER 12 .0 00 00 PR O C ES SI NG 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 C AM P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 N 0'1 --.1 � · 10 BT 11 42 op en 10 BT 11 45 op en 10 BT 11 46 op en 10 BT 11 47 ope n 10 BT 11 48 op en 10 BT 11 49 ope n 10 BT 11 5 ope n 10 BT 11 52 op en 10 BT 11 56 o� n 10 BT 11 57 op en 10 BT 11 60 op en 10 BT 11 61 op en 10 BT 11 66 op en 10 BT 11 67 op en 10 BT 11 7 op en 10 BT 11 70 op en 10 BT 11 71 op en 10 BT 11 72 op en 10 BT 11 73 op en 10 BT 11 74 op en 10 BT 11 77 ope n 10 BT 11 8 ope n 10 BT 11 81 op en 10 BT 11 85 op en 10 BT 11 88 ope n 10 BT 11 89 op en 10 BT 11 9 op en 10 BT 11 90 ope n 10 BT 11 91 op en 10 BT 11 93 ope n 10 BT 11 94 ope n 10 BT 12 -- op�n __ -�- A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 1 LI TH IC S C A TI ER 12 .0 00 00 1 LI TH IC S C AT TE R 12 .0 00 00 1 LI TH IC S C A TI ER 12 .0 00 00 1 LI T HI C S C A TI ER 12 .0 00 00 : LI TH IC S C A TI ER 12 .0 00 00 1 C AM P SI TE 12 .0 00 00 ' LI TH IC S C A TI ER 12 .0 00 00 1 LI TH IC S CA TT ER 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 C AM P SI TE 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 TE M PO RA RY C A M P 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC R ED UC TI O N A RE A 12 .0 00 00 CA M P SI TE 12 .0 00 00 PR O C ES S IN G 12 .0 00 00 LI TH IC S C ATT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 l� rg�_9e3 m ps ite 12 .0 00 00 t- -J Q'l 00 . =--)_. � �- �� ��� � -� �- . �·- ·- - . �- � ·· - 1 I A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a �Z on e 12 10 BT 12 0 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 00 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 02 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 05 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 12 07 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 12 08 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 09 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 1 op en C A M P SI TE 12 .0 00 00 10 BT 12 11 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 12 12 op en HA BI TA TI O N/ C A M P 12 .0 00 00 10 BT 12 14 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 15 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 16 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 2 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 21 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 22 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 23 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 24 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 12 25 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 26 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 27 op en PR O C ES SI NG 12 .0 00 00 10 BT 12 3 op en LI TH IC S C AT TE R 12 .0 00 00 10 BT 12 30 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 32 op en LI TH IC S CA TT ER , C A M P SI TE 12 .0 00 00 10 BT 12 34 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 42 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 12 47 op en TE M PO RA RY C A M P 12 .0 00 00 10 BT 12 50 ope n H EA RT H 12 .0 00 00 10 BT 12 51 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 52 ope n LI TH IC S C A TI ER 12 .0 00 00 10 BT 12 57 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 12 58 ope n LI TH IC S C A TI ER ' 12 .0 00 00 N $ 10 BT 12 66 ope n 10 BT 12 69 ope n 10 BT 12 72 op en 10 BT 12 73 op en 10 BT 12 74 op en 10 BT 12 79 op en 10 BT 12 80 op en 10 BT 12 81 op en 10 BT 12 82 ope n 10 BT 12 83 op en 10 BT 12 84 ope n 10 BT 12 85 op en 10 BT 12 86 op en 10 BT 12 89 op en 10 BT 12 9 op en 10 BT 12 97 op en 10 BT 12 99 op en 10 BT 13 00 op en 10 BT 13 06 op en 10 BT 13 07 op en 10 BT 13 09 op en 10 BT 13 1 op en 10 BT 13 10 op en 10 BT 13 14 op en 10 BT 13 15 op en 10 BT 13 17 op en 10 BT 13 18 op en 10 BT 13 19 op en 10 BT 13 21 op en 10 BT 13 22 op en 10 BT 13 24 op en 10 BT 13 27 ope n - - -- - - - - - - -- A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 LI TH IC S C A TI ER 12 .0 00 00 1 LI TH IC S CA TT ER 12 .0 00 00 1 LI TH IC S CA TT ER 12 .0 00 00 1 LI TH IC S CA TT ER 12 .0 00 00 1 LI TH IC S CA TI ER 12 .0 00 00 1 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 ' LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 � F-- - · ·- . - . .) --- - -- 1· . ..... 10 BT 13 28 10 BT 13 29 10 BT 13 3 10 BT 13 30 10 BT 13 32 10 BT 13 33 10 BT 13 34 10 BT 13 35 10 BT 13 36 10 BT 13 38 10 BT 13 4 10 BT 13 41 10 BT 13 45 10 BT 13 46 10 BT 13 48 10 BT 13 49 10 BT 13 51 10 BT 13 52 10 BT 13 54 10 BT 13 57 10 BT 13 59 10 BT 13 63 10 BT 13 66 10 BT 13 70 10 BT 13 75 10 BT 13 77 10 BT 13 78 10 BT 13 80 10 BT 13 82 10 BT 13 83 10 BT 13 85 10 BT 13 89 -- -- --- ---- op en ope n op en op en op en ope n ope n op en ope n op en op en ope n ope n op en ope n op en op en op en op en op en op en op en op en op en op en op en op en ope n ope n ope n op en - gpe n . _ ··-� A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 1 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CAJT ER _ __ ____ --·- ----·-- ----__ __ �- - .. 1 �. 00 0() 0 � �- � - - -- -- - - ·- -- -- - - - ·· - - - - -- - � .- . ' A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a ·Z on e 12 10 BT 13 90 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 13 97 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 13 98 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 13 99 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 02 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 03 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 08 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 10 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 13 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 17 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 19 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 20 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 21 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 22 ope n LI TH IC S CA TT ER 12 .0 00 00 10 8T 14 24 op en LI TH IC S CA TT ER ' 1 2. 00 00 0 10 BT 14 25 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 26 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 27 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 28 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 29 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 31 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 32 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 34 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 36 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 37 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 38 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 45 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 49 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 50 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 51 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 54 op en lit hi c sc at te r 12 .0 00 00 50 40 .0 00 00 10 BT 14 55 op en lith ic sc at te r 12 .0 00 00 50 40 .0 00 00 N (:j A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 BT 14 56 op en lit hic s ca tte r 12 .0 00 00 49 25 .0 00 00 10 BT 14 57 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 60 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 62 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 64 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 66 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 67 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 68 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 69 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 71 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 73 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 74 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 76 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 77 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 78 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 79 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 83 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 84 op en ca m ps ite o f o ve r 5 00 fl ak es 12 .0 00 00 49 40 .0 00 00 10 BT 14 86 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 87 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 88 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 89 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 90 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 94 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 97 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 98 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 14 99 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 0 op en CA M P SI TE 12 .0 00 00 10 BT 15 00 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 02 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 03 ope n LI TH IC S CA TT ER 12 .0 00 00 N \:;:} A pp en di x C : P re his to ri c L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 15 05 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 09 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 1 op en CA M P SI TE 12 .0 00 00 10 BT 15 13 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 15 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 17 op en lit hic sca tte r 12 .0 00 00 49 45 .0 00 00 10 BT 15 18 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 21 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 22 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 26 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 30 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 34 op en LI TH IC S C ATT ER 12 .0 00 00 10 BT 15 35 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 36 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 37 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 38 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 39 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 40 ope n LI TH IC S C ATT ER 12 .0 00 00 10 BT 15 41 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 44 op en LI TH IC S C AT TE R 12 .0 00 00 10 BT 154 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 46 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 48 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 51 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 53 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 54 op en CA M P SI TE 12 .0 00 00 10 BT 15 56 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 59 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 60 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 61 op en CA M P SI TE 12 .0 00 00 N :;;;! A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 15 66 op en lith ic sca tte r 12 .0 00 00 49 30 .0 00 00 10 BT 15 67 op en lith ic sca tte r 12 .0 00 00 49 20 .0 00 00 10 BT 15 73 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 74 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 81 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 85 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 92 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 93 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 95 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 15 96 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 05 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 08 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 09 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 13 op en LI TH IC S C AT TE R 12 .0 00 00 10 BT 16 17 ope n LI TH IC S C AT TE R 12 .0 00 00 10 BT 16 19 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 22 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 25 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 27 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 29 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 30 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 38 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 39 op en H U NT IN G B LI N D 12 .0 00 00 10 BT 16 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 41 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 42 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 44 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 46 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 47 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 51 op en LI TH IC S CA TT ER 12 .0 00 00 !j Vl A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 16 53 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 56 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 57 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 59 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 6 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 60 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 62 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 64 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 65 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 67 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 7 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 70 op en LI TH IC S C A IT ER 12 .0 00 00 10 BT 16 71 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 72 op en LI TH IC S C ATT ER 12 .0 00 00 10 BT 16 73 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 76 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 77 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 78 op en LI TH IC S C A IT ER 12 .0 00 00 10 BT 16 79 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 8 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 82 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 85 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 87 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 88 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 90 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 92 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 93 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 94 op en LI TH IC S CA IT ER 12 .0 00 00 10 BT 16 95 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 96 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 97 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 16 98 op en LI TH IC S CA IT ER 12 .0 00 00 N � A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 BT 16 99 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 00 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 13 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 22 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 23 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 29 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 30 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 31 ope n LI TH IC S CA TT ER ; f la ke s, bif ac e 12 .0 00 00 49 70 .0 00 00 10 BT 17 32 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 33 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 34 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 35 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 36 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 37 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 38 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 39 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 40 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 41 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 44 op en lith ic s ca tt ter 12 .0 00 00 49 55 .0 00 00 10 BT 17 45 ope n lith ic s ca tte r 12 .0 00 00 49 50 .0 00 00 10 BT 17 46 op en lith ic sc att er 12 .0 00 00 49 40 .0 00 00 10 BT 17 47 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 48 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 54 op en LI TH IC S C ATT ER 12 .0 00 00 10 BT 17 55 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 56 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 57 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 17 59 op en LI TH IC S CA TT ER 12 .0 00 00 N :j �··-, -- -- - -- - -co -- · - .. �· - - __ _ -�1- : ' � -· - - - � - - - - - - - - - - - - - - ·� - - . ,. 10 BT 17 6 op en 10 BT 17 63 op en 10 BT 17 69 op en 10 BT 17 7 op en 10 BT 17 70 op en 10 BT 17 72 op en 10 BT 17 73 op en 10 BT 17 76 op en 10 BT 17 83 op en 10 BT 17 84 op en 10 BT 17 86 op en 10 BT 17 88 op en 10 BT 17 90 op en 10 BT 17 91 op en 10 BT 17 92 op en 10 BT 17 94 op en 10 BT 18 0 op en 10 BT 18 02 op en 10 BT 18 03 op en 10 BT 18 04 op en 10 BT 18 05 op en 10 BT 18 08 op en 10 BT 18 09 op en 10 BT 18 1 op en 10 BT 18 12 op en 10 BT 18 15 op en 10 BT 18 16 op en 10 BT 18 18 op en 10 BT 18 21 op en 10 BT 18 26 op en 10 BT 18 3 op en 10 BT 18 36 op en A pp en di x C: P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 PO TT ER Y SC AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 , LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 H U NT IN G B LI N DS 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 N -. ..) OQ 10 BT 18 37 op en 10 BT 18 4 op en 10 BT 18 40 op en 10 BT 184 1 op en 10 BT 18 43 op en 10 BT 18 44 op en 10 BT 18 46 op en 10 BT 18 47 op en 10 BT 18 48 op en 10 BT 18 5 ope n 10 BT 18 53 ope n 10 BT 18 55 op en 10 BT 18 6 op en 10 BT 18 61 op en 10 BT 18 62 op en 10 BT 18 64 op en 10 BT 18 65 op en 10 BT 18 66 op en 10 BT 18 7 ope n 10 BT 18 75 op en 10 BT 18 8 op en 10 BT 18 83 op en 10 BT 18 87 op en 10 BT 18 88 op en 10 BT 18 9 op en 10 BT 18 91 op en 10 BT 18 92 ope n 10 BT 18 93 op en 10 BT 18 95 op en 10 BT 18 96 ope n 10 BT 18 98 ope n 10 BT 19 ope n A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER LI TH IC S C AT TE R CA M P SI TE LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER CA M P SI TE C A M P SI TE LI TH IC S C AT TE R LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER CA M P SI TE LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S C AT TE R CA M P SI TE LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S C AT TE R LI TH IC S CA TT ER LI TH IC S CA TT ER -- --- ------- . - -· -· ··-·- -·-------- ' 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 N � � 10 BT 19 0 op en 10 BT 19 01 ope n 10 BT 19 03 ope n 10 BT 19 04 op en 10 BT 19 07 op en 10 BT 19 1 op en 10 BT 19 12 op en 10 BT 19 15 op en 10 BT 19 17 ope n 10 BT 19 18 op en 10 BT 19 2 ope n 10 BT 19 22 ope n 10 BT 19 24 op en 10 BT 19 26 op en 10 BT 19 27 op en 10 BT 19 29 op en 10 BT 19 3 ope n 10 BT 19 36 op en 10 BT 19 39 op en 10 BT 19 4 op en 10 BT 19 41 ope n 10 BT 19 42 op en 10 BT 19 45 op en 10 BT 19 49 op en 10 BT 19 5 op en 10 BT 19 53 op en 10 BT 19 57 ope n 10 BT 19 6 ope n 10 BT 19 60 op en 10 BT 19 61 op en 10 BT 19 67 ope n 10 BT 19 69 Qpf9 n - -- ---·- A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 C AM P SI TE 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 1 LI TH IC S C A TI ER 12 .0 00 00 1 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 -- ---··----·- N 00 0 10 BT 19 7 op en 10 BT 19 70 op en 10 BT 19 74 op en 10 BT 19 76 op en 10 BT 19 8 op en 10 BT 19 85 op en 10 BT 19 86 op en 10 BT 19 88 op en 10 BT 19 89 op en 10 BT 19 9 op en 10 BT 19 90 op en 10 BT 19 96 op en 10 BT 20 0 op en 10 BT 20 00 op en 10 BT 20 06 ope n 10 BT 20 1 op en 10 BT 20 10 op en 10 BT 20 12 op en 10 BT 20 13 op en 10 BT 20 14 op en 10 BT 20 15 op en 10 BT 20 18 op en 10 BT 20 2 op en 10 BT 20 20 ope n 10 BT 20 21 op en 10 BT 20 3 op en 10 BT 20 39 op en 10 BT 20 4 ope n 10 BT 20 41 ope n 10 BT 20 48 ope n 10 BT 20 50 ope n 10 BT 20 51 ope n A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 ST O N E T O O L A ND L IT HI C S C A 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 sm al l li th ic s ca tte r; po int , f la ke s 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 5 fla ke s 12 .0 00 00 5 fla ke s 12 .0 00 00 lit hic s ca tte r; fla ke s, s cr ap er , po int 12 .0 00 00 lit hi c sc at te r; fla ke s, bi fa ce , fe r 12 .0 00 00 54 10 .0 00 00 57 00 .0 00 00 49 00 .0 00 00 48 25 .0 00 00 48 25 .0 00 00 N OQ - �·· · ... · . . �- - - - - · . - - � � " " _ _ _ _ _ _ _ _ _ . . . . - - - · - - 1 10 BT 20 52 ope n 10 BT 20 53 op en 10 BT 20 66 op en 10 BT 20 68 op en 10 BT 20 7 op en 10 BT 20 70 op en 10 BT 20 75 ope n 10 BT 20 76 op en 10 BT 20 78 op en 10 BT 20 8 op en 10 BT 20 80 op en 10 BT 20 85 op en 10 BT 20 86 op en 10 BT 20 87 ope n 10 BT 20 9 op en 10 BT 20 92 op en 10 BT 20 93 op en 10 BT 20 94 op en 10 BT 21 0 ope n 10 BT 21 1 ope n 10 BT 21 2 op en 10 BT 21 27 op en 10 BT 21 3 op en 10 BT 21 30 op en 10 BT 21 31 op en 10 BT 21 32 op en 10 BT 21 33 op en 10 BT 21 36 ope n 10 BT 21 5 op en 10 BT 21 6 op en 10 BT 21 7 op en 10 BT 21 9 op en A pp en di x C : P re his to ri c L oc al iti es in th e St ud y A re a -Z on e 12 lit hi c sc at te r; fla ke s, fe r, 2 bifa ce s 12 .0 00 00 lit hi c sc att er ; fl ak es , f er , b on e, c er am ic 12 .0 00 00 lit hi c sc at te r; fla ke s 12 .0 00 00 lit hi c sc at te r; bifa ce , f lak es 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 lit hi c sc at te r; fla ke s 12 .0 00 00 kn ife fr ag , b ifa ce fr ag , u til ize d fla ke , p 12 .0 00 00 ca m ps ite w ith fl ak es , s cra pe r, bif ac e gr ag 12 .0 00 00 la rg e no tc he d po int fr ag , b ifa ce ti p 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 lit hi c sc atte r; fla ke s, po in t 12 .0 00 00 lit hi c sc att er ; p oi nt , s cra pe rs , fl ak es 12 .0 00 00 lit hi c sc att er ; b ifa ce , fl ak es 12 .0 00 00 lit hic s ca tte r; 4 po ints , f la ke s 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 lit hi c sc at te r; fla ke s 12 .0 00 00 lit hi c sc at te r; sc ra pe r, fla ke s 12 .0 00 00 lit hi c sc at te r; po int s, fla ke s 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 lit hi c sc at te r; fla ke s 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 lit hi c sca tte r; fla ke s 12 .0 00 00 3 fla ke s 12 .0 00 00 lit hi c sc att er ; fl ak es , p oi nt 12 .0 00 00 lit hi c sc at te r; fla ke s, re to uc h fla ke , b if 12 .0 00 00 3 fla ke s 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 48 25 .0 00 00 48 25 .0 00 00 59 40 .0 00 00 59 40 .0 00 00 48 05 .0 00 00 50 10 .0 00 00 49 10 .0 00 00 49 40 .0 00 00 49 40 .0 00 00 50 70 .0 00 00 50 30 .0 00 00 50 30 .0 00 00 50 70 .0 00 00 50 70 .0 00 00 50 70 .0 00 00 52 50 .0 00 00 52 30 .0 00 00 52 30 .0 00 00 52 00 .0 00 00 52 00 .0 00 00 53 20 .0 00 00 L" N 01 1) N 10 BT 22 0 op en 10 BT 22 6 op en 10 BT 22 7 op en 10 BT 22 8 op en 10 BT 22 9 op en 10 BT 23 0 op en 10 BT 23 1 op en 10 BT 23 3 op en 10 BT 23 4 op en 10 BT 23 5 op en 10 BT 24 8 op en 10 BT 24 9 op en 10 BT 25 op en 10 BT 25 0 op en 10 BT 25 5 op en 10 BT 25 6 op en 10 BT 25 7 op en 10 BT 25 9 op en 10 BT 26 0 op en 10 BT 26 2 op en 10 BT 26 6 op en 10 BT 27 0 op en 10 BT 27 1 op en 10 BT 27 2 op en 10 BT 27 3 op en 10 BT 27 4 op en 10 BT 27 5 op en 10 BT 27 6 op en 10 BT 27 7 op en 10 BT 27 8 op en 10 BT 27 9 op en 10 BT 28 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 64 80 .0 00 00 N OQ w A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 BT 28 0 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 1 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 6 ope n CA M P 12 .0 00 00 10 BT 28 7 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 8 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 28 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 0 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 29 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 3 ope n C A M P 12 .0 00 00 10 BT 30 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 1 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 2 op en CA M P/ LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 30 8 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 31 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 31 0 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 31 1 op en LI TH IC S CA TT ER 12 .0 00 00 N t: 10 BT 31 2 op en 10 BT 31 3 op en 10 BT 31 4 op en 10 BT 31 5 op en 10 BT 31 7 op en 10 BT 31 8 op en 10 BT 32 0 op en 10 BT 32 3 op en 10 BT 33 op en 10 BT 33 0 op en 10 BT 33 1 op en 10 BT 33 2 op en 10 BT 33 3 op en 10 BT 33 4 op en 10 BT 33 6 op en 10 BT 33 7 op en 10 BT 33 8 op en 10 BT 33 9 op en 10 BT 34 op en 10 BT 34 1 op en 10 BT 34 2 op en 10 BT 34 3 op en 10 BT 34 4 op en 10 BT 34 5 op en 10 BT 34 8 op en 10 BT 34 9 op en 10 BT 35 3 op en 10 BT 35 5 op en 10 BT 35 6 op en 10 BT 35 7 op en 10 BT 35 9 op en 10 BT 36 0 op en " A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 1 CA M P SI TE 12 .0 00 00 ; LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 cr at er w ith m at er ia l a t r im ro ck 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 N 00 VI A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 36 1 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 36 2 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 36 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 37 8 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 38 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 38 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 38 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 38 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 38 7 op en LI TH IC S CA TT ER , C AM P SI TE 12 .0 00 00 10 BT 39 op en CA M P SI TE 12 .0 00 00 10 BT 39 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 39 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 39 4 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 39 5 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 396 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 39 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 39 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 4 op en CA M P 12 .0 00 00 10 BT 40 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 40 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 40 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 40 5 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 406 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 40 7 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 41 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 41 3 op en LI TH IC S CA TT ER 12 .0 00 00 tv � r= .. · .. ' . ' - ·- - - - -- - - -. 1 ··· - -- - . . 10 BT 41 5 op en 10 BT 41 7 op en 10 BT 42 0 op en 10 BT 42 2 op en 10 BT 42 3 op en 10 BT 42 4 op en 10 BT 42 5 op en 10 BT 42 6 op en 10 BT 42 7 op en 10 BT 42 9 op en 10 BT 43 0 op en 10 BT 43 1 op en 10 BT 43 2 op en 10 BT 43 4 op en 10 BT 43 5 op en 10 BT 43 6 op en 10 BT 43 7 op en 10 BT 43 9 op en 10 BT 44 0 op en 10 BT 44 1 op en 10 BT 44 3 op en 10 BT 44 4 op en 10 BT 44 5 op en 10 BT 44 6 op en 10 BT 44 7 op en 10 BT 44 8 op en 10 BT 45 0 op en 10 BT 45 2 op en 10 BT 45 3 op en 10 BT 45 7 op en 10 BT 48 op en 10 BT 48 1 op en A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 1 LI TH IC S CA TI ER 12 .0 00 00 1 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 N 00 .. ...:J 10 BT 48 2 op en 10 BT 49 op en 10 BT 5 op en 10 BT 51 op en 10 BT 52 2 op en 10 BT 56 6 op en 10 BT 56 7 op en 10 BT 56 8 op en 10 BT 56 9 op en 10 BT 57 2 ope n 10 BT 58 op en 10 BT 58 1 ope n 10 BT 58 2 ope n 10 BT 58 4 op en 10 BT 58 8 op en 10 BT 58 9 op en 10 BT 59 0 ope n 10 BT 59 1 op en 10 BT 59 2 op en 10 BT 59 4 ope n 10 BT 59 5 op en 10 BT 59 6 op en 10 BT 59 7 op en 10 BT 59 8 op en 10 BT 60 0 op en 10 BT 60 3 op en 10 BT 60 4 op en 10 BT 60 5 op en 10 BT 60 6 ope n 10 BT 60 7 ope n 10 BT 60 8 ope n 10 BT 61 0 ope n A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 C A M P 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 1 LI TH IC S CA IT ER 12 .0 00 00 1 LI TH IC S C A IT ER 12 .0 00 00 : LI TH IC S C A IT ER 12 .0 00 00 1 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S CA IT ER 12 .0 00 00 LI TH IC S C A IT ER 12 .0 00 00 N QQ QQ 10 BT 61 2 ope n 10 BT 61 4 ope n 10 BT 61 5 op en 10 BT 61 6 ope n 10 BT 61 7 op en 10 BT 61 8 op en 10 BT 61 9 op en 10 BT 62 0 op en 10 BT 62 1 op en 10 BT 62 3 op en 10 BT 62 7 op en 10 BT 62 8 op en 10 BT 62 9 ope n 10 BT 63 0 op en 10 BT 63 2 op en 10 BT 63 5 op en 10 BT 64 ope n 10 BT 64 6 ope n 10 BT 64 7 op en 10 BT 64 8 op en 10 BT 64 9 op en 10 BT 65 0 op en 10 BT 65 1 op en 10 BT 65 2 ope n 10 BT 65 3 op en 10 BT 65 4 op en 10 BT 65 7 · o pe n 10 BT 65 8 ope n 10 BT 65 9 o!)E! n 10 BT 66 1 op en 10 BT 66 2 op en 10 BT 66 3 op en ', A ppe nd ix C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER . 1 2. 00 00 0 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 N 00 \0 A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 66 5 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 66 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 66 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 67 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 68 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 68 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 68 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 68 5 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 69 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 69 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 69 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 70 0 ope n LI TH IC S CA TT ER 12 .0 00 00 10 BT 70 1 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 70 2 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 70 4 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 70 5 ope n LI TH IC S CA TI ER 12 .0 00 00 50 15 .0 00 00 10 BT 70 8 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 71 1 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 71 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 71 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 71 7 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 71 8 op en LI TH IC S CA TT ER ; 3 p oi nt s, 2 ar e Fo lso m 12 .0 00 00 50 10 .0 00 00 10 BT 71 9 ope n LI TH IC S C ATT ER ; fl ak es , p oi nt , bifa ce 12 .0 00 00 50 20 .0 00 00 10 BT 72 0 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 72 1 ope n LI TH IC S CA TT ER 12 .0 00 00 8 10 BT 72 6 op en 10 BT 72 7 op en 10 BT 72 9 op en 10 BT 73 1 op en 10 BT 73 2 op en 10 BT 73 8 op en 10 BT 74 0 op en 10 BT 74 2 op en 10 BT 74 3 op en 10 BT 74 5 op en 10 BT 74 7 op en 10 BT 74 8 op en 10 BT 74 9 op en 10 BT 75 0 op en 10 BT 75 1 op en 10 BT 75 2 op en 10 BT 75 3 op en 10 BT 75 4 op en 10 BT 75 5 op en 10 BT 75 6 op en 10 BT 75 7 op en 10 BT 75 8 op en 10 BT 75 9 op en 10 BT 76 0 op en 10 BT 76 2 op en 10 BT 76 3 op en 10 BT 76 4 op en 10 BT 76 5 op en 10 BT 76 6 op en 10 BT 76 7 op en 10 BT 76 8 op en 10 BT 76 9 op en "" A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 i LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 SE C O N DA RY R ED UC TI O N 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC P RO C ES SI NG 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 N '-0 - A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 BT 77 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 3 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 77 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 6 OQ en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 77 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 5 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 78 6 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 78 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 78 8 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 78 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 3 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 4 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 79 5 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 79 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 80 0 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 80 1 op en LI TH IC S CA TT ER 12 .0 00 00 10 BT 80 2 op en LI TH IC S CA TT ER 12 .0 00 00 N � f=- · ·· � . . .... ' . .. . . ·.� A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a �Z on e 12 10 BT 80 3 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 80 4 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 80 6 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 80 8 op en LI TH IC S CA TI ER , C A M P SI TE 12 .0 00 00 10 BT 80 9 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 0 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 1 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 2 op en CA M P SI TE 12 .0 00 00 10 BT 81 3 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 4 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 6 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 7 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 81 8 op en FC R C O NC EN TR A TI O N 12 .0 00 00 10 BT 81 9 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 82 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 82 0 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 82 1 ope n PR O C ES SI NG 12 .0 00 00 10 BT 82 2 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 90 op en LI TH IC S CA TI ER 12 .0 00 00 10 8T 92 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 93 op en LI TH IC S CA TI ER 12 .0 00 00 10 8T 93 3 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 93 4 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 93 7 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 94 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BT 94 0 op en LI TH IC S C A TI ER 12 .0 00 00 10 BT 94 1 ope n LI TH IC S CA TI ER 12 .0 00 00 10 BT 94 4 ope n LI TH IC S CA TI ER 12 .0 00 00 10 8T 94 5 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 94 7 op en LI TH IC S CA TI ER 12 .0 00 00 10 8T 94 8 op en LI TH IC S CA TI ER 12 .0 00 00 10 BT 94 9 op en LI TH IC S CA TI ER 12 .0 00 00 N ::g 10 BT 95 op en 10 BT 95 0 op en 10 BT 95 3 op en 10 BT 95 4 op en 10 BT 95 6 op en 10 BT 95 7 op en 10 BT 95 8 op en 10 BT 95 9 op en 10 BT 96 op en 10 BT 96 7 op en 10 BT 96 8 op en 10 BT 97 op en 10 BT 97 0 op en 10 BT 97 4 op en 10 BT 97 5 op en 10 BT 97 9 op en 10 BT 98 op en 10 BT 98 0 op en 10 BT 98 1 op en 10 BT 98 3 op en 10 BT 99 op en 10 BT 99 0 op en 10 BT 99 5 op en 10 BT 99 6 op en 10 BT 99 7 op en 10 BT 99 8 op en 10 LN 11 op en 10 LN 11 2 op en 10 LN 11 3 op en 10 LN 11 4 op en 10 LN 11 5 op en 10 LN 11 6 op en "" A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER C A M P SH O RT T ER M C A M P SH O RT T ER M C A M P LI TH IC S CA TT ER LI TH IC S CA TT ER TE M PO RA RY C A M P LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER PO TT ER Y, L IT HI C S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER -- -- - ' - 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 1 12 .0 00 00 1 12 .0 00 00 1 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 tv 'f �· · --- - - A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 LN 11 7 op en LI TH IC S C A IT ER 12 .0 00 00 10 LN 11 8 op en LI TH IC S C A IT ER 12 .0 00 00 10 LN 11 9 ope n LI TH IC S CA IT ER 12 .0 00 00 10 LN 12 op en CA M P SI TE 12 .0 00 00 10 LN 12 1 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 12 5 ope n LI TH IC S CA TT ER 12 .0 00 00 10 LN 12 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 12 7 ope n LI TH IC S CA IT ER 12 .0 00 00 10 LN 12 8 ope n LI TH IC S CA IT ER 12 .0 00 00 10 LN 12 9 ope n LI TH IC S C A IT ER 12 .0 00 00 10 LN 13 0 ope n LI TH IC S CA IT ER 12 .0 00 00 10 LN 13 3 ope n LI TH IC S C A IT ER 12 .0 00 00 10 LN 13 4 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 13 5 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 13 6 op en LI TH IC S C AT TE R 12 .0 00 00 10 LN 13 7 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 14 2 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 14 3 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 15 2 ope n LI TH IC S CA TT ER 12 .0 00 00 10 LN 15 7 ope n LI TH IC S C A IT ER 12 .0 00 00 10 LN 17 6 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 17 8 ope n LI TH IC S C A IT ER 12 .0 00 00 10 LN 17 9 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 18 0 ope n LI TH IC S CA IT ER 12 .0 00 00 10 LN 18 6 op en LI TH IC S CA IT ER 12 .0 00 00 10 LN 18 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 18 8 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 18 9 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 19 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 19 7 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 19 8 ope n LI TH IC S CA IT ER 12 .0 00 00 10 LN 19 9 op en LI TH IC S CA IT ER 12 .0 00 00 � �· � - - - -" --- --- -- � - - - -- - . . 10 LN 20 0 op en 10 LN 20 1 op en 10 LN 20 8 op en 10 LN 20 9 op en 10 LN 21 0 op en 10 LN 21 1 op en 10 LN 21 4 op en 10 LN 21 5 op en 10 LN 21 6 op en 10 LN 21 7 op en 10 LN 21 8 op en 10 LN 21 9 op en 10 LN 22 1 op en 10 LN 22 2 op en 10 LN 22 3 op en 10 LN 22 4 op en 10 LN 22 5 op en 10 LN 22 6 op en 10 LN 22 7 op en 10 LN 22 8 op en 10 LN 26 0 op en 10 LN 26 7 op en 10 LN 31 3 op en 10 LN 33 2 op en 10 LN 33 6 op en 10 LN 38 0 op en 10 LN 38 1 op en 10 LN 38 4 op en 10 LN 38 6 op en 10 LN 38 8 op en 10 LN 39 1 op en 10 LN 39 3 op en A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC , C ER A M IC S C A TI ER 12 .0 00 00 lit hi c sc at te r; 10 fla ke s in a s m al l p lay a 12 .0 00 00 lit hic s ca tte r; fla ke s, 5 bi fa ce s, 3 p oi nt 12 .0 00 00 lit hi c sc at te r; ov er 1 50 fl ak es , 2 c or ne r- 12 .0 00 00 hi gh d en sity fl ak ed s to ne s ca tte r 12 .0 00 00 sm al l fl ak ed s to ne s ca tte r 12 .0 00 00 1 se co nd ary a nd 1 te rti ary fl ak e 12 .0 00 00 1 ob si di an u til ize d fla ke , 1 p ro je ct ile p o 12 .0 00 00 1 te rti ary fl ak e, 1 o bs id ia n se co nd ar y fla 12 .0 00 00 lit hi c sc att er ; f la ke s, po int s, bifa ce , p r 12 .0 00 00 lit hi c sc at te r; fla ke s, p oi nt , b ifa ce 12 .0 00 00 42 50 .0 00 00 47 50 .0 00 00 47 00 .0 00 00 42 60 .0 00 00 42 60 .0 00 00 42 60 .0 00 00 42 93 .0 00 00 42 38 .0 00 00 44 20 .0 00 00 42 30 .0 00 00 N \0 0\ A pp en di x C : P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 10 LN 39 4 op en lit hi c sc at te r; fla ke s, p oi nt s 12 .0 00 00 42 35 .0 00 00 10 LN 39 5 op en lith ic s ca tte r; fla ke s 12 .0 00 00 45 60 .0 00 00 10 LN 396 op en lith ic s ca tte r; fla ke s, dr ill, p oi nt s, sc r 12 .0 00 00 42 30 .0 00 00 10 LN 40 1 op en m od er at el y de ns e fla ke s ca tte r; fla ke s, po 12 .0 00 00 45 90 .0 00 00 10 LN 40 4 op en la rg e, d en se fl ak e sc at te r w ith s m al l h is t 12 .0 00 00 42 20 .0 00 00 10 LN 40 6 op en la rg e lit hi c sc at te r; fla ke s, c or es , p oi nt 12 .0 00 00 44 50 .0 00 00 10 LN 40 8 op en m od er at e lit hi c sc att er ; f lak es , b ifa ce s, 12 .0 00 00 44 10 .0 00 00 10 LN 41 2 op en m od er at el y de ns e lit hi c sc at te r; fla ke s, p 12 .0 00 00 43 70 .0 00 00 10 LN 41 3 op en sm al l li th ic sca tte r; fla ke s, bifa ce 12 .0 00 00 44 15 .0 00 00 10 LN 41 4 op en m od er at el y de ns e lith ic sc att er ; fl ak es 12 .0 00 00 44 25 .0 00 00 10 LN 41 6 op en lo w d en sit y lith ic s ca tte r; fla ke s 12 .0 00 00 43 35 .0 00 00 10 LN 41 8 op en sp ars e lit hi c sc at te r; fla ke s 12 .0 00 00 44 10 .0 00 00 10 LN 42 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 42 0 op en lit hi c sc at te r; fla ke s, bif ac es 12 .0 00 00 43 55 .0 00 00 10 LN 42 1 op en m od er at el y de ns e lit hic s ca tte r; fla ke s, p 12 .0 00 00 42 30 .0 00 00 10 LN 42 6 op en la rg e, m od er at el y de ns e lit hi c sc att er ; fl 12 .0 00 00 45 90 .0 00 00 10 LN 43 op en LI TH IC S CA TT ER 12 .0 00 00 10 LN 43 2 op en sm al l l ith ic s ca tte r; fla ke s 12 .0 00 00 45 05 .0 00 00 10 LN 43 9 op en lo w d en sit y lit hi c sc at te r; fla ke s 12 .0 00 00 44 15 .0 00 00 10 LN 44 ope n LI TH IC S CA TT ER 12 .0 00 00 10 LN 44 2 op en sp ar se lith is c at te r; fla ke s, po int , u til i 12 .0 00 00 42 20 .0 00 00 10 LN 44 8 op en lit hi c sc att er ; fl ak es 12 .0 00 00 44 65 .0 00 00 10 LN 45 ope n LI TH IC S CA TT ER 12 .0 00 00 10 LN 45 2 op en lit hi c sc at te r; fla ke s, p oi nt s 12 .0 00 00 42 25 .0 00 00 10 LN 45 3 ope n lit hi c sc at te r; fla ke s 12 .0 00 00 42 35 .0 00 00 10 LN 45 9 ope n 2 po int s 12 .0 00 00 45 40 .0 00 00 10 LN 46 0 op en 2 po int s 12 .0 00 00 45 35 .0 00 00 10 LN 48 9 op en sc ra pe r, fla ke 12 .0 00 00 44 75 .0 00 00 10 LN 49 0 op en lit hi c sc att er ; fl ak es , m et at e tra g 12 .0 00 00 42 25 .0 00 00 10 LN 51 3 op en lit hi c sc at te r; 3 fla ke s 12 .0 00 00 444 5. 00 00 0 10 LN 51 5 op en lith ic s ca tte r;fl ak es , b ifa ce 12 .0 00 00 44 25 .0 00 00 10 LN 52 2 op en 2 fla ke s 12 .0 00 00 44 30 .0 00 00 N ;s 10 LN 53 1 10 LN 53 2 10 LN 53 4 10 LN 54 6 10 LN 55 6 10 LN 56 6 10 LN 57 3 10 LN 57 5 10 LN 59 6 10 LN 60 0 10 LN 61 5 10 LN 9 10 M A 1 10 M A 10 10 M A 10 1 10 M A 10 2 10 M A 10 4 10 M A 10 5 10 M A 10 6 10 M A 10 7 10 M A 10 8 10 M A 10 9 10 M A 11 10 M A 11 0 10 M A 11 1 10 M A 11 2 10 M A 11 3 10 M A 11 4 10 M A 11 5 10 M A 12 10 M A 13 10 M A 13 2 op en op en op en op en op en op en op en op en ope n op en ope n op en op en ope n op en op en op en op en ope n ope n op en ope n ope n op en op en op en op en op en op en op en ope n 9P! !n .. .. - . - - --·-· · A pp en di x C : P re hi st or ic L oc al iti es in tb e St ud y A re a -Z on e lZ 2 po in ts 12 .0 00 00 43 20 .0 00 00 3 fla ke s 12 .0 00 00 44 40 .0 00 00 5 fla ke s 12 .0 00 00 45 25 .0 00 00 2 fla ke s 12 .0 00 00 42 35 .0 00 00 7 fla ke s 12 .0 00 00 44 50 .0 00 00 3 fla ke s, 1 ut iliz ed fl ak e 12 .0 00 00 45 30 .0 00 00 2 fla ke s 12 .0 00 00 43 35 .0 00 00 3 fla ke s 12 .0 00 00 44 75 .0 00 00 3 fla ke s 12 .0 00 00 42 30 .0 00 00 2 fla ke s 12 .0 00 00 42 35 .0 00 00 lit hi c sc at te r; dr ill, fl ak es 12 .0 00 00 42 60 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 CA M P SI TE 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S C ATT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC , P O TT ER Y SC AT TE R 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER 12 .0 00 00 LI TH IC S CA TT ER ; fl ak es 12 .0 00 00 43 50 .0 00 00 LI TH IC S CA TT ER ' 12 .0 00 00 ' .... . � OQ A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a �Z on e 12 10 M A 13 8 op en lit hi c sc att er , 3 to ol s no te d 12 .0 00 00 44 80 .0 00 00 10 M A 16 4 ope n lit hic sc at te r; fla ke s, p oi nt s, b ifa ce 12 .0 00 00 48 00 .0 00 00 10 M A 16 5 op en lit hic s ca tte r; fla ke s, co re 12 .0 00 00 47 70 .0 00 00 10 M A 16 6 op en lith ic sca tte r; fla ke s, p oi nt s, b ifa ce s, m 12 .0 00 00 48 00 .0 00 00 10 M A 16 7 op en lith ic sc att er ; fl ak es 12 .0 00 00 48 65 .0 00 00 10 M A 16 8 ope n lit hi c sc at te r; fla ke s, p oi nt s, te sh oa , f l 12 .0 00 00 48 60 .0 00 00 10 M A 16 9 op en lit hi c sc at te r; fla ke s, p oi nt s, c or e 12 .0 00 00 48 80 .0 00 00 10 M A 17 0 op en lit hi c sc at te r; fla ke s, b ifa ce , c hu nk 12 .0 00 00 48 35 .0 00 00 10 M A 17 1 ope n lith ic sc at te r; fla ke s, to ot h en am el , b on e 12 .0 00 00 48 55 .0 00 00 10 M A 17 2 op en lith ic s ca tte r; fla ke s 12 .0 00 00 48 50 .0 00 00 10 M A 17 3 op en lith ic s ca tte r; fla ke s 12 .0 00 00 48 80 .0 00 00 10 M A 3 op en CA M P SI TE 12 .0 00 00 10 M A 30 op en LI TH IC S C A TT ER 12 .0 00 00 10 M A 33 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A3 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A4 op en CA M P SI TE 12 .0 00 00 10 M A4 4 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A 5 op en CA M P SI TE 12 .0 00 00 10 M A 50 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A 52 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A 53 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A5 4 op en LI TH IC S C AT TE R; fl ak e, p oi nt , f ea tu re s ca l 12 .0 00 00 10 M A5 6 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A6 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A7 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A 78 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A 79 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A 8 ope n LI TH IC S C ATT ER 12 .0 00 00 10 M A 80 ope n LI TH IC S CA TT ER 12 .0 00 00 10 M A 81 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A 82 op en LI TH IC S CA TT ER 12 .0 00 00 10 M A 83 ope n LI TH IC S CA TT ER 12 .0 00 00 � 10 M A8 4 op en 10 M A 85 op en 10 M A 88 op en 10 M A 89 op en 10 M A9 op en 10 M A 90 op en 10 M A9 2 op en 10 M A 93 op en 10 M A 97 op en 10 M A 98 op en 10 M A 99 op en 10 BN 38 9 op en 10 BN 53 7 op en 10 BN 54 5 op en 10 BN 54 7 op en 10 BN 66 4 op en 10 BN 68 4 op en 10 BN 68 5 op en 10 BN 76 2 op en 10 BN 95 8 op en 10 BN 96 1 op en 10 BT 14 48 op en 10 BT 18 31 op en 10 BT 19 87 op en 10 BT 20 11 op en 10 BT 20 30 op en 10 BT 30 6 op en 10 BT 32 8 op en 10 BT 35 8 op en 10 BT 36 4 op en 10 BT 80 7 op en 10 LN 17 7 op en A pp en di x C: P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S CA TI ER 12 .0 00 00 LI TH IC S C A TI ER /H IS TO RI C 12 .0 00 00 la rg e lit hic s ca tte r/h ist or ic tra sh s ca tte 12 .0 00 00 1 p re his to ric fl ak e sc at te r; hi st or ic ca ns , 12 .0 00 00 1 p re hi st or ic lit hi c sc at te r; his to ric c an s 12 .0 00 00 4 fla ke s, c en te rfi re 2 5- 30 s he ll, se ve ra l 12 .0 00 00 1 ob si di an te rti ary fl ak e, b ro ke n w hi sk ey 12 .0 00 00 m od ifie d ch ert fl ak e, 3 in o ne o il b ot tle 12 .0 00 00 bi fa ce , s he ll b ut to n 12 .0 00 00 lit hi c sc at te r; bif ac e, p oi nt , k nif e, d ril 12 .0 00 00 lith ic sc at te r a nd c an ; p oi nt , f la ke s 12 .0 00 00 lit hi c sc at te r, hi st or ic de br is; d ril l/p er 12 .0 00 00 LI TH IC S C A TI ER /H IS TO R IC 12 .0 00 00 LI TH IC S/ H IS TO RI C C A M P 12 .0 00 00 LI TH IC S/ HI ST O RI C D U M P 12 .0 00 00 LI TH IC S CA TI ER /H IS TO RI C 12 .0 00 00 LI TH IC S/ H IS TO RI C M IN IN G 12 .0 00 00 LI TH IC S C A TI ER /H IS TO RI C 12 .0 00 00 R O C KS HE L T ER IH IS TO RI C 12 .0 00 00 LI TH IC S CA TI ER IH IS TO RI C 12 .0 00 00 LI TH IC S C A TI ER /H IS TO RI C 12 .0 00 00 LI TH IC S/ HI ST O RI C S C A TI ER 12 .0 00 00 45 40 .0 00 00 45 80 .0 00 00 44 30 .0 00 00 44 40 .0 00 00 45 90 .0 00 00 45 70 .0 00 00 46 40 .0 00 00 47 80 .0 00 00 48 00 .0 00 00 49 65 .0 00 00 w 0 0 10 LN 38 2 op en 10 LN 39 2 op en 10 LN 39 9 op en 10 LN 40 0 op en 10 LN 40 5 op en 10 LN 41 5 op en 10 LN 41 9 op en 10 LN 42 7 op en 10 LN 43 3 op en 10 LN 43 4 op en 10 LN 43 8 op en 10 LN 58 4 op en 10 BN 20 5 op en , r oc k fe a 10 BN 53 op en , r oc k fe a 10 BN 56 5 op en , r oc k fe a 10 BN 57 op en , r oc k f ea 10 BN 71 op en , r oc k fe a 10 BN 95 2 op en , r oc k fe a 10 BT 16 16 op en , r oc k fe a 10 BT 17 49 op en , r oc k fe a 10 BT 20 38 op en , r oc k fe a 10 LN 16 0 op en , r oc k fe a 10 LN 21 2 op en , r oc k f ea 10 LN 42 9 op en , r oc k fe a 10 LN 63 6 op en , r oc k fe a 10 LN 92 op en , r oc k fe a 10 M A 10 0 op en , r oc k fe a 10 M A 16 3 op en , r oc k fe a 10 BN 10 38 op en , r oc k fe a 10 BN 52 3 op en , r oc k fe a 10 BN 56 7 op en , r oc k fe a 10 BN 95 5 op en , r oc k fe a A pp en di x C: P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 low d en sity fl ak ed s to ne sc at te r; m ilk c an 12 .0 00 00 lit hi c sc at te r a nd 5 c an s; fl ak es , p oi nt s, 12 .0 00 00 hi gh d en sity lit hi c sc at te r, hi st or ic co m p 12 .0 00 00 hi gh d en sit y fla ke s ca tte r, hi st or ic co m po 12 .0 00 00 m od er at el y de ns e lit hi c sc at te r w ith s m al l 12 .0 00 00 m od er at el y de ns e lit hi c sc at te r w ith 1 c an 12 .0 00 00 ca n sc at te r w ith 1 po int 12 .0 00 00 1 fla ke a nd 1 sc ra pe r w ith 1 g la ss ja r a nd 12 .0 00 00 lo w d en sity c an s ca tte r w ith p re hi st or ic b 12 .0 00 00 hi st or ic sc at te r w ith 4 p re his to ric fl ak es 12 .0 00 00 m od er at ely d en se lit hi c sc at te r a nd h ist or 12 .0 00 00 bi fa ce a nd h ist or ic bu ck et 12 .0 00 00 RO C K R IN G 12 .0 00 00 LI TH IC S CA TT ER a nd p os si bl e bl ind ; f la ke s, 12 .0 00 00 fo ur sm al l c ai rn s al ig ne d in d ia m on d sh ap e 12 .0 00 00 LI TH IC S CA TT ER a nd ro ck p ile ; c ho pp er , c hu 12 .0 00 00 LI TH IC S CA TT ER a nd 2 b as al t e nc lo su re s; b i 12 .0 00 00 ca irn a nd fl ak e 12 .0 00 00 RO C K C IR C LE S/ LI TH IC S CA TT 12 .0 00 00 ST O NE C IR C LE S 12 .0 00 00 lit hic s ca tte r; fe r, he ar th , c ob bl es in c i 12 .0 00 00 RO C K A LL IG NM EN T, U TH IC S 12 .0 00 00 CA IR N/ IS O LA TE D FI ND 12 .0 00 00 lit hic s ca tte r; fla ke s, sc ra pe r, po ss ibl e 12 .0 00 00 lit hi c sc at te r, ex te ns iv e ro ck fe at ur es li 12 .0 00 00 RO C K FE AT UR E 12 .0 00 00 LI TH IC S CA TT ER , C A IR N 12 .0 00 00 lit hi c sc att er w ith w al le d sh el te rs ; f la ke 12 .0 00 00 ca irn a nd 9 fl ak es 12 .0 00 00 lit hic s ca tte r, ro ck a lig nm en t i ns ide ro ck 12 .0 00 00 hi st or ic de br is, o bs id ia n fla ke s, ca irn 12 .0 00 00 2 ca irn s an d lit hi c sc at te r; fla ke s, po int 12 .0 00 00 42 40 .0 00 00 42 25 .0 00 00 44 10 .0 00 00 42 24 .0 00 00 44 10 .0 00 00 44 32 .0 00 00 44 25 .0 00 00 43 55 .0 00 00 44 10 .0 00 00 43 80 .0 00 00 44 45 .0 00 00 44 15 .0 00 00 48 70 .0 00 00 45 60 .0 00 00 49 80 .0 00 00 52 40 .0 00 00 48 80 .0 00 00 50 90 .0 00 00 44 30 .0 00 00 46 20 .0 00 00 47 45 .0 00 00 49 50 .0 00 00 47 00 .0 00 00 46 20 .0 00 00 48 90 .0 00 00 w 0 10 BN 96 2 op en , r oc k f ea 10 BN 96 7 op en , r oc k fe a 10 BN 99 8 op en , r oc k fe a 10 LN 42 2 op en , r oc k f ea 10 LN 42 4 op en , r oc k fe a 10 LN 42 5 op en , r oc k f ea 10 LN 43 1 op en , r oc k fe a 10 BN 10 66 op en , r oc ks he l 10 BN 53 0 op en , r oc ks he l 10 BN 53 6 op en , r oc ks he l 10 8N 56 8 op en , r oc ks he l 10 8T 16 5 op en , r oc ks he l 10 LN 13 1 op en , r oc ks he l 10 M A 14 3 op en , r oc ks he l 10 BN 96 4 op en , r oc ks he l 10 BT 10 3 [q ua rry 10 BT 13 5 [q ua rry 10 BT 13 6 [q ua rry 10 BT 18 77 [q ua rry 10 BT 33 5 [q ua rry 10 BT 34 0 [q ua rry 10 BT 15 3 ro ck a rt 10 8T 15 9 ro ck a rt 10 BT 16 3 ro ck a rt 10 BT 17 8 ro ck a rt 10 BT 23 2 ro ck a rt 10 BT 24 7 ro ck a rt 10 LN 74 ro ck a rt 10 BT 46 ro ck a rt, ro ck 10 LN 61 ro ck a rt, r oc k 10 BN 10 12 ro ck fe at ur e 10 BN 10 16 ro ck fe at ur e A pp en di x C: P re hi st or ic L oc al iti es in t he S tu dy A re a -Z on e 12 lit hic s ca tte r, ca irn , f ry in g pa n; ca irn m 12 .0 00 00 lit hi c sc at te r, hi st or ic sc at te r, 2 ca irn s 12 .0 00 00 lit hi c sc at te r; fla ke s, po int ; f ire ri ng w 12 .0 00 00 lo w d en sity lit hic s ca tte r w ith lin ea r h is 12 .0 00 00 m od er at el y de ns e lit hi c sc at te r w ith s ev er 12 .0 00 00 hi Qh d en sity lit hic s ca tte r a nd h ist or ic s 12 .0 00 00 m od er at el y de ns e lit hi c sc at te r w ith h ist o 12 .0 00 00 2 ro ck sh el te rs o ve rlo ok in Q lav a flo w , l ith 12 .0 00 00 th re e lar ge ro ck sh el te rs a nd a n as so cia te d 12 .0 00 00 sm al l li th ic s ca tte r w ith la va tu be c av e 12 .0 00 00 lit hi c sc at te r w ith l an ce ol at e po int a nd n 12 .0 00 00 ro ck sh el te r w ith lit hic s ca tte r n ea r m ou th 12 .0 00 00 O V ER HA NG 12 .0 00 00 lit hic s ca tte r, la va tu be 12 .0 00 00 his to ric s ca tte r, lit hi c sc at te r a nd c av e 12 .0 00 00 Q UA RR Y 12 .0 00 00 Q UA RR Y 12 .0 00 00 Q UA RR Y 12 .0 00 00 Q UA RR Y 12 .0 00 00 Q UA RR Y 12 .0 00 00 Q UA RR Y 12 .0 00 00 PI CT O G RA PH S 12 .0 00 00 PI CT O G RA PH 12 .0 00 00 PI CT O G RA PH 12 .0 00 00 PI CT O G RA PH 12 .0 00 00 PI CT O G RA PH 12 .0 00 00 PI CT O G RA PH 12 .0 00 00 PE TR O G L Y PH S 12 .0 00 00 CA VE 12 .0 00 00 CA VE 12 .0 00 00 ca irn 12 .0 00 00 ca irn 12 .0 00 00 47 80 .0 00 00 47 74 .0 00 00 49 50 .0 00 00 42 30 .0 00 00 42 35 .0 00 00 42 20 .0 00 00 45 30 .0 00 00 54 40 .0 00 00 46 40 .0 00 00 45 70 .0 00 00 46 00 .0 00 00 64 00 .0 00 00 48 00 .0 00 00 47 80 .0 00 00 48 40 .0 00 00 48 40 .0 00 00 w 0 N 10 BN 50 3 ro ck fe at ur e 10 BN 51 0 ro ck fe at ur e 10 BN 52 5 ro ck fe at ur e 10 BN 53 5 ro ck fe at ur e 10 BN 57 1 ro ck fe at ur e 10 BN 59 7 ro ck fe at ur e 10 BN 95 1 ro ck fe at ur e 10 BT 11 43 ro ck fe at ur e 10 BT 18 76 ro ck fe at ur e 10 BT 18 82 ro ck fe at ur e 10 BT 38 8 ro ck fe at ur e 10 BT 43 8 ro ck fe at ur e 10 BT 50 ro ck fe at ur e 10 LN 13 8 ro ck fe at ur e 10 LN 33 3 ro ck fe at ur e 10 LN 43 5 ro ck fe at ur e 10 LN 53 9 ro ck fe at ur e 10 M A 55 ro ck fe at ur e 10 BN 10 39 ro ck fe at ur e 10 BN 95 9 ro ck fe at ur e 10 BN 96 0 ro ck fe at ur e 10 BN 14 7 ro ck sh el te r 10 BN 15 3 ro ck sh el te r 10 BN 15 4 ro ck sh el te r 10 BN 15 6 ro ck sh el te r 10 BN 21 1 ro ck sh el te r 10 BN 41 2 ro ck sh el te r 10 BN 44 ro ck sh el te r 10 BN 45 ro ck sh el te r 10 BT 1 ro ck sh el te r 10 BT 10 6 ro ck sh el te r 10 BT 11 ro ck sh el te r " A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 ca irn 12 .0 00 00 ro ck w al l, a ge a nd fu nc tio n un kn ow n (p ro ba 12 .0 00 00 ro ck ri ng , m ay h av e se rv ed a s a hin tin g bl 12 .0 00 00 18 ca irn s in a lig nm en t 12 .0 00 00 hu nt ing b lin d w ith m od er n de br is , p os si bl y 12 .0 00 00 ca irn 12 .0 00 00 ca irn , l ike ly to b e hi st or ic 12 .0 00 00 ST O N E C IR C LE 12 .0 00 00 RO C K FE AT UR E 12 .0 00 00 CA IR N 12 .0 00 00 ST O NE C IR C LE 12 .0 00 00 ST O NE C IR C LE 12 .0 00 00 RO C K R IN G S 12 .0 00 00 RO C K FE A TU R E 12 .0 00 00 1 ro ck fe at ur e an d 2 sm al l w al ls of p ile d 12 .0 00 00 ro ck a lig nm en t 12 .0 00 00 ro ck a lig nm en t 12 .0 00 00 ST O N E C IR C LE /R O C K FE A TU RE 12 .0 00 00 ca irn 12 .0 00 00 ca irn 12 .0 00 00 ca irn 12 .0 00 00 R O C KS HE L T ER , L IT HI C S 12 .0 00 00 CA V E/ LI TH IC S CA TI ER 12 .0 00 00 CA VE 12 .0 00 00 RO C KS HE L T ER 12 .0 00 00 CA VE 12 .0 00 00 R O C KS HE L T ER 12 .0 00 00 CA VE w ith p oi nt , f la ke s, an d bo ne s of b ea r 12 .0 00 00 la va tu be ro ck sh el te r; bl an k, b ov id re m ai n 12 .0 00 00 CA VE 12 .0 00 00 RO C KS HE L T ER 12 .0 00 00 CA VE 12 .0 00 00 46 00 .0 00 00 47 10 .0 00 00 45 80 .0 00 00 44 60 .0 00 00 44 46 .0 00 00 44 60 .0 00 00 48 40 .0 00 00 47 20 .0 00 00 43 40 .0 00 00 43 60 .0 00 00 49 30 .0 00 00 47 40 .0 00 00 48 00 .0 00 00 49 30 .0 00 00 52 00 .0 00 00 w 0 w A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 10 BT 12 41 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 12 68 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 12 95 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 13 01 ro ck sh el te r RO C KS HE LT ER 12 .0 00 00 10 BT 13 04 ro ck sh el te r RO C KS HE LT ER 12 .0 00 00 10 BT 13 2 ro ck sh el te r CA VE 12 .0 00 00 10 BT 15 7 ro ck sh el te r RO CK SH EL TE R 12 .0 00 00 10 BT 15 8 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 16 2 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 17 9 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 18 2 roc ks he lte r CA VE 12 .0 00 00 10 BT 20 5 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 206 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 21 8 ro ck sh el te r RO C KS HE LT ER 12 .0 00 00 10 BT 22 2 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 22 3 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 22 4 roc ks he lte r RO C KS HE L T ER 12 .0 00 00 10 BT 22 5 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 26 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 26 1 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 30 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 34 6 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 35 1 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 37 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 38 ro ck sh el te r lav a ca ve 12 .0 00 00 10 BT 43 ro ck sh el te r LI M ES TO NE C AV IT Y 12 .0 00 00 10 BT 44 ro ck sh el te r LI M ES TO NE C AV IT Y 12 .0 00 00 10 BT 45 ro ck sh el te r R O C KS HE LT ER 12 .0 00 00 10 BT 47 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 57 3 ro ck sh el te r RO C KS HE LT ER 12 .0 00 00 10 BT 57 4 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 10 BT 57 5 ro ck sh el te r RO C KS HE L T ER 12 .0 00 00 w � .,.,- ---- -c- -- --.------,.- � - ' -� A pp en di x C: P re hi st or ic Lo ca lit ie s in tb e St ud y A re a -Z on e 12 10 BT 57 6 ro ck sh elt er RO C KS HE L T ER 12 .0 00 00 10 BT 57 7 ro ck sh elt er RO C KS HE L T ER 12 .0 00 00 10 BT 57 8 ro ck sh elt er RO C KS HE L T ER 12 .0 00 00 10 BT 57 9 ro ck sh elt er RO C KS HE LT ER 12 .0 00 00 10 BT 58 0 ro ck sh elt er RO C KS HE L T ER 12 .0 00 00 . 10 BT 58 3 ro ck sh elt er RO C KS HE L T ER /IS O LA TE D FI N D 12 .0 00 00 10 BT 7 ro ck sh elt er CA VE 12 .0 00 00 ! 10 BT 10 8 un kn ow n NO T G IV EN 12 .0 00 0Qj 10 BT 12 4 un kn ow n NO T G IV EN 12 .0 00 00 , 10 BT 12 5 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 12 6 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 12 7 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 12 8 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 13 7 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 14 6 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 14 8 un kn ow n NO T G IV EN 12 .0 00 00 10 BT 53 8 12 .0 00 00 10 BT 53 9 12 .0 00 00 10 BT 54 0 12 .0 00 00 10 BT 54 1 12 .0 00 00 10 BT 54 2 12 .0 00 00 10 BT 54 3 12 .0 00 00 10 BT 54 4 12 .0 00 00 10 BT 54 5 12 .0 00 00 10 BT 54 6 12 .0 00 00 10 BT 54 7 12 .0 00 00 10 BT 54 8 12 .0 00 00 10 BT 54 9 12 .0 00 00 10 BT 55 0 12 .0 00 00 10 BT 55 1 12 .0 00 00 10 BT 55 3 12 .0 00 00 10 BT 55 4 12 .0 00 00 - -- --·- --·- --- --·- -�- - \,;.) 5; 10 8T 55 5 10 BT 55 6 10 BT 55 7 10 8T 55 8 10 BT 55 9 10 BT 56 0 10 BT 56 1 10 BT 56 2 10 BT 56 3 10 BT 56 4 10 8T 56 5 A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 12 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 12 .0 00 00 w 0 <:1'1 10 LN 1 op en 10 LN 10 0 op en 10 LN 10 1 op en 10 LN 10 2 op en , q ua rry 10 LN 10 3 op en , q ua rry 10 LN 10 4 op en , q ua rry 10 LN 10 5 op en , q ua rry , r oc 10 LN 10 8 op en , r oc k a rt 10 LN 11 1 op en , r oc k ar t 10 LN 13 op en , r oc k ar t 10 LN 13 9 op en , r oc k ar t 10 LN 14 op en , r oc k ar t 10 LN 14 0 op en , r oc k ar t 10 LN 15 op en , r oc k ar t 10 LN 16 1 op en , ro ck ar t 10 LN 2 ope n, ro ck a rt 10 LN 22 9 ope n, ro ck a rt 10 LN 23 0 op en , r oc k a rt, r 10 LN 23 1 op en , r oc k ar t, r 10 LN 23 2 op en , r oc k art , r 10 LN 23 3 op en , ro ck ar t, r 10 LN 23 4 op en , r oc k a rt, r 10 LN 27 6 op en , r oc k a rt, r 10 LN 27 7 op en , r oc k ar t, r 10 LN 28 0 op en , r oc k ar t, r 10 LN 28 2 ope n, ro ck a rt, r 10 LN 28 3 op en , r oc k a rt , r 10 LN 28 4 op en , ro ck fe at ur 10 LN 28 9 op en , r oc k fe at ur 10 LN 29 0 op en , ro ck fe at ur 10 LN 29 1 op en , r ock fe at ur 10 LN 29 3 op en , ro ck fe at ur 10 LN 29 4 ope n, ro ck fe at ur A pp en di x C : P re hi st ori c L oc al iti es in th e St ud y A re a -Z on e 11 LI TH IC S/ IS O LA TE D FI N D IS O LA TE D F IN D IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D FI N D LI TH IC S CA TT ER LI TH IC S CA TI ER /H IS TO RI C LI TH IC S CA TI ER . LI TH IC S CA TT ER /H IS TO RI C CA M P SI TE IS O LA TE D FI N D LI TH IC S CA TT ER , B O NE LI TH IC , P O TT ER Y S CA TI ER LI TH IC S CA TI ER IS O LA TE D FI N D CA M P SI TE LI TH IC S C A TI ER IS O LA TE D FI N D IS O LA TE D FI N D IS O LA TE D F IN D IS O LA TE D FI N D IS O LA T ED F IN D IS O LA TE D F IN D LI TH IC S CA TI ER LI TH IC S CA TI ER LI TH IC S CA TT ER LI TH IC S CA TI ER IS O LA TE D FI N D LI TH IC S CA TI ER LI TH IC S C A TI ER LI TH IC S C A TI ER lit hi c sc at te r lit hic sc at te r 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 (,;,) 0 --. .1 -·� 10 LN 29 5 op en , r oc k fe at ur 10 LN 29 9 op en , r oc k fe at ur 10 LN 30 0 op en , r oc k fe at ur 10 LN 30 1 op en , r oc k fe at ur 10 LN 30 2 op en , r oc k f ea tu r 10 LN 30 3 op en , r oc k fe atu r 10 LN 30 4 op en , r oc k f ea tu r 10 LN 30 5 op en , r oc k fe at ur 10 LN 306 op en , r oc k fe at ur 10 LN 30 7 op en , r oc k fe at ur 10 LN 31 4 ope n, ro ck fe at ur 10 LN 31 5 ope n, roc k fe at ur 10 LN 31 6 ope n, ro ck fe at ur 10 LN 31 7 OQE! n, ro ck fe at ur 10 LN 31 8 op en , r oc k fe at ur 10 LN 31 9 op en , r oc k fe at ur 10 LN 32 0 op en , r oc k fe at ur 10 LN 32 1 op en , r oc k fe at ur 10 LN 32 3 op en , r oc k fe at ur 10 LN 32 4 op en , r oc k f ea tu r 10 LN 32 5 ope n, ro ck fe at ur 10 LN 32 6 ope n, ro ck fe at ur 10 LN 32 7 ope n, ro ck fe at ur 10 LN 32 8 ope n, ro ck fe at ur 10 LN 33 0 op en , r oc k fe at ur 10 LN 33 1 op en , r oc ks he lte r 10 LN 33 9 op en , r oc ks he lte r 10 LN 34 0 op en , ro ck sh et te r 10 LN 34 2 op en , ro ck sh et te r 10 LN 34 3 op en , r oc ks he lte r 10 LN 34 4 op en , r oc ks he lte r 10 LN 34 5 op en , r oc ks he lte r 10 LN 34 6 op en , r oc ks he lte r " A pp en di x C : P re hi st or ic Loca lit ie s in th e St ud y A re a -Z on e 11 re d ig ni m br ite s m al l co m er -n ot ch ed p oi nt 1 vo lc an ic g la ss n on di ag no st ic bif ac e fra gm en t 1 De se rt Si de -n ot ch ed p ro je ct ile p oi nt on e re d vo lc an ic g la ss b ifa ce fr ag m en t-n on di ag no st i lit hic/ bo ne s ca tte r lit hi c sc att er lit hi c sc at te r lit hi c sc at te r lith ic sca tte r lith ic sc at te r en d- sc ra pe r co m er -n ot ch ed p oi nt co m er -n ot ch ed p oi nt lit hi c sc at te r; 3 fla ke s bif ac e tip co rn er -n ot ch ed p oi nt lit hic s ca tte r; fla ke s, 3 bi fa ce s, la nc eo la te p oi nt lit hi c sc at te r; fla ke s, p oi nt , b ifa ce fla ke co rn er -n ot ch ed po int lit hi c sc at te r; fla ke s, 4 bi fa ce s, 3 n or th ern s id e- co rn er -n ot ch ed p oi nt st em m ed la nce ol at e po in t lit hi c sc at te r; ab ou t 1 00 fl ak es a nd 9 p ie ce s of g r co rn er -n ot ch ed p oi nt , t ra sh s ca tte r; ca ns , b ot tle De se rt si de -n ot ch ed po int co rn er -n ot ch ed po int , f la ke bi fa ce m id se ct io n sm al l h un tin g ca m p/l ith ic sc att er ba se c am p w ith a li th ic s ca tte r a nd p ot te ry lit hi c sc at te r n ea r l av a tu be 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 (.;. .) 0 00 A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 11 10 LN 34 7 op en , r oc ks he lte r lith ic s ca tte r 11 .0 00 00 10 LN 34 8 op en , r oc ks he lte r sp ars e lit hic sc at te r 11 .0 00 00 10 LN 34 9 op en , r oc ks he lte r lith ic s ca tte r 11 .0 00 00 10 LN 35 ope n, roc ks he �e r LI TH IC S CA TT ER 11 .0 00 00 10 LN 35 0 op en , r oc ks he lte r lit hi c sc att er 11 .0 00 00 10 LN 35 1 op en , r oc ks he lte r lit hi c sc att er /h er de rs c am p 11 .0 00 00 10 LN 35 2 op en , r oc ks he lte r lav a tu be w ith li th ic sc att er 11 .0 00 00 10 LN 35 3 ope n, ro ck sh el te r vo lc an ic g la ss D es er t s id e no tc he d po in t 11 .0 00 00 10 LN 35 4 ope n, ro ck sh el te r po int ti p 11 .0 00 00 10 LN 35 5 ope n, ro ck sh el te r vo lc an ic g la ss b ifa ce fr ag m en t 11 .0 00 00 10 LN 35 6 op en , r oc ks he lte r sm al l ccs b ifa ce b as e 11 .0 00 00 10 LN 35 7 op en , r oc ks he �e r Ea st ga te p oi nt fr ag m en t o f v ol ca nic g la ss 11 .0 00 00 10 LN 35 8 op en , s tru ct ur e la rg e ccs c or ne r n ot ch ed p oi nt 11 .0 00 00 10 LN 35 9 qu ar ry vo lc an ic gl as s bifa ce 11 .0 00 00 10 LN 36 qu arry LI TH IC S CA IT ER 11 .0 00 00 10 LN 36 0 qu ar ry gr ee n si lic at e po int m id se ct io n 11 .0 00 00 10 LN 36 1 qu arry qu artz c ob bl e sp lit in h al f a nd fl ak es w er e re m ov ed 11 .0 00 00 10 LN 36 2 .q ua rry ov er ha ng 11 .0 00 00 10 LN 36 3 qu arry ut iliz ed fl ak e of b la ck ig ni m br ite 11 .0 00 00 10 LN 36 6 I q ua rry sp ars e sc at te r o f fl ak es w ith po tte ry ri m s he rd 11 .0 00 00 10 LN 36 7 ro ck a rt ig ni m br ite E lk o pr oj ec til e po in t fr ag m en t 11 .0 00 00 10 LN 36 8 ro ck a rt ig ni m br ite N or th er n si de n ot ch p ro je ct ile po int 11 .0 00 00 10 LN 36 9 roc k art ig ni m br ite M cK ea n La nc eo ta te p ro je ct ile p oi nt 11 .0 00 00 10 LN 37 ro ck a rt LI TH IC S C A IT ER 11 .0 00 00 10 LN 37 0 ro ck a rt lit hic s ca tte r 11 .0 00 00 10 LN 37 1 ro ck a rt lit hic s ca tte r 11 .0 00 00 10 LN 37 2 ro ck a rt lit hi c sc at te r 11 .0 00 00 10 LN 37 3 ro ck a rt lit hi c s ca tte r 11 .0 00 00 10 LN 37 4 ro ck a rt sm al l s id e no tc h po in t 11 .0 00 00 10 LN 37 5 ro ck a rt La nc eo la te -s ha pe d ba sa l fr ag m en t o f b la ck ig nim br it 11 .0 00 00 10 LN 37 6 ro ck a rt sm al l L an ce ol at e po in t m ad e of o bs id ia n 11 .0 00 00 10 LN 37 7 ro ck a rt lit hic s ca tte r 11 .0 00 00 10 LN 37 8 ro ck a rt la rg e co m er -n ot ch ed p ro je ct ile p oi nt 11 .0 00 00 ·- --· · · w � 10 LN 37 9 ro ck a rt 10 LN 38 ro ck a rt 10 LN 39 ro ck a rt 10 LN 39 7 ro ck a rt 10 LN 39 8 ro ck a rt 10 LN 4 ro ck a rt 10 LN 40 ro ck a rt 10 LN 41 ro ck a rt 10 LN 41 0 ro ck a rt 10 LN 42 3 ro ck a rt 10 LN 44 1 ro ck a rt 10 LN 46 ro ck a rt 10 LN 46 3 ro ck a rt 10 LN 46 4 ro ck a rt 10 LN 47 ro ck a rt 10 LN 47 1 ro ck a rt 10 LN 47 2 ro ck a rt 10 LN 48 roc k a rt, ro ck fe 10 LN 49 ro ck a rt, r oc k fe 10 LN 5 ro ck a rt, ro ck sh e 10 LN 50 ro ck a rt, ro ck sh e 10 LN 50 1 ro ck a rt, ro ck sh e 10 LN 50 9 ro ck a rt , r oc ks he 10 LN 51 ro ck a rt, ro ck sh e 10 LN 52 ro ck fe at ur e 10 LN 53 ro ck fe at ur e 10 LN 54 ro ck fe at ur e 10 LN 54 8 ro ck fe at ur e 10 LN 54 9 ro ck fe at ur e 10 LN 55 ro ck fe at ur e 10 LN 55 0 ro ck fe at ur e 10 LN 55 1 roc k fe at ur e 10 LN 56 ro ck fe at ur e - - - - �- · - - - A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 11 1 la rg e, b la ck v ol ca nic g la ss , s id e- no tc he d pr oj ec t LI TH IC S CA TI ER LI TH IC S C A TI ER lit hi c sca tte r; fla ke s, s cra pe r his to ric s ca tte r w ith b ifa ce a nd fl ak e; g la ss , m et a LI TH IC S CA TT ER LI TH IC S C A TI ER LI TH IC S C A TI ER lo w d en sity lit hic s ca tte r; fla ke s low d en sity lit hic s ca tte r; fla ke s, po int sm al l li th ic s ca tte r; fla ke s, bifa ce , s cr ap er LI TH IC S CA TI ER lith ic s ca tte r; fla ke s fla ke LI TH IC S CA TT ER lith ic s ca tte r; fla ke s bi fa ce LI TH IC S CA TI ER LI TH IC S CA TI ER LA VA B LI ST ER /L IT HI C$ LI TH IC S CA TT ER . po in t t ip sc ra pe r TI PI R IN G S; S TO NE C IR C LE S LI TH IC S CA TT ER RO C KS HE L T ER IP IC TO G RA PH RO C KS HE L T ER /P IC TO G RA PH bi fa ce b as e 2 un ifa ce to ol s RO C KS HE L T ER fla ke fla ke RO C KS HE L T ER IP IC TO G RA PH S 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 w 11 .0 00 00 - 0 A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 11 10 LN 57 ro ck fe at ur e LI TH IC S C A TI ER 11 .0 00 00 10 LN 58 ro ck fe at ur e LI TH IC S CA TI ER 11 .0 00 00 10 LN 59 ro ck fe at ur e LI TH IC S CA TI ER 11 .0 00 00 10 LN 6 roc k fe at ur e LI TH IC S CA TT ER 11 .0 00 00 10 LN 60 ro ck fe at ur e RO C KS HE L T ER IP IC TO G RA PH S 11 .0 00 00 10 LN 60 1 ro ck fe at ur e sc ra pe r 11 .0 00 00 10 LN 60 3 ro ck fe at ur e bifa ce fr ag 11 .0 00 00 10 LN 60 4 ro ck fe at ur e fla ke 11 .0 00 00 10 LN 60 7 roc k fe at ur e 2 fla ke s 11 .0 00 00 10 LN 60 8 ro ck fe at ur e 7 fla ke s 11 .0 00 00 10 LN 61 4 ro ck fe at ur e po in t t ip 11 .0 00 00 10 LN 61 6 ro ck fe at ur e fla ke 11 .0 00 00 10 LN 61 7 ro ck fe at ur e 2 fla ke s 11 .0 00 00 10 LN 61 9 ro ck fe at ur e lit hi c sc at te r; fla ke s 11 .0 00 00 10 LN 62 ro ck fe at ur e LI T HI C S CA TI ER 11 .0 00 00 10 LN 62 3 ro ck fe at ur e lit hi c an d gr ou nd st on e sc at te r; fla ke s, D SN , C as ca d 11 .0 00 00 10 LN 62 4 ro ck fe at ur e co rn er -n ot ch ed p oi nt 11 .0 00 00 10 LN 62 5 ro ck fe at ur e lit hi c sc at te r; fla ke s, bif ac e, lar ge s id e- no tc he d 11 .0 00 00 10 LN 62 6 ro ck fe at ur e po in t 11 .0 00 00 10 LN 62 7 ro ck fe at ur e I P Oi nt 11 .0 00 00 10 LN 62 8 ro ck fe at ur e co rn er -n ot ch ed p oi nt 11 .0 00 00 10 LN 62 9 roc k fe at ur e, roc co rn er -n ot ch ed p oi nt 11 .0 00 00 10 LN 63 ro ck sh el te r LI T HI C S C A TI ER 11 .0 00 00 10 LN 63 0 ro ck sh el te r co rn er -n ot ch ed p oi nt 11 .0 00 00 10 LN 63 1 ro ck sh el te r lit hi c an d gr ou nd s to ne s ca tte r; fla ke s, p oi nt , g ri 11 .0 00 00 10 LN 63 2 ro ck sh el te r Ea st ga te p oi nt 11 .0 00 00 10 LN 63 3 ro ck sh el te r lit hi c sc at te r; fla ke s, bif ac e, p oi nt 11 .0 00 00 10 LN 63 4 ro ck sh el te r lit hi c sca tte r; fla ke s 11 .0 00 00 10 LN 63 5 ro ck sh el te r lit hi c sc att er ; p oi nt , s cr ap er , fl ak es 11 .0 00 00 10 LN 63 7 ro ck sh el te r lit hi c sc at te r; fla ke s 11 .0 00 00 10 LN 63 8 ro ck sh el te r lith ic a nd h ist or ic de br is s ca tte r; fla ke s, po in t, 11 .0 00 00 10 LN 63 9 ro ck sh el te r lit hi c sc at te r; fla ke s, m od ifie d fla ke 11 .0 00 00 w 10 LN 64 0 ro ck sh el te r lit hi c an d hi st or ic de br is sc at te r; fla ke s, po int , 11 .0 00 00 - - 10 LN 64 5 ro ck sh el te r 10 LN 64 6 ro ck sh el te r 10 LN 64 8 ro ck sh el te r 10 LN 65 roc ks he lte r 10 LN 65 1 ro ck sh el te r 10 LN 65 2 ro ck sh el te r 10 LN 65 3 ro ck sh el te r 10 LN 65 4 ro ck sh el te r 10 LN 65 5 ro ck sh el te r 10 LN 65 6 ro ck sh el te r 10 LN 65 7 ro ck sh el te r 10 LN 65 8 ro ck sh el te r 10 LN 65 9 ro ck sh el te r 10 LN 66 ro ck sh el te r 10 LN 66 2 ro ck sh el te r 10 LN 66 3 ro ck sh el te r 10 LN 664 ro ck sh el te r 10 LN 66 5 ro ck sh el te r 10 LN 66 6 ro ck sh el te r 10 LN 66 7 ro ck sh el te r 10 LN 66 8 ro ck sh el te r 10 LN 66 9 ro ck sh el te r 10 LN 67 ro ck sh el te r 10 LN 68 roc ks he lte r 10 LN 7 ro ck sh el te r 10 LN 71 ro ck sh el te r 10 LN 72 ro ck sh el te r 10 LN 73 ro ck sh el te r 10 LN 75 ro ck sh el te r 10 LN 83 ro ck sh el te r 10 LN 84 ro ck sh el te r 10 LN 85 ro ck sh el te r 10 LN 86 ro ck sh el te r A pp en di x C : P re hi st or ic L oc al iti es in th e St ud y A re a -Z on e 11 I po in t m ids ec tio n fla ke El ko p oi nt LI TH IC S CA TT ER fla ke fla ke fla ke po in t m ids ec tio n fla ke Ea stg at e po in t lit hi c sc att er ; a w l, oo int s, m od ifie d fla ke , fl ak e lit hic s ca tte r a nd 2 h isto ric c ai rn s; bifa ce , fl ak e lith ic s ca tte r; fla ke s LI TH IC S CA TT ER lit hi c sc at te r; po int , b ifa ce , m od ifie d fla ke s, fla po in t El ko oo in t a nd fla ke El ko p oi nt 4 fla ke s Ea st ga te p oi nt a nd 2 fl ak es 2 fla ke s fla ke LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER IS O LA TE D F IN D LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 l.>J - N 10 LN 87 ro ck sh el te r 10 LN 88 ro ck sh el te r 10 LN 89 ro ck sh el te r 10 LN 90 ro ck sh el te r 10 LN 91 ro ck sh el te r 10 LN 93 roc ks he lte r 10 LN 94 ro ck sh el te r 10 LN 95 ro ck sh el te r 10 LN 97 ro ck sh el te r 10 LN 98 un kn ow n 10 LN 99 un kn ow n A pp en di x C : P re hi st or ic L oc al it ies in tb e St ud y A re a -Z on e 11 LI TH IC S CA TT ER IS O LA TE D FI ND LI TH IC S CA TT ER LI TH IC S CA TT ER LI TH IC S CA TT ER RO CK F EA TU R E LI TH IC S CA TT ER IS O LA TE D F IN D LI TH IC S CA TT ER IS O LA TE D FI N D IS O LA TE D FI N D 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 11 .0 00 00 ' 11 .0 00 00 w - w BIBLIOGRAPHY Aikens, C. M. 1 966 Fremont-Promontory-Plains Relationships: Including a Report of Excavations at the Injun Creek and Bear River Number 1 Site, Northern Utah. University ofUtah Anthropological Papers No. 82. Salt Lake City. 1 967 Excavations at Snake Rock Village and the Bear River No. 2 Site. University ofUtah Anthropological Papers No. 87. Salt Lake City. 1970 Hogup Cave. University ofUtah Anthropological Papers No. 93, Salt Lake City. 1 990 From Asia to America: The First Peopling ofthe New World. In Prehistoric Mongoloid Dispersals, No. 7. University of Tokyo. Aikens, C. M., D. Cole and 1 977 Excavations at Dirty Shame Rockshelter, Southeastern Oregon. Tebiwa 4: 1 -29. Ames, K. M. 1 994 The Northwest Coast: Complex Hunter-Gatherers, Ecology and Social Evolution. Annual Review of Anthropology 23 :209-229. Arkush, B. 2002 Archaeology of the Rock Springs Site: A Multicomponent Bison Kill and Processing Camp in Curlew Valley, Southeastern Idaho. Boise State University Monographs in Archaeology, No. 1 Bamforth, D. B. 1 987 Historic Documents and Bison Ecology on the Great Plains. Plains Anthropologist 32: 1 - 16. Binford, L. R. 1978 Nunamiut Ethnoarchaeology. Academic Press, New York. 1980 Willow Smoke and Dogs Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. American Antiquity 45 :4-20. 3 14 Bright, R C. and O.K. Davis 1982 Quaternary Paleoecology of the Idaho National Engineering Laboratory, Snake River Plain, Idaho. The American Midland Naturalist 1 08:2 1- 33. Brink, J.W. 1 997 Fat Content in Leg Bones of Bison bison, and Applications to Archaeology. Journal of Archaeological Science 2 4:259-274. Butler, B. R. 1 963 An Early Man Site at Big Camas Prairie, South-Central Idaho. Tebiwa 6:22-33. 1 965 A Report on Investigations of an Early Man Site near Lake Channel, Southern Idaho. Tebiwa 8 : 1 -20. 1 968 An Introduction to Archaeological Investigations in the Pioneer Basin Locality ofEastem Idaho. Tebiwa 1 1 : 1 -30. 1 97 1 A Bison Jump in the Upper Salmon River Valley o f Eastern Idaho. Tebiwa 1 4:4-32 . 1 978 A Guide to Understanding Idaho Archaeology (I'hird Edition): The Upper Snake and Salmon River Country. A Special Publication of the Idaho Museum ofNatural History, Pocatello. 1 986 Prehistory of the Snake and Salmon River Area. In Handbook of North American Indians, Great Basin, Vol. 1 1 , edited by W. L. D' Asevedo. Smithsonian Institution, Washington D.C. Carmichael, D.L. 1 990 GIS Predictive Modelling of Prehistoric Site Distributions in Central Montana. In In Interpreting Space: GIS and Archaeology, edited by K.M.S. Allen, S . W. Green and E.B.W. Zubrow. Taylor and Frances, London. Charnov, E. L. 1 976 The Marginal Value Theorum. Theoretical Population Biology 9: 129- 36. Charnov, E.L. and G. Orians 1 973 Optimal Foraging: Some Theoretical Explorations. Mimeo. Department ofBiology. University of Utah, Salt Lake City. 3 1 5 Chatters, J.C. 1 982 Evolutionary Human Paleoecology: Climatic Change and Human Adaptation in The Pahsimeroi Valley, Idaho. Unpublished Ph.D. dissertation. Department of Anthropology, University of Washington, Seattle. Cummings, L. S. 2002 Stratigraphic Pollen Analysis at Tomcat Cave, Idaho. Paleo Research Institute Technical Report 02-0 1 . Currey, D.R. and S .R. James 1 982 Paleoenvironments of the northeastern Great Basin and northeastern Basin rim region: A Review of geological and biological evidence. In Man and Environment in the Great Basin, edited by D. B. Madsen and J.F. O'Connell, pp. 27-52. Society for American Archaeology Papers 2. Daubenmire, R. 1 985 The Western Limits of the Range of the American Bison. Ecology 66: 622-624. Davis, 0. K. and R.C. Bright 1 983 Late Pleistocene Vegetation History of the Idaho National Engineering Laboratory. Idaho National Engineering Laboratory Radioecology and Ecology Programs 1983 Progress Report. Idaho Falls. Delisio, M. P. 1 97 1 Preliminary Report o f the Weston Canyon Rockshelter, Southeastern Idaho: A Big Game Hunting Site in the Northern Great Basin. University of Oregan Anthropological Papers 1 :43-57. Eugene. Flenniken, J. J. and P. J. Wilke 1 989 Typology, Technology, and Chronologyh of Great Basin Dart Points. American Anthropologist 9 1 : 1 49- 1 58. Franzen, J.G. 1 980 A Class II Cultural Resource Inventory of Areas in and Adjacent to the Big Desert Planning Unit, Idaho. Report on file, Bureau of Land Management, Idaho Falls District, Idaho Falls. 1 98 1 Southeastern Idaho Class I Cultural Resource Inventory. Report on File, Bureau of Land Management, Burley and Idaho Falls Districts, Burley and Idaho Falls. 3 1 6 I , Friesen, T. M. 2001 A Zooarchaeologica1 Signature for Meat Storage: Rethinking the Drying Utility Index. American Antiquity 66:31 5-332. Frison, G. C. 1991 Prehistoric Hunters of the High Plains. Academic Press, New York. Gifford-Gonzalez, D. 1 993 Gaps in the Zooarchaeological Analyses ofButchery: Is Gender an Issue? In From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains, edited by J. Hudson, pp. 1 81 -200. Center for Archaeological Investigations Occasional Paper No. 21 . Southern Illinois University, Carbondale. Goland, C. 1 991 The Ecological Context ofHunter-Gatherer Storage: Environmental Predictability and Environmental Risk. In Foragers in Context, edited by P. T. Miracle, L.E. Fisher, and J. Brown, pp. 107- 1 25. University of Michigan, Ann Arbor. Gough, S. 1 990 Cultural Resource Investigations ofthe Bonneville Power Administration's Goshen-Drummond No. 1 Transmission Line, Southeastern Idaho. Eastern Washington University Reports in Archaeology and History. Grayson, D. K. 1 982 Toward a History of Great Basin Mammals during the Past 1 5,000 Years. In Man and Environment in the Great Basin, edited by J. F. O'Connell. Society for American Archaeology Papers No. 2. 1 993 The Desert 's Past: A Natural Prehistory of the Great Basin. Smithsonian Institution Press, Washington. Greeley, R. and J.S. King 1 977 Volcanism on the Snake River Plain, Idaho: A Comparative Planetary Geology Guidebook. Prepared for the Office of Planetary Geology. National Aeronautics and Space Administration, Washington, D.C. 3 1 7 1111!11!!------------------------------ - - --- Green, T. J., B. Cochran, T. W. Fenton, J.C. Woods, G. L. Titmus, L. Tieszan, M.A. Davis and S. J. Miller 1 998 The Buhl Burial: A Paleoindian Woman from Southern Idaho. American Antiquity 63 :437-456. Gruhn, R. 1 96 1 The Archaeology of Wilson Butte Cave, Southcentral Idaho. Occasional Papers of the Idaho State College Museum 6, Pocatello. Guthrie, R.D. 1 980 Bison and Man in North America. Canadian Journal of Anthropology 1 :5 5-73 . Hanson, J. R. 1 984 Bison Ecology in the Northern Plains and a Reconstruction of Bison Patterns for the North Dakota Region. Plains Anthropologist 29: 93- 1 1 3 . Harper, K. T. 1 967 The Vegetational Environment of the Bear River No. 2 Archaeological Site. In Excavations at Snake Rock Village and the Bear River No. 2 Site, pp. 6 1 -65, edited by C. M. Aikens. University ofUtah Anthropological Papers, No. 87. Salt Lake City. Hassen, F.A. and D. Ortner 1 977 Inclusions in Bone Material as a Source of Error in Radiocarbon Dating. Archaeometry 1 9: 1 3 1 - 1 35. Hawkes, K., K. Hill and J. O'Connell 1 982 Why Hunters Gather: Optimal Foraging and the Ache of Eastern Paraguay. American Ethnologist 9: 3 79-98. Hawkes, K. and J. O'Connell 1 985 Optimal Foraging Models and the Case of the !Kung. American Anthroologist 87: 401 -5. Henrikson, L.S. 1 993 Test Excavations at 1 0LN94: The Ogden Site. Reports of Investigations 93-68 on file, Bureau of Land Management Shoshone District, Shoshone, Idaho. 1 996 Prehistoric Cold Storage on the Snake River Plain: Archaeological Investigations at Bobcat Cave. Monographs in Idaho Archaeology and Enthology No. 1 , Idaho State Historical Society, Boise. 3 1 8 2000 Bison Frequencies in Archaeological Sites on the Eastern Snake River Plain of Southern Idaho: Economic Implications from Old and New Evidence. Paper presented at the 27th Great Basin Anthropological Conference. Ogden, Utah. Henrikson, L.S., R. M. Yohe II, M. E. Newman and M. Druss 1 998 Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin. Journal of California and Great Basin Anthropology 20:72-87. Hill K. and A. M. Hurtado 1996 Ache Life History: The Ecology and Demography of a Foraging People. Aldine de Gruyter, New York. Holly, D.H. 1998 Environment, History and Agency in Storage Adaptation: on the Beothuk in the 1 8th Century. Journal of Canadian Archaeology 22: 19-30. Holmer, R. N., A.C. Turner and W. G. Reed 1 986 Overview ofResults. In Shoshone-Bannock Culture History, Swanson/Crabtree Anthropological Research Laboratory Reports of Investigations 85-1 6, pp. 281 -287, edited by R. N. Holmer. Pocatello, Idaho. Ingold, T. 1 983 The Significance of Storage in Hunting Societies. Man 1 8:553-571 . Irving, W. 1 986 The Adventures of Captain Bonneville, US.A. in the Rocky Mountains and the Far West, edited by E. W. Todd. University of Oklahoma Press, Norman. Jones, K. and D. Madsen 1 989 Calculating the Cost of Resource Transportation: A Great Basin Example. Current Anthropology 30:529-34. Kaplan, H., and K. Hill 1 985 Food Sharing among Ache Foragers: Tests ofExplanatory Hypotheses. Current Anthropology 26: 223-46. 1 992 The Evolutionary Ecology of Food Acquisition. In Evolutionary Ecology and Human Behavior, edited by E. A. Smith and B. Winterhalder, pp. 1 67-202. New York, Aldine de Gruyter. 3 19 Kelly, R.L. 1 990 Marshes and Mobility in the Western Great Basin. In WetlandY Adaptations in the Great Basin, edited by J. Janetski and D. B. Madsen, Pp. 259-76. Brigham Young University, Museum of Peoples and Cultures Occasional Paper No. 1 , Provo, Brigham Young University. 1 995 The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways. Smithsonian University Press, Washington D.C. Krebs, J. R. and N. B. Davies (editors) 1 991 Behavioral Ecology: An Evolutionary Approach. Blackwell Scientific Publications, London. Kuntz, M.A., Spiker, E. C., Rubin, M., Champion, D.E., and Lefebvre, R. H. 1 986 Radiocarbon Studies ofLatest Pleistocene and Holocene Lava Flows of the Snake River Plain, Idaho; Data, Lessons, Intrepretations. Quaternary Research 25: 1 63-1 76. Kuntz, M.A., H. R. Covington, and L. J. Schorr 1 992 An Overview ofBasaltic Volcanism of the Eastern Snake River Liljeblad, S. Plain, Idaho. In Regional Geology of Eastern Idaho and Western Wyoming, edited by P.K. Link, M.A. Kuntz and L. B. Platt. Geological Society Memoir 1 79. 1 957 Indian Peoples of Idaho. Idaho State College, Pocatello. LeBlanc, R. J. 1 984 The Rat Creek Site and the Late Prehistoric Period in the Interior Northern Yukon. National Museum of Man, Mercury Series, Archaeological Survey o f Canada, Paper No. 1 20. Lohse, E.S. and D. Sammons 1 994 Southeastern Idaho Prehistory: Status and Stasis. Idaho Archaeologist 1 7: 35-46. Lowie, R. H. 1 909 The Northern Shoshone. Anthropological Papers of the American Museum of Natural History 2: 1 65-306, New York. 320 Lupo, K.D. and D.N. Schmitt 1 997 On Late Holocene Variability in Bison Populations in the Northeastern Great Basin. Journal of California and Great Basin Anthropology 1 9:50-69. MacArthur, R. and E. Pianka 1 966 On Optimal Use of a Patchy Environment. The American Naturalist I 00:603-609. Mack, R. N. and J. N. Thompson I 982 Evolution in Steppe with Few Large, Hooved Mammals. American Naturalist 1 1 9:757· 773 . Marchello, M.J., W.D. Slanger, M. Hadley, D.B. Milne and J.A. Driskell 1 998 Nutrient Composition of Bison Fed Concentrate Diets. Journal of Food Composition and Analysis 1 1 :23 1 -239. McDonald, J. N. I 98 1 North American Bison: Their Classification and Evolution. University of California Press, Berkeley. Meatte, D.S. I 990 Prehistory ofthe Western Snake River Basin. Occasional Papers of the Idaho Museum of Natural History, No. 35. Pocatello, Idaho. Mehringer, P. J. 1 986 Prehistoric Environments. In Handbook of North American Indians, Vol. I I , edited by W.L. d' Azevedo, pp. 3 1 · 50. Smithsonian Institution Press, Washington, D.C. Miller, S. 1 972 Weston Canyon Rockshelter: Big Game Hunting in Southeastern Idaho. Unpublished Master's Thesis. Idaho State University, Pocatello. Miller, S. and W. Dort Jr. I 978 Early Man at Owl Cave: Current Investigations of the Wasden Site, Eastern Snake River Plain. In Early Man in America from a Circum­ Pacific Perspective, edited by A.L. Bryan. Occasional Papers of the Department of Anthropology, University of Alberta I . Edmonton. 32 1 Murphy, R. F. and Y. Murphy 1 960 Shoshone-Bannock Subsistence and Society. University of California Anthropological Records 1 6:293-33 8, Berkeley. 1 986 Northern Shoshone and Bannock. In Handbook of North American Indians, Vol. 1 1 , edited by W.L. d' Azevedo, pp. 284-307. Smithsonian Institution Press, Washington, D.C. Newman, M. 1993 Immunological Analysis ofLithic Artifacts from Bobcat Cave, Idaho. Report on File, Bureau of Land Management, Shoshone Field Office. 1 994 Immunological Analysis of a Sagebrush Feature from Bobcat Cave, Idaho. Report on file, Bureau of Land Management, Idaho Falls District Office. 2001 Immunological Analysis of Artifacts from Tomcat and Scaredy Cat Ca Caves, Idaho. Report on file, Bureau of Land Management, Shoshone Field Office. Oetting, A.C. 1989 Villages and Wetlands Adaptations in the Northern Great Basin: Chronology and Land Use in the Lake Abert-Chewaucan Marsh Basin, Lake County, Oregon. University of Oregon Anthropological Papers 4 1 , Eugene. O'Connell, J. F. 1 975 The Prehistory of Surprise Valley. Ballena Press Anthropological Papers No. 4. O'Connell, J.F., K. Hawkes and N.B. Jones 1 988 Hadza Hunting, Butchering and Bone Transport Practices and their Archaeological Implications. Journal of Anthropological Research 44: 1 13-1 6 1 . Ogden, P . S. 1 950 Peter Skene Ogden 's Snake Country Journals 1824-25 and 1825-26, edited by E. E. Rich. The Hudson's Bay Record Society, London. 322 Oliver, J.S. 1 993 Carcass Processing by the Hadza: Bone Breakage from Butchery to Consumption. In From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains, edited by J. Hudson, pp. 200-227. Center for Archaeological Investigations Occasional Paper No. 21. Southern Illinois University, Carbondale. Osgood, Cornelius 1 936 Contributions to the Ethnography of the Kutchin. Yale University Publications in Anthropology No. 14. Yale University Press, New Haven, Connecticut. Plew, M.G, M.G. Pavesic and M.A. Davis 1 987 Archaeological Investigations at Baker Caves I and III: A Late Archai Component on the Eastern Snake River Plain. Archaeological Reports 1 5, Boise State University, Boise. Prouty, G. 1 995 Root Crop Exploitation and the Development of Upland Habitation Sites: A Prospectus for Paleoethnobotanical and Archaeological Research into the Distribution and Use ofEconomic Plants in the Fort Fort Rock Basin. In Archaeological Researches in the Northern Great Basin: Fort Rock Archaeology since Cressman, edited by C. M. Aikens and D.L. Jenkins, pp. 573-598. University of Oregon Anthropological Papers 50. Reed, W. G., J.W. Ross, B.L. Ringe and R. N. Holmer 1 986 Archaeological Investigations on the INEL 1984-1985: A Report of Cultural Resource Inventory Projects in Eight Volumes. Report on File, Swanson/Crabtree Anthropological Research Laboratory, Idaho State University, Pocatello. Ringe, B. L. 1 992 Locational Analysis and Preliminary Predictive Model for Prehistoric Cultural Resources on the Idaho National Engineering Laboratory. Unpublished Master's Thesis, Idaho State University, Pocatello. 1993 Cultural, Aesthetic and Scenic Resources. In Environmental Resource Document for the INEL. Report on file, U.S. Department of Energy, Idaho Operations Office, EG&G, Idaho, Inc. Idaho Falls. 323 Rowley-Conwy, P. and M. Zvelebil 1 989 Saving it for Later: Storage by Prehistoric Hunter-Gatherers in Europe. Russell, 0. In Bad Year Economics: Cultural Responses to Risk and Uncertainty, edited by P. Halstead and J. O'Shea, pp. 40-56. Cambridge Universit Press, Cambridge. 1 921 Journal of a Trapper: Nine Years in the Rocky Mountains 1834-1843. SymsYork Company, Inc., Boise. Sargeant, K. E. 1 973 Final Report on the Archaeology of the Redfish Overhang Site ( 10CR201 ), Sawtooth National Forest, Cassia County, Idaho. Report on File, United States Forest Service, Region 4. Ogden. Simms, S. R. 1 987 Behavioral Ecology and Hunter-Gatherer Foraging: An Example from the Great Basin. British Archaeological Reports, International Series 38 1 . Oxford. Smith, E. A. 1 99 1 Inujjuamiut Foraging Strategies. Hawthorne, New York, Aldine de Gruyter. Speth, J.D. 1 983 Bison Kills and Bone Counts: Decision Making by Ancient Hunters. University of Chicago Press. Statham, D. S. 1 982 Camas and the Northern Shoshoni: A Biogeographic and Socio-economic Analysis. Archaeological Reports No. 1 0, Boise State University, Boise. Stevens, D.W. and J. Krebs 1 986 Foraging Theory. Princeton University Press, Princeton. Steward, J.H. 1 938 Basin-Plateau Aboriginal Sociopolitical Groups. Bureau of American Ethnology Bulletin 120. 324 Sugiyama, L. S. 1 996 In Search of the Adapted Mind: Cross Cultural Evidence for Human Cognitive Adaptations among the Shiwiar of Ecuador and the Yora of Peru. Ph.D. Dissertation, University of Michigan Microfilm. Swanson, E.H. Jr. 1 972 Birch Creek: Human Ecology in the Cool Desert of the Northern Rocky Mountains 9, 000 B. C. - A. D. 1850. The Idaho State University Press, Pocatello. Tatum, L.S. 1 980 A Seasonal Subsistence Model for Holocene Bison Hunters on the Eastern Plains o fNorth America. In The Cherokee Excavations: Holocene Ecology and Human Adaptations in Northwestern Iowa, edited by D.C. Anderson and H.A. Semken, Jr., pp. Academic Press, New York. Thomas, D.H. 1 983 The Archaeology of Monitor Valley 1. Epistemology. Anthropological Papers of the American Museum ofNatural History 58, New York. 1 986 Refiguring Anthropology: First Principles of Probability and Statistics. Waveland Press, Inc., Prospect Heights, Illinois. Titmus, G. L. and J. C. Woods 1 991 Fluted Points from the Snake River Plain. In Clovis: Origins and Adaptations, edited by R. Bonnichsen and K Turnmire, pp. 1 1 9- 1 3 1 . Center for the Study of the First Americans, Oregon State University, Corvallis. Townsend, J. K. 1 978 Narrative of a Journey across the Rocky Mountains to the Columbia River. University o fNebraska Press, Lincoln. Turner, A., R. Holmer and W. G. Reed 1 986 The Realm of the Sacred. In Shoshone-Bannock Culture History, Swanson/Crabtree Anthropological Research Laboratory Reports of Investigations 85- 16, pp. 9-38, edited by R. N. Holmer. Pocatello, Idaho. Vehik, S. 1 977 Bone Fragments and Bone Grease Manufacturing: A Review of their Archaeological Use and Potential. Plains Anthropologist 22: 1 69-1 82. 325 Warren, R. E. 1992 Predictive Modeling of Archaeological Site Location: A Case Study in The Midwest. In Interpreting Space: GIS and Archaeology, edited by K.M.S. Allen, S. W. Green and E.B.W. Zubrow. Taylor and Frances, London. Wheatley, D. and M. Gillings 2002 Spatial Technology and Archaeology: The Archaeological Applications of GIS. Taylor and Frances, London. White, T.E. 1953 A Method of Calculating the Dietary Percentage of Various Food Animals Utilized by Aboriginal Peoples. American Antiquity 18:396- 398. Wigand, P. 1997 Pollen and Macrofossil Analysis of Site 10MA143. Desert Research Institute Report on File, Shoshone District Bureau of Land Management, Shoshone, Idaho. Wilke, P. J. and M. McDonald 1989 Prehistoric Use of Rock-Lined Cache Pits: California Deserts and Southwest. Journal of California and Great Basin Anthropology 11:50- 73. Willig, J. A. and C. M. Aikens 1988 The Clovis Archaic Interface in Far Western North America. In Early Human Occupation in Far Western North America: The Clovis Archaic Interface, edited by J.A. Willig, C. M. Aikens and J. L. Fagan, pp. 1-40. Nevada State Museum Anthropological Papers 21. Yohe R.M, and L.S. Henrikson 1998 Late Holocene Grizzly Bear (Ursus Arctos) Remains from Scaredy Cat Cave (10MA143), Snake River Plain, Idaho. In And Whereas . . . Papers on the VertebratePaleontology of Idaho Honoring John A. White, Volume 1, edited by W.A. Akersten, H. G. McDonald, D.J. Medrum and M.E.T. Flint, pp. 186-192. Idaho Museum of Natural History Occasional Paper 36. 326