IMPROVING CHRONOLOGIES IN ISLAND ENVIRONMENTS: A GLOBAL PERSPECTIVE by MATTHEW F. NAPOLITANO A DISSERTATION Presented to the Department of Anthropology and the Division of Graduate Studies of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2021 DISSERTATION APPROVAL PAGE Student: Matthew F. Napolitano Title: Improving Chronologies in Island Environments: A Global Perspective This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Anthropology by: Scott M. Fitzpatrick Chairperson Jon Erlandson Core Member Alison Carter Core Member Geoffrey Clark Core Member Ryan Jones Institutional Representative and Andy Karduna Interim Vice Provost for Graduate Studies Original approval signatures are on file with the University of Oregon Division of Graduate Studies . Degree awarded June 2021 ii © 2021 Matthew F. Napolitano iii DISSERTATION ABSTRACT Matthew F. Napolitano Doctor of Philosophy Department of Anthropology June 2021 Title: Improving Chronologies in Island Environments: A Global Perspective Chronology building is a fundamental part of archaeology. Questions related to the timing and duration of events are inextricably connected to larger questions about human activity in the past. Given its wide applicability and temporal range that covers the last ca. 50 kya, radiocarbon dating is the most frequently used chronometric technique in archaeology. Preserved carbon-based organic materials such as charcoal, shell, and bone are often key sources of information for determining the onset and duration of cultural events that occurred in the past. Limitations of radiocarbon dating have long been identified, yet with advances, including accelerator mass spectrometry (AMS) and applications of Bayesian modeling (see below), archaeologists and other scientists have continued to improve the accuracy and precision of chronologies. For archaeologists working in island regions, these techniques have allowed archaeologists to engage with a number of complex issues including island colonization events (i.e., initial human settlement), paleoenvironmental reconstruction, and long-distance exchange and interaction between groups of people living on different islands. To examine chronological issues as they specifically relate to islands, I present four case studies as part of this dissertation in which various techniques are applied to iv archaeological datasets to improve the accuracy and precision of understanding human activity in the past. By applying a suite of methods, including chronometric hygiene, Bayesian modeling, glass chemical composition analysis, and marine reservoir corrections to case studies from four island regions around the world, I improve upon some of the limitations imposed by radiocarbon dating to create a more nuances understanding the past. These approaches allow me to address both large-scale questions such as the timing of human settlement across the circum-Caribbean, site-specific questions such as when stone money quarrying activity took place in a rockshelter site in Palau, western Micronesia, and how settlement patterns in southern Yap, western Micronesia was influenced by sea-level change around 2000 years. This dissertation includes unpublished and previously published co-authored material. v CURRICULUM VITAE NAME OF AUTHOR: Matthew F. Napolitano GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon, Eugene, OR University of West Florida, Pensacola, FL State University of New York at Stony Brook, Stony Brook, NY DEGREES AWARDED: Doctor of Philosophy, Anthropology, 2021, University of Oregon Master of Arts, Anthropology, 2012, University of West Florida Bachelor of Arts, Anthropology, 2006, State University of New York at Stony Brook AREAS OF SPECIAL INTEREST: Island and coastal archaeology, long-term human-environment interactions, initial settlement of previously uninhabited islands, traditional ecological knowledge, long-distance migration and interaction, chronology building, ceramic analyses PROFESSIONAL EXPERIENCE: Principal Investigator, Archaeological Inventory of Koror Rock Island Southern Lagoon, Phase I, Bureau of Cultural and Historical Preservation, Ministry of Community and Cultural Affairs (National Park Service grant no: P17AF00153), 2020 Principal Investigator, Archaeology Inventory of Yapese Stone Money Sites in the Republic of Palau, Bureau of Cultural and Historical Preservation, Ministry of Community and Cultural Affairs (National Park Service grant no: P19AF00236), 2020 Graduate Teaching Employee, Department of Anthropology, University of Oregon, 2014-2021 Laboratory Manager and Field Director, North American Archaeology Lab, American Museum of Natural History, New York, 2012-2014 Assistant Laboratory Supervisor, North American Archaeology Lab, American Museum of Natural History, New York, 2010-2012 vi GRANTS, AWARDS, AND HONORS: Centurion Award, The Graduate School, University of Oregon, 2021 Lokey Science Dissertation Fellowship, University of Oregon, 2020-2021 Lewis and Clark Fund for Fieldwork and Exploration, 2019 Sigma Xi Grant-in-Aid of Research, 2019 Small Professional Grant, Center for Asian and Pacific Studies, 2019 Wenner-Gren Dissertation Fieldwork grant, “First colonization of the land of stone money: Archaeological investigations on the remote island of Yap, western Micronesia,” 2019 National Geographic Standard Grant (Team Member with advisor Fitzpatrick; HJ2-184R-18), “First colonization of the land of stone money: Archaeological investigations on the remote island of Yap, western Micronesia,” 2018 Sigma Xi Grant-in-Aid of Research, “First Colonization of the Land of Stone Money: Archaeological Investigations of the Remote Island of Yap, Western Micronesia,” 2018 Special “Opps” Travel and Research Award for travel to attend the Indo-Pacific Prehistory Association meetings in Hue, Vietnam, 2018 First Place, Anthropology, Sigma Xi Student Research Showcase, 2018 Edna English Trust for Archaeological Research summer research award, Edna English Trust for Archaeological Research and the Museum of Natural and Cultural History, 2017 First place, Poster presentation, Graduate Student Research Forum, University of Oregon, “Colonization of the land of stone money: New investigations on the early settlement of Yap, western Caroline Islands,” 2017 People’s Choice Award winner, Graduate Student Research Forum, University of Oregon, “Colonization of the land of stone money: New investigations on the early settlement of Yap, western Caroline Islands,” 2017 Small Professional Grant, Center for Asian and Pacific Studies, 2016 Global Oregon Graduate Research Award, Global Studies Institute, 2016 Small Professional Grant, Center for Asian and Pacific Studies, 2016 vii Best Poster Presentation for the category “Breaking New Ground in the Sciences: Approaches to reproducibility and data management, shifting paradigms, and innovative research practices”, Graduate Research Forum, University of Oregon, “Time is of the Essence: Establishing Chronological Baselines for Archaeological Research in the Florida Keys,” 2016 People’s Choice Award, Graduate Student Research Forum, University of Oregon, Poster presentation, “Before the clock runs out: Archaeology in the face of erosion on St. Catherines Island, Georgia (USA),” 2015 Small Professional Grant, Center for Asian and Pacific Studies, 2015 American Museum of Natural History grant for fieldwork on Bull Island Hammock, Georgia, 2009 Scholarly and Creative Activity Award, University of West Florida for work on stable isotope analysis of archaeological shell from Bull Island Hammock, Georgia, 2009 Tibor T. Polgar Fellowship, Hudson River Foundation, New York to analyze multibeam bathymetry data from the Hudson River to identify targets of anthropogenic origin, 2003 PUBLICATIONS: Matthew C. Sanger and Matthew F. Napolitano. Ceramic Analyses. In press. In: The Late Archaic on St. Catherines Island, Georgia by Matthew C. Sanger. Anthropological Papers of the American Museum of Natural History, New York. Matthew C. Sanger, Anna Semon, Ginessa Mahar, Matthew F. Napolitano, and David Hurst Thomas. In press. Shell Arc Excavations. In: The Late Archaic on St. Catherines Island, Georgia by Matthew C. Sanger. Anthropological Papers of the American Museum of Natural History, New York. Matthew C. Sanger, Anna Semon, Ginessa Mahar, Matthew F. Napolitano, and David Hurst Thomas. In press. Plaza Excavations. In: The Late Archaic on St. Catherines Island, Georgia by Matthew C. Sanger. Anthropological Papers of the American Museum of Natural History, New York. Matthew F. Napolitano, Jessica H. Stone, and Robert J. DiNapoli (editors). 2021. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Society and Ecology in Island and Coastal Archaeology Series. Gainesville: University Press of Florida. Matthew F. Napolitano, Robert J. DiNapoli, and Jessica H. Stone. 2021. Introduction: The archaeology of island colonization. In: The Archaeology of viii Island Colonization: Global Approaches to Initial Human Settlement, Matthew F. Napolitano, Jessica H. Stone, and Robert J. DiNapoli (editors). Society and Ecology in Island and Coastal Archaeology Series. Gainesville: University Press of Florida. Scott M. Fitzpatrick, Matthew F. Napolitano, and Jessica H. Stone. 2021. What is the most parsimonious explanation for where pre-Columbian Caribbean peoples originated? In: The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement, Matthew F. Napolitano, Jessica H. Stone, and Robert J. DiNapoli (editors). Society and Ecology in Island and Coastal Archaeology Series. Gainesville: University Press of Florida. Robert J. DiNapoli, Scott M. Fitzpatrick, Matthew F. Napolitano, Torben C. Rick, Jessica H. Stone, and Nicholas P. Jew. 2021. Marine reservoir corrections for the Caribbean show high intra- and inter-island variability. Quaternary Geochronology 61(101126). doi.org/10.1016/j.quageo.2020.101126. Matthew F. Napolitano, Robert J. DiNapoli, Jessica H. Stone, Maureece J. Levin, Nicholas P. Jew, Brian G. Lane, John T. O’Connor, and Scott M. Fitzpatrick. 2019. Reevaluating the Pre-Columbian colonization of the Caribbean using chronometric hygiene and Bayesian modeling. Science Advances 5(12):eaar7806. Matthew C. Sanger, Brian D. Padgett, Clark Spenser Larsen, Mark Hill, Gregory D. Lattanzi, Carol Colaninno, Brendan J. Culleton, Douglas J. Kennett, Matthew F. Napolitano, Sébastien Lacombe, Robert J. Speakman, and David Hurst Thomas. 2019. Great Lakes copper and shared mortuary practices on the Atlantic Coast: Implications for long-distance exchange during the Late Archaic. American Antiquity 84(4):591-609. Matthew F. Napolitano, Scott M. Fitzpatrick, Geoffrey R. Clark, and Jessica H. Stone New archaeological research sheds light on Yap’s early prehistoric settlement. 2019. The Journal of Island and Coastal Archaeology 14(1):101-107. Matthew C. Sanger, Mark Hill, Gregory Lattanzi, Brian Padgett, Clark Spenser Larsen, Brendan Culleton, Douglas Kennett, Laure Dussubieux, Matthew F. Napolitano, Sébastian Lacombe, and David Hurst Thomas. Early metal use and crematory practices in the American Southeast. 2018. Proceedings of the National Academy of Sciences 115(33):E7672-E7679. Matthew F. Napolitano. Book review: Unearthing the Polynesian Past: Explorations and Adventures of an Island Archaeologist. 2018. The Journal of Island and Coastal Archaeology 13(1):153-155. Jessica H. Stone, Scott M. Fitzpatrick, and Matthew F. Napolitano. 2017. Disproving claims for small-bodied humans in the Palauan archipelago. Antiquity 91(360):1546-1560. ix Scott M. Fitzpatrick, Victor D. Thompson, Aaron Poteate, Matthew F. Napolitano, and Jon M. Erlandson. 2016. Marginalization of the Margins: The Importance of Smaller Islands in Prehistory. The Journal of Island and Coastal Archaeology 11(2):155-170. Matthew F. Napolitano. 2013. The Role of Small Islands in Foraging Economies of St. Catherines Island. In: Life among the Tides: Recent Archaeology on the Georgia Bight, Victor Thompson and David Hurst Thomas (editors and contributors). Anthropological Papers of the American Museum of Natural History 98: 191–210. Matthew F. Napolitano. 2012. The Role of Back-barrier Islands in the Native American Economies of St. Catherines Island, Georgia. Laboratory of Archaeology Series Reports 85, University of Georgia, Athens. Matthew F. Napolitano, Robert J. DiNapoli, Scott M. Fitzpatrick, Traci Ardren, Victor D. Thompson, Alexander Cherkinsky, and Michelle Lefebvre. New Marine Reservoir Corrections for the Florida Keys and Chronology Building at the Clupper Site, Upper Matecumbe Key. In second review with Radiocarbon. Matthew F. Napolitano, Elliot H. Blair, Laure Dussubieux, and Scott M. Fitzpatrick. Chemical analysis of glass beads in Palau, western Micronesia reveals 19th century inter-island exchange systems in transition. In first review with Journal of Archaeological Science: Reports. Fitzpatrick, Scott M., Maaike S. De Waal, Matthew F. Napolitano, and Philippa Jorissen. Results of preliminary archaeological investigation at Walkers Reserve, St. Andrew, Barbados. In first review with Barbados Museum and Historical Society. Hackenberger, Steve, Scott M. Fitzpatrick, Jessica H. Stone, and Matthew F. Napolitano. Rescue recovery of the earliest known burials from Barbuda, West Indies (ca. 3500-3200 BP). In first review with The Journal of Island and Coastal Archaeology. x ACKNOWLEDGEMENTS I would like to thank a number of people for their support of my research and in my career. I would like to first thank my committee chairperson, Scott M. Fitzpatrick, for his mentorship that has been foundational in my professional development. His support was instrumental to my success as a graduate student and it started with a promise that I would love working in Micronesia. Thank you to my committee members Jon Erlandson, Alison Carter, Geoffrey Clark, and Ryan Jones who provided valuable feedback on my dissertation chapters. Thank you to Madonna Moss, Gyoung-Ah Leee, Aletta Biersack, and Tory Byington, each of whom made significant contributions to my professional development. I am indebted to Leah Frazier and Lisa Clawson for the behind the scenes help in managing grants. I would also like to thank David Hurst Thomas and Lorann S.A. Pendelton for their unwavering support of me since I was an intern at the American Museum of Natural History. Thank you to my North American Archaeology family Matthew Sanger, Elliot Blair, Rachel Cajigas, Diana Rosenthal, Christina Friberg, Elizabeth Cottrell, Anna Semon, and Ginessa Mahar. No matter where I live and how many islands I work on, St. Catherines Island will always be “the island.” Thank you to my mother Cathy Napolitano and my brother David Napolitano for their encouragement and support for nearly 15 years of me being a college student. Thank you to the crew: Jasmine Alvarez, Mea Stout, Jessica Carlos, Lisseth Corral. They are support network through all the ups and downs. I already miss the dinners at the house. My research would not have been possible without support from my collaborators on Yap and Palau. Thank you to Francis Reg, Acting Director of the Yap State Historic xi Preservation Office, Chief James Limar (Gilman municipality), Sebastian and Lisa Tamagken, Philip Kentun, and my extended family on Yap: Flo, Yasuyo, Orlando, Kathy, Ginny, Francy, and Debi. Thank you to my Palauan colleagues, especially Sunny Ngirmang, Director of the Palau Historic Preservation Office, Calvin Emesiochel, Deputy of the Historic Preservation Office, Sylvia Kloulubak, Linda Tellames, and the staff of the Palau Bureau of Historic Preservation. Fieldwork in Yap would not have been possible without the help of Kaylien Rungun, Dabei Davis, Paul Gerard, Shelby Medina, Lauren Pratt, Yan Cai, Haden Kingray, Shade Streeter, Hayley May, Michael Young, and Madeleine Getz. I would like to thank the following for their roles as co-authors and collaborators on this research that has been published or will be published: Scott M. Fitzpatrick, Robert J. DiNapoli, Jessica H. Stone, Geoffrey Clark, John Swogger, Esther Mietes, Amy Gusick, Traci Ardren, Victor D. Thompson, Alexander Cherkinsky, Michelle LeFevbre, Elliot Blair, Laure Dussubieux, Maureece Levin, Brian Lane, John O’Connor, and Nicholas Jew. Funding for this project was provided by the National Geographic Society (Grant #HJ2-184R-18), the Wenner-Gren Foundation for Anthropological Fieldwork (Grant #9710), the Lewis and Clark Fund for Exploration and Field Research, Sigma Xi, the Edna English Trust for Archaeological Research, University of Oregon Center for Asian and Pacific Studies, and the University of Oregon Global Studies Institute. The work presented in Chapter V was supported, in part, by a National Science Foundation grant to Scott M. Fitzpatrick (SBR-0001531). xii TABLE OF CONTENTS Chapter Page I. INTRODUCTION: CHRONOLOGY BUILDING IN ISLAND ENVIRONMENTS ....1 Introduction ..............................................................................................................1 Chronology building using radiocarbon dating .......................................................4 Chronometric hygiene ..................................................................................8 Bayesian modeling .....................................................................................12 Marine reservoir correction........................................................................13 Beyond radiocarbon dating ....................................................................................16 Uranium-thorium .......................................................................................16 Obsidian hydration .....................................................................................18 Chronometric sequencing using proxy evidence .......................................21 Project Overview ..................................................................................................23 II. REVALUATING HUMAN COLONIZATION OF THE PACIFIC USING CHRONOMETRIC HYGIENE AND BAYESIAN MODELING ...................................27 Introduction ............................................................................................................27 Background ............................................................................................................31 Results ....................................................................................................................35 Discussion ..............................................................................................................41 Conclusions ............................................................................................................47 Materials and Methods ...........................................................................................49 Chronometric hygiene protocol .................................................................49 Bayesian statistical modeling .....................................................................52 Sensitivity analyses ....................................................................................54 xiii Chapter Page III. NEW MARINE RESERVOIR CORRECTIONS FOR THE FLORIDA KEYS AND CHRONOLOGY BUILDING AT THE CLUPPER SITE, UPPER MATECUMBE KEY .........................................................................................................56 Introduction ............................................................................................................56 Environmental and archaeological background .....................................................60 Environmental background ........................................................................60 Oceanography and hydrology ....................................................................62 Chronologies and traditions .......................................................................63 Methods..................................................................................................................65 Modern samples .........................................................................................65 Archaeological shell...................................................................................69 Results ....................................................................................................................70 Modern shell radiocarbon ..........................................................................70 Modern shell stable isotopes ......................................................................72 Archaeological radiocarbon .......................................................................72 Archaeological stable isotopes ...................................................................79 Discussion and conclusion .....................................................................................80 Modern samples .........................................................................................80 Archaeological samples .............................................................................82 IV. CHRONOLOGICAL MODELING OF EARLY SETTLEMENT ON YAP, WESTERN MICRONESIA ...............................................................................................89 Introduction ............................................................................................................89 Background ............................................................................................................92 xiv Chapter Page Environment ...............................................................................................92 Evidence for early settlement.....................................................................93 Fieldwork and site descriptions .................................................................96 Improving the reliability of radiocarbon date calibrations ........................98 Methods................................................................................................................102 Laboratory pretreatment...........................................................................102 Sample selection, habitat, and diet preferences .......................................103 Modeling ΔR ............................................................................................104 Chronometric hygiene ..............................................................................105 Bayesian modeling ...................................................................................114 Results ..................................................................................................................116 Modeling ΔR ............................................................................................116 Radiocarbon ages .....................................................................................117 Stable isotope analysis .............................................................................118 Chronometric hygiene and Bayesian modeling .......................................119 Discussion ............................................................................................................124 Radiocarbon dates ....................................................................................124 Stable isotopes .........................................................................................125 Evidence for sea-level change and implications for early human settlement .................................................................................................127 Conclusions ..........................................................................................................129 xv Chapter Page V. CHEMICAL ANALYSIS OF GLASS BEADS IN PALAI, WESTERN MICRONESIA REVEALS 19TH CENTURY INTER-ISLAND EXCHANGE SYSTEMS IN TRANSITIONS .......................................................................................132 Introduction ......................................................................................................................132 Background ..........................................................................................................135 Environmental and archaeological background .......................................135 Possible origins of beads to Palau and Yap .............................................138 Beads in Palauan society ..........................................................................140 Glass beads in Palauan archaeology ........................................................146 Methods................................................................................................................149 Typological analyses ................................................................................149 LA-ICP-MS..............................................................................................150 Results ..................................................................................................................152 Discussion ............................................................................................................160 Chronology and origins............................................................................160 Cheldoech in transition during the 19th century ......................................163 Conclusions ..........................................................................................................167 VI. CONCLUSION..........................................................................................................170 Introduction ..........................................................................................................170 Summary of Research ..........................................................................................171 Best practices to chronology building on islands ................................................177 Increasing the number of dates ................................................................177 Sample selection ......................................................................................178 xvi Chapter Page Legacy samples ........................................................................................181 Chronometric hygiene ..............................................................................182 Integrating multiple datasets ................................................................................183 Beyond chronologies: Implications for understanding the past ...........................185 APPENDIX A ..................................................................................................................187 APPENDIX B ..................................................................................................................844 APPENDIX C ..................................................................................................................869 APPENDIX D ..................................................................................................................889 REFERENCES CITED ....................................................................................................893 xvii LIST OF FIGURES Figure Page 2.1. Bayesian modeled colonization estimates for 26 Caribbean islands suggest three distinct population dispersals ........................................................................29 2.2. Modeled colonization age estimates (95.4% HPD) after chronometric hygiene and Bayesian modeling ..........................................................................................42 3.1. The Florida Keys with regional boundaries, sample sites, and flow regimes.............61 3.2. Nearshore and open ocean ΔR with external variance ...............................................73 3.3. ΔR with external variance by ecological zone ............................................................75 3.4. Bayesian modeled plots of stratigraphically associated samples from Test Pit 4 .......77 3.5. Calibrated dates from the Clupper site........................................................................77 4.1. Yap Islands and its location in the Pacific ..................................................................91 4.2. Gilman municipality with dated sites mentioned in the text .......................................99 4.3. Modeled ΔR results ...................................................................................................117 5.1. Map of Palau (A) and Yap (B) ..................................................................................136 5.2. Palauan udoud illustrated by Kubary (1873) (A) and (1895) (B) .............................144 5.3. Beads recovered from Chelechol ra Orrak ................................................................152 5.4. Ternary plot of Na2O, K2O, and PbO content of the Orrak bead assemblage, illustrating distinct compositional groups ............................................................157 5.5. CuO (%) and Au (ppm) biplot of Pb-K beads in the Orrak assemblage ...................158 xviii LIST OF TABLES Table Page 2.1. Results of chronometric hygiene by island .................................................................37 2.2. Class 1 dates from the Caribbean ................................................................................39 2.3. Modeled colonization estimates using the 100-yr outlier model ................................40 3.1. AMS dates and ΔR for known-age shell from the Florida Keys ................................74 3.2. Error-weighted pooled means ΔRs .............................................................................76 3.3. Calibration of radiocarbon determinations from the Clupper site, Upper Matecumbe Key .....................................................................................................78 4.1. Radiocarbon dates from Yap with class designation for chronometric hygiene ......107 4.2. Calibrated noncultural radiocarbon dates from AH2018-50 and AH2018-51 ..........119 4.3. Results of single-phase Bayesian model of Class 1 and 2 dates ...............................122 5.1. Typological analysis of glass beads recovered from Chelechol ra Orrak .................153 xix CHAPTER I INTRODUCTION: CHRONOLOGY BUILDING IN ISLAND ENVIRONMENTS Introduction Chronology building is a fundamental part of archaeology. Questions related to the timing and duration of events are inextricably connected to larger questions about human activity in the past. Prior to the development of radiocarbon (14C) dating by Willard Libby in the late 1940s, archaeologists primarily relied on relative techniques such as stratigraphic superposition and seriation to discern temporal divisions, however coarse (Libby 1955; see Ihm 2005; Wood 2015). Given its wide applicability and temporal range that covers the last ca. 50 kya, radiocarbon dating is the most frequently used chronometric technique in archaeology. Preserved carbon-based organic materials such as charcoal, shell, and bone are often key sources of information for determining the onset and duration of cultural events that occurred in the past. Limitations of radiocarbon dating have long been identified, yet with advances, including accelerator mass spectrometry (AMS) and applications of Bayesian modeling (see below), archaeologists and other scientists have continued to improve the accuracy and precision of chronologies. This often includes using radiocarbon dating in conjunction with other chronometric sequencing techniques or temporally specific information like stratigraphy. For archaeologists working in island regions, these techniques have allowed archaeologists to engage with a number of complex issues such as the development of seafaring capabilities (Anderson et al. 2010a and papers therein), island colonization (i.e., 1 initial human settlement) (e.g., Church et al. 2013; 2021; Rieth and Hunt 2008; chapter 2), changes in human demography and long-term human-environmental interactions (e.g., Douglass et al. 2019; Prebble and Wilmshurst 2009; Rick et al. 2013), population dispersals (e.g., Bedford and Spriggs 2019; Kirch 1997, 2017; Montenegro et al. 2016; Stone 2020), extinction or extirpation events (e.g., Anderson et al. 2010b; Clark et al. 2013; Louys et al. 2021; Rijsdijk et al. 2011; Rawlence et al. 2016), the development of social complexity (e.g., Dye 2016; Weisler et al. 2006), and monumentality (e.g., DiNapoli et al. 2020; Martinsson-Wallin et al. 2013; McCoy et al. 2016; Sharp et al. 2010), to name a few. Over the last few decades, island colonization chronologies have been more highly scrutinized and debated given ongoing disagreements over data reliability, taphonomy, analytical approaches, and uncertainties in radiometric techniques, particularly as they relate to marine environments (Napolitano et al. 2021). Most scholars agree that the most parsimonious archaeological identification of colonization sites is restricted to the earliest observable events that are clearly anthropogenic (Lipo et al. 2021: 68). Problems in locating these sites can be difficult, however, given the ephemeral nature of evidence for founding populations. Early sites on islands, many times found on low-lying beaches in close proximity to productive marine resources, are often at risk of erosion and inundation from rising sea levels (Erlandson 2008, 2012). However, not all colonization events are difficult to identify. A notable, but rare example is the colonization of Iceland (Landnám), which appears to have been rapid and large-scale, suggesting a high degree of planning, ideological motivation, and a relatively large founding population (Schmid et al. 2018, 2019, 2021). As a result, archaeologists must 2 often look outside the discipline to consider theory-based models and other lines of evidence such as paleoenvironmental, paleoclimate, and paleoshoreline data to reconstruct the conditions under which such colonization ventures took place (e.g., Callaghan 2010; Goodwin et al. 2014; Kayanne et al. 2011; Montenegro et al. 2016). One key example from the Pacific is the direct dating of foraminifera sand grains under the guise of trying to constrain when humans could have colonized geologically young atolls (Weisler et al. 2012). At issue is determining when atolls were large enough to support life (i.e., having suitable freshwater lenses) and when reef flats were mature and large enough to support human populations. Given that atolls develop from accumulated sediment deposits comprised of biogenetic material (e.g., coral, shell, foraminifera) that were transported not long after death of the animal, dating these materials should be closely related to the time of island development (Weisler et al. 2012). Similar to dating algal bioclasts (see Carson and Peterson 2012), radiocarbon dates from foraminifera must be calibrated and corrected for local marine carbon offsets. Although the dates do not result from anthropogenic activities, they serve as a potential marker for when atolls could have been occupied. In this case, dates from Utrōk Atoll and Maloeap Atoll in the Marshall Islands were used to reconstruct past sea level rise and island development (Weisler et al. 2012). Other recent applications of dating biogenetic material include a case from southeastern ‘Upolu (Sāmoa) to better understand why only one early Lapita settlement site has been found (ca. 2800 BP), which stands out as a curious anomaly compared to other island groups in the region (Cochrane and Rieth 2016; Kane et al. 2017). 3 To examine chronological issues as they specifically relate to islands, I present four case studies as part of this dissertation in which various techniques are applied to archaeological datasets to improve the accuracy and precision of understanding human activity in the past. By applying a suite of methods, including chronometric hygiene, Bayesian modeling, glass chemical composition analysis, and marine reservoir corrections, I improve upon some of the limitations imposed by radiocarbon dating. These approaches allow me to address both large-scale questions such as the timing of human settlement across the circum-Caribbean and site-specific questions such as when stone money quarrying activity took place in a rockshelter site in Palau, western Micronesia. This chapter first discusses chronometric sequencing techniques commonly using on islands, their potential limitations, and ways that archaeologists can overcome them. Chronology building using radiocarbon dating Methodological advances in radiocarbon dating, including the development of high-precision techniques and improved pretreatment protocols, have resulted in higher- precision dates from samples not previously considered suitable. AMS was developed in the 1970s, but it was not until the mid-to-late 1990s when archaeologists began to use the technique more widely. As accessibility increased with more commercial radiocarbon laboratories offering the service and prices decreasing, it ushered in a new era of radiocarbon dating (Spriggs 1991). For example, AMS dating is more precise than “conventional” radiocarbon dating because carbon isotopes are directly measured, allowing for more accurate ion counting and requiring a significantly smaller sample size 4 and often results in more precise dates (i.e., typically smaller standard error ranges of less than 50 years) (Tuniz et al. 1998). A reduction in sample size allows for direct dating of artifacts to be “minimally destructive,” eliminates the need for dating aggregate or bulk samples comprised of multiple specimens, and creates new opportunities for researchers to date new types of materials (e.g., small seeds, foraminifera), many of which are short- lived. In addition, advances in pretreatment protocols have resulted in a wider array of suitable material for dating (Wood 2015). Conventional dates on human bone are no longer considered acceptable because collagen—the preferred datable material—was not sufficiently purified through pretreatment procedures that isolated specific amino acids. Over the years, radiocarbon and isotopic laboratories have developed new, refined pretreatments to remove contaminants from bone and teeth, which are now widely used (e.g., Brock et al. 2010; Bronk Ramsey et al. 2004; Petchey et al. 2011). This was an important development as insufficient pretreatment methods can result in inaccurate or misleading dates. For example, insufficient pretreatment processing of rat (Rattus exulans) bone suggested that human colonization of New Zealand occurred as early as 2000 years ago. As a result, those radiocarbon dates are no longer considered valid and the most recent settlement chronologies for New Zealand now place human arrival much later in time, ca. 750 years ago (Anderson 1996, 2000; Argiriadis et al. 2018; Wilmshurst et al. 2008). Dates produced by the Gakushuin Laboratory in Japan, primarily in the 1980s, are also considered unreliable due to significant errors when compared to dates from other labs (e.g., Blakeslee 1994; Spriggs 1989, 1990). Pretreatment protocols for wood older than 20 kya have also improved in recent decades. Acid-base-wet-oxidation 5 (ABOX) is an improvement on the acid-base-acid (ABA) pretreatment technique by removing additional contaminants from old charcoal samples (Bird et al. 1999, 2014). This is particularly relevant for studying Pleistocene-age sites and has been routinely used in Australia since its development. Radiocarbon dating can sometimes be problematic and lead to misinterpretations, especially when the timing of the targeted event approaches the upper or lower limits of radiocarbon dating. Establishing when anatomically modern humans (AMH) arrived in Sahul (present day Australia and New Guinea) has been debated for decades and has far- reaching implications for our understanding of the timing of human dispersals across Eurasia, the development of watercraft technologies, and the role humans may have played in megafaunal extinction events, among others (e.g., Anderson 2018; Barlett et al. 2016; Boivin et al. 2016; Field et al. 2008, 2013; Louys et al. 2021). It is generally accepted that AMH reached Sahul by at least 50 kya (Bulbeck 2007; Allen and O’Connell 2008; Hamm et al. 2016; Tobler et al. 2017), but recent research from the site of Madjedbede in northern Australia suggests that people may have arrived as early as 65 kya (Clarkson et al. 2017; Florin et al. 2020). These latter dates come from a sequence of radiocarbon and optically stimulated luminescence (OSL) dates. Skeptics argue that there is too much uncertainty in the chronological sequence and also point to a paucity of sites between South China and Sahul dating this early (O’Connell et al. 2018). For decades, archaeologists have understood the potential problems introduced by radiocarbon dating long-lived species or specimens with significant inbuilt age. In the Pacific, there are limited data on the lifespans of mature trees and the potential for the “old wood effect” (Schiffer 1986) or inbuilt age (IA). Some species, like the tamanu tree 6 (Calophyllum inophyllum) are expected to have an IA of at least 250 years (Allen and Wallace 2007). The most effective way to avoid issues with IA is to identify wood or charcoal specimens prior to dating and submit only specimens such as seeds that are short-lived (e.g., Allen 2014; Allen and Huebert 2014; for examples of misleading dates, see Allen and Wallace 2007; Spriggs and Anderson 1993). Nunn and Petchey (2013) echo these results after reevaluating a suite of radiocarbon dates from Viti Levu Island, Fiji, demonstrating an offset of 149 years in unidentified charcoal. Similarly, in a meta- analysis of more than 900 dates from Hawaii Island, Rieth et al. (2011) stressed that radiocarbon dates on charcoal should be identified to taxon and be from short-lived species, defined as 50 years of younger though Allen and Huebert (2014: 261) suggest that “short-lived” should be defined as 10 years or less. Examples of short-lived terrestrial samples include candlenut (Aleurites moluccana), coconut (Cocos nucifera), and bottlegourd (Lagenaria siceraria) (Allen and Huebert 2014: table 2). Relying on short- and medium-lived species for dating has resulted in the occupational sequence on Aitutaki, Cook Islands to be 300 years younger than previously proposed, now dating to ca. 725-520 cal yrs BP (Allen and Huebert 2014; Allen and Wallace 2007; see also Allen 1998; Allen and Morrison 2013; Allen et al. 2017). Beyond the Pacific, archaeologists working in other island regions like the Mediterranean (e.g., Micó 2006) and the North Atlantic (e.g., Schmid et al. 2018) have also demonstrated the importance of selecting short-lived samples from plants or animals for dating. Radiocarbon dates from shell can also pose potential problems for archaeologists. Similar to the “old wood” problem in which a date could be taken from a wood fragment that is older than when the cultural event occurred (Schiffer 1986), “old shell” from 7 fossils, subfossils, or reused material may also provide misleading results (Rick et al. 2005). Juveniles or short-lived species such as Atacodea striata, which only live between 1-3 years, work well for dating and can also be used to reconstruct paleoenvironmental conditions (e.g., Jew and Fitzpatrick 2015). However, when studying temporal trends in environmental conditions, longer-lived species might be preferable (see Dodrill et al. 2018). Potential problems can also occur when dating bone samples from organisms that have a marine or unknown diet. For example, dating bone from humans who consumed a mixed marine and terrestrial diet must be calibrated differently (Cook et al. 2015). Without knowing the ratio of terrestrial-to-marine dietary contributions, calibrations may introduce an unknown degree of error. One way to address this is to conduct dietary reconstruction using stable isotopes, when possible (Arneborg et al. 1999; Bonsall et al. 2004; Cook et al. 2001, 2002; Lanting and van der Plicht 1998; Schulting and Richards 2002). Alternatively, the δ13C endpoints of plants and animals can be extrapolated. This approach has been used at the well-known Lapita cemetery site of Teouma on Efate Island, Vanuatu and elsewhere (Petchey et al. 2014, 2015; see also Petchey et al. 2011). Chronometric hygiene Unfortunately, building refined chronologies in many regions can be hampered by a lack of critical evaluation of previously published radiocarbon dates. In addition, many “legacy dates” that were run on composite or bulk samples, those that were not corrected for δ13C fractionation, or others lacking proper pretreatment have likely not produced reliable radiocarbon ages (Hamilton and Krus 2018; Sanchez et al. 2018). In many 8 regions such as the Caribbean, these dates are still routinely incorporated into archaeological chronologies. To address this issue, chronometric hygiene is used to improve the reliability of radiocarbon datasets by evaluating individual dates based on predetermined criteria. Dates deemed unreliable are culled from the database and careful application of stricter criteria then improves confidence that the reported date range is reflective of when human activity occurred. The first formal attempt at chronometric hygiene compared radiocarbon dates from ancient Egypt to dates from Nubia, Palestine, and Mesopotamia (Hassan and Robinson 1987). In the Pacific, Matthew Spriggs (1989) first used the technique to reevaluate the connection between historical linguistics and the spread of agriculture (see also Fitzpatrick 2006; Hunt and Lipo 2006; Petchey et al. 2015; Schmid et al. 2019; Spriggs and Anderson 1993). The efficacy of chronometric hygiene hinges upon the criteria used to evaluate radiocarbon dates, but there are no standardized criteria. Essentially, most applications of this require: 1) dates from short-lived plants and/or plant or faunal material that lack a significant inbuilt age (e.g., terrestrial bird shell, juvenile shellfish); 2) when possible, charcoal identified to the lowest taxon; 3) dates from bone identified to taxon, thoroughly purified, and dated using AMS; and 4) samples with sufficient provenience information (i.e., not from surface contexts, evidence of archaeological context), and the laboratory name and number (e.g., Wilmshurst et al. 2011; chapters 2 and 4). Unacceptable dates usually lack some component of the above contextual information and include marine shell not identified to taxon or bulk sediment, shell samples containing more than one individual, and charcoal taken from more than one fragment when association cannot be established. One unresolved issue is whether marine shell is a suitable sample material 9 because of problems with inbuilt age and local marine reservoir corrections which are not always well-established (see Hutchinson 2020; Wilmshurst et al. 2011 and reply by Mulrooney et al. 2011). Despite advantages inherent with using chronometric hygiene, the technique is not without its detractors. Some critiques focus on overly strict criteria that result in valid dates being culled (e.g., Kirch and Ellison 1994). The validity of dates depends on multiple factors including the confidence that the dated sample is unambiguously linked to human activity and full reporting of relevant information so that other scholars can evaluate the data. Failure to adequately report the processing laboratory, provenience, or sample material creates a black box the prevents others from utilizing those data. As detailed in Chapter 2, after applying chronometric hygiene protocols to more than 2400 radiocarbon dates from 55 Caribbean islands, nearly half (46%) were eliminated. Remarkably, 74% of those dates were rejected because of insufficient reporting of provenience, laboratory numbers, sample material, or radiocarbon age. Many of these would have otherwise been considered valid. If more information becomes available, these dates could eventually be incorporated into the database. Perhaps the most contentious application of chronometric hygiene was by Janet Wilmshurst et al. (2011). In their study, they reassessed more than 1,400 radiocarbon dates from East Polynesia and assigned them into one of three classes. Dates that were assigned a Class 2 or Class 3 rating were expunged. Calculating the summed probability of only the acceptable (i.e., Class 1) dates resulted in significantly shorter and younger settlement histories for many Polynesian islands, including Hawaii, New Zealand, and Rapa Nui (Wilmshurst et al. 2011; see also Hunt and Lipo 2008). As a result of the 10 chronometric hygiene protocol they imposed, their results were sharply criticized by others who argued that their overly strict criteria resulted in otherwise acceptable dates being discarded (Mulrooney et al. 2011). In a rejoinder, Mulrooney et al. (2011) took issue with dates from marine shell being assigned Class 2 or Class 3 and subsequently discarded when there are suitable regional marine reservoir corrections that could have been applied (e.g., Petchey et al. 2009). Further, they argue that calculating summed probabilities with dates as young as 300 years B.P. and not from basal deposits (i.e., after colonization and early settlement) skewed the summed probabilities, resulting in misleadingly young dates. In a separate study, Hunt and Lipo (2008) argued that relying on an early colonization date for Rapa Nui requires incorporating isolated and spurious dates that do not meet the minimum chronometric hygiene criteria. When these dates are expunged, the colonization estimate for Rapa Nui is ca. AD 1200 rather than AD 400-800 (Hunt and Lipo 2008). While a recent multi-proxy study by Sear et al. (2020) suggests an earlier settlement of the Cook Islands ca. AD 900, this revision to East Polynesia’s colonization chronology does highlight the strength of using the chronometric hygiene approach for building accurate chronologies. Taken together, these studies suggest that colonizing ventures into East Polynesia may have been more episodic than previously thought and that more multiproxy research is needed on places like Rapa Nui to look for earlier evidence of human occupation prior to the earliest unambiguous archaeological evidence. 11 Bayesian modeling Bayesian statistics are increasingly being used by archaeologists for modeling various temporal phenomena, ranging from individual site chronologies to large-scale regional processes (Bayliss 2009, 2015). They are particularly useful for radiocarbon datasets because they allow the analyst to incorporate prior information such as stratigraphy or other known chronological information into the estimation of probability distributions for groups of radiocarbon dates (Bronk Ramsey 2009a, 2015; see for example Dye 2015; Dye and Buck 2015; Petchey and Nunn 2013; Petchey et al. 2015). The recent proliferation of archaeological studies that use Bayesian statistical models could arguably be called the next revolution in radiocarbon dating (Bayliss 2009, 2015; Hamilton and Krus 2018). The strength of Bayesian modeling is that it provides estimated date ranges for undated archaeological contexts, such as the onset, temporal duration, or end of a phenomenon of interest. Three key parameters of any Bayesian model are the prior, the likelihood, and the posterior. In archaeological applications, the prior is information or observations that are inferred before any data are collected or processed (e.g., stratigraphy); the likelihood is information obtained from the calibrated radiocarbon date range; and the posterior is an estimated calendar date range expressed probabilistically as the highest posterior density region based on the relationship between the prior and likelihood (Bronk Ramsey 2009a). An evaluation of how well the model fits the radiocarbon data is expressed quantitatively as an agreement index, with agreement indices over 60 being the commonly accepted threshold (Bronk Ramsey 2009a). Recent applications of Bayesian modeling have led to increasingly precise colonization models in various regions, including the Pacific (e.g., Athens et al. 2014; 12 Burley et al. 2015; DiNapoli et al. 2020; Fitzpatrick and Jew 2018; Lipo et al. 2021; Dye 2012, 2015; Green et al. 2008; Petchey et al. 2015; Rieth and Athens 2019), North Atlantic (Batt et al. 2015; Schmid et al. 2018), and Caribbean (Hanna 2019; Chapter 2). An example of a study that may have had a different outcome if it had included Bayesian modeling is the aforementioned Wilmshurst et al. (2011) paper on East Polynesian settlement. One of their chronometric hygiene protocols was to discard any date with a large standard error, which was defined as >10% of the radiocarbon age (Wilmshurst et al. 2011: 1819). Such standard errors could apply to many dates obtained with “conventional” radiometric dating techniques prior to the development of AMS. Although these dates are now considered imprecise, the probability ranges for many dates may well be accurate and have been routinely incorporated into studies with successful results (Hamilton and Krus 2018; see Krus et al. 2015; chapter 2), although Glassow (2015) notes that dates with large standard errors can also be spurious. The best way to approach this issue it to redate the original sample, although in many cases this may not be possible (Hamilton and Krus 2018). This is especially important for dates run on human and animal bone as pretreatment methods have dramatically improved the quality of the dates. Marine reservoir correction In coastal sites around the world where people often harvested vast quantities of marine resources, shell remains are often the best means for dating archaeological components, especially if there is a paucity of charcoal. Mollusks are also typically more abundant, better preserved, less susceptible to vertical shifting, and easily recoverable 13 compared to other types of samples such as carbonized wood and bone (Hutchinson 2020; D. Thomas 2008:346; K. Thomas 2015). As such, the dating of marine shells has proven to be a critical tool for examining a host of issues, including population movements, settlement history, changing adaptations over time, and many others. The interaction of deep ocean water depleted in 14C, atmospheric carbon, and dissolved inorganic carbon in surface waters are now known to produce a modeled global reservoir age (R) of ca. 500 years in subtropical oceans (formerly globally calculated at ca. 400 years) according to recently updated calibration curves (Heaton et al. 2020; Reimer et al. 2013; Stuiver et al. 1986). Calibrating marine dates also requires an additional offset to account for local marine reservoir effects (ΔR) that corrects for localized factors such as regional upwelling, seasonal variations in sea surface temperature (SST), changes in ocean circulation, shifting stratification of ocean surface waters, proximity to freshwater outputs, geological substrates containing limestone, and environmental preferences of animals. Not only do local offsets have the potential to influence radiocarbon dates on marine and estuarine shell, but fauna whose diet comprises marine food to some degree will also be influenced (e.g., Carlson and Keegan 2004; Harris and Weisler 2017; Laffoon et al. 2016;). In addition, certain species of shell are susceptible to additional environmental conditions like the hardwater effect which can influence the 14C age of shell (Cherkinsky et al. 2014; McKinnon 1999; Petchey and Clark 2011, 2021; Petchey et al. 2017, 2018). ΔR also often fluctuated over time, which adds another variable to consider when using a ΔR to calibrate archaeological shell (e.g., Druffel et al. 2008; Toth et al. 2017; Kennett et al. 1997). 14 ΔR can be calculated using multiple approaches, including the use of paired terrestrial-marine samples found in secure, contemporaneous archaeological contexts with proper taxonomic identification; paired 234U/230Th and 14C samples on coral; tephra isochrones; or dating known-age, pre-bomb, live-collected shells found in museum collections (e.g., Alves et al. 2018; Ascough et al. 2005; Hadden and Cherkinsky 2015; Hadden and Schwadron 2019; Toth et al. 2017; Yoneda et al. 2000, 2007). The absence of ΔR in some regions is related to the difficulty in locating suitable pre-bomb samples for dating. Atomic bomb testing in the early 1950s artificially increased atmospheric and oceanic 14C levels by nearly 100% (Berger et al. 1966) and it is therefore necessary that samples be live-collected before ca. 1955. Museum collections containing pre-bomb specimens continue to be the most relied upon source and have aided in establishing the ΔR for various regions (e.g., Yoneda et al. 2007; but see Yoneda et al. 2000 for a discussion on the reliability of museum collections). While archaeologists have long recognized the potential for local offsets to significantly influence the age of marine samples, ΔR corrections are lacking for many islands and coastal regions. As a result, archaeologists sometimes use the closest available ΔR, even if it was developed for a location hundreds of miles away (Hutchinson 2020). This is problematic because ΔR can vary widely within a region and sometimes from one side of an island to another, depending on local hydrology and oceanographic conditions, as is clearly demonstrated by DiNapoli et al. (2021) for the Caribbean. In addition, diet and habitat preference of the dated specimen can influence the 14C age and ΔR. Recently, Hutchinson (2020) pointed out many of the inherent issues with radiocarbon dating archaeological shell without a suitable ΔR, using the Pacific coast of 15 North America as an example, questioning whether radiocarbon dates should be “reluctantly cast aside” unless fine-grained spatial and temporal ΔRs can be determined. Although the potential problems with dating shell might seem expensive or complicated, there are ways to appropriately address these issues. In the Pacific, this has been done by analyzing the 13δC and 18δO in samples to understand how local conditions may have influenced 14C. For example, depleted 13δC values may indicate a mollusk’s preference for estuarine habitat or terrestrial freshwater runoff, while enriched values may indicate a preference for more productive marine habitats and CO2 atmospheric absorption in reefs (Keith et al. 1964; Petchey et al. 2013). Depletion of δ 18O also indicates an increase in temperature and less saline water caused by evaporation of 16O (e.g., Emiliani et al. 1966; Epstein and Mayeda 1953; Epstein et al. 1953; Swart et al. 1983). By analyzing 14C, 13C, and 18O together, archaeologists can develop more accurate and species specific ΔR that can account for changes over time and identify potential species that may not be suitable for radiocarbon dating (Kennett et al. 1997; Petchey and Clark 2011, 2021; Petchey et al. 2012, 2013, 2017, 2018). Beyond radiocarbon dating Uranium-thorium Applications of high-precision uranium-thorium dating in archaeology have created a new avenue for developing chronological baselines for site use. This technique measures the decay chain for 238U-234U-230Th and, when calibrated, often has a standard error of less than 10 years, making it more precise than most AMS dates. Ideal samples for dating are coral artifacts and manuports that were live-collected and found in secure 16 archaeological contexts. Common coral artifacts from Oceanic archaeology sites include files or abraders typically made from Acropora sp. and ritual offerings of live-collected branch coral (Pocillopora sp.). In Hawai‘i, coral abraders were also made from Porities sp. that were manufactured from beach rubble and contains an inbuilt age and therefore is not well-suited for dating (Weisler et al. 2006). A strength of uranium-thorium dating is that, given its high-resolution, it can be used in place of AMS dating when the calibration curves are unreliable. This is particularly useful in Hawai‘i where Polynesian chiefdoms underwent rapid and dramatic culture change, population increase, and environmental change from ca. 500-300 years ago, a period when radiocarbon dating is notoriously unreliable due to the Seuss Effect and stochastic calibration curves (Weisler et al. 2012; see Stuvier and Pearson 1993). Implementation of uranium-thorium has also helped generate a more nuanced understanding of temple construction episodes and has been used to support the argument that Hawai‘i was an emergent archaic state level society (e.g., Kirch 1984, 2017, Kirch and Sharp 2005; Sharp et al. 2010; Weisler et al. 2012). Elsewhere, uranium-thorium dates on Acropora sp. abraders from fresh (i.e., unworn) coral recovered from the site of Nukuleka in the Kingdom of Tonga position this site as the “founding Polynesian site” for West Polynesia (Burley et al. 2012). Uranium- thorium dates support the radiocarbon dates and suggest an early human arrival at Nukuleka, now dated to 2830-2846 cal years BP In Micronesia, uranium-thorium dates have helped to identify the early construction period of Nan Madol, a large megalithic site on Pohnpei (McCoy et al. 2015, 2016). Dates obtained from Symphyllia sp. coral used as building material at Leluh, a separate megalithic structure on Kosrae, suggests a 17 slightly younger date of construction (Richards et al. 2015). Taken together, it is understood that the onset of megalithic construction in Micronesia began ~700-600 years ago. Uranium-thorium dating has also been used by archaeologists in the Pacific to develop sea-levels curves as an independent line of evidence for evaluating early human occupation (Allen et al. 2017). Obsidian hydration Other techniques like obsidian hydration provide a way to get dates on inorganic material like stone. Obsidian hydration dating is based on the premise that the hydration process—the absorption of moisture into a fresh surface or rim of obsidian—is proportional to the square root of time (Ambrose 1994; Friedman and Smith 1960). Temperature and chemical composition of obsidian have the biggest influence on hydration rates as obsidian will hydrate faster in higher temperatures and certain types of obsidian absorb water faster than others. This technique is suitable for archaeological sites lacking abundant organic material, like the Pamwak rockshelter on Manus Island, Papua New Guinea (Ambrose 1994: 138) or can be used as a way of corroborating radiocarbon data. However, the efficacy of obsidian hydration dating has been limited by a host of issues, including relative humidity, soil chemistry, and establishing the hydration rate constants needed for calibrating dates. Differences in laboratory standards and protocols, including criteria as rudimentary as the power of magnification, an operator’s bias can produce different ages on the same piece of obsidian and has led to frustration among archaeologists in various regions using this technique (e.g., Anovitz et al. 1996; Ridings 1996; Stevenson et al. 1996, 2001). 18 Over the last two decades, there have been various attempts at improving the precision and accuracy of obsidian hydration dating using new protocols (Liritzis and Laskarsi 2011). Obsidian diffusion dating by secondary ion mass spectrometry (ODDSIMS) purportedly improves upon the shortcomings of “first-wave” obsidian hydration with a more sensitive approach to tracking hydration. Overall, this approach to chronometric sequencing is considered problematic because there are still issues with reproducibility and control of external variables. In contrast, tephrochronology uses tephra layers, the accumulation of unconsolidated rock debris from a volcanic eruption (i.e., volcanic ash) as chronostratigraphic markers that can be used as a relative dating technique or to refine the accuracy of associated radiocarbon dates (Lowe et al. 2000). More recent volcanic eruptions have been accurately dated using historical accounts or associated dates of known-age derived from tree-rings and radiocarbon dates. Tephra deposits are isochronous because ash deposits generally accumulate for just days or weeks (Lowe et al. 2000; Shane 2000) and therefore can be dated through associated radiocarbon dates or, depending on the age of the eruption, could increase the precision of associated radiocarbon dates or understanding stratigraphic deposits. Other times, OSL dates can be used (Torrence et al. 2004). More recently, researchers advocate incorporating Bayesian statistical modeling on radiocarbon sequences to refine tephrochronographic interpretations (Buck et al. 2003; Petrie and Torrence 2008). In terms of application, tephrochronology has been used to date one of the largest eruptions in Oceania, that of Witori in West New Britain, Papua New Guinea ca. 3300 years ago. The W-K2 eruption—named for being the second of five major eruptions from 19 Witori between ca. 5600-1200 BP—devastated the surrounding landscape and created much of the coastal plains that were subsequently utilized by humans (Machida et al. 1996; see Callaghan 2010; Torrence 2008 for a discussion of the impacts of volcanic eruptions on social landscapes). The W-K2 tephra coincide with the appearance of Lapita pottery (Torrence and Swadling 2008). Another example is the colonization of New Zealand which has been an intensely debated issue for decades. New Zealand was settled as part of the final burst of migration and exploration across East Polynesia, but three different settlement models have been proposed: “early,” “intermediate,” and “late” (e.g., Lowe et al. 2000: table 1). Early settlement of New Zealand ca. 1950-1450 years ago was suggested on the basis of paleoenvironmental data (Elliot et al. 1995; Kirch 1986; Kirch and Ellison 1994; Sutton 1994; Sutton et al. 2008) and now-discredited radiocarbon dates on rat bones (see Anderson 2000). An “intermediate” settlement has been proposed by Davidson (1984) and suggests a settlement by ca. 1200-1000 BP. The “short” settlement has been proposed by Anderson (1991) and others (e.g., Horrocks and Ogden 1998; Newnham et al. 1998; Wilmshurst 1997; Wilmshurst et al. 1997, 2011) and places human arrival ca. 800-600 BP (Lowe et al. 2000). That much of New Zealand’s North Island is covered with tephra provides ideal conditions to better understand stratigraphic sequences and depositional history with regard to human occupation after eruption events (Shane 2000). Lowe et al. (2000) found that a shorter chronology history is supported and that ash layers could help improve precision of the existing radiocarbon record and early human activity on New Zealand. More recent multiproxy studies also support a later settlement (Argiriadis et al. 2018). 20 Chronometric sequencing using proxy evidence The use of paleoecological records of human arrival and environmental impact can also be an independent method of identifying colonization and early human settlement (e.g., Athens et al. 2014; Braje et al. 2017; Jacomb et al. 2014; Lawson et al. 2008), but is sometimes used in lieu of direct archaeological data. The first major attempt in the Pacific to identify colonization using paleoenvironmental data was on the island of Mangaia in the Cook Islands (Ellison 1994; Kirch and Ellison 1994; Kirch et al. 1992). Increases in heavy (i.e., macroscopic) charcoal, decreases in forest pollen (indicative of a reduction in tree cover), and increases in Dicranopteris fern spores (indicative of increased savanna area) “strongly signal human presence” on the island despite direct archaeological evidence (Kirch and Ellison 1994; Kirch et al. 1992, 1995: 47). Analysis of charcoal sediment from Australia, Indonesia, the Philippines, and Papua New Guinea show increased evidence for burning ca. 53-40 kya and are interpreted as anthropogenic signatures of human arrival in the region (Pope and Terrell 2008), although dates in Australia may extend human presence in Sahul even earlier (Clarkson et al. 2017). There are multiple approaches to assessing human activity through paleoenvironmental data. The identification of substantial amounts of micro-charcoal entering wetland sediments has been interpreted as evidence of forest clearing through anthropogenic burning. Natural fires from lightning strikes and volcanism can also result in the introduction of low levels of micro-charcoal, particularly after the mid-Holocene when El Niño Southern Oscillation (ENSO) events intensified, but rapid and sustained increase in charcoal production evidences human arrival on many islands (McWethy et al. 2010, 2014; Connor et al. 2012). This landscape change is consistent with what is 21 expected when early colonizing populations establish an agricultural base. Ideally, cores would contain evidence of human-introduced taxa such as giant swamp taro (Cyrtosperma chamissonis) or breadfruit (Artocarpus altilis), but these are usually lacking. In some instances, the presence of human-introduced taxa must still be critically evaluated. In Palau, radiocarbon dates of giant swamp taro pollen from paleoenvironmental cores from northeast Babeldaob date to ca. 4300 cal BP (Athens and Ward 2001). However, a lack of archaeological evidence directly associated with the pollen means these data should be treated cautiously for the time being. The date of ca. 4300 BP is also out of range with the timing of the colonization for the rest of western Micronesia (e.g., Clark 2005; Fitzpatrick 2003, Liston 2005; Petchey et al. 2016; Stone 2020; Stone et al. 2017), Remote Oceania (e.g., Rieth and Athens 2019), and the emergence of the Neolithic in Island Southeast Asia. In the absence of direct evidence for anthropogenically-introduced taxa in sediment cores, it is important to consider equifinality. Fires caused by lightning strikes may also contribute to increased charcoal levels in paleoenvironmental records. Butler (2008) provides several scenarios from New Zealand that could account for widespread burning prior to human arrival (see also Prebble and Wilmshurst 2009). This issue is not unique to the Pacific. In the Caribbean, some scholars have proposed that archaeology is ill-equipped to identify colonization and early settlements on islands (Siegel et al. 2015, 2019), yet these types of arguments are not persuasive without direct proof of human activity or human-introduced pollen (see Caffrey and Horn 2015; Fitzpatrick et al. 2021; Giovas 2018), particularly in a region rife with vulcanism. 22 Project Overview This dissertation presents four case studies, each from a different island region, including the Caribbean (Florida Keys, Antilles chain) and Pacific (Palau and Yap) where various methodological approaches have been applied to improve chronologies. Chapter Two uses chronometric hygiene and Bayesian modeling to reevaluate initial human colonization of the Caribbean where human settlement represents the only example in the Americas of peoples colonizing islands that were not visible from surrounding mainland areas or other islands. Unfortunately, many interpretive models have relied on radiocarbon dates that do not meet standard criteria for reporting because they lack critical information or sufficient provenience, often leading to spurious interpretations. After a detailed literature review, 2,484 radiocarbon dates were evaluated and assigned to classes based on chronometric hygiene criteria. Using only the most reliable dates, Bayesian modeled colonization estimates were used to examine patterns of initial settlement. Colonization estimates for 26 islands suggest that: 1) the region was settled in two major population dispersals that likely originated from South America; 2) colonists reached islands in the northern Antilles before the southern islands; and 3) the results support the southward route hypothesis and refute the “stepping-stone model.” This paper was previously published with Robert J. DiNapoli, Jessica H. Stone, Maureece J. Levin, Brian G. Lane, John T. O’Connor, Nicholas P. Jew, and Scott M. Fitzpatrick in Science Advances (Napolitano et al. 2019b). Chapter 3 presents a case study from the Florida Keys where new regional and subregional ΔRs were calculated to improve the reliability of radiocarbon dates from archaeological shell. Results show high variability between islands and shell species, 23 demonstrating the need for an error-weighted pooled mean ΔR as an additional offset from the modeled global average. Broad regional and intra-island variability also demonstrates that using a single value ΔR correction from one nearby location is not recommended. Two ΔRs were used to calibrate the first archaeological radiocarbon dates reported from intact stratigraphic contexts in the Florida Keys. Samples from shell midden deposits at the Clupper site in Upper Matecumbe Key demonstrate the importance of using island- and species-specific ΔR, when possible, to build more accurate site chronologies. This paper was coauthored with Robert J. DiNapoli, Scott M. Fitzpatrick, Traci Ardren, Victor D. Thompson, Alexander Cherkinsky, and Michelle LeFebvre and is presently in its second review with Radiocarbon. Chapter 4 presents a case study from Yap, a group of four small islands in western Micronesia, the initial human settlement of which, is one of the least understood colonization events in Remote Oceania. In contrast to Polynesia where multiple lines of evidence (linguistics, genetics, material culture) provide a coherent narrative of initial occupation, there are major chronological discrepancies for Yap. Potential dates for initial human colonization span more than a millennium and are based on archaeological and paleoenvironmental chronologies. Archaeological data suggest early settlement occurred around 2000 years ago, but paleoenvironmental data hint that settlement may have occurred as early as around 3300 years ago. To help address this issue, we present a suite of 31 new radiocarbon dates from Yap, including the oldest archaeological dates yet reported, and compiled a database of 61 previously published radiocarbon dates (total = 92). Using chronometric hygiene protocols to cull potentially unreliable dates, we then created the first Bayesian modeled colonization estimate for Yap, which produced a 24 modeled estimate of 2450-2165 cal years BP (95.4% HPD). The dates presented in this study also provide the first baseline data for understanding sea-level drawdown after around 2500 years ago. This paper is coauthored with Scott M. Fitzpatrick, Geoffrey Clark, Amy E. Gusick, Esther Mietes, Jessica H. Stone, and Robert J. DiNapoli and is being prepared for submission to Quaternary International. Chapter 5 presents a study that uses chemical compositional analysis of glass beads to gain a better understanding of activity at stone money quarry site in Palau, western Micronesia. For centuries, money beads (udoud) have played a critical role in cultural and economic exchanges in Palau since they first appeared ca. AD 600-950 from East Java and mainland Southeast Asia. Later, as part of their stone money quarrying activities, visiting Yapese islanders negotiated access to quarry sites and purchased provisions using glass beads, offers of corvée labor, and other exchange valuables. Morphological and chemical composition analyses of 38 glass beads recovered from the Chelechol ra Orrak site reveal that most of the beads were manufactured in Europe, with many originating in Bohemia (present-day Czech Republic) ca. 1830-1850. Many of these beads would have been regarded as cheldoech, a category of udoud that largely went out of circulation in the 1920s. Although this category of udoud could be easily counterfeited and beads from Yap lacked the requisite life histories associated with traditional udoud, Palauans accepted them as authentic. However, our research suggests that cheldoech may have depreciated in value well before the 1920s and Palauans valued and exchanged this category of udoud in new ways, including interment with burials. This paper was co-authored by Elliot H. Blair, Laure Dussubieux, and Scott M. Fitzpatrick and is currently under review with the Journal of Archaeological Science: 25 Reports. Chapter 6 provides a summary of the case studies presented in this dissertation and outlines a best practices approach to sample selection and reporting radiocarbon dates. I highlight several studies from island regions around the world where overlapping, interdisciplinary datasets allow for a more detailed understanding of the past. Finally, I offer a brief discussion of how these approaches can be used to benefit stakeholder and descendant communities, especially those whose cultural heritage sites are at-risk for erosion, inundation, and destruction due to sea-level rise, commercial development, and climate change. In many regions, archaeologists and stakeholder/descendant communities are racing a rise tide (sensu Erlandson 2008) and archaeologists may not be able to return to these sites in the future. Adhering to the best practices approaches outlined in this dissertation will ensure that archaeological research on islands will result in a more precise and holistic retelling of the past. 26 CHAPTER II REEVALUATING HUMAN COLONIZATION OF THE CARIBBEAN USING CHRONOMETRIC HYGIENE AND BAYESIAN MODELING From: Matthew F. Napolitano, Robert J. DiNapoli, Jessica H. Stone, Maureece J. Levin, Nicholas P. Jew, Brian G. Lane, John T. O’Connor, and Scott M. Fitzpatrick. 2019. Reevaluating human colonization of the Caribbean using chronometric hygiene and Bayesian modeling. Science Advances 5(12):eaar7806. Introduction Radiocarbon (14C) dating is the most frequently used chronometric technique in archaeology given its wide applicability and temporal range that covers the last ca. 50 kya. Preserved carbon-based organic materials such as charcoal, shell, and bone are often key sources of information for determining the onset and duration of cultural events that occurred in the past. Unfortunately, building refined chronologies in many regions has been hampered by a lack of critical evaluation and application of radiocarbon dating. The Caribbean is no exception in this regard. Initial human colonization of the insular Caribbean, which comprises more than 2.75 million km2 of open water, represents one of the most significant, but least understood population dispersals in human history. In archaeology, the term colonization as it applies to initial human settlement of a landscape has not always been readily defined. For the purposes of this paper, we follow other case studies that define colonization as the earliest reliable (i.e., unambiguous) evidence for human arrival to 27 previously uninhabited landmasses (e.g., Anderson 1995; Lipo et al. 2021). What sets the Caribbean apart from the rest of the Americas is that these colonization events are the only instances where ancient Amerindian groups would have crossed hundreds or even thousands of kilometers of open sea using watercraft—likely single-hulled canoes—to reach new islands after losing sight of land, either from surrounding mainland areas or between the islands themselves (Fitzpatrick 2013). However, the onset, tempo, and origin of these movements are still debated (Fitzpatrick 2015; Keegan and Hofman 2017) and persistent problems with how radiocarbon dates are used and reported have plagued Caribbean archaeology. Many published dates lack the necessary information essential to adequately examine potential sources of error (e.g., contamination, poor cultural associations, taphonomic issues, publication of uncorrected marine dates), all of which can greatly influence archaeological interpretation (Fitzpatrick 2006; Keegan 1989, 1994). This lack of rigor in reporting radiocarbon dates brings into question the temporal efficacy of the region’s cultural-historical framework for various phases of settlement and subsequent cultural behaviors. One major outcome has been an ongoing debate regarding how, when, and from where the Caribbean islands were first colonized during both the Archaic (ca. 7000-2500 BP) and Ceramic Ages (beginning ca. 2500 BP) during which groups are thought to have ventured north from somewhere along the South American mainland. This is highlighted in two competing models: 1) the “stepping-stone” model, which suggests a general south-to-north settlement from South America through the Lesser Antilles into the Greater Antilles (Rouse 1986); and 2) the “southward route hypothesis”, which proposes that the northern Antilles were settled directly from South 28 America followed by progressively southward movement(s) into the Lesser Antilles (Figure 2.1) (Fitzpatrick et al. 2010). Figure 2.1. Bayesian modeled colonization estimates for 26 Caribbean islands suggest three distinct population dispersals. Colonists reached islands in the northern Antilles bypassing islands in the southern Lesser Antilles, refuting a “stepping stone” pattern. SS denotes the “stepping stone” model and SRH denotes the “southward route hypothesis.” Like other world regions where humans appear to have moved rapidly through landscapes or seascapes, such as the Pacific colonization of Remote Oceania that took place in stages from different points of origin—or in North America where the coastal migration versus the ice-free corridor debate has raged for decades—support for one model or another largely depends on the number, quality, and suitability of radiocarbon dates used in analysis. For the Caribbean, this has relevance not only for establishing the routes of dispersal, but has important implications for understanding other natural and social variables that would have influenced the movement of peoples in watercraft that 29 possibly encouraged (or discouraged) travel, including prevailing oceanographic conditions (e.g., currents, winds), climatic anomalies (e.g., El Niño), technological capabilities, or natural events (e.g., vulcanism) (Fitzpatrick 2013, 2015). A common approach to improving the efficacy of large radiocarbon inventories in the event of unreliable or inadequately reported dates is to apply a chronometric hygiene protocol (e.g., Fitzpatrick 2006; Hassan and Robinson 1987; Spriggs 1989; Wilmshurst et al. 2011; see Methods and Materials section below). In this selection process, dates are assigned to different reliability classes that effectively cull spurious radiocarbon dates. To resolve many of the issues related to our understanding of the timing and trajectories of Caribbean colonization, we have compiled the largest publicly available database of radiocarbon dates for the region (n = 2,484), applied a chronometric hygiene protocol, and found that only 54% of dates meet current reporting standards. Radiocarbon dates from 55 islands were obtained through an extensive literature review, including available English, Spanish, and French publications, and were bolstered by contacting more than 100 researchers and radiocarbon laboratories to obtain unpublished or under-reported dates and their associated data. These efforts have more than tripled the number of radiocarbon dates used in the last assessment (Fitzpatrick 2006). Bayesian analysis of the resulting acceptable 1,348 dates for 26 Caribbean islands provide the first model-based age estimates for initial human arrival in the Caribbean and help resolve long-standing debates about initial settlement of the region. Following results of the first chronometric hygiene study done for the Caribbean more than a decade ago (Fitzpatrick 2006), we expect that many islands will have younger colonization estimates after the hygiene protocol is applied, a result also seen in 30 other similar studies (Wilmshurst 2011). As such, we examine competing colonization models using only the most reliable dates from this enhanced database. Background For decades, archaeologists have assumed that the Caribbean was settled in multiple stages and directions. The first, termed “Lithic” (Keegan 2000; Rouse 1986; Wilson et al. 1998), was said to originate in Mesoamerica with dispersal into Cuba and through parts of the Greater Antilles ca. 6000-5000 cal yrs BP. The evidence for this is based almost solely on the perceived similarity in stone tools, ephemeral archaeological assemblages, and a limited number of radiocarbon dates (Fitzpatrick 2015; Keegan 2000). The second was a northward movement from South America around the same time or slightly earlier known as the “Archaic”. While both the Lithic and Archaic Ages are now generally referred to as the Archaic regardless of supposed origin, it is evident that not all islands in the Antilles were settled during this time for reasons that are still unclear (Fitzpatrick 2015). It was not until thousands of years later, ca. 2500 BP, that an apparently new migratory group known as Saladoid—named after the Saladero site in Venezuela where distinctive pottery was first identified—moved into Puerto Rico and much of Lesser Antilles. However, Saladoid dates are not all contemporaneous and some islands remained uninhabited until much later. Apart from Trinidad, which today is only 10 km from Venezuela and was connected to the mainland by a land bridge during the Late Pleistocene/Early Holocene (Tankersly et al. 2018), it was recognized that the oldest radiocarbon dates in the region—both for initial colonization (Lithic/Archaic) and later Saladoid populations— 31 were found in the northern Caribbean (e.g., Cuba, Puerto Rico, St. Martin, Anguilla). Yet there had been no substantive attempt to compile or critically examine larger datasets to investigate this model in more detail until Fitzpatrick’s study in 2006. The long-held stepping-stone model in which groups originating in South America moved northward through the Lesser Antilles and Puerto Rico, and then eventually west into the rest of the Greater Antilles, does not discount a possible earlier migration eastward from Mesoamerica into Cuba (e.g., Rouse 1986). In this model, groups were able to move quickly through the Lesser Antilles because of the close proximity and inter-visibility of islands once peoples reached Grenada. Chronological support for this model would require that the oldest radiocarbon dates be found in the southern Lesser Antilles with those in Puerto Rico occurring later in time (presuming a slight lag as movement progressed northward) or at the very least, contemporaneous if movement was rapid (Fitzpatrick et al. 2010). This has been the prevailing model for decades, in part because of the ubiquity of Saladoid pottery found throughout Puerto Rico and the Lesser Antilles and the assumption that their presence was coeval. Despite some scholars noting a discrepancy in which dates in the northern Antilles were older than those in the south, the SS model had not been explicitly tested, despite evidence that pottery styles were not always reliable chronological markers (Fitzpatrick 2010; Keegan 1994). The prevailing stepping-stone model was challenged more than two decades ago when computer simulations of seafaring suggested that migrants voyaging from South America would have had the highest probability of initial landfall in the northern Caribbean due to the consistently strong easterly trade winds blowing through the 32 southern Lesser Antilles and ocean currents that flow in the same direction, making eastward progress difficult, if not impossible (Callaghan 2001). Fitzpatrick (2006) was the first to examine this problem using quantitative archaeological data. After reviewing more than 600 radiocarbon dates from 36 Caribbean islands, he came to a similar conclusion, showing that the earliest acceptable dates for Saladoid—as well as earlier Archaic settlement—were found in the northern islands, with first settlement of the southern Lesser Antilles, Bahamas, and Jamaica occurring centuries later after a ‘long pause’ of around 1,000 years (Fitzpatrick 2006). As a result of these studies, a second model, termed the southward route hypothesis, suggests that there was instead a direct movement from South America to the northern Caribbean (Puerto Rico and the northern Lesser Antilles) that initially bypassed the southern Lesser Antilles (see Fitzpatrick 2006, 2013; Fitzpatrick et al. 2010; Keegan 2000). This model largely rejects a Mesoamerican origin based on spurious data and assumes that the oldest radiocarbon dates are found in the northern Lesser Antilles and Puerto Rico based on previous chronometric hygiene analysis (Fitzpatrick 2006). Giovas and Fitzpatrick (2014) further explored this scenario using an ideal free distribution framework. Their results indicated that settlement location was likely influenced by the attractiveness of resources, available land, and seafaring limitations. Together, these factors suggested that dispersals were fluctuating and opportunistic, leading to settlement of the largest and most productive islands first, followed by a gradual southward movement ca. 2000 cal yrs BP. Only around 500 years later ca. 1400 cal yrs BP were Jamaica and the Bahamas occupied for the first time (Fig. 1). 33 More recently, analyses of paleoenvironmental data from lake cores showing an increase in charcoal particle concentrations and changes in vegetation regimes through time have also recently been used as proxy evidence in support of an even earlier settlement of many islands, in some cases thousands of years before the archaeological evidence (Siegel 2018; Siegel et al. 2015, 2019). However, we do not view the results of these paleoenvironmental surveys as convincing evidence of human colonization as the data used in these analyses are often not clearly from cultural contexts, nor do they contain unequivocal anthropogenic signatures such as pollen or other micro- or macrobotanical remains from introduced cultigens (see also Caffrey and Horn 2015; Giovas 2018; Prebble and Wilmshurst 2009). Nonetheless, the argument has revitalized the notion of a northward stepping-stone population movement, one that is much earlier than archaeological records indicate. Fitzpatrick’s previous chronometric hygiene study more than 10 years ago revealed that 87.6% of the radiocarbon dates available at that time were acceptable (Fitzpatrick 2006). In addition, only 21 (58.3%) of the 36 islands examined had any archaeological sites with at least three radiocarbon dates; astonishingly, 127 (73.8%) of the 172 sites in the dataset had three or fewer dates. While this earlier study was relatively thorough, there were still an unknown number of dates unavailable due to issues of accessibility (e.g., contract-based gray literature) or non-reporting. Fortunately, there has been a considerable increase in published radiocarbon dates over the last decade that has substantially expanded the amount of chronological data available. The greater number of radiocarbon dates for the Caribbean now has the potential to significantly improve our understanding of the mode and tempo of prehistoric colonization and a host 34 of other issues, such as measuring human impacts on island ecosystems and reconstructing paleoecological and paleoclimatological conditions through time. However, many of the same problems with radiocarbon dating that were prevalent 13 years ago persist today, including the use of unidentified wood from potentially long- lived taxa, unknown marine reservoir corrections, and/or the inclusion of dates from contexts that are not clearly anthropogenic. Because all of these issues require chronometric hygiene before colonization models can be sufficiently reevaluated, the data presented here comprise the largest compendium of radiocarbon dates yet assembled for the Caribbean, which are used to create the first model-based colonization estimates for 26 islands. Results A total of 2,484 radiocarbon dates were compiled from 585 sites on 55 islands (Appendix A). Dates were assigned to one of four classes using chronometric hygiene protocols (see Materials and Methods for criteria). Only 10 dates (0.40%) met criteria for Class 1 (most acceptable dates) and 1,338 (53.9%) dates met the criteria for Class 2, for a total of 1,348 (54.3%) dates that were considered acceptable for Bayesian analysis (see Methods and Materials for a description of class criteria). Seventeen islands (31.0%) with radiocarbon dates did not have any Class 1 or 2 dates (Table 2.1). Despite a tremendous increase in research and publication over the last decade, 433 (74.0%) archaeological sites still have three or fewer radiocarbon dates and 237 (40.5%) sites only have a single date representing an entire site. This is a minimal change compared to the earlier study a decade ago where 164 (39.4%) sites had a single reported radiocarbon date (Fitzpatrick 35 2006). Surprisingly, only 881 published radiocarbon dates (35.5%) contained 13C/12C values (δ13C‰), many of which were only made available after contacting the author or radiocarbon laboratory. These values are important for understanding whether dates were corrected with estimated values, the δ13C‰ in the sample itself, and whether the fractionation was calculated using accelerated mass spectrometry (AMS) or isotope ratio mass spectrometry (IRMS). Consequently, many islands settled prior to European contact were excluded from our Bayesian modeling, which only utilized Class 1 and 2 dates. For example, while it is clear that Saba has a rich prehistoric record (Hoogland and Hofman 1993), it was not modeled due to the lack of acceptable radiocarbon dates (two Class 2 dates out of 41 total dates) based on our chronometric hygiene criteria. Similarly, our chronometric hygiene protocol and Bayesian analyses show that the modeled colonization estimate for Nevis is 1425-1000 cal yrs BP (95% HPD), despite the presence of the Hichmans site, which was identified as an earlier Archaic settlement containing an assemblage similar to other Archaic sites on nearby islands (Davis 2000; Wilson 2006). Our results suggest a more recent settlement chronology for many islands similar to other chronometric hygiene studies (e.g., Wilmshurst et al. 2011) and highlight significant problems with the quality of radiocarbon dates in the region and/or misinterpretation of supposed earlier dates, as many of those previously reported fail to meet criteria for accurate, reliable reporting. Class 1 dates include those from the Coralie site on Grand Turk (Carlson 1999); a cenote from Manantial de la Aleta on Hispaniola (Conrad et al. 2001); Cave 18 on Mona Island (Samson and Cooper, personal communication); and two sites on Puerto Rico: AR-39 (Carlson and Steadman 2009) and Cag-3 (Turvey et al. 2007) (Table 2.2). 36 Table 2.1. Results of chronometric hygiene by island. Abaco Andros Anegada Anguilla Antigua Aruba Baliceaux Class 1 — — — — — — — Class 2 1 — — 41 18 25 2 Class 3 5 2 1 10 51 19 1 Class 4 — — — — 10 6 — Total 6 2 1 51 79 50 3 Cayman Crooked Barbados Barubda Bonaire Carriacou Cuba Brac Island Class 1 — — — — — — — Class 2 9 19 16 45 — 4 169 Class 3 13 24 8 1 2 7 31 Class 4 8 6 1 1 8 1 6 Total 30 49 25 47 10 12 206 Grand Great Curaçao Dominica Eleuthera Grenada Guadeloupe Turk Camanoe Class 1 — — — 3 — — — Class 2 26 5 1 14 — 27 23 Class 3 54 2 4 8 — 8 24 Class 4 6 1 11 1 1 22 16 Total 86 8 16 26 1 57 63 Guana Isle de la Jost Van Hispaniola Inagua Jamaica Long Island Island Gonâve Dyke Class 1 — 1 — — — — — Class 2 — 43 — — 10 2 — Class 3 — 99 5 2 36 — — Class 4 1 83 — — 32 — 7 Total 1 226 5 2 78 2 7 Los Marie- Middle Martinique Mona Island Montserrat Mustique Roques Galante Caicos Class 1 — — — — 2 — — Class 2 1 — 5 — 2 15 3 Class 3 — — 5 7 4 5 6 Class 4 3 2 14 1 — 11 — Total 4 2 24 8 8 31 9 San Nevis Pine Cay Providenciales Puerto Rico Saba St. Croix Salvador Class 1 — — — 4 — — — Class 2 10 — — 447 2 14 5 Class 3 12 1 8 35 37 7 1 Class 4 — — — 48 2 18 5 Total 22 1 8 534 41 39 11 St. St. John St. Kitts St. Lucia St. Martin St. Thomas St. Vincent Eustatius Class 1 — — — — — — — Class 2 12 14 2 18 81 61 6 Class 3 6 8 — 6 42 16 3 Class 4 1 2 1 9 5 47 — Total 19 24 3 33 128 124 9 Tobago Trinidad Union Island Vieques Water Island West Caicos Class 1 — — — — — — Class 2 15 49 — 68 7 — Class 3 10 15 1 53 — 1 Class 4 2 31 — — — — Total 27 95 1 121 7 1 37 One of the three Class 1 radiocarbon dates from the Coralie site is the oldest acceptable date from Grand Turk, but three Class 1 dates are not enough to produce a robust colonization estimate. The remaining Class 1 dates from Hispaniola, Puerto Rico, and Mona Island likely do not date to first colonization of those islands. Taken together, these 10 dates cannot be used to evaluate different colonization models. Therefore, we have chosen to instead generate colonization models using Class 1 dates and the larger, more robust Class 2 data set. Out of 55 islands, 26 met the criteria for Bayesian modeling. Nearly all Class 2 dates from wood samples were from unidentified taxa or could potentially be long-lived species that can present inbuilt age problems. Therefore, modeled colonization estimates were produced using the Charcoal_Outlier analysis in OxCal, which treats radiocarbon dates on unidentified wood as having 100% probability of having as much as 100 years of inbuilt age (Bronk Ramsey 2009b; Dee and Bronk Ramsey 2014; see Materials and Methods). All islands selected for Bayesian modeling possessed nine or more acceptable dates and produced a model agreement (Amodel) ≥77.9%, and an overall agreement (Aoverall) ≥72.0% (Table 2.3; see Materials and Methods). 38 Table 2.2. Class 1 dates from the Caribbean. Conventional 13 Sample Lab Radiocarbon δ C Island Site material Sample Type Provenience number Age (BP) Error (‰) Reference 124N 100E FS #35 Grand Coralie charcoal: charcoal/charred 47-62cmbd, Hearth Beta- — Turk Site palm material Feature 5 80910 1160 60 Carlson 1999 110N 110E, FS #81, Grand Coralie charcoal: charcoal/charred 92-93.5 cmbd, Ash Beta- — Turk Site Wild Lime material lens Area 10 80911 1280 60 Carlson 1999 Grand Coralie wood, cf. Mangroves Paddle, Beta- — Turk Site Bullwood wood peat Layer 96700 940 60 Carlson 1999 Manantial Beta- — Conrad et al. Hispaniola de la Aleta gourd plant material cenote 107023 940 30 2001:14 Samson and Cooper Mona Amyris charcoal/charred OxA- - personal Island Cave 18 elemifera material Cave 18 31209 454 23 28.2 communication Samson and Cooper Mona Bursera charcoal/charred OxA- - personal Island Cave 18 simaruba material Cave 18 31536 682 26 26.9 communication Feature 3 (Norther Puerto Nesotrochis area); EU 17, Level Beta- - Carlson and Rico AR-39 debooyi faunal material 3 221018 1340 40 21.1 Steadman 2009 Heteropsomys Puerto insulans OxA- - Turvey et al. Rico Cag-3 (mandible) faunal material grave infill 15142 1219 26 19.6 2007:195 Nesophontes Puerto edithae OxA- - Turvey et al. Rico Cag-3 (mandible) faunal material grave infill 15141 990 24 19.3 2007:195 Cueva Oliver and Puerto María de Sapotaceae Unit 102: 95-113 cm Beta- - Rivera Collazo Rico la Cruz seed plant material BD 347456 1910 30 22.7 2015 39 Table 2.3. Modeled colonization estimates using the 100-yr outlier model. Puerto Rico was modeled with the 100 oldest dates (see Materials and Methods). Total number of Number of modeled Island dates dates Results 68.2 (cal 95.4 (cal BP) BP) Amodel Aoverall Anguilla 51 41 1420-1260 1510-1180 77.9 77.1 Antigua 79 18 3100-2830 3385-2750 103.2 102.9 Aruba 50 25 3670-3450 3895-3295 100.8 98.1 Barbados 30 9 4985-4485 5885-4440 100.2 100.1 Barbuda 49 19 3455-3265 3715-3225 99.6 99.6 Bonaire 25 16 3715-3470 4060-3410 98.1 98.0 Carriacou 47 45 1500-1415 1550-1385 81.3 62.8 Cuba 206 169 5055-4790 5360-4675 85.6 80.4 Curaçao 86 26 5350-4970 5685-4845 97.8 94.5 Grand Turk 25 17 1300-1105 1435-1025 82.6 82.4 Grenada 57 27 2675-2495 2835-2430 95.5 95.7 Guadeloupe 63 24 3460-3135 3770-2635 104.0 86.8 Hispaniola 226 44 4385-4040 4545-3930 97.4 96.0 Jamaica 78 10 980-575 1015-475 108 107.8 Montserrat 31 15 3045-2780 3355-2590 100.0 100.1 Nevis 22 10 1220-1050 1425-1000 101.0 101.5 Puerto Rico 518 100 4580-4390 4655-4305 116.1 105.4 San Salvador 37 14 1115-935 1230-795 88.9 89.4 St. Eustatius 19 11 1760-1570 1835-1340 100.5 100.3 St. John 24 14 1555-1305 1670-1095 100.4 98.5 St. Lucia 33 18 790-705 885-685 109.6 72.0 St. Martin 105 81 5155-4995 5275-4940 96.0 93.6 St. Thomas 116 61 2880-2620 2970-2485 119.7 96.4 Tobago 27 15 2990-2770 3355-2750 110.5 108.1 Trinidad 95 49 8160-7900 8420-7285 103.8 100.4 Vieques 121 68 4065-3855 4200-3745 91.9 93.1 The oldest modeled dates for Cuba (LE-4283) and Vieques (I-16153) had poor agreement indices, but the model agreement (Amodel) and overall agreement (Aoverall) remained high (Table 2.3, Appendix A). Poor agreement indices were likely caused by a gap between the oldest modeled dates and the rest of the Phase, caused by both the 40 chronometric hygiene protocol and a relative dearth of radiocarbon dates dating to early settlement when compared to later periods. Bayesian modeling of Class 1 and 2 radiocarbon dates from each island dramatically truncates the earliest estimated date of human settlement for six modeled islands. The biggest differences are for Anguilla, Cuba, Hispaniola, and Puerto Rico, which are as much as ca. 2,100-2,300 years younger than previously reported. Although still dating to the Archaic Age (ca. >2500 cal yrs BP), the new colonization estimate places human settlement of Puerto Rico and Hispaniola after other islands such as Cuba, Curaçao, St. Martin, and possibly Barbados. Discussion The results of our chronometric hygiene and Bayesian modeling both support and offer new perspectives on the pattern of Pre-Columbian colonization of the Caribbean islands. Trinidad produced the oldest colonization model estimate of 8420-7285 cal yrs BP (95% HPD). This is not surprising given that lower sea-levels in the late Pleistocene and early Holocene either connected or placed Trinidad close enough to the South American mainland to allow for settlement that would not have necessarily required sophisticated (or any) watercraft (Tankersly et al. 2018). Consequently, early sites on Trinidad should be considered differently when compared to other islands in the Antilles where long-distance seafaring and more advanced wayfinding skills were likely required to colonize (Fitzpatrick 2015; Keegan 2000). After Trinidad, our results suggest two distinct clusters of colonization estimates modeled from ca. 5800 to 2500 cal yrs BP and 1800-500 cal yrs BP (Figures. 2.1 and 2.2). 41 Figure 2.2. Modeled colonization age estimates (95.4% HPD) after chronometric hygiene and Bayesian modeling. The two clusters fit well with generally accepted cultural divisions in the Caribbean. The first cluster, ca. 5800-2500 cal yrs BP suggests two distinct population dispersals into the Caribbean that span the Archaic and the inception of the Ceramic Age. The earliest settled islands in the first cluster of our model, ca. 5800-2500 cal yrs BP are Cuba, Hispaniola, and Puerto Rico in the Greater Antilles; Gaudeloupe, St. Martin, Vieques, St. Thomas, Barbuda, Antigua, and Montserrat in the northern Lesser Antilles; Barbados and Grenada in the southern Lesser Antilles; and Aruba, Bonaire, and Curaçao, located relatively close (27 km, 88 km, and 65 km, respectively) to mainland South America, along with Tobago, which is 35 km northeast of Trinidad (Fig. 1). Prior to our chronometric hygiene, the oldest reported radiocarbon dates in the Greater Antilles suggested that Archaic populations reached the area as early as ca. 7400 to 6900 cal yrs BP (Fitzpatrick 2006, 2015). Taken together, these results for earliest settlement are consistent with the southward route hypothesis and suggest that some of the largest and most resource-rich islands in the northern Caribbean were settled first (Giovas and 42 Fitzpatrick 2014). Additionally, our analysis places Curaçao in the earliest cluster, which may be explained by its close proximity to mainland South America. Barbados represents an exception and has long been thought to be an interesting case of anomalous early settlement of the southern Lesser Antilles; our results continue to support this notion (Callaghan 2010; Fitzpatrick 2015). These results suggest that after the initial settlement of larger islands in the Greater Antilles and some of the smaller islands close to the mainland during the Archaic period, subsequent Ceramic Age settlement focused again on additional smaller islands close to the mainland and several in the northern Lesser Antilles, including those close to islands previously settled during the Archaic. This is not entirely unexpected, for subsequent population dispersals such as Saladoid are likely to have followed similar trajectories, particularly if there had been a long tradition of ancestral groups traveling between the mainland and the Antilles over the course of centuries or even millennia. The second cluster of colonization estimates fall between ca. 1800 to 500 cal yrs BP, and corresponds to another burst of activity in which several islands in both the northern (St. John, St. Eustatius, Nevis, Anguilla) and southern (St. Lucia, Carriacou) Lesser Antilles were colonized. Settlement of the Bahamian Archipelago also takes place within this time period on Grand Turk and San Salvador. It is possible that the chronologies reflect multiple groups moving in various directions (northern and southern) simultaneously, an expected outcome as trade and exchange relationships quickly accelerated after Saladoid occupation (Keegan and Hofman 2017). Interestingly, our results place Anguilla within this later cluster, which likely reflects the results of chronometric hygiene and the removal of the oldest dates for the 43 island given that many of these are reported without provenience and had to be excluded from analysis. The previously accepted earliest radiocarbon dates from Anguilla were on Lobatus sp. shell tools from surface contexts. However, given the lack of stratigraphic control, those dates were discarded from our analysis. This does not rule out an earlier settlement of the island, but currently well-anchored radiocarbon evidence is lacking. The research presented here has important implications for examining previous explanatory models of human dispersal into the Caribbean. First, using only the most secure radiocarbon dates, our results do not support an initial northward stepping-stone pattern, once the dominant scenario and resurrected by proponents of recently collected paleoenvironmental data (Siegel et al. 2015). Instead, our results suggest that islands in the Greater Antilles, northern Lesser Antilles, and those located very close to the South American mainland have the earliest reliable radiocarbon dates and modeled chronologies. These data are consistent with the general predictions of island biogeography in which the closest and largest islands are colonized first (Keegan and Diamond 1987; MacArthur and Wilson 1967), as well as the southern route hypothesis whereby the largest and/or most northerly islands in the Antilles were initially colonized with subsequent settlement proceeding southward through the Lesser Antilles. These results are also supported by previous chronometric hygiene analyses (Fitzpatrick 2006), seafaring simulations (Callaghan 2010), fine-grained ceramic analysis (Hanna 2019), and predictions of the ideal free distribution model (Fitzpatrick and Giovas 2014). Despite consistency with previously proposed models, there are some islands that were settled anomalously later than would be expected, or not at all. For example, Jamaica has no known Archaic or Saladoid settlements, with the earliest sites containing 44 Ostionoid ceramics (post-ca.1400 BP). Interestingly, the Cayman Islands have no evidence for settlement prior to European arrival, despite several attempts by researchers to locate archaeological sites (Fitzpatrick 2015; Stokes and Keegan 1996). The disparity in these dates could be attributed to environmental factors, such as rough sea conditions that complicated successful navigation to these islands (Callaghan 2008), survey and excavation bias, the obscuring of evidence due to natural and/or cultural processes (e.g., sea level changes, volcanism, commercial development), or other unknown reasons. This demonstrates that the investigation of when and how island regions were colonized must be treated on an island-by-island basis and not generalized across whole regions or archipelagos, as many other variables (e.g., cultural, oceanographic, geologic) likely influenced population dispersals. Our analysis, while utilizing the most robust chronological dataset yet compiled for the Caribbean, is still limited by incomplete or unpublished information as well as biased survey coverage for various sites and islands. Suggested colonization estimates are presented using only the most secure chronological data available, but doing so led to the exclusion of more than 1,000 radiocarbon dates. The very nature of chronometric hygiene means that in addition to removing erroneous assays, it is likely some dates that were discarded from further analysis are in fact representative of cultural activities during that time, but do not fulfill the imposed criteria (Schmid et al. 2018, 2019). A recent discussion by Dye (2015) suggests that these problems of chronometric hygiene and single-phase Bayesian models can potentially be resolved using two-phase models. Dye (2015) took this approach for examining Pacific Island colonization and modeled the first phase using radiocarbon dates from pre-colonization paleoenvironmental data that 45 directly preceded the first evidence for human colonization. This first phase of the model helps to establish a cut-off point for the second colonization phase of the model, which serves as a step in conjunction with chronometric hygiene in deciding what chronometric data are most reliable. While robust and reliable pre-colonization paleoenvironmental data is currently lacking for most Caribbean islands (cf. Siegel et al. 2015), the use of two-phase Bayesian models in future studies will likely improve the accuracy and precision of our colonization estimates. Another argument is that temporally diagnostic objects such as pottery could be used in the absence of radiocarbon dates to potentially fill in gaps created by chronometric hygiene. However, without the inclusion of additional absolute chronometric techniques (e.g., thermoluminescence, uranium- thorium), pottery and other diagnostic artifacts such as typologically distinct lithics only serve as good chronological markers when they are first anchored by reliable absolute dates. For example, Cedrosan Saladoid pottery, thought only to occur in pre-2000 yr BP sites, has been recovered on some islands like Carriacou where the earliest acceptable dates are much later in time ca. 1550-1375 cal yrs BP (95% HPD) (with only 4.3% of dates from the island rejected). Indeed, one implication of our revised colonization chronologies is that other long-accepted temporal events in Caribbean culture-history such as subdivisions within pottery typologies during the Ceramic Age (e.g., Troumassoid, Ostionoid) are also likely in need of critical reexamination. Limitations resulting from the chronometric hygiene protocol could also be circumvented in the future with more detailed reporting and calibration of radiocarbon data, including taxonomic identification of samples, laboratory number, and radiocarbon age. More complete reporting would increase the reliability and thus, the number of 46 acceptable radiocarbon dates (i.e., Class 1 and 2) for many sites and islands across the region, an issue that is still pervasive even in more recent syntheses of data for the Archaic (e.g., Hofman and Antczak 2019). To return to the example of the Hichmans site on Nevis, all nine dates were designated as Class 3 because they were from unidentified marine shell or reported without sufficient provenience (Wilson 2006). If this information was published or made available by the author or the radiocarbon laboratory, then this could possibly aid in refining the colonization estimate for Nevis. The present database will be further advanced as new information is made available or if part of the original dated samples were saved and redated. A “best practice” approach to managing legacy dates is to rerun the radiocarbon sample if any part of the original sample remains to improve precision. For other samples, if part of the original specimen remains, it may be possible to identify the taxon to avoid issues such as the “old wood” problem. Regardless, the results show spatiotemporal patterns consistent with previous chronometric hygiene studies, seafaring simulations, and theoretical models of population ecology. Our supporting evidence of previously proposed hypotheses is also potentially falsifiable with additional archaeological evidence. For example, recently published radiocarbon dates from Grenada suggest a previously unidentified Archaic component (Hanna 2019). It is quite possible that expanded research programs on other islands could also push back dates of colonization and strengthen existing chronologies. Conclusions Interpretations of archaeological sites, assemblages, and other remnants of human behavior hinge on developing temporal frameworks largely built on radiocarbon dates. 47 This study, which involved compiling the largest dataset of radiocarbon dates from more than 50 islands in the Caribbean, subjecting them to a rigorous chronometric hygiene protocol, and constructing Bayesian models to derive probabilistic colonization estimates, demonstrates that only around half of the currently available radiocarbon dates are acceptable for chronology building. The paltry number of Class 1 dates (n = 10) is especially concerning as these are considered by scholars elsewhere to be the only form of acceptable samples to use in archaeological research (e.g., Wilmshurst et al. 2011). This means that only 0.4% of the available 2,484 radiocarbon dates from the Caribbean would be acceptable if the same standards used in other regions were applied here. That many of the radiocarbon dates in our database were discarded because of a lack of reporting of critical information underscores the importance of transparency when presenting results and conclusions. Given that the average cost of a single radiocarbon date can be hundreds of dollars, it is not unreasonable to assume that this database represents an investment of around $1 million worth of radiocarbon dates that have been largely funded by government agencies, not including the associated costs of obtaining sample material. Many radiocarbon dates are paid for with taxpayer money, and with recent increased scrutiny of publicly funded research in many parts of the world, archaeologists must take responsibility to ensure that their samples are robust, reported in full, and widely available. Overall, results from chronometric hygiene and Bayesian analysis of acceptable radiocarbon dates suggest direct movement from South America to the northern Caribbean (Cuba, Hispaniola, and Puerto Rico and the northern Lesser Antilles) that initially bypassed the southern Lesser Antilles, with the exception of Barbados and 48 possibly Grenada, which have evidence—albeit limited—for Archaic colonization. The later colonization estimate for islands in the southern Lesser Antilles supports the southern route hypothesis and the predictions of ideal free distribution and does not support the oft-cited and recently reinvigorated stepping-stone model. Like many of the current models used by Caribbean scholars to explain past human lifeways that hinge on secure and reliable radiocarbon dates, these will require further quantitative testing and closer scrutiny of samples used for developing both local and regional chronologies. The analyses presented in this study can also be used to develop testable hypotheses for predicting when those islands not included in our analysis were colonized. Overall, this study demonstrates the need for increased rigor in the reporting of radiocarbon dates to adequately assess their efficacy and maintain chronological control to ensure that interpretive models are satisfactorily anchored in time and accurately reflect, to the best of our ability, the multitude of cultural behaviors that happened in the past. Materials and Methods Chronometric hygiene protocol A chronometric hygiene protocol was applied to critically assess the reliability of radiocarbon dates in relation to target events. Careful application of stricter criteria improves confidence that the dated radiocarbon event reliably relates to human activity (Fitzpatrick 2006; Hassan and Robinson 1987; Spriggs 1989; Wilmshurst et al. 2011). Dates were placed into four separate classes, the two most acceptable of which were modeled using Bayesian analysis (Bronk Ramsey 2009a). Class 1 dates, which fit the 49 most stringent criteria, are from short-lived terrestrial material (i.e., plant remains or juvenile fauna) identified to taxon, terrestrial animal bone identified to taxon and sampled using AMS, and must include both sufficient provenience information (i.e., not from surface contexts, evidence of secure archaeological context) and the processing laboratory name and number. Class 2 dates include charcoal or charred material not identified to taxon, marine shell identified to taxon, and culturally modified shell (e.g., adzes). These dates must also include sufficient provenience information and the processing laboratory number. Class 3 dates are without some component of the above contextual information and also include marine shell dates not identified to taxon, bulk sediment, or shell samples containing multiple individuals, radiometric dates on human bone apatite, or have a radiocarbon age of 300 years BP or younger. Radiocarbon dates less than 300 years BP were excluded from analysis because the 95% posterior probability would exceed beyond the range of modern age. Unidentified marine shell was given a Class 3 value because some may belong to long-lived species or have other unresolved issues, such as the inbuilt age associated with mobile and/or carnivorous gastropods that ingest older carbon from limestone substrates. Class 4 dates were rejected because they lacked critical information, were not from a secure cultural context, or were originally published as modern dates and rejected by the original author(s). Radiocarbon dates from paleoenvironmental studies were rejected as Class 4 unless a date was collected on anthropogenically introduced plant taxa or were from a secure archaeological context because their association with anthropogenic activity cannot otherwise be demonstrated, and thus may date contexts prior to human arrival. 50 Terrestrial and marine radiocarbon dates were calibrated using Intcal13 and Marine13, respectively (Bronk Ramsey 2009a, Reimer et al. 2013). Radiocarbon dates on human bone were calibrated using a 50%:50% Intcal13/Marine13 curve with a ± 12% error to account for the mixed marine and terrestrial diet common in the region. This 50%/50% ratio has been applied in other dietary studies (e.g., Hofman et al. 2015), although few published studies address how dietary ratio may influence radiocarbon date calibration. Cook et al. (2015) recommend using an error of 10% when groups are not consuming C4 plants; however, we selected a more conservative error of 12% to account for the presence of C4 plants in prehistoric Caribbean diets. Furthermore, marine-based subsistence strategies varied between individuals, across islands or archipelagos, and through time (Carlson and Keegan 2014; Laffoon et al. 2016). At this stage, it is not possible to develop a template for calibrating human bone other than to say that diets were likely mixed to some degree (Keegan and DeNiro 1988; Krigbaum et al. 2013). Future isotopic research on island-specific and temporally-specific dietary ratios can be used to refine marine and terrestrial ratios for human bones. Additionally, given both the paucity of inter-island and intra-island local marine carbon offsets for the Caribbean (Fitzpatrick 2006, Diaz et al. 2016) no local marine reservoir correction (ΔR) was applied to marine dates, though there should be a concerted effort to obtain these in the future (see DiNapoli et al. 2021). However, we have applied the standard reservoir correction to marine dates. 51 Bayesian statistical modeling Bayesian statistical models are increasingly used by archaeologists for modeling a range of temporal phenomena, from individual site chronologies to large-scale regional processes and are particularly useful for radiocarbon datasets because they allow the analyst to incorporate prior information, such as stratigraphy or other known chronological information, into the estimation of probability distributions for groups of radiocarbon dates. A strength of Bayesian models for archaeological studies is their ability to provide estimated date ranges for undated archaeological contexts, such as the onset, temporal duration, or end of a phenomenon of interest. Three key parameters of any Bayesian model are the prior, the likelihood, and the posterior. In archaeological applications, the prior is any chronological information or observations that are inferred before any radiocarbon data are collected or processed (e.g., stratigraphy), the likelihood is information obtained from the calibrated radiocarbon date range, and the posterior is an estimated calendar date range expressed probabilistically as the highest posterior density (HPD) region based on the relationship between the prior and likelihood (Bronk Ramsey 2009a). An evaluation of how well the model fits the radiocarbon data is expressed quantitatively as an agreement index, with agreement indices over 60% being the commonly accepted threshold for a good fit (Bronk Ramsey 2009a). Following recent Bayesian approaches to island colonization modeling in the Pacific (e.g., Athens et al. 2014; Burley 2015; Rieth and Athens 2019; Dye 2015), here we model the colonization of the Caribbean islands using single-phase Bayesian models in OxCal 4.3.2 (Bronk Ramsey 2009a). This method involves combining radiocarbon dates from multiple strata and sites into a single group with the goal of providing a simple 52 structural framework to estimate the onset of colonization using the collective dates for the island. Using this approach, all uncalibrated conventional radiocarbon age (CRA) dates were grouped into a single unordered phase by island (S4) using the Sequence, Boundary, and Phase functions in OxCal. The model then calibrates these dates based on prior information (other early dates in the Phase), and the modeled range of the Boundary start provides the colonization estimate. Here, we provide both 68% and 95% HPD probabilities for these colonization estimates, and all date ranges were rounded outward to the nearest 5 using Oxcal’s round function (Hamilton and Krus 2018). Nearly all Class 2 dates are from potentially long-lived species or unidentified wood samples and present inbuilt age problems. To address this issue, we treated each of these radiocarbon dates as having a 100% probability of including some amount of inbuilt age using an Exponential Outlier (Charcoal) model using the Charcoal_Outlier model (Bronk Ramsey 2009b; Dee and Bronk Ramsey 2014). The prior assumption in this type of model is that the correct age of the modeled events is younger than the unmodeled calibrated dates by some unknown amount of time. Thus, the Charcoal_Outlier model is expected to produce somewhat younger age estimates (Dee and Bronk Ramsey 2014). We selected a 100-year outlier model because although Caribbean peoples were likely using dry scrub forest taxa, many of which were slow- growth species, use of these trees for fuelwood likely involved coppicing which would have sustained forests while providing younger limbs for anthropogenic use. Commonly recovered tree species include lignum-vitae (Guaiacum sp.), buttonwood (Conocarpus erectus), caper tree (Capparis sp.), strong bark (Bourreria sp.), wild lime (Zanthoxylum 53 fagara), and mangrove (Newsom and Wing 2004). Given this ethnobotanical information, we elected to use a 100-year outlier model. Sensitivity analyses A large proportion of our dataset is composed of radiocarbon dates on unidentified wood and wood charcoal that likely have unknown inbuilt ages. Thus, the modeled date estimates derived from these samples may also be too old. To address this, we modeled each island with unidentified wood samples in three ways: 1) as a simple single-phase models with no additional parameters; 2) treating each radiocarbon date as having 100% probability of having between 1 and 100 years of inbuilt age using a Charcoal_Outlier model; and 3) treating each radiocarbon date as having 100% probability of having between 1 and 1000 years inbuilt age using a Charcoal_Outlier model (Dee and Bronk Ramsey 2014) (S4; see supplementary text). Assuming a 100% probability of samples having inbuilt age is intentionally conservative as not all samples may have significant inbuilt age. In another set of sensitivity analyses, Cuba was modeled with and without legacy dates—radiocarbon dates with large standard errors (e.g., >100 years)—because, although imprecise, these samples likely still provide an accurate measurement of the target event when derived from secure archaeological contexts. Bayesian modeling accounts for imprecision of legacy dates and can still produce acceptable models (Hamilton and Krus 2018). To test the efficacy of incorporating legacy dates, we modeled Cuba with and without legacy dates. 54 The third set of sensitivity analyses was to test how the model for Puerto Rico improves when modeled with fewer radiocarbon dates. Modeling all 445 radiocarbon dates does not produce an acceptable model, but the model agreement increases when fewer dates are modeled (S5, S6; supplementary text). Additionally, the oldest radiocarbon date in the Phase does not have an acceptable agreement index until it is only modeled with 100 radiocarbon dates. Lastly, we tested how islands with many younger dates potentially skew the models and produce younger colonization estimates. To test this, we modeled Trinidad and Puerto Rico using the Tau Boundary function in OxCal, which exponentially weights radiocarbon dates at one end of the grouping. 55 CHAPTER III NEW MARINE RESERVOIR CORRECTIONS FOR THE FLORIDA KEYS AND CHRONOLOGY BUILDING AT THE CLUPPER SITE, UPPER MATECUMBE KEY From: Matthew F. Napolitano, Robert J. DiNapoli, Scott M. Fitzpatrick, Traci Ardren, Victor D. Thompson, Alexander Cherkinsky, and Michelle LeFebvre. New Marine Reservoir Corrections for the Florida Keys and Chronology Building at the Clupper Site, Upper Matecumbe Key. In second review with Radiocarbon. Introduction In coastal sites around the world, where people often harvested vast quantities of marine species, shells are a common and readily available material for dating archaeological deposits, particularly if archaeobotanical remains (e.g., carbonized wood, nuts, seeds) are lacking. Marine shells are typically more abundant, better preserved, less susceptible to vertical shifting, and easily recoverable compared to other types of samples such as carbonized wood (Thomas 2008:346). As such, the dating of marine shells has proven to be a critical tool for examining a host of issues, including population movements, settlement histories, long-term changes in human-environment interactions, paleoenvironmental conditions, and many others (e.g., Culleton et al. 2006; DiNapoli et al. 2021; Dye 1994; Erlandson and Moss 1999; Kennett et al. 1997; Marquardt et al. 56 2020; Petchey 2009; Petchey and Clark 2011, 2021; Petchey et al. 2017, 2018; Thompson and Krus 2018). Radiocarbon dates from marine organisms, however, can pose potential problems for archaeologists. The interaction of deep ocean water depleted in 14C, atmospheric carbon, and dissolved inorganic carbon in surface waters are now known to produce a modeled global reservoir age (R) of ca. 500 years in subtropical oceans (formerly globally calculated at ca. 400 years) according to recently updated calibration curves (Heaton et al. 2020; Reimer et al. 2013; Stuiver et al. 1986). Calibrating marine dates also requires an additional offset to account for local marine reservoir effects (ΔR) that corrects for localized factors such as regional upwelling, seasonal variations in sea surface temperature (SST), changes in ocean circulation, shifting stratification of ocean surface waters, proximity to freshwater outputs, geological substrates containing limestone, and environmental preferences of animals. In addition, certain species of shell are susceptible to additional environmental conditions like the hardwater effect which can influence the 14C age of shell (Cherkinsky et al. 2014; McKinnon 1999; Petchey and Clark 2011, 2021; Petchey et al. 2017, 2018). These offsets can vary dramatically within the same region—sometimes by hundreds of years on the same island—and can shift dramatically over time (e.g., DiNapoli et al. 2021; Druffel et al. 2008; Hutchinson 2020; Kuzmin et al. 2007; Petchey and Clark 2021; Petchey and Schmid 2020; Toth et al. 2017). Calculating a ΔR requires either paired terrestrial-shell samples found in secure, contemporaneous archaeological contexts with proper taxonomic identification, paired 234U/230Th and 14C samples on coral; tephra isochrones; or known-age, pre-bomb, live- collected shells found in museum collections (e.g., Alves et al. 2018; Ascough et al. 57 2005; Hadden and Cherkinsky 2015; Hadden and Schwadron 2019; Yoneda et al. 2000, 2007). While archaeologists have long recognized the potential for local offsets to significantly influence the age of marine samples, there is a distinct lack of ΔR corrections for many islands and coastal regions. This is gradually improving, but many areas have no or few corrections, which limits more accurate chronology building in archaeology and geosciences (DiNapoli et al. 2021; Rick et al. 2012; Petchey and Schmid 2020; Thomas 2008; Thomas et al. 2013). A common approach for calculating ΔR is to obtain radiocarbon determinations on known-age, pre-atomic testing marine shells. Because atomic bomb testing in the late 1950s and 1960s artificially increased atmospheric 14C levels by nearly 100%, it is necessary that samples be live-collected prior to these events (Berger et al. 1966; Hua and Berbetti 2004). The absence of ΔR in some regions is related to the difficulty in locating suitable live-collected pre-bomb samples for dating that were often collected by naturalists in the eighteenth and nineteenth centuries. As such, museum collections containing pre-bomb specimens continue to be the most relied upon source and have aided significantly in establishing the ΔR for various regions (e.g., DiNapoli et al. 2021; O’Connor et al. 2010; Yoneda et al. 2007; but see Petchey 2009; Ulm 2006; and Yoneda et al. 2000 for discussions on the reliability of museum collections). One region that currently suffers from a lack of high-resolution locality-specific ΔRs is the circum-Caribbean Basin and the Gulf Coast of the United States. There are 241 ΔR values from areas adjacent to the Florida Keys region, including northwest Cuba, the western tropical Atlantic, the western Gulf of Mexico, and southwestern peninsular 58 Florida, calculated from pre-bomb shell or paired 14C-234U/230Th dates on coral (Broecker and Olson 1961; Diaz et al. 2017; DiNapoli et al. 2021; Druffel 1982, 1997; Druffel and Linick 1978; Hadden and Cherkinsky 2015, 2017; Hadden and Schwadron 2019; Lighty et al. 1982; Toth et al. 2017; http://calib.qub.ac.uk/marine/). These studies have provided an important baseline to investigate the ΔR on marine shell from nearshore and open ocean environments. However, ΔR values recently updated for the Marine20 calibration curve result in a more negative marine reservoir age and greater uncertainty than the Marine13 curve until ca. 11,600 years ago (Heaton et al. 2020). Further, ΔR may vary spatially and temporally by species, the influence of oceanographic currents, geological (limestone) substrates, and freshwater outputs. In a region as oceanographically complex as the Florida Keys Reef Tract, we must assess whether there are significant differences between islands and island regions. With the development of a new archaeological project initiated by three of the authors (TA, VDT, and SMF) at the Clupper site (8MO17) on Upper Matecumbe Key, one of the primary goals has been to establish a baseline chronology of midden deposits in these islands as there are currently no published radiocarbon dates from stratigraphically intact archaeological deposits anywhere in the Florida Keys. Given the region’s complex of currents, limestone substrate, and susceptibility to terrestrial runoff, the dating of marine shell requires understanding variations in ΔR, especially in the general absence of carbonized wood and other terrestrial samples (Ardren et al. 2019). In this paper, we radiocarbon date 10 historically-collected marine shells from the Florida Keys and combine them with previously published ΔRs to produce error weighted pool mean ΔRs for three islands, nearshore and open ocean environments, and 59 six environmental regions. In addition to 14C, we compare δ13C and δ18O isotope values to regional baseline data to infer habitat preference, overall marine productivity, water temperature, and salinity (see Culleton et al. 2006; Petchey 2009; Petchey and Clark 2011; Petchey et al. 2008a, 2008b, 2013, 2017, 2018). We then apply these ΔRs to radiocarbon dates on marine shell from the Clupper Site on Upper Matecumbe Key. Using stratigraphically associated shell and terrestrial dates, we are able to evaluate the accuracy of our ΔRs. We first provide an environmental and historical overview for the area, and discuss new research focused on investigating the region’s early inhabitants. We then describe the samples used to determine the ΔR corrections and contextualize the results based on geographical distribution. Overall, our study illustrates the importance of examining variation in ΔR across an expansive chain of islands in an oceanographically complex region. Environmental and archaeological background Environmental background The Florida Keys, and the associated Florida Keys Reef Tract, are an archipelago consisting of more than 1700 low-lying limestone islands on a shallow and narrow section of the continental shelf off the southern tip of Florida. The region can be divided into six subregions based on ecology, geology, and hydrology: Biscayne National Park, the Upper Keys, the Middle Keys, Lower Keys, Marquesas, and Dry Tortugas National Park (Toth et al. 2017) (Figure 3.1). The latter two are considered open-ocean environments, whereas the remaining four subregions are nearshore and influenced by peninsular Florida hydrology (Toth et al. 2017). The Upper Keys refer to the area from 60 Key Largo to Lower Matecumbe Key, and Middle Keys refer to Long Key to Boot Key and are both situated between the western tropical Atlantic and Florida Bay. To the east is a narrow shelf that drops sharply into the Atlantic Ocean. The Lower Keys stretch from Big Pine Key to Key West and open to the Gulf of Mexico. Figure 3.1. The Florida Keys with regional boundaries, sample sites, and flow regimes. The islands from Key Largo to Big Pine Key stretch in a closely-clustered north- south orientation and are made up of coral reef rock known as Key Largo Limestone (Hoffmeister and Multer 1968). The islands from Newfound Harbor Keys to Key West lie in an east-west direction and are made up of oolitic Miami Limestone (Hoffmeister and Multer 1968). The Keys in general are sandy deposits overlying Key Largo Limestone and subject to a mix of tidal energy from the Gulf of Mexico and the Florida Straits (Shinn et al. 1977). Limestone in a restricted environment like an enclosed lagoon 61 has the potential to produce a hardwater effect as the water travels through openings in the limestone and may influence the radiocarbon age of some shells, although the presence of limestone is not the only predictor of the hardwater effect (McKinnon 1999; Petchey et al. 2008a, 2008b, 2018). The region has also been subjected to intensive commercial development and tourism. Prior to these activities, the Florida Keys were essentially an estuarine environment with access to open water and unconsolidated shorelines (Ardren et al. 2016, 2019). In addition to commercial development, the islands have experienced rising sea levels over the past 6,000 years, perhaps as much as 30 cm since AD 1850 (Maul and Martin 1993). Oceanography and hydrology The Florida Keys region is defined by complex oceanography and hydrology. Florida Bay is a ca. 1550 km2 triangular, shallow estuary bounded by peninsular Florida and the Upper Keys and contains a number of “mud keys” that comprise muddy carbonate sediments and lack Pleistocene substrate (Enos and Perkins 1979:61). The area was flooded ca. 8,000 years ago by rising sea-levels and receives freshwater input from Shark River Slough and Taylor Slough (Lidz and Shinn 1991; Nuttle et al. 2000). Given its limited circulation and shallowness, temperature, salinity, and nutrients vary widely (see Toth et al. 2017). The Straits of Florida (the passage between the Keys and Cuba), flow to the east and north and the Florida Bay is located to the west. The Florida Current, considered part of the Gulf Stream system, begins at the Straits of Florida, receives water from the Caribbean Sea via the Yucatan Current and Loop Current, and exhibits 62 considerable seasonal and interannual fluctuation in mean water transport (Lee et al. 1996; Schott et al. 1988; https://oceancurrents.rsmas.miami.edu/caribbean/florida.html). The area off the Lower Keys is subject to large, slow moving cyclonic gyres that contribute to water-column mixing and upwelling (Toth et al. 2017). The Upper Keys receive brief, but high-frequency periods of upwelling due to the Florida Current flowing so close to the reef system (Toth et al. 2017). Tidal passages between the Middle Keys are wider than in the Upper Keys, so there is more mixing of the Gulf of Mexico and the Florida Currents in the Middle Keys reef system than in the Upper Keys (Enos and Perkins 1979; Lee and Williams 1999; Toth et al. 2017). Chronologies and traditions Culturally, much of our understanding of native groups who lived in the Florida Keys derive from Spanish accounts written during the sixteenth century. Inhabitants here were described as a distinct group who traded and shared cultural traditions with the Calusa of southwestern Florida and the Tequesta of Miami and were at different times and degrees variously allied to, and paid tribute to, these groups (Hann 1991; Thompson et al. 2018). Defined as persistent foragers, their diet primarily consisted of marine foods, including fish and shellfish and they were well adapted to traveling by canoe to fish in nearby deep waters (Ardren et al. 2018a). Sixteenth century documents reinforce the archaeological record and state that the main food of the Keys inhabitants was fish, turtles, and shellfish, some terrestrial mammals, as well as marine mammals such as whales and seals, the latter reserved for higher status individuals (Worth 2014:199-200). 63 Population estimates for some of the named groups of the Keys, such as Guarugunbe, number as much as a 1000 (Worth 2014). Given this population density and the limited availability of settlement locations with access to key resources, it appears that many sites in the region were occupied over several archaeologically defined periods. However, the ceramic series and assemblages themselves are based, in part, on radiocarbon dates derived from shell (Griffin 1988:232), which potentially makes the dates for these series problematic and underscores the importance of calculating reliable regional reservoir corrections to establish accurate and precise chronologies. This ceramic chronology only provides a rough guide to the chronology and settlement history of these sites, highlighting the need for better developed chronologies based on radiocarbon dating that is not reliant on static culture histories. As a result of the issues pointed out above, archaeologists do not have a detailed understanding of the occupational history of these sites and how they fit into the larger social geography of the South Florida landscape. Given the diet of the Keys inhabitants there are few animal remains that could be radiocarbon dated, save for deer, which would not require some form of marine reservoir correction. To illustrate how the variability in ΔR impacts the interpretation of archaeological radiocarbon dates, we calibrated the first radiocarbon dates from secure archaeological contexts in the Florida Keys. The Clupper site (8MO17) covers a large (ca. 85 × 52 m) area with extensive midden deposits that was first excavated in the 1940s and again more recently in 2014 and 2015 as part of the Matecumbe Chiefdom Project. Ceramics recovered from the site suggest that deposits date to multiple cultural periods, including Glades IIa (AD 700-900), IIb (AD 900-1000), IIc (AD 1000-1200), IIIa (AD 1200-1400), 64 and IIIb (AD 1400-1510), although the ceramic chronology in the Keys is not as well refined as it is in southern peninsular Florida (Ardren et al. 2018a). The Glades ceramic series was developed from stratigraphic excavations in the Everglades, Calusa area, and Keys early in the twentieth century and first tied to carbon dates from the Everglades in the 1980’s (Goggin 1944; Griffin 2002). Methods Modern samples In this study, we calculated a suite of marine reservoir corrections from live- collected, known-age, pre-bomb bivalves. Ten samples were provided by the Department of Invertebrate Zoology at the Smithsonian National Museum of Natural History (SNMNH), Washington D.C. We sampled Argopecten gibbus Euvola cf. papyraceum (formerly Amusium papyraceum), Caribachlamys sentis (formerly Chlamys ornata sentis), Caribachlamys munda (formerly Chlamys munda), and Brachtechlamys antillarum (formerly Decatopallium (Scalaris) antillarum), all of which are species from the Pectinidae family (scallops) (Waller 1991, 1993). Preference was given to suspension feeding bivalves that mostly consume plankton. Understanding the animal’s feeding strategy is important because variation in feeding strategies can result in differences in 14C dates as a result of differential carbon intake (Petchey et al. 2013). A. gibbus is a facultatively mobile, epibiotic suspension feeder that lives in benthic zones and seagrass beds on soft substrate with a lifespan of up to ca. 24 months (Blake and Shumway 2006; Turgeon et al. 2009). C. sentis and C. ornata are epibiotic, stationary suspension feeders that live in benthic zones on hard substrate (Turgeon et al. 65 2009; Waller 1993). B. antillarum is a benthic, epibiotic animal that lives on hard substrate in seagrass beds (Turgeon et al. 2009). With the exception of C. ornata, which is found only in shallow depths, sampled species live in both shallow (<35 m) and deep (>35 m) waters (Bieler and Mikkelsen 2004), although the mollusks in this study were collected from shallow depths. According to museum records, all samples were live- collected between 1885-1954. Ten samples were pretreated and processed at the University of Oregon Island and Coastal Archaeology Laboratory (ICAL) and submitted to DirectAMS for accelerator mass spectrometry (AMS) dating (see http://www.directams.com/publications-methods- and-other-references). Samples were prepared in a 10% HCl “leach” to remove 10-25% of surface material potentially subject to recrystallization and contamination, then 3 mg of shell was drilled from each specimen using a Sherline micromill 5410 and a carbide drill bit. Shells were sampled across multiple growth bands to avoid dating intra-growth band radiocarbon variability (Culleton et al. 2006). The shell samples derive from seven islands: Lower Matecumbe Key (n=1), Looe Key (n=1), Key West (n=1), Sambo Key (n=1) (Lower Keys); Loggerhead Key (n=1), Plantation Key (n=2) and Sand Key (n=1) (Upper Keys). Another six AMS dates were run on shells from Plantation Key, Lower Matecumbe Key, Long Key, Sambo Key, and Loggerhead Key at the Center for Isotopic Analysis at the University of Georgia (UGAMS). The powdered shell samples from the University of Oregon ICAL were pumped out overnight and treated with 100% phosphoric acid to recover CO2 for analysis. The resulting carbon dioxide was cryogenically purified from the other reaction products and catalytically converted to graphite using the method of Cherkinsky et al. (2010). 66 δ13C and δ18O values for all samples were calculated using IRMS at UGAMS to compare against regional baseline values of 1.6‰ (Tagliabue and Bopp 2008) and 1.4‰ (LeGrande and Schmidt 2006), respectively. Depletion of δ 13C and δ 18O is often an indication of freshwater or terrestrial input while enriched values indicate increased marine productivity and CO2 atmospheric absorption in reefs (Keith et al. 1964; Petchey et al. 2013). Depletion of δ 18O also indicates an increase in temperature and less saline water caused by evaporation of 16O (e.g., Emiliani et al. 1966; Epstein and Mayeda 1953; Epstein et al. 1953; Swart et al. 1983). A database of existing ΔRs was built using the 14CHRONO Marine Reservoir Database. One additional study by Toth et al. (2017) not in 14CHRONO because it used paired 14C/uranium-thorium samples collected from natural coral was added to the database and updated for Marine20 ΔR values using the CALIB deltar application and presented with a 68% confidence range (Reimer and Reimer 2017; Stuiver et al. 2020; http://calib.org/JS/JSdeltar20/). For known age shells, ΔR was calculated using the following (after Stuiver et al. 1986): ΔR=P-Q where P is the measured 14C age of a known-age marine sample and Q is the expected marine model age based on the Marine20 calibration curve (Heaton et al. 2020). For known-age samples, the uncertainty for an individual Δ𝑅, 𝜎𝑖, is the uncertainty of 𝑃 (Reimer and Reimer 2017). For islands with more than one date (Plantation Key, Lower 67 Matecumbe Key, and Loggerhead Key), we calculated the weighted average. Using the ΔR values and previously published data, we then calculated error-weighted pooled means for the six regions (Biscayne National Park, Upper Keys, Middle Keys, Lower Keys, Marquesas, and Dry Tortugas National Park) as well as a second comparison of nearshore versus open-ocean (sensu Toth et al. 2017). Because we were unable to obtain live-collected pre-bomb shells from Upper Matecumbe Key to compare to archaeological radiocarbon determinations, we calculated a weighted mean ΔR for Plantation Key and Lower Matecumbe Key, which are the islands that bound Upper Matecumbe Key directly to the north and south. We calculated the error-weighted pooled mean, Δ𝑅𝜇, (following Stuiver et al. 1986), by: Δ𝑅 ∑ 𝑖𝑖 𝜎2 Δ𝑅 = 𝑖𝜇 1 ∑𝑖 𝜎2𝑖 and the weighted uncertainty, 1 𝜎𝜇 = √ 1 ∑𝑖 𝜎2𝑖 Following recent applications (e.g., Couthard et al. 2010; DiNapoli et al. 2021; Mangerud et al. 2006; Petchey et al. 2008), we statistically evaluate the internal variability in Δ𝑅𝜇 68 using a χ2 test with critical value α=0.05. If the normalized χ2 value is greater than 1, i.e., 𝜒2 > 1, then additional uncertainty is added to 𝜎𝜇 to give the total uncertainty, Stotal, or: 𝑛−1 𝑆 2𝑡𝑜𝑡𝑎𝑙 = √𝜎𝜇 +√𝜎 2 Δ𝑅 − (𝜎 2 𝜇 ∗ √𝑛) Where n is the number of samples, 𝜎𝜇 ∗ √𝑛 is the measurement variance, and 𝜎 2 Δ𝑅 is the total population ΔR variance. Data files and R code necessary to reproduce these analyses are available in the supplementary material files 1-3. Archaeological shell AMS dates on seven archaeological shells and three deer bones from the Clupper site were processed at the DirectAMS Laboratory, UGAMS, and Beta Analytic (https://www.radiocarbon.com/pretreatment-carbon-dating.htm). Six samples were from Codakia orbicularis, a facultatively mobile suspension feeder that burrows in shallow seagrass beds (Reynolds et al. 2007; Turgeon et al. 2009). The other sample is from Cittarium pica, a gastropod that can live above and below mean water level on calcareous and non-calcareous surfaces (Robertson 2003). Its diet consists of algae scraped off rocks, algae from the splash zone, sand, and detritus such as calcareous debris (Robertson 2003). One study of stomach contents demonstrated that calcareous material ranged between 13-49% in individuals (Randall 1964:428), which suggests that the radiocarbon age of this species may be heavily influenced by the intake of old carbonates. 69 To test the utility of our calculated ΔRs, we calibrated three sets of stratigraphically associated samples of C. orbicularis and white-tailed deer (Odocoileus virginianus) in a single-phase Bayesian model in OxCal v 4.4.4 (Bronk Ramsey 2009a). Samples were selected from Test Pit 4, a 50×50 cm test unit; suitable carbonized wood/botanical samples were lacking. Site stratigraphy and cross-mending of deer bone between levels suggests that deposition at the site occurred relatively rapidly, which provides the prior information for grouping these determinations into a single-phase model. AMS dates were calibrated using the Marine20 curve (Heaton et al. 2020). (i.e., ΔR = 0 14C yrs), the ΔR for the weighted average for Plantation Key/Lower Matecumbe, the weighted average for the Upper Keys, and the weighted average for the entire Florida Keys region. Dates on deer bone were calibrated using the IntCal20 curve (Reimer et al. 2020) as Key deer diet is primarily forbs and woody plants like red mangrove (Rhizophora mangle), black mangrove (Avicennia germinans), and thatch palm berries with no marine contribution (Klimstra and Dooley 1990). Results Modern shell radiocarbon Radiocarbon ages and ΔRs for the 10 historically collected shell dates are presented in Table 3.1. The shell samples from Long Key and Sambo Key date to ca. 10,000 and ca. 15,000 years old, respectively. Both DirectAMS and UGAMS returned similar radiocarbon ages, which suggests that the shells were not live-collected in 1905 or 1915, respectively, as the Smithsonian records indicate. These two results were discarded from further analysis. The ΔRs for the remaining samples ranged from −257 ± 21 to −34 70 ± 22 14C yrs (Table 3.1). Both high and low values come from different species that were collected in the same year off Plantation Key (Upper Keys). The difference in value could be attributed to interspecies susceptibility to the hardwater effect or upwelling and is discussed below. The δ13C values from DirectAMS are from AMS. ΔRs for all groupings are presented in Table 3.2 (see also Appendix B). In all cases the χ2 tests indicate greater than statistically expected dispersion in the underlying ΔR values. Thus, the pooled mean ΔRs with external variance added (𝑆𝑡𝑜𝑡𝑎𝑙) are the most conservative estimates. The ΔR for 𝜒2 Plantation Key is ( = 23.6) −144 ± 99 14C yrs. The ΔR for Lower Matecumbe Key is 𝑛−1 𝜒2 𝜒2 ( = 3.6) −153 ± 36 14C yrs. The ΔR for the entire Florida Keys region is ( = 4.9) 𝑛−1 𝑛−1 𝜒2 −169 ± 55 14C yrs. The ΔR for Loggerhead Key is ( = 1.9) −131 ± 23 14C yrs. 𝑛−1 Following individual islands, nearshore versus offshore ΔR values were compared. For these calculations, we included previously published ΔR values, which were all recalculated using the Marine20 calibration curve (Heaton et al. 2020). The ΔR for 𝜒2 nearshore environment is ( = 4.5) −166 ± 48 14C yrs and the ΔR for open-ocean 𝑛−1 𝜒2 environment is ( = 7.09) −190 ± 78 14C yrs (Figure 3.2). The next group compares 𝑛−1 ΔR values by subregion. ΔRs were calculated for six ecological zones: Biscayne National 𝜒2 𝜒2 𝜒2 Park is ( = 2.4); Upper Keys is ( = 3.4) −167 ± 39 14C yrs; Middle Keys is ( = 𝑛−1 𝑛−1 𝑛−1 𝜒2 35.5) −96 ± 156 14C yrs; Lower Keys ( = 4.7) −179 ± 50 14C yrs; Marquesas is 𝑛−1 𝜒2 𝜒2 ( = 6.3) −192 ± 63 14C yrs; and Dry Tortugas ( = 7.6) −190 ± 82 14C yrs (Figure 𝑛−1 𝑛−1 71 𝜒2 3.3). Finally, the ΔR for Plantation Key/Lower Matecumbe Key is ( = 14.9) −147 ± 𝑛−1 78 14C yrs (Figure 3.3). Modern shell stable isotopes δ13C values for the historically collected shell range from a low of 0.13‰ to a high of 2.00‰ and δ18O values range from a low −0.02‰ to a high value of 1.87‰. A. gibbus, C. sentis, and B. antillarum have depleted δ13C values compared to the regional average of 1.6‰, with A. gibbus from Loggerhead Key showing the greatest depletion compared to the modern regional average. Most δ13C values were below the expected regional average, with the lowest values from the open-ocean environment. As enriched δ13C values indicate more productive marine environments, this suggests that the hardwater effect or upwelling is influencing these values. B. antillarum and C. munda both had slightly enriched δ13C values. δ18O values for open-ocean samples (from Loggerhead Key) were slightly above average, indicating mollusk preference for cooler, less saline water. The lower isotope values from nearshore environments suggest freshwater input as well as warmer water. A. gibbus exhibited a wide range with δ13C of −0.13‰ to 1.17‰ and −0.02‰ to 1.6‰ for δ18O. Given that these shells were sampled from four islands, it suggests that local influences in hardwater and hydrology may influence these values. Archaeological radiocarbon The ΔR from Plantation Key/Lower Matecumbe Key produced the best fit for the stratigraphically associated samples (Figure 3.4; Appendix B). Results of sensitivity analyses are presented in Appendix B. When calibrated with IntCal20 (Reimer et al. 72 2020), the dates from deer bone appear to date ca. 300-400 years older than the associated shell. When the ΔRs for the Upper Keys and the entire Florida Keys region were used, the models produced agreement indices above 60, but there was little temporal overlap in the 95.4% highest posterior density (HPD) ranges between the shell and the terrestrial dates (Appendix B). This suggests that the weighted average ΔRs for the Upper Keys and the entire Florida Keys region are inappropriate for Upper Matecumbe Key given that these terrestrial and marine dates derive from the same depositional context. When the weighted average ΔR for Plantation Key/Lower Matecumbe Key is used, the modeled 95.4% HPD ranges show statistical overlap between the shell and terrestrial dates, indicating this ΔR is more appropriate for the site. This ΔR was then applied to the four remaining dates from other excavation units at the site (Figure 3.5; Appendix B). Figure 3.2. Nearshore and open ocean ΔR with external variance. 73 Table 3.1. AMS dates and ΔR for known-age shell from the Florida Keys. δ13C and δ18O values were determined at UGAMS using IRMS. Stable Catalog Lab Year Radiocarbon Isotope δ13C δ18O Reservoir Location Subregion USNM Identification Number ΔR Number Collected Age Lab (‰) (‰) Age (USNM) Number UGAMS- Florida Keys, Argopecten gibbus (Linné, O 609347 1954 466±18 40210 0.13 1.45 603±56 -137±18 40210 Loggerhead Key 1758) D-AMS- Florida Keys, Argopecten gibbus (Linné, O 609347 1954 512±21 ― ― ― 603±56 -91±21 015389 Loggerhead Key 1758) D-AMS- Florida Keys, Argopecten gibbus (Linné, O 609346 1954 465±21 ― -0.31 1.60 603±56 -138±21 015392 Loggerhead Key 1758) Euvola cf. papyraceum D-AMS- Florida Keys, O (formerly Amusium 421734 1932 444±22 ― 1.48 1.87 604±61 -160±22 015393 Loggerhead Key papyraceum) Caribachlamys sentis D-AMS- Florida Keys, Looe LK (formerly Chlamys ornata 457120 1910 490±21 ― 1.14 -.89 607±64 -117±21 015390 Key Reef sentis) Caribachlamys sentis D-AMS- Florida Keys, Key - LK (formerly Chlamys ornata 457117 1910 415±20 ― 1.45 607±64 -192±20 015391 West, Sand Key 1.05 sentis) UGAMS- Florida Keys, Sambo Argopecten gibbus (Linné, LK 457879 1915 15082±31 40208 1.10 2.50 ― ― 40208 Key Reef 1758) D-AMS- Florida Keys, Sambo Argopecten gibbus (Linné, LK 457879 1915 15144±53 ― ― ― ― ― 015394 Key Reef 1758) UGAMS- Florida Keys, Long Argopecten gibbus (Linné, MK 458050 1905 10368±25 ― -0.52 1.17 ― ― 40209 Key Reef 1758) D-AMS- Florida Keys, Long Argopecten gibbus (Linné, MK 458050 1905 10581±39 ― ― ― ― ― 015395 Key Reef 1758) Florida Keys, UGAMS- Argopecten gibbus (Linné, - Plantation Key, UK 450324 1910 415±18 40207 1.17 607±64 -192±18 40207 1758) 0.02 Conch Reef Florida Keys, D-AMS- Argopecten gibbus (Linné, Plantation Key, UK 450324 1910 350±21 ― ― ― 607±64 -257±21 015396 1758) Conch Reef Florida Keys, UGAMS- Caribachlamys munda Plantation Key, UK 748870 1910 519±18 40211 1.73 0.12 607±64 -88±18 40211 (formerly Chlamys munda) Conch Reef Florida Keys, D-AMS- Caribachlamys munda Plantation Key, UK 748870 1910 573±22 ― ― ― 607±64 -34±22 015398 (formerly Chlamys munda) Conch Reef 74 Table 3.3, continued. Stable Catalog Lab Year Radiocarbon Isotope δ13C δ18O Reservoir Location Subregion USNM Identification Number ΔR Number Collected Age Lab (‰) (‰) Age (USNM) Number Brachtechlamys UGAMS- Florida Keys, Lower antillarum (formerly UK 2140 1885 451±19 40206 2.00 1.35 627±64 -176±19 40206 Matecumbe Key Decatopallium (Scalaris) antillarum) Brachtechlamys D-AMS- Florida Keys, Lower antillarum (formerly UK 2140 1885 506±22 ― ― ― 627±64 -121±22 015397 Matecumbe Key Decatopallium (Scalaris) antillarum) Figure 3.3. ΔR with external variance by ecological zone. 75 Table 3.2. Error-weighted pooled means ΔRs. ∆R Number pooled ∆R with external of (ΔRμ) + χ2/(n- χ2 test variance (Stotal) Notes pooled error 1) 14 14 C yrs dates (σμ) C yrs 4 -144±10 χ23:0.05 = 70.7<7.8 23.6 -144±99 2 -153±14 χ21:0.05 = 3.6<3.8 3.6 -153±36 4 -131±10 χ23:0.05 = 5.6<7.8 1.9 -131±23 2 -147±8 χ25:0.05 = 74.5<11.1 14.9 -147±79 χ2 = 175 -166±2 174:0.05 4.5 -166±48 786.2<205.8 25 -190±6 χ224:0.05 = 170.2<36.4 7.09 -190±78 6 -210±13 χ25:0.05 = 12.0<11.1 2.4 -210±41 χ2 = 155 -167±2 154:0.05 3.4 -167±39 517.5<184.0 6 -96±12 χ25:0.05 = 177.5<11.1 35.5 -96±156 8 -179±9 χ27:0.05 = 32.8<14.1 4.7 -179±50 4 -192±13 χ23:0.05 = 18.8<7.8 6.3 -192±63 16 -190±6 χ220:0.05 = 151.4<31.4 7.6 -190±82 χ2 = 200 -169±2 20:0.05 4.9 -169±55 971.7<232.9 11 33±16 χ213:0.05 = 99.2<22.4 7.6 33±158 χ2 17 5±6 17:0.05 = 65.1 5±185 1107.4<27.6 from 22 -106 ± 8 χ221:0.05 = 111.3<32.7 5.29 -106 ± 80 DiNapoli et al. 2021 from -230 ± 7 χ2 15 6:0.05 = 44.1<12.6 7.35 -230 ± 131 DiNapoli et al. 2021 76 Figure 3.4. Bayesian modeled plots of stratigraphically associated samples from Test Pit 4. Figure 3.5. Calibrated dates from the Clupper site. Gray plots are on deer bone calibrated with IntCal20 curve (Reimer et al. 2020) and blue plots are shell dates calibrated with Marine20 curve (Heaton et al. 2020) and a ΔR of −147 ± 79 14C yrs. 77 Table 3.3. Calibration of radiocarbon determinations from the Clupper site, Upper Matecumbe Key. Dates were calibrated using OxCal v4.4 (Bronk Ramsey 2009a) and calibrated using the Marine20 curve (Heaton et al. 2020). Bayesian modeled dates are presented in italics (Bronk Ramsey 2009a). Lab codes: DirectAMS (D-AMS), University of Georgia Center for Isotopic Studies (UGAMS), Beta Analytic (Beta). Calibrated Age Range Radiocarbon with ΔR −147±78 14C Lab Number Sample Type Provenience Age δ(13C)‰ δ(15N)‰ δ(18O)‰ No ΔR (2σ cal) yrs (2σ cal) Test Unit 3, D-AMS Codakia 860-590 BP (AD 1090- 1060-670 BP (AD 890- level 3, 20-30 1323±21 2.33 ― -0.95 013325 orbicularis 1360) 1280) cmbs Odocoileus Test Unit 4, UGAMS- virginianus 1280-1150 BP (AD 670- 1280-1130 BP (AD 670- Level 1, Layer 1270±20 -6.85 ― ― 52038 long bone shaft 800) 820) 1 bioapatite Test Unit 4, UGAMS- Codakia 880-610 BP (AD 1070- 1220-765 BP (AD 730- Level 1, Layer 1340±20 3.12 ― 0.75 52368 orbicularis 1340) 1185) 1 Mammalia UGAMS- Test Unit 4, 1180-1000 BP (AD 770- long bone shaft 1180±20 -8.63 6.57 ― 1180-1005 (770-945) 52039 level 2 950) collagen UGAMS- Codakia Test Unit 4, 770-530 BP (AD 1180- 1260±20 2.54 ― 0.47 1175-700 (AD 775-1250) 52369 orbicularis level 2 1420) Odocoileus UGAMS- virginianus Test Unit 4, 1280-1150 BP (AD 670- 1280-1130 BP (AD 670- 1270±20 -5.49 10.73 ― 52040 long bone shaft level 3 800) 820) collagen UGAMS- Codakia Test Unit 4, 790-540 BP (AD 1160- 1180-710 BP (AD 770- 1280±20 1.74 ― 0.68 52370 orbicularis level 3 1410) 1240) Test Unit 4, Codakia 800-540 BP (AD 1150- 1040-640 BP (AD 910- Beta-410911 level 6, 50-60 1280±30 1.6 ― ― orbicularis 1410) 1310) cmbs Test Unit 4, D-AMS 790-540 BP (AD 1160- 1030-630 BP (AD 920- Cittarium pica level 6, 50-60 1278±27 2.27 ― -0.10 013326 1410) 1320) cmbs Test Unit 3, D-AMS Codakia 970-700 BP (AD 980- 1230-800 BP (AD 720- level 7, 60-70 1463±22 2.08 ― -0.92 013327 orbicularis 1250) 1150) cmbs 78 Archaeological stable isotopes δ13C and δ15N values for the deer collagen samples were enriched compared to values reported in studies of modern and archaeological deer from Florida (Cormie and Schwarcz 1994; Hutchinson and Norr 2006; Schoeninger and DeNiro 1984). One sample (UGAMS 52038), measured from bioapatite, produced a value that is close to a terrestrial diet of C3 plants (−6.85‰), but the other two samples measured on collagen (UGAMS 52039 and 52040) have δ13C values of −8.63‰ and −5.49‰ and δ15N 6.57‰ and 10.73‰, respectively. As Key deer have an herbivorous diet, it would be expected that the δ13C and δ15N values would fall in the typical range for deer eating primarily C3 plants (Klimstra and Dooley 1990). For example, deer sampled from the Tatham Mound site from the central Gulf Coast of Florida returned a δ13C value of −23.6‰ (adjusted for pre-industrial enrichment of atmospheric 12C) and a δ15N value of 4.3 (Hutchinson and Norr 2006: Table 4). These values are similar to those reported for other species of deer in Florida (Cormie and Schwarcz 1994; Schoeninger and DeNiro 1984). The isotopic values from the Clupper site would suggest an herbivorous diet almost exclusively made up of C4 plants, which is unusual for southern Florida (Table 3.3). The δ13C values for C. orbicularis are also enriched compared to the modern samples from the region. The enriched values likely reflect the complex combination of limestone geology within the Florida Bay estuary and its hydrology, which can increase δ13C and δ15N across the food- web (Corbett et al. 1999; Nuttle et al. 2000). The potential impacts of the Seuss effect, anthropogenic activity, and habitat preference on these archaeological and modern mollusks is discussed in more detail below (e.g., Druffel and Benavides 1986; Swart et al. 1996). 79 Discussion and conclusion Modern samples Marine reservoir corrections for the Florida Keys demonstrate negative offsets to the modeled global average marine calibration curve (Heaton et al. 2020) ranging from −34 ± 22 14C yrs to −257 ± 21 14C yrs. Wide inter- and intra-island variability indicates that, for now, it would be prudent to use the regionally-specific error-weighted pooled mean ΔRs. Geographic variability is not surprising as this is seen throughout the circum- Caribbean (e.g., DiNapoli et al. 2021); however, given the fact that the highest and lowest ΔR value of the 10 samples used in this study came from the same island—collected from Conch Reef just off Plantation Key in 1910 from a depth of 64 m—suggests that there are additional factors to consider such as interspecies susceptibility to the hardwater effect or upwelling (Table 3.1). The least negative ΔR was calculated from C. munda and had a slightly enriched δ13C value and depleted in δ18O. This is likely the result of the upwelling caused by the Florida Current as it passes by the Upper Keys and produces cooler SST. However, the most negative value was from A. gibbus and had a slightly depleted δ13C value of 1.17‰ and a depleted δ18O value of −0.02‰. A. gibbus had uniformly depleted δ13C values relative to the regional average, suggesting that this species may be susceptible to the hardwater effect which may produce older than expected 14C years and a greater ΔR value. Although ontogenesis can produce a lower- than-expected δ13C value as it incorporates more metabolic carbon (Cmeta) that results in decreased δ13C values, A. gibbus is a short-lived species that only has a life expectancy of ca. 24 months (Blake and Shumway 2006; Lartaud et al. 2010); therefore, it is more likely that this is a result of the hardwater effect. 80 B. antillarum has the most enriched δ13C value (2.00‰). This sample was collected in 1885, prior to the 1905-1912 construction of the Florida East Coast Railway. Construction of the railway, which stretches from Miami to Key West, restricted the exchange of water between the Gulf of Mexico and Florida Bay and led to increased eutrophication (Swart et al. 1996). Following construction of the railway, δ13C values in the region uniformly depleted as a result of anthropogenic activity (Swart et al. 1996). It is therefore noteworthy that our highest δ13C value was from the one sample collected prior to the construction of the railway. There may also be additional contributing external factors to depleted isotopic values that reflect local conditions. The samples from the Lower Keys also have depleted δ13C and δ18O values which could reflect conditions in the Florida Straits where slow-moving gyres contribute to mixing in the water column and upwelling. Open-ocean ΔR is slightly more negative than nearshore and this finding supports the results from a previous study that found no significant difference between the two zones for the last 300 years and suggests a minimal influence of groundwater in the nearshore collection zones and along shelf-edge coral reefs (Toth et al. 2017). The most negative offset is from Biscayne National Park, suggesting that both terrestrial runoff and currents play significant roles in local variation. The least negative offset from the six subregions comes from the Middle Keys and is likely the result from a single outlier date from the Middle Holocene (sample MK-AR-7-0, CAMS-167744) reported by Toth et al. (2017:135). It is unclear why this sample produced a strong positive ΔR (205 ± 26 14C yrs, updated for Marine20 curve [Heaton et al. 2020]) as the sample met the threshold for analysis (see Toth et al. 2017). 81 Lastly, we compared the result for the Florida Keys to ΔRs from northwest Cuba, the Bahamas, Apalachicola Bay, and Southwest Florida (DiNapoli et al. 2021; Hadden and Cherkinsky 2015, 2017; Hadden and Schwadron 2019; see Table 2). The regional variation between these areas highlights the problem with using the “nearest” available ΔR. While some are relatively close, particularly the Florida Keys and northwest Cuba, complex currents and hydrology lead to divergent marine reservoir offsets. Overall, we consider ΔR values to be valid considering what is known about invertebrate feeding strategies and external influences. Archaeological samples The isotopic values taken from deer collagen appear to be unique in the region as deer from the Florida Keys and peninsular Florida would be expected to have an herbivorous diet heavy in C3 plants (e.g., Cormie and Schwarcz 1994; Klimstra and Dooley 1990; Land et al. 1980). Their δ13C values are consistent with a diet of primarily C4 plants or for deer living in an arid regions like Arizona or Texas (Land et al. 1980). A diet heavily made up of C4 plants would be in sharp contrast to modern studies of Key deer populations, which found that C4 plants (i.e., grasses) made up just ~11% of their diet with red mangrove (R. mangle) leaves and black mangrove (A. germinans) fruits being the most important foods (Klimstra and Dooley 1990). Although the ratio of woody plants leaves and stems, fruits, forbs, palms, and grasses/pine needles/mushrooms changes throughout the year, the latter group made up less than 5% of Key deer diet in all seasons (Klimstra and Dooley 1990:Figure 3). Enriched δ13C values occur among mangroves found in scrub forests where trees are shorter and would be well within Key 82 deer feeding range (Lin and Sternberg 1992). However, values are only enriched by 1- 4‰ and these values are still within the range of other species of mangroves (Lin and Sternberg 1992) and does not produce δ13C values like the ones in our sampled deer after adjusting for trophic shifts. By discounting the possibility of δ13C-enriched mangrove species, this raises multiple possible scenarios. The first scenario is that the deer sampled in this study were primarily eating grasses as there were no other C4 plants like maize. Pre-industrial tropical grasses typically produce δ13C values around −11.5‰; when consumed as food, there is an estimated 5‰ shift in the signature in bone collagen of large herbivores and humans, producing an expected result of ~−6.5‰, which is similar to the values from the Clupper site (Dewar and Pfeiffer 2010; van der Merwe and Vogel 1978). The stable isotope data presented in this study would suggest that the pre- industrial diets of deer were significantly different or that there were other contributing factors such as drought, population stress, or starvation at this time (Cormie and Schwarcz 1994). A second scenario is that the δ13C values became enriched because of post deposition taphonomy resulting from a chemical reaction with the surrounding soil. Land et al. (1980) report that Pleistocene- and Holocene-aged deer bone from Texas were very enriched compared to modern samples and their values were closer to equilibrium with groundwater bicarbonate. The exact ages of the Pleistocene and Holocene deer bones are not reported so it is unclear how long this process takes, but it is possible that the deer bone was subjected to this process and enriched values reflect—or partially reflect—this reaction. 83 A third scenario is that the complex combination of limestone lithology, hydrology, seasonal hypersalinity, and freshwater influences into the Florida Bay contributed to enriched values in shallow nearshore habitats. The presence of organic matter like macroaglae in areas with low turbidity like lakes can result in enriched δ13C and δ15N values (Guiry 2019). The Florida Bay estuary is notable for its low turbidity and low rates of water exchange because of the location of small keys which act as a buffer to the Gulf of Mexico and Atlantic Ocean. In addition, the interaction of groundwater input and surface water discharge along the Florida Bay side of the Florida Keys provides nutrients to the eastern Florida Bay and results in 15N-enriched macroalgae, seagrasses, and seepages (Corbett et al. 1999). Enrichment in nitrogen at the lowest trophic levels would have an impact across the entire food-web as there is an estimated 3.5‰ enrichment of δ15N across higher tropic levels (Schoeninger and DeNiro 1984). It is possible that a combination of these conditions resulted in enriched δ13C and δ15N values in the archaeological deer bone, and this will be studied in the future. The isotopic values from C. orbicularis were enriched in δ13C and depleted in δ18O to the modeled present-day averages. The enriched δ13C values compared to the modern collected samples likely reflect the Seuss effect, pre-Florida East Coast Railway construction, filter feeding carbon-enriched particulate organic matter (POM) (Lamb and Swart 2008) and their preference for warmer, less saline water like seagrass beds. The one sample from C. pica, a gastropod, did not yield significantly older results and its δ13C and δ18O values are comparable to C. orbicularis isotopic values. It is possible that this sample was from a juvenile, indicating that ontogenesis had not yet caused depletion in δ13C or that the isotopic values reflect a diet low in calcareous materials. 84 The calibrated dates from the Clupper site now span the Glades IIa, IIb, IIc, and IIIa periods (Griffin 2002). The more accurate calibrations place the Clupper site occupation completely within the Glades II Period, a time of cultural growth and prosperity and into the Glades III period, a period during which was there was a shift to increased regionalism (Griffin 2002:158). This is supported by pottery recovered from the site which predominately date to Glades II (AD 700-1200). Diagnostic pottery types recovered from Test Pits 3 and 5 include Key Largo Incised (Glades II1-IIb), Miami Incised (Glades II1-IIb), and Matecumbe Incised (Glades IIb); however, Test Pit 4 only yielded undecorated pottery that was not temporally diagnostic (Ardren et al. 2018b). Thus far, the calibrated shell dates appear to be more consistent with the established chronology rather than the deer bone dates. It is worth noting that the shell dates were consistent across three different radiocarbon laboratories. Understanding the temporal range allows us to put the site in a broader regional and global context, as the time frame lines up with the latter part of the Medieval Warm Period (ca. AD 850 to 1200) and its effects on southern Florida (Walker 2013). Thus, we can now begin to ask questions about site occupation and shifting culture traditions that require more fine-grained temporalities without the homogenizing effects of culture history-based ceramic sequences (see Feinman and Neitzel 2020). Further, we can also begin to ask how well suited the broader, southern Florida Glades ceramic sequence is for the Florida Keys. Finally, it is possible that ΔRs calculated on post-industrial era shell may not be appropriate for archaeological shell given millennial-scale shifts in ΔR documented in previous studies (e.g., Druffel et al. 2008; Toth et al. 2017). However, large shifts in ΔR over time appear to be greater during the Middle Holocene rather than in the Late 85 Holocene (Toth et al. 2017: Figure 2). ΔRs from ca. 1200-1000 BP appear to be similar to more recent values. Although the ΔR reported in these previous studies are calculated with Marine13 (Reimer et al. 2013), we would expect the modeled temporal trends to uniformly shift when recalibrated with Marine20 (Heaton et al. 2020). These possibilities still do not explain why the deer bone returned dates that were unexpectedly older than the shell in each of the three pairs. It is possible that there was more post-depositional mixing of the deposit, a 1.75 cm thick midden of domestic refuse, than was noted by excavators and that the deer bone represents part of an older deposit (Ardren et al. 2018b). If this were true, then it is possible that hunting by early inhabitants in the region depleted Key deer populations and the deer bone will reflect earlier human hunting activity. For now, we discount this possibility and assume that the disparity in 14C ages relates to local conditions that influence the age of the bone since the dates on shell are consistent across the site and across three radiocarbon dating laboratories. Given the ubiquity of marine and estuarine shell found in island and coastal contexts worldwide, they provide important sample types for radiocarbon dating. However, when samples are selected and calibrated uncritically, shell can be a problematic material to radiocarbon date for many reasons. In a recent publication, Hutchinson (2020) takes a critical view of calibrating radiocarbon dates on shell using time- or regionally-averaged ΔR. He argues that local variation in ΔR caused by shoreline orientation, backshore topography, and geology may be overlooked by relying on large- scale latitudinal patterns (Hutchinson 2020:680). This is further complicated by the feeding habits of mollusks, especially estuarine species, that consume suspended detritus, POM, and other materials that can contribute to inaccurate 14C ages. His study focuses on 86 the Pacific Coast of North America, but his observations and reservations apply to many, if not all, island and coastal regions, although the spatiotemporal conditions vary widely from region to region. We take a less pessimistic view of radiocarbon dating shell. Hutchinson (2020) stops short of highlighting how archaeologists have dealt with these problems in other island and coastal regions, as we have done in this paper. We argue that radiocarbon dates on archaeological shells can be as valid as dates on carbonized wood or charcoal when the appropriate samples were selected and attention is given to the external factors that can influence an organisms’ 14C age, δ13C, and δ18O. These programs have proven very successful in other regions of the world where dedicated programs have identified site-specific and species-specific ΔRs (e.g., Petchey and Clark 2011, 2021; Petchey et al. 2012, 2013, 2017, 2018). Just as archaeologists have developed ways to deal with the potential problems of inbuilt age when calibrating unidentified charcoal wood remains (Dee and Bronk Ramsey 2014), there are ways to develop accurate ΔRs. In some situations, it may be required to look beyond the trio of 14C age, δ13C, and δ18O isotopes and examine the external factors that influence these values. For example, as this and many other studies have illustrated, however, mollusk habitat, diet, and susceptibility to external factors like upwelling, the hardwater effect, and anthropogenic activity must be considered when calculating a local ΔR as has been demonstrated in the Pacific (see Petchey and Clark 2011; Petchey and Schmid 2020; Petchey et al. 2013, 2017, 2018). The results of this study indicate that the weighted average ΔR for Plantation/Lower Matecumbe Key is better for calibrating archaeological dates on marine shell from the Clupper site on Upper Matecumbe Key and the regional error weighted average ΔR for 87 the Upper Keys and Florida Keys are not appropriate. This study provides important new baseline data for establishing a ΔR for different parts of the Florida Keys. By performing sensitivity analyses to compare the calibrations of stratigraphically-associated shell and deer bone samples, we were able to identify an appropriate subregional ΔR. Given the variation in ΔRs by island and subregion, we recommend using a local weighted mean with external variance to provide the most accurate calibrations rather than a regional one. 88 CHAPTER IV CHRONOLOGICAL MODELING OF EARLY SETTLEMENT ON YAP, WESTERN MICRONESIA From: Matthew F. Napolitano, Scott M. Fitzpatrick, Geoffrey Clark, Amy Gusick, Esther Mietes, Jessica H. Stone, and Robert J. DiNapoli. Chronological modeling of early settlement on Yap, Western Micronesia. To be submitted to Quaternary International. Introduction Human settlement of the Pacific, comprising the most remote landmasses on the planet, represents what were arguably some of the greatest maritime accomplishments in history. These long-distance, open-water crossings—many of which spanned thousands of kilometers and required the development of specialized sailing technologies and wayfinding skills—have been the subject of anthropological and archaeological inquiry for nearly a century (e.g., Anderson 2008; Bell et al. 2015; Best 1923; Finney 1996; Gladwin 2009; Hīroa 1938; Irwin 1989; 1992, 2008; Kirch 1997, 2017; Montenegro et al. 2016; Smith 1910). Yet, despite a long tradition of research, many significant questions still exist about when and how early settlement took place. This is particularly true of Micronesia in the northwest tropical Pacific, which is home to thousands of smaller islands stretching across an expanse of ocean the size of the United States (Figure 4.1). Given their small size and remoteness, both of which pose severe logistical issues for 89 conducting fieldwork, Micronesia is relatively understudied compared to other parts of the Pacific such as Polynesia and different island regions like the Mediterranean and Caribbean (Fitzpatrick et al. 2016). Building a refined chronology for initial human settlement on Yap is one of the most important questions to address in order to establish cultural connections, identify potential homelands, and contextualize early settlement within a broader regional context (see Napolitano et al. 2021). Over the last few decades there has been a steady increase in research on the two largest archipelagos in western Micronesia, Palau and the Mariana Islands, which has resulted in a clearer picture of episodic entries into the region ca. 3200-3000 years ago, likely from somewhere in Island Southeast Asia (ISEA) (e.g., Clark 2005; Fitzpatrick 2003; Fitzpatrick and Jew 2018; Montenegro et al. 2016; Petchey and Clark 2021; Petchey et al. 2017, 2018; Rieth and Athens 2019; Stone 2020; Stone et al. 2017). Unfortunately, the early settlement chronology for Yap—a group of four small, interconnected islands situated between Palau and the Mariana Islands—remains one of the biggest enigmas in the Pacific. Potential dates for colonization span more than a millennium, with dates from paleoenvironmental cores suggesting human arrival as early as ca. 3300 years ago (Dodson and Intoh 1999), but with archaeological radiocarbon dates only dating to around 2000 years BP (Intoh and Leach 1985; Napolitano et al. 2019a; Takayama 1982). In addition, multiple lines of evidence suggest a broad range of possible homelands from ISEA to New Guinea and/or the Bismarck Archipelago (e.g., Lum and Cann 2000; Ross 1996; Zerega et al. 2004). If people first arrived to Yap from the south (i.e., New Guinea and/or the Bismarck Archipelago) as much as 3300 years ago, then they would have likely been affiliated with the Lapita culture. This would have 90 profound implications for our understanding of how Remote Oceania was settled as there is no documented evidence for Lapita in Micronesia. Resolving this question partly rests on building an adequate chronology for Yap’s early settlement. Figure 4.1. Yap Islands and its location in the Pacific. Given the uncertainty surrounding Yap’s early settlement, and the potential to establish the first cultural links from western Micronesia to groups in New Guinea or the Bismarck Archipelago, we conducted the first systematic survey to locate and excavate early settlement sites and critically re-examine all previously published radiocarbon dates for Yap (n = 61) and present a suite of 31 unpublished radiocarbon dates from southern Yap for a total of 92 dates. We then subjected these dates to chronometric hygiene in 91 which unreliable or inadequately reported dates were culled from the database (Spriggs 1989). This technique improves the strength of radiocarbon databases and has been successfully used in many other parts of the world, especially in regions where databases reflect sample selection and reporting standards that are no longer considered acceptable (e.g., bulk samples and published sample provenience) (Fitzpatrick 2006; Liston 2005; Napolitano et al. 2019b; Petchey et al. 2015; Rieth et al. 2008; Schmid et al. 2019; Spriggs 1989; Spriggs and Anderson 1993; Taché and Hart 2013; Wilmshurst et al. 2011). Below, we discuss our efforts to find archaeological deposits that predate 2000 years ago and to develop baseline data on sea-level change over the last 2500 years. After providing environmental and archaeological background for Yap, w present 31 new radiocarbon dates and use carbon and oxygen isotopes to discuss paleoenvironmental conditions and how that might influence radiocarbon ages. As there are no spatially or temporally suitable local marine reservoir corrections (ΔR) for Yap, we then develop a Bayesian-modeled ΔR using stratigraphically associated radiocarbon dates on shell and carbonized wood. Finally, we create the first Bayesian modeled estimate for initial human settlement of Yap. Background Environment Yap is located in western Micronesia, equidistant approximately 900 km east of the southern Philippines and north of New Guinea. Micronesia stretches 5000 km2 eastward from the Western Carolines (Palau, Yap, the Marianas) across the Central and 92 Eastern Carolines to the Marshall Islands and Kiribati (see Figure 4.1). Yap comprises four main islands (Yap or Marbaq, Maap’, Gagil-Tamil, and Rumung) connected through narrow waterways. The main islands have a total land area of ca. 7900 ha surrounded by a fringing reef system within the west-flowing North Equatorial Current (NEC) with a mean transport of 42-82 Sv (1 Sv = 106 m3 s-1) (Wang et al. 2016; Yu et al. 2000). Yap is situated about 9° north of the equator, not far from the boundary between the NEC and the North Equatorial Counter Current (NECC) and has a tropical environment, receiving an average of 310 mm rainfall per year. The wet season is from July-October with a drought and tradewinds season from December-April. The average temperature is 29°C (Blumenstock 1960). The Yap Islands are geologically unique in the region as there are no major uplifted limestone sections, with just a few small limestone outcrops not far from the present day shoreline. Southern Yap is geologically defined by alluvium, tidal mangrove forests, and Tomil volcanics comprising agglomerate, breccia, tuff, and lava overlain by upland soil (Johnson et al. 1960; Shade et al. 1992; Smith 1983). The central part of Yap, Rumung, and Maap contains upland soils underlain by green schist, which is often used with coral blocks as building material for platforms that supported structures (e.g., dayif, chamog), dancing areas (malal), sitting areas (wunubey, sumuruw), and walking paths (Furness 1910; Nunn et al. 2017). Evidence for early settlement Direct and indirect lines of evidence have resulted in an unclear picture of Yap’s early settlement. Radiocarbon dates on peat samples from paleoenvironmental cores 93 taken from wetlands located ca. 1-2 km from the southern coast show evidence for widespread burning and a decline in forest cover that was eventually replaced by savanna grasses ca. 3300 BP (Dodson and Intoh 1999). This type of activity is often associated with colonizing groups on islands as they modify the landscape in anticipation of establishing villages and agricultural fields. However, there is no evidence of plant taxa, particularly cultigens such as taro or breadfruit, having been introduced that would signify human arrival at that time. Therefore, this line of proxy evidence should be used cautiously when discussing initial human settlement (e.g., Napolitano et al. 2021:5-6; Prebble and Wilmshurst 2009). Linguistic data provide a second circumstantial line of evidence. Yapese is an Austronesian outlier language identified as an “Oceanic isolate” and is highly unusual given Yap’s position in western Micronesia (Finney 1998; Ross 1996). Analysis suggests that Yapese is likely to have developed after diverging from a closely-related language spoken in northern New Guinea or the Bismarck Archipelago approximately 3000 years ago (Finney 1998; Lynch et al. 2013; Ross 1996). This connection to one of these regions is tentatively supported with genetic data from breadfruit, as Yapese breadfruit (Artocarpus altilis, Moraceae) is a hybrid species that originated in Near Oceania (Zerega et al. 2004). In contrast to these other lines of evidence, preliminary genetic data from modern Yapese people suggest an early arrival from ISEA with extensive gene flow from central and eastern Micronesia, although further study is needed (Lum and Cann 2000). Based on this circumstantial evidence, humans may have settled Yap ca. 3300-3000 years ago, contemporary with the initial movement of the Lapita culture out of the Bismarck 94 Archipelago to West Polynesia and the initial colonization of western Micronesia from ISEA (e.g., Bedford and Spriggs 2019; Clark 2005; Fitzpatrick 2003; Kirch 1997; Petchey and Clark 2021; Petchey et al. 2016, 2017, 2018; Rieth and Athens 2019; Rieth et al. 2017; Sheppard 2019; Stone 2020; Stone et al. 2017). Archaeological investigation suggests that the oldest cultural deposits on Yap date to around 2000 B.P. and are found at Rungluw (spelled Rungruw in Intoh and Leah [1985]) and Pemrang, both shell midden sites located on beach flats in southern Yap (Napolitano et al. 2019a). Excavation at each site yielded large amounts of shell and calcareous sand tempered (CST) pottery, the oldest known type on Yap (Descantes 2005:75; Intoh and Leach 1985; Napolitano et al. 2019a; Takayama 1982). Following patterns seen on other islands in the Pacific, we expect that early sites would have been located on former beach flats adjacent to productive reef habitats (Bedford et al. 2006; Clark et al. 2006; Dickinson 2014; Kirch 2017). However, the lack of data on paleoshoreline reconstruction, local sea-level change, and tectonic activity (i.e., uplift, subsidence) makes it difficult to model where these early sites might be found. Resolving the discrepancy between the linguistic, paleoenvironmental, and archaeological data is best addressed through further archaeological research. In 2016 three of the authors (MFN, SMF, and GC) began an interdisciplinary research program to identify archaeological evidence for human settlement prior to 2000 years ago with the following goals: 1) identify intact stratigraphic deposits to develop a refined chronology for early settlement; 2) assess the existing inventory of radiocarbon dates and cull unreliable dates; 3) develop the first model-based estimate for when early settlement may have taken place on Yap; and 4) collect baseline data on past sea-level change and 95 paleoenvironmental conditions. For the initial stages of this project, we conducted a systematic auger survey in various deposits across southern Yap that would have high potential for discovering former beach flats and intact stratigraphic deposits. Fieldwork and site descriptions Archaeological research on Yap began in the 1950s when Gifford and Gifford (1959) excavated five sites to try and establish the island’s chronology and look for possible external connections to other places. In their excavations they identified two pottery types, laminated and unlaminated, the latter of which was seen as “identical” to Marianas plain by Alexander Spoehr (Gifford and Gifford 1959). However, these connections have since been disproven through typological and petrographic research (Descantes et al. 2004; Dickinson 1982, 2000; Fitzpatrick et al. 2003; Intoh and Leach 1985). The island’s ceramic sequence now comprises three types with five temper groups: 1) CST; 2) iron oxide/grog tempered ware; 3) quartz-feldspar ware; 4) Yapese plain; and 5) laminated (Descantes et al. 2004; Dickinson 2000). Iron oxide/grog tempered and quartz-feldspar are considered variants of Yapese plain. Both types are generally thought to have been produced from ca. 2000-600 years ago, after which laminated pottery replaces both types (Descantes 2005). Yapese plain became the dominant type ca. 800 years ago. Other than early survey projects by the Giffords (1959), Takayama (1982), and Intoh (1989; Intoh and Leach 1985), the majority of fieldwork and anthropological inquiry has focused on understanding settlement patterns (Adams 1997; Aoyagi 1982; Cordy 1986; Craib and Price 1978; Hunter-Anderson 1983, 1984), the sawei exchange/tribute system (Berg 1992; Descantes 2005; Hunter-Anderson and Zan 96 1996), stone money quarrying activity on Palau (Fitzpatrick 2001, 2002a, 2002b, 2003, 2008; Fitzpatrick and McKeon 2020; Hazell and Fitzpatrick 2006; chapter 5), and traditional ecological knowledge or intangible cultural heritage (e.g., Cushing Falanruw and Ruegorong 2007; Hunter-Anderson 1981, 1991; Jeffery 2013; Nunn et al. 2017; Perkins and Krause 2018). The site of Pemrang has received the most attention from archaeologists, having been previously excavated by Gifford and Gifford (1959), Takayama (1982), and again in 2016-2017 (Napolitano et al. 2019a). The site is recognized by an extensive surface scatter of shell and pottery. An oral history of the site indicates that shellfish was brought here and offered as tribute to the priest that lived and was later buried at the site (Gifford and Gifford 1959:157). Later oral histories collected by Takayama (1982:85) explain that the shell was brought to Pemrang in exchange for coconuts by people who lived in Malway village in Map, Gargey village in Tomil, and Ul village in Gagil. In our first field season at Pemrang, exploratory excavation of a single 1×1 m unit revealed the oldest cultural radiocarbon date from Yap (Napolitano et al. 2019a). This date, taken from a Tridacna maxima shell adze fragment, offered preliminary evidence that pre-2000 year old deposits could be identified. However, more research was required to corroborate this date and rule out the possibility of subfossil shell tool use (Rick et al. 2005). Excavation continued at Pemrang the following year, and over the next three field seasons, we conducted a systematic auger survey in the villages of Guror, Anoth, and Magachagil in which multiple discrete cultural deposits were identified, many with abundant CST pottery. In addition, we found a buried beach deposit ca. 2.5 m below the surface (Napolitano et al. forthcoming) (Figure 4.2). Although this beach deposit was not 97 cultural in nature, radiocarbon dates from this context provide an important baseline to consider paleoshoreline location and begin modeling sea-level changes through time. Additional samples for dating were collected from two augers approximately 100 m apart both of which contained large amounts of burnt organics and CST pottery. The first auger (AH2019-39) is located in an area known as Balech’lee and the second (AH2019-29) is located in an area named Dulul (see Figure 4.2). At Balech’lee, CST pottery was recovered from 0.5–3.0 m below surface (bs) with an absence of laminated and Yapese plain sherds. This is notable because other sites in southern Yap usually contain abundant laminated sherds at shallower depths (Intoh and Leach 1985; Napolitano et al. 2019a). To explore this area further, a 1×1 m unit (Test Unit 1) was excavated at Balech’lee (Napolitano et al. forthcoming). Improving the reliability of radiocarbon date calibrations On many islands around the world, mollusks are a major source of subsistence and are often radiocarbon dated because of their ubiquity (Hutchinson 2020; Thomas 2015). Calibrating radiocarbon dates on marine shell, however, requires an additional offset to the modeled global reservoir age in subtropical oceans to reflect local conditions (Heaton et al. 2020; Reimer et al. 2013; Stuiver et al. 1986). Local marine reservoir effects (ΔR) can be influenced by factors such as regional upwelling, seasonal variations in sea surface temperature, changes in ocean circulation, shifting stratification of ocean surface waters, proximity to freshwater outputs, geological substrates containing limestone, and environmental preferences of animals selected for dating. These offsets can vary dramatically within the same region—sometimes by hundreds of years on the 98 same island or between lagoonal and open ocean environment—and can shift over time (e.g., see DiNapoli et al. 2021; Hutchinson 2020; Kennett et al. 1997; Petchey and Clark 2010, 2011, 2021; Petchey and Schmid 2020; chapter 3). As a result, they are useful for improving the accuracy of radiocarbon date calibrations and reconstructing paleoenvironmental and paleoclimatic conditions (e.g., DiNapoli et al. 2021; Petchey 2009; Petchey and Clark 2010, 2011, 2021; Petchey and Schmid 2020; Petchey et al. 2012, 2013, 2017, 2018; Yoneda et al. 2000, 2007; chapter 3). Figure 4.2. Gilman municipality with dated sites mentioned in the text. 99 Positive ΔRs are expected in areas with upwellings and in lagoons bounded by limestone and negative ΔRs are associated with freshwater input as a result of terrestrial influences or atmospheric absorption of CO2 (Culleton et al. 2006; Petchey and Clark 2011; Petchey et al. 2016; Stuiver and Braziunas 1993; Southon et al. 2002). ΔR values can be calculated with paired shell-carbon samples from short-lived species identified to taxon, live-collected pre-bomb (before the mid-1950s) shell, tephra isochrones, paired 14C uranium-thorium samples from banded corals, or otoliths from fish that swim in surface waters (Alves et al. 2018; Ascough et al. 2015; Kalish 1993; Petchey and Clark 2011; Yoneda et al. 2000, 2007). Museum collections are often the most ideal place to search for pre-bomb samples. However, there are currently no ΔR values available for Yap (calib.org/marine) and access to museum samples of known-age shell from Yap has not been possible during the pandemic. While the ΔR for Yap is currently unknown, we expect there to be some offset that reflects local conditions. New radiocarbon dates on archaeological shell presented here, collected from southern Yap, were likely harvested from the adjacent coral reef system that is characterized as having high water exchange rates, moderate wave energy, low water turbidity, and less temperature variability (Houk et al. 2012). Multiple studies have demonstrated that ΔRs vary by a selected specimen’s habitat and diet preference, which can influence its 14C age. This is particularly true for Palau and the Mariana Islands (Petchey and Clark 2010, 2021; Petchey et al. 2017, 2018). For example, analysis of 14C in combination with δ13C and δ18O, indicates that the filter-feeding bivalve Anadara antiquata is susceptible to the effects of hardwater—the process where bicarbonate ions seep through karstic or calcareous substrate and can cause variability 100 that differs from other marine species of the same age (McKinnon 1999). As such, this requires a species-specific ΔR (Petchey et al. 2013, 2017). At the site of Bapot-1 in Saipan, A. antiquata shells were shown to have a ΔR of 218 ± 57 14C yrs from the modeled global average (Petchey et al. 2017). Although this value was calculated with the Marine13 curve (Reimer et al. 2013) and will be different when recalculated for Marine20 (Heaton et al. 2020), it underscores the importance of understanding how various species may require their own offset. Unlike Saipan, however, Yap is geologically unique in the region and lacks limestone substrate, though the presence of limestone is not the only predictor of the hardwater effect and should still be examined for Yap (Petchey et al. 2017, 2018). Other species, like herbivorous, omnivorous, or carnivorous gastropods that feed along limestone substrates can also produce problematic 14C dates (Beesley et al. 1998; Dye 1994). Beach sand in southern Yap contains calcareous materials and several small limestone outcrops within 100 m from the present- day southern shoreline would easily be within foraging range for people living in southern Yap. Therefore, it is possible that local hardwater effect will influence the 14C age of marine shells and their isotopic values. To address the lack of a ΔR, we used stratigraphically-associated charcoal and shell dates from Test Unit 8 at Pemrang to build a Bayesian-modeled ΔR. This approach allows us to develop a ΔR that likely reflects a time-averaged ΔR across species. Stable isotope analysis of radiocarbon dated shells in this study are also used to infer paleoenvironmental and paleoclimate conditions at the time of death. 101 Methods Laboratory pretreatment Radiocarbon samples were processed at DirectAMS and The Australian National University (ANU). Samples D-AMS 019902-019909 were pretreated and sampled at the University of Oregon Island and Coastal Archaeology Laboratory (ICAL) and submitted to DirectAMS for dating. These marine shell samples were etched in a 10% HCl solution to remove 10-25% of surface material potentially subject to recrystallization and contamination and 3 mg of shell was drilled from each specimen using a Sherline micromill 5410 using a carbide drill bit. Shells were sampled across multiple growth bands to avoid dating intra-growth band radiocarbon variability (see Culleton et al. 2006). Samples D-AMS-26457, 26458, 31805-31811, and 38871-38880 were pretreated at DirectAMS (see http://www.directams.com/publications-methods-and-other-references). Terrestrial samples were prepared and analyzed at ANU (https://earthsciences.anu.edu.au/research/facilities/anu-radiocarbon- laboratory/laboratory-methods). Four samples of 11 (36%) were identified as short-lived samples. Samples YP-2, YP-3, YP-8 were identified as nut endocarp and S-ANU-57912 was identified as coconut endocarp. δ13C and δ18O values for all samples reported in this study were measured at the Center for Isotopic Study at the University of Georgia (UGAMS) using isotope ratio mass spectrometer (IRMS) combined with gas bench expressed as δ13C with respect to PDB with an error of less than 0.1‰. Values were compared against regional baseline values of 1.3‰ for δ13C (Tagliabue and Bopp 2008) and 0.2‰ for δ18O (LeGrande and Schmidt 2006), respectively. δ13C values can be used to infer if shells were collected 102 from estuarine or marine environments (Petchey et al. 2018). Depletion of δ 13C and δ 18O is often an indication of freshwater input while an increase in value indicates increased productivity and CO2 atmospheric absorption in reefs (Keith et al. 1964; Petchey et al. 2013). δ 13C can reveal changes in water source and marine productivity (Petchey et al. 2016). Enriched δ 18O values indicate increased salinity and temperature (e.g., Emiliani et al. 1966; Epstein and Mayeda 1953; Epstein et al. 1953; Swart et al. 1983). Sample selection, habitat, and diet preferences It is important to understand the habitat and diet preferences of shell samples selected for dating because they can influence the animal’s radiocarbon age. In this study, we report data from five species of bivalves (A. antiquata, Quidnipagus palatam, and Gafrarium pectinatum, Mactra sp., and Tridacna maxima) and three species of gastropods (Gibberulus gibberulus, Cypraea sp., Cerithium sp.). A. antiquata is an epifaunal bivalve that lives on rocks or in rocky crevices in estuaries (Broom 1985). Q. palatam is a filter-feeding, infaunal bivalve found in shallow silty offshore sands, typically burrowing between 20-30 cm deep (Kay 1979; Thomas 2001). They are harvested by hand fanning after spotting the siphonal openings (Thomas 2001). G. pectinatum are found in high intertidal regions such as seagrass beds and mangrove forests (Baron and Clavier 1992; Petchey and Clark 2011; Petchey et al. 2018; Tebano and Paulay 2000). Mactra sp. is a facultatively mobile suspension feeder that lives in sandy bottoms (Sepkoski 2002). Tridacna maxima is a stationary bivalve found in shallow marine environments with a complex diet involving both suspension feeding and endosymbiotic zooxanthellae photosynthesis, but are primarily suspension feeders as 103 juveniles (Klumpp et al. 1992; Petchey and Clark 2011; Petchey et al. 2017; van Wynsberge et al. 2017). G. gibberulus is an herbivorous gastropod that prefers more productive marine environments like sandy, subtidal coral reef flats (Carpenter and Niem 1998; Petchey et al. 2016). Cypraea sp. live in coral reefs or along sandy bottoms and exhibit a range of feeding behavior with juveniles consuming algae and adults consuming coral or invertebrates. Cerithium sp. are deposit feeding gastropods found that prefer mangrove habitats (Reid et al. 2008). These shells were selected because of their abundance in the archaeological record as they were clearly a preferred source of food. However, the 14C ages of these species may vary from other species of the same age as A. antiquata and G. pectinatum are susceptible to the effects of hardwater and Q. palatam may directly ingest carbonate or indirectly through algae (Petchey and Clark 2011; Petchey et al. 2013, 2017, 2018:183). The hardwater effect on Gafrarium sp. should result in a more positive ΔR compared to the regional average (Petchey and Clark 2011). By comparing the δ13C and δ 18O to modern values, we should be able to identify whether the 14C age is influenced by hardwater. Gastropods are likely to return significantly older dates compared to their true age because of their dietary preferences which can include grazing on rock or seagrasses. Modeling ΔR We calculated a hypothetical Bayesian-modeled ΔR using one set of stratigraphically associated A. antiquata shell and a carbonized coconut endocarp (YP-8) dates from Layer 5 in Test Unit 8 at Pemrang. The endocarp fragment serves as the prior for the shell in an unordered phase. programmed the model to run 1,000,000 iterations in 104 OxCal v4.4.4 to ensure that the MCMC converged on the posterior distribution (Bronk Ramsey 2009a). Chronometric hygiene More than 60 years have passed since the first radiocarbon dates were produced and given a host of issues that are sample- and context-dependent, it is necessary to critically evaluate each date for potential problems. These include potential inbuilt age from long-lived taxa (Allen and Huebert 2014), the old-wood or old-shell problem (Rick et al. 2005; Schiffer 1986), and excluding dates where it is not possible to know whether dates were corrected or calibrated. To address these concerns, we first implemented a chronometric hygiene protocol. This technique—used to cull unreliable or inadequately reported radiocarbon dates—is an increasingly common approach for refining radiocarbon chronologies, particularly in island and coastal regions. In the Pacific, the use of chronometric hygiene techniques has improved the chronological resolution of colonization events, site-specific activities, and temporal shifts in material culture (e.g., Fitzpatrick and Jew 2018; Petchey and Kirch 2019; Petchey et al. 2015; Rieth and Hunt 2008; Rieth et al. 2008; Schmid et al. 2019 Spriggs 1989; Spriggs and Anderson 1993; Wilmshurst et al. 2011). To develop the first model- based chronology for Yap, dates were first assigned to one of four classes following criteria outlined by Napolitano et al. (2019b; chapter 2), in which Class 1 dates are those that fulfill the most stringent requirements. Class 1 dates are those identified as belonging to short-lived terrestrial organisms, including plant and juvenile faunal remains that have adequately associated provenience (i.e., evidence of secure archaeological context that 105 directly dates the associated event) and radiocarbon laboratory information (i.e., laboratory name and sample number). Unidentified charcoal or charred material and identified and/or culturally modified marine shell with sufficient provenience and laboratory information were assigned to Class 2. Dates missing contextual information, unidentified marine shell, were assigned to Class 3, while any dates that lack information necessary for class value assignment, along with those that were rejected by the original author(s), were assigned to Class 4. Radiocarbon dates reported as modern, from non- anthropogenic (i.e., paleoenvironmental), secondary contexts, or taken from bulk samples were assigned to Class 4 because they do not provide a direct date for a target event. Only dates belonging to Class 1 or 2 were selected for Bayesian modeling. When site or property names are not known, the village name was used. Many of the existing radiocarbon samples for Yap were collected before δ13C values were reported along with 14C values despite their importance in understanding how dates are calibrated (Bayliss et al. 2015). In some cases, this information can be obtained through contacting the author or radiocarbon laboratory, although some laboratories have since closed or consider these data proprietary and so it is not always possible to obtain the values. As such, we have retained dates that did not have a δ13C value or sample-specific δ13C. It is unknown if previously published δ13C values presented in Table 4.1 are taken using IRMS or measured from AMS. Using offline IRMS to calculate δ13C is considered more reliable for accurately correcting percent modern carbon (pMC) of 14C data when compared to AMS and therefore should not be used for paleoenvironmental or dietary reconstruction (Prasad et al. 2019). 106 Table 4.1. Radiocarbon dates from Yap with class designation for chronometric hygiene. Sample Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Sample Type Provenience Error Reference Material Number Age (‰) (‰) Auger hole Quidnipagus 2018-50-1, 195 D-AMS - Anoth Gilman 4 palatam Iredale marine shell cmbs 031805 3300 30 2.15 1.59 this publication Auger hole Gibberulus 2018-50-2, 225 D-AMS - Anoth Gilman 4 gibberulus marine shell cmbs 031806 3623 30 3.74 1.33 this publication Auger hole 2018-50-3, 275 D-AMS Anoth Gilman 4 Cypraea sp. marine shell cmbs 031807 3175 33 2.04 0.75 this publication Auger hole 2018-51-1, D-AMS - Anoth Gilman 4 Mactra sp. marine shell 2450-250 cmbs 031808 3436 32 0.89 0.43 this publication Auger hole Gafrarium 2018-51-2, 270- D-AMS - Anoth Gilman 4 pectinatum marine shell 280 cmbs 031809 4226 33 2.41 0.60 this publication Auger hole 2018-51-3, 305- D-AMS - Anoth Gilman 4 Mactra luzonica marine shell 310 cmbs 031810 3225 34 0.84 0.89 this publication Auger hole 2018-51-4, 315- D-AMS - Anoth Gilman 4 Cerithium sp. marine shell 335 cmbs 031811 4699 33 0.98 1.57 this publication Auger hole Anadara 2019-39-1, 65- D-AMS - - Balech'lee, Magachagil Gilman 2 antiquata marine shell 70 cmbs 038877 2055 22 2.95 3.31 this publication Auger hole Anadara 2019-39-2, 95- D-AMS - - Balech'lee, Magachagil Gilman 2 antiquata marine shell 105 cmbs 038878 1995 25 2.60 0.69 this publication Auger hole Anadara 2019-39-3, 175- D-AMS - - Balech'lee, Magachagil Gilman 2 antiquata marine shell 195 cmbs 038879 2123 23 1.97 2.73 this publication Auger hole Anadara 2019-39-4, 300- D-AMS - - Balech'lee, Magachagil Gilman 2 antiquata marine shell 305 cmbs 038880 2059 24 0.28 1.16 this publication Gifford and charcoal/charred Gifford 1959: Boldanig, Malaj Kanifay 3 charcoal material 36-42 inches Crane M-631 320 200 ― ― table 22 TP-1, Layer 4, - Boldanig, Malaj Kanifay 3 Lambis lambis marine shell 113 cm N-4048 1460 490 ― ― Takayama 1980 107 Table 4.1, continued. Sample Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Material Sample Type Provenience Number Age Error (‰) (‰) Reference Gifford and charcoal/charred Gifford 1959: Boldanig-Wolom, Malaj Kanifay 2 charcoal material 60-66 inches Crane M-791 1110 200 ― ― table 22 Auger hole Anadara 2019-29-1, 75- D-AMS Dulul, Magachagil Gilman 2 antiquata marine shell 90 cmbs 038871 1716 22 -0.52 -0.1 this publication Auger hole Quidnipagus 2019-29-2, D-AMS Dulul, Magachagil Gilman 2 palatam Iredale marine shell 155-170 cmbs 038872 592 22 1.51 -2.5 this publication Auger hole Anadara 2019-29-3, D-AMS Dulul, Magachagil Gilman 2 antiquata marine shell 185-195 cmbs 038873 1519 22 -1.02 -2.8 this publication Auger hole Quidnipagus 2019-29-4, D-AMS Dulul, Magachagil Gilman 2 palatam Iredale marine shell 250-255 cmbs 038874 1541 22 1.87 -2.5 this publication Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Farchee, Gachpar Gagil 2 charcoal material 1 NZ 6651 469 66 -26.2 ― C Dodson and Foqol swamp Rull 4 peat organic material 125-135 cm Beta-74944 240 50 ― ― Intoh 1999 Dodson and Foqol swamp Rull 4 peat organic material 225-235 cm Beta-74935 3340 80 ― ― Intoh 1999 Dodson and Foqol swamp Rull 4 peat organic material 330-340 cm Beta-74936 5230 70 ― ― Intoh 1999 unidentified charcoal/charred C36-06 I/5, 98- Gachpar (C36-06-I/5) Gagil 3 charcoal material 118 cmbs AA-21204 362 45 -26.4 ― Descantes 1998 unidentified charcoal/charred C36-22.1 II/2, Gachpar (C36-22.1-II/2) Gagil 3 charcoal material 85-95 cmbs AA-21214 257 38 -25.1 ― Descantes 1998 unidentified charcoal/charred C36-27 III/2, Gachpar (C36-27-III/2) Gagil 2 charcoal material 194-204 cmbs AA-21211 1456 40 -26.7 ― Descantes 1998 unidentified charcoal/charred C36-22, I/9, Gachpar (C36-33-I/13) Gagil 2 charcoal material 132-142 cmbs AA-21209 504 38 -25.1 ― Descantes 1998 unidentified charcoal/charred C36-33 I/19, Gachpar (C36-33-I/19) Gagil 2 charcoal material 196-210 AA-21208 1037 39 -28.7 ― Descantes 1998 108 Table 4.1, continued. Sample Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Material Sample Type Provenience Number Age Error (‰) (‰) Reference unidentified charcoal/charred C36-33 1/5, 52- Gachpar (C36-33-I/5) Gagil 2 charcoal material 62 cmbs AA-21210 317 38 -27.5 ― Descantes 1998 C36-75, hole 6, unidentified charcoal/charred layer III, 110- Gachpar (C36-75.6-I/9) Gagil 4 charcoal material 140 cmbs AA-21200 542 46 -25.7 ― Descantes 1998 C36077 1/10, unidentified charcoal/charred Feature A, 107- Gachpar (C36-77-I/10) Gagil 4 charcoal material 117, AA-21216 335 62 -26.7 ― Descantes 1998 unidentified charcoal/charred C36-77 I/9, 97- Gachpar (C36-77-I/9) Gagil 4 charcoal material 107 cmbs AA-21205 258 44 -27.9 ― Descantes 1998 C36-83.1 1/14, unidentified charcoal/charred Feature A, 140- Gachpar (C36-83.1-I/14) Gagil 3 charcoal material 150 cmbs AA-21198 658 46 -27 ― Descantes 1998 unidentified charcoal/charred C36-83.1 1/7, Gachpar (C36-83.1-I/7) Gagil 4 charcoal material 70-80 cmbs AA-21207 842 54 -26.1 ― Descantes 1998 unidentified charcoal/charred C36-83.2 II/1, Gachpar (C36-83.2-II) Gagil 4 charcoal material 16-43 cmbs AA-21206 550 45 -27.3 ― Descantes 1998 Intoh and Leach unidentified charcoal/charred Square 1, layer 1985:Appendix Garingmog, Gachpar Gagil 4 charcoal material 1 NZ 6676 <250 ― -26.9 ― C Numurui, Gachpar (C36- unidentified charcoal/charred C36-06 I/5, 98- 16-II) Gagil 3 charcoal material 118 cmbs AA-21203 1825 66 -26.6 ― Descantes 1998 Intoh and Leach unidentified charcoal/charred Square 1A, 1985:Appendix Mab oi, Nel Kanifay 4 charcoal material layer 2 NZ 6681 <250 ― -25.4 ― C Intoh and Leach unidentified charcoal/charred Square 1B, 1985:Appendix Mab oi, Nel Kanifay 4 charcoal material layer 4 NZ 6670 <250 ― -28.2 ― C Auger hole Quidnipagus 2019-37-1, 45- D-AMS Magachagil Gilman 2 palatam Iredale marine shell 60 cmbs 038875 441 21 0.82 -1.5 this publication Auger hole 2019-37-2, D-AMS Magachagil Gilman 2 marine shell marine shell 190-210 cmbs 038876 430 19 2.15 -1.1 this publication 109 Table 4.1, continued. Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Sample Material Sample Type Provenience Number Age Error (‰) (‰) Reference Gifford and charcoal/charred 200, - Gifford 1959: Pemrang, Guror Gilman 4 charcoal material 24-30 inches Crane M-633 100 100 ― ― table 22 Gifford and charcoal/charred 400, - Gifford 1959: Pemrang, Guror Gilman 4 charcoal material 18-24 inches Crane M-632 250 250 ― ― table 22 Quidnipagus TU8, Spit 6, D-AMS Napolitano et Pemrang, Guror Gilman 2 palatam Iredale marine shell Layer 2 019904 621 30 1.94 -1.2 al. 2019 carbonized charcoal/charred TU8, Spit 6, 50- this Pemrang, Guror Gilman 3 endocarp material 60 cmbs YP-3 704 29 ― ― publication Quidnipagus TU8, Spit 2, D-AMS Napolitano et Pemrang, Guror Gilman 2 palatam Iredale marine shell Layer 1 019902 797 40 2.61 -1.3 al. 2019 carbonized charcoal/charred TU8, Spit 5, 40- this Pemrang, Guror Gilman 1 endocarp material 50 cmbs YP-2 1107 35 ― ― publication Quidnipagus TU8, Spit 5, D-AMS Napolitano et Pemrang, Guror Gilman 2 palatam Iredale marine shell Layer 1 019903 1175 35 -0.31 -1.6 al. 2019 Gafrarium TU8, Spit 10, D-AMS Napolitano et Pemrang, Guror Gilman 2 pectinatum marine shell Layer 2 019905 1520 43 0.95 -1.9 al. 2019 TP-1, Layer 2, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 160 cm N-4047 1670 60 ― ― 1980 TP-1, Layer 2, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 120 cm N-4046 1680 85 ― ― 1980 TP-7, Layer 3, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 168 cm N-4038 1730 75 ― ― 1980 TP-0, Layer 4, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 182 cm N-4051 1760 60 ― ― 1980 Gifford and charcoal/charred Gifford 1959: Pemrang, Guror Gilman 4 bulk charcoal material 48-72 inches Crane M-634 1780 250 ― ― table 22 TP-3, Layer 5, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 170 cm N-4049 1790 75 ― ― 1980 TP-6, Layer 3, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 174 cm N-4050 1830 75 ― ― 1980 TP-6, Layer 4, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 210 cm N-4037 1830 60 ― ― 1980 110 Table 4.1, continued. Sample Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Material Sample Type Provenience Number Age Error (‰) (‰) Reference TP-3, Layer 7, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 225 cm N-4035 1950 75 ― ― 1980 Anadara TU8, Spit 14, D-AMS Napolitano et Pemrang, Guror Gilman 2 antiquata marine shell Layer 4 019907 1969 57 -0.41 0.13 al. 2019 Anadara TU8, Spit 12, D-AMS Napolitano et Pemrang, Guror Gilman 2 antiquata marine shell Layer 3 019906 2078 37 ― ― al. 2019 TP-0, Layer 5, - Takayama Pemrang, Guror Gilman 3 Tridacna sp. marine shell 260 cm N-4036 2090 60 ― ― 1980 Anadara TU8, Spit 16, D-AMS Napolitano et Pemrang, Guror Gilman 2 antiquata marine shell Layer 4 019908 2161 57 0.01 -0.2 al. 2019 TP-3, Layer 9, Takayama Pemrang, Guror Gilman 3 Trochus sp. marine shell ca. 3 meters N-4034 2310 80 ― ― 1980 Anadara TU8, Spit 27, this Pemrang, Guror Gilman 2 antiquata marine shell Layer 5 YP-1 2500 30 ― ― publication Tridacna TU8, Spit 26, D-AMS Napolitano et Pemrang, Guror Gilman 2 maxima adze marine shell Layer 5 019909 2592 58 ― ― al. 2019 unidentified charcoal/charred TU8, Spit 10, this Pemrang, Guror Gilman 2 charcoal material 90-100 cmbs YP-4 1467 29 ― ― publication unidentified charcoal/charred TU8, Spit 14, this Pemrang, Guror Gilman 2 charcoal material 130-140 cmbs YP-6 1901 30 ― ― publication unidentified charcoal/charred TU8, Spit 16, this Pemrang, Guror Gilman 2 charcoal material 150-160 cmbs YP-7 1844 29 ― ― publication carbonized endocarp (Cocos charcoal/charred TU8, Spit 20, this Pemrang, Guror Gilman 1 nucifera) material 190-200 cmbs YP-8 1939 29 ― ― publication unidentified charcoal/charred TU8, Spit 25, this Pemrang, Guror Gilman 2 charcoal material 240-250 cmbs YP-9 2298 30 ― ― publication unidentified charcoal/charred TU8, Spit 24, this Pemrang, Guror Gilman 2 charcoal material 230-240 cmbs YP-10 2122 35 ― ― publication charcoal/charred TU 10, Spits 21- S-ANU- this Pemrang, Guror Gilman 2 charcoal material 23 57910 1923 22 -25 ― publication charcoal/charred S-ANU- this Pemrang, Guror Gilman 2 charcoal material TU 10, Spit 20 57911 1946 22 -25 ― publication Anadara Auger hole D-AMS this Pemrang, Guror Gilman 2 antiquata marine shell 2017-14-1 026457 2114 26 ― ― publication Auger hole charcoal/charred 2017-2-1, 3.2- S-ANU- this Pemrang, Guror Gilman 2 nut endocarp material 3.3, Layer 5 57912 2239 22 -25 ― publication 111 Table 4.1, continued. Sample Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Material Sample Type Provenience Number Age Error (‰) (‰) Reference Anadara TU10, Spits 21- D-AMS Pemrang, Guror Gilman 2 antiquata marine shell 23 026548 2344 28 ― ― this publication TP-1, Layer 1, - Pemrang, Guror Gilman 4 Tridacna sp. marine shell 45 cm N-4045 modern ― ― ― Takayama 1980 Gifford and charcoal/charred Gifford 1959: Penin, Kanif Dalipebinau 4 charcoal material 24-30 inches Crane M-629 200 200 ― ― table 22 Gifford and charcoal/charred Gifford 1959: Rugog's grave, Merur Tamil 4 charcoal material 20 inches Crane M-626 200 200 ― ― table 22 Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Rungluw, Anoth Gilman 2 charcoal material 2 NZ 6625 507 133 -25 ― C Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Rungluw, Anoth Gilman 2 charcoal material 3 NZ 6668 1905 65 -25.7 ― C Intoh and Leach charcoal/charred Square 2, layer 1985:Appendix Rungluw, Anoth Gilman 4 charcoal material 2 NZ 6667 <250 ― -24.8 ― C Intoh and Leach charcoal/charred Square 2, layer 1985:Appendix Rungluw, Anoth Gilman 4 charcoal material 4 NZ 6645 <250 ― -26.5 ― C Dodson and Thoqol swamp Tamil 4 peat organic material 120-130 cm Beta-74939 140 70 ― ― Intoh 1999 Dodson and Thoqol swamp Tamil 4 peat organic material 210-220 cm Beta-74940 260 60 ― ― Intoh 1999 Dodson and Thoqol swamp Tamil 4 peat organic material 325-335 cm Beta-74941 2320 60 ― ― Intoh 1999 Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Toru anibin, Gitam Rull 4 charcoal material 1 NZ 6630 <250 ― -24.8 ― C Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Toru anibin, Gitam Rull 4 charcoal material 3 NZ 6650 <250 ― -26.5 ― C Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Toru anibin, Gitam Rull 3 charcoal material 4 NZ 6644 285 40 -26.2 ― C Intoh and Leach charcoal/charred Square 1, layer 1985:Appendix Toru anibin, Gitam Rull 4 charcoal material 5 NZ 6678 <250 ― -26.3 ― C 112 Table 4.1, continued. Sample Lab Radiocarbon δ13C δ18O Site/Village Municipality Class Material Sample Type Provenience Number Age Error (‰) (‰) Reference Intoh and Leach charcoal/charred 1985:Appendix Toru anibin, Gitam Rull 4 charcoal material Square 2, layer 2 NZ 6669 <250 ― -26.2 ― C Intoh and Leach charcoal/charred 1985:Appendix Toru anibin, Gitam Rull 4 charcoal material Square 2, layer 3 NZ 6661 <250 ― -26.4 ― C Intoh and Leach charcoal/charred 1985:Appendix Toru anibin, Gitam Rull 2 charcoal material Square 2, layer 6 NZ 6680 364 54 -26.1 ― C 113 Bayesian modeling After dates were assigned a class value using chronometric hygiene criteria, those belonging to Classes 1 and 2 were selected for Bayesian modeling. Following other recent studies that use Bayesian approaches to model early settlement on islands, we use Class 1 and 2 dates from the available inventory to model Yap’s early occupation (e.g., Burley et al. 2015; Dye 2015; Fitzpatrick and Jew 2018; Rieth and Athens 2019; see also chapter 2). Applications of Bayesian modeling in archaeology vary, although it is most often used for calibrating radiocarbon dates. Archaeologists now routinely employ Bayesian modeling of radiocarbon datasets because they produce more statistically robust calibrations. Bayesian models incorporate three parameters: prior, likelihood, and posterior. The prior is any information or observations that are inferred before any data are collected or processed (e.g., stratigraphy), the likelihood is information obtained from the calibrated radiocarbon date range. The posterior is the estimated calendar date range presented probabilistically as the highest posterior density (HPD) region based on the relationship between the prior and likelihood that have been built into the model (Bronk Ramsey 2009a). As a result, Bayesian modeling is particularly useful for creating predictive models for undated archaeological contests, like the beginning, duration, or end of a specified event. Class 1 and 2 dates were calibrated in Oxcal v4.4.4 with all uncalibrated conventional radiocarbon ages grouped as a single phase regardless of stratigraphy using the Marine20 and IntCal20 calibration curves (Heaton et al. 2020; Reimer et al. 2020). To explore the potential influence of a ΔR, marine shell dates were calibrated with a ΔR of 0 114 years, our modeled ΔR of −1 ± 128 14C years (see below), and a ΔR of 218 ± 57 14C years, the latter of which was calculated for A. antiquata at Bapot-1, Saipan (Petchey et al. 2017). Although this ΔR was calculated using the Marine13 calibration curve (Reimer et al. 2013), this positive ΔR value allows us to compare the fit of the models to our modeled negative ΔR. Given that many dates are on unidentified charcoal and that there are multiple long-lived trees on Yap (i.e., >75 years) and the potential for driftwood to be collected and burned as fuel, radiocarbon dates on preserved wood may include an unknown inbuilt age (Allen and Huebert 2014; Falanruw 2015). To address this, we calibrated dates on unidentified carbon using a 100-year Exponential Outlier model that was added using the Charcoal Outlier model function in OxCal (Dee and Bronk Ramsey 2014). The outlier model assumes that the correct age of the modeled event is younger than the radiocarbon date and produces a younger result (Dee and Bronk Ramsey 2014). There are no dates from human or animal bone in the present database so mixed dietary ratios are not needed for any of the calibrations presented here. To add more prior information to constrain the model, we added radiocarbon dates from Fais, one of Yap’s outer islands, as termini ante quem (TAQ). Two dated carbon fragments (1794 ± 152 14C years [NUTA2167] and 1775 ± 73 14C years [NZ885]), found in association with calcareous sand tempered pottery and metamorphic stone both sourced to Yap, demonstrate that people were already living there and producing locally-made pottery that was exchanged with the outer islands (Intoh 2017; Intoh and Shigehara 2004). 115 All Bayesian-modeled dates were rounded outward to the nearest 5 years using OxCal’s round function and presented in italics (Bronk Ramsey 2009a; Hamilton and Krus 2018). The 95.4% HPD probabilities for these colonization estimates and model agreement index (Amodel) and overall agreement index (Aoverall) are provided. Indices over 60 are considered an acceptable fit for the model parameters and the dates (Bronk Ramsey 2009a). There were no Class 1 or 2 dates with large standard errors (≥100 years), although these dates would still be eligible for modeling. Dates with large standard errors were not excluded from modeling because, although imprecise, they are accurate and can improve the robusticity of Bayesian models (Hamilton and Krus 2018). Results Modeling ΔR Using stratigraphically associated shell and charcoal dates grouped by layers, our model produced a ΔR of −1 ± 128 14C yrs with a Amodel agreement of 99.5 and an Aoverall agreement of 99.7 (Figure 4.3; Appendix C: Tables 1 and 2, Supplemental text). When the ΔR for A. antiquata from Saipan was applied to the model, the MCMC failed to converge and produced a Amodel agreement of 33.4 and Aoverall agreement of 26.2, both well below the acceptable threshold of 60 (Appendix C: Supplemental text). These results suggest that the modeled ΔR produced by our model is more appropriate than a strong positive ΔR. 116 Radiocarbon ages We present 31 new radiocarbon dates from Gilman municipality (Table 4.1). AMS dates from Pemrang reported in this paper indicate that Pemrang is a multicomponent site used for more than 2000 years. A date on a Tridacna maxima shell adze (D-AMS 19909, 2592 ± 58 14C yrs) produced the oldest cultural radiocarbon date for Yap, which was recovered from 2.7 m below the surface and just above the water table (Napolitano et al. 2019a). Although the use of subfossil shells as tools can be a problem for radiocarbon dating (Rick et al. 2005), associated dates on charcoal support the age of the adze (Table 4.1). Additional samples from Pemrang support the radiocarbon age of the adze, but older deposits were not located. Figure 4.3. Modeled ΔR results. Two sets of dates from Balech’lee (AH2019-39) and Dulul (AH2019-27) were selected because features were identified in each of these locations during the auger 117 survey. The feature layers in each area, situated ca. 100 m apart, were similar and contained burned organics, shell, CST pottery, and clay, which is not naturally found in this area. The samples from Balech’lee, all from A. antiquata, produced dates that were ca. 2000 years old. The statistical overlap in the radiocarbon ages were unexpected given that the dates span ca. 2.5 m in depth and suggests a rapid deposit in this area. The dates from Dulul were younger, but indicate some stratigraphic reversal, which may be a product of the auger survey or site taphonomy. When calibrated with the modeled ΔR, noncultural dates from AH2018-50 calibrate to 3790-2740 cal BP and the dates from AH2018-51 calibrate to 5220-2740 cal BP (Table 4.2). These augers were located to the north, near the transition from alluvium (i.e., sandy beach) to upland soils underlain by Tomil volcanics (Shade et al. 1992). We dated these samples with the assumption that the death of these mollusks correlates to when this area was an intertidal zone and were not subfossil shells. These dates function as a proxy to understanding former sea-level positions. Although the calibrations will likely shift when a more precise ΔR is established for each species and the Late Holocene, the calibrated dates establish a general baseline to understand that sea-level change. Stable isotope analysis Isotopic values varied widely with δ13C values that ranged from a depleted value of −2.95‰ to an enriched value of 3.74‰ (average = 0.65‰ ± 1.72‰, n = 23) (Table 1). δ18O were uniformly depleted and ranged from a strong negative value of −3.31‰ to slightly depleted value of −0.06‰ (average = −1.37‰ ± 0.92‰). A. antiquata had 118 uniformly depleted δ13C values and δ18O values (average = −1.21‰ ± 1.14‰ and −1.34‰ ± 1.38‰, respectively, n = 8). At Balech’lee, where only A. antiquata were sampled, all were depleted in δ13C and δ18O, suggesting that they were collected from an area subjected to warmer, less saline estuarine waters. A. antiquata from Pemrang had more enriched δ13C values than at Balech’lee, but were still depleted compared to the local average. Values for A. antiquata were the most depleted in δ13C out of all the samples in the study, which was expected given their habitat preference for seagrass beds and shallow lagoons and their predicted susceptibility to hardwater (Tebano and Paulay 2000). Both the high and low δ18O values were also from A. antiquata. Table 4.2. Calibrated noncultural radiocarbon dates from AH2018-50 and AH2018- 51. Name Unmodelled (BP) from to % Curve Marine20 Delta_R LocalMarine -258 256 95.449974 R_Date D-AMS 031805 3340 2660 95.449974 R_Date D-AMS 031806 3720 2980 95.449974 R_Date D-AMS 031807 3190 2450 95.449974 R_Date D-AMS 031808 3450 2770 95.449974 R_Date D-AMS 031809 4510 3740 95.449974 R_Date D-AMS 031810 3240 2510 95.449974 R_Date D-AMS 031811 5140 4360 95.449974 Overall, δ13C values for Q. palatam were the closest to isotopic equilibrium with the present-day average, exhibiting a slightly enriched average (1.51‰ ± 0.97‰, n = 7), but with depleted δ18O values compared to the overall average (−1.75‰ ± 0.53‰). Compared to the other taxa in this study, the isotopic values of Q. palatam are unique in that they indicate a preference for a more marine environment, but warmer, less saline 119 water. These values are notably different from δ13C values obtained by Petchey et al. (2018) at Bapot-1 in Saipan. They attributed depleted δ13C values to deposit-feeding behavior, but it does not appear to have the same influence on mollusks from Yap. G. pectinatum exhibited averaged enriched δ13C values (1.68‰ ± 1.03‰) and depleted δ18O values (−1.27‰ ± 0.95‰), but these were based on a small sample size (n=2). When considered individually, one shell from Pemrang (UGAMS-52320) appears to be “estuarine” (i.e., depleted) and the other shell, collected from a nonanthropogenic context in Anoth village (AH2018-51) (UGAMS-52304), has a “marine” δ13C value (i.e., enriched). Rather than this species occupying diverse habitats, the different isotopic values likely reflect differential dissolved inorganic carbon (DIC) uptake within their preferred habitat (Petchey et al. 2018:189). Petchey et al. (2018) note a difference of ca. 250 14C years between G. pectinatum with similar isotopic signatures; therefore, it is possible that the 14C ages do not reflect the true age of the shell. Overall, gastropods exhibited a range of δ13C values with enriched values for G. gibberulus and Cypraea sp., indicating a preference for productive marine environments and warmer, less saline waters. Mactra sp. and Cerithium sp. exhibited slightly depleted δ13C values, indicating a preference for a slightly estuarine habitat with less saline water. Chronometric hygiene and Bayesian modeling A literature review identified 61 previously published radiocarbon dates, bringing our total to 92 (Table 4.1). Although we increased the number of radiocarbon dates from Yap by 50%, the total number of dates is still relatively small considering the fact that archaeologists have worked on Yap since the 1950s. Nearly half the dates (n = 43, 120 43.4%) were sampled from mollusks. Most of the dates (n = 36, 38.7%) are from Pemrang, located in the village of Guror in Gilman municipality (Figure 4.2). Only two dates were assigned to Class 1, a fragment of carbonized coconut (Cocos nucifera) endocarp and one carbonized nut endocarp (see Table 4.1). Coconut is a well- documented ethnobotanically useful plant as all parts were utilized for water, food, oil, building material, textiles, and medicine (see Summerhayes 2018). Although YP-3 was identified as nut endocarp, its 14C age is anomalously young given that it was recovered from Level 2 at Pemrang. Accordingly, we have assigned this date as Class 3. Fifty-two (56%) dates were rejected from analysis as Class 3 or 4. The previously reported dates from Pemrang were rejected because it is unclear if the dates were corrected or were sampled from multiple fragments of charcoal (Gifford and Gifford 1959; Takayama 1982). The oldest date from the site (M-634, 1780 ± 250 14C yrs) was produced from four pieces of charcoal each taken from a different level (Gifford and Gifford 1959:195). Many of the Gachpar dates, taken from charcoal from below dayif (hexagonal stone house platform constructions), were from secondary deposits and therefore do not directly date the target event, although they are still valid for understanding site development processes (Descantes 2005). Paleoenvironmental and other noncultural dates from this paper were also omitted from Bayesian modeling, although they are important for developing baseline data to estimate paleoshoreline location. 121 Table 4.3. Results of single-phase Bayesian model of Class 1 and 2 dates. Indices Amodel 116.8 Name Unmodelled (BP) Modelled (BP) Aoverall 67.2 from to % from to % Acomb A L P C Outlier_Model Charcoal -135 5 95.449974 99.8 Exp(1,-10,0) -3.19 -0.05 95.449974 100 1.99E- 2.69E- U(0,2) 17 2 95.449974 17 2 95.449974 100 97.5 Sequence Boundary Yap Start 2450 2165 95.449974 99.5 Phase Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -179 247 95.449974 107.4 99.6 R_Date D-AMS 019909 2480 1710 95.449974 2320 1735 95.449974 108.6 99.7 R_Date YP-1 2330 1635 95.449974 2255 1635 95.449974 105.5 99.7 R_Date D-AMS 026548 2145 1445 95.449974 2055 1445 95.449974 105.7 99.6 Curve IntCal20 R_Date YP-9 2360 2160 95.449974 2350 2090 95.449974 66.1 99.5 R_Date S-ANU- 57912 2335 2150 95.449973 2325 2150 95.449974 101.5 99.9 Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -270 222.5 95.449974 102.3 99.5 R_Date D-AMS 019908 1935 1260 95.449974 1940 1275 95.449974 100.8 99.6 R_Date D-AMS 038879 1870 1245 95.449974 1875 1260 95.449974 100.7 99.5 Curve IntCal20 R_Date YP-10 2300 1990 95.449974 2295 1900 95.449973 102 99.8 Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -312.5 214.5 95.449974 99.6 98.8 R_Date D-AMS 026457 1865 1235 95.449974 1910 1265 95.449974 97.9 99.3 R_Date D-AMS 019906 1815 1180 95.449974 1875 1230 95.449974 98.1 99.5 R_Date D-AMS 038880 1795 1170 95.449974 1850 1215 95.449974 98.4 99.3 R_Date D-AMS 038877 1790 1165 95.449974 1830 1195 95.449974 98.5 99.4 R_Date D-AMS 038878 1715 1090 95.449974 1765 1145 95.449974 100.7 99.4 R_Date D-AMS 019907 1710 1045 95.449974 1750 1090 95.449974 101.3 99.4 Curve IntCal20 R_Date S-ANU- 57911 1945 1795 95.449974 1940 1710 95.449974 99.5 99.7 R_Date YP-8 1940 1745 95.449974 1940 1745 95.449974 99.8 99.9 R_Date S-ANU- 57910 1925 1745 95.449974 1925 1685 95.449974 99.5 99.7 R_Date NZ 6668 1995 1635 95.449974 1985 1610 95.449974 100 99.8 R_Date YP-6 1890 1725 95.449974 1915 1645 95.449974 99.5 99.9 R_Date YP-7 1830 1640 95.449974 1830 1595 95.449974 99.6 99.7 Delta_R LocalMarine -258 256 95.449974 -274 279.5 95.449974 99.7 93.1 R_Date D-AMS 038871 1920 1345 95.449973 1935 1300 95.449974 100.1 92.3 R_Date D-AMS 038874 1715 1175 95.449974 1725 1175 95.449974 99.1 93.1 122 Table 4.3, continued. Indices Amodel 116.8 Name Unmodelled (BP) Modelled (BP) Aoverall 67.2 from to % from to % Acomb A L P C R_Date D-AMS 019905 1715 1175 95.449974 1735 1185 95.449974 100.1 93.9 R_Date D-AMS 038873 1705 1175 95.449974 1715 1180 95.449973 98.9 92.7 Curve IntCal20 R_Date YP-4 1390 1300 95.449974 1400 1210 95.449974 99.6 99.8 R_Date AA-21211 1400 1295 95.449974 1405 1195 95.449974 99.7 99.8 Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -271 260.5 95.449974 97.4 99.5 R_Date D-AMS 019903 870 320 95.449974 870 320 95.449974 100.1 99.6 Curve IntCal20 R_Date YP-2 1175 925 95.449974 1175 925 95.449974 99.8 99.9 R_Date AA-21208 1060 800 95.449974 1055 780 95.449974 99.8 99.8 Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -239.5 196 95.449974 106.2 99.7 R_Date D-AMS 019902 480 ... 95.449974 515 45 95.449974 102.6 99.8 Curve IntCal20 R_Date YP-3 685 560 95.449973 685 560 95.449973 98.3 100 Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -303 38.5 95.449974 89.4 99.7 R_Date D-AMS 019904 125 ... 95.449974 420 10 95.449974 81 99.9 R_Date D-AMS 038872 70 ... 95.449974 385 -5 95.449974 81 99.8 Curve IntCal20 R_Date NZ 6625 725 155 95.449974 710 240 95.449974 100.8 99.8 R_Date AA-21209 625 495 95.449974 625 380 95.449973 99.6 99.8 R_Date NZ 6651 635 315 95.449974 630 290 95.449974 100 99.8 Curve Marine20 Delta_R LocalMarine -258 256 95.449974 -401.5 -98 95.449974 33 99.8 R_Date D-AMS 038875 245 ... 95.449974 340 -5 95.449974 59.2 99.8 R_Date D-AMS 038876 245 ... 95.449974 330 -5 95.449974 60.2 99.8 Curve IntCal20 R_Date NZ 6680 505 305 95.449974 510 245 95.449974 100 99.9 R_Date AA-21210 475 300 95.449974 480 235 95.449974 100.1 99.9 Boundary Yap End 260 -120 95.449974 99.4 - Before Fais pottery ... 77.75 95.449974 R_Date NUTA2167 2095 1365 95.449973 2095 1365 95.449974 100 99.7 The single-phase Bayesian model produced a modeled colonization estimate of 2450-2165 cal years BP (95.4% HPD) (Table 4.3; Appendix C: Supplemental Material Table 3, Supplemental text, Supplemental Material Figure 1). The modeled estimate potentially extends the earliest unequivocal dates for human settlement of Yap by 123 centuries, but is still much younger than both Palau and the Mariana Islands, as well as the paleoenvironmental evidence from Yap. Discussion Radiocarbon dates The small radiocarbon inventory reflects the lack of systematic fieldwork on Yap. Radiocarbon dates from excavations at Pemrang extend the oldest date of human settlement by ca. 200 years (Napolitano et al. 2019a). However, additional samples did not produce substantially older dates. Expanded excavation at Pemrang yielded samples taken from below the water table were younger than expected, dating to ca. 1800-2000 BP (2 σ), and suggests that the part of the island where Pemrang is located was not a stable landform until ca. 2200 years ago and was likely subjected to shifting prograding sediments, storm surges, and king tides. Excavation adjacent to the auger hole at Balech’lee produced turtle and shark/ray bone, a preserved portion of a CST pot and, approximately 50 cm below that, a partially burned clay floor with nine circular voids of various diameters. In addition, a small, thin, red-painted rim sherd was recovered from 60-70 cmbs. A radiocarbon date from the same depth (D-AMS 38877, 2055 ± 22 14C yrs) returned a modeled calibrated date of 1840- 1210 cal yrs BP (95.4% HPD). Red-painted pottery is extremely rare on Yap with only four small sherds having been identified by previous archaeologists at Pemrang (Gifford and Gifford 1959; Napolitano et al. in prep). Unlike Pemrang, which has clearly stratified shell midden deposits with CST pottery only recovered from the lower A. antiquata midden, CST pottery was recovered at Balech’lee throughout the entire excavation, as 124 was the absence of Yapese plain and laminated wares. This is notable because Yapese plain and CST pottery are considered contemporaneous types; however, at sites in southern Yap CST pottery is rarely recovered with Yapese plain in large numbers (Napolitano et al. 2019a). The partially burned clay floor is ca. 5-10 cm thick. There was also the presence of significant quantities of turtle bone, which was unexpected given that this is typically a high-status food reserved for chiefly consumption and distribution or consumed by outer islanders (Takayama 1982:90-91; Ushijima 1982). If the clay floor at Balech’lee is related to a structure for high-ranking males, it is possible that this was part of a men’s house (faluw), which is typically found along coastal margins to protect the villages from outside threats (Craib and Price 1978; Cordy 1986; Intoh and Leach 1985; Nunn et al. 2017). These structures function in part as a meeting place to receive visitors and for men to sleep. In some coastal villages, faluw are built on top of small artificially constructed stone and coral islands (Furness 1910; Nunn et al. 2017). The similarities in features identified in Balech’lee and Dulul suggest that both areas may have been related to a meeting house structure or other type of activity area. Stable isotopes Based on the depleted δ13C values, we suggest that A. antiquata are likely influenced by hardwater. A. antiquata are very sensitive to environmental change and will die before major changes can be recorded in their isotope values (Davenport and Wong 1986; Petchey et al. 2018; Spennemann 1987:83), which suggests that variation in their δ13C reflects diet or hardwater rather than changes in habitat. Paleoclimate studies indicate that δ18O of surface waters in the Western Tropical Pacific were more depleted 125 than modern values (LeGrande and Schmidt 2009: Figure 6), but the δ18O in A. antiquata are still depleted from these levels. At present, it is currently unclear how this may be influencing the 14C age of these shells, but it is likely that A. antiquata will require a species specific ΔR and is a topic for future study. More work is needed to investigate the reliability of radiocarbon dating gastropods in Yap. Petchey et al.’s (2012) study of 14C marine reservoir variability in Caution Bay, Papua New Guinea found that one species of the Cerithioidea family, Cerithium largillierti (now referred to as Cerithideopsis largillierti), exhibited a wide range of δ13C values, indicating both estuarine and marine resources with a large amount of variability in ΔR values for this species. Accordingly, this species was determined to be unreliable for radiocarbon dating (Petchey et al. 2012). However, unlike southern Yap, Caution Bay contains underlying limestone geology and is notable for hydrological and geological diversity that contributes to inter- and intra-species variability in ΔR values (Petchey et al. 2012, 2013) so it is possible that there will not be as much ΔR variability in Yapese samples. However, until this can be studied in more detail, the radiocarbon dates on gastropods from Yap must be interpreted cautiously. Depleted isotopic values for G. gibberulus are expected given their habitat preference. The δ18O value was below the modeled values for the Late Holocene, but not as extreme as Late Holocene samples from Palau’s Rock Islands, which reflects the importance of understanding local conditions (Dodrill et al. 2018; LeGrande and Schmidt 2009: Figure 6). It is notable that the nonanthropogenic samples from AH2018-50 produced enriched δ13C values well above the local average. Identified between two layers of gley, the stratigraphy of this deposit suggests that this area was a boggy intertidal zone. δ13C 126 values support the idea that this area was an intertidal/reef area where increased productivity and CO2 atmospheric absorption produced enriched values. The samples from AH2018-51, located southeast from AH2018-50, were slightly depleted in δ13C except for one G. pectinatum sample that was enriched and likely reflects the diet of this species. These samples were uniformly depleted in δ18O, suggesting a preference for slightly warmer, less saline waters than present day and may suggest that this area was subjected to terrestrial influences or sources of freshwater. Green schist and shell from the auger both appeared to be water-rolled and suggests that there may have been a freshwater output in this area from further inland as schist is not naturally occurring in Tomil volcanic formation. Evidence for sea-level change and implications for early human settlement Data from paleoreefs in the Mariana Islands suggest that in western Micronesia there was a sea-level highstand ca. 3200 years ago, after which there was a drawdown beginning ca. 2500 years ago, although this has not been empirically demonstrated for Yap (Dickinson 2003; Dickinson and Athens 2007). Higher sea-levels on Yap are inferred by a paleonotch above modern sea level on a small limestone formation off the coast of southern Yap. Further evidence for a sea-level highstand is suggested by Yapese oral histories which state that long ago, people living in the interior of Yap built up the southern part of the island to reclaim it from the sea, which was then occupied (Francis Reg, personal communication). The noncultural and cultural radiocarbon dates presented in this study lend support to these lines of evidence. The calibrated radiocarbon dates from AH2018-50 and AH2018-51 indicate that these areas were intertidal zones ca. 127 5000-2700 years ago, around 300-400 m inland from the current shoreline. A regional sea-level drawdown beginning ca. 2500 years ago would have exposed sandy beach flats adjacent to productive coral reef habitats and been desirable places to live. The oldest radiocarbon dates from Balech’lee, Pemrang, and Rungluw all indicate that people were living in the area by ca. 2200-2000 years ago. If future excavation at Balech’lee confirms that this structure is a faluw, and excavation at Dulul reveals similar structural evidence, then it is possible that this demonstrates a southern seaward progression of community structures following sea-level drawdown sometime after 2500 years ago. The practice of positioning or relocating faluw and chabog in response to sea-level change persists today on Yap and has been interpreted as a culturally grounded response to “confront” threats to Yapese identity and way of life (Furness 1910; Lingenfelter 1975; Nunn et al. 2017:966). The shell midden excavation of Test Unit 8 at Pemrang also provides some insight on shifting habitat over time. In the older midden, between 120-160 cmbs, A. antiquata shells comprised the majority of the shell matrix, suggesting that an estuarine mangrove habitat was located near the site (Napolitano et al. 2019a). The younger shell midden was comprised mostly of small gastropods like G. gibberulus with small amounts of bivalves like Q. palatam, both of which prefer different habitats like sandy seagrass beds. Future detailed isotopic analysis of these taxa should help provide more details on paleoclimatic and paleoenivonmental conditions in the area. There are currently three excavated sites in southern Yap which date to ca. 2000 years ago. With the new dates from Pemrang, Balech’lee, and previously published dates 128 from Rungluw, we have a reasonably clear picture that settlement was extensive, yet is unlikely to pre-date ca. 2200-2000 years ago. Thus far, there is little new evidence to suggest that Yap was settled contemporaneously with Palau and the Mariana Islands. The question remains, however, is if this interpretation is biased by the lack of systematic fieldwork or if Yap was, in fact, settled nearly a millennium after Palau and the Mariana Islands. If sea-level in southern Yap were higher until ca. 2500 years ago, then early settlement would have been located further inland or possibly in another part of the island. Our auger survey in the Tomil volcanic section of southern Yap, topographically higher than the alluvium section, did not produce any cultural material. In addition, Yapese oral traditions refer to the oldest settlements as being in the northern part of the islands. The possibility also remains that Yap was settled significantly later in time than the other major archipelagos in western Micronesia. If a later settlement date continues to be supported by archaeological evidence, it will be necessary to consider what factors may explain a relatively late colonization date considering that people were moving throughout western Micronesia by 3200 years ago. Conclusions We have compiled a total of 92 radiocarbon dates from Yap, including 31 new dates that increased the number available by 51%. After chronometric hygiene and Bayesian-modeling, we now have a colonization estimate for Yap of 2450-2165 cal years BP (95.4% HPD). When contextualized with regional evidence for a sea-level drawdown ca. 2500 years ago (e.g., Dickinson 2003; Dickinson and Athens 2007), evidence 129 suggests that Yap was not settled until ca. 2500-2100 years ago, but that earlier sites could still be located elsewhere on the island (possibly the northern half), as suggested by Yapese oral traditions. To produce a more accurate modeled chronology, we calculated a hypothetical ΔR of −1 ± 128 14C yrs. Isotopic analysis indicates that, like elsewhere in western Micronesia, A. antiquata is likely influenced by hardwater and will require its own ΔR despite the lack of limestone substrate in Yap. A more intensive excavation and dating program will be needed to investigate this further, however, so that more temporally specific and species-specific ΔRs can be established. However, by comparing our modeled ΔR with a strong positive ΔR developed for Saipan, it appears as though a negative offset to the modeled global average is appropriate for sites in southern Yap where the majority of dates presented here derive from. When results from the sites of Pemrang (Napolitano et al. 2019a) and Balech’lee are combined with that of Rungluw (Intoh and Leach 1985), we now have more robust evidence that settlement in southern Yap was more extensive than previously thought. Newly recovered data from our systematic auger survey also help establish an important baseline for understanding sea- level change over the last 3000 years though additional work is needed to better understand nuances involved with landscape development and site formation processes as they relate to human occupation. In a recent publication, Hutchinson (2020) cautions against dating marine and estuarine shell because of the potential to produce 14C ages that do not reflect the true date of the organism’s death. However, as Thomas (2015) noted, archaeologists in Australia and the Pacific have demonstrated how it is possible to deal with the 130 uncertainties of radiocarbon dating shell (e.g., Petchey 2009; Petchey and Clark 2010, 2011, 2021; Petchey et al. 2012, 2013, 2017, 2018; Ulm 2006). Doing so requires carefully selecting samples from adequate contexts and understanding how a mollusks diet and habitat preference may influence the 14C age and potential inter- and intra- species variation in ΔR by looking at 14C age, δ13C, and δ18O values. Our study presents a first attempt at identifying how local conditions may influence the calibration of radiocarbon dates and understanding paleoclimatic and paleoenvironmental conditions on Yap. At this stage, the data do not support an initial settlement from a group affiliated with the Lapita culture. However, the data cannot be used to rule out a point of entry from Near Oceania because pottery and other artifacts recovered from survey and excavation all appear to be produced on Yap. This study suggests that southern Yap was not the location of Yap’s earliest settlement and is a crucial step in developing and refining models that couple archaeological data, rigorous radiocarbon dating regimes, and paleoshoreline reconstruction that can be used to model where early colonization sites might be located. 131 CHAPTER V CHEMICAL ANALYSIS OF GLASS BEADS IN PALAU, WESTERN MICRONESIA REVEALS 19TH CENTURY INTER-ISLAND EXCHANGE SYSTEMS IN TRANSITION From: Matthew F. Napolitano, Elliot H. Blair, Laure Dussubieux, Scott M. Fitzpatrick. Chemical analysis of glass beads in Palau, western Micronesia reveals 19th century inter- island exchange systems in transition. In first review with Journal of Archaeological Science: Reports Introduction Beads have long played an important role in exchange systems across the Indo- Pacific (Adhyatman and Arifin, 1993; Carter et al., 2016a; Francis, 2002). In Palau, western Micronesia, oral traditions and ethnographic accounts describe how glass beads (udoud) functioned as traditional forms of currency and were an integral part of traditional exchange systems (Ballendorf, 1991; Krämer, 1926; Kubary, 1873, 1895; Semper, 1873). Understanding the classification and value of udoud is complicated as the context in which they are exchanged, individual bead life-histories (pedigrees), and the general availability of beads all could influence their value. In addition, ethnographic and historic accounts describe pervasive secrecy around udoud as the types and quantities owned by clans are closely guarded. Finally, the well-documented production and 132 exchange of counterfeit udoud adds an additional layer of complexity in the understanding of these valuables and the circumstances in which they are exchanged. Despite their long-term importance in Palauan society, the provenance of udoud remains fairly murky (Ballendorf, 1993; Dupont, 2018a; Force, 1959; Francis, 2002; Osborne, 1966). There appears to have been two general waves of beads introduced to Palau. The first wave of udoud may have been introduced ca. AD 600-950 and possibly as early as AD 200, originating from East Java or mainland Southeast Asia (Francis, 1997, 2002; Osborne, 1966). Palauans may have acquired beads through sporadic trade with Chinese junk ships that may have traveled in the region (Krämer, 1926). The supply of beads into Palau appears to have been relatively fixed until later, when Yapese islanders arrived in Palau to carve their large stone money disks, and brought glass beads and other valuables from Yap and exchanged them to gain access to quarry sites and to purchase supplies (Fitzpatrick, 2003a, 2008). This more recent introduction constitutes a second wave of bead introductions into Palau. It is presently unclear when stone money quarrying activity began in Palau—and thus when the second wave of beads introduced to Palau began—as is how the Yapese came into possession of glass beads. Yet Yapese oral traditions appear to describe the same East Java or mainland Southeast Asian beads already in circulation in Palau in addition to beads that may have been obtained from Europeans (de Beauclair, 1963). As quarrying activity increased after the permanent presence of Europeans in Palau in the mid- to late-19th century, so did the presence of other high-valued items such a metal tools (Fitzpatrick, 2008; Fitzpatrick et al., 2006). During this time, the Yapese may have acquired beads during through direct trade with Europeans or as a result of David 133 O’Keefe’s enterprise transporting stone money disks between Palau and Yap in exchange for bêche-de-mer (sea cucumber) and copra (dried coconut meat), which he sold in China (Fitzpatrick, 2008; Morgan, 1996). To examine these provenance issues, we conducted compositional analysis of glass beads from Palau that were recovered with food refuse and evidence for stone money quarrying activities at the multicomponent site of Chelechol ra Orrak. The site is notable as a Yapese stone money quarry and for containing one of the earliest cemeteries in Remote Oceania (ca. 3000–2700 cal BP) (Fitzpatrick, 2003b; Fitzpatrick and Jew, 2018; Nelson and Fitzpatrick, 2005; Stone, 2020). Chelechol ra Orrak is also the only stone money quarry site where glass beads have been recovered, so they provide a unique opportunity to anchor the site’s chronology using the beads as termini post quem (TPQ). This is important because establishing the chronology at quarry sites can be difficult given mixing and/or subtle changes of some stratigraphic contexts within the site. This challenge is coupled with radiocarbon dates that are associated with activities which date to within the past few hundred years and, when calibrated, do not provide a reliable estimate of when these took place. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and morphological analyses on 38 beads indicate that they were all manufactured in Europe or Asia during the early- or mid-19th century. These results allow us to gain better insight into when quarrying activity at Orrak occurred and provides an opportunity to speculate on Palauan interaction networks at the time of European arrival in the region. This is particularly relevant given that Palau remained relatively (or completely) isolated from European contact until 1783, centuries after other islands in Micronesia (Callaghan and 134 Fitzpatrick, 2007). As such, we suggest that the glass beads found at Chelechol ra Orrak were introduced to Palau via Yap and would have been considered cheldoech, a type of udoud used to purchase supplies like lumber and food while carving stone money. However, closer analysis of oral traditions, historic, and ethnographic accounts suggests that as stone money quarrying activity continued throughout the 19th century, the ways in which Palauans used and exchanged cheldoech was in flux, in part because of the ease and proliferation in counterfeiting them. Despite the possible depreciation of this category of udoud, Palauans still valued and exchanged these beads in new ways, including interment as jewelry in burials. Background Environmental and archaeological background The Palauan archipelago comprises hundreds of islands with varying lithologies, including volcanic, coralline uplifted limestone, platform-reef, and atolls aligned in a southwest–northeast orientation. The two largest islands of Babeldaob and Koror are primarily volcanic rock and surrounded by smaller uplifted coralline limestone islands colloquially known as the ‘Rock Islands’. Surrounding the central islands is a barrier reef that protects a productive lagoon habitat. Palau is divided into 16 states that correspond to village district boundaries prior to European arrival. Chelechol ra Orrak (“beach of Orrak”) is located on the western side of Orrak Island 1 km southeast of Babeldaob (Figure 5.1). Like many other cave and rock shelters in Palau, the site was used for interring or placing the dead during the earliest stages of Palau’s settlement ca. 3000 BP (Nelson and Fitzpatrick, 2005; Stone, 2020; Stone et al., 135 2017). Orrak is unique, however, in that it is the only known site in Palau to have a cemetery overlain with later occupational refuse (Fitzpatrick, 2003b; Fitzpatrick and Jew, 2018; Nelson and Fitzpatrick, 2005). The third component to the site clearly demonstrates its use by Yapese Islanders who journeyed ca. 400 km south to Palau to use various locations as quarries for producing stone money (Fitzpatrick, 2003a, 2008). Figure 5.1. Map of Palau (A) and Yap (B). The process of stone money production on Palau and transport to Yap was a lengthy and dangerous endeavor. According to oral traditions and ethnohistoric accounts, groups from Yap gained access to limestone quarries by providing corvée labor and offering highly valued glass beads, exotic foods, and other items such as sennit cord bundles (strong cordage made from coconut husks) to the clans or villages that controlled various islands (Fitzpatrick, 2001). For Yapese islanders, the process of traveling to 136 Palau, quarrying stone money, and then transporting these disks to Yap was one part of a larger system of regional interisland interaction networks that also included the sawei exchange with small outer island atolls in western and central Micronesia. This intricate exchange system involved the outer islands paying tribute to Yap every few years in exchange for materials not available on coral atolls, like pottery, stone, and lumber as well as providing provisions after major storms when necessary (Descantes, 2005; Fitzpatrick, 2008: fig. 6; Fitzpatrick and McKeon, 2020; Hunter-Anderson and Zan, 1996). It is unclear exactly when Yapese stone money quarrying activity began in Palau. This is in part due to the aforementioned mixing of some stratigraphic deposits found in stone money quarry sites and rock shelters generally (Fitzpatrick, 2001). Radiocarbon determinations from deposits associated with stone money production at the only three quarry sites excavated thus far (Omis, Metuker ra Bisech, and Chelechol ra Orrak) calibrate as modern or fall on a flat part of the radiocarbon calibration curve (Fitzpatrick, 2003a; Fitzpatrick and Jew, 2018). However, oral traditions and ethnohistoric data indicate that quarrying activity was well underway before extended contact with Europeans beginning in AD 1783 (Fitzpatrick, 2003a, 2008). Evidence for stone money quarrying at Chelechol ra Orrak includes two unfinished stone money disks, a smaller complete disk found in beach deposits outside the rockshelter, lithic debris, and a variety of stone architecture, including a dock, wall alignments, and mounds that were used during the production and transport of stone money disks (Fitzpatrick, 2003a). Unlike some Yapese quarrying sites, no metal tools were recovered here that would indicate a post-18th century use with the possible 137 exception of one surface-collected iron tool (Fitzpatrick et al., 2006). The recovery of 38 glass beads lends additional support to Palauan and Yapese oral histories that quarrying activity was ongoing and continued until the mid- to late-19th century (Fitzpatrick, 2008). Possible origins of beads to Palau and Yap Douglas Osborne (1966), the first archaeologist to work extensively in Palau, surmised that beads were probably introduced sometime between ca. AD 200-950 from Indonesia or mainland Southeast Asia and was a partial catalyst for the development of Palau’s social hierarchy. Bead scholar Peter Francis (1997, 2002) suggests roughly the same dates of ca. AD 600-950 years ago based on the continued circulation of numerous beads that were manufactured in East Java ca. AD 600-950, though both proposed chronologies are largely conjectural. The first written account of Palauan bead money was in AD 1783 by Captain Henry Wilson when his ship the Antelope wrecked on Ulong Island, leading to the first sustained contact with Europeans (Clark, 2007; Keate, 1789). Numerous Palauan oral traditions describe the origin and use of bead money (Ballendorf, 1993; Hijikata, 1993; Kubary, 1873, 1895). According to one local legend, a fish gave birth to a girl who built an island (Ngorot Island). The girl gave birth to a bird (Okak) that was full of udoud and the bird was sent to Anguar and Ngaraard (two Palauan districts that are now states) as a reward for raising the fish and the girl (Thijssen-Etpison, 1997). A different legend recounts two Portuguese ships running aground at Ulong and near Kayangel, two islands in the Palauan archipelago. To procure supplies from Palauans, one of the ship’s crew cut up the decorations and drilled holes in them to trade as money (Ritzenthaler, 1954). Another story states that udoud first entered the Palau 138 economy from Yap where they were already being used as money (Parmentier, 2002:62- 63). According to Yapese oral tradition, glass beads first appeared on Yap after a man named Giluai visited the sky-world to look for a shell bracelet that was buried with his brother. During his visit he was allowed to pick magical fruits that he wore as a necklace. The largest of the fruits was crescentic shaped, corresponding to the most valuable class of Palauan udoud. After passing it down for several generations, it came into possession by a man named Rengenbai who used it to negotiate access to a stone money quarry on Palau (de Beauclair, 1963). Another story details a canoe party being blown off course by a typhoon and reaching Taiwan where they acquired baskets of beads. A third story describes how the chief of a high-ranking village in Yap received a large quantity of beads as tribute from a foreigner in a canoe with a square sail (de Beauclair, 1963:3-4). The beads were later distributed by the chief to people sailing on canoes for unfamiliar islands. Smaller beads remained on Yap with various accounts of them being inherited, interred with the dead, cached and buried inside large shells for protection, or accidentally found buried in gardens (de Beauclair, 1963). A consistent element in each of these oral traditions is that beads passed through the possession of chiefs were worn as necklaces or bracelets. They were also highly valuable as currency and could be traded with stone money, shell beads, banana fiber mats, or other items (de Beauclair, 1963). When considering oral traditions from both islands and the chronologies proposed by Osborne (2002) and Francis (1997, 2002), it seems possible that there was an earlier introduction by traders from Island Southeast Asia, New Guinea, and/or mainland Southeast Asia and a later, second wave of beads introduced via Yap that may have 139 included both older heirloom beads and beads manufactured more recently in Europe. The description of a square sail may suggest interaction with Europeans or Chinese junk boats as Micronesian watercraft typically had triangular sails. Beads in Palauan society In Palau today, the US dollar is used in economic transactions, but udoud and other forms of traditional currency like turtle shell bowls (toluk) are still exchanged to mark significant events such as the birth of a first child (omengat), funerals, weddings, and divorces (Dupont, 2018a). Beads are not, and were not, a form of currency in the strict sense that there is a fixed value per bead, but during shortages, beads would be cut up to make more money available for exchange (Krämer, 1926). The relative value of udoud within the same category vary as well. Historically, one bead type known as kluk was given a standard value of 10 coconut leaf baskets (suálo) holding 10-20 pounds of taro; yet one particular kluk could be more valuable than others depending on its life history (Ritzenthaler, 1954). In addition, the supply of beads to Palau was, at times, fixed. Coupled with beads being broken, lost, or devalued in other ways, their value generally increased as the supply decreased (Hijikata, 1993:220; Parmentier, 2002). Udoud can also increase in value if they are possessed by a particularly respected member of the community or have a particularly important life history; the highest valued beads were individually named (Barnett, 1949:43; Parmentier, 2002:64; Ritzenthaler, 1954:9-10). According to oral tradition, one such udoud, bachel el berrak (a yellow prismatic bead) named Nglulmrard was given by Ngaraard to Melekeok to settle a war between the two districts and was also later exchanged during marriages (Osborne, 1966:488). 140 Alternatively, the value of udoud can also decrease if, for example, they pass through a low-ranking household or are used to pay a fine for a penalty like adultery. The life histories of more valuable udoud were memorialized in formal chants (chesol), whereas the life history of less valuable udoud were tracked with informal legends (Nero, 1996). Multiple classification schemes have been used to describe udoud with between three and nine broad categories usually being identified. First described in detail by Kubary (1873, 1895), Semper (1873, 1982 [1873]), and Krämer (1926), the most comprehensive discussion of udoud was by Ritzenthaler (1954) who identified nine families based on four criteria: material, color, shape, and social use (Figure 5.2). Many other attempts at categorization also exist (see also Barnett, 1949; Dupont, 2018a, 2018b; Krämer, 1926; Opitz, 2004; Osborne, 1966; Parmentier, 2002; Thijssen-Etpison, 1997). None of these attempts at classification schemes are completely satisfactory, with most exhibiting internal inconsistencies and conflations between udoud categories and individually named specimens. Some of this confusion in the literature can be traced to: 1) incorrect assumptions about udoud material; 2) the difficulty of ethnographers being able to view udoud as informants were reluctant to reveal the type and quantity of beads in their clan’s possession; 3) changing terminology as some varieties disappeared from circulation; and 4) conflicting and incomplete information provided by ethnographic informants (see Parmentier, 2002). Despite the considerable variance in classification schemes, Palauan udoud can be broadly, and etically, divided into three distinct categories. The first, and most important, category is bachel (e.g., Figure 5.2a-1, 5.2a-2, 5.2b-2). Beads in this category are considered the most valuable and are easily recognized because of their crescent shapes 141 and are often worn as a single bead on a necklace (iek). When women wear these, it is typically an indication of high social rank and would be removed when entering the village or house of a higher-ranking clan (Krämer, 1926). While some of these are obviously manufactured from glass (e.g., bachel merimer [Figure 5.2b 18]), others (e.g, bachel berrak [Figure 5.2a-2, 5.2b-1], bachel mengungau [Figure 5.2a-1 and 5.2b-2]) have been the source of considerable debate, with many sources describing them as being made of fired clay or ceramic (e.g., Parmentier, 1985, 2002; Ritzenthaler, 1954). Archaeometric analyses of the material, however, indicates that despite its visual appearance, these udoud varieties are in fact made from glass and were cut from bracelets or bangles (Barnett, 1949; Force, 1959; Lövgren, 2011; Osborne, 1958, 1966). Similar intact bracelets have been recovered from burials in the Philippines, Indonesia, and Thailand and likely derive from China or mainland Southeast Asia (Force, 1959; Francis, 2002; Osborne, 1966; Thijssen-Etpison, 1997). The second category includes polychrome bead types known as chelbucheb (e.g., Figure 5.2a-4, 5.2b-30-32) and kluk (e.g., Figure 5.2a-4), as well as thin rings cut from these types (i.e., delobech). The beads in this group were almost certainly manufactured in East Java, ca. AD 600-900 (Adhyatman and Arifin, 1993; Francis, 1991, 1997, 2002). The final category includes numerous varieties of beads lacking decoration. Opaque varieties, found in a number of shapes, are subsumed under the kldait group, while transparent and translucent beads are in the cheldoech group. Most of these varieties likely derive from the same sources as the first two categories, with Francis (2002) suggesting that many are varieties of Indo-Pacific beads (see Carter, 2016). 142 Of all udoud types, cheldoech is the least well-documented. The value of this bead type varies from low to high based on the size and quality of the bead with lower valued beads primarily used for buying supplies like food and coconut syrup (ilaot) and higher-valued cheldoech being equivalent to one kluk (Ritzenthaler, 1954). Krämer (1926) aso reports that cheldoech were worn by children and young girls. As a lower- valued type, they were not used for significant exchanges or worn like bachel to indicate rank, although today they are sometimes worn as bead spacers or at the end of iek (Watanabe and Inacio, n.d.). As they were only used for simple economic transactions, most cheldoech would likely not have individual names or recorded life histories. Largely disappearing from circulation in the early 1920s (Ritzenthaler, 1954), only Kubary (1873, 1895) and Semper (1873) described this type prior to its devaluation. The disappearance of cheldoech is widely attributed to its ease in counterfeiting (Hijikata, 1993; Ritzenthaler, 1954). Indeed, many sources describe extensive efforts to counterfeit udoud (Barnett, 1949; Dupont, 2018a; Hijikata, 1993; Keate, 1789; Krämer, 1926; Kubary, 1873; Osborne, 1966; Ritzenthaler, 1954). It is unclear exactly when counterfeiting udoud began, though it was documented by Wilson within months of his arrival (Keate, 1789). Historically, such counterfeiting most often took three forms: 1) drilling or piercing fragments of broken bottles or plate glass for counterfeit cheldoech (post-European arrival) (e.g., Keate, 1789); 2) attempting to pass recently introduced foreign beads as genuine udoud (Hijikata, 1993); and 3) exaggerating the value or fabricating the life history of udoud. 143 Figure 5.2. Palauan udoud illustrated by Kubary (1873) (A) and (1895) (B). Hijikata (1993:217) suggests that counterfeits of the first type have been called ngerusar as they were extensively produced at Ngerusar village in Airai State, and Kubary (1873) reports a counterfeit of this type being manufactured from his discarded pickle jar. In an example of the second type, Krämer (1926) writes that during the German administration, when counterfeiting was at its peak, “white men, too, have attempted to create substitutes” but these were easily identified by Palauans as fraudulent they were—and still are—adept at detecting forgeries (see also Kubary, 1873). These counterfeits, when recognized, are called udoud er a ngebard, (“foreign udoud” or “udoud of the west”) or ungil udoud (good money) (Hijikata, 1993:217; Krämer, 1926); however, Krämer’s (1926) account is unclear as to what these beads looked like or how they compared to those that were already in circulation. Even today, counterfeiting udoud 144 continues with East Javanese beads being looted from sites in Indonesia and then imported to Palau (Francis, 2002; Remengesau, 1997; Thijssen-Etpison, 1997; Yuping, 2012). In an example of the third type of counterfeit, Krämer (1926) and others write about the difficulty in simply viewing udoud for fear that they would be lost or stolen (Parmentier, 2002:53; Thijssen-Etpison, 1997). In one such instance, after being trusted enough to look at udoud, Krämer (1926) later discovered that he was deceived and knowingly shown counterfeits. Attempts at counterfeiting high-valued bachel berrak and bachel mengungau by baking them from the clay found on the large island of Babeldaob, but manufacture of cheldoech was the most common (Krämer, 1926; Osborne 1966:488; Ritzenthaler, 1954:22). When lacking a known life history or transaction history, Palauans inspected the beads to look for obvious signs of deception (Dupont 2018a). For example, if a bead is drilled, one way to inspect them is to look for uniform perforations made with modern equipment instead of irregular, conical, or biconical perforations; however, this would primarily apply to drilled udoud like bachel and not to beads that were of wound or drawn manufacture. Despite the heavy penalties for making transactions with counterfeit udoud—counterfeiting was at times heavily punished with fines and sometimes death (Ritzenthaler, 1954:22)—acceptance of may have been required, at times, because taking too long to inspect a bead may be interpreted as a sign of mistrust and cause embarrassment to both parties (ng kora kemanget a osenged er ngii, which translates to “the observation is taking too long because it is fake”) (Kloulubak, personal communication). In this light, one could use their social status or their clan’s rank as 145 leverage to use counterfeit udoud in transactions, although this could be risky given the potential punishments. There are, however, notable exceptions in the ways udoud are appraised and exchanged. Despite lacking known life histories and transaction histories, beads from Yap were trusted as ng chuodel (they are ancient and therefore authentic) (Kloulubak, personal communication). Kubary (1873) explains that they may have been readily accepted as authentic because people on Yap would have no way to produce counterfeit udoud (Thijssen Etpison and Dupont, 2017:24). There also appear to be other social contexts where counterfeit money was required for certain offerings and ritual ceremonies. In his description of burial customs, Krämer (1926:353) writes “that when the casket is delivered, a mock fight takes place on the beach in [Ngchesar], because the bearers strive to prevent the block of wood from being pulled up, and they even go so far as to cut through the ropes until they appeased with counterfeit money.” Although he does not describe them, it is possible that he is referring to cheldoech since this category was devalued at the time Krämer was in Palau. These accounts ultimately paint a complex, and sometimes contradictory, picture of authentic and counterfeit udoud being exchanged, or even required in various contexts, and knowledge of clan “treasuries” was closely held information. Glass beads in Palauan archaeology Though ethnographic accounts indicate that udoud were not interred with the deceased (Ritzenthaler, 1954), many glass beads have been recovered archaeologically from odesongel (stone- or coral-lined clan burial platforms) or other burial contexts 146 dating to the Stonework Era (AD 1250-1800) (Liston, 2007a, 2007b, 2010, 2011a, 2011b, 2011c; Lövgren, 2011; Masse and Snyder, 1982; Titchenal, 1999, 2001; Titchenal, et al., 1998). When recovered from burial contexts, they appear to be interred as bracelets or anklets because they are recovered near the wrist or feet (Liston, 2010a, Liston, 2010b; Lövgren, 2011), which is unexpected given that early ethnographic accounts are clear in that glass beads were not worn in this fashion (Krämer, 1926). Some of the beads reported from mortuary contexts on Palau are impossible to identify from published descriptions and photographs, but a few types are readily identifiable as beads manufactured in Europe during the 19th century. Others, however, have also been explicitly identified as examples of traditional udoud (Liston, 2010; Masse and Snyder, 1982; Titchenal, 1999, 2001; Titchenal et al., 1998), though in some cases, these appear to have been misidentifications. Excavation of an odesongel in the village of Ngermid (Koror State, B:OR-1:1) revealed 22 burials, one of which was an adult of indeterminate sex interred with a bracelet and one or two anklets totaling 199 beads and 53 fragments (Liston, 2010). The bracelet included 78 emerald-green beads and the anklet comprised 118 emerald-green beads; blue and black beads were also recovered (Liston, 2010). Many of the beads recovered with this burial appear to be typologically similar to the udoud recovered at Orrak. At a second odesongel at Ngerdubech (Ngatpang State, B:NT-3:9), five of 19 excavated burials contained a total of 457 glass beads. The beads were green and blue transparent glass and were all recovered near the wrist area. Photographs of the beads (Powers, 2011) show many wound varieties, as well as some pressed and drawn varieties, 147 like those we report below. Compositional analysis indicated that many of the wound beads may have been manufactured in China (Lövgren, 2011). At a third site in Ngerielb Village (Koror State, B:OR-1:8), 1700 beads were found with 12 individuals interred across three odesongel as part of a contract archaeology project for the now-defunct Hung Kuo resort. There was considerable diversity in beads at this site, with 27 different types present, including a double string of beads consisting of seven different types found around the neck of a child. Most of these (n = 1073) appear to be of Venetian origin, though numerous specimens from Bohemia and China were also reported (Lövgren, 2011; Titchenal, 1999, 2001). Three beads recovered at the site were manufactured from drilled glass and appear to be examples of the class of counterfeit udoud that was manufactured from bottles (Lövgren, 2011; Titchenal, 2001). Although many of the beads recovered from these sites were originally identified as udoud from East Java (Titchenal, 2001), compositional analysis indicated that this bead type was manufactured in Bohemia (Lövgren, 2011). Examinations of the bead photographs, descriptions, and comparisons with the Orrak assemblage make clear that most of the beads recovered from these burial contexts can be classified as cheldoech. Glass beads recovered from these burial contexts suggest that, contrary to ethnographic accounts, they were worn as jewelry in large quantities, but this may have been limited to funerary contexts. Given the relatively small number of excavated burials, and the even smaller number that contain beads, it is not yet possible to test this hypothesis. The presence of Bohemian and Venetian glass beads indicate that the burials date to the end of the Stonework Era (ca. AD 1800) or immediately after. While it is 148 possible that there were additional social contexts not described by ethnographers where udoud were used, including some mortuary contexts, the presence of so many glass beads—most of which can be identified as cheldoech (including counterfeit ones made from drilled transparent glass)—interred as jewelry suggests that the beads may have been regarded differently than traditional udoud since they were given away with an individual and not retained in the clan “treasury.” Despite these nuances in how udoud were perceived and exchanged in Palau through time, the recovery of dozens of glass beads from Orrak represents a rarely encountered archaeological context that allow us to better understand the role of udoud in Palauan exchange systems and provides a tangible example of inter-island exchange that supports oral traditions. Compositional analysis of glass beads provides a unique opportunity to refine the chronology as certain recipes can provide temporal markers through the presence of specific ingredients or manufacturing techniques. Below, we describe the first compositional analysis of glass beads found in this context and discuss how the results can help us establish their provenance and ways in which they might have been exchanged or valued. Methods Typological analysis The 38 glass beads recovered from Orrak were analyzed using standard glass bead typological conventions (Beck, 1928; Francis, 2002; Karklins, 1982, 2012; Kidd and Kidd, 1970). Method of manufacture (e.g., drawn, wound), construction (e.g., simple, compound, complex), decoration, finishing technique (e.g., heat rounded, faceted), shape, 149 color, diaphaneity, and size (length and diameter) were all recorded. When possible, Kidd and Kidd (1970) type-variety numbers were also assigned to individual specimens. These were then compared to documented types of udoud and correlations made when possible (Krämer, 1926; Kubary, 1873, 1895; Ritzenthaler, 1954; Thijssen-Etpison, 1997). LA-ICP-MS In addition to morphologically typing the assemblage, compositional analysis was conducted at the Elemental Analysis Facility at the Field Museum of Natural History (Chicago, USA) to identify the type of glass used to manufacture the beads (e.g., lead, potash, soda-lime) as well as identify major colorants, opacifiers, and temporally diagnostic elemental attributes. The analyses were carried out with a Thermo ICAP Q inductively coupled plasma-mass spectrometer (ICP-MS) connected to a New Wave UP213 laser for direct introduction of solid samples. The parameters of the ICP-MS are optimized to ensure a stable signal with a maximum intensity over the full range of masses of the elements and to minimize oxides and double ionized species formation (XO+/X+ and X++/X+ < 1 to 2 %). For that purpose, the argon flows, the radio-frequency power, the torch position, the lenses, the mirror, and the detector voltages are adjusted using an auto-optimization procedure. For better sensitivity, helium is used as a gas carrier in the laser. The choice of the laser ablation parameters not only have an effect on the sensitivity of the method and the reproducibility of the measurements, but also on the damage to the sample. The single point analysis mode with a laser beam diameter of 100 m, operating at 80% of the laser energy (0.1 mJ) and at a pulse frequency of 20 Hz was used to determine elements with 150 concentrations in the range of parts per million (ppm) and below while leaving a trace on the surface of the sample invisible to the naked eye. A pre-ablation time of 20 seconds is set to eliminate the transient part of the signal and to be sure that possible surface contamination or corrosion does not affect the results of the analysis. For each sample, the average of four measurements corrected from the blank is considered for the calculation of concentrations. To improve reproducibility of measurements, the use of an internal standard is required to correct possible instrumental drifts or changes in the ablation efficiency. The element chosen as the internal standard has to be present in a relatively high and known concentration so its measurement is as accurate as possible. The isotope Si29 was used for internal standardization. Concentrations for major elements, including silica, are calculated assuming that the sum of their concentrations in weight percent in glass is equal to 100% (Gratuze, 1999). Fully quantitative analyses are possible by using external standards. To prevent matrix effects, the composition of standards has to be as close as possible to that of the samples. Two different series of standards are used to measure major, minor, and trace elements. The first series of external standards are standard reference materials (SRM) manufactured by the National Institute of Standards and Technology (SRM 610 and SRM 612). Both of these standards are soda-lime-silica glass doped with trace elements in the range of 500 ppm (SRM 610) and 50 ppm (SRM 612). Certified values are available for a very limited number of elements. Concentrations from Pearce et al. (1997) were used for the other elements. The second series of standards were manufactured by Corning. Glass B and D are glasses that match compositions of ancient glass (Brill, 1999:544). 151 Results Table 5.1 reports the complete typological analysis of the Orrak glass bead assemblage, including assignment to compositional group (Figure 5.3). Complete elemental results are reported in Appendix D, Table 1. The glass bead assemblage excavated at Orrak can be divided into two main compositional groups, with five additional beads having unique compositions (Figure 5.4). Figure 5.3. Beads recovered from Chelechol ra Orrak. Catalog numbers: A: 7; B: 4; C: 5; D: 6; E: 19; F: 26STNSP; G: 8; H: 10; I: 17; J: 85STNSP2; K: 19; L: 46NSTP-A; M: 64NSTP; N: 27MIXSP-B; O: 27MIXSP-C. 152 Table 5.1. Typological analysis of glass beads recovered from Chelechol ra Orrak. Kidd and Catalog Glass Place of Length Diameter Unit Colorant Opacifier Kidd Manufacture Construction Finishing Shape Color Munsell Diaphaneity Notes Number Type Manufacture (mm) (mm) (1970) Type transparent Ground Hexagonal Cobalt 7.5PB Uranium 4 E2/S1 K-Ca Co ― If5 Bohemia Drawn Simple / 5.5 7.3 facets tube Blue 2/10 present translucent Wound and 1.25 5 E2/S1 Pb-K Au ― ― Bohemia Pressed Simple ― Oblate Orange YR transparent 6.2 7.0 (mold) 5/12 Ground Hexagonal 5.0G 6 E2/S1 K-Ca Cu ― If4 Bohemia Drawn Simple Green-blue transparent 4.7 5.6 facets tube 6/6 Bohemia? Black/Dark 7.5PB Opaque to 7 E2/S1 Pb-K Co ― WIb Wound Simple ― Oblate 5.8 7.4 China? blue 2/5 translucent Heavily patinated, K-Ca- Opaque to 8 E2/S1 ― ― ― Bohemia? UID Simple -- Oblate White/clear N8 5.2 6.1 likely of Al translucent wound manufacture Hexagonal 10.0G 9 E2/S1 K-Ca Cu ― Ic Bohemia Drawn Simple ― Green-blue transparent 4.6 4.8 tube 5/10 Possible Bohemia? 2.5G 10 E2/S1 Pb-K Cu ― WIb Wound Simple ― Oblate Green transparent 4.0 6.5 longitudinal China? 5/10 mold seam transparent Hexagonal 5.0G 11 E2/S1 K-Ca Cu ― Ic Bohemia Drawn Simple ― Green-blue / 5.0 5.6 tube 6/6 translucent High Zn K-Ca- 7.5BG 17 E2/S1 Cu ― WI China? Wound Simple ― Barrel Blue-green translucent 4.3 5.1 and Ba; Mg 8/4 Coil bead? Bohemia? 5.0PB 19 E2/S1 Pb-K Co; Cu As WIb Wound Simple ― Oblate Blue opaque 5.1 6.2 China? 4/8 7.5R 3/8 Opaque Na- Cu Heat Red-on- 37 E3/S1 Sb IVa6 Venice Drawn Compound Torus over over 2.0 3.4 Ca (ext) rounded green 7.5GY translucent 7/10 Bohemia? 2.5B 111STNSP E3/S4 Pb-K Cu As WIb Wound Simple ― Oblate Aqua Blue Opaque 5.8 6.4 China? 6/4 Wound and 10.0RP 19STNSP E2/S5 Pb-K Au ― ― Bohemia Pressed Simple ― Oblate Rose Wine translucent 5.2 6.3 4/6 (mold) 14 Wound and transparent molded Faceted 10.0R 26STNSP E2/S5 Pb-K Au ― ― Bohemia Pressed Simple Coral / 5.4 6.1 facets, oblate 5/8 (mold) translucent reheated 153 Table 5.1, continued. Kidd and Catalog Glass Kidd Place of Muns Length Diameter Unit Colorant Opacifier Manufacture Construction Finishing Shape Color Diaphaneity Notes Number Type (1970) Manufacture ell (mm) (mm) Type 14 Wound and transparent refit w/ 27MIXSP- molded Faceted 10.0 E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 5.2 5.4 51STNsp A facets, oblate R 5/8 (mold) translucent 1 reheated Red/ Pb-Ca- purple 27MIXSP-B E2/S4 ― ― ― UID Wound? Compound ― Torus ― Opaque 2.5 3.7 glass? P over brown Ground Hexagona Mint 5.0G 27MIXSP-C E2/S4 K-Ca Cu ― If3 Bohemia Drawn Simple transparent 4.1 5.2 facets l tube Green 6/6 14 Wound and transparent molded Faceted 10.0 40STNSP E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 5.7 6.3 facets, oblate R 5/8 (mold) translucent reheated 14 Wound and Conjoined transparent Conjoined molded 10.0 46STNSP-A E2/S4 Pb-K Au ― ― Bohemia Pressed Simple faceted Coral / 12.3 6.5 , double facets, R 5/8 (mold) oblates translucent bead reheated 14 Wound and transparent molded Faceted 10.0 46STNSP-B E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 6.0 6.9 facets, oblate R 5/8 (mold) translucent reheated 14 Wound and transparent molded Faceted 10.0 46STNSP-C E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 6.3 6.5 facets, oblate R 5/8 (mold) translucent reheated 14 Wound and transparent molded Faceted 10.0 46STNSP-D E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 5.8 6.4 facets, oblate R 5/8 (mold) translucent reheated 14 Wound and transparent molded Faceted 10.0 46STNSP-E E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 6.1 7.1 facets, oblate R 5/8 (mold) translucent reheated 14 Wound and transparent molded Faceted 10.0 50STNSP-A E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 5.1 6.3 facets, oblate R 5/8 (mold) translucent reheated 14 Wound and transparent molded Faceted 10.0 50STNSP-B E2/S4 Pb-K Au ― ― Bohemia Pressed Simple Coral / 5.5 6.1 facets, oblate R 5/8 (mold) translucent reheated 154 Table 5.1, continued. Kidd and Catalog Glass Place of Length Diameter Unit Colorant Opacifier Kidd Manufacture Construction Finishing Shape Color Munsell Diaphaneity Notes Number Type Manufacture (mm) (mm) (1970) Type 14 Wound and transparent refit w/ Pb- molded Faceted 10.0R 51STNSP1 E2/S4 Au ― ― Bohemia Pressed Simple Coral / 5.7 5.4 27MIXsp- K facets, oblate 5/8 (mold) translucent A reheated 14 Wound and transparent Pb- molded Faceted 10.0R 64STNSP E2/S4 Au ― ― Bohemia Pressed Simple Coral / 6.0 6.6 K facets, oblate 5/8 (mold) translucent reheated 14 Wound and Pb- molded Faceted Red 2.5R 69STNsp E3/S4 Au ― ― Bohemia Pressed Simple UID 5.8 6.8 K facets, oblate Feather 3/4 (mold) reheated 14 Wound and 6STNSP- Pb- molded Faceted Cerulean 7.5B E2/S5 Co As ― Bohemia Pressed Simple Opaque 6.5 6.5 A K facets, oblate Blue 5/10 (mold) reheated Wound and Pb- Rose 10.0RP 6STNSP-B E2/S5 Au ― ― Bohemia Pressed Simple ― Oblate translucent 5.6 7.3 K Wine 4/6 (mold) 14 Wound and Pb- molded Faceted Rose 10.0RP 6STNSP-C E2/S5 Au ― ― Bohemia Pressed Simple translucent 5.0 6.4 K facets, oblate Wine 4/6 (mold) reheated 14 Wound and 6STNSP- Pb- molded Faceted Rose 10.0RP E2/S5 Au ― ― Bohemia Pressed Simple translucent 5.4 6.3 D K facets, oblate Wine 4/6 (mold) reheated 14 Wound and Pb- molded Faceted Rose 10.0RP 6STNSP-E E2/S5 Au ― ― Bohemia Pressed Simple translucent 5.9 6.2 K facets, oblate Wine 4/6 (mold) reheated Pressed Pb- Wound and Pressed Barn 5.0R 6STNSP-F E2/S5 Au -- ― Bohemia Simple Square translucent 5.9 8.3 facets, not K Pressed facets Red 3/10 molded Pb- 6STNSP- Oyster E2/S5 Na- -- As WIb China? Wound Simple ― Oblate N8 Opaque 6.4 8.1 G White K 155 Table 5.1, continued. Kidd and Catalog Glass Place of Length Diameter Unit Colorant Opacifier Kidd Manufacture Construction Finishing Shape Color Munsell Diaphaneity Notes Number Type Manufacture (mm) (mm) (1970) Type 14 Wound and 72STNSP- Pb- molded Faceted Red 2.5R E3/S5 Au ― -- Bohemia Pressed Simple UID 6.5 7.2 A K facets, oblate Feather 3/4 (mold) reheated 14 Wound and 72STNSP- Pb- molded Faceted Red 2.5R E3/S5 Au ― ― Bohemia Pressed Simple UID 5.4 6.2 B K facets, oblate Feather 3/4 (mold) reheated 14 Wound and 72STNSP- Pb- molded Faceted Red 2.5R E3/S5 Au ― ― Bohemia Pressed Simple UID 6.0 6.1 C K facets, oblate Feather 3/4 (mold) reheated 14 Wound and Pb- molded Faceted Emerald 10.0G High tin 85STNSP2 E3/S5 Cu ― ― Bohemia Pressed Simple transparent 6.0 6.1 K facets, oblate green 5/10 content (mold) reheated 156 Figure 5.4. Ternary plot of Na2O, K2O, and PbO content of the Orrak bead assemblage, illustrating distinct compositional groups. The largest group (n = 28) has a lead-potash composition (Pb-K), with PbO content ranging from 26.4%-57.9% and K2O ranging from 3.1%-13.3%. Twenty of the beads in this group are faceted oblates that were wound and pressed in a mold. All of these have vertical (or longitudinal) mold seams, cylindrical perforations, and were wound around a mandrel before being pressed in a mold. Each bead has 14 facets, and the edges of the facets and the mold-seam on all specimens are rounded, indicating slight reheating after pressing. One specimen (46STNSP-A) consists of two conjoined beads with the perforations and mold seams in perfect alignment (Figure 5.3L). This, and the 157 fact that many of the single-specimens have cracked or fractured apertures, indicates that the beads were wound and pressed in a sequential mold and then separated (broken apart) when the glass was cold. This group includes orange, red, green, and blue specimens. The orange and red specimens were all colored with gold (19.5-36 ppm) (Figure 5.3F and 5.3M), while the single green specimen (85STNsp2) (Figure 5.3J) was colored with copper and the single blue specimen (6STNSP-A) was primarily colored with cobalt (Figure 5.5). Figure 5.5. CuO (%) and Au (ppm) biplot of Pb-K beads in the Orrak assemblage. Shape indicates method of manufacture, while color (red, green, blue) reflects glass color. While these beads are of an unusual variety (see discussion below), the morphology and technology of these beads (faceted-spheroidal, mold-pressed) is typical of Bohemian manufacture (Francis, 1988, 2009a; Kaspers, 2014; Neuwirth, 1994, 2011; Ross, 2003; Ross and Pflanz, 1989). The Pb-K formula is a good example of Bohemian 158 “composition,” a leaded glass of brilliant color designed to imitate gemstones and be easily molded (Francis, 1979, 1988; Kaspers, 2014). The use of gold as a colorant is also typical of Bohemian “composition” (Francis, 2009a). Four additional beads in the Pb-K group were also colored with gold and manufactured by winding and pressing. Three of these lack facets and were pressed into a simple oblate form. The fourth bead (6STNSP-F) was wound and roughly faceted and pressed into a square shape by hand (not molded). The composition and manufacturing method of these four beads is also typical of Bohemia. Four other beads, also composed of Pb-K glass, were wound, but lack evidence of pressing. Based on glass formula, these too are likely Bohemian, though wound, lead-potash beads were also manufactured in China (Brill et al. 1991; Carter, 2016; Carter, et al., 2016b). The second major compositional group in the Orrak assemblage includes five beads made from potash glass (K-Ca) with K2O content ranging from 12.8%-16.6% and CaO content from 6.6%-11.1%. All five are of drawn manufacture and have a hexagonal cross-section. These varieties are a well-known Bohemian type (Kidd and Kidd Ic and If) and the high potassium and calcium content is typical of central European “forest glasses” (Cílová and Woitsch, 2011; Francis, 1988; Kenyon et al., 1995). Three of these specimens have facets ground into the corners. The final five beads in the assemblage have unique compositions within the Orrak assemblage. Bead No. 37 is a compound, red-on-green, bead (Kidd and Kidd IVa6) of drawn manufacture. This type, sometimes called a “green-heart,” is a well-known variety and is the only bead in the assemblage made from soda-lime glass (N-Ca), typical of Venetian manufacture (Francis, 1988, 2009b). Bead No. 8 (Figure 5.3G) is so heavily 159 patinated that its method of manufacture was impossible to discern. It is possibly of Bohemian manufacture, but has an extremely high potassium (19.75%) and alumina (4.91%) content (K-Ca-Al), unlike other beads of definitive Bohemian origin. Another specimen (Cat. No. 17, Figure 5.3I) is a wound bead, also of possible Bohemian origin. It was manufactured from a potash glass (K-Ca-Mg), but the magnesia content (4.32%) is significantly higher than other Bohemian beads. In form, the bead is reminiscent of Chinese “coil” beads, though those varieties are typically manufactured from leaded glass (Francis, 2002). Bead 6STNSP-G is a wound bead manufactured from a mixed alkali leaded glass (Pb-Na-K), reminiscent of some Chinese beads reported by Burgess and Dussubieux (2007). The last bead in the assemblage (27MIXSP-B) is heavily weathered but appears to be a wound bead of compound construction (red/purple over brown/tan). This specimen (Pb-Ca-P composition) contains high lead (49.6%), high calcium (19.5%), very low silica (10.0%), and has a very high phosphate (12.6%) and chlorine (2.3%) content. This is a very unusual composition for glass, and it seems most likely that this bead was either not made of glass or a section of heavily weathered glass was sampled during analysis, which can produce unexpected results. Discussion Chronology and origins The bead assemblage recovered archaeologically at Orrak is notable for the ubiquity of European, primarily Bohemian, types. Several of these (i.e., the drawn Bohemian varieties manufactured from K-Ca glass) are well known in the bead literature and are the only type that can be considered a clear temporal marker (Figure 5.3B, 5.3D, 160 5.3O). Beads of this type—often erroneously called “Russian” beads in North America— were not manufactured until ca. 1820 (Blair, 2018; Francis, 1994; Ross, 1997). One of the Orrak specimens (Cat No. 4, Figure 5.3B) is also noteworthy for containing a notable quantity of uranium (44 ppm) compared to the rest of the beads in the assemblage. Uranium oxide was used as a colorant in some yellow and green Bohemian glasses beginning in 1830, though it did not become commonly used until the 1840s (Brill, 1964:54; Langhamer, 2003:71). The bead is blue in color and contains less uranium than would be present if this element had been used as a colorant. One explanation for the distinct presence of this element is that pieces of uranium glass cullet were used in the production of this bead, strongly suggesting that the bead could not have been manufactured prior to AD 1830. Alternatively, the uranium could be associated with the source of the cobalt ore used to color the glass, a known elemental association of the Schneeburg mine area of Germany, used from the 15th to the 18th century (Gratuze et al., 1996). The wound and pressed, faceted beads present in the Orrak assemblage are not well documented and are rare examples of early, faceted, Bohemian beads made of “composition”—a lead glass, often colored with gold, intended to imitate faceted garnets (Hunt, 1976; Kaspers, 2014; Figures 3F, 3L, and 3M). These beads all have vertical mold seams, cylindrical perforations, and were wound before the facets were pressed into the glass. Harris (1989:5) describes the manufacture of these beads as: “[a] multi-bead, tong- mounted mold that could be clamped around a mandrel wound with glass produced a row of crude faceted beads that had to be broken apart when the glass was cold. This appears to be an early experiment” (see also Neuwirth, 2011). Ross (2003:43, citing Schreyer, 161 1790:93) dates this manufacturing technique to the beginning of the 18th century. The beads are distinct from the later, visually similar, mold-pressed beads that post-date the early- to mid-19th century (Ross, 2003). Similar beads have rarely been documented or recovered outside of Palau, with the closest example of this type being recovered from a pre-1630 Native American burial in a Franciscan church on St. Catherines Island, Georgia (USA) (Francis, 2009a). Though the specimens of this type recovered at Orrak could possibly have been manufactured during the 18th century (Harris, 1989; Neuwirth, 1994, 2011; Ross, 2003; Schreyer, 1790), or earlier (Francis, 2009a), the strong association in Palau between this type and the drawn Bohemian beads suggests contemporaneity, although it is possible that the beads could have been heirlooms (Power, 2011; Titchenal, 1999, 2001). The Venetian red-on-green bead variety was manufactured from the 16th-19th centuries. A similar bead type with a white center was first manufactured ca. 1830 (Billeck, 2008). The red-on-green variety beads were still manufactured after ca. 1830, but, at least at sites in western North America, they are often absent from bead assemblages after the introduction of the red-on-white variety (Billeck, 2008; Blair, 2018). The presence of the red-on-green bead at Orrak, in association with the drawn Bohemian varieties, suggests that the assemblage dates no earlier than ca. 1830 and probably no later than ca. 1850. Manufacturing periods for bead types can provide an important TPQ that can be used to better understand when stone money quarrying activity may have taken place. The bead assemblage suggests that quarrying activity may have continued until at least ca. 1830-1850. Although it is possible that the beads may be part of a short-term Palauan use of the site after quarrying terminated, stratigraphic and artifactual evidence (e.g., 162 limestone quarrying debitage) suggests that they are associated mostly or exclusively with quarrying activity (Fitzpatrick, 2003a, 2003c, 2008). In addition, it is well documented that quarrying activity continued into the mid- to late-19th century so the evidence from Orrak fits into the larger picture of what was happening in the Rock Islands at that time (Fitzpatrick, 2016). It is important to note that while Europeans were Micronesia as early as the 16th century, including the arrival of the Spanish in Yap (see Hezel, 1972, 1979, 1983), there is a noticeable absence of 15th-17th centuries beads in the archaeological record and ethnographic accounts. A notable exception may be Kubary’s (1873) illustration of a Venetian five-layer chevron bead (Figure 5.2a-8 and 5.2a-9), considered to be genuine udoud, that most likely dates to the late 16th or early 17th century (Allen, 2010). However, it can be difficult to determine the number of glass layers in chevron beads and if this analysis or illustration was inaccurate and this is a four-layer chevron bead, then its manufacture would date to the 18th-19th centuries, placing it generally within the same time as when other European beads were introduced to Palau. Interestingly, Kubary does not illustrate this bead in any later publications (Allen, 2010) and it is possible that this bead was later discovered as a counterfeit or udoud er a ngebard given the difficulty in outsiders gaining access to authentic udoud. Beyond this example, there appears to a significant gap from when beads were introduced from East Java or Southeast Asia. Cheldoech in transition during the 19th century The vast majority of glass beads in the Orrak assemblage can be correlated with the cheldoech category. Although the wound, pressed, and faceted Bohemian beads 163 (Figure 5.3F, 5.3M, 5.3L) bear a striking resemblance in shape to klorange, a category of kldait udoud (Figure 5.2a-3, 5.2b-3), the fact that these beads are made of transparent glass automatically places in the cheldoech category. The coral-colored Bohemian beads could possibly be considered cheldoech mengungau (small bright red-orange), while the beads made from opaque glass may fit into other categories. For example, the oyster white oblate bead (Figure 5.3G) and dark blue oblate bead (Figure 5.3A) can both be identified with kldait bleob, a category of undecorated udoud that was typically used for more significant exchanges than cheldoech, including payment to chiefs during a burial or worn around the neck of a pregnant woman to ensure a healthy baby (Watanabe and Inacio, n.d.). The transparent and translucent beads would have likely been used in economic transactions and for purchasing supplies like ilaot and food and not for more important exchanges like negotiating access to stone money quarries, exchanged as dowry, or to end a war between clans (see de Beauclair, 1963; Krämer, 1926; Kubary, 1873, 1895; Osborne, 1966; Watanabe and Inacio, n.d.). When considering the Orrak bead assemblage in a wider context, there is evidence that it is important to consider large-scale shifts that were taking place in Palauan society during the 19th century. The proliferation of stone money quarrying by Yapese islanders led to a second wave of bead introduction to the Palauan economy and these beads were introduced as the manufacture of counterfeit udoud was increasing. At approximately the same time, beads were interred with burials for the first time. These processes were taking place against a backdrop of increasing European presence, the introduction of guns, iron, and a precipitous population decline from European- introduced diseases. Palau was under Spanish administration, including Christian 164 missionization, by 1885 and became part of the German administration in 1899. The introduction of the Deutsche mark during the German administration, when Krämer was conducting his fieldwork, likely had an impact on the relative value of cheldoech as the economy transitioned to using foreign currency. This coincided with efforts by the Germans to suppress traditional interisland voyaging that eventually led to the cessation of stone money quarrying. As such, we argue that glass beads from Orrak were introduced from Yap at a time when cheldoech was already being devalued as a form of currency—perhaps in conjunction with prohibitions placed on voyaging—but still retained non-monetary value to Palauans, resulting in them being used in novel ways. Many of the beads from odesongel are typologically identical to those recovered at Orrak. The blue-green glass beads and orange/amber beads at the Hung Kuo site originally identified by archaeologists as kldait chesbad are, in fact, Bohemian, suggesting an introduction contemporaneous to the Orrak assemblage during the second wave of bead introductions to Palau. Yet those Bohemian beads were interred with clear counterfeits made from drilled bottle glass and, therefore, the question remains, would the European-made glass beads interred in odesongel also be considered counterfeit or devalued? Or could the devaluation of cheldoech happened earlier than recorded by ethnographers? According to some, small trade beads were not considered money and worn as earrings primarily by children, which supports Krämer’s (1926) account that cheldoech were sometimes worn as earrings by young girls (Thijssen Etpison and Dupont, 2017). Earrings, however, were typically made from pearl shell or turtle shell and it is possible that cheldoech were only worn as earrings only after they were devalued. If this is true, 165 then it is possible that small trade beads, like ones manufactured in Europe, could be recognized as udoud er a ngebard (udoud of the west). In contrast, oral traditions indicate that beads were accepted as authentic udoud if they were introduced by Yapese islanders (Kloulubak, personal communication). Despite written accounts that outline what types of beads may have been considered counterfeit, we must cautiously interpret accounts when the ethnographer has a sometimes-unfavorable view of Palauans (see Kubary, 1873). It is very possible that given the complexity and sensitivity of the topic, important details about udoud classification and exchange were not shared, especially given the secrecy surrounding them. We are also careful not to discount Palauan oral tradition, which is clear that beads coming from Yap would have been considered authentic udoud (Kloulubak, personal communication). When considering these objects from a Palauan perspective, there is no contradiction. When introduced by Yapese islanders, these objects would not have been categorically thought of as European and inauthentic because of their manufacturing origin (see Silliman, 2009). Given the changes in how beads were being used or exchanged by ca. 1830-1850, it appears likely that the process of cheldoech being devalued was already begun well before they officially went out of circulation in the 1920s. However, the contemporaneous interment of beads in odesongel suggests that cheldoech had come to take on new roles in funerary contexts, reflecting a larger social shift in how lower- valued udoud, like these, were used and exchanged. It is possible that although the beads at Orrak were likely considered authentic, they may have had little value in economic exchanges because they had already depreciated. 166 Despite the economic value of the beads being unknown, the recovery of glass beads from Orrak allows us to consider the nature of Yapese-Palauan interaction networks. With the exception of Captain Wilson’s wreck on Ulong Island in 1783, Palau was relatively isolated from European interaction until Palau fell under the colonial rule of Spain in 1885 (Callaghan and Fitzpatrick, 2007). Stone money quarrying activity and transport between Yap and Palau was one part of Yap’s extensive inter-island exchange networks across Micronesia. In addition to moving people and goods between archipelagos, they provided a new source of glass beads to local Palau economy. At the same time, the Yapese were engaged in the sawei tribute system involving atoll dwellers to the east. Although some highly valued items such as sennit cord were exchanged to both Palau and Yap’s outer islands, glass beads were exclusively traded with Palauans— and not a part of sawei exchanges—likely because there was little demand for them on remote atolls where other types of exchange valuables were used or preferred. In addition to highlighting the navigational feats required to travel throughout western and central Micronesia, our research helps shed light on multiple, contemporaneous, and highly- organized exchange networks using many different types of objects or resources as part of exchange behaviors. Conclusions Like other types of “currency” or exchange valuables in traditional island societies, Palauan money beads were highly valued and used in a variety of different social transactions for obtaining goods or services. People from Yap negotiated access to stone money quarries by offering highly-valued glass beads, corvée labor, and marriage 167 partners while using less valuable glass beads to purchase supplies. Despite participating in multiple overlapping long-distance exchange networks, the Yapese used glass beads exclusively in Palau where they had already been in circulation for centuries. The recovery of more than three dozen glass beads from the Yapese stone money quarry at Chelechol ra Orrak is unique in that glass beads in this quantity have never been previously recovered archaeologically from non-mortuary contexts or in a stone money quarry site. Morphological and compositional analyses indicate that the assemblage overwhelmingly consists of Bohemian varieties produced ca. 1830-1850 and, accordingly, were recent introductions to the region that provides an independent line of evidence to understand when quarrying activity took place at Orrak. The majority of the beads in the Orrak assemblage can be correlated with the cheldoech type of Palauan bead money. The entire category of cheldoech was devalued by the 1920s because counterfeiting was so widespread. Our research suggests that the devaluation of this bead type began as early at the mid-19th century, decades earlier than ethnohistoric accounts indicate. Despite being a devalued type, multiple sources indicate that there was both a market and demand for devalued and counterfeit udoud, though it is difficult to know when counterfeiting began since it took many different forms. There appears to be a shift in the way Palauans used and exchanged cheldoech; however, these beads were still valued and exchanged in different ways. Beyond using these beads to help better understand the nature of Palauan-Yapese interactions, they provide an important artifact class with which to help answer a number of important questions relating to pre-European exchange behaviors and post-contact 168 interactions. Using the beads as a TPQ, they suggest that quarrying activity at the site may have continued until the 1830-1850s, which can then be used to help anchor the chronology of stone money quarrying activity at Chelechol ra Orrak. Important questions remain that can be tested with future research. It is unknown if bead chronologies developed in Western North America are appropriate parallels or if there was a time-lag and glass beads were distributed in the Pacific at a later date (Francis, 1994). In terms of using the beads as chronological markers, it should be possible to build more refined Bayesian models using the beads as priors and model the Yapese stone money quarrying component at Orrak (see Fitzpatrick and Jew, 2018). Given that this is the only example of glass beads being recovered from a stone money quarry site, the Orrak assemblage can be used to compare with other quarries identified in Palau through archaeological survey or oral tradition. Future excavation at these types of sites may reveal if glass beads occur more frequently at stone money quarries or if the Orrak assemblage is distinct and represents a unique place to understand the nature of Palauan-Yapese interactions at a key period of time for both societies as they engaged in exchange with each other and newly arrived Europeans and Euro-Americans. 169 CHAPTER VI CONCLUSION Introduction Chronology building is one of the most fundamental aspects of archaeological inquiry with radiocarbon dating being the most important technique in which ages can be assigned to archaeological sites and materials (Bronk Ramsey 2008; Wood 2015). The ability to develop accurate, precise, and robust temporal assignments hinges on selecting ideal samples from undisputed cultural contexts. However, there are limitations to radiocarbon dating, particularly at the upper and lower ends of the calibration curve. Other times, sites may lack suitable material for dating. In coastal sites around the world, where people often harvested vast quantities of marine species, shells are a common and readily available material for dating archaeological deposits, particularly if archaeobotanical remains (e.g., carbonized wood, nuts, seeds) are lacking. Marine shells are typically more abundant, better preserved, less susceptible to vertical shifting, and easily recoverable compared to other types of samples such as carbonized wood (Thomas 2008: 346). As such, the dating of marine shells has proven to be a critical tool for examining a host of issues, including population movements, settlement histories, long- term changes in human-environment interactions, paleoenvironmental conditions, and many others. The chapters in this dissertation have outlined multiple approaches for best practices to improve chronology building in island environments. Using four case studies from around the world, I have shown that it is possible to produce robust chronologies in 170 these and other locations using chronometric hygiene, Bayesian modeling, marine reservoir corrections, and chemical compositional analysis of diagnostically distinct glass beads. Summary of research In the Caribbean, pervasive problems in the way radiocarbon dates are calibrated and reported have resulted in imprecise or incorrect interpretations of the past. After more than half a century of archaeological research in the Caribbean, two competing models of human colonization have emerged: the stepping-stone model and the southward route hypothesis. Like other world regions where humans appear to have moved rapidly through landscapes or seascapes, such as the Pacific colonization of Remote Oceania that took place in stages from different points of origin—or in North America where the coastal migration versus the ice-free corridor debate has raged for decades—support for one model or another largely depends on the number, quality, and suitability of radiocarbon dates used in analysis. In Chapter 2, I analyzed more than 2400 radiocarbon dates from 585 sites on 55 islands and subjected them to chronometric hygiene protocols and assigned them a class value of 1-4 with Class 3 and 4 dates deemed unreliable for chronology building. Just over half the total number of dates (54%) were Class 1 or 2 and considered acceptable for Bayesian modeling with only 10 dates (0.4%) being assigned as Class 1. In other regions of the world like the Pacific, chronometric hygiene studies use only Class 1 dates for chronology building (e.g., Wilmshurst et al. 2011). This means that only 0.4% of the available 2484 radiocarbon determinations from the Caribbean would be acceptable if the same standards used in other regions were applied here. Most 171 of the Class 3 and 4 dates (74%, n = 843) were rejected because laboratory number, complete provenience, sample material type, or radiocarbon age were lacking. This work underscores the importance of complete reporting, especially of sample material and provenience. Bayesian modeled colonization estimates suggest direct movement from South America to the northern Caribbean (Cuba, Hispaniola, and Puerto Rico and the northern Lesser Antilles) that initially bypassed the southern Lesser Antilles, with the exception of Barbados. Later colonization estimates for islands in the southern Lesser Antilles support the southern route hypothesis (Callaghan 2001; Fitzpatrick 2006; Fitzpatrick et al. 2010) and the predictions of ideal free distribution (Giovas and Fitzpatrick 2014) and does not support the oft-cited and recently reinvigorated stepping-stone model (Rouse 1986; Siegel 2018; Siegel et al. 2015, 2019). Overall, this study demonstrates the need for increased rigor in the reporting of radiocarbon determinations to adequately assess their efficacy and maintain chronological control to ensure that interpretive models are satisfactorily anchored in time and accurately reflect, to the best of our ability, the multitude of cultural behaviors that happened in the past. One of the useful outcomes of this database is that it can be easily updated when more radiocarbon dates are made available and can be used to develop local and regional chronologies that focus topics beyond initial human settlement. With the recent publication of 33 new ΔRs for the circum-Caribbean (DiNapoli et al. 2021) and updated calibration curves (Heaton et al. 2020; Reimer et al. 2020), it will be possible to develop increasingly accurate models for many islands. 172 In Chapter 3, I developed multiple error-weighted pooled mean ΔRs for the Florida Keys region using known-age live-collected scallop shells and demonstrated that there were negative regional offsets to the modeled global average marine calibration curve (Heaton et al. 2020). Individual ΔRs ranges from −257 ± 21 to −34 ± 22 14C yrs with both the high and low values coming from different species collected at the same location. As such, until more site specific ΔRs can be calculated, it is recommended that error-weighted pooled means are used instead. Isotopic data also suggest that Argopecten gibbus may be susceptible to the hardwater effect and produce an “older” 14C age. A comparison of error weighted pooled mean ΔRs show that Biscayne National Park had the most negative offset, which suggests that terrestrial runoffs and currents play a role in variation given its close proximity to peninsular Florida. Next, I calibrated radiocarbon dates on stratigraphically associated shell and deer bone from the Clupper site, Upper Matecumbe Key, to compare how well the subregional ΔRs fit archaeological samples. It was not possible to develop a ΔR for Upper Matecumbe Key or the Clupper site using museum collections or paired charcoal and shell samples. To remedy this, we used an error weighted pooled mean ΔR for Plantation Key and Lower Matecumbe Key, the islands that border Upper Matecumbe Key. Using a single-phase Bayesian model, the ΔR (−147 ± 78 14C yrs) produced a good fit with the archaeological samples. This study demonstrates the importance of developing local ΔRs to use when calibrating archaeological dates on shell. Although it is recommended that site-specific ΔRs be calculated, it may not be possible due to a variety of issues. One way to address this limitation is to use error weighted pooled mean ΔRs. Doing so requires careful 173 sample selection, however, and an understanding of a mollusk’s preferred habitat and diet as these factors influence the 14C age and stable isotopic values. This study provides important new baseline data for establishing a ΔR for different parts of the Florida Keys and South Florida generally. In chapter 4, I compiled a database of 92 radiocarbon dates from Yap, including 31 new dates from my own field research that increased the total number available by 51%. After chronometric hygiene, 54% of the dates were excluded from modeling. Similar to the Caribbean, only 4% (n = 4) were assigned as Class 1. This stems from many samples having been dated on unidentified charcoal. Unlike the Caribbean, where improved reporting could result in many of the Class 3 and 4 dates being reassigned to Class 2, many of the Class 3 and 4 dates from Yap were excluded because they were taken from composite samples or secondary deposits. To produce a more accurate modeled chronology, we calculated a hypothetical ΔR of −1 ± 128 14C yrs. Isotopic analysis indicates that, like elsewhere in western Micronesia, A. antiquata is likely influenced by hardwater and will require its own ΔR despite the lack of limestone substrate in Yap (see Petchey and Clark 2011, 2021; Petchey et al. 2017, 2018). A more intensive excavation and dating program will be needed to investigate this further though, so that more temporally specific and species- specific ΔRs can be established. Bayesian modeling of Class 1 and 2 dates with the modeled ΔR produced a colonization estimate for Yap of 2450-2165 cal years BP (95.4% HPD). When contextualized with regional evidence for a sea-level drawdown ca. 2500 years ago (e.g., Dickinson 2003; Dickinson and Athens 2007), the data suggest that Yap was not settled 174 until ca. 2500-2100 years ago, but that earlier sites could still be located elsewhere on the island (possibly the northern half), as suggested by Yapese oral traditions. When results from the sites of Pemrang (Napolitano et al. 2019a) and Balech’lee are combined with that of Rungluw (Intoh and Leach 1985), we now have more robust evidence that settlement in southern Yap was more extensive than previously thought. Newly recovered data from my systematic auger survey also helps to establish an important baseline for understanding sea-level change over the last 3000 years though additional work is needed to better understand nuances involved with landscape development and site formation processes as they relate to human occupation. In chapter 5, I demonstrate how it is possible to refine site chronology when radiocarbon dates calibrate as modern or fall on a flat part of the radiocarbon calibration curve. At the multicomponent site of Chelechol ra Orrak, 38 glass beads were recovered from a Yapese stone money quarry site in Palau, western Micronesia (Blaiyok 1993; Fitzpatrick 2001, 2003b; Fitzpatrick and Jew 2018). Glass beads (udoud) have been exchanged as currency in Palau for centuries. People from Yap negotiated access to stone money quarries by offering highly-valued udoud, corvée labor, and marriage partners while using less valuable udoud to purchase supplies. Morphological and compositional analyses indicate that the assemblage overwhelmingly consists of Bohemian varieties produced ca. 1830-1850 and, accordingly, were recent introductions to the region that provides an independent line of evidence to understand when quarrying activity took place at Orrak. The production period of the Bohemian beads help anchor when quarrying activity at this site took place because the beads function as a termini post quem for site activity. In addition, the majority of the beads in the Orrak assemblage can 175 be correlated with the cheldoech type of Palauan bead money. This type of udoud was devalued for economic transactions due to its ease in counterfeiting, but archaeological analysis suggests that this bead type still retained non-economic value to Palauans. All of these case studies highlight how archaeologists can address some of the limitations imposed by radiocarbon dating, incomplete reporting of radiocarbon dates, and how various methods can be used to understand human activity in past when radiocarbon dating is unreliable. As these chapters demonstrate, chronology building should use only the most reliable and thoroughly reported dates. Bayesian statistical modeling can also incorporate prior information like stratigraphy to produce models that can estimate date ranges for undated archaeological contexts, such as the onset, temporal duration, or end of target events like initial human colonization of an island. When mollusks are selected for radiocarbon dating, samples must be selected carefully with an understanding of habitat preference and diet as these can influence the 14C age. By comparing the isotopes 14C, 13δC, and 18δO, it is possible to understand if certain species are susceptible to external influences like the hardwater effect, which can produce 14C ages that do not reflect the actual age of the sample. Finally, when radiocarbon dating is not reliable, or a site lacks suitable samples for dating, it is possible to use other techniques that can help anchor chronology. These approaches ultimately allow archaeologists to develop increasingly precise and accurate chronologies that can be used to better understand human activities in the past. 176 Best practices to chronology building on islands The case studies used in this dissertation demonstrate ways in which archaeologists can use various techniques to overcome some of the limitations with radiocarbon dating. I also outline best practices approaches to chronology building in island environments. Below, I discuss each of these separately in an effort to provide a useful guideline when selecting and analyzing radiocarbon samples. Increasing the number of dates Despite a dramatic increase in archaeological research in the Caribbean over the last two decades, the number of available radiocarbon dates is quite small considering it covers an expanse of more than 2.75 million km2. The meta-analysis of radiocarbon dates in Chapter 2 highlights this problem as only 433 out of 585 (74.0%) archaeological sites still have three or fewer radiocarbon dates with 237 (40.5%) of those sites only have a single date representing an entire site. This is a minimal change compared with the results of Fitzpatrick’s (2006) study where 164 (39.4%) sites had a single reported radiocarbon date. Having a small number of dates for a single site limits the ways in which radiocarbon dates can be critically evaluated and interpreted, but it is more likely that spurious dates will not be identified (Spriggs and Anderson 1993). This issue extends to many Quaternary studies and likely reflects, in part, the financial burden of rigorous dating regimes (Blaauw et al. 2018). In addition, building Bayesian models with too few dates associated with a targeted event should also be avoided. Using hypothetical datasets to analyze the colonization of Fiji and Hawai‘i, Rieth and Hamilton (2021) outline several best practices 177 approaches including at least five dates in a model, incorporating pre-colonization dates if available, and building multiphase models with ideal stratigraphic associations. Having too few dates results in a model that is overly imprecise. Models are also improved when calibrations fall on a steep part of the calibration curve; however, this may not be possible at times in various geographic regions. In a separate study, using this function with radiocarbon dates group into multiple phases also produced more precise colonization estimate for Rapa Nui than in single- phase models (DiNapoli et al. 2021). The case study in Chapter 2 grouped all radiocarbon dates in a single-phase model regardless of stratigraphy because each island was considered a “site.” Moving forward, it might be possible to produce more precise colonization estimates by building multi-phase models. Sample selection Selecting appropriate samples from secure archaeological contexts is key. Problems with “old wood” have long been identified and inbuilt age (IA) represents a significant problem in areas where species of trees can be long-lived or where it is possible that old driftwood was used for fuel (e.g., Allen and Huebert 2014; Dye 2000; Lepofsky et al. 2003; Schiffer 1986). The best way to address this is by identifying wood charcoal to taxon (preferably species) to avoid dating long-lived species (Allen and Huebert 2014). Preference should be given to short-lived taxa like seeds and nuts, but also twigs recovered from secure anthropogenic contexts to avoid environmental contamination like rootlets that may introduce additional sources of carbon (Brock et al. 2010). 178 When taxonomic identification is not possible, there are statistical methods that can be used to account for the potential for IA, such as the Charcoal Outlier function in OxCal (Dee and Bronk Ramsey 2014). This approach works well for using previously reported radiocarbon dates on identified wood charcoal or charred material. Incorporating the Charcoal Outlier function requires an understanding of the lifespans of long-lived tree species. The prior in this model is that the correct age of the modeled events is younger than the unmodeled calibration dates by some unknown amount of time. Thus, the Charcoal Outlier model is expected to produce younger age estimates than single- phase modeling without this prior assumption (Dee and Bronk Ramsey 2014). In Chapter 2, each date on unidentified charcoal or charred material was presumed to have some degree IA of up to 100 years. Similar issues apply to marine samples. The “old shell” problem can be an issue when dating long-lived species, subfossil shells are used as tools, or if shell artifacts are passed on as heirlooms (Rick et al. 2005). Despite the potential for problems with dating marine samples with a marine component (see Hutchinson 2020; Rick et al. 2005), they can provide reliable radiocarbon dates if researchers are careful to select samples with preference given to species where the potential for inbuilt age is minimal. This includes selecting juvenile fauna to avoid potential inbuilt age, when possible. In addition, marine shell samples should be dated in conjunction with developing marine reservoir corrections (ΔR) for specific sites, habitat, or species. More studies in the Caribbean are doing this, which has been routinely practiced in the Pacific (e.g., Chinique de Armas et al. 2020; Diaz et al. 2017; Petchey and Clark 2010, 2011, 2021; Petchey et al. 2017, 2018). When it is not feasible, because of a lack of suitable terrestrial 179 samples or access to suitable museum collections, using error weighted pooled means from all available samples from the appropriate subregions is an option (e.g., Couthard et al. 2010; DiNapoli et al. 2021; chapter 3). Faunal remains can also provide dating material, typically in the form of bone or teeth, and are often ideal for directly dating specific events of interest. Human skeletal remains can also be used with the appropriate ethical considerations and support from descendant or stakeholder communities. For example, in the Caribbean, human burials are often interred in existing midden or posthole features, particularly during the Late Ceramic Age (Hoogland and Hofman 2013). In doing so, the original feature’s stratigraphy as well as possible dateable material in an associated context, is not only disturbed, but also mixed. In these cases, if the burial is the event of interest, directly dating the skeletal remains is the only reliable approach. However, skeletal tissue is notorious within radiocarbon dating for the numerous challenges it can present, particularly for issues of preservation, diagenesis, and calibration. A major challenge in calibrating human bone dates in the Caribbean, as well as many other island and coastal regions, is the contribution of marine foods to overall diet. Archaeological and bioarchaeological evidence have demonstrated the utility of marine protein to human diet in many island and coastal regions, and the Caribbean is no exception (e.g., Keegan and DeNiro 1988; Sullivan et al. 2020; see also Chisholm et al. 1982). The result is that many individuals have an overall diet that reflects a combination of marine and terrestrial foods, thus requiring application of a mixed marine and terrestrial calibration curve. Cook et al. (2015) propose a best practices approach for mixed diets that involves the application of a 50% mixed marine and terrestrial curve 180 along with a 10% error range to account for variability in cases where marine foods and C3 plants are consumed. In the Caribbean, however, archaeological and botanical evidence have suggested some consumption of maize, a C4 plant, in the form of macro- and microbotanical remains in archaeological and paleoenvironmental contexts and starch grains trapped in samples of human dental calculus (Mickleburgh and Pagan- Jiminez 2012). In Chapter 2, dates on human bone were calibrated with a 50/50% mixed curve with a 12% error range to account for additional uncertainty with C4 plants. This problem becomes increasingly complex when individual variation and changes across the life course are considered. As bone turnover is slow, the δ13C may reflect variation from mobility or changes with age. Additionally, stress and disease can impact nitrogen values. When marine curves are applied, a local marine reservoir correction must also be considered (e.g., DiNapoli et al. 2021). In the cases where people or food resources are moving or being traded, the marine carbon will vary. Finally, it is also critical that archaeologists date single entities to avoid introducing multiple sources of radiocarbon and additional offsets (Ashmore 1999). Using bulk, or mixed, samples was common practice for both charcoal and marine dates when larger sample sizes were required prior to the development of AMS. Combining multiple specimens, even closely associated ones can introduce multiple radiocarbon ages, producing an unreliable and inaccurate sample age. Legacy samples In regions where archaeologists have been working for decades, it is likely that datasets contain conventional radiocarbon dates that have large standard errors. Some 181 define large standard errors are more than 100 years (Hamilton and Krus 2018) or 10% of the radiocarbon age (Wilmsurst et al. 2011). Some chronometric hygiene studies exclude these “legacy dates” because they are considered imprecise (e.g., Wilmshurst et al. 2011). However, when used in a Bayesian model, these legacy dates do not need to be rejected because they can provide useful information in a Bayesian model provided the sample meets other criteria for reporting (Hamilton and Krus 2018; Krus et al. 2015). The best practices approach to dates with large standard errors is to redate the original sample if any is left (Hamilton and Krus 2018). In many cases this is not possible, but it is important for archaeologists currently submitting samples to retain part of the original sample or request any residual sample to be returned from the radiocarbon laboratory for archiving. Chronometric hygiene Chronometric hygiene is an effective way to cull unreliable or underreported dates from databases. However, overly strict hygiene protocols can result in too few dates being used for modeling (Schmid et al. 2018). The ideal way to address this is to improve the reliability of dates with complete reporting. This can be achieved by contacting archaeologists and radiocarbon laboratories to obtain missing information as was done for the larger Caribbean-wide study. Note that this may not be possible, however, if an archaeologist is deceased or a radiocarbon laboratory considers data proprietary and is unwilling to share. 182 Integrating multiple datasets Given that each chronometric sequencing technique has inherent limitations, several best practices approaches have been developed to overcome these potential obstacles. One of the most effective ways to do this is to build large, interdisciplinary datasets that can produce higher precision results. For example, Homo erectus remains recovered on the island of Flores date to ca. 700-840 kya, would have required two open- water crossings to reach (Brumm et al. 2010, 2016; van den Bergh et al. 2016; O’Sullivan et al. 2001). The conditions under which they arrived on the island are still debated, as are the cognitive and behavioral capabilities and by extension, their ability to construct watercraft. The final appearance of H. erectus on Java has also been debated, with dates from the Ngandon site, suggesting that they survived on Java until around 53-27 kya (Swisher et al. 1996). These dates, taken from electron spin resonance and U-series dates of fossil bovine teeth are anomalously young and suggest that they overlapped with Homo sapiens (Swisher et al. 1996). These interpretations have been challenged on the grounds that the dated material was not directly associated with H. erectus fossils and that taphonomic processes, such as reworking of fluvial deposits and uranium leaching, produced spurious dates (Rizal et al. 2020). Using a combination of methods to date fossil contexts and constrain site formation processes, these fossils were modeled to 117-108 kya (Rizal et al. 2020). In another example, sea level and bathymetric reconstruction have been used to evaluate the potential for Pleistocene seafaring in the Mediterranean as a number of Greek Islands that were never connected to the mainland, including Crete, Gavdos, 183 Naxos, and some of the southern Ionian Islands, contain some evidence of hominin activity ca. 70-13 kya, suggesting that humans may have had some degree of seafaring capabilities during the Middle Pleistocene (Cherry and Leppard 2015; Ferentinos et al. 2012; Leppard and Runnels 2017; Leppard et al. 2021; Papoulia 2017; Runnels 2014, 2021). In a similar vein, close reexamination of multiple lines of long-accepted evidence for the Balearic Islands in the western Mediterranean, including the timing of endemic faunal extinction, radiometric data, distinguishing natural from anthropogenic fire, and a lack of pre-Neolithic diagnostic artifacts, suggests a surprisingly late colonization when considering the pre-Neolithic colonization of many other nearby islands (Cherry and Leppard 2018b; Leppard et al. 2021). Iceland is a rare, notable example of how separate lines of evidence can be used to understand initial human colonization. Schmid et al. (2018, 2019, 2021) revised the colonization of Iceland using a combination of dated tephra layers, radiocarbon dates, and temporally diagnostic artifacts. Using this combination with the application of chronometric hygiene and Bayesian modeling to radiocarbon dates, they reevaluate the notion that all dates from the Viking Age relate to the colonization of Iceland (Landnám). Their analyses demonstrate that less than 1% of archaeological sites are from the pre- Landnám period (pre-AD 877) and that 15% of sites are from the initial colonization period (AD 877-939), which has broad implications for understanding the settlement density of Icelandic colonization sites (Schmid et al. 2021). These examples demonstrate that as archaeologists continue to incorporate ancillary datasets from other fields of study, we can expect increasingly refined pictures of colonization to emerge. 184 Beyond chronologies: Implications for understanding the past Having outlined multiple approaches to address some of the limitations of radiocarbon dating, it is possible to explore what the implications are for a more nuanced understanding of the past. Understanding when humans first reached previously uninhabited islands is linked to many larger anthropological themes, such as the development of seafaring technologies and wayfinding skills (Anderson et al. 2010a; Bednarik 2003; Erlandson 2010; Fitzpatrick and Callaghan 2008; Montenegro et al. 2016), understanding linguistic diasporas, particularly the spread of Austronesian languages out of Taiwan to the Pacific and Indian Ocean (e.g., Adelaar and Himmelmann 2013 and papers therein; Blust 2013; Donohue et a. 2010; Spriggs 2011), understanding extinction or extirpation events (Anderson et al. 2010b; Clark et al. 2013; Louys et al. 2021; Rijsdijk et al. 2011; Rawlence et al. 2016; Seersholm et al. 2018), and long-term anthropogenic impacts on our own planet such as the onset of the Anthropocene (e.g., Boivin et al. 2016; Braje et al. 2017; Erlandson 2013; Erlandson and Rick 2010; Rick et al. 2013). Finally, as we move forward as a discipline, many archaeologists working on islands find themselves “racing a rising tide” (sensu Erlandson 2008) and trying to mitigate the impacts of climate change and sea-level rise. In many instances, aspects of cultural heritage are at risk of being permanently lost due to erosion, inundation, or coastal commercial development. Recent projections of sea-level rise and its impacts on small and low-lying islands represents an ever-increasing threat to the preservation of cultural heritage in Small Island Developing States with some studies predicting that more than half of the Pacific’s low-lying atolls will be uninhabitable by the end of the century (e.g., Barnett and Campbell 2010; Dickinson 1999; Erlandson 2012; Kelman 185 2010; Storlazzi et al. 2018). Unfortunately, even if global efforts to mitigate sea level rise are effective, island nations still face increasing vulnerability to natural disasters and threats to local economies, food production strategies, and cultural heritage sites (e.g., Kelman and West 2009; Terry and Chiu 2012; Storlazzi et al. 2018). One critical part to protecting and preserving cultural heritage is understanding the long-term temporal trajectories of human history in these regions especially when they are at risk of being permanently lost. Doing so requires an accurate understanding of how chronometric sequencing techniques work, their limitations, and how other lines of evidence can be used to build synthetic interpretations of the past that benefit descendant and stakeholder communities. 186 APPENDIX A SUPPLEMENTARY MATERIAL FOR CHAPTER II Supplementary text Sensitivity analyses for inbuilt age on unidentified wood Nearly all Class 2 radiocarbon determinations from wood samples were not identified to taxon or identified as long-lived species, potentially presenting inbuilt age problems. To address this, our analysis presents modeled colonization estimates with a 100-year Exponential Outlier model using the Charcoal_Outlier model (Bronk Ramsey 2009a; Dee and Bronk Ramsey 2014). The prior assumption in this model is that the correct age of the modeled events is younger than the unmodeled calibration dates by some unknown amount of time. Thus, the Charcoal_Outlier model is expected to produce younger age estimates than single-phase modeling without this prior assumption (Dee and Bronk Ramsey 2014). To demonstrate the effect of including 100% probability of some amount of inbuilt age on colonization estimates, we modeled Class 2 wood dates in three ways: 1) as simple single-phase models with no additional parameters, which assumes that each radiocarbon determination is close in age to the actual activity being dated; 2) as having 100% probability of having between 1 and 100 years of inbuilt age; and 3) as having 100% probability of including between 1 and 1,000 years of in-built age using the Charcoal_Outlier model (Bronk Ramsey 2009a; Dee and Bronk Ramsey 2014; Napolitano et al. 2019b; Appendix A). 1,000-year Outlier models for Cuba and Puerto Rico were run with the 100 oldest determinations because the models would not converge when modeled with all dates. The 1,000-year outlier models for Trinidad and Guadeloupe would not converge with so many younger radiocarbon determinations. Trinidad’s three 187 youngest determinations were removed from the model (I-10766, ISGS-A2629, ISGS- A2630). Results of sensitivity analyses As expected, the outlier models produced somewhat younger and more precise colonization estimates than the single-phase modeling (Schmid et al. 2018, 2019); however, some of the 1,000-year models produced spurious results (Napolitano et al. 2019b). As such, we selected the 100-year outlier models for colonization estimates (Napolitano et al. 2019b; Appendix A). Overall, the single-phase and 1,000-year outlier models do not improve upon the 100-year outlier models (Napolitano et al. 2019b; Appendix A). The 1,000 year outlier models from Barbados, Bonaire, Carriacou, Curaçao, Grand Turk, Hispaniola, Nevis, Puerto Rico, San Salvador, St. Martin, St. Thomas, Tobago, Trinidad, and Vieques are reasonable, but we reject the 1,000-year outlier models from Anguilla, Antigua, Aruba, Cuba, Guadeloupe, Jamaica, Montserrat, St. Eustatius, St. John, and St. Lucia because they produced results that conflict with prior archaeological knowledge of these islands. For the 1,000-year outlier model, Jamaica produced a colonization estimate that was out of range at 68% and 95% HPD, and Montserrat produced an estimate that was out of range at 95% HPD; thus, both models were rejected. As prior archaeological research clearly shows pre-contact occupation of these islands, these results are unrealistic and the models were therefore not considered in our final results. The models for Anguilla, St. Eustatius, and St. John were rejected because they produced colonization estimates that span almost the entire Phase of acceptable radiocarbon determinations and are therefore uninformative. 188 In the case of Anguilla, there are 51 radiocarbon determinations in our database, 41 of which are considered acceptable after chronometric hygiene. Prior to chronometric hygiene, the oldest radiocarbon determinations for Anguilla were on shell tools and vessels recovered from surface contexts (see Appendix A). This truncates the previous colonization estimate of ca. 3620 cal yrs BP (Fitzpatrick 2013) to 1510-1185 cal yrs BP (95% HPD) with the 100 year outlier model. Out of the 41 acceptable determinations, 30 are on unidentified wood charcoal and the remaining 11 are marine shell identified to species. The single-phase model produced a colonization estimate of 1535-1315 cal yrs BP (95% HPD) and the 1000 year outlier model produced colonization estimate of 1320- 745 cal yrs BP (95% HPD). This latter estimate encompasses 34 of the 41 oldest dates in the Phase and is not a robust colonization estimate. Material culture from Anguilla demonstrates that the island was occupied by Late Ceramic Age. Zemis/cemís such as ground three-pointed objects thought to embody Amerindian spirituality, snuffing tubes for inhaling the South American-introduced hallucinogenic substance cohoba (Anadenenthera peregrina), vomit spatulas, and pottery all suggest that island was colonized and integrated into a large Taíno culture that extended across the Greater Antilles and northern Lesser Antilles (e.g., Crock and Petersen 2004; Fitzpatrick 2015, Hofman et al. 2008), Crock (2000, 2004) suggests that it was possible that residents of Anguilla were part of a “lesser Chiefdom” or part of a multi-island chiefdom by ca. 800 years ago. Ceramic evidence also indicates that there were populations on Anguilla by the Late Ceramic Age (2000, 2004). Based on these lines of evidence, it seems the 1,000- year outlier model for Anguilla adds too much potential inbuilt age to the radiocarbon determinations because the modeled colonization estimate is incongruent with 189 archaeological evidence. The 1,000-year outlier model for Antigua was rejected because it was more than ca. 1500 years younger than the simple single-phase models and produced a large colonization range of almost 1200 years. The result was that the estimate spanned almost the entire known prehistoric occupation of Antigua (after chronometric hygiene) and therefore is not a considered a robust colonization model. Similarly, the 1000-year model for Aruba was rejected because at 95% HPD the colonization estimate is modeled at 3575-1540 cal yrs BP. We do not consider a ca. 2,000 year range to be a robust model. The 1000-year outlier model for Cuba was rejected because it produced a colonization estimate that was ca. 1000 years younger than that produced by single-phase modeling. Given the presence of pottery-bearing sites on Cuba that extend into the Archaic period, we reject the Charcoal_Outlier model for being too conservative and contradicting our prior archaeological knowledge of the island’s archaeology (see Fitzpatrick 2015; Keegan and Hofman 2017). Legacy dates Cuba has 40 legacy dates—determinations with standard errors (SE) of 100 years or more, typically conventional radiocarbon dates sampled prior to the development of AMS—including the three oldest acceptable determinations from the island. In a single phase model with legacy dates, Cuba’s modeled colonization estimate is 5950-5335 cal yrs BP (95% HPD). Without legacy dates, the modeled colonization date is 4800-4535 cal yrs BP (95% HPD). While in some cases using legacy dates with large SE has a negligible impact on model precision and accuracy (Hamilton and Krus 2018), our results show that in the case of Cuba, these determinations with large SE produce modeled ages 190 that are substantially older than when using more precise data. In both models, however, the colonization estimate is still younger than previously reported. Our modeling still supports a colonization during the Archaic period and Cuba remains one of the earliest islands colonized in the Greater Antilles (e.g., Fitzpatrick 2015; chapter 2: Table 1). Puerto Rico Modeling all 451 determinations resulted in a low model agreement (40.0%) (Appendix A, Table 1). The low model agreement is caused by an over-representation of dates in the middle and late part of the Phase, thus biasing the early end of the Phase because the determinations are not uniformly distributed. To assess how the model for Puerto Rico improves with fewer younger determinations, models were run in increments of 25 until only the 100 oldest determinations were modeled. Modeled colonization estimates do not change significantly when younger determinations were removed from the model, but the model agreement (Amodel) increases from 40.0% with 451 dates to 117.7% with 100 dates and becomes acceptable with 425 and 375 and fewer dates; the overall agreement (Aoverall) increases from 76.0% with 445 dates to 104.6% with 100 dates. The overall agreement increases significantly with 325 dates. Tau Boundary One potential limitation to this study is that we have included all radiocarbon determinations and grouped them in a single Phase. For islands that have a large number of radiocarbon determinations, many of them likely do not closely relate to colonization and can potentially produce younger colonization estimates. The Tau_Boundary function 191 in OxCal can be used to exponentially weight activity within a Phase toward the one end by placing the Tau Boundary as the beginning or end event (Bronk Ramsey 2009a). Because we are more interested in the older radiocarbon determinations, we modeled Trinidad and Puerto Rico with the Tau_Boundary as the end event (Bronk Ramsey 2009a). The Tau Boundary for Trinidad with a 100-year Outlier Model produced a colonization estimate of 8365-7835 cal yrs BP (95% HPD), which is a slightly more precise range than that produced by the single-phase modeling or the Charcoal_Outlier analyses (Appendix A). A single phase model with the Tau_Boundary for Puerto with all 451 radiocarbon determinations produced a model with an unacceptable model index of 35.4%. When modeled with 325 dates, the Tau Boundary produced a modeled estimate of 4500-4425 cal yrs BP (95% HPD) with a model agreement of 84.2%. With a range of just 75 years, the Tau_Boundary appears to have improved the precision of the modeled colonization estimate without shifting the estimated colonization date. One possible avenue for future research is to add a Tau Boundary to other islands with radiocarbon determinations that span millennia to improve precision of the modeled colonization estimates. 192 Table 1. Radiocarbon dates from 55 Caribbean islands with their assigned class value. Class 1 and 2 radiocarbon dates qualified for Bayesian modeling. Original taxonomic names are reported, see Appexndix A, Table 2 for the current classification. Commas in some lab numbers been omitted (e.g., “I-1,2345” has been standardized to “I-12345”). See Appendix A, Table 3 for list of laboratory abbreviations and names. See Appendix A, Table 4 for complete bibliographic information. δ13C values published here should not be used for dietary reconstruction. Country/ Clas Sample Sample Lab Erro Island Region Site Provenience CRA δ13C (‰) Reference Territory s Material Type Number r Crocodylus Bahamian faunal Beta- Steadman et al. Abaco Bahamas 3 Gilpin Point rhombifer post — 1020 30 -19.4 Archipelago material 338510 2014 orbital bone Chelonoidis Bahamian faunal Beta- Steadman et al. Abaco Bahamas 3 Gilpin Point alburyorum — 1010 30 -21.6 Archipelago material 338511 2014 left first costal Chelonia Bahamian faunal Beta- Steadman et al. Abaco Bahamas 3 Gilpin Point mydas left — 1340 30 -9.6 Archipelago material 338512 2014 first costal Bahamian Conocarpus Beta- Steadman et al. Abaco Bahamas 3 Gilpin Point wood — 900 30 -28.4 Archipelago erectus 338518 2014 Bahamian Sabal Beta- Steadman et al. Abaco Bahamas 3 Gilpin Point wood — 990 30 -28.0 Archipelago Palmetto 345519 2014 Bahamian human bone human Beta- Steadman et al. Abaco Bahamas 2 Sawmill Sink peat 870 30 -14.7 Archipelago collagen, tibia bone/teeth 228852 2007 human bone Bahamian Sanctuary human Beta- Hastings et al. Andros Bahamas 3 collagen, — 520 40 -14.8 Archipelago Cave bone/teeth 268510 2014 radius human bone Bahamian human Beta- Hastings et al. Andros Bahamas 3 Stargate Cave collagen, — 620 40 -16.0 Archipelago bone/teeth 268511 2014 radius Gross 1976:234; British Virgin Lesser Strombus marine Anegada 3 midden — — 1245 80 — Davis and Islands Antilles gigas shell Oldfield 2003:2 193 charcoal/ Lesser Barnes Bay N401 E417-418, Beta- Crock Anguilla Anguilla 2 charcoal charred 840 80 — Antilles (AL14-BB) L. 19B 106441 2001:132 material charcoal/ Lesser Barnes Bay N401 E423, L. Beta- Crock Anguilla Anguilla 2 charcoal charred 1120 70 — Antilles (AL14-BB) 22B 106442 2001:132 material Lesser Barnes Bay Strombus marine N402 E423 L. Beta- Crock Anguilla Anguilla 2 1180 60 — Antilles (AL14-BB) gigas shell 22B 106444 2001:132 Lesser Barnes Bay Strombus marine N402 E423, L. Beta- Crock Anguilla Anguilla 2 1180 60 — Antilles (AL14-BB) gigas shell 19B 106443 2001:132 Lesser Forest North marine N235 E252, 10- Beta- Crock Anguilla Anguilla 2 Strombus sp. 740 60 — Antilles (AL20-FN) shell 20 cm 141202 2001:195 Crock Lesser Forest North marine Beta- 2001:194; Anguilla Anguilla 3 Strombus sp. surface 1970 60 — Antilles (AL20-FN) shell 63159 Crock and Petersen 2001 Watters 1991; charcoal/ Lesser Fountain Cave Beta- Crock and Anguilla Anguilla 2 charcoal charred TP 1, 100 cmbs 1530 140 — Antilles (AL01-FC) 15824 Petersen 2001; material Douglas 1991 Watters 1991; Lesser Fountain Cave marine Beta- Crock and Anguilla Anguilla 2 Cittarium pica TP 1, 50-55 cmbs 1220 70 — Antilles (AL01-FC) shell 15485 Petersen 2001; Douglas 1991 194 Watters 1991; Lesser Fountain Cave marine Beta- Crock and Anguilla Anguilla 2 Cittarium pica TP 1, 72-75 cmbs 1130 80 — Antilles (AL01-FC) shell 15486 Petersen 2001; Douglas 1991 Rendezvous charcoal/ Lesser AAHS pit B3, Beta- Crock and Anguilla Anguilla 2 Bay (AL02- charcoal charred 1410 60 — Antilles 45.7 cmbs 21858 Petersen 2001 RZ) material Douglas 1991 Rendezvous charcoal/ Lesser AAHS pit D4, Beta- cited in Crock Anguilla Anguilla 2 Bay (AL02- charcoal charred 1080 90 — Antilles 25.4 cmbs 21861 and Petersen RZ) material 2001 Watters and Rendezvous charcoal/ Lesser Strat. VI, 90-100 Beta- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1000 110 — Antilles cmbs 18739 Crock and RZ) material Petersen 2001 Watters and Rendezvous charcoal/ Lesser Stratum II, 30-40 Beta- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1120 70 — Antilles cmbs 18738 Crock and RZ) material Petersen 2001 Watters and Rendezvous charcoal/ Lesser Stratum II, 40-50 Beta- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1150 60 — Antilles cmbs 19955 Crock and RZ) material Petersen 2001 195 Watters and Rendezvous charcoal/ Lesser Stratum IV, 60-70 PITT- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1135 40 — Antilles cmbs 0545 Crock and RZ) material Petersen 2001 Watters and Rendezvous charcoal/ Lesser Stratum VI, 80-90 Beta- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1290 60 — Antilles cmbs 19956 Crock and RZ) material Petersen 2001 Watters and Rendezvous charcoal/ Lesser Stratum VI, 90- Beta- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1550 70 — Antilles 100 cmbs 19957 Crock and RZ) material Petersen 2001 Watters and Rendezvous charcoal/ Lesser Stratum VII, 120- Beta- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1430 70 — Antilles 130 cmbs 18740 Crock and RZ) material Petersen 2001 Rendezvous John Crock Lesser Strombus marine N194 E991, 110 Beta- Anguilla Anguilla 2 Bay (AL02- 890 40 +0.7 personal Antilles gigas shell cmbs 257182 RZ) communication Rendezvous John Crock Lesser Strombus marine N194 E991, 150 Beta- Anguilla Anguilla 2 Bay (AL02- 910 40 +1 personal Antilles gigas shell cmbs 257181 RZ) communication 196 Rendezvous John Crock Lesser Strombus marine N194 E991, 40 Beta- Anguilla Anguilla 2 Bay (AL02- 780 40 +1 personal Antilles gigas shell cmbs 257185 RZ) communication Rendezvous John Crock Lesser Strombus marine N194 E991, 50 Beta- Anguilla Anguilla 2 Bay (AL02- 860 40 +4.4 personal Antilles gigas shell cmbs 257184 RZ) communication Rendezvous John Crock Lesser Strombus marine N194 E991, 95 Beta- Anguilla Anguilla 2 Bay (AL02- 680 40 +3.4 personal Antilles gigas shell cmbs 257183 RZ) communication Rendezvous charcoal/ N181 E750, N182 John Crock Lesser charred Beta- Anguilla Anguilla 3 Bay (AL02- charred E750, 130 cmbs, 840 50 -23.7 personal Antilles material 277834 RZ) material level 51A communication Rendezvous charcoal/ N181 E750, N182 John Crock Lesser charred Beta- Anguilla Anguilla 3 Bay (AL02- charred E750, 130 cmbs, 1140 50 -24.9 personal Antilles material 277836 RZ) material level 56B communication Rendezvous charcoal/ N181 E750, N183 John Crock Lesser charred Beta- Anguilla Anguilla 3 Bay (AL02- charred E750, 130 cmbs, 1020 50 -24.5 personal Antilles material 277835 RZ) material level 54A communication Watters and Rendezvous charcoal/ Lesser Feature 3, 130- PITT- Petersen 1991; Anguilla Anguilla 2 Bay (AL02- charcoal charred 1180 45 — Antilles 140 cmbs 0546 Crock and RZ) material Petersen 2001 197 Rendezvous charcoal/ Watters 1991; Lesser Feature 4, 120- PITT- Anguilla Anguilla 2 Bay (AL02- charcoal charred 1085 55 — Crock and Antilles 130 cmbs 0547 RZ) material Petersen 2001 charcoal/ Petersen and Lesser Sandy Ground N479 E267, 40- Beta- Anguilla Anguilla 2 charcoal charred 1310 80 — Crock Antilles (AL03-SG) 50 110397 material 2001:132 charcoal/ Petersen and Lesser Sandy Ground N482 E280, 30- Beta- Anguilla Anguilla 2 charcoal charred 1140 60 — Crock Antilles (AL03-SG) 40 110393 material 2001:132 charcoal/ Petersen and Lesser Sandy Ground N482 E280, 50- Beta- Anguilla Anguilla 2 charcoal charred 1230 70 — Crock Antilles (AL03-SG) 60 110394 material 2001:132 charcoal/ Petersen and Lesser Sandy Ground N482 E280, 70- Beta- Anguilla Anguilla 2 charcoal charred 1170 80 — Crock Antilles (AL03-SG) 80 110395 material 2001:132 charcoal/ Petersen and Lesser Sandy Ground N482 E280, 90- Beta- Anguilla Anguilla 2 charcoal charred 1290 60 — Crock Antilles (AL03-SG) 100 110396 material 2001:132 charcoal/ Petersen and Lesser Sandy Ground N482 E285, 40- Beta- Anguilla Anguilla 2 charcoal charred 780 80 — Crock Antilles (AL03-SG) 50 110398 material 2001:132 Douglas 1991 Sandy Hill charcoal/ Lesser area disturbed for Beta- cited in Crock Anguilla Anguilla 2 Bay (AL08- charcoal charred 940 80 — Antilles cistern 35.6 cmbs 21863 and Petersen SH) material 2001 Douglas 1991 Sandy Hill charcoal/ Lesser area disturbed for Beta- cited in Crock Anguilla Anguilla 2 Bay (AL08- charcoal charred 880 90 — Antilles cistern 50.8 cmbs 21862 and Petersen SH) material 2001 Crock Sandy Hill charcoal/ 2001:101; Lesser N490 E285, 10- Beta- Anguilla Anguilla 2 Bay (AL08- charcoal charred 950 70 — Petersen and Antilles 35 120152 SH) material Crock 2001:132 198 Crock Sandy Hill charcoal/ 2001:101; Lesser N490 E286, 30- Beta- Anguilla Anguilla 2 Bay (AL08- charcoal charred 740 60 — Petersen and Antilles 55 120153 SH) material Crock 2001:132 Crock Sandy Hill charcoal/ 2001:102; Lesser N490 E286, 50- Beta- Anguilla Anguilla 2 Bay (AL08- charcoal charred 850 60 — Petersen and Antilles 75 120154 SH) material Crock 2001:132 Crock Sandy Hill charcoal/ 2001:102; Lesser N575 E205, 20- Beta- Anguilla Anguilla 2 Bay (AL08- charcoal charred 510 80 — Petersen and Antilles 35 106440 SH) material Crock 2001:132 Crock Shoal Bay charcoal/ 2001:169; Lesser N375 E475, 60- Beta- Anguilla Anguilla 2 East (AL19- charcoal charred 1270 60 — Petersen and Antilles 65 106439 SE) material Crock 2001:132 Crock Shoal Bay charcoal/ 2001:168; Lesser N558 E467, 140- Beta- Anguilla Anguilla 2 East (AL19- charcoal charred 880 80 — Petersen and Antilles 150 120157 SE) material Crock 2001:132 Crock Shoal Bay charcoal/ 2001:165; Lesser N558 E467, 60- Beta- Anguilla Anguilla 2 East (AL19- charcoal charred 440 70 — Petersen and Antilles 70 120155 SE) material Crock 2001:132 Crock Shoal Bay charcoal/ 2001:168; Lesser N558 E467, 90- Beta- Anguilla Anguilla 2 East (AL19- charcoal charred 710 80 — Petersen and Antilles 100 120156 SE) material Crock 2001:132 Whitehead's Lesser marine N120 E85, 10-20 Beta- Crock et al. Anguilla Anguilla 2 Bluff (AL33- Cittarium pica 400 60 — Antilles shell cmbs 60776 1995 WB) 199 charcoal/ Lesser Forest North N236 E252, level Beta- Crock Anguilla Anguilla 3 charcoal charred 1140 40 — Antilles (AL20-FN) 8B 141201 2001:195 material Whitehead's charcoal/ Lesser Beta- Crock et al. Anguilla Anguilla 3 Bluff (AL33- charcoal charred surface 160 70 — Antilles 21864 1995 WB) material Whitehead's Lesser Strombus sp. marine Beta- Anguilla Anguilla 3 Bluff (AL33- surface 3240 80 — Douglas 1991 Antilles axe shell 21865 WB) Whitehead's Lesser Strombus sp. marine Beta- Crock et al. Anguilla Anguilla 3 Bluff (AL33- surface 3410 60 — Antilles vessel shell 60775 1995 WB) Whitehead's Lesser Strombus sp. marine Beta- Crock et al. Anguilla Anguilla 3 Bluff (AL33- surface 3380 90 — Antilles celt preform shell 63158 1995 WB) Whitehead's Lesser marine PITT- Crock et al. Anguilla Anguilla 3 Bluff (AL33- Strombus sp. surface 3605 45 — Antilles shell 1263 1995 WB) charcoal/ Antigua and Lesser Antigua 4 Big Deep Bay charcoal charred — — — — — Olsen 1961 Barbuda Antilles material Antigua and Lesser human bone human SUERC- Bain, personal Antigua 2 Blackman's GE4-HUM-2011 950 30 -15.7 Barbuda Antilles collagen, ulna bone/teeth 34163 communication Antigua and Lesser marine de Mille 2011; Antigua 3 Brigits shell — UM-4005 4810 45 — Barbuda Antilles shell Nodine 1990 Antigua and Lesser marine Beta- Siegel et al. Antigua 3 Cloverleaf W shell — 2680 80 — Barbuda Antilles shell 23547 2015 200 Excavation 1, Antigua and Lesser Coconut Hall marine Beta- Healy et al. Antigua 3 shell Stratum F-3, level 1350 60 — Barbuda Antilles (PE-15) shell 93701 2003 30-40 cm Excavation 1, Antigua and Lesser Coconut Hall marine Beta- Healy et al. Antigua 3 shell Stratum F-6, level 1370 60 — Barbuda Antilles (PE-15) shell 81999 2003 0-10 cm Antigua and Lesser Crosby organic CL09-1, 132-133 Jones et al. Antigua 4 sediment AA-86581 680 35 -24.4 Barbuda Antilles Lagoon sediment cm 2018a Antigua and Lesser marine de Mille 2011; Antigua 3 Deep Bay shell — UM-4003 3450 100 — Barbuda Antilles shell Nodine 1990 Antigua and Lesser marine de Mille 2011; Antigua 3 Five Islands shell — UM-4001 2390 50 — Barbuda Antilles shell Nodine 1990 Antigua and Lesser Antigua 3 Freeman's Bay — unknown — I-7839 935 80 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Freeman's Bay — unknown — I-7840 1065 80 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Freeman's Bay — unknown — I-7856 480 80 — Davis 1988 Barbuda Antilles Antigua and Lesser marine Nodine 1990; Antigua 3 Hand Point shell — UM-4002 3390 120 — Barbuda Antilles shell de Mille 2011 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 2 (C1-2) I-7844 1000 90 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 2 (C3-2) I-7982 1070 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 2 (C3-3) I-7983 1110 80 — Barbuda Antilles Morse 1999:46 201 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 2 (C3-5) I-7984 1124 80 — Barbuda Antilles Morse 1999:46 Davis 1988; Antigua and Lesser Antigua 3 Indian Creek — unknown 2 (C4-2) I-7843 645 80 — Rouse and Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 2 (C4-3) I-7831 785 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 3 (E4-2) I-7832 855 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 4 (G1-2) I-7845 1020 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 4 (G2-4) I-7846 1140 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 4 (G3-5) I-7834 1265 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 4 (G4-3) I-7833 1895 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 5 (I1-2) I-7835 845 80 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 5 (I1-3) I-7847 900 90 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 5 (I1-4) I-7354 1100 85 — Barbuda Antilles Morse 1999:46 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 5(I2-4) I-7357 1080 85 — Barbuda Antilles Morse 1999:46 202 Antigua and Lesser Rouse and Antigua 3 Indian Creek — unknown 6 (P3-2) I-7836 1070 80 — Barbuda Antilles Morse 1999:46 Rouse and Morse charcoal/ Antigua and Lesser 1999:46; Antigua 2 Indian Creek charcoal charred 1 (A1-3) I-7830 2785 80 — Barbuda Antilles Morse and material Rouse 1995:316 Rouse and charcoal/ Morse Antigua and Lesser Antigua 2 Indian Creek charcoal charred 1 (A2-3) I-7842 2785 80 — 1999:46; Barbuda Antilles material Morse and Rouse1995:316 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 1 (A3-2) I-7979 1790 85 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 Rouse 1989:397; Haviser 1997:62; charcoal/ Antigua and Lesser Rouse and Antigua 2 Indian Creek charcoal charred 1 (A4-2) I-7980 1915 80 — Barbuda Antilles Morse material 1999:46; Morse and Rouse 1995:316 203 Rouse 1989:397; Haviser 1997:62; charcoal/ Antigua and Lesser Rouse and Antigua 2 Indian Creek charcoal charred 1 (A4-3) I-7981 1855 80 — Barbuda Antilles Morse material 1999:46; Morse and Rouse 1995:316 Rouse and Morse charcoal/ Antigua and Lesser 1999:46, Antigua 2 Indian Creek charcoal charred 5 (I1-5) I-7353 1230 85 — Barbuda Antilles Morse and material Rouse 1995:316 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 5 (I1-6) I-7352 1440 85 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 5 (I2-6) I-7355 1505 85 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 Haviser 1997:62; charcoal/ Rouse and Antigua and Lesser Antigua 2 Indian Creek charcoal charred 5 (I2-6) I-7356 1505 85 — Morse Barbuda Antilles material 1999:46, Morse and Rouse 1995:46 204 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 6 (P2-3) I-7854 1670 80 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 6 (P2-6) I-7838 1750 80 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 6 (P3-4) I-7837 1715 80 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 Haviser 1997:62; Rouse and charcoal/ Antigua and Lesser Morse Antigua 2 Indian Creek charcoal charred 6 (P3-5) I-7855 1765 80 — Barbuda Antilles 1999:46; material Morse and Rouse 1995:316 charcoal/ Antigua and Lesser Davis 1982; Antigua 3 Jolly Beach charcoal charred — — 3775 90 — Barbuda Antilles Davis 2000:24 material Antigua and Lesser marine Beta- Nodine 1990; Antigua 3 Jolly Beach shell — 3630 80 — Barbuda Antilles shell 31930 de Mille 2011 205 Antigua and Lesser organic Jones et al. Antigua 4 Jolly Beach sediment JB07-1, 115 cm AA-82473 1470 35 -25.5 Barbuda Antilles sediment 2018a Antigua and Lesser organic Siegel et al. Antigua 4 Jolly Beach sediment JB07-1, 235 cm AA-82474 3290 60 -28.0 Barbuda Antilles sediment 2015 charcoal/ Antigua and Lesser Little Deep Antigua 4 charred wood charred base of post — — — — Olsen 1961 Barbuda Antilles Bay material Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2217 850 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2219 950 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2220 1550 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2258 1450 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2259 1450 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2278 1175 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-2279 1105 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-JG2-1 1100 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-JG2-2 1075 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — O-JG2-3 1225 105 — Davis 1988 Barbuda Antilles Antigua and Lesser Antigua 3 Mill Reef — unknown — Y-692 2243 70 — Davis 1988 Barbuda Antilles Healy and Antigua and Lesser Muddy Bay Beta- Murphy Antigua 3 — unknown Unit 1 (28 cm) 720 60 — Barbuda Antilles (PH-14) 74426 1995:287-299; Murphy 1999 206 Healy and Antigua and Lesser Muddy Bay Beta- Murphy Antigua 3 — unknown Unit 1 (49 cm) 735 70 — Barbuda Antilles (PH-14) 74427 1995:287-299; Murphy 1999 Healy and Antigua and Lesser Muddy Bay Beta- Murphy Antigua 3 — unknown Unit 2 (28 cm) 930 60 — Barbuda Antilles (PH-14) 74428 1995:287-299; Murphy 1999 Healy and Antigua and Lesser Muddy Bay Beta- Murphy Antigua 3 — unknown Unit 2 (42 cm) 710 60 — Barbuda Antilles (PH-14) 74429 1995:287-299; Murphy 1999 Antigua and Lesser North Crabb's marine Beta- Antigua 3 shell — 3430 50 — de Mille 2011 Barbuda Antilles Bay shell 164056 Antigua and Lesser North Crabb's marine Beta- Antigua 3 shell — 3800 70 — de Mille 2011 Barbuda Antilles Bay shell 164057 Antigua and Lesser North Crabb's marine Beta- Antigua 3 shell — 3540 70 — de Mille 2011 Barbuda Antilles Bay shell 164058 charcoal/ Antigua and Lesser carbonized Jones et al. Antigua 4 Nonsuch Bay charred NS07-2, 349 cm AA-82746 190 40 -25.2 Barbuda Antilles wood 2018a material Antigua and Lesser organic Jones et al. Antigua 4 Nonsuch Bay sediment NS07-2, 398 cm AA-82475 250 35 -26.3 Barbuda Antilles sediment 2018a Antigua and Lesser organic Jones et al. Antigua 4 Nonsuch Bay sediment NS07-2, 445 cm AA-77643 580 35 -26.5 Barbuda Antilles sediment 2018a Antigua and Lesser preserved Jones et al. Antigua 4 Nonsuch Bay wood NS07-2, 221 cm AA-77644 110 30 -28.2 Barbuda Antilles wood 2018a Antigua and Lesser marine Nodine 1990; Antigua 3 Parham Road shell — UM-4004 3140 100 — Barbuda Antilles shell de Mille 2011 charcoal/ Antigua and Lesser Unit 4, Level 8 Beta- Healy et al. Antigua 2 Royall's charcoal charred 1600 50 — Barbuda Antilles (70-80 cmbs) 124126 2001:232 material 207 charcoal/ Antigua and Lesser Unit 4, Level 9, Beta- Healy et al. Antigua 2 Royall's charcoal charred 1610 80 — Barbuda Antilles 80-90 cmbs 124127 2001:232 material Antigua and Lesser marine Beta- Nodine 1990; Antigua 3 Twenty Hill shell — 4660 90 — Barbuda Antilles shell 31931 de Mille 2011 Antigua and Lesser marine Nodine 1990; Antigua 3 Twenty Hill shell — UM-4000 2940 90 — Barbuda Antilles shell de Mille 2011 Antigua and Lesser Winthorpe's Beta- Murphy Antigua 3 — unknown — 710 50 — Barbuda Antilles East (GE-1) 127865 1999:207 de Mille, charcoal/ Antigua and Lesser Winthorpe's charred Unit 4, Level 3, Beta- Murphy, and Antigua 2 charred 720 50 — Barbuda Antilles West (GE-6) material 54 cm 101499 Healy material 1999:105-121 de Mille, charcoal/ Antigua and Lesser Winthorpe's charred Unit 4, Level 7, Beta- Murphy, and Antigua 2 charred 1430 50 — Barbuda Antilles West (GE-6) material 140 cm 101500 Healy material 1999:105-121 Antigua and Lesser Winthorpe's Beta- Murphy Antigua 3 — unknown — 760 50 — Barbuda Antilles West (GE-6) 127864 1999:207 Antigua and Lesser "fifth layer down" Antigua 4 — — unknown — 580 85 — Olsen 1974 Barbuda Antilles 50 cmbs northern marine Beta- Kelly and Aruba Aruba South 3 Arashi midden shell — 2580 30 +4.0 shell 450522 Hofman 2019 America northern GrN- Kelly and Aruba Aruba South 4 Boca Urirama — unknown — 1385 35 — 32759 Hofman 2019 America northern marine Beta- Kelly and Aruba Aruba South 3 Bringamosa 5 shell — 3480 30 -3.2 shell 450528 Hofman 2019 America 208 northern human bone human skeleton number Versteeg et al. Aruba Aruba South 2 Canashitu Ua-1501 2210 95 -11.91 collagen bone/teeth C-1 1990 America northern Ceru marine Aruba Aruba South 3 Anadara sp. — — 1345 120 — Gould 1971 Canashito shell America northern Ceru marine Aruba Aruba South 3 Cittarium sp. midden — 815 105 — Gould 1971 Canashito shell America northern Ceru marine Aruba Aruba South 3 Chama sp. midden — 1685 115 — Gould 1971 Canashito shell America northern Ceru human GrN- Versteeg et al. Aruba Aruba South 2 Noka/Santa human bone 131 910 170 -7.99 bone/teeth 17460 1990 America Cruz northern Ceru charcoal/ Versteeg et al. Aruba Aruba South 2 Noka/Santa charcoal charred 1 GrN-7341 3300 35 — 1990 America Cruz material northern Ceru charcoal/ Versteeg et al. Aruba Aruba South 2 Noka/Santa charcoal charred 8 GrN-7342 990 30 — 1990 America Cruz material northern Ceru human bone human GrN- Versteeg et al. Aruba Aruba South 2 Noka/Santa 135 870 80 -9.19 collagen bone/teeth 17459 1990 America Cruz northern GrN- Kelly and Aruba Aruba South 4 Daimari 1 — unknown — 1430 35 — 32760 Hofman 2019 America northern marine Beta- Kelly and Aruba Aruba South 3 Guadirikiri 2 shell — 1760 30 +3.0 shell 450527 Hofman 2019 America northern marine GrN- Aruba Aruba South 3 Malmok shell F. 114 2175 85 — Versteeg 1991 shell 16833 America northern Malmok pit 1, marine GrN- Aruba Aruba South 3 Malmok shell center of midden, 2370 140 +1.15 Versteeg 1991 shell 16838 America 0-10 cm 209 northern marine GrN- Van Klinken Aruba Aruba South 3 Malmok shell Malmok pit 1 2160 40 +2.52 shell 17779 1991 America northern marine GrN- Van Klinken Aruba Aruba South 3 Malmok shell Malmok pit 1 1080 50 +2.38 shell 17780 1991 America northern marine GrN- Aruba Aruba South 3 Malmok shell pit 1 2345 140 -2.12 Versteeg 1991 shell 16832 America northern marine GrN- Versteeg et al. Aruba Aruba South 3 Malmok shell skeleton 35 2210 90 +1.53 shell 16837 1990 America northern marine GrN- Versteeg et al. Aruba Aruba South 3 Malmok shell skeleton 41 2430 150 +2.06 shell 16836 1990 America northern human Van Klinken Aruba Aruba South 3 Malmok human tooth Malmok F111 Ua-1513 3560 220 -9.35 bone/teeth 1991 America northern marine GrN- Van Klinken Aruba Aruba South 3 Malmok marine shell Malmok 137 530 90 -3.23 shell 16835 1991 America northern human Versteeg et al. Aruba Aruba South 2 Malmok collagen skeleton 11B Ua-1342 1520 100 -12.46 bone/teeth 1990 America northern human Versteeg et al. Aruba Aruba South 2 Malmok collagen skeleton 21B Ua-1340 1520 110 -12.47 bone/teeth 1990 America northern human bone human Versteeg et al. Aruba Aruba South 2 Malmok skeleton 41 Ua-1514 1420 150 -9.69 collagen bone/teeth 1990 America northern human Versteeg et al. Aruba Aruba South 2 Malmok collagen skeleton 59B Ua-1341 1740 110 -10.47 bone/teeth 1990 America northern marine GrN- Versteeg et al. Aruba Aruba South 3 Malmok shell skeleton 19 2070 80 — shell 16834 1990 America northern charcoal/ Versteeg et al. Aruba Aruba South 2 Sabaneta charcoal charred 94 GrN-7338 940 25 — 1990 America material 210 northern charcoal/ Versteeg et al. Aruba Aruba South 2 Sabaneta charcoal charred 154 GrN-7339 1040 45 — 1990 America material northern charcoal/ Versteeg et al. Aruba Aruba South 2 Sabaneta charcoal charred 278 GrN-7340 1000 30 — 1990 America material northern Seru Colorado Beta- Kelly and Aruba Aruba South 4 — unknown 1930 30 -10.0 3 450529 Hofman 2019 America northern Spaans marine Beta- Kelly and Aruba Aruba South 3 — 3440 30 -0.5 Lagoen 3 shell 450523 Hofman 2019 America northern Spaans marine Beta- Kelly and Aruba Aruba South 3 — 1630 30 +0.1 Lagoen 4 shell 450524 Hofman 2019 America northern Spaans marine Beta- Kelly and Aruba Aruba South 3 — 2000 30 +2.1 Lagoen 5 shell 450525 Hofman 2019 America northern Spaans Beta- Kelly and Aruba Aruba South 4 — unknown 1440 30 -8.7 Lagoen 6 446966 Hofman 2019 America northern Spaans Beta- Kelly and Aruba Aruba South 4 — unknown 3450 30 +0.9 Lagoen 6 450526 Hofman 2019 America northern charcoal/ Heidecker and Aruba Aruba South 2 Tanki Flip charcoal charred F.I., S part site I-4025 765 110 — Siegel 1969 America material northern charcoal/ Heidecker and Aruba Aruba South 2 Tanki Flip charcoal charred F.II, S part site I-4026 740 105 — Siegel 1969 America material northern charcoal/ F1265, stone Aruba Aruba South 2 Tanki Flip charcoal charred GrA-2778 830 50 — Versteeg 1997 hearth, str-5 America material northern charcoal/ F1702A, burial GrN- Aruba Aruba South 2 Tanki Flip charcoal charred child, overlap 860 40 — Versteeg 1997 21664 America material F1762 northern charcoal/ F1762, Stone GrN- Aruba Aruba South 2 Tanki Flip charcoal charred 1030 40 — Versteeg 1997 hearth, str-10 21665 America material 211 northern charcoal/ F1874, stone GrN- Aruba Aruba South 2 Tanki Flip charcoal charred 1030 30 — Versteeg 1997 hearth, str-10 21666 America material northern charcoal/ F222, ash hearth, Aruba Aruba South 2 Tanki Flip charcoal charred GrN-2788 1080 50 — Versteeg 1997 str-3 America material northern charcoal/ F408, posthole, Aruba Aruba South 2 Tanki Flip charcoal charred GrA-2790 340 50 — Versteeg 1997 pit, str-4 America material northern charcoal/ F426, posthole, Aruba Aruba South 2 Tanki Flip charcoal charred GrA-2784 750 50 — Versteeg 1997 str-4 America material northern charcoal/ F484, stone Aruba Aruba South 2 Tanki Flip charcoal charred GrA-2789 990 50 — Versteeg 1997 hearth, str-6 America material northern charcoal/ F608, posthole, Aruba Aruba South 2 Tanki Flip charcoal charred GrA-2785 860 50 — Versteeg 1997 str-11 America material northern charcoal/ F9, pottery kiln, GrN- Aruba Aruba South 2 Tanki Flip charcoal charred 910 30 — Versteeg 1997 outside settlement 21656 America material northern charcoal/ TFH-197, burial, GrN- Aruba Aruba South 2 Tanki Flip charcoal charred 825 30 — Versteeg 1997 S part site 16915 America material northern charcoal/ GrN- Aruba Aruba South 4 Tanki Flip charcoal charred F49i, posthole 23470 750 — Versteeg 1997 21657 America material St. Vincent Bullen and Lesser Strombus marine 10 ft. in from Baliceaux and the 2 Banana Bay RL-27 720 100 — Bullen Antilles gigas shell midden face Grenadines 1972:36-40 St. Vincent Lesser marine S. profile, 30 Beta- Fitzpatrick and Baliceaux and the 2 Banana Bay Cittarium pica 970 50 +2.8 Antilles shell cmbs 286848 Giovas 2011 Grenadines St. Vincent Bullen and Lesser Strombus marine Baliceaux and the 3 Banana Bay — RL-71 530 110 — Bullen Antilles gigas shell Grenadines 1972:36-40 212 charcoal/ Lesser Chancery 48 inches below Bullen and Barbados Barbados 2 charcoal charred I-2486 1570 95 — Antilles Lane surface Bullen 1968 material Drewett 1991:14; Lesser Chancery marine Barbados Barbados 3 shell gouge — I-16307 1770 80 — O'Day and Antilles Lane shell Keegan 2001:280 Hackenberger Beach deposit charcoal/ 1988; Drewett Lesser below and west of Beta- Barbados Barbados 3 Goddard charcoal charred 2253 55 — 1989:99; Antilles the Goddard 19969 material Drewett House* 1991:14 Lesser human D-AMS Barbados Barbados 3 Goddard human bone — 980 28 -7.3 Hansen 2015 Antilles bone/teeth 009909 Hearth feature Hackenberger charcoal/ from the east 1988; Drewett Lesser Beta- Barbados Barbados 2 Goddard charcoal charred portion of the 1950 150 — 1989:99; Antilles 20723 material Goddard House Drewett feature* 1991:14 Lesser marine Ramcharan Barbados Barbados 4 Graeme Hall shell core, 225 BGS-2395 1409 40 — Antilles shell 2005 Lesser Ramcharan Barbados Barbados 4 Graeme Hall preserved peat peat core, 104-114 BGS-2397 690 75 — Antilles 2005 Lesser AA- Dunning et al. Barbados Barbados 4 Graeme Hall preserved peat peat core, 110 cm 970 40 -25.3 Antilles 268169 2018b Lesser Dunning et al. Barbados Barbados 4 Graeme Hall preserved peat peat core, 170-172 cm AA-82682 1120 60 -24.9 Antilles 2018b Lesser Dunning et al. Barbados Barbados 4 Graeme Hall preserved peat peat core, 85 cm AA-92658 270 35 -25.6 Antilles 2018b 213 Bullen and Bullen 1968:142, 1972:153; Drewett Lesser Strombus sp. marine Barbados Barbados 3 Greenland — BM-128 850 150 — 1989:99; Antilles gouge shell Drewett 1991:14; O'Day and Keegan 2001:280 Lesser marine Bullen and Barbados Barbados 3 Greenland shell gouge Surface collection BM-128 850 150 — Antilles shell Bullen 1968 Drewett Lesser marine Context 6, Trench 1991:14; Barbados Barbados 2 Heywoods triton shell 1-16189 1120 80 — Antilles shell 25 Drewett 1993:116 Lesser Eustrombus marine Context 7, Trench Beta- Fitzpatrick Barbados Barbados 2 Heywoods 4230 50 +0.1 Antilles gigas (adze) shell 39 297521 2011 Drewett Lesser marine 1993:116; Barbados Barbados 2 Heywoods conch lip adze TP 39 I-16840 3980 100 — Antilles shell Drewett 2000:24 Lesser marine Drewett Barbados Barbados 3 Heywoods shell — I-16188 910 80 — Antilles shell 1991:14 Lesser House 1, context Beta- Drewett Barbados Barbados 3 Heywoods — unknown 1040 60 — Antilles 125 1134099 2000:165 Lesser House 2, context Beta- Drewett Barbados Barbados 3 Heywoods — unknown 1120 50 — Antilles 480 1134100 2000:165 Lesser House 3, context Beta Drewett Barbados Barbados 3 Heywoods — unknown 1230 60 — Antilles 510 134101 2000:165 charcoal/ Lesser Beta- Drewett Barbados Barbados 4 Heywoods charcoal charred Pit 44 — — — Antilles 112110 2000:33 material Lesser Beta- Drewett Barbados Barbados 4 Heywoods wood wood Context 55 — — — Antilles 113021 2000:33 214 Eustrombus Lesser marine Context 7, Trench D-AMS Barbados Barbados 2 Heywoods gigas 4366 32 +8.8 this publication Antilles shell 39 001792 (juvenile) Eustrombus Lesser marine Context 7, Unit D-AMS Barbados Barbados 2 Heywoods gigas 4278 29 +3.5 this publication Antilles shell 35 001793 (juvenile) Eustrombus Lesser marine Context 8, Trench Beta- Fitzpatrick Barbados Barbados 2 Heywoods gigas 4360 40 +0.4 Antilles shell 30 297522 2011 (juvenile) Eustrombus Lesser marine Context 8, Unit D-AMS Barbados Barbados 2 Heywoods gigas 4091 27 + 9.2 this publication Antilles shell 35 001794 (juvenile) Lesser Beta- Drewett Barbados Barbados 4 Heywoods wood wood Potstack 39 — — — Antilles 117589 2000:32 Drewett 1991:14; Lesser marine Barbados Barbados 3 Hillcrest shell axe — I-16187 780 80 — O'Day and Antilles shell Keegan 2001:280 Lesser human Drewett Barbados Barbados 3 Silver Sands human bone — I-16215 650 100 — Antilles bone/teeth 1991:14 Lesser human Drewett Barbados Barbados 3 Silver Sands human bone — I-16268 1000 150 — Antilles bone/teeth 1991:14 Lesser marine Drewett Barbados Barbados 3 Silver Sands shell — I-16218 990 80 — Antilles shell 1991:14 Rousseau Antigua and Lesser marine Basal Cultural UCI- 2012; Barbuda 2 Burton's Field Stombus gigas 2565 20 — Barbuda Antilles shell Deposit 107937 Vésteinsson 2011 Rousseau Highest Antigua and Lesser marine UCI- 2012; Barbuda 2 Burton's Field Stombus gigas Undisturbed 3430 15 — Barbuda Antilles shell 107938 Vésteinsson Layer 2011 Rousseau Antigua and Lesser Pinctada marine associated with UCI- 2012; Barbuda 3 Cattle Field 3315 15 — Barbuda Antilles imbricata shell shell ridge 107939 Vésteinsson 2011 Antigua and Lesser GI09-1, 169-170 Jones et al. Barbuda 4 Grassy Island preserved peat peat AA-86580 2820 40 -20.4 Barbuda Antilles cm 2018b 215 Watters 1999; Antigua and Lesser Gravenor Bay Strombus marine PITT- Barbuda 2 BA- GB2 1365 45 — Vésteinsson Barbuda Antilles Transect gigas shell 1234 2011 Watters 1999; Antigua and Lesser Gravenor Bay Strombus marine PITT- Barbuda 2 BA-GB1 1135 50 — Vésteinsson Barbuda Antilles Transect gigas shell 1233 2011 Watters 1999; Antigua and Lesser Gravenor Bay Strombus marine Beta- Barbuda 2 BA-GB3 1210 60 — Vésteinsson Barbuda Antilles Transect gigas shell 103890 2011 Watters 1999; Antigua and Lesser Gravenor Bay Strombus marine Beta- Barbuda 2 BA-GB4 2030 60 — Vésteinsson Barbuda Antilles Transect gigas shell 103891 2011 Watters 1999; Antigua and Lesser Gravenor Bay Strombus marine Beta- Barbuda 2 BA-GB5 1360 60 — Vésteinsson Barbuda Antilles Transect gigas shell 103892 2011 Antigua and Lesser Gravenor Bay Strombus marine Beta- Watters Barbuda 2 BA-GB6 1350 60 — Barbuda Antilles Transect gigas shell 103893 1997:196 charcoal/ Antigua and Lesser Indian Town Beta- Watters et al. Barbuda 3 charcoal charred — 910 220 — Barbuda Antilles Trail (BA1) 18492 1992 material Antigua and Lesser Indian Town marine PITT- Watters et al. Barbuda 3 Cittarium pica — 445 30 — Barbuda Antilles Trail (BA1) shell 0594 1992 Antigua and Lesser Indian Town Strombus marine PITT- Watters et al. Barbuda 3 — 1065 45 — Barbuda Antilles Trail (BA1) gigas shell 0595 1992 charcoal/ Antigua and Lesser Indian Town SUERC Kendall et al. Barbuda 2 charcoal charred BA01-C [2005] 820 35 -24.5 Barbuda Antilles Trail (BA1) 18556 2011 material Antigua and Lesser organic LP09-2, 148-149 Jones et al. Barbuda 4 Low Pond sediment AA-86579 2430 45 -24.3 Barbuda Antilles sediment cm 2018b 216 North Sand Watters 1999; Antigua and Lesser Strombus marine PITT- Barbuda 3 Ground — 2100 35 — Vésteinsson Barbuda Antilles gigas shell 0718 Plantation 2011 Watters and Donahue 1990; North Sand Antigua and Lesser Strombus marine Watters et al. Barbuda 3 Ground — SI-6695 3340 70 — Barbuda Antilles gigas shell 1992; Plantation Vésteinsson 2011 Watters et al. North Sand Antigua and Lesser Strombus marine PITT- 1992; Barbuda 3 Ground Surface collection 3560 45 — Barbuda Antilles gigas shell 0590 Vésteinsson Plantation 2011 Friðriksson et Area A; Context SUERC al. 2011; Antigua and Lesser Strombus marine 005 ("Cultural 33605 Barbuda 2 River (JA1) 2790 35 +3.0 Kendall et al. Barbuda Antilles gigas shell Layer" c. 50-70 (GU- 2011; cm) 23531) Rousseau 2011 Friðriksson et Area B; Context SUERC- al. 2011; Antigua and Lesser Strombus marine 103 (Lower Shell 33604 Barbuda 2 River (JA1) 3280 35 +4.0 Kendall et al. Barbuda Antilles gigas shell Midden, 27-35 (GU- 2011; cm) 23530) Rousseau 2011 Watters et al. Antigua and Lesser Strombus marine PITT- 1992; Barbuda 3 River (BA4) Surface collection 3650 35 — Barbuda Antilles gigas celt shell 0717 Vésteinsson 2011 Watters et al. Antigua and Lesser Strombus marine PITT- 1992; Barbuda 3 River (BA4) Surface collection 3830 25 — Barbuda Antilles gigas celt shell 0731 Vésteinsson 2011 217 Watters et al. Antigua and Lesser Strombus marine PITT- 1992; Barbuda 3 River (JA1) Surface collection 1075 60 — Barbuda Antilles gigas shell 0589 Vésteinsson 2011 Watters et al. Antigua and Lesser Sand Ground Strombus marine PITT- 1992; Barbuda 3 Surface collection 2900 50 — Barbuda Antilles Plantation gigas shell 0592 Vésteinsson 2011 Watters et al. Antigua and Lesser Sand Ground Strombus marine PITT- 1992; Barbuda 3 Surface collection 1755 75 — Barbuda Antilles Plantation gigas shell 0719 Vésteinsson 2011 Watters et al. Antigua and Lesser Sand Ground Strombus marine 1992; Barbuda 3 Surface collection SI-6879 5480 100 — Barbuda Antilles Plantation gigas shell Vésteinsson 2011 Antigua and Lesser marine PITT- Vésteinsson Barbuda 3 Sandman shell — 3350 50 — Barbuda Antilles shell 0721 2011 Watters et al. Antigua and Lesser marine PITT- 1992; Barbuda 3 Sandman shell Surface collection 2650 50 — Barbuda Antilles shell 0593 Vésteinsson 2011 Watters et al. Antigua and Lesser Strombus marine 1992; Barbuda 3 Sandman Surface collection SI-6880 3150 55 — Barbuda Antilles gigas shell Vésteinsson 2011 charcoal/ Antigua and Lesser Context 189, SUERC Kendall et al. Barbuda 3 Seaview charcoal charred 1975 35 -25.0 Barbuda Antilles sample 107 34972 2011 material charcoal/ Antigua and Lesser Context 256, SUERC Kendall et al. Barbuda 3 Seaview charcoal charred 1900 35 -22.9 Barbuda Antilles sample 119 34970 2011 material Antigua and Lesser human SUERC Kendall et al. Barbuda 3 Seaview human bone BAA016-Hum-99 1540 30 -17.2 Barbuda Antilles bone/teeth 34162 2011 Antigua and Lesser Faucher et al. Barbuda 3 Seaview — unknown from posthole — — — — Barbuda Antilles 2011 charcoal/ Antigua and Lesser Seaview SUERC Kendall et al. Barbuda 2 charcoal charred BA016-A1 [804] 1755 35 -26.5 Barbuda Antilles Erosion 18557 2011 material 218 charcoal/ Antigua and Lesser Seaview BA016-A2 861- SUERC Kendall et al. Barbuda 2 charcoal charred 1785 35 -25.3 Barbuda Antilles Erosion 863 18558 2011 material charcoal/ Antigua and Lesser Seaview SUERC Kendall et al. Barbuda 3 charcoal charred BA016-A2 [857] 1690 35 -25.2 Barbuda Antilles Erosion 18559 2011 material charcoal/ Antigua and Lesser Seaview Sample 154, SUERC Kendall et al. Barbuda 2 charcoal charred 1565 35 -27.3 Barbuda Antilles Erosion sample 71 34971 2011 material charcoal/ Antigua and Lesser Seaview BA016 TRB-5 SUERC Kendall et al. Barbuda 2 charcoal charred 2005 35 -25.7 Barbuda Antilles Inland posthole 18560 2011 material charcoal/ Antigua and Lesser Seaview TRB-5 [1002] SUERC Kendall et al. Barbuda 2 charcoal charred 1920 35 -25.8 Barbuda Antilles Inland h=78 cm 18561 2011 material charcoal/ Antigua and Lesser Seaview Ba016-TRB-5 SUERC Kendall et al. Barbuda 2 charcoal charred 2025 35 -25.0 Barbuda Antilles Inland [1003] h=232 cm 18562 2011 material Ruppia Antigua and Lesser plant SUERC Bain et al. Barbuda 4 Seaview maritima 27-30 cm 242 30 -15.0 (est.) Barbuda Antilles material 37169 2017 achenes Ruppia Antigua and Lesser plant SUERC Bain et al. Barbuda 4 Seaview maritima 47-49 cm 347 30 -15.0 (est.) Barbuda Antilles material 37170 2017 achenes Antigua and Lesser woody Bain et al. Barbuda 4 Seaview wood 63-64 cm OS-81963 1959 30 -25.17 Barbuda Antilles fragment 2017 Antigua and Lesser woody Bain et al. Barbuda 4 Seaview wood 64-65 cm OS-81964 2121 40 -26.05 Barbuda Antilles fragment 2017 Watters and Donahue 1990; Antigua and Lesser Singer Cave Strombus marine Watters et al. Barbuda 3 — SI-6696 4085 85 — Barbuda Antilles Road gigas shell 1992; Vésteinsson 2011 Watters et al. Antigua and Lesser Singer Cave Strombus marine PITT- 1992; Barbuda 3 surface collection 2830 80 — Barbuda Antilles Road gigas shell 0591 Vésteinsson 2011 219 Watters et al. Antigua and Lesser Singer Cave Strombus marine PITT- 1992; Barbuda 3 surface collection 1930 65 — Barbuda Antilles Road gigas shell 0720 Vésteinsson 2011 Watters 1999; Antigua and Lesser Strombus marine PITT- Barbuda 2 Sufferers BA3-RC1 1050 30 — Vésteinsson Barbuda Antilles gigas shell 1231 2011 Watters 1999; Antigua and Lesser Strombus marine Beta- Barbuda 2 Sufferers BA3-RC2 1400 60 — Vésteinsson Barbuda Antilles gigas shell 103894 2011 northern charcoal/ Amboina (B- PITT- Bonaire Bonaire South 2 charcoal charred 10-15 cm b.s. 710 65 — Haviser 1991 001) 0265 America material northern Amboina (B- human Bonaire Bonaire South 3 human bone — GrN-9318 760 25 -10.08 Tacoma 1980 001) bone/teeth America northern charcoal/ Amboina (B- PITT- Bonaire Bonaire South 2 charcoal charred 10-20 cm b.s. 560 40 — Haviser 1991 001) 0264 America material northern Gotomeer #1 marine Testpit 1, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 3095 20 — Haviser 2010 (B-073) shell (0-10 cm) 32750 America northern Gotomeer #1 marine Testpit 1, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 3245 25 — Haviser 2010 (B-073) shell (0-10 cm) 32751 America northern Gotomeer #1 marine Testpit 2, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 2412 15 — Haviser 2010 (B-073) shell (0-10 cm) 32748 America northern Gotomeer #1 marine Testpit 2, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 2785 20 — Haviser 2010 (B-073) shell (0-10 cm) 32749 America northern Gotomeer #1 marine PITT- Haviser Bonaire Bonaire South 3 shell 0-5 cm b.s. 2160 55 — (B-073) shell 0260 2001:118 America northern Gotomeer #1 marine PITT- Haviser Bonaire Bonaire South 3 shell 10-15 cm b.s. 2105 75 — (B-073) shell 0261 2001:118 America 220 northern marine PITT- Haviser Bonaire Bonaire South 3 Lagun (B-021) shell 10-15 cm b.s. 3320 55 — shell 0258 2001:118 America northern marine PITT- Haviser Bonaire Bonaire South 3 Lagun (B-021) shell 15-20 cm b.s. 3275 80 — shell 0259 2001:118 America northern Noord Lac (B- marine PITT- Bonaire Bonaire South 3 shell 15-20 cm b.s. 1025 45 — Haviser 1991 018) shell 0263 America northern marine Testpit 9, level 1 GrN- Bonaire Bonaire South 2 Slagbaai Lobatus sp. 2575 20 — Haviser 2010 shell (0-10 cm) 32753 America northern marine Testpit 9, level 1 GrN- Bonaire Bonaire South 2 Slagbaai Lobatus sp. 2705 30 — Haviser 2010 shell (0-10 cm) 32752 America northern Slagbaai marine Trench 1, level 1 GrN- Bonaire Bonaire South 2 Lobatus sp. 3410 20 — Haviser 2010 Salinja #5 shell (0-10 cm) 32758 America northern Slagbaai marine Testpit 1, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 2665 20 — Haviser 2010 Salinja #5 shell (0-10 cm) 32754 America northern Slagbaai marine Testpit 2, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 2735 25 — Haviser 2010 Salinja #5 shell (0-10 cm) 32755 America northern Slagbaai marine Testpit 2, level 1 GrN- Bonaire Bonaire South 2 Melongena sp. 3610 25 — Haviser 2010 Salinja #5 shell (0-10 cm) 32756 America northern Slagbaai marine Testpit 2, level 1 GrN- Bonaire Bonaire South 2 Lobatus sp. 2680 25 — Haviser 2010 Salinja #6 shell (0-10 cm) 32757 America northern Sorobon (B- marine PITT- Bonaire Bonaire South 3 shell 15-20 cm b.s. 615 65 — Haviser 1991 008) shell 0262 America northern charcoal/ Wanapa (B- PITT- Bonaire Bonaire South 2 charcoal charred 10-15 cm b.s. 505 35 — Haviser 1991 016) 0266 America material northern charcoal/ Wanapa (B- PITT- Bonaire Bonaire South 2 charcoal charred 15-20 cm b.s. 1480 25 — Haviser 1991 016) 0267 America material 221 northern charcoal/ Wanapa (B- PITT- Bonaire Bonaire South 2 charcoal charred 15-20 cm b.s. 885 45 — Haviser 2001 016) 0268 America material northern Wanapa (B- marine PITT- Bonaire Bonaire South 3 shell 10-15 cm b.s. 2975 45 — Haviser 1991 016) shell 0270 America northern charcoal/ Wanapa (B- PITT- moder Bonaire Bonaire South 4 charcoal charred 20-25 cm b.s. — — Haviser 1991 016) 0269 n America material charcoal/ Lesser Fitzpatrick and Carriacou Grenada 2 Grand Bay charcoal charred F016 AA-62282 1227 36 -25.97 Antilles Giovas 2011 material charcoal/ Lesser Unit 447, layer 6, Fitzpatrick and Carriacou Grenada 2 Grand Bay charcoal charred AA-62279 1243 36 -25.13 Antilles Depth 110 cmbs Giovas 2011 material charcoal/ Lesser Unit 447, Layer Fitzpatrick and Carriacou Grenada 2 Grand Bay charcoal charred AA-62281 1339 36 -23.96 Antilles 6, Depth 93 cmbs Giovas 2011 material trench 415, Lesser Tayassu/Peca faunal square 23, UCIAMS- Giovas et al. Carriacou Grenada 2 Grand Bay 990 20 -22.2 Antilles ri mandible material stratum L002, 94044 2012 planum 5 trench 446, Lesser faunal UCIAMS- Giovas et al. Carriacou Grenada 2 Grand Bay Cavia maxilla square 9, stratum 1020 20 -13.5 Antilles material 94045 2012 L002, planum 4 human bone Lesser human Beta- Carriacou Grenada 2 Grand Bay (adult, rib 563; F1064 870 40 -12.4 this publication Antilles bone/teeth 257793 fragment) 222 - Lesser human C177; Grand Bay, UCIAMS- Giovas 2013; Carriacou Grenada 2 Grand Bay human bone 690 15 10.274480 Antilles bone/teeth Carriacou. F177 111934 Casto 2015 1 - Lesser human C180; Grand Bay, UCIAMS- Giovas 2013; Carriacou Grenada 2 Grand Bay human bone 1565 15 13.574081 Antilles bone/teeth Carriacou. F180 111935 Casto 2015 6 human bone Lesser human Fitzpatrick and Carriacou Grenada 2 Grand Bay (child, rt. F006 AA-62283 1062 44 -14.21 Antilles bone/teeth Giovas 2011 fibula) Lesser human UCIAMS- Carriacou Grenada 2 Grand Bay human bone GB1230 1015 15 -15.7 this publication Antilles bone/teeth 120951 Eustrombus Lesser marine N.profile, Depth Beta- Fitzpatrick and Carriacou Grenada 2 Grand Bay gigas 1870 70 +2.1 Antilles shell 108 cmbs 206685 Giovas 2011 (juvenile) Lesser marine Beta- Fitzpatrick and Carriacou Grenada 2 Grand Bay Cittarium pica Unit 415, Layer 5 1310 40 +1.8 Antilles shell 233647 Giovas 2011 Unit 447, Layer Lesser marine Fitzpatrick and Carriacou Grenada 2 Grand Bay Cittarium pica 15, Depth 145 AA-62278 1917 37 +2.53 Antilles shell Giovas 2011 cmbs Lesser marine Unit 447, layer 6, AA- Fitzpatrick and Carriacou Grenada 2 Grand Bay Venus sp. 1789 38 +3.39 Antilles shell Depth 127 cmbs 62280a Giovas 2011 Lesser marine Unit 447, layer 6, AA- Fitzpatrick and Carriacou Grenada 2 Grand Bay Venus sp. 1822 41 +3.36 Antilles shell Depth 127 cmbs 62280b Giovas 2011 charcoal/ 415; Sq. 20, Lesser D-AMS Carriacou Grenada 2 Grand Bay charcoal charred Layer VI; planum 1315 20 -23.9 this publication Antilles 016648 material 10 223 charcoal/ 415; Sq. 20, Lesser D-AMS Carriacou Grenada 2 Grand Bay charcoal charred Layer VI; planum 1321 20 -14.2 this publication Antilles 16649 material 10 charcoal/ 415; Sq. 20, Lesser D-AMS Carriacou Grenada 2 Grand Bay charcoal charred Layer VI; planum 1328 20 -20.2 this publication Antilles 016647 material 8 Lesser human bone human Fitzpatrick and Carriacou Grenada 3 Harvey Vale — AA-62284 1027 46 -12.55 Antilles (rt. ulna) bone/teeth Giovas 2011 - Lesser human C001; Point Bay, UCIAMS- Giovas 2013; Carriacou Grenada 2 Point Bay human bone 715 15 12.606224 Antilles bone/teeth Carriacou. F001 111933 Casto 2015 1 charcoal/ Lesser Layer 11, 53-108 Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67529 988 42 -25.6 Antilles cmbs Giovas 2011 material charcoal/ Lesser Layer 11, 53-108 Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67530 1039 35 -25.6 Antilles cmbs Giovas 2011 material charcoal/ Lesser Layer 13, 108- Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67531 1133 38 -24.6 Antilles 115 cmbs Giovas 2011 material charcoal/ Lesser Layer 13, 108- Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67532 1073 38 -25.0 Antilles 115 cmbs Giovas 2011 material charcoal/ Lesser Layer 14, 115- Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67533 1172 36 -25.0 Antilles 154 cmbs Giovas 2011 material charcoal/ Lesser Layer 14, 115- Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67534 1333 57 -24.6 Antilles 154 cmbs Giovas 2011 material 224 charcoal/ Lesser Layer 15, 149- Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67535 1588 36 -24.8 Antilles 164 cmbs Giovas 2011 material charcoal/ Lesser Layer 15, 149- Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-67536 1584 36 -25.8 Antilles 164 cmbs Giovas 2011 material charcoal/ Lesser Layer 6, 215 Fitzpatrick et Carriacou Grenada 2 Sabazan charcoal charred OS-41358 1030 30 -23.94 Antilles cmbs al. 2004 material charcoal/ Bullen and Lesser midden, ~60-80 Carriacou Grenada 2 Sabazan charcoal charred RL-29 940 100 — Bullen Antilles cmbs material 1972:17, 161 charcoal/ Lesser Tr 1: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-81054 657 44 -23.8 Antilles 2, 3-13 cmbs Giovas 2011 material charcoal/ Lesser Tr 1: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charred seed charred OS-71407 960 15 -23.55 Antilles 4, 30-34 cmbs Giovas 2011 material charcoal/ Lesser Tr 1: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred OS-71408 970 15 -25.99 Antilles 5, 43-53 cmbs Giovas 2011 material charcoal/ Lesser Tr 1: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charred seed charred AA-81056 994 45 -25.5 Antilles 6, 57-67 cmbs Giovas 2011 material charcoal/ Lesser Tr 1: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred OS-71409 925 15 -24.73 Antilles 6, 73.5 cmbs Giovas 2011 material charcoal/ Lesser Tr 2: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charred seed charred OS-71462 975 20 -24.5 Antilles 3, 19-29 cmbs Giovas 2011 material 225 charcoal/ Lesser Tr 2: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred AA-81055 1158 45 -24.1 Antilles 3A, 40-50 cmbs Giovas 2011 material charcoal/ Lesser Tr 2: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred OS-71463 1140 15 -23.62 Antilles 3A, 75.5 cmbs Giovas 2011 material charcoal/ Lesser Tr 2: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charred seed charred OS-71464 1100 20 -24.03 Antilles 8, 89-91 cmbs Giovas 2011 material charcoal/ Lesser Tr 2: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred OS-71465 1080 15 -24.04 Antilles 9, 115 cmbs Giovas 2011 material charcoal/ Lesser Tr 3: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred OS-71466 680 15 -24.77 Antilles 2, 8-19 cmbs Giovas 2011 material charcoal/ Lesser Tr 3: sq 1, layer Fitzpatrick and Carriacou Grenada 2 Sabazan charcoal charred OS-71467 1220 20 -25.67 Antilles 3A, 84 cmbs Giovas 2011 material coastal profile, Lesser Didelphis faunal UCIAMS- Giovas et al. Carriacou Grenada 2 Sabazan statum XIV, 115- 1265 20 -19.0 Antilles vertebra material 94046 2012 154 cmbs Lesser marine Layer 5, 160 Fitzpatrick et Carriacou Grenada 2 Sabazan Cittarium pica GX-30423 1400 60 +2.4 Antilles shell cmbs al. 2004 Lesser Strombus marine Layer 6, 210 Fitzpatrick et Carriacou Grenada 2 Sabazan GX-30424 1570 60 +0.2 Antilles gigas shell cmbs al. 2004 Lesser marine Layer 7, 230 Fitzpatrick et Carriacou Grenada 2 Sabazan Cittarium pica GX-30425 1460 60 +2.5 Antilles shell cmbs al. 2004 charcoal/ Lesser Tr 2: sq 1, layer moder Fitzpatrick and Carriacou Grenada 4 Sabazan charcoal charred OS-71410 — -26.05 Antilles 2, 2-11 cmbs n Giovas 2011 material 226 Cayman Greater Bedding Plane Rodentia; faunal Harvey et al. Cayman Brac 4 back of cave ORAU- 897 23 -19.23 Islands Antilles II Capromyidae material 2016 Cayman Greater Bedding Plane Rodentia; faunal Harvey et al. Cayman Brac 4 entrance of cave ORAU- 930 25 -19.54 Islands Antilles II Capromyidae material 2016 Cayman Greater Rodentia; faunal Harvey et al. Cayman Brac 4 Green Cave Cave Chamber 2 ORAU- 928 26 -18.35 Islands Antilles Capromyidae material 2016 Cayman Greater Rodentia; faunal Harvey et al. Cayman Brac 4 Green Cave Cave Chamber 2 ORAU- 609 26 -18.32 Islands Antilles Capromyidae material 2016 Cayman Greater Rodentia; faunal Harvey et al. Cayman Brac 4 Green Cave Cave Chamber 3 ORAU- 1588 26 -17.59 Islands Antilles Capromyidae material 2016 Cayman Greater Rodentia; faunal Chamber 5, Harvey et al. Cayman Brac 4 Green Cave ORAU- 1166 34 -18.09 Islands Antilles Capromyidae material surface 2016 Cayman Greater Rodentia; faunal Chamber 5, Harvey et al. Cayman Brac 4 Green Cave ORAU- 1134 34 -17.69 Islands Antilles Capromyidae material surface 2016 Cayman Greater Rodentia; faunal Harvey et al. Cayman Brac 4 Pebble Cave Cave Chamber 4 ORAU- 393 25 -19.03 Islands Antilles Capromyidae material 2016 Cayman Greater Great Cave, marine Scudder and Cayman Brac 3 Cittarium pica — I-17143 1230 80 — Islands Antilles Pollards Bay shell Quitmyer 1998 Cayman Greater Great Cave, marine Scudder and Cayman Brac 3 Cittarium pica — I-17144 1480 80 — Islands Antilles Pollards Bay shell Quitmyer 1998 Crooked Bahamian Chelonoidis faunal Beta- Steadman et al. Bahamas 3 1702 Cave CR-26, surface 2510 30 -19.7 Island Archipelago sp. material 445995 2017 Crooked Bahamian OxA- Ostapkowicz Bahamas 4 Acklins Cordia sp. wood — 395 25 -28.9 Island Archipelago 18449 2015 Crooked Bahamian Geocaproms faunal Beta- Steadman et al. Bahamas 3 Crossbed Cave CR-25; surface 250 30 -20.1 Island Archipelago ingrahami material 411055 2017 Crooked Bahamian Crocodylus faunal Beta- Steadman et al. Bahamas 3 Crossbed Cave CR-26; surface 460 30 -17.3 Island Archipelago rhombifer material 411056 2017 Crooked Bahamian Geocaproms faunal CR-5; Unit 1, Beta- Steadman et al. Bahamas 2 McKay's Bluff 280 30 -20.7 Island Archipelago ingrahami material Level 2 411057 2017 227 Crooked Bahamian Geocaproms faunal CR-5; Unit 1, Beta- Steadman et al. Bahamas 2 McKay's Bluff 300 30 -19.1 Island Archipelago ingrahami material Level 4 411058 2017 Crooked Bahamian Chelonoidis faunal CR-5; Unit 2, Beta- Steadman et al. Bahamas 2 McKay's Bluff 870 30 -21.1 Island Archipelago sp. material Level 2 451745 2017 charcoal/ Winter 1978b; Crooked Bahamian Bahamas 3 McKay wood charcoal charred — UGa-1584 690 75 — Winter Island Archipelago material 1978:238-239 Winter 1978b; Crooked Bahamian bulk fauna faunal Bahamas 3 McKay — UGa-1583 210 80 — Winter Island Archipelago (fish) material 1978:238-239 Winter 1978b; Crooked Bahamian Strombus marine Bahamas 3 McKay — UGa-1262 710 65 — Winter Island Archipelago gigas shell 1978:238-239 Crooked Bahamian Geocaproms faunal Beta- Steadman et al. Bahamas 3 McKay's Bluff CR-5; surface 310 30 -20.7 Island Archipelago ingrahami material 411059 2017 Crooked Bahamian Pittstown Crocodylus faunal CR-14; Test Pit 2, Beta- Steadman et al. Bahamas 2 860 30 -16.9 Island Archipelago Landing rhombifer material Layer 4 445997 2017 Ulloa Hung charcoal/ Excavation 1, Greater Abra del Beta- and Valcárcel Cuba Cuba 2 charcoal charred enlargement 1, 1210 60 — Antilles Cacoyuguin 1 133947 Rojas material level 0.10-0.20 m 2002:232 Ulloa Hung charcoal/ Excavation 1, Greater Abra del Beta- and Valcárcel Cuba Cuba 2 charcoal charred enlargement 1, 1640 130 — Antilles Cacoyuguin 1 133948 Rojas material level 0.30-0.40 m 2002:232 228 Ulloa Hung charcoal/ Excavation 2, Greater Abra Rio Beta- and Valcárcel Cuba Cuba 2 charcoal charred grid square 1, 2780 40 — Antilles Cacoyuguin II 133950 Rojas material level 0.40-0.50 m 2002:232 Ulloa Hung charcoal/ Excavation 2, Greater Abra Rio Beta- and Valcárcel Cuba Cuba 2 charcoal charred grid square 1, 3720 70 — Antilles Cacoyuguin II 133951 Rojas material level 0.50-0.60 m 2002:232 Ulloa Hung Abra Rio charcoal/ Greater Cut 1, level 0.30- Beta- and Valcárcel Cuba Cuba 2 Cacoyuguin charcoal charred 4180 80 — Antilles 0.40 m 140079 Rojas IV material 2002:232 Midden 2, pit 1, level 0.50-0.75 m. Pino 1995:6; charcoal/ Greater Assoc. Assoc. Valcárcel Cuba Cuba 3 Aguas Gordas charcoal charred GD-620 165 60 — Antilles with ceramics, Rojas material some shell and 2002:140 stone artifacts Vinogradov 1968:462; Pazdur et al. charcoal/ Greater Midden 1, sample 1982:174; Pino Cuba Cuba 2 Aguas Gordas charcoal charred Mo-399 1000 105 — Antilles depth 1.75 m 1995:6; material Valcárcel Rojas 2002:140 Midden 2, pit 1, Pino 1995:6; charcoal/ level 1.25-1.50 m. Greater Valcárcel Cuba Cuba 2 Aguas Gordas charcoal charred Assoc. with GD-621 705 65 — Antilles Rojas material ceramics, shell 2002:140 and stone artifacts 229 charcoal/ Pazdur et al. Greater Midden 2, pit 1, Cuba Cuba 2 Aguas Gordas charcoal charred GD-1055 575 60 — 1982:174; Pino Antilles level 1.00-1.25 m material 1995:6 Pino 1995:6; charcoal/ Greater Mound 2, pit 1, Valcárcel Cuba Cuba 2 Aguas Gordas charcoal charred GD-1054 485 50 — Antilles level 0.75-1.00 m Rojas material 2002:140 charcoal/ Cave no. 1, Greater Arroyo del Cuba Cuba 2 charcoal charred sample depth Y-1556 970 80 — Pino 1995:3 Antilles Palo, Mayari material .25m Trench 2B, level charcoal/ Greater Arroyo del 0.75-1.00 m Cuba Cuba 2 charcoal charred Y-1555 760 60 — Pino 1995:3 Antilles Palo, Mayari (sample depth .75 material m) Ulloa Hung charcoal/ Greater Trench 1, level and Valcárcel Cuba Cuba 3 Belleza charcoal charred — 1120 60 — Antilles 0.40 m Rojas material 2002:233 charcoal/ Greater Angelbello Cuba Cuba 3 Birama charcoal charred — — 820 40 — Antilles 2002:69 material Unit 2, grid charcoal/ square 9, level Valcárcel Greater El Boniato (El Beta- Cuba Cuba 2 charcoal charred spit depth 0.40- 670 70 — Rojas Antilles Palmar) 148958 material 0.50 m, natural 2002:142 layer 2 Greater Los Sample Number = OxA- Cooper and Cuba Cuba 3 wood wood 157 24 -27.2 Antilles Buchillones 33 15147 Thomas 2012 Greater Los Post 1, Structure Pendergast et Cuba Cuba 3 wood wood TO-8067 240 60 — Antilles Buchillones F1-1 al. 2002:72 Greater Los Post 3, Structure Pendergast et Cuba Cuba 3 wood wood TO-8069 230 70 — Antilles Buchillones F1-1 al. 2002:72 230 Greater Los Post 4, Structure Pendergast et Cuba Cuba 3 wood wood TO-8070 280 60 — Antilles Buchillones F1-1 al. 2002:72 Greater Los Post 5, Structure Pendergast et Cuba Cuba 3 wood wood TO-8071 250 60 — Antilles Buchillones F1-1 al. 2002:72 Greater Los Post 7, Structure Pendergast et Cuba Cuba 3 wood wood TO-7619 300 50 — Antilles Buchillones D2-1, al. 2002:69 Greater Los Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 879 26 +2.2 Antilles Buchillones gigas shell 37 15145 Thomas 2012 Greater Los Phacoides marine Sample Number = OxA- Cooper and Cuba Cuba 2 1557 25 +2.5 Antilles Buchillones pectinatus shell 38 15146 Thomas 2012 Greater Los Fasciolaria marine Sample Number = OxA- Cooper and Cuba Cuba 2 950 24 +2.6 Antilles Buchillones tulipa shell 39 15151 Thomas 2012 Greater Los Oliva marine Sample Number = OxA- Cooper and Cuba Cuba 2 939 24 +1.3 Antilles Buchillones recticularis shell 40 15152 Thomas 2012 Greater Los Fasciolaria marine Sample Number = OxA- Cooper and Cuba Cuba 2 714 25 +1.2 Antilles Buchillones tulipa shell 41 15153 Thomas 2012 Greater Los Codakia marine Sample Number = OxA- Cooper and Cuba Cuba 2 820 24 +2.4 Antilles Buchillones orbicularis shell 42 15154 Thomas 2012 Greater Los Oliva marine Sample Number = OxA- Cooper and Cuba Cuba 2 874 25 +1.6 Antilles Buchillones recticularis shell 43 15149 Thomas 2012 231 Greater Los Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 891 23 +3.4 Antilles Buchillones gigas shell 44 15148 Thomas 2012 Greater Los King Post 1, Pendergast et Cuba Cuba 2 wood wood TO-7627 460 50 — Antilles Buchillones Structure D2-1, al. 2002:69 Pendergast et Greater Los King Post 2, al. 2002:69; Cuba Cuba 2 wood wood TO-7628 560 50 — Antilles Buchillones Structure D2-1, Kepecs et al. 2010 Greater Los Post 1, Structure Pendergast et Cuba Cuba 2 wood wood TO-7617 330 50 — Antilles Buchillones D2-1, al. 2002:69 Pendergast et Greater Los Post 12, Structure al. 2002:69; Cuba Cuba 2 wood wood TO-7621 1404 60 — Antilles Buchillones D2-1, Kepecs et al. 2010 Pendergast et Greater Los Post 13, Structure al. 2002:69; Cuba Cuba 2 wood wood TO-7622 320 40 — Antilles Buchillones D2-1, Kepecs et al. 2010 Greater Los Post 2, Structure Pendergast et Cuba Cuba 2 wood wood TO-7618 510 50 — Antilles Buchillones D2-1, al. 2002:69 Greater Los Post 2, Structure Pendergast et Cuba Cuba 2 wood wood TO-8068 480 60 — Antilles Buchillones F1-1 al. 2002:72 Greater Los Post 6, Structure Pendergast et Cuba Cuba 2 wood wood TO-8072 430 60 — Antilles Buchillones F1-1 al. 2002:72 Greater Los Post 7 sub, Pendergast et Cuba Cuba 2 wood wood TO-7620 430 50 — Antilles Buchillones Structure D2-1, al. 2002:69 232 Greater Los Rafter 2, Pendergast et Cuba Cuba 2 wood wood TO-7623 390 50 — Antilles Buchillones Structure D2-1, al. 2002:69 Pendergast et Greater Los Rafter 3, al. 2002:69; Cuba Cuba 2 wood wood TO-7624 1320 60 — Antilles Buchillones Structure D2-1, Kepecs et al. 2010 Greater Los Rafter 4, Pendergast et Cuba Cuba 2 wood wood TO-7625 340 50 — Antilles Buchillones Structure D2-1, al. 2002:69 Greater Los Rafter 5, Pendergast et Cuba Cuba 2 wood wood TO-7626 540 50 — Antilles Buchillones Structure D2-1, al. 2002:69 Greater Los Sample Number = OxA- Cooper and Cuba Cuba 2 wood wood 651 24 -25.7 Antilles Buchillones 32 15144 Thomas 2012 Greater Los Sample Number = OxA- Cooper and Cuba Cuba 2 wood wood 531 23 -27.3 Antilles Buchillones 34 15150 Thomas 2012 Greater Los Sample Number = OxA- Cooper and Cuba Cuba 2 wood wood 710 27 -24.9 Antilles Buchillones 36 15123 Thomas 2012 Greater human Rankin Cuba Cuba 3 Cabagan bone — — 1080 20 — Antilles bone/teeth 1994:139 charcoal/ Navarrete Greater Test pit 4, sample Cuba Cuba 2 Caimanes III charcoal charred UM-1953 1745 175 — 1990:41; Pino Antilles depth .38 m material 1995:3 Sample depth 0.7 charcoal/ Greater m to 0.8m. Ca 3m Pazdur et al. Cuba Cuba 2 Canimar 1 charcoal charred GD-203 1010 110 — Antilles asl. Unsecure 1982:175 material stratigraphy charcoal/ Greater Canímar 20 cm below UNAM- Roksandic et Cuba Cuba 4 charcoal charred 800 50 -25.8 Antilles Abajo surface 0714a al. 2015 material 233 charcoal/ Greater Canímar 60-70 cm below UNAM- Roksandic et Cuba Cuba 4 charcoal charred 6460 15 -26.9 Antilles Abajo surface 0715 al. 2015 material charcoal/ Greater Canímar 1.6-1.7 m below UBAR- Roksandic et Cuba Cuba 2 charcoal charred 4200 79 — Antilles Abajo surface 170 al. 2015 material charcoal/ Greater Canímar Roksandic et Cuba Cuba 2 charcoal charred 1.8-1.9 meters A-14316 2845 90 -26.3 Antilles Abajo al. 2015 material charcoal/ Greater Canímar 40 cm below UNAM- Roksandic et Cuba Cuba 2 charcoal charred 2520 60 -27.3 Antilles Abajo surface 0717 al. 2015 material charcoal/ Greater Canímar 45 cm below UNAM- Roksandic et Cuba Cuba 2 charcoal charred 3460 60 -26.2 Antilles Abajo surface 0716 al. 2015 material charcoal/ Greater Canímar 90-100 cm below Roksandic et Cuba Cuba 2 charcoal charred A-14315 2515 75 -28.2 Antilles Abajo surface al. 2015 material charcoal/ Greater Canímar AA- Roksandic et Cuba Cuba 2 charcoal charred Layer 4 3057 39 -25.6 Antilles Abajo 101053 al. 2015 material Greater Canímar marine 1.8-1.9 m below UBAR- Roksandic et Cuba Cuba 3 shell 4700 70 — Antilles Abajo shell surface 171 al. 2015 Greater Canímar human bone human AA- Roksandic et Cuba Cuba 2 Layer 2 1661 52 -19.1 Antilles Abajo collagen bone/teeth 101055 al. 2015 Greater Canímar human bone human AA- Roksandic et Cuba Cuba 2 Layer 2 1289 46 -19.7 Antilles Abajo collagen bone/teeth 101056 al. 2015 Greater Canímar human bone human Roksandic et Cuba Cuba 2 Layer 2 AA-89060 1420 59 -18.1 Antilles Abajo collagen bone/teeth al. 2015 Greater Canímar human bone human Roksandic et Cuba Cuba 2 Layer 2 AA-89062 1536 51 -16.1 Antilles Abajo collagen bone/teeth al. 2015 Greater Canímar human bone human Roksandic et Cuba Cuba 2 Layer 2 AA-89064 1617 46 -14.0 Antilles Abajo collagen bone/teeth al. 2015 Greater Canímar human bone human AA- Roksandic et Cuba Cuba 2 Layer 4 2946 57 -15.0 Antilles Abajo collagen bone/teeth 101052 al. 2015 Greater Canímar human bone human AA- Roksandic et Cuba Cuba 2 Layer 4 2999 61 -15.3 Antilles Abajo collagen bone/teeth 101054 al. 2015 Greater Canímar human bone human AA- Roksandic et Cuba Cuba 2 Layer 4 2996 53 -15.6 Antilles Abajo collagen bone/teeth 101057 al. 2015 234 Greater Canímar human bone human AA- Roksandic et Cuba Cuba 2 Layer 4 2791 51 -20.0 Antilles Abajo collagen bone/teeth 101059 al. 2015 Greater Canímar human bone human Roksandic et Cuba Cuba 2 Layer 4 AA-89061 2960 33 -14.1 Antilles Abajo collagen bone/teeth al. 2015 Greater Canímar human bone human Roksandic et Cuba Cuba 2 Layer 4 AA-89063 2922 34 -16.3 Antilles Abajo collagen bone/teeth al. 2015 Colten and Greater marine Trench A, section Beta- Cuba Cuba 2 Los Caracoles oyster shell 2350 30 -2.3 Worthington Antilles shell 3, level 15-30 cm 422938 2019 Ulloa Hung charcoal/ Greater Trench 1, level Beta- and Valcárcel Cuba Cuba 2 Catunda charcoal charred 1850 50 — Antilles 0.30 m 93866 Rojas material 2002:233 Ulloa Hung charcoal/ Greater Trench 2, level Beta- and Valcárcel Cuba Cuba 2 Catunda charcoal charred 1890 60 — Antilles 0.40 m 93862 Rojas material 2002:233 Ulloa Hung charcoal/ Greater Trench 5, level Beta- and Valcárcel Cuba Cuba 2 Catunda charcoal charred 1280 60 — Antilles 0.20-0.30 m 140078 Rojas material 2002:233 Greater Cayo Caiman Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 4408 37 +2.4 Antilles Mata del Coco gigas shell 22 (Midden 1) 15267 Thomas 2012 Sample Number = Greater Cayo Strombus marine OxA- Cooper and Cuba Cuba 2 30 (Surface 857 24 +3.5 Antilles Contrabando gigas shell 15182 Thomas 2012 Deposit 2) Sample Number = Greater Cayo Felipe Strombus marine OxA- Cooper and Cuba Cuba 2 21 (Surface 1978 33 +3.9 Antilles Este gigas shell 15266 Thomas 2012 Deposit 1) 235 Sample Number = Greater Strombus marine OxA- Cooper and Cuba Cuba 2 Cayo Flores 23 (Surface 3861 28 +2.9 Antilles gigas shell 15180 Thomas 2012 Deposit 1) Cayo Greater Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 1686 26 +3.1 Antilles gigas shell 19 (Midden 1) 15184 Thomas 2012 (Punta Morro) Cayo Hijo de Greater Oliva marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 827 36 -1.6 Antilles recticularis shell 1 (Cave 1) 15259 Thomas 2012 Este Cayo Hijo de Greater marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo Strombus sp. 3271 29 +3.7 Antilles shell 13 (Cave 3) 15263 Thomas 2012 Este Cayo Hijo de Greater Xancus marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 3273 33 +3.8 Antilles angulatus shell 15 (Cave 3) 15264 Thomas 2012 Este Cayo Hijo de Greater Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 1617 29 +3.8 Antilles gigas shell 2 (Cave 1) 15260 Thomas 2012 Este Cayo Hijo de Sample Number = Greater Strombus marine OxA- Cooper and Cuba Cuba 2 Guillermo 20 (Rock Shelter 763 25 +4.3 Antilles gigas shell 15265 Thomas 2012 Este 1) Cayo Hijo de Greater Oliva marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 709 26 +2.5 Antilles recticularis shell 24 (Cave 1) 15178 Thomas 2012 Este Cayo Hijo de Greater Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 1112 26 +3.3 Antilles gigas shell 26 (Cave 1) 15179 Thomas 2012 Este 236 Cayo Hijo de Greater Oliva marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 782 26 +2.1 Antilles recticularis shell 6 (Cave 1) 15261 Thomas 2012 Este Cayo Hijo de Greater Strombus marine Sample Number = OxA- Cooper and Cuba Cuba 2 Guillermo 2005 27 +3.1 Antilles gigas shell 7 (Cave 1) 15262 Thomas 2012 Este Cayo Hijo de Sample Number = Greater Strombus marine OxA- Cooper and Cuba Cuba 2 Guillermo 31 (Surface 1873 26 +3.0 Antilles gigas shell 15183 Thomas 2012 Oeste Deposit 1) Sample Number = Greater Strombus marine OxA- Cooper and Cuba Cuba 2 Cayo Langosta 29 (Surface 1561 24 +3.1 Antilles gigas shell 15181 Thomas 2012 Deposit 1) Ulloa Hung Trench 1, level Greater terrestrial terrestrial Beta- and Valcárcel Cuba Cuba 3 Los Chivos 0.45 m 2710 80 — Antilles shell shell 140076 Rojas (preceramic) 2002:233 Ulloa Hung Trench 1, South Greater terrestrial terrestrial Beta- and Valcárcel Cuba Cuba 3 Los Chivos enlargement, 1150 60 — Antilles shell shell 140074 Rojas level 0.10-0.20 m 2002:233 Unit 5, grid charcoal/ Valcárcel Greater Chorro de square 2, natural Beta- Cuba Cuba 2 charcoal charred 730 60 — Rojas Antilles Maita layer 1, spit depth 148957 material 2002:142 0.30-0.50 m Valcárcel Rojas Greater Chorro de human Skeleton no. 25, Beta- 2002:142; Cuba Cuba 2 human bone 870 70 -0.19 Antilles Maita bone/teeth depth 0.88 m 148956 Valcárcel Rojas and Arce 2003:511 237 Valcárcel Rojas Greater Chorro de human Skeleton no. 39, Beta- 2002:142; Cuba Cuba 2 human bone 360 80 -0.19 Antilles Maita bone/teeth depth 0.79 m 148955 Valcárcel Rojas and Arce 2003:511 charcoal/ Greater Rankin Cuba Cuba 3 El Convento charcoal charred — — 400 20 — Antilles 1994:138 material Pit 2, level 0.25- 0.50 m. sample charcoal/ Pazdur et al. Greater depth 0.45 m. Cuba Cuba 2 El Convento charcoal charred GD-1053 665 50 — 1982:174; Pino Antilles Assoc. with material 1995:7 ceramic, shell, and stone artifacts Ulloa Hung Excavation 3, Greater marine Beta- and Valcárcel Cuba Cuba 3 Corinthia III marine shell grid square 3, 2220 70 — Antilles shell 133953 Rojas level 0.10-0.20 m 2002:132 Ulloa Hung Excavation 4, Greater marine Beta- and Valcárcel Cuba Cuba 3 Corinthia III marine shell grid square 2, 2300 60 — Antilles shell 133952 Rojas level 1 2002:132 Ulloa Hung Greater marine Unit III, level Beta- and Valcárcel Cuba Cuba 3 Corinthia III marine shell 1700 70 — Antilles shell 0.00-0.10 m 140080 Rojas 2002:132 Greater Cueva de los Cuba Cuba 4 — unknown — — 4045 75 — Godo 2001 Antilles Bandoleros Area 2, Trench 1, Greater human Beta- Ulloa Hung Cuba Cuba 2 Cueva Calero collagen Secc. D, 30-40 1670 70 25.0 Antilles bone/teeth 72801 2008 cm 238 Greater human Area 2, Trench 1, Beta- Ulloa Hung Cuba Cuba 2 Cueva Calero collagen 1590 60 25.0 Antilles bone/teeth Secc. E, 20-30 cm 72802 2008 In front of cave, Block I, Sec. A, charcoal/ level .5-.75 m Greater Cueva #1 Cuba Cuba 2 charcoal charred sample depth .57 GD-618 910 85 — Pino 1995:3 Antilles Punta del Este material m. Assoc. with shell and stone artifacts charcoal/ Test Pit 1 x .5m Pino 1995:3; Greater Cueva #4 LC-H- Cuba Cuba 2 charcoal charred sample depth .38 1100 130 — Navarrete Antilles Punta del Este 1106 material m 1990:41 charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4269 1470 110 — Pino 1995:5 Antilles Lechuza 1, level 0.25 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4267 2220 160 — Pino 1995:5 Antilles Lechuza 1, level 0.35 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4274 2030 160 — Pino 1995:5 Antilles Lechuza 1, level 0.45 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4276 2250 150 — Pino 1995:5 Antilles Lechuza 1, level 0.55 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4272 2750 160 — Pino 1995:5 Antilles Lechuza 1, level 0.65 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4271 2380 80 — Pino 1995:5 Antilles Lechuza 1, level 0.75 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4279 2390 170 — Pino 1995:5 Antilles Lechuza 1, level 0.85 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4273 2420 100 — Pino 1995:5 Antilles Lechuza 1, level 0.95 m material 239 charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4270 3110 180 — Pino 1995:5 Antilles Lechuza 1, level 1.05 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4282 2930 300 — Pino 1995:5 Antilles Lechuza 1, level 1.25 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4288 3030 180 — Pino 1995:6 Antilles Lechuza 1, level 1.55 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4287 3030 180 — Pino 1995:6 Antilles Lechuza 1, level 1.65 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4283 5270 120 — Pino 1995:6 Antilles Lechuza 1, level 1.95 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4290 2610 120 — Pino 1995:6 Antilles Lechuza 1, level 2.05 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4281 2610 120 — Pino 1995:6 Antilles Lechuza 1, level 2.15 m material charcoal/ Greater Cueva de la Test Pit 1, block Cuba Cuba 2 charcoal charred LE-4275 2580 90 — Pino 1995:6 Antilles Lechuza 1, level 2.35 m material Excavation unit 1, charcoal/ block 1-I, sec. A, Pazdur et al. Greater Cueva de la Cuba Cuba 2 charcoal charred level 0.50-0.75 m. GD-1039 2160 55 — 1982:173; Pino Antilles Pintura material assoc. with shell 1995:6 and stone artifacts Excavation unit 1, charcoal/ block 1-I, sec. D, Pazdur et al. Greater Cueva de la Cuba Cuba 2 charcoal charred level 1.00-1.25 m. GD-601 2805 60 — 1982:173; Pino Antilles Pintura material assoc. with shell 1995:6 and stone artifacts Excavation unit 1, charcoal/ block 1-I, sec. D, Greater Cueva de la Pazdur et al. Cuba Cuba 2 charcoal charred level 1.5 to 1.8 m. GD-591 2930 80 — Antilles Pintura 1982:173 material assoc. with shell and stone artifacts 240 Excavation unit 2, charcoal/ block 5, sec. D, Pazdur et al. Greater Cueva de la Cuba Cuba 2 charcoal charred level 1.00-1.25 m. GD-614 2720 65 — 1982:173; Pino Antilles Pintura material assoc. with shell 1995:6 and stone artifacts Excavation unit 2, block 5, sec. D, charcoal/ Greater Cueva de la level 1.25 to Pazdur et al. Cuba Cuba 2 charcoal charred GD-1046 2840 60 — Antilles Pintura 1.5m. assoc. with 1982:173 material shell and stone artifacts Excavation unit 2, block 5, sec. D, charcoal/ Greater Cueva de la level 1.5 to Pazdur et al. Cuba Cuba 2 charcoal charred GD-613 2880 70 — Antilles Pintura 1.75m. assoc. 1982:173 material with shell and stone artifacts Trench 1, sec. 1, level 1.00-1.20 m. charcoal/ Greater Cueva del assoc. with Cuba Cuba 2 charcoal charred GD-617 1495 60 — Pino 1995:3 Antilles Perico I human burials, material shell and stone artifacts Pazdur et al. 1982:173; Pino charcoal/ Greater Cueva del Trench 1, sec. 1, 1995:3; Cuba Cuba 2 charcoal charred GD-1051 1990 80 — Antilles Perico I level 1.30-1.40 m Martínez material Fuentes et al. 2003:65 Trench 2, sec. 2, level 1.50-1.75 m. charcoal/ Greater Cueva del assoc. with Cuba Cuba 2 charcoal charred GD-616 1350 70 — Pino 1995:3 Antilles Perico I human burials, material shell and stone artifacts Greater Cueva de San Cuba Cuba 4 — unknown — — 3200 80 — Godo 2001 Antilles Martin Greater Cueva de San Cuba Cuba 4 — unknown — — 3290 120 — Godo 2001 Antilles Martin 241 Block II, sec. A, level 0.25-0.50 m Stuckenrath (sample depth .50 and Mielke charcoal/ m). With 1973:407; Greater Cuba Cuba 2 Cueva Funche charcoal charred preceramic SI-426 2070 150 — Mielke and Antilles material artifacts Long associated with 1969:172; Pino Guayabo Blanco 1995:4 see Rouse 1942 Block II, sec. D, level 0.50-0.75 m Stuckenrath (sample depth and Mielke charcoal/ .55 m). With 1973:407; Greater Cuba Cuba 2 Cueva Funche charcoal charred preceramic SI-427 2510 200 — Mielke and Antilles material artifacts Long associated with 1969:172; Pino Guayabo Blanco 1995:4 see Rouse 1942 Block III, sec. A, level 1.25-1.50 m Stuckenrath (sample depth and Mielke charcoal/ 1.40 m). With 1973:407; Greater Cuba Cuba 2 Cueva Funche charcoal charred preceramic SI-428 3110 200 — Mielke and Antilles material artifacts Long associated with 1969:172; Pino Guayabo Blanco 1995:4 see Rouse 1942 Block III, sec. A, level 1.50-1.75 m Stuckenrath (sample depth and Mielke charcoal/ 1.72 m). With 1973:407; Greater Cuba Cuba 2 Cueva Funche charcoal charred preceramic SI-429 4000 150 — Mielke and Antilles material artifacts Long associated with 1969:172; Pino Guayabo Blanco 1995:4 see Rouse 1942 242 Pino 1995:5; Navarrete charcoal/ Nivel ceramico Greater 1990; Dacal Cuba Cuba 2 Damayajabo charcoal charred (sin datos Y-1994 1120 160 — Antilles Moure and material estratigraficos) Rivero de la Calle 1996:13 Pino 1995:5; Navarrete charcoal/ Greater Trench 51, level 1990; Dacal Cuba Cuba 2 Damayajabo charcoal charred Y-1764 3250 100 — Antilles 1.34m Moure and material Rivero de la Calle 1996:13 charcoal/ Greater La Escondida Test Pits 3 y 4, 1 Cuba Cuba 3 charcoal charred — 1060 150 — Pino 1995:3 Antilles de Bucuey x1m, level .2-.3 m material Midden 1, trench 1, sec. C, level Mielke and 0.25-0.50 m Long charcoal/ (sample depth .45 1969:171; Pino Greater Cuba Cuba 2 Esterito charcoal charred m). Assoc. with SI-349 550 150 — 1995:7; Antilles material ceramic, shell, Valcárcel and stone Rojas artifacts. Without 2002:140 European contact. Midden 1, trench 1, sec. D, level Mielke and 1.00-1.25 m Long charcoal/ (sample depth 1969:171; Pino Greater Cuba Cuba 2 Esterito charcoal charred 1.15 m). Assoc. SI-350 500 100 — 1995:7; Antilles material with ceramic, Valcárcel shell, and stone Rojas artifacts. Without 2002:140 European contact. charcoal/ Greater Block 1, sec. 2 y FS AC Cuba Cuba 2 El Guafe I charcoal charred 450 35 — Pino 1995:5 Antilles 4, natural layer 3, 2420 material 243 prof. sample depth 0.50 m Block 2, natural charcoal/ Greater layer 2, prof. FS AC Cuba Cuba 2 El Guafe I charcoal charred 690 50 — Pino 1995:5 Antilles sample depth 0.30 2419 material m Midden 1, trench 1, sec. B, level 0.75-1.00 (sample Mielke and charcoal/ Greater La Guira de depth .90 m). Long Cuba Cuba 2 charcoal charred SI-351 590 100 — Antilles Barajagua Assoc. with 1969:171; Pino material ceramic, shell, 1995:7 and stone artifacts. Ulloa Hung La Guira Greater terrestrial terrestrial Trench 1, level Beta- and Valcárcel Cuba Cuba 3 (Santiago de 1390 70 — Antilles shell shell 0.19m 140077 Rojas Cuba) 2002:233 Ulloa Hung Greater marine Corte 5, level Beta- and Valcárcel Cuba Cuba 3 Herradura 1 marine shell 2050 70 — Antilles shell 0.00-0.10 m 140075 Rojas 2002:232 charcoal/ Greater Pit 1, 1x1m, level Cuba Cuba 2 Jorajuria charcoal charred LE-1784 3870 40 — Pino 1995:4 Antilles .40-.50 m material charcoal/ Greater Pit 1, 1x1m, level Cuba Cuba 2 Jorajuria charcoal charred LE-1782 3760 40 — Pino 1995:4 Antilles .60-.70 m material charcoal/ Greater Pit 1, 1x1m, level Cuba Cuba 2 Jorajuria charcoal charred LE-1783 4110 50 — Pino 1995:4 Antilles .80-.90 m material charcoal/ Cut A, spit depth Valcárcel Greater Beta- Cuba Cuba 2 Jucaro charcoal charred 0.20-0.40 m, 690 60 — Rojas Antilles 148949 material natural layer 1 2002:143 244 Midden 2, trench Mielke and charcoal/ 2, sec. D. level Greater Laguna de Long Cuba Cuba 2 charcoal charred 0.25- .50 m SI-348 640 120 — Antilles Limones 1969:171; Pino material (sample depth .40 1995:7 m) charcoal/ Pazdur et al. Greater Levisa 1 (Far. sec.I-I, 0.5- Cuba Cuba 2 charcoal charred GD-204 3460 160 — 1982:175; Pino Antilles de Lev.) 0.55m, capa v material 1995:2 charcoal/ Greater Levisa 1 (Far. sec.I-I, 0.55- Cuba Cuba 2 charcoal charred MC-859 4240 100 — Pino 1995:2 Antilles de Lev.) 0.60m, layer 6 material charcoal/ Greater Levisa 1 (Far. sec.I-I, 0.55- Cuba Cuba 2 charcoal charred MC-860 4420 100 — Pino 1995:2 Antilles de Lev.) 0.60m, layer 6 material Levisa 8 charcoal/ Unit 2, sec 25, Greater Cuba Cuba 2 (Cueva S. charcoal charred 0.20-0.40 m, LE-2719 2160 40 — Pino 1995:2 Antilles Rita) material layer 3 Levisa 8 charcoal/ Unit 3, sec 23 A, Greater Cuba Cuba 2 (Cueva S. charcoal charred 0.40-0.50 m, LE-2720 2680 40 — Pino 1995:2 Antilles Rita) material layer 1 Levisa 8 charcoal/ Unit 3, sec 35 A, Greater Cuba Cuba 2 (Cueva S. charcoal charred 0.20-0.30 m, LE-2717 2010 40 — Pino 1995:2 Antilles Rita) material layer 2/3 Levisa 8 charcoal/ Unit 3, sec 45, Greater Cuba Cuba 2 (Cueva S. charcoal charred 0.20-0.22 m, LE-2718 2610 40 — Pino 1995:2 Antilles Rita) material layer 1 Midden 2. Bloque Pazdur et al. I, sec. C, nivel 1982:174; Pino charcoal/ 0.50-0.75 m. Greater Loma de la 1995:7; Cuba Cuba 2 charcoal charred Assoc. with GD-1057 490 45 — Antilles Campana Valcárcel material ceramic, shell, Rojas and stone 2002:140 artifacts. 245 Midden 2. Bloque Pino 1995:7; II, sec. D, nivel Valcárcel charcoal/ 0.75-1.00 m. Greater Loma de la Rojas Cuba Cuba 2 charcoal charred Assoc. with GD-624 505 40 — Antilles Campana 2002:140; material ceramic, shell, Pazdur et al. and stone 1982:174 artifacts. Midden 2. Bloque Pino 1995:7; II, sec. D, nivel Valcárcel charcoal/ 1.00 -1.50 m. Greater Loma de la Rojas Cuba Cuba 2 charcoal charred Assoc. with GD-1056 600 55 — Antilles Campana 2002:140; material ceramic, shell, Pazdur et al. and stone 1982:174 artifacts. Midden 9, trench 1, sec. A, level 0.50-0.75 m Mielke and charcoal/ Greater Loma de la (muestra de 0.70 Long Cuba Cuba 2 charcoal charred SI-352 970 100 — Antilles Forestal m). Assoc. with 1969:171; Pino material ceramic, shell, 1995:7 and stone artifacts. Block 1, sec. 2, charcoal/ Greater Loma de natural layer 4, FS AC Cuba Cuba 2 charcoal charred 880 40 — Pino 1995:7 Antilles Ochile sample depth 0.80 2418 material - 0.90 m Block 2, sec. 1,2 charcoal/ Greater Loma de y 3, natural layer FS AC Cuba Cuba 2 charcoal charred 690 50 — Pino 1995:7 Antilles Ochile 2 sample depth 2415 material 0.30-0.40 m Block 2, sec. 3, charcoal/ Greater Loma de natural layer 1 FS AC Cuba Cuba 2 charcoal charred 770 35 — Pino 1995:7 Antilles Ochile sample depth 2414 material 0.10-0.30 m Block I, sec. 1-2, charcoal/ Greater Loma de natural layer 2 FS AC Cuba Cuba 2 charcoal charred 660 35 — Pino 1995:7 Antilles Ochile sample depth 2416 material 0.30-0.60 m 246 Block I, sec. 2, charcoal/ Greater Loma de natural layer 3, FS AC Cuba Cuba 2 charcoal charred 620 30 — Pino 1995:7 Antilles Ochile sample depthl 2417 material 0.60-0.80 m Ulloa Hung charcoal/ Greater Test Pit 3, level Beta- and Valcárcel Cuba Cuba 2 La Luz charcoal charred 1350 50 — Antilles 1.20 m 93863 Rojas material 2002:233 charcoal/ Excavation Greater Cuba Cuba 2 Marien 2 charcoal charred square LL-10, Lv-2062 780 100 — Pino 1995:2 Antilles material level 0.10-0.20 m charcoal/ Excavation Greater Cuba Cuba 2 Marien 2 charcoal charred square M-07, Lv-2063 2020 80 — Pino 1995:2 Antilles material level 0.20-0.30 m Trench 1, sec. B, Mielke and charcoal/ Greater level 0.25-0.50 m, Long Cuba Cuba 2 Meijas charcoal charred SI-347 1020 100 — Antilles sample depth 0.45 1969:170; Pino material m. 1995:3 Stuckenrath Trench 1, level and Mielke charcoal/ .25-.50 m (sample Greater Mogote de la 1973:407; Pino Cuba Cuba 2 charcoal charred depth .35m) SI-424 1620 150 — Antilles Cueva 1995:3; material Unsafe Lalueza-Fox et Stratigraphy al. 2003:64 charcoal/ Greater Mogote de la Navarrete Cuba Cuba 3 charcoal charred — — 960 50 — Antilles Cueva 1990:41 material Stuckenrath charcoal/ Trench 1, level 1. Greater Mogote de la and Mielke Cuba Cuba 2 charcoal charred 1.3 m (sample SI-425 650 200 — Antilles Cueva 1973:407; Pino material depth 1.25m) 1995:3 247 Block 9-Q, sec. B, level 0.25-0.50 m, sample depth Mielke and charcoal/ 0.45 m. Assoc. Greater Long Cuba Cuba 2 El Morrillo charcoal charred with ceramic, SI-353 590 90 — Antilles 1969:171; Pino material shell, and stone 1995:7 artifacts. Close to European artifacts. Greater human ICA Orihuela León Cuba Cuba 2 El Morrillo human bone burial 420 40 -15.5 Antilles bone/teeth 17B/0756 et al. 2017 charcoal/ Pazdur et al. Greater sec I-I, 0.85-0.90 Cuba Cuba 2 Las Obas charcoal charred GD-250 5140 170 — 1982:175; Pino Antilles m material 1995:2 Trench A, section Greater Melongena marine Beta- Colten et al. Cuba Cuba 2 Las Obas 1, 15 cm - 30 cm 2020 50 -1.0 Antilles melongena shell 214957 2009 level Trench A, section Greater Melongena marine Beta- Colten et al. Cuba Cuba 2 Las Obas 1, 45 cm - 60 cm 1910 50 -4.7 Antilles melongena shell 214958 2009 level Unit 5, grid charcoal/ Valcárcel Greater square B, spit Beta- Cuba Cuba 2 El Porvenir charcoal charred 500 50 — Rojas Antilles depth 0.40-0.50 148960 material 2002:143 m, natural layer 1 charcoal/ Level Greater UBAR- Cuba Cuba 2 El Purial charcoal charred (approximate) 3060 180 — Pino 1995:4 Antilles 169 material 0.40 m Trench 2, sec. B. level 2.00-2.25 m. charcoal/ Sample depth Pazdur et al. Greater Los Cuba Cuba 2 charcoal charred 2.00 m. Assoc. GD-619 1170 90 — 1982:174; Pino Antilles Pedregales material with ceramic, 1995:2 shell, and stone artifacts. charcoal/ Greater Test Pit 1, 1x1 m, Cuba Cuba 3 El Paraiso charcoal charred — 1130 150 — Pino 1995:5 Antilles level 0.20-0.30 m material 248 charcoal/ Greater Playvita (Villa Cuba Cuba 3 charcoal charred — — 1280 20 — Pino 1995:2 Antilles Clara) material charcoal/ Unit 1, grid Valcárcel Greater Potrero del Beta- Cuba Cuba 2 charcoal charred square A, spit 880 80 — Rojas Antilles Mango 148961 material depth 0.80-0.90 m 2002:141, 143 charcoal/ Unit 2, grid Valcárcel Greater Potrero del Beta- Cuba Cuba 2 charcoal charred square A, spit 620 60 — Rojas Antilles Mango 148962 material depth 1.00-1.10 m 2002:143 Stuiver 1969:627; Pino Midden 1, sec, Y- Greater Potrero del 1995:7; Cuba Cuba 2 wood wood 5, level 0.75-1.00 Y-206 810 80 — Antilles Mango Valcárcel m (Rouse) Rojas 2002:141, 143 Excavation 3, Colten and Greater Potrero del marine Beta- Cuba Cuba 3 shell midden 2, section 1420 30 — Worthington Antilles Mango shell 408952 L-2, 0.0-0.25 m 2017 Excavation 3, Colten and Greater Potrero del marine Beta- Cuba Cuba 3 shell midden 3, sectin 1230 30 — Worthington Antilles Mango shell 408953 L-2, 1.00-1.25 2017 Excavation 3, Colten and Greater Potrero del marine Beta- Cuba Cuba 3 shell midden 2, section 850 30 — Worthington Antilles Mango shell 410922 L-2, 0.0-0.25 m 2017 Excavation 3, Colten and Greater Potrero del marine Beta- Cuba Cuba 3 shell midden 3, sectin 1130 30 — Worthington Antilles Mango shell 410923 L-2, 1.00-1.25 2017 249 Ulloa Hung Greater Punta de terrestrial terrestrial Trench 1, level Beta- and Valcárcel Cuba Cuba 3 1400 60 — Antilles Peque shell shell 0.50 m 93860 Rojas 2002:233 Greater Cuba Cuba 4 Rio Chico — unknown — — 3100 70 — Godo 2001 Antilles Ulloa Hung Greater terrestrial terrestrial Trench 2, level Beta- and Valcárcel Cuba Cuba 3 San Benito 2020 60 — Antilles shell shell 0.40-0.50 m 93851 Rojas 2002:233 U.S. Naval Greater Station marine Beta- Cuba Cuba 2 Strombus sp. 67 cmbs 2980 70 — Sara et al. 2007 Antilles Guantanamo shell 184894 Bay U.S. Naval Greater Station marine shell midden, no Beta- Cuba Cuba 2 Strombus sp. 2680 60 — Sara et al. 2007 Antilles Guantanamo shell other info 184896 Bay U.S. Naval Greater Station marine Beta- Cuba Cuba 3 shell 0-13 cmbs 1060 60 — Sara et al. 2007 Antilles Guantanamo shell 184893 Bay U.S. Naval Greater Station marine Beta- Cuba Cuba 3 shell 40-50 cmbs 1700 60 — Sara et al. 2007 Antilles Guantanamo shell 184895 Bay Unit 1, Sample depth 105- to Deevey et 120-cm level of a charcoal/ al.1959:26; Greater Vega del midden, 150 cm Cuba Cuba 2 charcoal charred Y-465 960 60 — Pino 1995:4; Antilles Palmar deep, which material Navarrete yielded pottery 1990:41 only in the top two 15-cm levels. Colten and Greater Vega del Lucina marine Unit 1, 120-135 Beta- Cuba Cuba 2 2570 30 -3.0 Worthington Antilles Palmar pectinatus shell cm level 318171 2014 250 Colten and Greater Vega del marine Unit 1, 15-30 cm Beta- Cuba Cuba 2 Cittarium pica 1750 30 +2.6 Worthington Antilles Palmar shell level 318170 2014 Block 1, sec. 1 y charcoal/ Greater Ventas de 2, natural layer 3, FS AC Cuba Cuba 2 charcoal charred 420 45 — Pino 1995:6 Antilles Casanova Sample depth 2422 material 0.30-0.50 m Block 1, sec. 1 y charcoal/ Greater Ventas de 2, natural layer 4, FS AC Cuba Cuba 2 charcoal charred 315 45 — Pino 1995:5 Antilles Casanova prof. Sample 2423 material depth 0.50-0.60 m Block 1, sec. 1, charcoal/ Greater Ventas de natural layer 4, FS AC Cuba Cuba 2 charcoal charred 475 35 — Pino 1995:6 Antilles Casanova Sample depth 2424 material 0.60-0.80 m Test Trench, sec. charcoal/ Greater Ventas de 4 natural layer 1 y FS AC Cuba Cuba 2 charcoal charred 375 25 — Pino 1995:6 Antilles Casanova 2, prof. Sample 2421 material depth 0.0-0.23 m charcoal/ Pino 1995:4; Greater Block 1, sec B, LC-H Cuba Cuba 2 Victoria I charcoal charred 1450 70 — Godo Torres Antilles level 2.00-2.25 m 1035 material 1994:141 charcoal/ Pino 1995:4; Greater Block 1, sec B, LC-H Cuba Cuba 2 Victoria I charcoal charred 2070 110 — Godo Torres Antilles level 6.25-6.50 m 1034 material 1994:141 charcoal/ Greater Block I, Sec. B, Cuba Cuba 2 Victoria I charcoal charred LC-H 565 960 50 — Pino 1995:3 Antilles level 2.00-2.25 m material northern charcoal/ Cruxent Curaçao Curaçao South 2 Gaito charcoal charred #8/0-25 cm IVIC-241 340 50 — 1965:243 America material northern marine Haviser Curaçao Curaçao South 3 Isla Simo shell — Beta- 1140 60 — shell 2001:118 America 251 northern marine Haviser Curaçao Curaçao South 3 Isla Simo shell — Beta- 1160 60 — shell 2001:118 America northern Cittarium pica marine Curaçao Curaçao South 3 Kintjan midden — 3530 140 — Gould 1971 (?) shell America northern marine Curaçao Curaçao South 3 Kintjan Chama sp. midden — 4150 140 — Gould 1971 shell America northern marine D-AMS Kraan et al. Curaçao Curaçao South 3 Knip Lobatus gigas surface 1133 24 +3.8 shell 009260 2017 America northern charcoal/ Cruxent Curaçao Curaçao South 2 Knip charcoal charred #26/0-25 cm IVIC-250 1230 60 — 1965:243 America material northern charcoal/ Cruxent Curaçao Curaçao South 2 Knip charcoal charred #26/25-50 cm IVIC-248 630 50 — 1965:243 America material northern charcoal/ Cruxent Curaçao Curaçao South 2 Knip charcoal charred #27/0-25 cm IVIC-249 630 60 — 1965:243 America material northern charcoal/ Cruxent Curaçao Curaçao South 2 Knip charcoal charred #9/0-25 cm IVIC-233 910 50 — 1965:243 America material northern charcoal/ Cruxent Curaçao Curaçao South 2 Knip charcoal charred #9/25-50 cm IVIC-244 830 60 — 1965:243 America material northern Paradise marine D-AMS Kraan et al. Curaçao Curaçao South 3 Lima scabra surface 3965 28 +9.8 Beach shell 009261 2017 America northern Chicoreus marine D-AMS Kraan et al. Curaçao Curaçao South 3 Punta Blanku surface 1268 24 +1.9 brevifrons shell 009258 2017 America northern Punta marine D-AMS Kraan et al. Curaçao Curaçao South 3 marine shell surface 3803 23 +2.6 Mangusa shell 010112 2017 America northern charcoal/ 3990 - Curaçao Curaçao South 3 Rooi Rincon charcoal charred midden — 50 — Gould 1971 4490 America material 252 northern marine Curaçao Curaçao South 3 Rooi Rincon Chama sp. midden — 4090 140 — Gould 1971 shell America northern marine Curaçao Curaçao South 3 Rooi Rincon Cittarium sp. midden — 4705 160 — Gould 1971 shell America northern charcoal/ Cruxent Curaçao Curaçao South 2 Rooi Rincon charcoal charred #28/0-25 cm IVIC-247 4490 60 — 1965:243; America material Haviser 1987 northern charcoal/ Cruxent Curaçao Curaçao South 2 Rooi Rincon charcoal charred #28/25-50 cm IVIC-246 4160 80 — 1965:243; America material Haviser 1987 northern charcoal/ Cruxent Curaçao Curaçao South 2 Rooi Rincon charcoal charred #5/25-50 cm IVIC-240 3990 50 — 1965:243; America material Haviser 1987 northern charcoal/ Cruxent Curaçao Curaçao South 2 Rooi Rincon charcoal charred P.H./0-20 cm IVIC-234 4110 65 — 1965:243; America material Haviser 1987 northern charcoal/ Cruxent Curaçao Curaçao South 2 Rooi Rincon charcoal charred P.H./20-30 cm IVIC-242 4070 65 — 1965:243; America material Haviser 1987 northern charcoal/ Trench B, Unit I, Curaçao Curaçao South 2 San Hironimo charcoal charred GrN-9997 420 15 — Haviser 1987 level 3, 10-15 cm America material northern charcoal/ Trench B, Unit Curaçao Curaçao South 2 San Hironimo charcoal charred IV, level 3, 10-15 GrN-9998 325 35 — Haviser 1987 America material cm northern marine Trench B, Unit I, Curaçao Curaçao South 3 San Hironimo shell GrN-9996 350 50 — Haviser 1987 shell level 3, 10-15 cm America northern charcoal/ Cruxent Curaçao Curaçao South 2 San Juan charcoal charred C.B./25-50cm IVIC-237 1440 60 — 1965:243 America material 253 northern organic Dunning et al. Curaçao Curaçao South 4 San Juan sediment CC09-1, 245 cm AA-92660 680 35 -14.3 sediment 2018a America northern organic CC09-1, 308-309 Dunning et al. Curaçao Curaçao South 4 San Juan sediment AA-84145 1070 30 -17.5 sediment cm 2018a America northern charcoal/ Curaçao Curaçao South 3 San Juan charcoal charred — — 1440 60 — Haviser 1985 America material northern Chione marine D-AMS Kraan et al. Curaçao Curaçao South 3 Santa Cruz surface 834 21 -11.1 cancellata shell 09259 2017 America northern charcoal/ unit 77/103 level PITT- moder Curaçao Curaçao South 4 Santa Barbara charcoal charred — — Haviser 1987 7-8 (30-40 cm bs) 1199 n America material northern charcoal/ unit 118/117 level PITT- Curaçao Curaçao South 2 Santa Barbara charcoal charred 590 50 — Haviser 1987 3-4 (10-20 cm bs) 1195 America material northern charcoal/ unit 118/117 level PITT- Curaçao Curaçao South 2 Santa Barbara charcoal charred 775 60 — Haviser 1987 7-8 (30-40 cm bs) 1196 America material unit 118/117 level northern charcoal/ 9-10 (40-50 cm PITT- Curaçao Curaçao South 2 Santa Barbara charcoal charred 395 115 — Haviser 1987 bs), small sample, 1197 America material diluted northern charcoal/ unit 120/142 level PITT- Curaçao Curaçao South 2 Santa Barbara charcoal charred 875 35 — Haviser 1987 7 (30-35 cm bs) 1198 America material northern charcoal/ Cruxent Curaçao Curaçao South 3 Savaan charcoal charred WP4, 0-25 cm IVIC-236 70 60 — 1965:243 America material northern human Ayubi et al. Curaçao Curaçao South 3 Savaan human bone — DIC-3137 1500 200 — bone/teeth 1990 America northern Skeleton S-1 human GrN- Curaçao Curaçao South 3 Savaan human bone (primary urn 1500 200 — Tacoma 1990 bone/teeth 12014 America burial) 254 northern Skeleton S-3 human GrN- Curaçao Curaçao South 3 Savaan human bone (secondary urn 660 20 -10.58 Tacoma 1990 bone/teeth 12979 America burial) northern human Ayubi et al. Curaçao Curaçao South 2 Savaan human bone S-2, 0-25 cm DIC-3138 660 20 — bone/teeth 1990 America northern human bone human Savaan 1, 0-25 GrN- Haviser Curaçao Curaçao South 2 Savaan 1500 200 -10.58 collagen bone/teeth cm 12914 1989:16 America northern human Curaçao Curaçao South 3 Savaan molar Savaan I Ua-1498 1040 100 -11.27 Tacoma 1990 bone/teeth America northern marine Unit 106/98, level Curaçao Curaçao South 3 Savaan shell GrN-9995 740 60 — Haviser 1987 shell 3, 35-45 cm America northern charcoal/ Unit A level 1, PITT- Haviser Curaçao Curaçao South 2 Savonet charcoal charred small sample, 1875 430 — 1183 2001:118 America material diluted northern marine Unit A/B level 2 PITT- Haviser Curaçao Curaçao South 3 Savonet shell 3355 25 — shell (20-40 cm) 1185 2001:118 America northern marine Haviser Curaçao Curaçao South 3 St. Joris #1 shell — Beta- 4340 70 — shell 2001:118 America northern marine Haviser Curaçao Curaçao South 3 St. Joris #1 shell — Beta- 4450 70 — shell 2001:118 America northern St. marine Trench A, Unit Haviser Curaçao Curaçao South 3 shell GrN-9994 3820 70 — Michielsberg shell BA west, level 7 2001:118 America northern St. marine AAINA- Curaçao Curaçao South 3 shell Unit B/70-80 cm 3820 65 — Havier 1989 Michielsberg shell 102 America northern St. marine AAINA- Curaçao Curaçao South 3 shell Unit B/70-80 cm 3790 50 — Haviser 1987 Michielsberg shell 103 America 255 northern St. marine Haviser Curaçao Curaçao South 3 shell Unit B/70-80 cm DIC-3158 3790 50 — Michielsberg shell 2001:118 America northern St. marine Haviser Curaçao Curaçao South 3 shell Unit B/70-80 cm DIC-3159 3820 65 — Michielsberg shell 2001:118 America northern charcoal/ Hoogland and GrN- Curaçao Curaçao South 2 Seru Boca charcoal charred 07 S77-01 F01 450 30 — Hofman 32016 America material 2011:636 northern charcoal/ Hoogland and GrN- Curaçao Curaçao South 2 Seru Boca charcoal charred 08 S77-01 F01 370 25 — Hofman 32017 America material 2011:636 northern Hoogland and marine 02 10-77-35 unit GrN- Curaçao Curaçao South 3 Seru Boca shell 4570 35 — Hofman shell 1 32015 America 2011:636 northern charcoal/ Hoogland and GrN- Curaçao Curaçao South 2 Spaanse Water charcoal charred 378, unit 1 605 15 — Hofman 31926 America material 2011:636 northern charcoal/ Hoogland and GrN- Curaçao Curaçao South 3 Spaanse Water charcoal charred 296, Unit 8 280 15 — Hofman 31920 America material 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 13, unit 1 4435 15 — Hofman shell 31917 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 139, unit 4 3195 20 — Hofman shell 31918 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 176, unit 8 1915 20 — Hofman shell 31919 America 2011:636 256 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 297, unit 12 2680 20 — Hofman shell 31921 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 300, unit 3 2625 20 — Hofman shell 31922 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 301, unit 2 2450 15 — Hofman shell 31923 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 307, unit 6 2005 15 — Hofman shell 31924 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell 333, unit 7 2255 20 — Hofman shell 31925 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell C-215, unit 1 4455 20 — Hofman shell 32018 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell C-215/6, unit 1 4415 20 — Hofman shell 31915 America 2011:636 northern Hoogland and marine GrN- Curaçao Curaçao South 3 Spaanse Water shell C-215/9 unit 1 4400 20 — Hofman shell 31916 America 2011:636 northern marine unit 105/112 level PITT- Haviser Curaçao Curaçao South 2 Spaanse Water Strombus sp. 1965 35 — shell 3 (10-15 cm bs) 1200 2001:118 America 257 bulk shell northern (pecten, marine unit 105/112 level PITT- Haviser Curaçao Curaçao South 3 Spaanse Water Strombus sp., 3105 40 — shell 5 (20-25 cm bs) 1201 2001:118 America Anadara sp., Chama sp.) bulk shell northern (Cittarium marine unit 105/112 level Haviser Curaçao Curaçao South 3 Spaanse Water — 2965 40 — pica, Anadara shell 7 (30-35 cm bs) 2001:118 America sp.) northern organic Dunning et al. Curaçao Curaçao South 4 Spanish Water sediment SW09-1, 95 cm AA-92659 1790 40 -25.2 sediment 2018a America northern preserved SW09-1, 157-158 Dunning et al. Curaçao Curaçao South 4 Spanish Water wood AA-90821 3970 45 -25.0 wood cm 2018a America northern Haviser Curaçao Curaçao South 3 Spaanse Water — unknown — PITT- 2180 55 — 2001:118 America northern preserved Dunning et al. Curaçao Curaçao South 4 Spanish Water wood SW09-1, 223 cm AA-84144 4850 40 -25.4 wood 2018a America northern marine Curaçao Curaçao South 3 Tafelberg Cittarium sp. midden — 3665 140 — Gould 1971 shell America northern marine Curaçao Curaçao South 3 Tafelberg Chama sp. midden — 3830 140 — Gould 1971 shell America northern Tomasitu marine Haviser Curaçao Curaçao South 3 shell — Beta- 4030 70 — Cave shell 2001:118 America northern Tomasitu marine Haviser Curaçao Curaçao South 3 shell — Beta- 2970 70 — Cave shell 2001:118 America northern Tomasitu marine Haviser Curaçao Curaçao South 3 shell — Beta- 3060 70 — Cave shell 2001:118 America northern Tomasitu marine Haviser Curaçao Curaçao South 3 shell — Beta- 3080 70 — Cave shell 2001:118 America 258 northern marine Haviser Curaçao Curaçao South 3 Veeris shell — Beta- 4170 65 — shell 2001:118 America northern marine Haviser Curaçao Curaçao South 3 Veeris shell — Beta- 4180 70 — shell 2001:118 America northern marine level 10 b.s. (180- PITT- Haviser Curaçao Curaçao South 3 Zuurzak shell 3290 35 — shell 200 cm) 1187 2001:118 America northern marine level 8 b.s. (140- PITT- Haviser Curaçao Curaçao South 3 Zuurzak shell 2045 30 — shell 160 cm) 1186 2001:118 America northern charcoal/ Haviser and level 15 b.s. (140- PITT- Curaçao Curaçao South 2 Zuurzak charcoal charred 475 50 — Simmons-Brito 150 cm) 1188 America material 1995 charcoal/ Commonwealt Lesser charred Test unit 1, NW Beta- Dominica 2 CB-3 charred 890 30 — Shearn 2014 h of Dominica Antilles material quad, 91 cmbd 366738 material Commonwealt Lesser bulk sherd pottery Test pit 1, 0-10 Beta- Dominica 3 CB-1 840 30 — Shearn 2014 h of Dominica Antilles organics organics cmbs 366737 Commonwealt Lesser cave, Guaiacum sp., Museum OxA- Ostapkowicz et Dominica 3 wood 556 25 -23.9 h of Dominica Antilles Dominica terminus date collections 17917 al. 2012 charcoal/ Commonwealt Lesser charred Test unit 1, NE Beta- Dominica 2 DEL-2 charred 1450 30 — Shearn 2014 h of Dominica Antilles material quad, 78 cmbd 366739 material charcoal/ Commonwealt Lesser charred Test unit 1, NE Beta- Dominica 2 DEL-2 charred 2380 30 — Shearn 2014 h of Dominica Antilles material quad, 96 cmbd 366740 material charcoal/ Commonwealt Lesser charred Test pit 1, 49 Beta- Dominica 2 DEL-3 charred 1900 30 — Shearn 2014 h of Dominica Antilles material cmbs 366741 material organic Test unit 1, NE Commonwealt Lesser organic Beta- Dominica 2 HS-2 residue on quad, 110-120 870 30 — Shearn 2014 h of Dominica Antilles material 367733 sherd cmbd 259 Commonwealt Lesser Dominica 4 Soufrière site — unknown Complex C — 1800 40 — Berard 2007 h of Dominica Antilles Peter Sinelli, charcoal/ Bahamian Broad Creek charred Beta- Personal Eleuthera Bahamas 3 charred — 820 40 — Archipelago Cay material 302306 Communicatio material n Bahamian OxA- Ostapkowicz Eleuthera Bahamas 4 cave Guaiacum sp. wood — 804 25 — Archipelago 21155 2015 Peter Sinelli, charcoal/ Bahamian Broad Creek charred Beta- Personal Eleuthera Bahamas 3 charred — 490 40 — Archipelago Cay material 302307 Communicatio material n Geocapromys Bahamian Garden Cave faunal Room 1:0-10 Beta- Steadman et al. Eleuthera Bahamas 4 ingrahami 1390 30 -19.9 Archipelago (EL-229) material cmbs 338513 2017 ulna Geocapromys Bahamian Garden Cave faunal Room 1:10-20 Beta- Steadman et al. Eleuthera Bahamas 4 ingrahami 4180 30 -19.3 Archipelago (EL-229) material cmbs 330403 2017 humerus Geocapromys Bahamian Garden Cave faunal Room 1:20-30 Beta- Steadman et al. Eleuthera Bahamas 4 ingrahami 3880 30 -18.9 Archipelago (EL-229) material cmbs 330404 2017 femur Geocapromys Bahamian Garden Cave faunal Beta- Steadman et al. Eleuthera Bahamas 4 ingrahami Room 1:surface 2180 30 -19.1 Archipelago (EL-229) material 330401 2017 femur Geocapromys Bahamian Garden Cave faunal Beta- Steadman et al. Eleuthera Bahamas 4 ingrahami Room 2:surface 210 30 -20.1 Archipelago (EL-229) material 330400 2017 femur Peter Sinelli, charcoal/ Bahamian charred Beta- Personal Eleuthera Bahamas 3 Greenstone charred — 1010 30 — Archipelago material 334794 Communicatio material n 260 Peter Sinelli, charcoal/ Bahamian charred Beta- Personal Eleuthera Bahamas 3 Greenstone charred — 730 30 — Archipelago material 356054 Communicatio material n Bahamian Preacher's human bone human Beta- Schaffer et al. Eleuthera Bahamas 4 Burial 1 — — -21.8 Archipelago Cave collagen bone/teeth 260751 2012 Bahamian Preacher's human bone human Beta- Schaffer et al. Eleuthera Bahamas 4 Burial 2 — — -17.1 Archipelago Cave collagen bone/teeth 260752 2012 Bahamian Preacher's human bone human Beta- Schaffer et al. Eleuthera Bahamas 4 Burial 3 — — -19.7 Archipelago Cave collagen bone/teeth 260753 2012 Bahamian Preacher's marine Beta- Schaffer et al. Eleuthera Bahamas 4 Tellina sp. Burial 3 — — -0.7 Archipelago Cave shell 242393 2012 Bahamian Preacher's marine Beta- Schaffer et al. Eleuthera Bahamas 4 triton shell Burial 3 — — +3.5 Archipelago Cave shell 242394 2012 Bahamian Preacher's human cave burial, ORAU-X- Schroeder et al. Eleuthera Bahamas 2 enamel 1082 29 -8.3 Archipelago Cave bone/teeth sample PC537 2623-21 2018 charcoal/ 100 N 110 E FS Turks and Bahamian Beta- Grand Turk 2 Coralie Site charcoal charred #178 70-80cmbd, 1230 60 — Carlson 1999 Caicos Archipelago 98698 material Hearth Feature 25 charcoal/ 110N 102 E FS Turks and Bahamian Beta- Grand Turk 2 Coralie Site charcoal charred #41 70cmbd, Post 1010 50 — Carlson 1999 Caicos Archipelago 98697 material Layer Zone 2 charcoal/ 148N 104E FS Turks and Bahamian Beta- Grand Turk 2 Coralie Site charcoal charred #353 70-80cmbd, 1120 50 — Carlson 1999 Caicos Archipelago 114924 material Zone 2 Level 2 charcoal/ 96N 100E FS Turks and Bahamian Beta- Grand Turk 2 Coralie Site charcoal charred #198 55-74cmbd, 900 50 — Carlson 1999 Caicos Archipelago 98699 material Hearth Feature 28 110N 110E, FS charcoal/ Turks and Bahamian charcoal: Wild #81, 92-93.5 Beta- Grand Turk 1 Coralie Site charred 1280 60 — Carlson 1999 Caicos Archipelago Lime cmbd, Ash lens 80911 material Area 10 261 charcoal/ 124N 100E FS Turks and Bahamian Beta- Grand Turk 1 Coralie Site charcoal: palm charred #35 47-62cmbd, 1160 60 — Carlson 1999 Caicos Archipelago 80910 material Hearth Feature 5 100N 108E FS Turks and Bahamian marine #168, 78-90cmbd, Beta- Grand Turk 2 Coralie Site Stombus gigas 1170 60 — Carlson 1999 Caicos Archipelago shell midden Feature 93912 23 99N 99E FS #216 Turks and Bahamian marine Beta- Grand Turk 2 Coralie Site Stombus gigas Post Layer Zone 930 60 — Carlson 1999 Caicos Archipelago shell 93913 2 Mangroves Turks and Bahamian wood, cf. Beta- Grand Turk 1 Coralie Site wood Paddle, peat 940 60 — Carlson 1999 Caicos Archipelago Bullwood 96700 Layer charcoal/ ca. 120N 110E FS Turks and Bahamian Beta- Grand Turk 2 Coralie Site charcoal charred #353 70-80cmbd, 1120 120 — Carlson 1999 Caicos Archipelago 66151 material Zone 2 Turks and Bahamian Strombus marine Unit A, Level 2, Beta- Grand Turk 3 Gibbs Cay 260 50 — Sinelli 2010 Caicos Archipelago gigas pick shell 25cm 242676 charcoal/ Turks and Bahamian Beta- Grand Turk 2 Gibbs Cay charcoal charred Unit A, Level 4 780 40 — Sinelli 2010 Caicos Archipelago 253527 material charcoal/ Turks and Bahamian Beta- Grand Turk 3 GT-2 charcoal charred — 830 80 — Carlson 1999 Caicos Archipelago 42983 material charcoal/ Turks and Bahamian Beta- Grand Turk 3 GT-2 charcoal charred — 820 50 — Carlson 1999 Caicos Archipelago 42985 material charcoal/ Turks and Bahamian Beta- Grand Turk 3 GT-2 charcoal charred — 910 60 — Sinelli 2010 Caicos Archipelago 61150 material charcoal/ Turks and Bahamian Beta- Grand Turk 3 GT-2 charcoal charred — 910 60 — Carlson 1999 Caicos Archipelago 66150 material Turks and Bahamian marine Beta- Grand Turk 3 GT-2 Stombus gigas — 1170 60 — Carlson 1999 Caicos Archipelago shell 42984 262 Turks and Bahamian marine Beta- Grand Turk 3 GT-2 Stombus gigas — 1080 50 — Carlson 1999 Caicos Archipelago shell 42986 charcoal/ Turks and Bahamian Beta- Grand Turk 3 GT-3 charcoal charred — 1130 120 — Sinelli 2010 Caicos Archipelago 61151 material Strombus Unit D, Level 3, Turks and Bahamian marine Beta- Grand Turk 2 Middleton Cay gigas, 30cm (on sterile 790 50 — Sinelli 2010 Caicos Archipelago shell 242673 punched soil) Strombus Turks and Bahamian marine Beta- Grand Turk 2 Middleton Cay gigas, Unit H, Level 3 460 40 — Sinelli 2010 Caicos Archipelago shell 242674 punched Turks and Bahamian marine Unit B, Level 3, Beta- Grand Turk 2 Pelican Cay small conch 850 50 — Sinelli 2010 Caicos Archipelago shell on bedrock 242675 charcoal/ Turks and Bahamian Beta Grand Turk 2 Spud Cay charcoal charred Unit A, Level 4 690 40 — Sinelli 2010 Caicos Archipelago 242670 material charcoal/ Turks and Bahamian Beta- Grand Turk 2 Spud Cay charcoal charred Unit E, Level 5 610 40 — Sinelli 2010 Caicos Archipelago 242671 material charcoal/ Turks and Bahamian Beta- Grand Turk 2 Spud Cay charcoal charred Unit E, Level 6 910 40 — Sinelli 2010 Caicos Archipelago 242672 material Turks and Bahamian museum OxA- Ostapkowicz Grand Turk 4 — Guaiacum sp. wood 860 24 -24.2 Caicos Archipelago collections 19116 2015 Great British Virgin Lesser carved shell 4 Cam Bay unknown unknown — — — — Davis 2011 Camanoe Islands Antilles (tadpole) Bahamian Strombus marine Beta- Inagua Bahamas 3 GI-12 — 800 50 — Keegan 1993 Archipelago gigas shell 61910 Bahamian Strombus marine Beta- Inagua Bahamas 3 GI-3 — 480 60 — Keegan 1993 Archipelago gigas shell 61909 charcoal/ Lesser Beausejour PSUAMS- Grenada Grenada 2 charcoal charred Burial 1, 95 cmbs 1500 25 — Hanna 2019 Antilles (GREN-G-34) 1287 material 263 charcoal/ Lesser Beausejour STP1-SS4, 80 PSUAMS- Grenada Grenada 2 charcoal charred 1685 20 — Hanna 2019 Antilles (GREN-G-34) cmbs 1317 material charcoal/ Lesser Black Point G20-STP8-SS1, PSUAMS- moder Grenada Grenada 4 charcoal charred — — Hanna 2019 Antilles (GREN-G-20) 30-40 cmbs 1315 n material G20-SF-S1, SF Lesser Black Point marine PSUAMS- Grenada Grenada 4 Lobatus sp. on beach, waypt. 3525 20 — Hanna 2019 Antilles (GREN-G-20) shell 3019 130 (STP-1) G20-SF-S2 [G- Lesser Cato Beach marine PSUAMS- Grenada Grenada 3 Lobatus sp. 28], SF at beach 1560 15 — Hanna 2019 Antilles (GREN-G-28) shell 3021 rock, waypt. 137 charcoal/ 5N/5W, upper Lesser Duquense Beta- Grenada Grenada 2 charcoal charred profile (20-40 850 40 — Cody 1998 Antilles (GREN-M-3) 85938 material cmbs) charcoal/ 5N/5W, lower Lesser Duquense Beta- Grenada Grenada 2 charcoal charred profile (40-60 1080 50 — Cody 1998 Antilles (GREN-M-3) 98365 material cmbs) charcoal/ STP1-SS4, Lesser La Filette PSUAMS- Grenada Grenada 2 charcoal charred ~2mbs (top of 1215 20 — Hanna 2019 Antilles (GREN-A-11) 1565 material concentration) Locus B, Lesser Grand Anse marine Grenada Grenada 4 Lobatus sp. Unknown unit, 38 — 1520 80 — Banks 1988 Antilles (GREN-G-7) shell cmbs Locus B, Lesser Grand Anse marine Grenada Grenada 4 Lobatus sp. Unknown unit, 71 — 1300 80 — Banks 1988 Antilles (GREN-G-7) shell cmbs charcoal/ Lesser Grand Bacolet D7-STP12-SS3, PSUAMS- moder Grenada Grenada 4 charcoal charred — — Hanna 2019 Antilles (GREN-D-7) 80-90 cmbs 1323 n material charcoal/ Lesser Grand Bacolet D7-STP12-SS2, PSUAMS- moder Grenada Grenada 4 charcoal charred — — Hanna 2019 Antilles (GREN-D-7) 50-60 cmbs 3943 n material 264 G22-SF4-S1, top Lesser Grand Bay marine PSUAMS- Grenada Grenada 2 Lobatus sp. of shell midden, 2145 20 — Hanna 2019 Antilles (GREN-G-22) shell 3022 waypt 149 G22-SF5-S2, 20 Lesser Grand Bay marine cm below top of PSUAMS- Grenada Grenada 2 Lobatus sp. 2820 20 — Hanna 2019 Antilles (GREN-G-22) shell shell midden, 3017 waypt 149 High Cliff charcoal/ Lesser STP12-SS3, 22- PSUAMS- Grenada Grenada 2 Point (GREN- charcoal charred 380 25 — Hanna 2019 Antilles 30 cmbs 3945 P-7) material Lesser Antoine 12_VII- Siegel et al. Grenada Grenada 4 Lake Antoine lake sediment sediment AA-91728 4860 45 -29.2 Antilles 08-6, 611-613 cm 2015 Lesser organic Antoine 12_VII- Beta- Siegel et al. Grenada Grenada 4 Lake Antoine preserved peat 1290 30 -23.2 Antilles material 08-1, 146 cm 377885 2015 Lesser Antoine 12-VII- Siegel et al. Grenada Grenada 4 Lake Antoine lake sediment sediment AA-91729 2030 40 -34.2 Antilles 08-3, 311-313 cm 2015 Lesser Antoine 12-VII- Beta- Siegel et al. Grenada Grenada 4 Lake Antoine lake sediment sediment 7340 40 -28.4 Antilles 08-7, 700 cm 377883 2015 charcoal/ Lesser Marlmont Waypt. 137-SS1, PSUAMS- Grenada Grenada 4 charcoal charred 240 20 — Hanna 2019 Antilles (GREN-D-24) 43 cmbs 3944 material Lesser Meadow MB08-1, 215-217 Siegel et al. Grenada Grenada 4 peat peat AA-84798 2880 40 -27.0 Antilles Beach cm 2015 Lesser Meadow MB08-1, 330-332 Siegel et al. Grenada Grenada 4 peat peat AA-84799 4220 40 -30.4 Antilles Beach cm 2015 Lesser Meadow Antoine 12-VII- Siegel et al. Grenada Grenada 4 lake sediment sediment AA-91730 8050 50 -28.6 Antilles Beach 08-7, 736-738 cm 2015 265 Lesser Meadow preserved Siegel et al. Grenada Grenada 4 wood MB08-1, 492 cm AA-82678 4860 45 -29.2 Antilles Beach wood 2015 charcoal/ Lesser Montreuil PS-STP1-SS4, PSUAMS- moder Grenada Grenada 4 charcoal charred Antilles (GREN-P-2) 40-50 cmbs 1318 n material charcoal/ Lesser Montreuil PS-STP1-SS6, PSUAMS- moder Grenada Grenada 4 charcoal charred Antilles (GREN-P-2) 70-76 cmbs 1319 n material charcoal/ Lesser Montreuil Unit A-5d,SS8, PSUAMS- Grenada Grenada 2 charcoal charred 1215 20 Antilles (GREN-P-2) 56 cmbs 3946 material Unit B, 75-80 Lesser Pearls marine cmbd, (55-60 Grenada Grenada 3 Astraea sp. UGa- 1914 51 — Cody 1991 Antilles (GREN-A-1) shell cmbd, 15-20 cmbo) Unit B, 74 cmbd Lesser Pearls Grenada Grenada 3 Astraea sp. unknown (54 cmbs, 14 UGa- 1725 54 — Cody 1991 Antilles (GREN-A-1) cmbo) Unit B, 110-120 Lesser Pearls cmbd (90-100 Haviser Grenada Grenada 3 Astraea sp. unknown UGa- 1711 74 — Antilles (GREN-A-1) cmbs, 50-60 1997:60 cmbo) charcoal/ Lesser Pearls W 195, 103-113 PSUAMS- Grenada Grenada 2 charcoal charred 835 25 — Hanna 2019 Antilles (GREN-A-1) cmbs 1322 material charcoal/ Lesser Pearls Grenada Grenada 3 charcoal charred — GX-14202 1600 340 — Hanna 2019 Antilles (GREN-A-1) material charcoal/ Unit 28S-4E (bag Lesser La Sagesse PSUAMS- Grenada Grenada 3 charcoal charred 41), 60-70 cmbs 155 20 — Hanna 2019 Antilles (GREN-D-1) 1316 material [D1-28S-7-FW1] charcoal/ Lesser Salt Pond 2 STP7-SS3, 14-25 PSUAMS- Grenada Grenada 2 charcoal charred 1180 25 — Hanna 2019 Antilles (GREN-G-21) cmbs 1320 material Lesser Salt Pond 2 cf. Anadara marine STP7-SS5, 34-45 PSUAMS- Grenada Grenada 2 1510 20 — Hanna 2019 Antilles (GREN-G-21) sp. shell cmbs 3020 266 charcoal/ Lesser Salt Pond 3 G21-STP6-SS4, PSUAMS- moder Grenada Grenada 4 charcoal charred — — Hanna 2019 Antilles (GREN-G-21) 45-60 cmbs 1566 n material charcoal/ Lesser Salt Pond 3 G21-STP6-SS9, PSUAMS- moder Grenada Grenada 4 charcoal charred — — Hanna 2019 Antilles (GREN-G-21) 110-119 cmbs 1321 n material Locus 1, charcoal/ Lesser Sauteurs Bay- 111N/117.5W, Beta- Grenada Grenada 2 charcoal charred 790 60 — Cody 1998 Antilles 1 (GREN-P-5) posthole, 80-90 86832 material cmbs charcoal/ Locus 1, Lesser Sauteurs Bay- Beta- Grenada Grenada 2 charcoal charred 127.5N/137.5W, 980 60 — Cody 1998 Antilles 1 (GREN-P-5) 98368 material burial layer charcoal/ Locus 1, Lesser Sauteurs Bay- Beta- Grenada Grenada 2 charcoal charred 120N/127.5W, 1050 90 — Cody 1998 Antilles 1 (GREN-P-5) 86831 material burial layer charcoal/ Lesser Sauteurs Bay- Locus 2, Beta- Grenada Grenada 2 charcoal charred 340 50 — Cody 1998 Antilles 2 (GREN-P-5) 18.5S/7.5W 98366 material charcoal/ Locus 2, 45N- Lesser Sauteurs Bay- Beta- Grenada Grenada 2 charcoal charred 114.5W, base of 510 60 — Cody 1998 Antilles 2 (GREN-P-5) 98367 material hearth charcoal/ Lesser Sauteurs Bay- Locus 3, SC-D Beta- Grenada Grenada 2 charcoal charred 1270 50 — Cody 1998 Antilles 3 (GREN-P-5) (locus SW) 85941 material Bullen and Savanne southern locus RL-76 Bullen Lesser marine Grenada Grenada 3 Suazey-1 Strombus sp. (#1), "burial area" FSM-BF- 957 115 — 1972:153; Antilles shell (GREN-P-3) 0-38 cmbs 14 Rouse et al. 1978:462 Savanne charcoal/ southern locus Lesser Beta- Grenada Grenada 2 Suazey-1 charcoal charred (#1), "burial area" 900 60 — Cody 1998 Antilles 86827 (GREN-P-3) material 15-31 cmbs Savanne charcoal/ southen (#1), Lesser Beta- Grenada Grenada 2 Suazey-1 charcoal charred 8.5N/21W, 10-20 810 50 — Cody 1998 Antilles 86833 (GREN-P-3) material cmbs southern locus Savanne charcoal/ Lesser (#1), 5N/17W, Beta- Grenada Grenada 2 Suazey-1 charcoal charred 1110 40 — Cody 1998 Antilles posthole, 15-31 85935 (GREN-P-3) material ccmbs 267 Historic Savanne charcoal/ Lesser "northeast" locus Beta- Grenada Grenada 4 Suazey-3 charcoal charred 120 40 — Cody 1998 Antilles (#3), probably 85934 (GREN-P-3) material west of hotel St. John's charcoal/ G8-P4-6-SRF, Lesser Hymenaea UCIAMS- moder Grenada Grenada 4 River (GREN- charred Unit 4, 30-45 — — Hanna 2019 Antilles courbaril 15873 n G-8) material cmbs St. John's G8-P4-6-SRF, Lesser marine PSUAMS- Grenada Grenada 4 River (GREN- Lobatus sp. Unit 4, 30-45 3560 60 — Hanna 2019 Antilles shell 1435 G-8) cmbs St. John's G8-P5, Level III, Lesser Canis faunal PSUAMS- Grenada Grenada 3 River (GREN- Unit 5, 26-40 230 20 — Hanna 2019 Antilles familiaris material 1484 G-8) cmbs St. John's G8-P3-Final Lesser cf. Anadara marine UCIAMS- Grenada Grenada 2 River (GREN- STP(2), Unit 3, 1380 20 — Hanna 2019 Antilles sp. shell 179806 G-8) 64-82 cmbs charcoal/ 118.5S/36W, 85- Lesser La Tante Beta- Grenada Grenada 2 charcoal charred 110 cmbs (pieces 550 60 — Cody 1998 Antilles (GREN-D-4) 86829 material of same sample) charcoal/ 118.5S/36W, 85- Lesser La Tante Beta- Grenada Grenada 2 charcoal charred 110 cmbs (pieces 650 40 — Cody 1998 Antilles (GREN-D-4) 86828 material of same sample) charcoal/ Lesser La Tante 118.5S/36W, 85- Beta- Grenada Grenada 2 charcoal charred 770 60 — Cody 1998 Antilles (GREN-D-4) 110 cmbs 85939 material charcoal/ Lesser La Tante 118.5S/36W, 85- Beta- Grenada Grenada 2 charcoal charred 770 50 — Cody 1998 Antilles (GREN-D-4) 110 cmbs 86830 material Lesser True Blue Grenada Grenada 4 — unknown — — 800 — — Hanna 2019 Antilles (GREN-G-23) charcoal/ Bullen and Lesser Guadeloupe Guadeloupe 3 l'Anse-a-l'Eau charcoal charred — Esso 1160 100 — Bullen Antilles material 1972:153 268 Paulet-Locard Lesser Baie du Nord marine Guadeloupe Guadeloupe 4 — — Erl-8228 2606 58 — and Stouvenot Antilles Ouest shell 2005 Paulet-Locard Lesser Baie du Nord marine Guadeloupe Guadeloupe 4 — — Erl-8229 3258 59 — and Stouvenot Antilles Ouest shell 2005 Lesser human Lenoble et al. Guadeloupe Guadeloupe 4 Blanchard 2 human bone — Erl-10155 — — — Antilles bone/teeth 2018:124 charcoal/ Lesser Stouvenot et al. Guadeloupe Guadeloupe 2 Cadet 3 charcoal charred D E3-F1 Erl-10159 1056 36 -26.1 Antilles 2014 material charcoal/ Lesser Stouvenot et al. Guadeloupe Guadeloupe 2 Cadet 3 charcoal charred G E3-C6 Erl-10156 3052 41 -25.5 Antilles 2014 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63016 870 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63019 875 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63017 885 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63022 890 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63015 900 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63018 915 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63020 930 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63014 960 40 — Antilles Plaine 2017 material 269 charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63024 960 30 — Antilles Plaine 2017 material charcoal/ Lesser CHU Belle- Van den Bel Guadeloupe Guadeloupe 3 charcoal charred — Poz-63021 1030 35 — Antilles Plaine 2017 material Bullen and Lesser marine Guadeloupe Guadeloupe 3 Couronne Strombus sp. — RL-155 780 100 — Bullen Antilles shell 1972:153 Lesser Beta- Stouvenot Guadeloupe Guadeloupe 4 Fété 2 — unknown — 3110 30 — Antilles 407285 2017 Lesser marine GrN- Hofman Guadeloupe Guadeloupe 3 Grand Anse shell — 1210 30 — Antilles shell 20874 1995:35 Lesser Grotte Morne Fouéré et al. Guadeloupe Guadeloupe 4 — unknown — Ly-11571 4295 30 — Antilles Rita 2015 charcoal/ Lesser test pit near Grouard et al. Guadeloupe Guadeloupe 2 Grotte Papin charcoal charred Ly-8466 770 30 — Antilles entrance 2014 material Bullen and base Morel IV, charcoal/ Bullen Lesser interpreted as Guadeloupe Guadeloupe 2 Morel charcoal charred Y-1246 1100 80 — 1972:153; Antilles Terminal material Rouse et al. Saladoid 1978:462 Lesser bottom of post Stouvenot et al. Guadeloupe Guadeloupe 2 Morel wood wood Ly-9162 1815 30 — Antilles (center) 2013:480 Lesser bottom of post Stouvenot et al. Guadeloupe Guadeloupe 2 Morel wood wood Ly-9161 1580 30 — Antilles (peripherial) 2013:480 270 Clerc 1968; Bullen and Bullen 1972:153; charcoal/ Lesser Rouse et al. Guadeloupe Guadeloupe 3 Morel charcoal charred Morel I Y-1137 1730 70 — Antilles 1978:462; material Rouse 1989:397; Haviser 1997:61 Clerc 1968; Bullen and Bullen Morel I, 1972:153; charcoal/ Lesser interpreted as Rouse et al. Guadeloupe Guadeloupe 3 Morel charcoal charred Y-1138 1710 100 — Antilles early Modified 1978:462; material Saladoid Rouse 1989:397; Haviser 1997:61 Clerc 1968; Bullen and Bullen 1972:153; charcoal/ Lesser Rouse et al. Guadeloupe Guadeloupe 3 Morel charcoal charred Morel II Y-1136 1380 100 — Antilles 1978:462; material Rouse 1989:397; Haviser 1997:61 Lesser GrN- Haviser Guadeloupe Guadeloupe 3 Morel — unknown — 1635 30 — Antilles 20163 1997:61 Lesser GrN- Haviser Guadeloupe Guadeloupe 3 Morel — unknown — 1720 35 — Antilles 20165 1997:61 271 Lesser GrN- Haviser Guadeloupe Guadeloupe 3 Morel — unknown — 1910 30 — Antilles 20166 1997:61 Bullen and Bullen listed as Y-1245 1972:153; in Bullen; Lesser Rouse et al. Guadeloupe Guadeloupe 4 Morel — unknown interprted as Y-1245 1400 80 — Antilles 1978:462; modified Haviser Saladoid 1997:61; Clerc 1968 Paulet-Locard Lesser marine Guadeloupe Guadeloupe 4 Morel Zéro — — Erl-9069 3481 47 — and Stouvenot Antilles shell 2005 Paulet-Locard Lesser marine Guadeloupe Guadeloupe 4 Morel Zéro — — Erl-9070 3493 48 — and Stouvenot Antilles shell 2005 Hofman and Lesser marine GrN- Guadeloupe Guadeloupe 3 Pointe Canot shell — 2050 30 — Hoogland Antilles shell 20876 2003:21 Lesser Guadeloupe Guadeloupe 3 Pointe des Pies — unknown — Ly-6423 2830 50 — Richard 1994 Antilles La Pointe de charcoal/ House location 1, Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred number 7 (post 1230 30 — and Romon Antilles 36671 Trois-Rivières material hole) 2010 La Pointe de charcoal/ House location 1, Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred number 32 (post 1340 25 — and Romon Antilles 36672 Trois-Rivières material hole) 2010 La Pointe de charcoal/ Van den Bel Lesser House location 1, KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred 945 35 — and Romon Antilles number 1 (burial) 36673 Trois-Rivières material 2010 272 La Pointe de Van den Bel Lesser human bone, human House location 1, KIA- Guadeloupe Guadeloupe 2 Grande Anse, 915 50 — and Romon Antilles collagen bone/teeth number 1 (burial) 36675 Trois-Rivières 2010 La Pointe de Van den Bel Lesser human bone, human House location 1, KIA- Guadeloupe Guadeloupe 2 Grande Anse, 565 25 — and Romon Antilles collagen bone/teeth number 2 (burial) 36676 Trois-Rivières 2010 La Pointe de Van den Bel Lesser human bone, human House location 1, KIA- Guadeloupe Guadeloupe 2 Grande Anse, 348 39 — and Romon Antilles apatite A bone/teeth number 2 (burial) 36676 Trois-Rivières 2010 La Pointe de Van den Bel Lesser human bone, human House location 1, KIA- Guadeloupe Guadeloupe 2 Grande Anse, 431 22 — and Romon Antilles apatite B bone/teeth number 2 (burial) 36676 Trois-Rivières 2010 La Pointe de charcoal/ Van den Bel Lesser House location 1, KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred 945 30 — and Romon Antilles number 3 (pit) 36674 Trois-Rivières material 2010 La Pointe de charcoal/ House location 2, Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred number 935 (post 1245 30 — and Romon Antilles 36677 Trois-Rivières material hole) 2010 La Pointe de charcoal/ House location 2, Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred number 81 (post 1065 30 — and Romon Antilles 36678 Trois-Rivières material hole) 2010 La Pointe de charcoal/ House location 2, Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred number 33 625 30 — and Romon Antilles 36679 Trois-Rivières material (burial) 2010 La Pointe de House location 2, Van den Bel Lesser human bone, human KIA- Guadeloupe Guadeloupe 2 Grande Anse, number 33 620 25 — and Romon Antilles apatite B bone/teeth 36681 Trois-Rivières (burial) 2010 La Pointe de House location 2, Van den Bel Lesser human bone, human KIA- Guadeloupe Guadeloupe 2 Grande Anse, number 33 625 25 — and Romon Antilles apatite A bone/teeth 36681 Trois-Rivières (burial) 2010 273 La Pointe de charcoal/ House location 2, Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred number 351 690 30 — and Romon Antilles 36680 Trois-Rivières material (burial) 2010 La Pointe de House location 2, Van den Bel Lesser human bone, human KIA- Guadeloupe Guadeloupe 4 Grande Anse, number 351 650 140 — and Romon Antilles collagen bone/teeth 36682 Trois-Rivières (burial) 2010 La Pointe de charcoal/ Van den Bel Lesser Number 265, post KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred 330 25 — and Romon Antilles hole 36683 Trois-Rivières material 2010 La Pointe de charcoal/ Van den Bel Lesser Number 834, post KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred 1000 30 — and Romon Antilles hole 36684 Trois-Rivières material 2010 La Pointe de Van den Bel Lesser human bone, human Number 571, KIA- Guadeloupe Guadeloupe 4 Grande Anse, 1435 20 — and Romon Antilles apatite A bone/teeth burial 36685 Trois-Rivières 2010 La Pointe de Van den Bel Lesser human bone, human Number 571, KIA- Guadeloupe Guadeloupe 4 Grande Anse, 1340 20 — and Romon Antilles apatite B bone/teeth burial 36685 Trois-Rivières 2010 La Pointe de charcoal/ Van den Bel Lesser KIA- Guadeloupe Guadeloupe 2 Grande Anse, charcoal charred Number 9, pit 1210 20 — and Romon Antilles 31187 Trois-Rivières material 2010 Lesser marine GrN- Hoogland Guadeloupe Guadeloupe 3 Pointe Helleux shell — 1125 35 — Antilles shell 20880 1995:33 Lesser marine GrN- Hoogland Guadeloupe Guadeloupe 3 Pointe Helleux shell — 925 35 — Antilles shell 20881 1995:33 Lesser Pointes des marine Beta- Guadeloupe Guadeloupe 3 shell — 2620 20 — Richard 1994 Antilles Mangles shell 239750 Lesser Pointe des marine Lenoble et al. Guadeloupe Guadeloupe 4 Lobatus gigas 30-40 cmbs Erl-9067 — — — Antilles Mangles 2 shell 2018:124 274 Lesser Pointe des Codakia marine Lenoble et al. Guadeloupe Guadeloupe 4 ca. 50 cmbs Erl-8232 — — — Antilles Mangles 2 orbicularis shell 2018:124 Lesser Roseau's Richard Guadeloupe Guadeloupe 4 — unknown level I — 865 30 — Antilles Seaside 2003:20 Lesser Roseau's Richard Guadeloupe Guadeloupe 4 — unknown level II — 1080 30 — Antilles Seaside 2003:20 Lesser Roseau's Richard Guadeloupe Guadeloupe 4 — unknown Level III — 1370 30 — Antilles Seaside 2003:20 charcoal/ British Virgin Lesser unnamed cave Lazell Guana Island 4 charcoal charred — — — — — Islands Antilles site 2005:314 material Dominican Greater Altos de Morbán Laucer Hispaniola 4 — unknown — I-6146 920 90 — Republic Antilles Vireya 1979 Dominican Greater Morbán Laucer Hispaniola 4 Atajadizo — unknown — — 1410 80 — Republic Antilles 1979 Dominican Greater Morbán Laucer Hispaniola 4 Atajadizo — unknown — — 1110 80 — Republic Antilles 1979 charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Bao Bog 2 charcoal charred Core 97 I 28400 180 -24.8 Republic Antilles 103598 2000:16 material charcoal/ Veloz Dominican Greater Hispaniola 4 Barrera II charcoal charred Pit 1 I-6145 4115 95 — Maggiolo and Republic Antilles material Ortega 1973 charcoal/ Dominican Greater Barrera- Morbán Laucer Hispaniola 4 charcoal charred — I-8738 1975 300 — Republic Antilles Mordán 1979 material charcoal/ Dominican Greater Barrera- Tx-1975- Morbán Laucer Hispaniola 3 charcoal charred — 1350 80 — Republic Antilles Mordán 300 1979 material charcoal/ Dominican Greater Pit 1, . 40 m Morbán Laucer Hispaniola 2 Batey Negro charcoal charred I-6781 2585 90 — Republic Antilles below surface 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 4 Batey Negro charcoal charred — — 2515 85 — Republic Antilles 1979 material 275 Dominican Greater Morbán Laucer Hispaniola 4 Bavaro — unknown — — 1180 80 — Republic Antilles 1979 Instituto Bulk shell de (Cittarium Greater marine Ciencias Ortega and Hispaniola Haiti 4 Bois Charrite pica and Level 3, .2-.3 m 730 190 — Antilles shell Weizman Guerrero 1981 Stombus de Israel gigas) 560 B Instituto Bulk shell de (Cittarium Greater marine Ciencias Ortega and Hispaniola Haiti 4 Bois Charrite pica and Level 3, .6-.7 m 630 170 — Antilles shell Weizman Guerrero 1981 Stombus de Israel gigas) 560 A Greater marine Beta- Moore and Hispaniola Haiti 4 Le Boucanier shell — 1090 80 — Antilles shell 42231 Tremmel 1997 Greater marine Hispaniola Haiti 4 Cabaret Strombus sp. — Beta- — — — Moore 1991 Antilles shell Greater Wilson Hispaniola Haiti 4 Caberet — unknown — Beta- 2280 80 — Antilles 1995:397 charcoal/ Dominican Greater GrN- Hispaniola 2 El Cabo charcoal charred 75-26-62/layer 9 1230 40 — Samson 2010 Republic Antilles 31412 material charcoal/ Dominican Greater charcoal, edge GrN- Hispaniola 2 El Cabo charred 84-29-F178 600 25 — Samson 2010 Republic Antilles of burnt post 30534 material charcoal/ Dominican Greater charcoal, edge GrN- Hispaniola 2 El Cabo charred 84-29-F249 580 30 — Samson 2010 Republic Antilles of burnt post 30535 material charcoal/ Dominican Greater charcoal, edge 84-29-F30; GrN- Hispaniola 2 El Cabo charred 535 25 — Samson 2010 Republic Antilles of burnt post Structure 6 29035 material charcoal/ Dominican Greater charcoal, edge GrN- Hispaniola 2 El Cabo charred 85-04-F01 815 35 — Samson 2010 Republic Antilles of burnt post 29931 material charcoal/ Dominican Greater charcoal, edge GrN- Hispaniola 2 El Cabo charred 85-50-F156 915 20 — Samson 2010 Republic Antilles of burnt post 31417 material charcoal/ Dominican Greater charcoal, edge GrN- Hispaniola 2 El Cabo charred 85-50-F193 925 30 — Samson 2010 Republic Antilles of burnt post 31418 material 276 Dominican Greater Gercarcinus faunal 85-44-00/layer GrN- Hispaniola 2 El Cabo 1110 25 — Samson 2010 Republic Antilles lateralis material 10a 29934 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 75-26-62/layer 12 1705 20 — Samson 2010 Republic Antilles shell 31413 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 75-26-62/layer 9 1435 20 — Samson 2010 Republic Antilles shell 31414 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 84-34-06/layer 3 1170 25 — Samson 2010 Republic Antilles shell 30531 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 84-34-16/layer 1 1040 25 — Samson 2010 Republic Antilles shell 30533 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 84-39-29/1 1495 30 — Samson 2010 Republic Antilles shell 29932 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 85-31-01/layer 4 1525 25 — Samson 2010 Republic Antilles shell 30532 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 85-34-81/layer 10 1745 20 — Samson 2010 Republic Antilles shell 31416 Dominican Greater marine GrN- Hispaniola 2 El Cabo Cittarium pica 85-34-90/layer 4 1520 20 — Samson 2010 Republic Antilles shell 31415 Dominican Greater marine 85-44-00/layer GrN- Hispaniola 2 El Cabo Cittarium pica 1750 30 — Samson 2010 Republic Antilles shell 10b 29933 charcoal/ Veloz Dominican Greater Hispaniola 3 La Cacique charcoal charred — GrN-6578 740 60 — Maggiolo et al. Republic Antilles material 1981 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Caleta charcoal charred — I-6938 2495 80 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Caleta charcoal charred — I-7179 965 85 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Caleta charcoal charred — I-7163 780 50 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Caleta charcoal charred — I-7183 740 130 — Republic Antilles 1979 material 277 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Caleta charcoal charred — I-1650 1680 100 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Caleta charcoal charred — IVIC-422 670 70 — Republic Antilles 1979 material terrestrial shell (Pleurodontes Veloz Dominican Greater faunal Hispaniola 3 El Caimito sp., — I-6924 1965 90 — Maggiolo et al. Republic Antilles material Polydontes 1973 sp., Caracolus sp.) terrestrial shell (Pleurodontes Veloz Dominican Greater faunal Hispaniola 3 El Caimito sp., — I-7821 1830 85 — Maggiolo et al. Republic Antilles material Polydontes 1973 sp., Caracolus sp.) terrestrial shell (Pleurodontes Veloz Dominican Greater faunal Hispaniola 3 El Caimito sp., — I-7822 1865 85 — Maggiolo et al. Republic Antilles material Polydontes 1973 sp., Caracolus sp.) terrestrial shell (Pleurodontes Veloz Dominican Greater faunal Hispaniola 3 El Caimito sp., — I-7823 2130 85 — Maggiolo et al. Republic Antilles material Polydontes 1973 sp., Caracolus sp.) Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 0-20 cm — — — Nold 2018 Republic Antilles pugilis shell - 278 Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 0-20 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 0-20 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 0-20 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 40-60 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 40-60 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 40-60 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 80-100 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 80-100 cm — — — Nold 2018 Republic Antilles pugilis shell - Dominican Greater Stombus marine NOSAMS Hispaniola 4 La Cangrejera 80-100 cm — — — Nold 2018 Republic Antilles pugilis shell - charcoal/ Veloz Dominican Greater Hispaniola 3 El Carril charcoal charred — CSIC-104 1030 100 — Maggiolo et al. Republic Antilles material 1981 Cave Isabella, Dominican Greater Guaiacum sp., OxA- Ostapkowicz et Hispaniola 3 Dominican wood — 606 25 -16.2 Republic Antilles terminus date 21153 al. 2013 Republic Complejo Veloz Greater Hispaniola Haiti 4 Cordillera — unknown — I-6165 2790 190 — Maggiolo and Antilles Central Ortega 1973 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Corrales charcoal charred — I-6594 1090 90 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Corrales charcoal charred — I-6593 1080 90 — Republic Antilles 1979 material Greater marine Beta- Moore and Hispaniola Haiti 3 Couri II — — 1710 70 — Antilles shell 41783 Tremmel 1997 279 Greater marine Beta- Moore and Hispaniola Haiti 3 Couri II — — 3430 70 — Antilles shell 71640 Tremmel 1997 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Cucama charcoal charred — I-7889 1545 100 — Republic Antilles 1979 material charcoal/ Veloz Dominican Greater Cueva de Corte 6, .75-1.00 Hispaniola 2 charcoal charred I-9539 3205 90 — Maggiolo et al. Republic Antilles Berna m material 1977 charcoal/ Veloz Dominican Greater Cueva de Corte 2, nivel 1.7- Hispaniola 2 charcoal charred I-5940 3840 130 — Maggiolo et al. Republic Antilles Berna 1.8 material 1977 Veloz Dominican Greater Cueva de marine Corte 5, nivel Hispaniola 2 conch shell I-9541 3575 90 — Maggiolo et al. Republic Antilles Berna shell 2.50-2.75 1977 Dominican Greater Cueva Morbán Laucer Hispaniola 4 — — — I-6448 1125 90 — Republic Antilles Elizabeth 1979 charcoal/ Dominican Greater Cueva del Morbán Laucer Hispaniola 3 charcoal charred — I-8737 1315 80 — Republic Antilles Ferrocarril 1979 material Dominican Greater Morbán Laucer Hispaniola 3 El Curro — unknown — — 3400 95 — Republic Antilles 1979 Greater Hispaniola Haiti 4 Des Cahots — unknown — — — — — Moore 1991 Antilles Greater Wilson Hispaniola Haiti 4 Des Cahots — unknown — Beta- 4340 80 — Antilles 1995:397 Dominican Greater marine GrN- University of Hispaniola 3 Don Julio conch — 763 15 — Republic Antilles shell 32761 Leiden charcoal/ Dominican Greater University of Hispaniola 3 Don Julio charcoal charred — DSH-3784 754 39 — Republic Antilles Leiden material charcoal/ Dominican Greater University of Hispaniola 3 Don Julio charcoal charred — DSH-3785 1031 45 — Republic Antilles Leiden material Trench 5, Unit 1 Oliver personal Dominican Greater marine N1992.65- Beta- Hispaniola 2 Edilio Cruz Lobatus gigas 1340 40 -0.6 communication Republic Antilles shell E1955.54, 293244 2018 Stratum 2 280 Unit 1: N1990- Oliver personal Dominican Greater marine Beta- Hispaniola 2 Edilio Cruz Lobatus gigas E1995, base 1120 40 +1.3 communication Republic Antilles shell 293242 Stratum 1 2018 Unit 1: N1990- Oliver personal Dominican Greater marine E1995, base Beta- Hispaniola 2 Edilio Cruz Cittarium pica 1030 40 +2.9 communication Republic Antilles shell Stratum 2 (top of 293243 2018 ash lens) charcoal/ Greater FS7399 (A18) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 810 70 -25.0 (est.) Deagan 2004 Antilles Mound structure 47758 material charcoal/ Greater FS7126 (A2, L3) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 800 60 -25.0 (est.) Deagan 2004 Antilles Mound structure 46760 material charcoal/ Greater FS7123 (F26, L4) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 720 50 -25.0 (est.) Deagan 2004 Antilles Mound structure 46759 material charcoal/ Greater FS6851 (PM6) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 680 80 -25.0 (est.) Deagan 2004 Antilles Mound structure 18173 material charcoal/ FS7185 (F31, L2) Greater Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred Non-elite ridge 320 70 -0.25 Deagan 2004 Antilles 046761 material structure charcoal/ FS3888 (A6) Post Greater Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred underlying burial 640 260 -0.25 Deagan 2004 Antilles 01527 material pit charcoal/ Greater FS6316 (F11, L5) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 600 70 -25.0 (est.) Deagan 2004 Antilles Feast pit 18172 material charcoal/ Greater FS3885 (F4, L11) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 430 80 -0.25 Deagan 2004 Antilles Burial pit 10526 material charcoal/ Greater FS6882 (A6, L6) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 440 60 -0.25 Deagan 2004 Antilles Burial pit 018469 material charcoal/ Greater FS3897 (F8, L3) Beta- Hispaniola Haiti 2 En Ba Saline charcoal charred 340 70 -0.25 Deagan 2004 Antilles Burial pit 010528 material 281 charcoal/ Dominican Greater Estero Hondo Morbán Laucer Hispaniola 3 charcoal charred — — 2570 85 — Republic Antilles (Las Paredes) 1979 material Greater marine Beta- Moore and Hispaniola Haiti 4 Gillote — — 3260 60 — Antilles shell 52888 Tremmel 1997 Dominican Greater marine GrN- University of Hispaniola 3 Guzmancito conch — 1170 20 — Republic Antilles shell 31419 Leiden Dominican Greater marine GrN- University of Hispaniola 3 Guzmancito conch — 1195 20 — Republic Antilles shell 31420 Leiden Dominican Greater marine GrN- University of Hispaniola 3 Guzmancito conch — 1190 20 — Republic Antilles shell 31421 Leiden charcoal/ Veloz Dominican Greater Hatillo Palma Hispaniola 3 charcoal charred — I-6016 605 90 — Maggiolo et al. Republic Antilles II material 1981 charcoal/ Veloz Dominican Greater Hatillo Palma Hispaniola 3 charcoal charred — I-6015 515 90 — Maggiolo et al. Republic Antilles I material 1981 Dominican Greater Honduras del Morbán Laucer Hispaniola 4 — unknown Level 1; 30 cmbs I-6012 2310 95 — Republic Antilles Oeste 1979 charcoal/ Dominican Greater Morbán Laucer Hispaniola 2 Hoyo de Toro charcoal charred Pit 1, 30-60 cmbs I-6756 3890 95 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 4 Hoyo de Toro charcoal charred — — 2540 85 — Republic Antilles 1979 material charcoal/ Dominican Greater Humilde GrN- University of Hispaniola 3 charcoal charred — 915 30 — Republic Antilles López 32770 Leiden material charcoal/ Dominican Greater Humilde GrN- University of Hispaniola 3 charcoal charred — 925 20 — Republic Antilles López 32771 Leiden material charcoal/ Greater 52 cm below Beta- Hispaniola Haiti 3 Ile a Rat charcoal charred 690 70 — Keegan 1999 Antilles datum 108547 material charcoal/ Greater 69 cm below Beta- Hispaniola Haiti 3 Ile a Rat charcoal charred 1130 50 — Keegan 1999 Antilles datum 108548 material 282 Dominican Greater plant material plant Beta - Hooghiemstra Hispaniola 4 Los Indios 123-124 920 30 -28.2 Republic Antilles (from core) material 437562 et al. 2018 Dominican Greater plant Beta - Hooghiemstra Hispaniola 4 Los Indios plant material 224-225 1840 30 -25.9 Republic Antilles material 437563 et al. 2018 Dominican Greater plant Beta- moder Hooghiemstra Hispaniola 4 Los Indios plant material 36-37 cmbs — -15.4 Republic Antilles material 437560 n et al. 2018 Dominican Greater bulk organic Beta - Hooghiemstra Hispaniola 4 Los Indios sediment 105-106 cmbs 1060 30 -23.8 Republic Antilles sediment 437561 et al. 2018 Dominican Greater bulk organic Beta - Hooghiemstra Hispaniola 4 Los Indios sediment 165-166 870 30 -24.5 Republic Antilles sediment 420881 et al. 2018 Dominican Greater bulk organic Beta - Hooghiemstra Hispaniola 4 Los Indios sediment 179-180 980 30 -25.0 Republic Antilles sediment 420882 et al. 2018 Dominican Greater bulk organic Beta - Hooghiemstra Hispaniola 4 Los Indios sediment 80-81 cmbs 260 30 -25.0 Republic Antilles sediment 420880 et al. 2018 Dominican Greater Morbán Laucer Hispaniola 4 La Isabela — — — Tx- 800 390 — Republic Antilles 1979 Dominican Greater Morbán Laucer Hispaniola 3 La Isleta — unknown — I-7852 1230 90 — Republic Antilles 1979 Dominican Greater Morbán Laucer Hispaniola 3 La Isleta — unknown — — 3180 90 — Republic Antilles 1979 Castilla- Dominican Greater Laguna Beta - Hispaniola 4 bulk sediment sediment 127-126 cmbs 740 30 -23.0 Beltran et al. Republic Antilles Biajaca 469283 2018 Castilla- Dominican Greater Laguna Beta - Hispaniola 4 bulk sediment sediment 185-183 cmbs 660 30 -23.7 Beltran et al. Republic Antilles Biajaca 469282 2018 Castilla- Dominican Greater Laguna Beta - Hispaniola 4 bulk sediment sediment 224-225 cmbs 1060 30 -24.8 Beltran et al. Republic Antilles Biajaca 420888 2018 283 Castilla- Dominican Greater Laguna Beta - Hispaniola 4 bulk sediment sediment 75-76 cmbs 430 30 -21.9 Beltran et al. Republic Antilles Biajaca 469284 2018 Castilla- Dominican Greater Laguna Beta - Hispaniola 4 bulk sediment sediment 90-91 cmbs 290 30 -19.4 Beltran et al. Republic Antilles Biajaca 420887 2018 organic Dominican Greater Laguna organic Beta- Lane et al. Hispaniola 3 macrofossil 204-207 cm 110 40 -24.5 Republic Antilles Castilla macrofossils 204702 2008 s Dominican Greater Laguna Beta- moder Lane et al. Hispaniola 4 bulk sediment sediment 66-68 cm depth — -25.6 Republic Antilles Castilla 196817 n 2008 Dominican Greater Laguna Beta- Lane et al. Hispaniola 3 bulk sediment sediment 536-537 cm 1000 40 -24.2 Republic Antilles Castilla 171499 2008 Dominican Greater Laguna Beta- Lane et al. Hispaniola 3 bulk sediment sediment 329-331 cm 730 40 -25.9 Republic Antilles Castilla 196818 2008 Laguna charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Grande de charcoal charred Core 97 I 11040 60 -24.9 Republic Antilles 106384 2000:16 Macutico material Dominican Greater Laguna de wood Beta- Lane et al. Hispaniola 3 wood 204 cm 410 40 -27.5 Republic Antilles Salvador fragment 204696 2008 Dominican Greater Laguna de wood Beta- Lane et al. Hispaniola 3 wood 75-76 cm 100 40 -25.7 Republic Antilles Salvador fragment 219035 2008 charcoal/ Dominican Greater De Grossi et al. Hispaniola 3 Loma Perenal charcoal charred — R-3318 806 63 — Republic Antilles 2008 material charcoal/ Veloz Dominican Greater Hispaniola 3 López charcoal charred — T-6446 900 90 — Maggiolo et al. Republic Antilles material 1981 Veloz Dominican Greater Hispaniola 4 La Llamada — unknown — I-6018 730 95 — Maggiolo et al. Republic Antilles 1981 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Macao charcoal charred — I-6314 1125 90 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Macao charcoal charred — I-7163 780 50 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Macao charcoal charred — I-6445 925 110 — Republic Antilles 1979 material 284 charcoal/ Dominican Greater La Madama, Morbán Laucer Hispaniola 3 charcoal charred — I-9780 2795 140 — Republic Antilles Cabo Samaná 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Madrigales charcoal charred — I-7388 2030 95 — Republic Antilles 1979 material Dominican Greater Manantial de Beta- Conrad et al. Hispaniola 2 duho wood cenote 910 40 — Republic Antilles la Aleta 112400 2001:14 Dominican Greater Manantial de plant Beta- Conrad et al. Hispaniola 1 gourd cenote 940 30 — Republic Antilles la Aleta material 107023 2001:14 Dominican Greater Manantial de Beta- Conrad et al. Hispaniola 2 duho fragment wood cenote 680 60 — Republic Antilles la Aleta 96781 2001:14 Dominican Greater Manantial de plant Beta- Conrad et al. Hispaniola 2 basket cenote 620 70 — Republic Antilles la Aleta material 108314 2001:14 Dominican Greater Manantial de Beta- Conrad et al. Hispaniola 2 flaring bowl wood cenote 990 70 — Republic Antilles la Aleta 108313 2001:14 Dominican Greater Manantial de Beta- Conrad et al. Hispaniola 2 macana wood cenote 540 50 — Republic Antilles la Aleta 108315 2001:14 Dominican Greater Manantial de Beta- Conrad et al. Hispaniola 2 haft wood cenote 870 60 — Republic Antilles la Aleta 96782 2001:14 Greater Wilson Hispaniola Haiti 4 Matelas — unknown — Beta- 4370 90 — Antilles 1995:397 charcoal/ Dominican Greater Wilson Hispaniola 3 Mordan charocal charred — IVIC-5 4400 170 — Republic Antilles 1995:397 material charcoal/ Dominican Greater Wilson Hispaniola 3 Mordan charocal charred — Tx-54 4140 130 — Republic Antilles 1995:397 material charcoal/ Dominican Greater Wilson Hispaniola 3 Mordan charcoal charred — Y-1422 4560 80 — Republic Antilles 1995:397 material Dominican Greater Morbán Laucer Hispaniola 4 El Morro — unknown — I-6443 970 90 — Republic Antilles 1979 285 charcoal/ Dominican Greater GrN- University of Hispaniola 3 La Muchacha charcoal charred — 390 35 — Republic Antilles 32767 Leiden material charcoal/ Dominican Greater GrN- University of Hispaniola 3 La Muchacha charcoal charred — 540 50 — Republic Antilles 32766 Leiden material Musie Pedro, charcoal/ Dominican Greater Morbán Laucer Hispaniola 4 San Pedro de charcoal charred — Tx- 2255 80 — Republic Antilles 1979 Macoris material Brock et al. outer wood: 125 Dominican Greater museum OxA- 2012; Hispaniola 3 Carapa sp. wood mm from pith 801 24 -24.4 Republic Antilles collection 21149 Ostapkowicz et sample al. 2013 Brock et al. pith (bird and Dominican Greater museum Carapa sp. OxA- 2012; Hispaniola 3 wood turtle canopied 805 24 -24.8 Republic Antilles collection (pith) 21148 Ostapkowicz et cemi) al. 2013 Greater museum Pinaceae, Museum OxA- Ostapkowicz et Hispaniola — 3 wood 383 25 -21.1 Antilles collection resin (platter) collections 18331 al. 2012:4 wood, Greater museum Museum OxA- Ostapkowicz et Hispaniola — 3 terminus, wood 923 27 -23.2 Antilles collection collections 18457 al. 2012:4 cohoba stand Guaiacum sp. Greater museum Museum OxA- Ostapkowicz et Hispaniola Haiti 3 Terminus wood 547 28 -22.6 Antilles collection collections 19175 al. 2012:4 (platter) Guaiacum spp. (duho); Brock et al. Greater museum outer edge: Museum OxA- 2012; Hispaniola Haiti 3 wood 369 28 -26.4 Antilles collection 112.9 mm collections 19176 Ostapkowicz et from pith al. 2012 sample Guaiacum Brock et al. Greater museum spp. (duho); Museum OxA- 2012; Hispaniola Haiti 3 wood 491 27 -26.7 Antilles collection 4.1 mm from collections 19178 Ostapkowicz et center of pith al. 2012 286 Guaiacum spp.; Brock et al. Dominican Greater museum reliquary? Pith Museum OxA- 2012; Hispaniola 3 wood 904 28 -24.1 Republic Antilles collection inner edge~25 collections 19398 Ostapkowicz et mm from out al. 2012 edge Guaiacum Brock et al. Dominican Greater museum spp.; Museum OxA- 2012; Hispaniola 3 wood 927 28 -25.6 Republic Antilles collection reliquary? Pith collections 19399 Ostapkowicz et outer edge al. 2012 Brock et al. Guaiacum Dominican Greater museum Museum OxA- 2012; Hispaniola 3 spp.; pith wood 1107 26 -25.9 Republic Antilles collection collections 20675 Ostapkowicz et (cohoba stand) al. 2012 Brock et al. Guaiacum Dominican Greater museum Museum OxA- 2012; Hispaniola 3 spp.; pith wood 1144 27 -25.6 Republic Antilles collection collections 20676 Ostapkowicz et (cohoba stand) al. 2012 Guaiacum Brock et al. spp.; pith Dominican Greater museum Museum OxA- 2012; Hispaniola 3 (cohoba wood 1093 24 -24.8 Republic Antilles collection collections 21855 Ostapkowicz et stand), left al. 2012 side terminus Pith (cohoba Ostapkowicz et stand) Right Greater museum Guaiacum OxA- al. 2012:4; Hispaniola — 3 wood 115.4 mm from 1031 27 -25.8 Antilles collection spp. 20627 Brock et al. pit, 4.1 mm from 2012 outer edge 287 Pith (left: 89.8 Ostapkowicz et mm for pith, 7.5 Greater museum Guaiacum OxA- al. 2012:4; Hispaniola — 3 wood mm from outer 1165 28 -25.6 Antilles collection spp. 20626 Brock et al. edge) cohoba 2012 stand Protium or Greater museum Museum OxA- Ostapkowicz et Hispaniola — 4 Bursera sp. wood 150 25 -12.9 Antilles collection collections 19170 al. 2012:4 resin Dominican Greater museum Guaiacum sp., OxA- Ostapkowicz et Hispaniola 3 wood — 621 26 -23.7 Republic Antilles collection terminus date 15483 al. 2013 bulk shell (Cittarium pica, Veloz Dominican Greater marine Unit 1, level 4 Hispaniola 4 Musiepedro Tectarius I-8646 2255 80 — Maggiolo et al. Republic Antilles shell (02-2-1A-4) muricatus, 1976 and Stombus gigas) charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 La Nevera charcoal charred Excavation 4 4910 50 -27.8 Republic Antilles 125067 2000:16 material charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 La Nevera charcoal charred Excavation 9 3220 60 -27.7 Republic Antilles 125066 2000:16 material Dominican Greater marine GrN- University of Hispaniola 3 Los Patos conch — 1480 20 — Republic Antilles shell 32764 Leiden Greater Hispaniola Haiti 4 Phaeton — unknown — — — — — Moore 1991 Antilles Greater Wilson Hispaniola Haiti 4 Phaeton — unknown — Beta- 3260 70 — Antilles 1995:397 Dominican Greater marine GrN- University of Hispaniola 3 Los Pérez conch — 1041 15 — Republic Antilles shell 32769 Leiden charcoal/ Dominican Greater GrN- University of Hispaniola 3 Los Pérez charcoal charred — 855 25 — Republic Antilles 32768 Leiden material bulk shell Dominican Greater marine Rímoli and Hispaniola 4 La Piedra (Crassostrea Unit 4, level 2 I-8740 3585 85 — Republic Antilles shell Nadal 1983 rhizophorae) 288 bulk shell Dominican Greater marine Rímoli and Hispaniola 4 La Piedra (Crassostrea Unit 6, level 3 I-8741 3625 85 — Republic Antilles shell Nadal 1983 rhizophorae) charcoal/ Dominican Greater Playa de Morbán Laucer Hispaniola 3 charcoal charred — I-10337 945 80 — Republic Antilles Bavaro 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 4 El Pleicito charcoal charred — I-6147 865 90 — Republic Antilles 1979 material charcoal/ Dominican Greater GrN- University of Hispaniola 3 Popi charcoal charred — 972 15 — Republic Antilles 32772 Leiden material Dominican Greater Wilson Hispaniola 4 El Porvenir — unknown — I-6615 2855 90 — Republic Antilles 1995:397 charcoal/ Dominican Greater Wilson Hispaniola 3 El Porvenir charcoal charred — I-6792 2980 95 — Republic Antilles 1995:397 material Veloz Dominican Greater Hispaniola 4 El Porvenir — unknown — — 3980 95 — Maggiolo and Republic Antilles Ortega 1973 charcoal/ Dominican Greater El Porvenir Morbán Laucer Hispaniola 3 charcoal charred — — 3135 90 — Republic Antilles (Seralles) 1979 material charcoal/ Dominican Greater Puerto Morbán Laucer Hispaniola 4 charcoal charred — I-10338 3400 95 — Republic Antilles Alejandro 1979 material Dominican Greater marine GrN- University of Hispaniola 3 Puerto Juanita conch — 1075 15 — Republic Antilles shell 31913 Leiden Dominican Greater marine GrN- University of Hispaniola 3 Puerto Juanita conch — 1010 15 — Republic Antilles shell 31912 Leiden Dominican Greater marine GrN- University of Hispaniola 3 Puerto Juanita conch — 1025 15 — Republic Antilles shell 31911 Leiden Atiles and Dominican Greater La Punta De marine Beta- Hispaniola 3 shell level 0.60/0.40 3380 60 — López Belando Republic Antilles Bayahibe shell 199781 2006:543 Atiles and Dominican Greater La Punta De marine Beta- Hispaniola 3 shell level 0.80/0.60 3530 70 — López Belando Republic Antilles Bayahibe shell 199782 2006:543 289 Atiles and Dominican Greater Punta marine Beta- Hispaniola 4 — — 3550 50 — López Belando Republic Antilles Bayahibe shell 222903 2006:543 Atiles and Dominican Greater Punta marine Beta- Hispaniola 4 — — 3600 80 — López Belando Republic Antilles Bayahibe shell 222904 2006:543 Atiles and Dominican Greater Punta marine Beta- Hispaniola 4 — — 3460 50 — López Belando Republic Antilles Bayahibe shell 222905 2006:543 Atiles and Dominican Greater Punta marine Beta- Hispaniola 4 — — 3150 50 — López Belando Republic Antilles Bayahibe shell 222906 2006:543 Dominican Greater Beta- Ortega et al. Hispaniola 4 Punta Cana — unknown — 1750 50 — Republic Antilles 179653 2003:413 Dominican Greater Morbán Laucer Hispaniola 4 Punta Garza — unknown — I-6858 705 85 — Republic Antilles 1979 Dominican Greater Morbán Laucer Hispaniola 4 Punta Garza — unknown — — 650 90 — Republic Antilles 1979 Greater Riviere marine Beta- Moore and Hispaniola Haiti 3 shell — 4170 60 — Antilles Maurice shell 52434 Tremmel 1997 charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Río Bao charcoal charred Cutbank 1 1280 30 -24.9 (est.) Republic Antilles 128791 2000:16 material charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Río Bao charcoal charred Cutbank 1 3060 40 -25.6 Republic Antilles 128792 2000:16 material charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Río Bao charcoal charred Cutbank 2 42480 680 -25.0 Republic Antilles 128789 2000:16 material Dominican Greater Olsen et al. Hispaniola 3 Río Joba — unknown — — 920 100 — Republic Antilles 2000 290 charcoal/ Dominican Greater GrN- University of Hispaniola 3 Río Joba charcoal charred — 985 15 — Republic Antilles 31914 Leiden material charcoal/ Veloz Dominican Greater Hispaniola 3 Río Joba charcoal charred — N-3517 1150 85 — Maggiolo et al. Republic Antilles material 1981 charcoal/ Veloz Dominican Greater Hispaniola 3 Río Joba charcoal charred — N-3516 1080 65 — Maggiolo et al. Republic Antilles material 1981 charcoal/ Dominican Greater Olsen et al. Hispaniola 3 Río Joba charcoal charred — — 1080 60 — Republic Antilles 2000 material charcoal/ Dominican Greater Olsen et al. Hispaniola 3 Río Joba charcoal charred — — 740 60 — Republic Antilles 2000 material charcoal/ Veloz Dominican Greater Río Hispaniola 3 charcoal charred — N-3360 1210 75 — Maggiolo et al. Republic Antilles Verde/Cutupú material 1981 charcoal/ Veloz Dominican Greater Hispaniola 3 Río Verde charcoal charred — GrN-6577 1095 60 — Maggiolo et al. Republic Antilles material 1981 charcoal/ Veloz Dominican Greater Hispaniola 3 Río Verde charcoal charred — GrN-6576 1145 30 — Maggiolo et al. Republic Antilles material 1981 charcoal/ Veloz Dominican Greater Hispaniola 3 Río Verde charcoal charred — GrN-6575 965 30 — Maggiolo et al. Republic Antilles material 1981 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 La Romana charcoal charred — Y-1896 940 80 — Republic Antilles 1979 material charcoal charcoal/ Dominican Greater Sabana de los Beta- Horn et al. Hispaniola 4 (Pinus charred 40-44 cm 4160 60 -25.0 Republic Antilles Robles 1b 93754 2000:16 occidentalis?) material charcoal charcoal/ Dominican Greater Sabana Beta- Horn et al. Hispaniola 4 (Pinus charred 45-50 cm 9380 80 -25.0 (est.) Republic Antilles Macutico 1 111207 2000:16 occidentalis?) material charcoal/ Dominican Greater Sabaneta de Morbán Laucer Hispaniola 3 charcoal charred Pit 1 I-6755 2195 90 — Republic Antilles Juan Dolio 1979 material Greater Savane Caree marine Beta- Moore and Hispaniola Haiti 3 shell — 4160 90 — Antilles II shell 42232 Tremmel 1997 291 Dominican Greater Morbán Laucer Hispaniola 4 El Soco — unknown — — 1020 80 — Republic Antilles 1979 Dominican Greater Morbán Laucer Hispaniola 4 El Soco — unknown — — 655 80 — Republic Antilles 1979 charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 Sonador charcoal charred — UG2-433 1255 115 — Republic Antilles 1979 material charcoal/ Veloz Dominican Greater Hispaniola 3 Sonador charcoal charred — UG-432 580 65 — Maggiolo et al. Republic Antilles material 1973 charcoal/ Dominican Greater Rouse and Hispaniola 3 Sonador charcoal charred — UG-434 480 65 — Republic Antilles Cruxent 1979 material Greater Source marine Hispaniola Haiti 4 shell — Beta- — — — Moore 1991 Antilles Matelas shell charcoal/ Dominican Greater Morbán Laucer Hispaniola 2 Taveras I charcoal charred Pit 4, 4.6 m I-5818 2095 135 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 2 Taveras II charcoal charred Pit 4, 3.6 m SI-991 1805 70 — Republic Antilles 1979 material charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Valle de Bao charcoal charred Excavation in fan 6780 40 -22.8 Republic Antilles 128793 2000:16 material charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Valle de Bao charcoal charred Excavation in fan 3040 40 -25.6 Republic Antilles 128794 2000:16 material charcoal charcoal/ Dominican Greater Beta- Horn et al. Hispaniola 4 Valle Nuevo 1 (Pinus charred 65-70 cm 4110 80 -20.0 Republic Antilles 93755 2000:16 occidentalis?) material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 El Vigia charcoal charred — I-8742 3920 85 — Republic Antilles 1979 material charcoal/ Dominican Greater Morbán Laucer Hispaniola 3 El Vigia charcoal charred — I-08763 3775 85 — Republic Antilles 1979 material Greater Hispaniola Haiti 4 Vignier II — unknown — — — — — Moore 1991 Antilles 292 Greater marine Hispaniola Haiti 4 Vignier III shell — Beta- — — — Moore 1991 Antilles shell Greater Wilson Hispaniola Haiti 4 Vignier III — unknown — Beta- 5580 80 — Antilles 1995:397 Greater Wilson Hispaniola Haiti 4 Vignier III — unknown — Beta- 5270 100 — Antilles 1995:397 Sinelli, charcoal/ Dominican Bahamian Ike's Cut (GI- charred Beta- Personal Inagua 3 charred — 760 30 — Republic Archipelago 3) material 334793 Communicatio material n Sinelli, charcoal/ Bahamian Ike's Cut (GI- charred Beta- Personal Inagua Bahamas 3 charred — 730 30 — Archipelago 3) material 356052 Communicatio material n Sinelli, charcoal/ Bahamian Ike's Cut (GI- charred Beta- Personal Inagua Bahamas 3 charred — 710 30 — Archipelago 3) material 356053 Communicatio material n Guaiacum sp. Isle de la Greater cave, Isle de Museum OxA- Ostapkowicz et Haiti 3 terminus wood 617 29 -25.0 Gonâve Antilles La Gonave collections 19169 al. 2012:4 (reliquary?) Guaiacum sp. Isle de la Greater cave, Isle de Museum OxA- Ostapkowicz et Haiti 3 terminus wood 1139 27 -24.6 Gonâve Antilles La Gonave collections 19171 al. 2012:4 (drum) Ostakopwicz et Greater marine Museum Beta- al. 2012: 2241; Jamaica Jamaica 3 Aboukir Swietenia sp. 690 40 -23.8 Antilles shell collections 153380 Allsworth- Jones 2008: 99 Greater Museum OxA- Ostapkowicz et Jamaica Jamaica 3 Aboukir — unknown 536 24 -13.5 Antilles collections 21055 al. 2012: 2241 293 Brock et al. 2012: 681; Greater Museum Beta- Ostapkowicz et Jamaica Jamaica 3 Aboukir Guaiacum sp. wood 820 40 -25.2 Antilles collections 153379 al. 2012: 6641; Allsworth- Jones 2008: 99 Greater Museum OxA- Ostakopwicz et Jamaica Jamaica 3 Aboukir Guaiacum sp. wood 600 24 -23.7 Antilles collections 21052 al. 2012: 2242 Greater Protium or Museum OxA- Ostakopwicz et Jamaica Jamaica 3 Aboukir wood 634 28 -16.4 Antilles Bursera sp. collections 21053 al. 2012: 2241 Brock et al. Greater Museum OxA- 2012: 681; Jamaica Jamaica 3 Aboukir Guaiacum sp. wood 886 26 -26.5 Antilles collections 21054 Ostapkowicz et al. 2012: 2241 Brock et al. Greater Museum OxA- 2012: 681: Jamaica Jamaica 3 Aboukir Guaiacum sp. wood 646 22 -24.2 Antilles collections 23004 Ostakowicz et al. 2012: 2241 charcoal/ Allsworth- Greater Jamaica Jamaica 3 Bengal (A8) charcoal charred — IVIC-190 770 100 — Jones 2008: 99, Antilles material 137 Allsworth- Greater Bottom Bay Jamaica Jamaica 3 — unknown — Y-1987 1300 120 — Jones 2008: Antilles (M4) 101, 159 294 Greater Bottom Bay Fitzpatrick Jamaica Jamaica 4 — unknown — — — — — Antilles (M4) 2006:400 Higham et al. Greater Bull Savannah human OxA- 2007: S9; Jamaica Jamaica 3 human bone — 1101 27 -13.9 Antilles Cave bone/teeth 12995 Santos et al. 2013: 493 Higham et al. Greater Bull Savannah human OxA- 2007: S9; Jamaica Jamaica 3 human bone — 1123 25 -14.0 Antilles Cave bone/teeth 13614 Santos et al. 2013: 493 Higham et al. Greater Bull Savannah human OxA- 2007: S9; Jamaica Jamaica 3 human bone — 1069 23 -13.9 Antilles Cave bone/teeth 13664 Santos et al. 2013: 493 Greater Cambridge Duho (high- OxA- Ostakopwicz et Jamaica Jamaica 2 Guaiacum sp. wood 615 24 -25.3 Antilles Hill back): terminus 21058 al. 2012: 2241 Cedar Valley, Greater Museum OxA- Ostakopwicz et Jamaica Jamaica 3 St. Ann's Guaiacum sp. wood 152 24 -25.3 Antilles collections 19055 al. 2012: 2242 Parish charcoal/ Allsworth- Greater Chancery Hall Beta- Jamaica Jamaica 3 charcoal charred — 690 50 — Jones 2008: 99, Antilles (K11) 53703 material 154 charcoal/ lower stratum, Allsworth- Greater Cinnamon Hill Jamaica Jamaica 3 charcoal charred 10-20 in. below — 935 180 — Jones 2008: 99, Antilles (J10) material surface 151 charcoal/ upper stratum, 0- Allsworth- Greater Cinnamon Hill Jamaica Jamaica 3 charcoal charred 10 in. below — 625 195 — Jones 2008: 99, Antilles (J10) material surface 151 Allsworth- Greater Cinnamon Hill human burial, 20 in. Jamaica Jamaica 3 human bone — 350 90 — Jones 2008: Antilles (J10) bone/teeth below surface 151 295 cave, St. Greater Museum Beta- Ostakopwicz et Jamaica Jamaica 2 Catherine's Guaiacum sp. wood 970 40 -26.0 Antilles collections 153378 al. 2012: 2242 Parish cave, St. Greater Museum OxA- Ostakopwicz et Jamaica Jamaica 2 Catherine's Guaiacum sp. wood 384 24 -23.8 Antilles collections 21056 al. 2012: 2242 Parish cave, St. Greater Protium or Museum OxA- Ostakopwicz et Jamaica Jamaica 2 Catherine's wood 396 24 -29.4 Antilles Bursera sp. collections 21057 al. 2012: 2242 Parish Allsworth- Greater Coleraine trench 4.5-6S 6- Beta- Jamaica Jamaica 4 — unknown 790 70 — Jones Antilles (Y19) 7W 182412 2008:100, 179 charcoal/ Greater Area 1 West, Jamaica Jamaica 4 Cranbrook charcoal charred Beta- — — — Conolley 2011 Antilles Level 7 (Layer 4) material charcoal/ Greater Area 2 West, Jamaica Jamaica 4 Cranbrook charcoal charred Beta- — — — Conolley 2011 Antilles Layer 6 material charcoal/ Greater Area 1 West, Jamaica Jamaica 4 Fairfield charcoal charred Beta- — — — Conolley 2011 Antilles Level 6 (Layer 1) material charcoal/ Section 1 East, Greater Jamaica Jamaica 4 Fairfield charcoal charred Level 11 (Layer Beta- — — — Conolley 2011 Antilles material 5) charcoal/ Greater Jamaica Jamaica 4 Fairfield charcoal charred Trench 5, Layer 8 Beta- — — — Conolley 2011 Antilles material Greater Green Castle Mid Trench, level Beta- Allsworth- Jamaica Jamaica 4 — unknown 70 50 — Antilles (Y25) 2 134378 Jones 2008:181 Allsworth- Greater Green Castle Mid Trench, level Beta- Jamaica Jamaica 4 — unknown 750 60 — Jones Antilles (Y25) 3 158967 2008:100, 181 Allsworth- Greater Green Castle Mid Trench, level Beta- Jamaica Jamaica 4 — unknown 480 80 — Jones Antilles (Y25) 7 158968 2008:100, 181 296 Allsworth- Greater Green Castle Mid Trench, Beta- Jamaica Jamaica 3 human bone? unknown 660 40 — Jones 2008: Antilles (Y25) burial 1 158969 100, 181 Southern Trench, Allsworth- Greater Green Castle Beta- Jamaica Jamaica 4 — unknown occupation 3, 330 60 — Jones Antilles (Y25) 134379 level 2 2008:100, 181 Southern Trench, Allsworth- Greater Green Castle Beta- Jamaica Jamaica 4 — unknown occupation 1, 920 60 — Jones Antilles (Y25) 158964 level 13 2008:100, 181 Southern Trench, Allsworth- Greater Green Castle Beta- Jamaica Jamaica 4 — unknown occupation 1, 820 60 — Jones Antilles (Y25) 158965 level 13 2008:100, 181 Southern Trench, Allsworth- Greater Green Castle Beta- Jamaica Jamaica 4 — unknown occupation 2, 760 60 — Jones Antilles (Y25) 158963 level 7 2008:100, 181 Southern Trench, Allsworth- Greater Green Castle Beta- Jamaica Jamaica 4 — unknown occupation 3, 430 80 — Jones Antilles (Y25) 158966 level 3 2008:100, 181 Greater Little River, Jamaica Jamaica 4 — unknown — — — — — Reid 1992:16 Antilles St. Ann charcoal/ Greater House 8 Strata, WK Burley et al. Jamaica Jamaica 2 Maima East charcoal charred 627 20 — Antilles IVb 43114 2017 material charcoal/ Greater WK Burley et al. Jamaica Jamaica 2 Maima East charcoal charred House 8, Stata V 938 20 — Antilles 43115 2017 material Allsworth- Greater 13-14 S 6-7 E, Beta- Jamaica Jamaica 4 Newry (Y27) — unknown 850 60 — Jones Antilles level 4 170433 2008:100, 184 Allsworth- Greater 13-14 S 6-7 E, Beta- Jamaica Jamaica 4 Newry (Y27) — unknown 1020 60 — Jones Antilles level 6 170434 2008:100, 184 297 Allsworth- Greater 9-10 S 1-2 W, Beta- Jamaica Jamaica 4 Newry (Y27) — unknown 950 60 — Jones Antilles level 4 170435 2008:100, 184 Allsworth- Greater 9-10 S 1-2 W, Beta- Jamaica Jamaica 4 Newry (Y27) — unknown 1040 40 — Jones Antilles level 8 170436 2008:100, 184 Keegan et al. 2003: 1609; Greater Paradise Park marine Beta- Jamaica Jamaica 3 conch shell — 1180 60 — Allsworth- Antilles (Wes-15a) shell 125832 Jones 2008: 101 Keegan et al. charcoal/ Greater Paradise Park Beta- 2003: 1609; Jamaica Jamaica 3 charcoal charred — 490 60 — Antilles (Wes-15b) 125833 Allsworth- material Jones 2008: 99 Greater moder Waters et al. Jamaica Jamaica 4 St. Ann's Bay wood wood Transect 1 A-6063 — -27.6 Antilles n 1993 Greater plant Waters et al. Jamaica Jamaica 3 St. Ann's Bay organic debris Transect 1 A-6399 545 45 -27.2 Antilles material 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 1 A-6048 4080 45 -26.0 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 1 A-6049 910 45 -26.4 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 1 A-6056 2410 45 -26.8 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 1 A-6062 105 35 -26.8 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 1 A-6139 150 35 -27.2 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 2 A-6051 740 45 -26.0 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 2 A-6052 905 40 -26.4 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 2 A-6053 1315 50 -28.7 Antilles 1993 298 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 2 A-6055 1575 45 -26.8 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 2 A-6060 1260 40 -29.4 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 3 A-6050 1970 50 -30.7 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 3 A-6057 1400 35 -26.8 Antilles 1993 Greater Waters et al. Jamaica Jamaica 3 St. Ann's Bay wood wood Transect 3 A-6059 290 35 -28.7 Antilles 1993 charcoal/ Transect 1, Greater Waters et al. Jamaica Jamaica 2 St. Ann's Bay charcoal charred midden with A-6061 525 45 -25.7 Antilles 1993 material burned fishbone charcoal/ Greater Waters et al. Jamaica Jamaica 2 St. Ann's Bay Charcoal charred Transect 2, hearth A-6058 570 45 -29.0 Antilles 1993 material Greater Transect 1, Waters et al. Jamaica Jamaica 2 St. Ann's Bay Wood wood A-6140 630 40 -23.0 Antilles treenail from ship 1993 charcoal/ Allsworth- Greater Wentworth Beta- Jamaica Jamaica 2 charcoal charred layer 3 680 60 — Jones 2008: Antilles (Y8) 167740 material 100, 178 Greater White Marl Fitzpatrick Jamaica Jamaica 4 — unknown — — — — — Antilles (S1) 2006:400 Greater White Marl Jamaica Jamaica 4 — unknown — — — — — Reid 1992:16 Antilles (S1) Allsworth- Greater White Marl midden 2, 40-50 Jamaica Jamaica 4 — unknown Y-1118 1073 95 — Jones 2008:99, Antilles (S1) in. below surface 165 Greater White Marl midden 3, 40-50 Allsworth- Jamaica Jamaica 4 — unknown Y-1119 617 95 — Antilles (S1) in. below surface Jones 2008:164 Allsworth- Greater White Marl midden 3, 50-60 Jamaica Jamaica 4 — unknown Y-1117 1016 95 — Jones 2008:99, Antilles (S1) in. below surface 165 299 Allsworth- Greater White Marl Trench A, 6ʻM, Jamaica Jamaica 4 — unknown Y-1753 650 60 — Jones 2008:99, Antilles (S1) level II 165 Allsworth- Greater White Marl Trench A, 6ʻM, Jamaica Jamaica 4 — unknown Y-1754 720 60 — Jones 2008:99, Antilles (S1) level VII 165 Allsworth- Greater White Marl Trench A, 6ʻN, Jamaica Jamaica 4 — unknown Y-1750 460 120 — Jones 2008:99, Antilles (S1) level I 165 Allsworth- Greater White Marl Trench A, 6ʻN, Jamaica Jamaica 4 — unknown Y-1751 760 60 — Jones 2008:99, Antilles (S1) level V 165 Allsworth- Greater White Marl Trench B, 13F, Jamaica Jamaica 4 — unknown Y-1785 650 60 — Jones 2008:99, Antilles (S1) level IV 165 Allsworth- Greater White Marl Trench B, 13F, Jamaica Jamaica 4 — unknown Y-1784 780 60 — Jones 2008:99, Antilles (S1) level IX 165 Allsworth- Greater White Marl human Trench B, 12G, Jamaica Jamaica 3 human bone Y-1786 800 80 — Jones 2008: 99, Antilles (S1) bone/teeth Burial 3 165 Allsworth- Greater White Marl human Trench B, 13F, Jamaica Jamaica 3 human bone Y-1755 600 60 — Jones 2008: Antilles (S1) bone/teeth Burial 2 165 charcoal/ Jost Van British Virgin Lesser Test Unit G, 135 Beta- Bates 2 Cape Wright charcoal charred 1350 40 -25.1 Dyke Islands Antilles cm (2 intercepts) 144547 2001:222-224 material charcoal/ Jost Van British Virgin Lesser Test Unit G, 35 Beta- Bates 2 Cape Wright charcoal charred 1030 40 -0.26 Dyke Islands Antilles cm 144548 2001:222-224 material Antigua and Greater Nicholson Long Island 4 Jolly Beach — unknown 15 cmbs I-7687 — — — Barbuda Antilles 1975:265 300 Antigua and Greater GrA- Knippenberg Long Island 4 Jumby Bay — unknown — 860 60 — Barbuda Antilles 18850 2001 Antigua and Greater GrA- Knippenberg Long Island 4 Sugar Mill — unknown — 600 60 — Barbuda Antilles 18849 2001 Antigua and Greater cave, OxA- Ostapkowicz Long Island 4 Cordia sp. wood cave 623 27 -23.2 Barbuda Antilles Mortimers 19173 2015 Antigua and Greater cave, Oxa- Ostapkowicz Long Island 4 Cordia sp. wood cave 524 22 -22.4 Barbuda Antilles Mortimers 18912 2015 Antigua and Greater cave, OxA- Ostapkowicz Long Island 4 Guaiacum sp. wood cave 454 24 -24.1 Barbuda Antilles Mortimers 18793 2015 Antigua and Greater cave, OxA- Ostapkowicz Long Island 4 Cordia sp. wood cave 424 24 -26.5 Barbuda Antilles Mortimers 18448 2015 northern Las Cuevas, charcoal/ exterior niche 26 Antczak et al. Los Roques Venezuela South 2 La Isla charcoal charred I-16293 1130 120 — cmbs 1991 America Blanquilla material northern Domusky multicomponent Antczak et al. Los Roques Venezuela South 4 — unknown I-15089 620 80 — Norte site 1991:495-496 America northern Dos multicomponent Antczak et al. Los Roques Venezuela South 4 — unknown I-15087 470 80 — Mosquises site 1991:495-496 America northern Dos multicomponent Antczak et al. Los Roques Venezuela South 4 — unknown I-15088 520 80 — Mosquises site 1991:495-496 America charcoal/ Marie- Lesser carbonized Siegel et al. Guadeloupe 4 Vieux Fort charred — AA-84884 4380 60 -26.7 Galante Antilles wood 2015 material Marie- Lesser organic Siegel et al. Guadeloupe 4 Vieux Fort sediment — AA-84883 — — -31.2 Galante Antilles sediment 2015 Lesser Baie de Fort- preserved plant Beta- Siegel et al. Martinique Martinique 4 KC08-1, 575 cm 4220 30 -25.4 Antilles de-France plant matter material 341060 2015 Lesser Baie de Fort- organic KC08-1, 229-230 Siegel et al. Martinique Martinique 4 sediment AA-92562 1710 30 -27.7 Antilles de-France sediment cm 2015 301 Lesser Baie de Fort- organic KC08-1, 674-676 Siegel et al. Martinique Martinique 4 sediment AA-82676 5000 50 -27.3 Antilles de-France sediment cm 2015 Lesser marine Martinique Martinique 2 Diamant Strombus sp. level 1 ARC-999 1815 50 — Vidal 1999:11 Antilles shell Lesser marine ARC- Martinique Martinique 2 Diamant Strombus sp. level 13 1780 50 — Vidal 1999:11 Antilles shell 1017 Lesser marine ARC- Martinique Martinique 2 Diamant Strombus sp. level 18 1880 50 — Vidal 1999:11 Antilles shell 1018 Lesser marine ARC- Martinique Martinique 2 Diamant Strombus sp. level 2 1260 50 — Vidal 1999:11 Antilles shell 1000 Lesser marine ARC- Martinique Martinique 2 Diamant Strombus sp. level 7 1845 50 — Vidal 1999:11 Antilles shell 1016 Bullen and charcoal/ Bullen Lesser Diamant Martinique Martinique 3 charcoal charred — Y-1762 1475 60 — 1972:153; Antilles (lower) material Haviser 1997:61 Rouse Lesser 1989:397; Martinique Martinique 4 Fond Brûlé — unknown — Ly-2196 1630 210 — Antilles Haviser 1997:61 Rouse Lesser 1989:397; Martinique Martinique 4 Fond Brûlé — unknown — Ly-2197 2100 210 — Antilles Haviser 1997:61 Rouse Lesser 1989:397; Martinique Martinique 4 Fond Brûlé — unknown — Ny- 2215 115 — Antilles Haviser 1997:61 Rouse Lesser 1989:397; Martinique Martinique 4 Fond Brûlé — unknown — Ny- 2480 140 — Antilles Haviser 1997:61 Rouse Lesser 1989:397; Martinique Martinique 4 Fond Brûlé — unknown — Ny-478 1650 260 — Antilles Haviser 1997:61 Lesser Martinique Martinique 4 Fond Brûlé — unknown — — 265 115 — Mattioni 1979 Antilles 302 Lesser Martinique Martinique 4 Fond Brûlé — unknown — — 530 140 — Mattioni 1979 Antilles charcoal/ Bullen and Lesser Grand Anse du Martinique Martinique 3 charcoal charred — Y-1337 1450 80 — Bullen Antilles Lorrain material 1972:153 Bullen and Bullen charcoal/ 1972:153; Lesser Martinique Martinique 3 La Salle charcoal charred — Y-1116 1770 80 — Rouse Antilles material 1989:397; Haviser 1997:61 Lesser organic PF08-1, 222-223 Siegel et al. Martinique Martinique 4 Pointe Figuier sediment AA-82677 2600 50 -29.1 Antilles sediment cm 2015 Lesser preserved Siegel et al. Martinique Martinique 4 Pointe Figuier wood PF08-1, 128 cm AA-92561 330 35 -27.8 Antilles wood 2015 Rouse Lesser 1989:397; Martinique Martinique 4 Vivé — unknown — S-85 1655 150 — Antilles Haviser 1997:61 Bullen and Bullen charcoal/ 1972:153, 156; Lesser Martinique Martinique 3 Vivé charcoal charred — RL-156 1730 100 — Rouse Antilles material 1989:397; Haviser 1997:61 Bullen and Bullen charcoal/ 1972:95; Lesser Martinique Martinique 3 Vivé charcoal charred — UGa-113 1530 75 — Rouse Antilles material 1989:397; Haviser 1997:61 Lesser Petitjean-Roget Martinique Martinique 4 — — unknown — — 294 150 — Antilles 1970 303 charcoal/ Middle Turks and Bahamian Beta- 3 Kendrick charcoal charred — 900 50 — Sinelli 2001 Caicos Caicos Archipelago 146873 material charcoal/ Middle Turks and Bahamian Beta- 3 MC-12 charcoal charred — 950 60 — Carlson 1999 Caicos Caicos Archipelago 70335 material charcoal/ Middle Turks and Bahamian 3 MC-12 charcoal charred — IGS-1098 680 70 — Carlson 1999 Caicos Caicos Archipelago material charcoal/ Middle Turks and Bahamian 3 MC-12 charcoal charred — IGS-896 800 70 — Carlson 1999 Caicos Caicos Archipelago material charcoal/ Middle Turks and Bahamian Beta- 3 MC-32 charcoal charred — 660 50 — Carlson 1999 Caicos Caicos Archipelago 67886 material charcoal/ Middle Turks and Bahamian Beta- 3 MC-36 charcoal charred — 740 80 — Carlson 1999 Caicos Caicos Archipelago 70608 material charcoal/ Middle Turks and Bahamian 3 MC-6 charcoal charred — IGS-2633 450 70 — Carlson 1999 Caicos Caicos Archipelago material Middle Turks and Bahamian 4 MC-16 (Cave) — unknown — IGS-2670 820 70 — Carlson 1999 Caicos Caicos Archipelago Samson and charcoal/ Greater Amyris OxA- Cooper Mona Island Puerto Rico 1 Cave 18 charred Cave 18 454 23 -28.2 Antilles elemifera 31209 personal material communication Samson and charcoal/ Greater Bursera OxA- Cooper Mona Island Puerto Rico 1 Cave 18 charred Cave 18 682 26 -26.9 Antilles simaruba 31536 personal material communication charcoal/ Greater Bursera OxA- Samon et al. Mona Island Puerto Rico 3 Cave 6 charred Cave art on wall — — — Antilles simaruba 31199 2017 material charcoal/ Greater Bursera OxA- Samon et al. Mona Island Puerto Rico 3 Cave 8 charred Cave art on wall — — — Antilles simaruba 31348 2017 material 304 charcoal/ Greater Cueva de los Davila Davila Mona Island Puerto Rico 2 charcoal charred 0-10 cmbs I-13671 3290 90 — Antilles Caracoles 2003 material Greater Cueva de los Strombus marine Davila Davila Mona Island Puerto Rico 2 10-20 cmbs I-13674 4330 100 — Antilles Caracoles gigas shell 2003 charcoal/ Greater Cueva de los Davila Davila Mona Island Puerto Rico 3 charcoal charred — I-13672 630 80 — Antilles Caracoles 2003 material charcoal/ Greater Cueva de los Davila Davila Mona Island Puerto Rico 3 charcoal charred — I-13673 610 80 — Antilles Caracoles 2003 material Rouse Lesser Beta- 1989:397; Montserrat Montserrat 4 Radio Antilles — unknown — 2210 70 — Antilles 18490 Haviser 1997:61 Rouse Lesser Beta- 1989:397; Montserrat Montserrat 4 Radio Antilles — unknown — 2390 60 — Antilles 18491 Haviser 1997:61 Rouse Lesser Beta- 1989:397; Montserrat Montserrat 4 Radio Antilles — unknown — 2120 60 — Antilles 18581 Haviser 1997:61 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Feature 5 burial 1860 100 — Antilles 83048 Watters material 1999:50-51 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Stripped Area 2770 60 — Antilles 83043 Watters material 1999:50-51 305 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Stripped Area 1270 130 — Antilles 83047 Watters material 1999:50-51 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Stripped Area 1730 100 — Antilles 83049 Watters material 1999:50-51 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Stripped Area 2140 110 — Antilles 83050 Watters material 1999:50-51 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Stripped Area 1540 120 — Antilles 83051 Watters material 1999:50-51 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Trench 1 1650 130 — Antilles 83044 Watters material 1999:50-51 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Trench 1 1950 90 — Antilles 83045 Watters material 1999:50-51 306 Petersen, charcoal/ Lesser Beta- Bartone, and Montserrat Montserrat 2 Trants Site charcoal charred Trench 1 2050 80 — Antilles 83046 Watters material 1999:50-51 Petersen, Lesser marine Beta- Bartone, and Montserrat Montserrat 3 Trants Site shell Trench 1 1180 60 — Antilles shell 83052 Watters 1999:50-51 Petersen, Lesser marine Beta- Bartone, and Montserrat Montserrat 3 Trants Site shell Trench 1 1280 80 — Antilles shell 83053 Watters 1999:50-51 Rouse Lesser Beta- 1989:397; Montserrat Montserrat 4 Trants Site — unknown — 2140 80 — Antilles 18489 Haviser 1997:61 Rouse Lesser Beta- 1989:397; Montserrat Montserrat 4 Trants Site — unknown — 1620 90 — Antilles 18582 Haviser 1997:61 Lesser Beta- Haviser Montserrat Montserrat 4 Trants Site — unknown — 1890 70 — Antilles 41678 1997:61 Lesser Beta- Haviser Montserrat Montserrat 4 Trants Site — unknown — 1750 80 — Antilles 41679 1997:61 Lesser Beta- Haviser Montserrat Montserrat 4 Trants Site — unknown — 1960 90 — Antilles 41680 1997:61 Lesser Beta- Haviser Montserrat Montserrat 4 Trants Site — unknown — 1740 90 — Antilles 41681 1997:61 Lesser Beta- Haviser Montserrat Montserrat 4 Trants Site — unknown — 2390 90 — Antilles 41682 1997:61 Lesser Beta- Haviser Montserrat Montserrat 4 Trants Site — unknown — 2480 80 — Antilles 44828 1997:61 307 charcoal/ John Cherry Lesser Feature 206, 10 Beta- Montserrat Montserrat 3 Upper Blakes charcoal charred 4170 30 -25.8 personal Antilles cmbs 451179 material communication charcoal/ John Cherry Lesser Valentine Beta- Montserrat Montserrat 3 charcoal charred Midden Pit 3 230 30 -26.5 personal Antilles Ghaut 326555 material communication charcoal/ John Cherry Lesser Valentine Beta- Montserrat Montserrat 2 charcoal charred Midden Pit 1 980 40 -23.4 personal Antilles Ghaut 282299 material communication charcoal/ John Cherry Lesser Valentine Beta- Montserrat Montserrat 2 charcoal charred Midden Pit 1 1070 40 -26.9 personal Antilles Ghaut 282300 material communication charcoal/ John Cherry Lesser Valentine Beta- Montserrat Montserrat 2 charcoal charred Midden Pit 1 980 40 -25.6 personal Antilles Ghaut 282301 material communication charcoal/ John Cherry Lesser Valentine Beta- Montserrat Montserrat 2 charcoal charred Midden Pit 1 1120 40 -27.9 personal Antilles Ghaut 282302 material communication "faunal John Cherry Lesser Valentine faunal Surface of Beta- Montserrat Montserrat 2 material" - 1010 40 -9.8 personal Antilles Ghaut material Midden Pit 1 277241 bone collagen communication "faunal John Cherry Lesser Valentine faunal Surface of Beta- Montserrat Montserrat 2 material" - 880 40 -20.1 personal Antilles Ghaut material Midden Pit 1 277242 bone collagen communication 308 charcoal/ John Cherry Lesser Valentine Beta- Montserrat Montserrat 3 charcoal charred Midden Pit 4 130 30 -22.8 personal Antilles Ghaut 350069 material communication St. Vincent Lesser marine Unit: 2, Layer: Pl. UGa- Mustique and the 3 Desal Plant Cittarium pica 1810 20 +1.7 this publication Antilles shell 8, cmbs: 70-80 12515 Grenadines St. Vincent Lesser marine Unit: 2, Layer: Pl. D-AMS Mustique and the 3 Desal Plant Cittarium pica 1784 27 +1.6 this publication Antilles shell 8, cmbs: 75 006289 Grenadines St. Vincent Lesser marine Unit: 2, Layer: Pl. UGa- Mustique and the 3 Desal Plant Cittarium pica 2120 20 +1.8 this publication Antilles shell 9, cmbs: 80-90 12516 Grenadines St. Vincent charcoal/ Lesser Unit: 2, Layer: Pl. D-AMS Mustique and the 3 Desal Plant charcoal charred 40 23 -22.5 this publication Antilles 6, cmbs: 55 006801 Grenadines material St. Vincent Lesser marine Unit: 2, Layer: Pl. D-AMS Mustique and the 3 Desal Plant Cittarium pica 2526 32 +7.2 this publication Antilles shell 4, cmbs: 35 006288 Grenadines St. Vincent Lesser Nerita marine Unit: 2, Layer: Pl. D-AMS Mustique and the 3 Desal Plant 3272 25 -3.5 this publication Antilles tessellata shell 8, cmbs: 75 006798 Grenadines St. Vincent Lesser marine Unit: 3, Layer: 4, Beta- Mustique and the 2 Lagoon Bay Cittarium pica 1540 50 +1.7 this publication Antilles shell cmbs: 90 302725 Grenadines St. Vincent Lesser marine Unit: 6, Layer: Pl. D-AMS Mustique and the 2 Lagoon Bay Cittarium pica 2186 33 -9.6 this publication Antilles shell 8, cmbs: 80 009264 Grenadines St. Vincent Eustrombus Lesser marine Unit 2, Layer 3, Beta- Fitzpatrick and Mustique and the 2 Lagoon Bay gigas 1370 50 +0.5 Antilles shell 70-80 cmbs 286849 Giovas 2011 Grenadines (juvenile) 309 Federation of Lesser Coconut Walk Donax marine D-AMS Nevis St. Kitts and 2 Nev-11 1541 33 -1.1 Jew et al. 2016 Antilles (JA-1) denticulatus shell 007668 Nevis Federation of Lesser Coconut Walk Donax marine D-AMS Nevis St. Kitts and 2 Nev-11 1464 24 +5.7 Jew et al. 2016 Antilles (JA-1) denticulatus shell 07667 Nevis Unit: 2273, Federation of Square: 25, Lesser Coconut Walk marine Beta- Giovas et al. Nevis St. Kitts and 2 Cittarium pica Planum: 3, 570 30 +0.3 Antilles (JA-1) shell 324951 2013 Nevis Feature: L001, 20-30 cmbs Unit: 2273, Federation of Eustrombus Square: 6, Lesser Coconut Walk marine Beta- Giovas et al. Nevis St. Kitts and 2 gigas Planum: 1, 1350 40 +1.8 Antilles (JA-1) shell 290340 2013 Nevis (juvenile) Feature: Top, 0- 10 cmbs Unit: 2273, Federation of Square: 8, Lesser Coconut Walk marine Beta- Giovas et al. Nevis St. Kitts and 2 Cittarium pica Planum: 4, 1420 40 +2.6 Antilles (JA-1) shell 290341 2013 Nevis Feature: L003, 30-40 cmbs Unit: 2273, Federation of Square: 9, Lesser Coconut Walk Cassis marine Beta- Giovas et al. Nevis St. Kitts and 2 Planum: 4, 720 30 +2.7 Antilles (JA-1) tuberosa shell 324952 2013 Nevis Feature: L003, 30-40 cmbs Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1690 50 — Antilles (GE-5) 106769 2006:196-197 Nevis material 310 Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1620 60 — Antilles (GE-5) 106770 2006:196-197 Nevis material Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1720 60 — Antilles (GE-5) 106771 2006:196-197 Nevis material Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1900 60 — Antilles (GE-5) 106772 2006:196-197 Nevis material Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1540 50 — Antilles (GE-5) 106773 2006:196-197 Nevis material Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1580 60 — Antilles (GE-5) 106774 2006:196-197 Nevis material Federation of charcoal/ Lesser Hichmans Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 1160 60 — Antilles (GE-5) 46944b 2006:196-197 Nevis material Federation of Lesser Hichmans marine Beta- Wilson Nevis St. Kitts and 3 shell — 2490 60 — Antilles (GE-5) shell 19328 1989:435 Nevis Federation of Hichmans Lesser marine Beta- Wilson 2006: Nevis St. Kitts and 3 Shell Heap shell — 3110 60 — Antilles shell 63256 196-197 Nevis (GE-6) Federation of charcoal/ Lesser Indian Castle Beta- Wilson Nevis St. Kitts and 3 charcoal charred — 670 60 — Antilles (GE-1) 19327 1989:436 Nevis material Federation of charcoal/ Lesser Sulphur Ghaut Unit 3S, 104-114 Beta- Wilson 2006: Nevis St. Kitts and 2 charcoal charred 1070 70 — Antilles (JO-2) cmbs 47807 56, 196-197 Nevis material Federation of charcoal/ Lesser Sulphur Ghaut Unit 9N, 20-30 Beta- Wilson 2006: Nevis St. Kitts and 2 charcoal charred 1060 50 — Antilles (JO-2) cmbs 46940 56, 196-197 Nevis material Federation of charcoal/ Lesser Sulphur Ghaut Unit 9N, 50-60 Beta- Wilson 2006: Nevis St. Kitts and 2 charcoal charred 940 60 — Antilles (JO-2) cmbs 46944a 56, 196-197 Nevis material Federation of charcoal/ Lesser Sulphur Ghaut Unit 9N, 85-95 Beta- Wilson 2006: Nevis St. Kitts and 2 charcoal charred 880 60 — Antilles (JO-2) cmbs 46942 56, 196-197 Nevis material 311 Federation of Lesser Sulphur Ghaut marine Unit 10N, 20 Beta- Wilson 2006: Nevis St. Kitts and 3 shell 920 60 — Antilles (JO-2) shell cmbs 46941 56, 196-197 Nevis Federation of Lesser Sulphur Ghaut Unit 3N, 73-83 Beta- Wilson 2006: Nevis St. Kitts and 3 sediment sediment 940 80 — Antilles (JO-2) cmbs 47806 56, 196-197 Nevis charcoal/ Turks and Bahamian Beta- Pine Cay 3 PC-1 charcoal charred — 690 50 — Carlson 1999 Caicos Archipelago 70799 material Providenciale Turks and Bahamian Blue Hills OxA- Ostapkowicz 4 Carapa sp. wood cave 498 24 -24.2 s Caicos Archipelago Settlement 21854 2015 Providenciale Turks and Bahamian Blue Hills OxA- Ostapkowicz 4 Carapa sp. wood cave 475 27 -22.9 s Caicos Archipelago Settlement 20843 2015 Providenciale Turks and Bahamian Blue Hills OxA- Ostapkowicz 4 Carapa sp. wood cave 464 26 -25.9 s Caicos Archipelago Settlement 21894 2015 charcoal/ Providenciale Turks and Bahamian 3 P-1 charcoal charred — IGS-2632 660 70 — Carlson 1999 s Caicos Archipelago material Providenciale Turks and Bahamian marine Beta- 3 P-4 shell — 960 50 — Carlson 1999 s Caicos Archipelago shell 70797 Providenciale Turks and Bahamian marine Beta- 3 P-5 shell — 1250 50 — Carlson 1999 s Caicos Archipelago shell 70798 Sinelli, charcoal/ Providenciale Turks and Bahamian Palmetto charred Beta- Personal 3 charred — 590 30 — s Caicos Archipelago Junction material 384424 Communicatio material n Sinelli, charcoal/ Providenciale Turks and Bahamian Palmetto charred Beta- Personal 3 charred — 660 30 — s Caicos Archipelago Junction material 384425 Communicatio material n Sinelli, charcoal/ Providenciale Turks and Bahamian Palmetto charred Beta- Personal 3 charred — 570 30 — s Caicos Archipelago Junction material 384426 Communicatio material n 312 Sinelli, charcoal/ Providenciale Turks and Bahamian Palmetto charred Beta- Personal 3 charred — 460 30 — s Caicos Archipelago Junction material 384427 Communicatio material n Sinelli, charcoal/ Providenciale Turks and Bahamian Palmetto charred Beta- Personal 3 charred — 600 30 — s Caicos Archipelago Junction material 384428 Communicatio material n Feature 3 Greater Nesotrochis faunal Beta- Carlson and Puerto Rico Puerto Rico 1 AR-39 (Norther area); 1340 40 -21.1 Antilles debooyi material 221018 Steadman 2009 EU 17, Level 3 Nesophontes Greater faunal OxA- Turvey et al. Puerto Rico Puerto Rico 1 Cag-3 edithae grave infill 990 24 -19.3 Antilles material 15141 2007:195 (mandible) Heteropsomys Greater faunal OxA- Turvey et al. Puerto Rico Puerto Rico 1 Cag-3 insulans grave infill 1219 26 -19.6 Antilles material 15142 2007:195 (mandible) Mound - B forest charcoal/ Greater soil/first Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charcoal charred GX-28807 3920 40 -27.5 Antilles habitation surface et al. 2015 material (>99 cmbs) charcoal/ Mound B - Greater Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charcoal charred habitation surface GX-28805 3700 30 -24.5 Antilles et al. 2015 material (39-63 cmbs) charcoal/ Mound B - Greater Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charcoal charred midden, ca. 39-63 GX-28809 3470 40 -28.5 Antilles et al. 2015 material cmbs charcoal/ Mound B - Greater Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charcoal charred midden, ca. 7-39 GX-28806 3570 40 -26.9 Antilles et al. 2015 material cmbs charcoal/ Mound B - Greater Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charcoal charred midden, ca. 7-39 GX-28808 3670 40 -28.8 Antilles et al. 2015 material cmbs charcoal/ Mound B - shell Greater Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charcoal charred layer (63-99 GX-28814 3740 100 -27.0 Antilles et al. 2015 material cmbs) 313 Mound C - charcoal/ Greater charred midden/shell Beta- Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charred 3680 40 -26.3 Antilles material layer (12-14 294434 et al. 2015 material cmbs) charcoal/ Unit 3 - shell Greater charred Beta- Rivera-Collazo Puerto Rico Puerto Rico 2 Angostura charred layer/anthrosol 2120 30 -23.7 Antilles material 294435 et al. 2015 material (74-80 cmbs) Mound B - forest Greater marine soil/first Rivera-Collazo Puerto Rico Puerto Rico 3 Angostura shell GX-28812 4120 80 — Antilles shell habitation surface et al. 2015 (>99 cmbs) Mound B - shell Greater marine Rivera-Collazo Puerto Rico Puerto Rico 3 Angostura shell layer (63-99 GX-28810 3980 80 — Antilles shell et al. 2015 cmbs) charcoal/ Offsite core 3, Greater charred Beta- Rivera-Collazo Puerto Rico Puerto Rico 4 Angostura charred Unit 8b, 440 660 30 — Antilles material 297766 et al. 2015 material cmbs Greater plant Offsite Core 2, Beta- Rivera-Collazo Puerto Rico Puerto Rico 4 Angostura plant material 3740 30 -28.1 Antilles material 538 cmbs 294440 et al. 2015 Greater plant Offsite core 3, Beta- Rivera-Collazo Puerto Rico Puerto Rico 4 Angostura plant material 840 30 -28.1 Antilles material 353 cmbs 294438 et al. 2015 Greater organic Offsite core 4, Beta- Rivera-Collazo Puerto Rico Puerto Rico 4 Angostura sediment 1890 30 -17.2 Antilles sediment 178 cmbs 294439 et al. 2015 Greater Offsite core 1, Beta- Rivera-Collazo Puerto Rico Puerto Rico 4 Angostura wood wood 1430 30 -26.8 Antilles Unit 7a, 280 cmbs 294437 et al. 2015 Mound B - shell Greater marine Rivera-Collazo Puerto Rico Puerto Rico 3 Angostura shell layer (63-99 GX-28813 4010 70 — Antilles shell et al. 2015 cmbs) 314 charcoal/ Greater Mound B - Beta- Rivera-Collazo Puerto Rico Puerto Rico 3 Angostura charcoal charred 5960 250 — Antilles unknown 29778 et al. 2015 material Mound B -shell Greater marine Rivera-Collazo Puerto Rico Puerto Rico 3 Angostura shell layer, ca. 63-99 GX-28811 3830 90 — Antilles shell et al. 2015 cmbs charcoal/ Feature Greater Beta- Carlson and Puerto Rico Puerto Rico 2 AR-38 charcoal charred 131(post); 490 60 -24.6 Antilles 223568 Steadman 2009 material Structure 3 Greater human Burial 1; Beta- Carlson and Puerto Rico Puerto Rico 2 AR-38 human bone 790 40 -19.6 Antilles bone/teeth Structure 3 220581 Steadman 2009 Greater human Burial 4; Beta- Carlson and Puerto Rico Puerto Rico 2 AR-38 human bone 1010 40 -19.4 Antilles bone/teeth Structure 6 220582 Steadman 2009 charcoal/ Greater Feature 200; EU Beta- Carlson and Puerto Rico Puerto Rico 2 AR-39 charcoal charred 1460 60 -25.4 Antilles 18, Level 1 223566 Steadman 2009 material charcoal/ Greater Feature 200; EU Beta- Carlson and Puerto Rico Puerto Rico 2 AR-39 charcoal charred 1220 40 -25.1 Antilles 18, Level 3 225064 Steadman 2009 material charcoal/ Feature 3 Greater Beta- Carlson and Puerto Rico Puerto Rico 2 AR-39 charcoal charred (Northern area); 1370 40 -25.1 Antilles 223565 Steadman 2009 material EU 16, Level1 charcoal/ Feature 3 Greater Beta- Carlson and Puerto Rico Puerto Rico 2 AR-39 charcoal charred (Southern area); 1430 70 -27.0 Antilles 223977 Steadman 2009 material EU 4, Level 1 Feature 3 Greater human Beta- Carlson and Puerto Rico Puerto Rico 2 AR-39 human bone (Southern area); 1630 40 -19.0 Antilles bone/teeth 222869 Steadman 2009 EU 12, Level 4 315 Unit S41/W4, Oliver personal Greater Feat 5 GrN- Puerto Rico Puerto Rico 4 Batey Yagüez — unknown 790 30 -27.67 communication Antilles (postmold), 62-75 30061 2018 cmbs charcoal/ Oliver and Greater Bateyes de Site U-1 Unit B1 GrN- Puerto Rico Puerto Rico 2 charcoal charred 710 40 -27.60 Rivera Fontan Antilles Vivi Lev 6, 47-49cm 30058 material 2007 charcoal/ Oliver and Greater Bateyes de Site U-1, Feat 4-2 GrN- Puerto Rico Puerto Rico 2 charcoal charred 610 50 -26.25 Rivera Fontan Antilles Vivi 116 cm 30057 material 2007 charcoal/ Oliver and Greater Bateyes de Site U-1, Feat 4- GrN- Puerto Rico Puerto Rico 2 charcoal charred 600 50 -26.42 Rivera Fontan Antilles Vivi 2, 102-116 cm 30056 material 2007 charcoal/ Oliver and Greater Bateyes de Site U-1, Unit 4 GrN- Puerto Rico Puerto Rico 2 charcoal charred 510 30 -25.97 Rivera Fontan Antilles Vivi Feat 4-2, 74 cm 30055 material 2007 charcoal/ Site U-1, Unit 4: Oliver and Greater Bateyes de GrN- Puerto Rico Puerto Rico 2 charcoal charred 43-51cm Stratum 630 40 -24.53 Rivera Fontan Antilles Vivi 30053 material II 2007 charcoal/ Site U-1, Unit 4: Oliver and Greater Bateyes de GrN- Puerto Rico Puerto Rico 2 charcoal charred 53-71cm Stratum 410 40 -25.43 Rivera Fontan Antilles Vivi 30054 material III 2007 Figueredo 1976:250; Greater Puerto Rico Puerto Rico 4 Caño Hondo — unknown Stratum I UGa-995 3010 70 — Rouse and Antilles Alegria 1990:25 Figueredo 1976:250; Greater Puerto Rico Puerto Rico 4 Caño Hondo — unknown Stratum II UGa-997 2705 70 — Rouse and Antilles Alegria 1990:25 316 Figueredo 1976:250; Greater Puerto Rico Puerto Rico 4 Caño Hondo — unknown Stratum III UGa-996 2855 65 — Rouse and Antilles Alegria 1990:25 Veloz Maggiolo Greater 1975:91; Puerto Rico Puerto Rico 4 Cayo Cofresí — unknown 0.7 I-7424 2275 85 -24.7 Antilles Rouse and Alegria 1990:25 Veloz Maggiolo Greater 1975:91; Puerto Rico Puerto Rico 4 Cayo Cofresí — unknown 0.7 I-7425 2245 85 -24.4 Antilles Rouse and Alegria 1990:25 charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 10, level 2 1270 30 -24.2 Antilles 386615 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 16, level 3 1230 30 -23.8 Antilles 386073 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 16, level 4 1230 30 -25.7 Antilles 386074 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 1, level 5 1190 40 -25.4 Antilles 283565 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 15, level 3 720 30 -25.6 Antilles 386072 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 7, level 3 1120 30 -25.7 Antilles 386698 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 14, level 3 1260 30 -25.1 Antilles 386071 2017 material charcoal/ Greater Beta- Carlson et al. Puerto Rico Puerto Rico 2 CE-34 charcoal charred Unit 7, level 4 1260 30 -23.3 Antilles 386068 2017 material 317 Rouse and charcoal/ Alegria Greater Church floor Puerto Rico Puerto Rico 2 Convento charcoal charred I-11297 1995 80 — 1990:55-56; Antilles (1.45) material Haviser 1997:63 Rouse and charcoal/ Alegria Greater Church floor Puerto Rico Puerto Rico 2 Convento charcoal charred I-11296 2100 80 — 1990:55-56; Antilles (1.50) material Haviser 1997:63 Rouse and charcoal/ Alegria Greater Puerto Rico Puerto Rico 2 Convento charcoal charred Interior patio I-11266 1865 80 — 1990:55-56; Antilles material Haviser 1997:63 Greater Cueva del marine UGM- Rodríguez- Puerto Rico Puerto Rico 3 marine shell CA-1 4780 30 0 Antilles Abono shell 30015 Ramos 2017 Greater Cueva del organic UGM- Rodríguez- Puerto Rico Puerto Rico 3 black pigment FP-8 280 30 -31.9 Antilles Abono material 30025 Ramos 2017 Greater Cueva del organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-7 320 30 -29.6 Antilles Abono material 30024 Ramos 2017 Greater Cueva del organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-10 410 40 -26.8 Antilles Gemelos material 30027 Ramos 2017 Greater Cueva del organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-12 870 40 -30.1 Antilles Gemelos material 30028 Ramos 2017 Greater Cueva del organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-9 1230 65 -25.3 Antilles Gemelos material 30026 Ramos 2017 Greater Cueva de los organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-14 610 40 -28.5 Antilles Lagartos material 30029 Ramos 2017 318 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-24 630 20 -27.7 Antilles material 30039 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-27 3140 40 -27.1 Antilles material 30042 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-28 630 50 -28.7 Antilles material 30043 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-30 730 35 -28.7 Antilles material 30045 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-33 310 35 -29.8 Antilles material 30048 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-34 400 35 -29.4 Antilles material 30049 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Lucero black pigment FP-35 380 30 -28.1 Antilles material 30050 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 3 Cueva Lucero black pigment FP-25 220 30 -26.6 Antilles material 30040 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 3 Cueva Lucero black pigment FP-26 110 30 -29.8 Antilles material 30041 Ramos 2017 Greater organic UGM- moder Rodríguez- Puerto Rico Puerto Rico 4 Cueva Lucero black pigment FP-29 — -32.4 Antilles material 30044 n Ramos 2017 Greater organic UGM- moder Rodríguez- Puerto Rico Puerto Rico 4 Cueva Lucero black pigment FP-31 — -29.8 Antilles material 30046 n Ramos 2017 Greater organic UGM- moder Rodríguez- Puerto Rico Puerto Rico 4 Cueva Lucero black pigment FP-32 — -31.6 Antilles material 30047 n Ramos 2017 Oliver and Greater Cueva María Beta- Puerto Rico Puerto Rico 4 — unknown Pit A, 60-89 cm 2220 70 — Rivera Collazo Antilles de la Cruz 41051 2015 319 Oliver and Greater Cueva María Sapotaceae plant Unit 102: 95-113 Beta- Puerto Rico Puerto Rico 1 1910 30 -22.7 Rivera Collazo Antilles de la Cruz seed material cm BD 347456 2015 Greater marine UGM- Rodríguez- Puerto Rico Puerto Rico 3 Cueva Matos marine shell CM-1 3200 30 -7.1 Antilles shell 30016 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Matos black pigment FP-1 410 25 -31.0 Antilles material 30018 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Matos black pigment FP-2 640 45 -28.3 Antilles material 30019 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Matos black pigment FP-3 330 30 -31.8 Antilles material 30020 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Matos black pigment FP-4 580 40 -28.2 Antilles material 30021 Ramos 2017 charcoal/ flowstone ledge Greater Beta- Frank Puerto Rico Puerto Rico 2 Cueva Negra charcoal charred (east side of 380 60 -29.6 Antilles 86999 1998:101 material chamber) charcoal/ Greater Cueva del OxA- Turvey et al. Puerto Rico Puerto Rico 4 charcoal charred 0-2 cm interval 3512 28 -27.3 Antilles Perro 15129 2007:195 material charcoal/ Greater Cueva del Combined, 0-4 OxA- Turvey et al. Puerto Rico Puerto Rico 4 charcoal charred 2407 28 -26.8 Antilles Perro cm 15132 2007:195 material Greater organic UGM- moder Rodríguez- Puerto Rico Puerto Rico 3 Cueva Soto black pigment FP-15 — -34.7 Antilles material 30030 n Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Soto black pigment FP-16 2910 50 -26.1 Antilles material 30031 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Soto black pigment FP-5 480 30 -34.5 Antilles material 30022 Ramos 2017 Greater organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 Cueva Soto black pigment FP-6 1030 20 -31.3 Antilles material 30023 Ramos 2017 320 Greater Cueva marine UGM- Rodríguez- Puerto Rico Puerto Rico 3 marine shell CT-1 4160 30 -4.8 Antilles Tembladera shell 30017 Ramos 2017 charcoal/ Greater Cueva Unit A, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 3 charcoal charred 100 20 -28.3 Antilles Ventana B-2 5109 Ramos 2014 material charcoal/ Greater Cueva Unit A, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 3 charcoal charred 140 20 -26.7 Antilles Ventana C-3 17563 Ramos 2014 material charcoal/ Greater Cueva Unit C, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 charcoal charred 3810 25 -12 Antilles Ventana C-4 17565 Ramos 2014 material charcoal/ Greater Cueva Unit C, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 charcoal charred 3740 30 -13.4 Antilles Ventana C-6 5106 Ramos 2014 material Greater Cueva marine Unit A, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 Nerita sp. 3170 30 -8.1 Antilles Ventana shell B-2 5105 Ramos 2014 Greater Cueva marine Unit A, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 Nerita sp. 3640 25 -8.5 Antilles Ventana shell B-3 17561 Ramos 2014 Greater Cueva marine Unit A, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 Nerita sp. 3630 25 -7.0 Antilles Ventana shell C-1 17562 Ramos 2014 Greater Cueva marine Unit B, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 Nerita sp. 3740 30 -8.3 Antilles Ventana shell C-1 5108 Ramos 2014 Greater Cueva marine Unit B, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 Nerita sp. 3520 30 -7.3 Antilles Ventana shell C-3 5107 Ramos 2014 Greater Cueva marine Unit C, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 Nerita sp. 3120 20 -7.1 Antilles Ventana shell C-1 17564 Ramos 2014 Greater Cueva Phaecoides marine Unit C, Stratum UGM- Rodríguez- Puerto Rico Puerto Rico 2 4250 25 -4.1 Antilles Ventana sp. shell D-2 17566 Ramos 2014 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 3 black pigment FP-17 300 20 -26.4 Antilles Ventana Int. material 30032 Ramos 2017 321 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-18 2390 35 -29.5 Antilles Ventana Int. material 30033 Ramos 2017 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-19 1050 30 -29.1 Antilles Ventana Int. material 30034 Ramos 2017 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-20 1440 30 -26.6 Antilles Ventana Int. material 30035 Ramos 2017 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-21 1050 80 -25.5 Antilles Ventana Int. material 30036 Ramos 2017 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 2 black pigment FP-22 1280 30 -27.5 Antilles Ventana Int. material 30037 Ramos 2017 Greater Cueva organic UGM- Rodríguez- Puerto Rico Puerto Rico 3 black pigment FP-23 190 30 -28.1 Antilles Ventana Int. material 30098 Ramos 2017 charcoal/ Oliver and Greater Finca de Dona Unit N999-990, GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 600 40 -27.20 Narganes Antilles Rosa (Utu-44) 99.03 masl 24760 material Storde 2003 charcoal/ Oliver and Greater Finca de Dona Unit N999-W988, GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 680 50 -26.61 Narganes Antilles Rosa (Utu-44) 98.5 masl 24758 material Storde 2003 wood charcoal charcoal/ Oliver and Greater Finca de Dona Unit N999-W988, GrN- Puerto Rico Puerto Rico 2 Sapotacea cf. charred 760 70 -26.7 Narganes Antilles Rosa (Utu-44) 98.63 masl 24757 Manikara sp. material Storde 2003 charcoal/ Oliver and Greater Finca de Dona Unit N999-W990, Puerto Rico Puerto Rico 2 wood charcoal charred GrN24762 880 40 -29.11 Narganes Antilles Rosa (Utu-44) 98.71 masl material Storde 2003 charcoal/ Oliver and Greater Finca de Dona Unit N999-W990, GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 860 40 -26.55 Narganes Antilles Rosa (Utu-44) 98.71 masl 24763 material Storde 2003 322 wood charcoal charcoal/ Oliver and Greater Finca de Dona Unit N999-W991, GrN- Puerto Rico Puerto Rico 2 (Sterculiaceae charred 900 60 -25.58 Narganes Antilles Rosa (Utu-44) 98.97 masl 24761 ) material Storde 2003 charcoal/ Oliver and Greater Finca de Dona Moraceae cf. Unit N999-W991, GrN- Puerto Rico Puerto Rico 2 charred 970 30 -26.03 Narganes Antilles Rosa (Utu-44) Cercopia sp. 99.08 masl 24759 material Storde 2003 Rouse and charcoal/ Alegria Greater Hacienda Section D (0.50- Puerto Rico Puerto Rico 2 charcoal charred Y-1232 1580 80 — 1990:55-56; Antilles Grande 0.75) material Haviser 1997:63 Rouse 1963; Bullen and Bullen charcoal/ 1972:152; Greater Hacienda Section D (1.25- Puerto Rico Puerto Rico 2 charcoal charred Y-1233 1830 80 — Rouse and Antilles Grande 1.50) material Alegria 1990:55-56; Haviser 1997:63 charcoal/ Rouse and Greater Hacienda W127, S55 (30- Puerto Rico Puerto Rico 2 charred seeds charred Beta-9970 2060 70 — Alegria Antilles Grande 40) material 1990:55; 57 Rouse and charcoal/ Alegria Greater Hacienda W128, S55 (40- Puerto Rico Puerto Rico 2 charred seeds charred Beta-9972 1840 50 — 1990:55; 57 Antilles Grande 50) material Haviser 1997:63 charcoal/ Rouse and Greater Hacienda W129, S55 (40- Puerto Rico Puerto Rico 2 charred seeds charred Beta-9971 1320 70 — Alegria Antilles Grande 50) material 1990:55, 57 323 Narganes Greater Hacienda marine deposit 1, Unit S- Puerto Rico Puerto Rico 3 shell I-10554 515 75 — Storde Antilles Luisa Josefa shell 1 2005:280-281 Narganes Greater Hacienda marine deposit 1, Unit S- Puerto Rico Puerto Rico 3 shell I-10555 785 80 — Storde Antilles Luisa Josefa shell 1 2005:280-281 Narganes Greater Hacienda marine deposit 1, Unit S- Puerto Rico Puerto Rico 3 shell I-10556 670 80 — Storde Antilles Luisa Josefa shell 1 2005:280-281 charcoal/ Oliver personal Greater Juan Miguel Unit N52/W50, GrA- Puerto Rico Puerto Rico 3 charcoal charred 65 45 -27.82 communication Antilles Cave Feature 4 18767 material 2018 charcoal/ Oliver and Greater Juan Miguel Unit N52-W50: GrA- Puerto Rico Puerto Rico 3 wood charcoal charred 65 45 — Narganes Antilles Cave F4, 31 cmbs 187657 material Storde 2003 charcoal/ Oliver and Greater Juan Miguel Unit N51-W50: GrN- Puerto Rico Puerto Rico 2 charcoal charred 790 50 — Narganes Antilles Cave F4, 57cmbs 16414 material Storde 2003 charcoal/ Oliver and Greater Juan Miguel Unit N51-W55: GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 1140 40 -27.83 Narganes Antilles Cave F7, 29.5cmbs 24769 material Storde 2003 charcoal/ Oliver and Greater Juan Miguel Unit N51-W55: GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 990 40 -26.45 Narganes Antilles Cave S11, 12 cmbs 24768 material Storde 2003 Unit N52-W52: charcoal/ Oliver and Greater Juan Miguel F11, 44cmbs, GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 420 30 -27.07 Narganes Antilles Cave base of conical 24770 material Storde 2003 feature charcoal/ Oliver and Greater Juan Miguel Unit N52-W54: GrN- Puerto Rico Puerto Rico 2 wood charcoal charred 1180 40 -26.83 Narganes Antilles Cave F7, 22cmbs 24767 material Storde 2003 324 Oliver and Greater Juan Miguel Montezuma faunal Unit N51-W54: GrN- Puerto Rico Puerto Rico 2 1060 40 -26.90 Narganes Antilles Cave sp. material F6, 17cmbs 24764 Storde 2003 Oliver and Greater Juan Miguel Rutaceae Unit N51-W54: GrN- Puerto Rico Puerto Rico 2 wood 890 30 -27.34 Narganes Antilles Cave (Amyris?) F6, 17cmbs 24766 Storde 2003 Oliver and Greater Juan Miguel Unit N51-W54; GrN- Puerto Rico Puerto Rico 2 Psidium sp. wood 680 40 -27.06 Narganes Antilles Cave S1b, 10cmbs 24765 Storde 2003 Oliver personal Greater Juan Miguel Feature 4, 57 GrN- Puerto Rico Puerto Rico 4 — unknown 790 50 -24.29 communication Antilles Cave cmbs 26414 2018 charcoal/ Test Unit 1, Lev. Oliver personal Greater Los Muertos GrN- Puerto Rico Puerto Rico 2 charcoal charred 4, stratum 3a - 1200 40 -27.93 communication Antilles Cave 30059 material base 2018 charcoal/ Test Unit 1, Lev. Oliver personal Greater Los Muertos GrN- Puerto Rico Puerto Rico 3 charcoal charred 3, stratum 3a - 930 40 -27.67 communication Antilles Cave 30060 material middle 2018 charcoal/ Greater Burial 22, Beta- Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 1580 120 — Antilles Cemetery 17637 1996:325 material House, charcoal/ Siegel Greater N342W12, F101, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1070 70 — 1989:218, Antilles 30-40 cmbs (ditch 17632 material 1996:325 feature) House, N36W10, charcoal/ Siegel Greater F95, 50-60 cmbs Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1260 60 — 1989:221, Antilles (earthoven 17638 material 1996:325 feature) charcoal/ Siegel Greater House, N36W10, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1150 70 — 1989:218, Antilles F95, 60-70 cmbs 17639 material 1996:325 charcoal/ Siegel Greater House, N36W10, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1300 70 — 1989:221, Antilles F95, 70-80 cmbs 17640 material 1996:325 325 charcoal/ Siegel Greater House, N36W10, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1440 70 — 1989:221, Antilles F95, 80-90 cmbs 17641 material 1996:325 charcoal/ Siegel Greater House, N36W12, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1040 50 — 1989:218, Antilles 20-30 cmbs 15007 material 1996:325 charcoal/ House, N40W10, Siegel Greater Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 30-40 (Below 1530 90 — 1989:221, Antilles 17631 material Burial 18) 1996:325 charcoal/ Siegel Greater House, N40W10, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1310 60 — 1989:221, Antilles F105, 60-70 cmbs 17633 material 1996:325 charcoal/ Siegel Greater House, N43W8, Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1160 70 — 1989:218, Antilles F117, 40-50 cmbs 17636 material 1996:325 charcoal/ House, N4W38, Siegel Greater Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred F117, 30-40 cmbs 1360 70 — 1989:221, Antilles 17635 material (hearth feature) 1996:325 charcoal/ HouseN40W10, Siegel Greater Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred F105, 80-90 cmbs 1140 60 — 1989:218, Antilles 17634 material (hearth feature) 1996:325 charcoal/ Greater charred Lm-2, 107-109 Beta- Siegel et al. Puerto Rico Puerto Rico 2 Maisabel charred 1240 40 — Antilles material cm 127523 2005 material Siegel 1989:221, 1996:325; charcoal/ Mounded Midden Greater Beta- Rouse and Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N100W13 100- 1960 90 — Antilles 14381 Alegria material 110 cmbs 1990:55; Haviser 1997:63 charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N100W13, I-14744 2270 80 — Antilles 1996:325 material 150-160 326 Siegel 1989:221, 1996:325; charcoal/ Mounded Midden Greater Beta- Rouse and Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N102, W14 1660 100 — Antilles 14992 Alegria material (50-60) 1990:55; Haviser 1997:63 Siegel 1989:221, 1996:325; charcoal/ Mounded Midden Greater Beta- Rouse and Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N102W14, 60- 1520 50 — Antilles 14994 Alegria material 70 cmbs 1990:55; Haviser 1997:63 charcoal/ Mounded Midden Siegel Greater Beta- Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N106W11, 0- 1810 60 — 1989:221, Antilles 14993 material 20 cmbs 1996:325 Siegel 1989:221, 1996:325; charcoal/ Mounded Midden Greater Beta- Rouse and Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N90W13 40-50 1810 70 — Antilles 14997 Alegria material cmbs 1990:55; Haviser 1997:63 charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N90W13, 150- I-14745 3340 90 — Antilles 1996:325 material 160 cmbs Siegel 1989:221, 1996:325; charcoal/ Mounded Midden Greater Beta- Rouse and Puerto Rico Puerto Rico 2 Maisabel carbon charred 1, N98W13 140- 2060 60 — Antilles 14380 Alegria material 150 cmbs 1990:55; Haviser 1997:63 327 charcoal/ Mounded Midden Greater Beta- Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W7, 20-30 340 50 — Antilles 15001 1996:325 material cmbs charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W7, Area A, I-14746 1180 80 — Antilles 1996:325 material 60-70 cmbs charcoal/ Mounded Midden Greater Beta- Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W7, Area A, 1370 60 — Antilles 15003 1996:325 material 70-80 cmbs charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W7, Area A, I-14747 1080 80 — Antilles 1996:325 material 70-80 cmbs charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W7, F38, I-14748 1240 80 — Antilles 1996:325 material 74-79 cmbs charcoal/ Mounded Midden Greater Beta- Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W9, 90-100 1130 60 — Antilles 15006 1996:325 material cmbs charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, N2W9, 90-100 I-14749 1160 80 — Antilles 1996:325 material cmbs charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, S36W18, 30-40 AA-4115 1295 45 — Antilles 1996:325 material cmbs charcoal/ Mounded Midden Greater Siegel Puerto Rico Puerto Rico 2 Maisabel carbon charred 2, S38W18, Area AA-4114 1315 45 — Antilles 1996:325 material A, 30-40 cmbs Burial 1, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-6805 1525 55 -18.3 Antilles bone/teeth N52E100, 50-70 1996:324-325 cmbs Burial 10, Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Cemetery, AA-4100 1515 50 -21.5 Antilles bone/teeth 1996:324-325 N84E72, 26-43 Burial 14, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-6809 1600 55 -13.0 Antilles bone/teeth N90E42, 100-122 1996:324-325 cmbs 328 Burial 16, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-4103 1335 45 -17.8 Antilles bone/teeth N90E42, 60-73 1996:324-325 cmbs charcoal/ Mounded Midden Greater Beta- Siegel Puerto Rico Puerto Rico 3 Maisabel carbon charred 2, N2W25, F28, 240 70 — Antilles 14387 1996:325 material 60-70 cmbs charcoal/ Mounded Midden Greater Beta- Siegel Puerto Rico Puerto Rico 3 Maisabel carbon charred 2, N2W27, 30-40 250 80 — Antilles 14389 1996:325 material cmbs Burial 2, Greater human Cemetery, Beta- Siegel Puerto Rico Puerto Rico 3 Maisabel human bone 1325 100 — Antilles bone/teeth N52E100, 76-93 15886 1996:324-325 cmbs Burial 17, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-6810 1295 60 -16.4 Antilles bone/teeth N84E72, 50-70 1996:324-325 cmbs Burial 18, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N40W10, AA-4104 1195 45 -21.9 Antilles bone/teeth 1996:325 20-34 cmbs Burial 20, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-4106 1045 45 -21.0 Antilles bone/teeth N84E72, 41-54 1996:324-325 cmbs Burial 21, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-4107 1360 50 -20.8 Antilles bone/teeth N84E72, 47-58 1996:324-325 cmbs 329 Burial 22, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-6811 1180 85 — Antilles bone/teeth N84E72, 53-62 1996:324-325 cmbs Burial 23, House Greater human Area, N42E20, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-4108 1025 55 -24.1 Antilles bone/teeth Ext. 1, 46-63 1996:325 cmbs Burial 25, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N42W21, AA-4109 1335 45 -19.2 Antilles bone/teeth 1996:325 26-36 cmbs Burial 27, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N35W21, AA-4110 1405 50 -21.9 Antilles bone/teeth 1996:325 23-34 Burial 29, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N31W23, AA-4111 1110 50 -21.3 Antilles bone/teeth 1996:325 22-30 cmbs Burial 3, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-4096 1140 45 -18.9 Antilles bone/teeth N32E32, 40-50 1996:324-325 cmbs Burial 30, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N4E50, 43- AA-4112 1040 45 -19.0 Antilles bone/teeth 1996:325 56 cmbs 330 Burial 31, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N44E0, 50- AA-4113 1065 50 -19.4 Antilles bone/teeth 1996:325 55 Burial 4, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-6806 1145 55 -19.5 Antilles bone/teeth N84E72, 28-48 1996:324-325 cmbs Burial 7, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 2 Maisabel collagen AA-6807 1188 55 -18.6 Antilles bone/teeth N84E72, 50-70 1996:324-325 cmbs Burial 8, House Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Area, N38W14, AA-4099 1045 45 -18.8 Antilles bone/teeth 1996:325 24-35 cmbs Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen Cemetery AA-4097 1330 45 -18.1 Antilles bone/teeth 1996:325 Greater human Siegel Puerto Rico Puerto Rico 2 Maisabel collagen House Area AA-6812 1080 55 -18.9 Antilles bone/teeth 1996:325 Greater MAN-1, 203-205 Beta- Siegel et al. Puerto Rico Puerto Rico 2 Maisabel wood wood 2730 70 — Antilles cmbs 130450 2005 Greater MAN-1, 274-281 Beta- Siegel et al. Puerto Rico Puerto Rico 2 Maisabel wood wood 3640 70 — Antilles cmbs 130451 2005 charcoal/ Mounded Midden Siegel Greater Beta- Puerto Rico Puerto Rico 3 Maisabel carbon charred 1, N100W13, 2300 80 — 1989:221, Antilles 14996 material 150-160 cmbs 1996:325 charcoal/ Mounded Midden Siegel Greater Beta- Puerto Rico Puerto Rico 3 Maisabel carbon charred 1, N90W13, 150- 2810 70 — 1989:221, Antilles 14998 material 160 cmbs 1996:325 charcoal/ Mounded Midden Siegel Greater Beta- Puerto Rico Puerto Rico 3 Maisabel carbon charred 1, N90W13, 40- 3370 60 — 1989:221, Antilles 14999 material 50 cmbs 1996:325 331 charcoal/ Mounded Midden Siegel Greater Beta- Puerto Rico Puerto Rico 4 Maisabel carbon charred 1, N106W13, 1190 90 — 1989:221, Antilles 15000 material 100-110 1996:325 Burial 11, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 4 Maisabel collagen AA-6808 750 60 — Antilles bone/teeth N54E50, 49-65 1996:324-325 cmbs Burial 15, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 4 Maisabel collagen AA-4102 1420 100 too small Antilles bone/teeth N90E42, 89-114 1996:324-325 cmbs Burial 19c, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 4 Maisabel collagen AA-5031 995 80 — Antilles bone/teeth N54E50, 48-67 1996:325 cmbs Burial 19c, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 4 Maisabel collagen AA-7030 580 50 -25.0 Antilles bone/teeth N54E50, 48-67 1996:325 cmbs Burial 6, Greater human Cemetery, Siegel Puerto Rico Puerto Rico 4 Maisabel collagen AA-4098 1505 65 -19.0 Antilles bone/teeth N90E42, 72-86 1996:324-325 cmbs Burial 9, Greater human Siegel Puerto Rico Puerto Rico 4 Maisabel collagen Cemetery, AA-5030 1145 75 — Antilles bone/teeth 1996:325 N90E42 Burial 9, Greater human Siegel Puerto Rico Puerto Rico 4 Maisabel collagen Cemetery, AA-7029 1280 50 -17.5 Antilles bone/teeth 1996:325 N90E42 Greater MAN-1, 385-394 Beta- Siegel et al. Puerto Rico Puerto Rico 2 Maisabel wood wood 3820 70 — Antilles cmbs 116372 2005 332 Greater LM-2, 141-146 Beta- Siegel et al. Puerto Rico Puerto Rico 4 Maisabel peat peat 1660 50 — Antilles cmbs 116369 2005 Greater LM-2, 160-165 Beta- Siegel et al. Puerto Rico Puerto Rico 4 Maisabel peat peat 2270 60 — Antilles cmbs 127524 2005 Greater LM-2, 200- Beta- Siegel et al. Puerto Rico Puerto Rico 4 Maisabel peat peat 2560 50 — Antilles 205cmbs 116370 2005 Greater organic Beta- Siegel et al. Puerto Rico Puerto Rico 4 Maisabel sediment LM-2, 90-95cm 710 40 — Antilles sediment 127522 2005 Greater Beta- Siegel et al. Puerto Rico Puerto Rico 4 Maisabel wood wood LM-2, 151 cmbs 1450 40 — Antilles 127525 2005 Bullen and Sleight charcoal/ 1963:41; Greater María de la Section A (0.125- Puerto Rico Puerto Rico 2 charcoal charred Y-1234 1910 100 — Rouse 1963; Antilles Cruz 0.25) material Rouse and Alegria 1990:25 Bullen and Sleight charcoal/ 1963:41; 43; Greater María de la Section A (0.50- Puerto Rico Puerto Rico 2 charcoal charred Y-1235 1920 120 — Rouse 1963; Antilles Cruz 0.625) material Rouse and Alegria 1990:25 Greater marine Beta- Puerto Rico Puerto Rico 4 Maruca — — 3080 90 -25.0 Pantel 1994 Antilles shell 69878 Greater marine Beta- Puerto Rico Puerto Rico 4 Maruca — — 3870 130 -25.0 Pantel 1994 Antilles shell 69879 Greater marine Beta- Puerto Rico Puerto Rico 4 Maruca — — 2960 110 -25.0 Pantel 1994 Antilles shell 70866 Greater marine Beta- Rodríguez Puerto Rico Puerto Rico 4 Maruca — — 2950 50 -25.3 Antilles shell 92890 Lopez 2004 Greater marine Beta- Rodríguez Puerto Rico Puerto Rico 4 Maruca — — 4160 50 -25.8 Antilles shell 92891 Lopez 2004 333 Greater Beta- Rodríguez Puerto Rico Puerto Rico 4 Maruca — unknown — 2870 60 -25.4 Antilles 92892 Lopez 2004 Greater Beta- Rodríguez Puerto Rico Puerto Rico 4 Maruca — unknown — 2650 60 -26.7 Antilles 92893 Lopez 2004 Greater marine Beta- Rodríguez Puerto Rico Puerto Rico 4 Maruca — — 2820 70 — Antilles shell 92894 Lopez 2004 charcoal/ Rodríguez Greater Beta- Puerto Rico Puerto Rico 3 Playa Blanca charcoal charred — 1190 90 — López and Antilles 31692 material Rivera 1991 Rivera and Greater marine Beta- Puerto Rico Puerto Rico 3 Playa Blanca Strombus sp. — 450 70 — Rodríguez Antilles shell 21694 1991 Rodríguez Greater marine Beta- Puerto Rico Puerto Rico 3 Playa Blanca Strombus sp. — 590 60 — López and Antilles shell 31693 Rivera 1991 Rodríguez Greater marine Beta- Puerto Rico Puerto Rico 3 Playa Blanca Strombus sp. — 1150 70 — López and Antilles shell 31695 Rivera 1991 charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred 6N-18/13 960 50 — Walker 2005 Antilles 81844 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred 6N-18/13 970 50 — Walker 2005 Antilles 81845 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred 6N-18/21 970 40 — Walker 2005 Antilles 178668 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred 6S-17/37 1450 40 — Walker 2005 Antilles 178666 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred 6S-17/37 940 60 — Walker 2005 Antilles 77174 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/10 960 130 — Walker 2005 Antilles 178669 material 334 charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/13 1030 50 — Walker 2005 Antilles 178660 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/13 1580 90 — Walker 2005 Antilles 178670 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/13 1470 40 — Walker 2005 Antilles 178674 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 6N-13/17 940 60 — Walker 2005 Antilles 178661 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 6N-13/17 910 40 — Walker 2005 Antilles 178662 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/17 1060 40 — Walker 2005 Antilles 178663 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/17 1180 70 — Walker 2005 Antilles 81848 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 6N-13/21 630 40 — Walker 2005 Antilles 178664 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 6N-13/21 840 60 — Walker 2005 Antilles 81849 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/21 1050 50 — Walker 2005 Antilles 81850 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/21 1440 60 — Walker 2005 Antilles 87601 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-13/25 950 60 — Walker 2005 Antilles 178665 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-18/10 990 50 — Walker 2005 Antilles 81841 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-18/10 910 60 — Walker 2005 Antilles 87600 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-18/13 1060 60 — Walker 2005 Antilles 81843 material 335 charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-18/13 1080 60 — Walker 2005 Antilles 81846 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6N-18/21 1230 60 — Walker 2005 Antilles 178667 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6S-17/25 980 50 — Walker 2005 Antilles 77168 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 6S-17/29 950 60 — Walker 2005 Antilles 87603 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 6S-17/33 830 80 — Walker 2005 Antilles 77175 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 6S-17/33 870 80 — Walker 2005 Antilles 87604 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 7-1 560 60 — Walker 2005 Antilles 178671 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 7-2 960 40 — Walker 2005 Antilles 178672 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 7-2 1270 70 — Walker 2005 Antilles 178673 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 7-2 640 60 — Walker 2005 Antilles 77177 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred Unit 7-4 730 40 — Walker 2005 Antilles 178675 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 7-4 1010 40 — Walker 2005 Antilles 178676 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 7-5 630 50 — Walker 2005 Antilles 77183 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 81-2 1350 70 — Walker 2005 Antilles 77164 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 81-2 1550 60 — Walker 2005 Antilles 87610 material 336 charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8I-2 2330 110 — Walker 2005 Antilles 178677 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8I-3 930 40 — Walker 2005 Antilles 178679 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8I-3 1920 80 — Walker 2005 Antilles 87611 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8I-4 1520 40 — Walker 2005 Antilles 178681 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8I-4 4060 60 — Walker 2005 Antilles 77165 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8I-5 4110 40 — Walker 2005 Antilles 178680 material charcoal/ Greater Beta- Puerto Rico Puerto Rico 2 Paso del Indio charcoal charred unit 8S-2 2520 40 — Walker 2005 Antilles 178678 material Greater human Impacted/Out of Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-75802 710 43 -19.44 Pestle 2010 Antilles bone/teeth context Greater human Impacted/Out of Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82413 900 44 -20.09 Pestle 2010 Antilles bone/teeth context Greater human P6 18E 21S Ent. Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-79406 1040 44 -19.34 Pestle 2010 Antilles bone/teeth 1 Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P6 U12 Ent. 1 AA-79407 1041 44 -18.52 Pestle 2010 Antilles bone/teeth Greater human P6 U13E 25S Ent. Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82414 1026 44 -18.94 Pestle 2010 Antilles bone/teeth 4A Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P6/T1 Ent. 1 AA-75143 932 44 -19.30 Pestle 2010 Antilles bone/teeth Greater human P6/U 13E 25S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-83933 991 43 -19.53 Pestle 2010 Antilles bone/teeth Ent. 4B Greater human P6/U 17E 25S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-83932 873 42 -19.39 Pestle 2010 Antilles bone/teeth Ent. 1 Greater human P6/U 17E 25S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-83931 927 45 -19.02 Pestle 2010 Antilles bone/teeth Ent. 2 337 Greater human P6/U 17E 29S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-75124 1010 42 — Pestle 2010 Antilles bone/teeth Ent. 4 Greater human P6/U 17E 41S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-79356 1075 44 -19.32 Pestle 2010 Antilles bone/teeth Ent. 1 Greater human P6/U 18E 21S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82408 953 46 -19.00 Pestle 2010 Antilles bone/teeth Ent. 2 Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P6/U13 Ent. #2 AA-72888 1164 41 -19.09 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P6/U13 Ent. 13 AA-83934 951 42 -18.50 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P6/U13-25 Ent. 2 AA-79400 983 44 -18.97 Pestle 2010 Antilles bone/teeth Greater human P6/U17E 29S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-78488 1085 43 -18.79 Pestle 2010 Antilles bone/teeth Ent. 10 Greater human P6/U17E 29S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-75142 1004 44 -19.50 Pestle 2010 Antilles bone/teeth Ent. 5 Greater human P6/U17E 29S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-75818 1127 45 -19.25 Pestle 2010 Antilles bone/teeth Ent. 6 Greater human P6/U17E 33S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-79355 1099 44 -17.63 Pestle 2010 Antilles bone/teeth Ent. 1 Greater human P6/U17E 33S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-75826 997 44 -18.55 Pestle 2010 Antilles bone/teeth Ent. 2 Greater human P6/U17E 37S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82410 1098 45 -19.52 Pestle 2010 Antilles bone/teeth Ent. 1 Greater human P6/U18E 25S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82404 1162 60 -17.48 Pestle 2010 Antilles bone/teeth Ent. 4 Greater human P6/U75E 35S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82409 1150 45 -18.81 Pestle 2010 Antilles bone/teeth Ent. 1 Greater human P6/U7E 33S Ent. Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-79404 1125 45 -18.49 Pestle 2010 Antilles bone/teeth 1 Greater human P6/U7E 33S Ent. Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82415 1054 44 — Pestle 2010 Antilles bone/teeth 2 Greater human P6N/U 13E 13S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-78480 1084 46 -19.95 Pestle 2010 Antilles bone/teeth Ent. 1 Greater human P6N/U 18E 17S Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82407 1289 46 -17.42 Pestle 2010 Antilles bone/teeth Ent. 1 338 Greater human P7 Ent. D Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-82382 1007 47 — Pestle 2010 Antilles bone/teeth Impacto Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7 Impactado AA-75822 1062 43 -19.30 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/T1 Ent. 1 AA-75801 1168 43 -17.94 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/T1 Ent. 4 AA-78489 1336 43 -19.05 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U1 Ent. 1 AA-72877 699 52 -18.72 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U1 Ent. 2 AA-79352 567 43 — Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 11A AA-75123 973 41 -19.11 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 12B AA-83930 1065 45 -18.94 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 13 AA-83926 829 45 -19.39 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 1A AA-72875 980 41 -18.94 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 3 AA-78481 798 45 -18.61 Pestle 2010 Antilles bone/teeth charcoal/ Greater Beta- Puerto Rico Puerto Rico 3 Paso del Indio charcoal charred Unit 6S-17/25 260 50 — Walker 2005 Antilles 77166 material Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 4 AA-79351 1121 44 -19.09 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U2 Ent. 9 AA-79346 885 44 -19.48 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 11 AA-72889 893 41 -19.17 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 2 AA-83928 935 44 -19.57 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 4 AA-83935 1092 42 -19.47 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 5A AA-83929 1086 46 -19.34 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 6 AA-83936 1002 43 0.00 Pestle 2010 Antilles bone/teeth 339 Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 7 AA-75144 941 44 -19.49 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U3 Ent. 8 AA-83925 735 44 -19.46 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 10 AA-82411 1027 44 18.57 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 11 AA-83927 1073 45 -18.54 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 14 AA-75140 1016 45 -19.01 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 2A AA-72876 1036 42 -17.8 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 2B AA-78487 1078 46 -18.89 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 2C AA-75126 966 42 -19.09 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 3A AA-79347 1090 45 -18.96 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 4A AA-75800 907 45 -19.41 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 4D AA-75139 1011 42 -18.89 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 5C AA-75798 1071 43 -18.88 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 5D AA-79348 1039 45 -19.17 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U4 Ent. 7B AA-79354 1098 44 -18.51 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent . 1 AA-82412 904 44 -19.28 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #11 AA-75122 1055 41 -19.31 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #12 AA-78479 1128 49 -18.98 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #16A AA-75121 952 41 -19.63 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #3 AA-79345 1099 45 -20.51 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #4 AA-78478 1014 43 -18.78 Pestle 2010 Antilles bone/teeth 340 Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #7 AA-72874 1053 42 -19.20 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. #9 AA-79344 1070 45 -18.41 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 10A AA-82381 1070 45 -19.60 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 10B AA-79402 1141 45 -19.69 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 11 AA-75799 1351 44 -18.13 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 13A AA-75141 1094 44 -18.80 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 13B AA-82406 1140 47 -19.18 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 13C AA-82405 963 46 -18.71 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 19A AA-79403 725 43 -18.89 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 2 AA-75820 964 44 -19.06 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 20 AA-79401 870 44 -19.14 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Ent. 8 AA-79353 1026 44 -18.94 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P7/U5 Impactado AA-78490 1392 43 -18.97 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8/U2 Ent. 2 AA-72892 966 41 -18.72 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8I/U1 Ent. 2 AA-75823 951 42 -19.31 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8I/U3 Ent. 3 AA-82402 1191 48 -19.66 Pestle 2010 Antilles bone/teeth Greater human P8I/U5 Ent.(1) Puerto Rico Puerto Rico 2 Paso del Indio human bone AA-75824 1200 44 -18.99 Pestle 2010 Antilles bone/teeth Impactado Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8N/U5 Ent. #2 AA-78482 1053 42 -18.96 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8N/U5 Ent. 2 AA-82401 1147 87 -19.32 Pestle 2010 Antilles bone/teeth 341 Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8N/U5 Ent. 3 AA-72893 1168 42 -19.5 Pestle 2010 Antilles bone/teeth charcoal/ Greater stratum 8, pilaster Beta Clark et al. Puerto Rico Puerto Rico 4 Paso del Indio charcoal charred — — — Antilles 6 87604 2003 material Greater human Puerto Rico Puerto Rico 2 Paso del Indio human bone P8S/U3 Ent. 2 AA-75825 804 43 -19.67 Pestle 2010 Antilles bone/teeth charcoal/ Jácana 1; Midden; Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred Unit 142, Level 1550 40 -25.7 Antilles material 272032 2014 material 17 charcoal/ Jácana 3; Batey Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred surface; Unit 153, 940 40 -24.8 Antilles material 247738 2014 material Level 6 charcoal/ Jácana 3; Batey Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred surface; Unit 153, 940 40 -25.2 Antilles material 247739 2014 material Level 7 Jácana 4; Slope charcoal/ Greater charred Wash, Batey Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred 540 40 -25.1 Antilles material floor, Unit 153, 247736 2014 material level 2 charcoal/ Greater charred Jácana 4; Unit Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred 440 60 -24.1 Antilles material 153, level 4 247737 2014 material charcoal/ Greater charred Jácana 2; FX-12; Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred 1100 40 -24.3 Antilles material Burial feature 258 272029 2014 material charcoal/ Jácana 2; FX- Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred T12; Burial 1240 40 -23.9 Antilles material 272030 2014 material feature 370 charcoal/ Jácana 2; FX- Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred T12; Feature 222, 1300 40 -26.2 Antilles material 272028 2014 material posthole charcoal/ Jácana 2; FX- Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred T12; Feature 224, 1310 40 -25.5 Antilles material 272023 2014 material charcoal lense charcoal/ Jácana 2; Gully Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred Top; Feature 204, 1190 40 -24.2 Antilles material 272026 2014 material posthole charcoal/ Greater charred Jácana 2; Gully Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred 1220 40 -26.2 Antilles material Top; Feature 209 272027 2014 material 342 charcoal/ Jácana 2; Midden Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred Mound; Feature 1250 40 -25.0 Antilles material 272025 2014 material 105, posthole Jácana 3; posthole charcoal/ Greater charred in Midden Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred 860 40 -26.5 Antilles material Mound; Feature 272022 2014 material 112, posthole charcoal/ Jácana 4; FX-F Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred feature; Feature 580 40 -25.6 Antilles material 272024 2014 material 454, posthole charcoal/ Jácana 4; upper Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred Midden Mound; 710 40 -25.7 Antilles material 272031 2014 material Unit 108, Level 5 charcoal/ Jácana 4; upper Greater charred Beta- Espenshade Puerto Rico Puerto Rico 2 PO-29 charred Midden Mound; 550 40 -26.5 Antilles material 272033 2014 material Unit 150, Level 8 charcoal/ Greater Punta Rodríguez Puerto Rico Puerto Rico 2 charcoal charred Postmold E-1 I-15678 1170 80 — Antilles Candelero 1991:627 material Greater Punta human Puerto Rico Puerto Rico 3 human bone C-6, no prov AA-79380 948 44 — Pestle 2013 Antilles Candelero bone/teeth charcoal/ Greater Punta Rodríguez Puerto Rico Puerto Rico 2 charcoal charred Postmold E-4 I-15679 1230 80 — Antilles Candelero 1991:627 material Rouse and charcoal/ Alegria Greater Punta Puerto Rico Puerto Rico 2 charcoal charred Test A (60-70) I-14978 2020 80 — 1990:58; Antilles Candelero material Haviser 1997:63 charcoal/ Greater Punta Rodríguez Puerto Rico Puerto Rico 2 charcoal charred Unit F (60-70) I-15407 690 80 — Antilles Candelero 1989:259 material charcoal/ Greater Punta Rodríguez Puerto Rico Puerto Rico 2 charcoal charred Unit F4 (40-50) I-15410 1260 80 — Antilles Candelero 1989:259 material charcoal/ Greater Punta Rodríguez Puerto Rico Puerto Rico 2 charcoal charred Unit I (70-80) I-15432 1000 110 — Antilles Candelero 1989:259 material charcoal/ Greater Punta Rodríguez Puerto Rico Puerto Rico 2 charcoal charred Unit J (60-70) I-15408 1310 80 — Antilles Candelero 1989:259 material 343 Greater Punta human Area Cuevas Puerto Rico Puerto Rico 2 human bone AA-75137 1372 44 -16.28 Pestle 2013 Antilles Candelero bone/teeth Pozo A3 Ent. 29 Greater Punta human Area Cuevas Puerto Rico Puerto Rico 2 human bone AA-75816 1455 46 -15.34 Pestle 2013 Antilles Candelero bone/teeth Pozo B-3 Ent. 9 Greater Punta human Area Cuevas Puerto Rico Puerto Rico 2 human bone AA-79408 1208 45 -18.08 Pestle 2013 Antilles Candelero bone/teeth Pozo B-3, Ent. 10 Greater Punta human Area Cuevas Puerto Rico Puerto Rico 2 human bone AA-78509 1179 43 -17.87 Pestle 2013 Antilles Candelero bone/teeth Pozo B-6, Ent. 9 Greater Punta human Area Cuevas Puerto Rico Puerto Rico 2 human bone AA-75813 1214 46 -18.79 Pestle 2013 Antilles Candelero bone/teeth Pozo D-1 Ent. 1 Area Cuevas Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo D-1 Ext. AA-72884 1118 44 -18.75 Pestle 2013 Antilles Candelero bone/teeth S.O. Ent. 45 Greater Punta human Area Cuevas Puerto Rico Puerto Rico 2 human bone AA-75135 1082 42 -18.43 Pestle 2013 Antilles Candelero bone/teeth Pozo D-8 Ent. 47 Greater Punta human Area Cuevas, Puerto Rico Puerto Rico 2 human bone AA-79381 1162 45 -18.29 Pestle 2013 Antilles Candelero bone/teeth Pozo A-2 Greater Punta human Area Cuevas, Puerto Rico Puerto Rico 2 human bone AA-79382 1235 45 -18.36 Pestle 2013 Antilles Candelero bone/teeth Pozo A-2 Greater Punta human Area Cuevas, Puerto Rico Puerto Rico 2 human bone AA-79413 1154 44 -16.92 Pestle 2013 Antilles Candelero bone/teeth Pozo A-3, Ent. 16 344 Greater Punta human Area Cuevas, Puerto Rico Puerto Rico 2 human bone AA-79383 1389 45 -17.18 Pestle 2013 Antilles Candelero bone/teeth Pozo B-4 Greater Punta human Area Cuevas, Puerto Rico Puerto Rico 2 human bone AA-79384 1408 46 -15.94 Pestle 2013 Antilles Candelero bone/teeth Pozo B-6 Greater Punta human Area Cuevas. Puerto Rico Puerto Rico 2 human bone AA-72881 1251 42 -17.98 Pestle 2013 Antilles Candelero bone/teeth Pozo A-2 Ent. 33 Blq 2 Pozo B-1 Greater Punta human Puerto Rico Puerto Rico 2 human bone Ent. 13 Area AA-75129 1260 42 -17.70 Pestle 2013 Antilles Candelero bone/teeth Huecoide Greater Punta human Blq 2 Pozo Q Ent. Puerto Rico Puerto Rico 2 human bone AA-75810 1582 46 -16.35 Pestle 2013 Antilles Candelero bone/teeth 1 Greater Punta human Blq 3 Pozo A Ent. Puerto Rico Puerto Rico 2 human bone AA-75130 1374 43 -16.49 Pestle 2013 Antilles Candelero bone/teeth 3 Greater Punta human Blq II L-2 Pozo Puerto Rico Puerto Rico 2 human bone AA-75805 1369 45 -15.95 Pestle 2013 Antilles Candelero bone/teeth D Ent. 1 Greater Punta human Blq II Pozo F-8 Puerto Rico Puerto Rico 2 human bone AA-75128 1539 43 -18.06 Pestle 2013 Antilles Candelero bone/teeth Ent. 1 Greater Punta human Blq. 2 Pozo F Puerto Rico Puerto Rico 2 human bone AA-75812 1339 45 -17.75 Pestle 2013 Antilles Candelero bone/teeth Ent. 1 Hueso 5 Blq. II Pozo J Greater Punta human Puerto Rico Puerto Rico 2 human bone Nivel 6.5-34 Ent. AA-75804 1401 45 -17.29 Pestle 2013 Antilles Candelero bone/teeth 1 Greater Punta human Blq. II Pozo W Puerto Rico Puerto Rico 2 human bone AA-82377 1260 46 -16.97 Pestle 2013 Antilles Candelero bone/teeth Ent. 1 Greater Punta human Puerto Rico Puerto Rico 2 human bone C-21 AA-82380 1174 45 -18.67 Pestle 2013 Antilles Candelero bone/teeth 345 Greater Punta human Puerto Rico Puerto Rico 2 human bone F-2 AA-82378 1347 45 -16.73 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Paredes Pozo W- Puerto Rico Puerto Rico 2 human bone AA-79415 1566 46 -16.87 Pestle 2013 Antilles Candelero bone/teeth X, Ent. 1 Greater Punta human Pedestal F 14 Ent. Puerto Rico Puerto Rico 2 human bone AA-72887 1322 42 -17.42 Pestle 2013 Antilles Candelero bone/teeth 57 Area Huecoide Greater Punta human Pozo A-2 Ent. 1 Puerto Rico Puerto Rico 2 human bone AA-75134 1098 43 -17.54 Pestle 2013 Antilles Candelero bone/teeth Area Cuevas Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo A-2 Ent. 30 AA-75127 1160 42 -18.42 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Pozo A3 Area Puerto Rico Puerto Rico 2 human bone AA-75136 1061 42 -18.86 Pestle 2013 Antilles Candelero bone/teeth Cuevas Ent. 17 Greater Punta human Pozo A-3, nivel Puerto Rico Puerto Rico 2 human bone AA-78510 1189 45 -18.00 Pestle 2013 Antilles Candelero bone/teeth 40-50 Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo A6 Ent. 2 AA-75809 1350 46 -16.31 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Pozo B3 Area Puerto Rico Puerto Rico 2 human bone AA-75806 1186 45 -18.87 Pestle 2013 Antilles Candelero bone/teeth Cuevas Ent. 2 Greater Punta human Pozo B-3 Area Puerto Rico Puerto Rico 2 human bone AA-75133 1173 42 -18.53 Pestle 2013 Antilles Candelero bone/teeth Cuevas Ent. 5 Greater Punta Rodríguez Puerto Rico Puerto Rico 4 — unknown Unit L (40-50) I-15409 1230 80 — Antilles Candelero 1989:259 Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo B3 Ent 10 AA-75814 1175 45 -17.87 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo B-4 Ent. 1 AA-78483 1427 44 -16.19 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo B-4, Ent. 1 AA-79414 1255 45 -17.25 Pestle 2013 Antilles Candelero bone/teeth 346 Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo B-5, Ent. 9 AA-79412 1257 47 -18.19 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Pozo B-6 Area Puerto Rico Puerto Rico 2 human bone AA-75807 1231 77 -16.65 Pestle 2013 Antilles Candelero bone/teeth Cuevas. Ent. 6 Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo B6 Ent. 7 AA-75803 1331 68 -17.14 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo C3 Ent. 1 AA-78484 1004 45 -19.05 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo C5 Ent. 1 AA-75817 1135 45 -17.86 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo D-2, Ent. 1 AA-79409 1421 48 -15.96 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo F-8, Ent. 2 AA-78512 1430 43 -16.86 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo Q-1 AA-78513 1557 44 -15.85 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Pozo S-2, nivel Puerto Rico Puerto Rico 2 human bone AA-79410 1387 45 -15.60 Pestle 2013 Antilles Candelero bone/teeth 30-40 Greater Punta human Pozo T, nivel 0- Puerto Rico Puerto Rico 2 human bone AA-79411 1271 45 -17.70 Pestle 2013 Antilles Candelero bone/teeth 80 Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo U Ent. 1 AA-75815 1218 46 -16.47 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone Pozo Z AA-78511 1287 43 -17.45 Pestle 2013 Antilles Candelero bone/teeth Greater Punta human Puerto Rico Puerto Rico 2 human bone UIUC173 AA-72886 1006 41 -18.86 Pestle 2013 Antilles Candelero bone/teeth Unidad B Pozo Greater Punta human Puerto Rico Puerto Rico 2 human bone B-3 Ent. 7 Zona AA-75808 1228 47 -18.57 Pestle 2013 Antilles Candelero bone/teeth Cuevas Greater Punta marine Rodríguez Puerto Rico Puerto Rico 2 Strombus sp. C4 60-70 cm I-15430 850 80 — Antilles Candelero shell 1991:627 347 Rodríguez 1989:259; Rouse and Greater Punta Strombus marine Puerto Rico Puerto Rico 2 Test C (80-90) I-14979 2120 80 — Alegria Antilles Candelero gigas shell 1990:58; Haviser 1997:63 Greater Punta marine Rodríguez Puerto Rico Puerto Rico 2 Strombus sp. Unit C (80-90) I-15431 1220 80 — Antilles Candelero shell 1989:259 Greater Punta marine Rodríguez Puerto Rico Puerto Rico 2 Strombus sp. Unit L2 (80-90) I-15429 860 80 — Antilles Candelero shell 1989:259 charcoal/ Narganes Greater Puerto Rico Puerto Rico 2 Punta Ostiones charcoal charred Unit A-4 I-6595 1545 90 — Storde Antilles material 2005:280-281 Rouse and charcoal/ Alegria Greater Section B-3 Puerto Rico Puerto Rico 2 Tecla charcoal charred I-10921 1705 85 — 1990:55-56; Antilles (0.50-0.60) material Haviser 1997:63 Rouse and charcoal/ Alegria Greater Section M-12 Puerto Rico Puerto Rico 2 Tecla charcoal charred I-10914 1780 85 — 1990:55-56; Antilles (0.60-0.70) material Haviser 1997:63 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13820 1950 80 — Antilles 1997:63 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13856 2380 80 — Antilles 1997:63 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13866 1900 80 — Antilles 1997:63 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13867 2050 80 — Antilles 1997:63 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13868 1850 80 — Antilles 1997:63 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13921 2020 80 — Antilles 1997:63 348 Greater Haviser Puerto Rico Puerto Rico 4 Tecla — unknown — I-13929 1920 80 — Antilles 1997:63 Rouse and charcoal/ Alegria Greater Section P-9 (1.10- Puerto Rico Puerto Rico 2 Tecla charcoal charred I-10916 1720 80 — 1990:55-56; Antilles 1.20) material Haviser 1997:63 charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla charcoal charred Unit A-3 I-9679 1220 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred T-I I-10915 1390 85 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit JJ-69 I-13930 1950 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit N-12 I-10912 1295 85 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit O-12 I-10913 1315 85 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit A-2 I-9108 1480 95 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit B-2 I-9107 1285 95 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit II-69 I-13922 1780 85 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit II-70 I-13923 1490 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit II-72 I-13855 2020 80 — Antilles Storde 1991 material 349 charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit JJ-68 I-13924 1480 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit JJ-70 I-13931 1360 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit K-11 I-9678 1055 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit L-12 I-9680 1775 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit L-9 I-9677 1515 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit MM-63 I-14360 1460 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit MM-64 I-14429 1550 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit MM-65 I-14428 1600 150 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit MM-66 I-14361 1650 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit NN-64 I-14362 1560 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit ÑÑ-65 I-14430 1610 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit ÑÑ-65 I-14431 1650 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit NN-66 I-14382 1530 80 — Antilles Storde 1991 material 350 charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit OO-65 I-14383 1600 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit QQ-76 I-14427 1610 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit S-2 I-9873 1460 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit VV-97 I-13853 1370 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla I charcoal charred Unit VV-97 I-13854 1400 150 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla II charcoal charred Unit B-2 I-10920 1410 85 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla II charcoal charred Unit Y-56 I-13932 1500 80 — Antilles Storde 1991 material charcoal/ Greater Narganes Puerto Rico Puerto Rico 2 Tecla II charcoal charred Unit Y-60 I-13933 1350 110 — Antilles Storde 1991 material charcoal/ N184 E55, level Greater Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 6, Feat. 03-2, 990 40 -23.9 Antilles 198877 2006 material deposit H charcoal/ Greater Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred N215 E70, evel 4 750 40 -25.0 Antilles 198876 2006 material charcoal/ Greater N93.95/E98.05, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 950 40 -25.9 Antilles level 3 deposit H 136324 2006 material charcoal/ Greater N93.95/E98.05, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 1040 50 -25.9 Antilles level 4 deposit H 136325 2006 material charcoal/ Greater N94.05/E98.05, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 1080 60 -25.3 Antilles level 3, deposit H 136326 2006 material charcoal/ Greater N94.05/E98.05, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 1010 40 -25.0 Antilles level 4, deposit H 136327 2006 material 351 charcoal/ Curet et al. Greater OP19E, Feature Beta- Puerto Rico Puerto Rico 2 Tibes charcoal charred 930 40 -25.9 2006; Curet Antilles 5, level 3 136328 material 2010 charcoal/ Greater Unit 1, level 3, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 900 60 -25.0 Antilles deposit A 110631 2006 material charcoal/ Greater Unit 1, level 6, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 1270 40 -23.8 Antilles deposit A 109680 2006 material charcoal/ Greater Unit 3, level 5, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 890 40 -28.6 Antilles deposit C 109679 2006 material charcoal/ Greater Unit 8, post mold, Beta- Curet et al. Puerto Rico Puerto Rico 2 Tibes charcoal charred 880 50 -27.6 Antilles deposit H 103329 2006 material Greater human Puerto Rico Puerto Rico 2 Tibes human bone A-3 AA-79368 1253 52 -18.50 Pestle 2010 Antilles bone/teeth Greater human Batey de la Puerto Rico Puerto Rico 2 Tibes human bone AA-74636 1365 45 -17.04 Pestle 2010 Antilles bone/teeth Herradura, E-3 Greater human Batey de la Puerto Rico Puerto Rico 2 Tibes human bone AA-74638 1493 45 -18.18 Pestle 2010 Antilles bone/teeth Herradura, E-3(1) Greater human Batey de la Puerto Rico Puerto Rico 2 Tibes human bone AA-74637 1434 45 -17.28 Pestle 2010 Antilles bone/teeth Herradura, E-3(3) Greater human Batey Herradura, Puerto Rico Puerto Rico 2 Tibes human bone AA-79367 1367 45 -17.19 Pestle 2010 Antilles bone/teeth EH-1 Greater human Puerto Rico Puerto Rico 2 Tibes human bone Burial 07-01 AA-82416 1302 45 -17.99 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-10 AA-79362 1422 46 -17.54 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-4 AA-79365 1358 48 -16.97 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-5 AA-72896 1428 42 -17.72 Pestle 2010 Antilles bone/teeth 352 Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-5 AA-79369 1359 50 -17.62 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-6 AA-79364 1411 45 -16.77 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-7 AA-79363 1397 50 -18.02 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone CE-9 AA-82397 1469 47 -16.69 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-1 AA-72869 1302 42 -16.92 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-13 AA-72871 1352 43 -17.21 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-20 AA-72872 1443 50 -17.87 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-20 AA-74639 1319 42 -17.23 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-28 AA-78496 1338 43 -17.28 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-40 AA-74656 1403 44 -17.39 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-43 AA-83938 1326 44 -17.19 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-46 AA-82383 1321 46 -18.29 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-47 AA-83940 1353 43 -17.27 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-48 AA-72894 1366 44 — Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-57 AA-83942 1381 43 -16.09 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-59 AA-74657 1305 44 -17.98 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-60 AA-72897 1351 44 -17.23 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-71 AA-74662 1322 44 -18.49 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-72 AA-74663 1355 54 -18.40 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-74A AA-74664 1285 43 -18.72 Pestle 2010 Antilles bone/teeth 353 Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-74B AA-74665 1301 43 -18.60 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-80 AA-83951 1413 64 -17.74 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-85 AA-82391 1355 46 -16.59 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone E-8B AA-74643 1347 45 -17.45 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone ES-3 AA-72895 1392 42 -17.15 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone ES-7 AA-78492 1434 44 -17.14 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone ES-8 AA-79366 1364 45 -17.47 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone IA AA-78493 1424 44 -17.95 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone IB AA-79370 1344 62 -17.75 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone IC AA-82399 1156 46 -17.98 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone IIA AA-78494 1138 43 -17.85 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone P1-12-6 AA-78491 1249 43 -16.68 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone P1-3-2-E-3 AA-79372 1038 47 -18.30 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone P1-A-E-3B AA-79371 1456 45 -18.03 Pestle 2010 Antilles bone/teeth Greater human Puerto Rico Puerto Rico 2 Tibes human bone P1-E3C AA-78495 1505 44 -18.31 Pestle 2010 Antilles bone/teeth Greater human Pozo 12, Batey Puerto Rico Puerto Rico 2 Tibes human bone AA-79374 1369 45 -18.14 Pestle 2010 Antilles bone/teeth Santa Elena Greater human Puerto Rico Puerto Rico 2 Tibes human bone Pozo L2 AA-82400 1008 46 -17.63 Pestle 2010 Antilles bone/teeth charcoal/ Test Unit 2, W. Oliver personal Greater Vega de Nelo GrN- Puerto Rico Puerto Rico 2 charcoal charred Extension - 650 25 -25.83 communication Antilles Vargas 26412 material Stratum 2 2018 354 charcoal/ Test Unit, Oliver personal Greater Vega de Nelo GrN- Puerto Rico Puerto Rico 2 charcoal charred (2x1.5m), Lev. 3- 590 45 -26.52 communication Antilles Vargas 26413 material Strat 2b, 27 cmbs 2018 Test Unit, charcoal/ Oliver personal Greater Vega de Nelo (2x1.5m), Lev. 7- GrN- Puerto Rico Puerto Rico 2 charcoal charred 625 25 -25.19 communication Antilles Vargas Strat 3, 50-60 30051 material 2018 cmbs charcoal/ Test Unit, Oliver personal Greater Vega de Nelo GrN- Puerto Rico Puerto Rico 2 charcoal charred (2x1.5m, Lev. 11, 640 30 -26.48 communication Antilles Vargas 30052 material Strat 3 2018 shell midden, (18° 02' 27" N, charcoal/ Greater 67° 11' 33" W, Eldridge et al. Puerto Rico Puerto Rico 2 Villa Taina charcoal charred UM-398 1300 90 — Antilles 27cm below 1976 material surface, duplicate run of UM-399 shell midden, (18° 02' 27" N, charcoal/ Greater 67° 11' 33" W, Eldridge et al. Puerto Rico Puerto Rico 2 Villa Taina charcoal charred UM-399 1090 100 — Antilles 27cm below 1976 material surface, duplicate run of UM-399 Greater marine 30 cm below Eldridge et al. Puerto Rico Puerto Rico 3 Villa Taina shell UM-400 1050 80 — Antilles shell surface 1976 Hofman The Lesser marine GrN- 1993:25; Saba 3 The Bottom shell — 1490 60 — Netherlands Antilles shell 16030 Haviser 1997:62 Hofman The Lesser marine GrN- 1993:25; Saba 3 The Bottom shell — 1120 50 — Netherlands Antilles shell 16031 Haviser 1997:62 Roobol et al. The Lesser marine 1980; Hofman Saba 3 Fort Bay shell adze — UM-1478 3155 65 — Netherlands Antilles shell and Hoogland 2003:12 355 The Lesser Fort Bay marine Beta- Hofman et al. Saba 3 shell — 3670 30 +0.6 Netherlands Antilles Ridge shell 409000 2019 The Lesser Fort Bay marine Beta- Hofman et al. Saba 3 shell — 2880 30 +1.3 Netherlands Antilles Ridge shell 409001 2019 The Lesser Fort Bay marine GrA- Hofman et al. Saba 3 shell — 3005 35 — Netherlands Antilles Ridge shell 63874 2019 The Lesser Fort Bay marine GrA- Hofman et al. Saba 3 shell — 3620 35 — Netherlands Antilles Ridge shell 63875 2019 The Lesser Fort Bay marine GrA- Hofman et al. Saba 3 shell — 2770 30 — Netherlands Antilles Ridge shell 63876 2019 The Lesser Fort Bay marine GrA- Hofman et al. Saba 3 shell — 2800 30 — Netherlands Antilles Ridge shell 63878 2019 The Lesser Kelbey's human moder Hoogland and Saba 4 dentine — OxA-3618 — -14.9 Netherlands Antilles Ridge bone/teeth n Hofman 1993 charcoal/ The Lesser Kelbey's GrN- Hoogland and Saba 3 charcoal charred — 595 30 — Netherlands Antilles Ridge 16032 Hofman 1993 material charcoal/ The Lesser Kelbey's GrN- Hoogland and Saba 3 charcoal charred — 597 18 — Netherlands Antilles Ridge 18737 Hofman 1993 material charcoal/ The Lesser Kelbey's GrN- Hoogland and Saba 3 charcoal charred — 625 25 — Netherlands Antilles Ridge 18738 Hofman 1993 material charcoal/ The Lesser Kelbey's GrN- Hoogland and Saba 3 charcoal charred F516 172 17 — Netherlands Antilles Ridge 18736 Hofman 1993 material The Lesser Kelbey's faunal GrN- Hoogland and Saba 3 land crab — 1280 60 — Netherlands Antilles Ridge material 16033 Hofman 1993 The Lesser Kelbey's human Hoogland and Saba 3 dentine — OxA-2951 500 65 -13.9 Netherlands Antilles Ridge bone/teeth Hofman 1993 356 The Lesser Kelbey's human Hoogland and Saba 3 dentine — OxA-3617 900 60 -15.1 Netherlands Antilles Ridge bone/teeth Hofman 1993 The Lesser Kelbey's human Hoogland and Saba 3 dentine — OxA-3619 690 65 -15.2 Netherlands Antilles Ridge bone/teeth Hofman 1993 The Lesser Kelbey's human Hoogland and Saba 3 dentine — OxA-3843 795 60 -13.2 Netherlands Antilles Ridge bone/teeth Hofman 1993 The Lesser Kelbey's human Hoogland and Saba 3 dentine — OxA-3844 450 60 -16.8 Netherlands Antilles Ridge bone/teeth Hofman 1993 The Lesser Kelbey's marine GrN- Hoogland and Saba 3 shell F504 1084 35 — Netherlands Antilles Ridge shell 16776 Hofman 1993 charcoal/ The Lesser Kelbey's GrN- Hoogland and Saba 2 charcoal charred F504 610 30 — Netherlands Antilles Ridge 16775 Hofman 1993 material charcoal/ The Lesser Kelbey's GrN- Hoogland and Saba 2 charcoal charred F504 630 30 — Netherlands Antilles Ridge 16777 Hofman 1993 material The Lesser Old Booby marine Beta- Hofman et al. Saba 4 shell — 3980 30 +0.8 Netherlands Antilles Hill Cave shell 450521 2019 The Lesser faunal undisturbed GrN- Hofman and Saba 3 Plum Piece land crab 3430 30 — Netherlands Antilles material midden 27562 Hoogland 2003 The Lesser faunal undisturbed GrN- Hofman and Saba 3 Plum Piece land crab 3300 30 — Netherlands Antilles material midden 27563 Hoogland 2003 357 The Lesser faunal undisturbed GrN- Hofman and Saba 3 Plum Piece land crab 3320 30 — Netherlands Antilles material midden 27564 Hoogland 2003 charcoal/ The Lesser GrN- Hofman Saba 3 Spring Bay charcoal charred — 1205 30 — Netherlands Antilles 16772 1993:25 material charcoal/ The Lesser GrN- Hofman Saba 3 Spring Bay charcoal charred — 645 30 — Netherlands Antilles 16774 1993:25 material charcoal/ The Lesser GrN- Hofman Saba 3 Spring Bay charcoal charred — 620 25 — Netherlands Antilles 18735 1993:25 material The Lesser human Hofman Saba 3 Spring Bay human bone — OxA-2950 535 65 -17.6 Netherlands Antilles bone/teeth 1993:25 Hofman The Lesser marine GrN- 1993:25; Saba 3 Spring Bay shell — 1560 60 — Netherlands Antilles shell 16026 Haviser 1997:62 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1240 50 — Netherlands Antilles shell 16027 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1130 60 — Netherlands Antilles shell 16028 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1310 60 — Netherlands Antilles shell 16029 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1125 30 — Netherlands Antilles shell 16773 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1320 35 — Netherlands Antilles shell 19321 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1320 45 — Netherlands Antilles shell 19322 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1445 30 — Netherlands Antilles shell 19323 1993:25 The Lesser marine GrN- Hofman Saba 3 Spring Bay shell — 1065 30 — Netherlands Antilles shell 19771 1993:25 Hofman The Lesser faunal GrN- 1993:25; Saba 3 Spring Bay land crab — 1640 35 — Netherlands Antilles material 18558 Haviser 1997:62 358 Bahamian Barker's Point Strombus marine Blick et al. San Salvador Bahamas 2 beach rock AA-51432 1028 34 +3.3 Archipelago Shell Midden gigas shell 2007 Bahamian Barker's Point Strombus marine recovered UGa- Blick et al. San Salvador Bahamas 2 1054 37 — Archipelago Shell Midden gigas shell projectile point 00836 2007 Zanthoxylum Bahamian flavum blue hole Beta- San Salvador Bahamas 2 Blue Hole wood 530 65 — Winter 1987 Archipelago (Yellow wood (underwater) 16732 tree), mortar Bahamian OxA- Ostapkowicz San Salvador Bahamas 4 Cat Island Cordia sp. wood — 409 25 -23.1 Archipelago 20839 2015 Bahamian OxA- Ostapkowicz San Salvador Bahamas 4 Cat Island Guaiacum sp. wood — 355 25 -24.4 Archipelago 18101 2015 Guaiacum sp. Bahamian (Lignum vitae High Density Beta- Winter et al. San Salvador Bahamas 2 Major's Cave wood 450 50 — Archipelago tree), bowl Area D 105988 1999 fragment charcoal/ Bahamian Winter and San Salvador Bahamas 2 Minnis-Ward wood charcoal charred 22-28, hearth UM-2244 660 100 — Archipelago Stipp 1983 material Bahamian Strombus marine Winter and San Salvador Bahamas 2 Minnis-Ward 22cm, hearth UM-2245 425 75 — Archipelago gigas shell Stipp 1983 Bahamian burnt turtle faunal Winter and San Salvador Bahamas 4 Minnis-Ward 22-28cm, hearth UM-2243 750 55 — Archipelago shell material Stipp 1983 Bahamian Palmetto Beta- Berman and San Salvador Bahamas 4 — unknown unknown 1483 60 — Archipelago Grove Site 66089 Gnivecki 1995 Bahamian Palmetto Beta- Berman and San Salvador Bahamas 4 — unknown unknown 1410 80 — Archipelago Grove Site 67064 Gnivecki 1995 359 charcoal/ Bahamian San Salvador Bahamas 2 Pigeon Creek wood charcoal charred 26cm UM-2274 620 70 — Rose 1987 Archipelago material charcoal/ Bahamian San Salvador Bahamas 2 Pigeon Creek wood charcoal charred 30-40cm UM-2271 305 75 — Rose 1982 Archipelago material charcoal/ Bahamian San Salvador Bahamas 2 Pigeon Creek wood charcoal charred 30-40cm UM-2273 580 90 — Rose 1987 Archipelago material Bahamian faunal San Salvador Bahamas 2 Pigeon Creek fish bone 40-50cm UM-2275 1384 65 — Rose 1982 Archipelago material charcoal/ Bahamian Beta- San Salvador Bahamas 3 Pigeon Creek wood charcoal charred — 840 60 — Rose 1987 Archipelago 17839 material charcoal/ Bahamian San Salvador Bahamas 3 Pigeon Creek wood charcoal charred — UM-2733 540 60 — Rose 1987 Archipelago material charcoal/ Bahamian San Salvador Bahamas 3 Pigeon Creek wood charcoal charred — UM-2736 390 60 — Rose 1987 Archipelago material charcoal/ Bahamian San Salvador Bahamas 3 Pigeon Creek wood charcoal charred — UM-2738 480 70 — Rose 1987 Archipelago material charcoal/ Bahamian San Salvador Bahamas 3 Pigeon Creek wood charcoal charred 10-20cm UM-2272 215 60 — Rose 1982 Archipelago material Bahamian Beta- San Salvador Bahamas 4 Pigeon Creek — unknown — 790 70 — Rose 1987 Archipelago 17840 charcoal/ Bahamian Shaklee et al. San Salvador Bahamas 2 Storr's Lake charcoal charred 38cm YSU #2 350 70 — Archipelago 2007 material charcoal/ Bahamian Shaklee et al. San Salvador Bahamas 2 Storr's Lake charcoal charred 38cm YSU #4 470 60 — Archipelago 2007 material charcoal/ Bahamian Shaklee et al. San Salvador Bahamas 2 Storr's Lake charcoal charred 50cm YSU #3 1130 40 — Archipelago 2007 material charcoal/ Bahamian Shaklee et al. San Salvador Bahamas 2 Storr's Lake charcoal charred 60cm YSU #1 840 40 — Archipelago 2007 material charcoal/ Bahamian Shaklee et al. San Salvador Bahamas 3 Storr's Lake charcoal charred — YSU #5 800 60 — Archipelago 2007 material 360 charcoal/ Beta- Bahamian Three Dog Berman and San Salvador Bahamas 4 wood charcoal charred unknown 26138, — — — Archipelago Site Gnivecki 1995 material ETH-4266 charcoal/ Bahamian Three Dog Beta- Berman and San Salvador Bahamas 4 wood charcoal charred unknown — — — Archipelago Site 26894 Gnivecki 1995 material charcoal/ Bahamian Three Dog Beta- Berman and San Salvador Bahamas 4 wood charcoal charred unknown — — — Archipelago Site 55102 Gnivecki 1995 material Beta- charcoal/ Bahamian Three Dog 55103, Berman and San Salvador Bahamas 4 wood charcoal charred unknown — — — Archipelago Site CAMS Gnivecki 1995 material 3549 charcoal/ Bahamian Three Dog Beta- Berman and San Salvador Bahamas 3 wood charcoal charred unknown 685 90 — Archipelago Site 26896 Gnivecki 1995 material Bahamian Three Dog faunal Beta- Berman and San Salvador Bahamas 4 turtle bone — 490 70 — Archipelago Site material 18562 Gnvecki 1991 charcoal/ Bahamian Core depth: 35 Kjellmark and San Salvador Bahamas 4 Triangle Pond charcoal charred — — — — Archipelago cm Blick 2016 material Bahamian faunal Core depth: 54 UGAMS- Kjellmark and San Salvador Bahamas 4 Triangle Pond snail 2610 25 -11.64 Archipelago material cm 12732a Blick 2016 Bahamian marine UGAMS- Kjellmark and San Salvador Bahamas 4 Triangle Pond clam Core depth 43 cm 2450 25 -1.24 Archipelago shell 10497 Blick 2016 Bahamian marine Core depth: 54 UGAMS- Kjellmark and San Salvador Bahamas 4 Triangle Pond clam 2360 25 -0.7 Archipelago shell cm 12772b Blick 2016 Bahamian organic Core depth: 11 UGAMS- moder Kjellmark and San Salvador Bahamas 4 Triangle Pond leaf fragment — -29.27 Archipelago material cm 10495 n Blick 2016 361 Bahamian organic Core depth: 28-30 UGAMS- Kjellmark and San Salvador Bahamas 4 Triangle Pond bark fragment 180 20 -26.71 Archipelago material cm 10496 Blick 2016 Bahamian Core depth: 50-53 UGAMS- Kjellmark and San Salvador Bahamas 4 Triangle Pond peat peat 2090 25 -22.02 Archipelago cm 12731 Blick 2016 Cinquino, Hayward, and Hoffman U.S. Virgin Lesser Strombus marine Beta- 1999:74, St. Croix 2 Aklis Unit 1-L 5 1650 80 — Islands Antilles gigas shell 82357 Hayward and Cinquino 2002:94-96; 182 Cinquino, Hayward, and Hoffman U.S. Virgin Lesser Strombus marine Beta- 1999:74, St. Croix 2 Aklis Unit 1-L-1 1630 80 — Islands Antilles gigas shell 82566 Hayward and Cinquino 2002:94-96; 182 Cinquino, Hayward, and Hoffman U.S. Virgin Lesser Strombus marine Beta- 1999:74, St. Croix 2 Aklis Unit 3-L 2/3 1500 70 — Islands Antilles gigas shell 82360 Hayward and Cinquino 2002:94-96; 182 362 Cinquino, Hayward, and Hoffman U.S. Virgin Lesser Strombus marine Beta- 1999:74, St. Croix 2 Aklis Unit 3-L 7 1530 70 — Islands Antilles gigas shell 82358 Hayward and Cinquino 2002:94-96; 182 Doran 1990; Hayward and U.S. Virgin Lesser human Early Ostionoid St. Croix 4 Aklis human bone — — — — Cinquino Islands Antilles bone/teeth ceramic vessel 2002:94-96; 182 Cinquino, Hayward, and Hoffman U.S. Virgin Lesser Strombus marine Beta- 1999:74, St. Croix 2 Aklis Unit 5-L 2 530 70 — Islands Antilles gigas shell 82359 Hayward and Cinquino 2002:94-96; 182 U.S. Virgin Lesser organic Beta- Siegel et al. St. Croix 3 Coakley Bay sediment — 2900 30 — Islands Antilles sediment 376843 2015 U.S. Virgin Lesser organic Pearsall et al. St. Croix 4 Coakley Bay sediment 140 cm AA-99901 2320 30 -9.4 Islands Antilles sediment 2018 U.S. Virgin Lesser organic Pearsall et al. St. Croix 4 Coakley Bay sediment 249 cm AA-77642 3500 40 -18.8 Islands Antilles sediment 2018 U.S. Virgin Lesser preserved Pearsall et al. St. Croix 4 Coakley Bay wood 67 cm AA-82471 1350 35 -26.9 Islands Antilles wood 2018 charcoal/ U.S. Virgin Lesser Magens Bay - Beta- St. Croix 4 Robin Bay wood charcoal charred — — — Payne 1995 Islands Antilles Salt River 1 level 32129 material Lesser marine GrN- Versteeg et al. St. Eustatius Netherlands 3 Corre Corre-1 marine shell 40 cm 2400 50 — Antilles shell 17073 1993 363 Lesser marine GrN- Versteeg et al. St. Eustatius Netherlands 3 Corre Corre-2 marine shell 70 cm 2740 40 — Antilles shell 17071 1993 Lesser GrN- Van Klinken St. Eustatius Netherlands 3 Godet 1 shell shell – 680 70 +3.16 Antilles 11518 1991 Lesser human Van Klinken St. Eustatius Netherlands 3 Godet 2 human tooth – Ua-1481 585 80 -16.18 Antilles bone/teeth 1991 Versteeg and Lesser marine GrN- St. Eustatius Netherlands 3 Golden Rock shell H2 1600 50 — Schinkel Antilles shell 11511 1992:204 Versteeg and Lesser human St. Eustatius Netherlands 2 Golden Rock bone collagen B9 Ua-1488 1735 220 -16.56 Schinkel Antilles bone/teeth 1992:204 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 1021 (Structure 1) 1350 60 — 1992:204; Antilles 11514 material Haviser 1997:62 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 1022 (S1) 1755 20 — 1992:204; Antilles 11512 material Haviser 1997:62 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 1084 (S1) 1635 20 — 1992:204; Antilles 11513 material Haviser 1997:62 charcoal/ Versteeg and Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 149 (S4) 1205 30 — Schinkel Antilles 11515 material 1992:204 364 charcoal/ Versteeg and Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 1866 (S5) 1260 30 — Schinkel Antilles 17075 material 1992:204 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 2030 (S5) 1325 30 — 1992:204; Antilles 17074 material Haviser 1997:62 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 209 (S4) 1340 20 — 1992:204; Antilles 11516 material Haviser 1997:62 charcoal/ Versteeg and Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred 210 (S4) 1210 20 — Schinkel Antilles 11517 material 1992:204 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred H1 1545 35 — 1992:204; Antilles 11510 material Haviser 1997:62 Versteeg and charcoal/ Schinkel Lesser GrN- St. Eustatius Netherlands 2 Golden Rock charcoal charred H2 1415 30 — 1992:204; Antilles 11509 material Haviser 1997:62 charcoal/ Lesser GrN- Versteeg et al. St. Eustatius Netherlands 3 Smoke Alley charcoal charred — 1720 30 — Antilles 17072 1993 material Lesser human GrN- Versteeg et al. St. Eustatius Netherlands 2 Smoke Alley bone collagen 8F50 1105 30 -14.10 Antilles bone/teeth 17070 1993 Lesser GrN- Versteeg et al. St. Eustatius Netherlands 4 Smoke Alley — unknown — 160 70 — Antilles 18448 1993 365 Caesar et al. charcoal/ U.S. Virgin Lesser Calabash Pit 13, 20-40 Beta- 1991; St. John 2 charcoal charred 1210 80 — Islands Antilles Boom cmbs 16647 Lundberg et al. material 1992 Caesar et al. charcoal/ U.S. Virgin Lesser Calabash Pits 3+4, Level H, Beta- 1991; St. John 2 charcoal charred 660 60 — Islands Antilles Boom 50-90 cmbs 19863 Lundberg et al. material 1992 charcoal/ U.S. Virgin Lesser Calabash Beta- Lundberg et al. St. John 2 charcoal charred Pit 13, level H 1630 100 — Islands Antilles Boom 17080 1992:table 1 material charcoal/ U.S. Virgin Lesser Calabash Pit 17, 35-55 Beta- Lundberg et al. St. John 2 charcoal charred 970 70 — Islands Antilles Boom cmbs 18513 1992:table 1 material Caesar et al. charcoal/ U.S. Virgin Lesser Calabash Pit 23, 40-50 Beta- 1991; St. John 2 charcoal charred 1050 60 — Islands Antilles Boom cmbs 20605 Lundberg et al. material 1992 charcoal/ U.S. Virgin Lesser Calabash Pit 27-NE, 60-80 Beta- Lundberg et al. St. John 2 charcoal charred 1460 80 — Islands Antilles Boom cmbs 32239 1992:table 1 material charcoal/ U.S. Virgin Lesser Calabash Pit 27-SE, 60-80 Beta- Lundberg et al. St. John 2 charcoal charred 900 100 — Islands Antilles Boom cmbs 26964 1992:table 1 material charcoal/ U.S. Virgin Lesser Calabash Pit 27-W, 60-80 Beta- Lundberg et al. St. John 2 charcoal charred 1130 70 — Islands Antilles Boom cmbs 25891 1992:table 1 material charcoal/ U.S. Virgin Lesser Calabash Unit 105, level Beta- Lundberg St. John 2 charcoal charred 1160 40 -25.1 Islands Antilles Boom D2 192223 2005:table 3 material charcoal/ U.S. Virgin Lesser Calabash Beta- Lundberg St. John 2 charcoal charred Unit 106, level C 1140 40 -24.7 Islands Antilles Boom 192224 2005:table 3 material 366 U.S. Virgin Lesser Calabash human Beta- Lundberg et al. St. John 2 human bone Burial 4 1170 80 — Islands Antilles Boom bone/teeth 27793 1992:table 1 U.S. Virgin Lesser Calabash human Beta- Lundberg St. John 2 human bone Feature 20 840 40 -14.4 Islands Antilles Boom bone/teeth 191882 2005:table 3 charcoal/ U.S. Virgin Lesser Unit 1, Level 3, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 20-30 cmbs 69973 material charcoal/ U.S. Virgin Lesser Unit 3, Level 1, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 0-10 cmbs 184206 material charcoal/ U.S. Virgin Lesser Unit 3, Level 2, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 10-20 cmbs 184208 material charcoal/ U.S. Virgin Lesser Unit 3, Level 3, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 20-30 cmbs 184209 material charcoal/ U.S. Virgin Lesser Unit 3, Level 4, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 30-40 cmbs 184211 material charcoal/ U.S. Virgin Lesser Unit 3, Level 6, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 50-60 cmbs 184217 material charcoal/ U.S. Virgin Lesser Unit 3, Level 7, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 60-70 cmbs 184212 material charcoal/ U.S. Virgin Lesser Unit 3, Level 8, Beta- St. John 3 Cinnamon Bay charcoal charred — — — Wilds 2013 Islands Antilles 70-80 cmbs 184218 material Unit 1 and 3, U.S. Virgin Lesser bulk Beta- St. John 4 Cinnamon Bay bulk sample Levels 9, 10, and — — — Wilds 2013 Islands Antilles sample 69974 11, 80-110 cmbs Lamesure U.S. Virgin Lesser Beach Access Bates 2001: St. John 4 — unknown — — — — — Islands Antilles Road 101 (12VAm2-63) 367 charcoal/ U.S. Virgin Lesser Beta- Lundberg St. John 2 Peter Bay Site charcoal charred BT1-I, Str. 1 970 80 25.0 (est) Islands Antilles 59780 2001:224 material charcoal/ U.S. Virgin Lesser Beta- Lundberg St. John 2 Peter Bay Site charcoal charred Unit 1, Level F2 1120 100 25.0 (est) Islands Antilles 59781 2001:224 material Federation of interface of Lesser Sugar Factory Anadana marine UCLA- Goodwin St. Kitts St. Kitts and 2 midden base with 4100 60 — Antilles Pier notebilis shell 2111a 1978:13 Nevis soil Federation of interface of Lesser Sugar Factory marine UCLA- Goodwin St. Kitts St. Kitts and 2 Arca zebra midden base with 2175 60 — Antilles Pier shell 2111b 1978:13 Nevis soil Federation of Lesser Sugar Factory Goodwin St. Kitts St. Kitts and 4 — unknown — UCLA- 4100 60 — Antilles 1 1978:13 Nevis Bullen and Bullen Lesser marine St. Lucia St. Lucia 2 Giraudy Strombus sp. 18-24 in. RL-31 1120 100 — 1972:153; Antilles shell Rouse et al. 1978:462 Bullen and Bullen Lesser marine St. Lucia St. Lucia 2 Giraudy Strombus sp. 6-12 in. RL-30 1240 100 — 1972:153; Antilles shell Rouse et al. 1978:462 Lesser Bullen and St. Lucia St. Lucia 4 Grande Anse — unknown — — 490 80 — Antilles Bullen 1970 Rouse et al. 1978:462; charcoal/ Lesser Rouse St. Lucia St. Lucia 2 Grande Anse charcoal charred 5.5 ft. Y-1115 1460 80 — Antilles 1989:397; material Haviser 1997:60 368 charcoal/ Lesser GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte charcoal charred F67-02 645 35 — Antilles 46604 2012 material Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F22 750 30 — Antilles bone/teeth 31944 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F57-23 740 30 — Antilles bone/teeth 32314 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F58-23 720 35 — Antilles bone/teeth 32315 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F67-03 725 35 — Antilles bone/teeth 32317 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F67-11 770 35 — Antilles bone/teeth 32319 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte bone F67-31 1000 40 — Antilles bone/teeth 46607 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F68-01 920 25 — Antilles bone/teeth 32324 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F68-04 790 35 — Antilles bone/teeth 32325 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F68-06 865 35 — Antilles bone/teeth 32326 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F68-11 745 30 — Antilles bone/teeth 32327 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F68-20 820 35 — Antilles bone/teeth 32328 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F69-02 620 40 — Antilles bone/teeth 32329 2012 Lesser human GrN- Hofman et al. St. Lucia St. Lucia 2 Lavoutte human bone F69-05 960 35 — Antilles bone/teeth 32330 2012 Bullen and Lesser marine Bullen 1970; St. Lucia St. Lucia 3 Lavoutte Strombus sp. — RL-26 710 100 — Antilles shell Hofman et al. 2012 Lesser marine GrN- Hofman et al. St. Lucia St. Lucia 3 Lavoutte marine shell 05-69-55/2 950 25 — Antilles shell 32331 2012 Lesser marine GrN- Hofman et al. St. Lucia St. Lucia 3 Lavoutte marine shell 05-69-55/7 1070 25 — Antilles shell 32332 2012 Lesser marine GrN- Hofman et al. St. Lucia St. Lucia 3 Lavoutte marine shell F67-06/1 680 25 — Antilles shell 32318 2012 369 Lesser marine GrN- Hofman et al. St. Lucia St. Lucia 3 Lavoutte marine shell F67-24 805 30 — Antilles shell 32322 2012 Lesser GrN- Hofman et al. St. Lucia St. Lucia 3 Lavoutte wood wood F67-21 240 35 — Antilles 46606 2012 Bullen and charcoal/ Bullen Lesser St. Lucia St. Lucia 2 Troumassee charcoal charred Pit 6 Y-650 1220 100 — 1972:153, 161; Antilles material Rouse et al. 1978:462 Lesser Troumassee St. Lucia St. Lucia 4 — unknown — — 1220 110 — Rouse 1961 Antilles Site charcoal/ Lesser carbonized Siegel et al. St. Lucia St. Lucia 4 Vieux Fort charred VF08-1, 414.5 cm AA-84884 4380 60 -26.7 Antilles wood 2015 material Lesser organic organic VF08-1, 60-65 Beta- Siegel et al. St. Lucia St. Lucia 4 Vieux Fort 630 30 -27.0 Antilles sediment material cm 378827 2015 Lesser organic VF08-1, 60-65 Beta- Siegel et al. St. Lucia St. Lucia 4 Vieux Fort preserved peat 230 30 -25.3 Antilles material cm 379163 2015 Lesser organic organic VF08-1, 60-65 Beta- Siegel et al. St. Lucia St. Lucia 4 Vieux Fort 660 30 -27.2 Antilles sediment material cm 383083 2015 Lesser VF08, 655-657 Siegel et al. St. Lucia St. Lucia 4 Vieux Fort preserved peat peat AA-82675 5730 70 -27.4 Antilles cm 2015 Lesser VF08-1, 205-207 Siegel et al. St. Lucia St. Lucia 4 Vieux Fort preserved peat peat AA-84800 1980 35 -26.3 Antilles cm 2015 Lesser organic VF08-1, 255-257 Siegel et al. St. Lucia St. Lucia 4 Vieux Fort sediment AA-84883 2960 30 -31.2 Antilles sediment cm 2015 Hénocq Lesser faunal GrN- St. Martin St. Martin 2 Anse des Peres land crab AP 2-A-1 1180 30 — 1995a:322, Antilles material 20160 324, 1995b:29 Hénocq Lesser faunal GrN- St. Martin St. Martin 2 Anse des Peres land crab AP 3-A-2 1170 30 — 1995a:322, Antilles material 20162 324, 1995b:29 370 Hénocq Lesser faunal GrN- St. Martin St. Martin 2 Anse des Peres land crab AP 5-A-3 1225 30 — 1995a:322, Antilles material 20161 324, 1995b:29 charcoal/ Bonnissent Lesser Beta- St. Martin St. Martin 2 Baie Longue 2 charcoal charred BL2US2n°5 3140 40 — 2008; Watters Antilles 187937 material et al. 1992 Lesser Strombus marine Beta- Bonnissent St. Martin St. Martin 2 Baie Longue 2 BL2US2n°2 3450 40 — Antilles gigas shell 187936 2008 Lesser Beta- St. Martin St. Martin 3 Baie Nettle — unknown — 4150 40 — Serrand 2009 Antilles 261095 charcoal/ Lesser Baie Orientale Beta- Bonnissent et St. Martin St. Martin 2 charcoal charred S11L16n°2 2020 40 — Antilles 1 146424 al. 2001 material Bonnissent et charcoal/ Lesser Baie Orientale Beta- al. 2001; St. Martin St. Martin 2 charcoal charred S23L20n°1 2270 40 — Antilles 1 146425 Bonnissent material 2008 charcoal/ Lesser Baie Orientale Beta- Bonnissent et St. Martin St. Martin 2 charcoal charred S39L15n°4 2420 40 — Antilles 1 145372 al. 2001 material Bonnissent et Lesser Baie Orientale Strombus marine Beta- St. Martin St. Martin 2 S4L24n°1 2850 60 — al. 2001; Antilles 1 gigas shell 146427 Richard 1994 Lesser marine GrN- Hénocq and St. Martin St. Martin 3 Baie Oreintale shell BO G2-4 1170 30 — Antilles shell 20164 Petit 1995 Lesser Baie Orientale faunal GrN - Hénocq and St. Martin St. Martin 3 parasite BO G2-4 1280 50 — Antilles 2 material 20177 Petit 1998 Lesser Baie Orientale Ly-1455 Bonnissent St. Martin St. Martin 4 — unknown BO S6J-10 1180 30 — Antilles 2 (OxA) 2008 Lesser Baie Orientale marine GrN- Hénocq and St. Martin St. Martin 2 Cittarium pica BO G2-4 1170 30 — Antilles 2 shell 20164 Petit 1998 371 Ly- Bonnissent and Lesser Baie aux human St. Martin St. Martin 2 human bone BP99SEP2S25 2019(OxA 895 30 — Stouvenot Antilles Prunes bone/teeth ) 2005 Ly- Bonnissent and Lesser Baie aux St. Martin St. Martin 4 — unknown BP99S104AB 2020(OxA 705 25 — Stouvenot Antilles Prunes ) 2005 Ly- Bonnissent and Lesser Baie aux St. Martin St. Martin 4 — unknown BP99S24O3D 2021(OxA 1035 25 — Stouvenot Antilles Prunes ) 2005 Bonnissent and Lesser Baie aux St. Martin St. Martin 2 Guaiacum sp. wood BP99US213 Ly-11437 890 30 — Stouvenot Antilles Prunes 2005 Lesser Baie-au- bottom of post Stouvenot et al. St. Martin St. Martin 2 wood wood Ly-9163 1230 30 — Antilles Prunes (center) 2013:480 Lesser Baie-au- bottom of post Stouvenot et al. St. Martin St. Martin 2 wood wood Ly-11435 890 30 — Antilles Prunes Peripherial 2013:480 Lesser marine Beta- Hénocq 1995b; St. Martin St. Martin 3 Baie Rouge shell BR M1C-9 840 60 — Antilles shell 82151 Hénocq 1998 Lesser marine Beta- Hénocq 1995b; St. Martin St. Martin 3 Baie Rouge marine shell BRM1C-10 880 50 — Antilles shell 82152 Hénocq 1998 Lesser marine Beta- Hénocq 1995b; St. Martin St. Martin 3 Baie Rouge marine shell BRM1C-2 1300 60 — Antilles shell 82150 Hénocq 1998 Lesser marine St. Martin St. Martin 3 Baie Rouge marine shell BRM1C-9 Beta82151 840 60 — Hénocq 1998 Antilles shell Lesser marine Lyon- St. Martin St. Martin 3 Belle Créole Strombe, lame — 3810 30 — Yvon 2009 Antilles shell 7579 372 Lesser Strombus marine KIA- Bonnissent St. Martin St. Martin 2 Cul-de-Sac Cul-de-Sac 2007 1900 25 — Antilles gigas shell 32785 2008 Lesser marine PITT- St. Martin St. Martin 3 Cupecoy Bay marine shell CB10-20 cm 790 35 — Haviser 1988 Antilles shell 0157 Lesser marine PITT- St. Martin St. Martin 3 Cupecoy Bay marine shell CB20-30 cm 1045 25 — Haviser 1988 Antilles shell 0158 Lesser marine PITT- St. Martin St. Martin 3 Cupecoy Bay marine shell CB30-40 cm 1715 45 — Haviser 1988 Antilles shell 0159 charcoal/ Lesser Beta- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred 971270098FE2 3490 40 — Antilles 190805 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER(B)S2n30 1494 26 — Antilles 28122 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER1010(D)S1n28 3095 23 — Antilles 28117 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER1011(D)S1n26 2951 52 — Antilles 28118 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER1012(D)S1n27 3655 25 — Antilles 28119 2008 material charcoal/ Lesser ER1013b(E)S1n3 KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred 3366 27 — Antilles 8 28120 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER1020(E)S1n39 3828 27 — Antilles 28121 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER4010(E)S4n40 3684 27 — Antilles 28123 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER4010(E)S4n41 3598 29 — Antilles 28124 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER6002(D)S2n29 3235 26 — Antilles 28125 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER6003(D)S2n31 3447 26 — Antilles 28126 2008 material charcoal/ Lesser KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 charcoal charred ER7001(E)S3n33 3429 35 — Antilles 28127 2008 material 373 Lesser Strombus marine ER1007a(D)S1n2 KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 3105 30 — Antilles gigas shell 3 28109 2008 Lesser Strombus marine ER1007a(D)S1n4 KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 3185 30 — Antilles gigas shell 4 28110 2008 Lesser Strombus marine ER1007b(D)S1n2 KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 3380 40 — Antilles gigas shell 1 28111 2008 Lesser Strombus marine ER1007b(D)S1n4 KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 3775 30 — Antilles gigas shell 5 28112 2008 Lesser Strombus marine KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 ER1009(D)S1n34 3320 30 — Antilles gigas shell 28113 2008 Lesser Strombus marine KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 ER6004(E)S2n32 3800 30 — Antilles gigas shell 28114 2008 Lesser marine KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 blade conch ER6005(E)S2n43 4275 30 — Antilles shell 28115 2008 Lesser Strombus marine KIA- Bonnissent St. Martin St. Martin 2 Etang Rouge 1 ER7002(F)S3n35 4505 35 — Antilles gigas shell 28116 2008 Lesser Strombus marine KIA- St. Martin St. Martin 2 Etang Rouge 3 ER3 H2 4830 40 — Martias 2005 Antilles gigas shell 28815 Martias 2005; Lesser Strombus marine KIA- St. Martin St. Martin 2 Etang Rouge 3 ER3(H)1 4770 40 — Bonnissent Antilles gigas shell 28108 2008 Sellier-Segard Lesser marine Beta- St. Martin St. Martin 3 Grand Case shell BK 76 1340 30 +1.0 and Samuelian Antilles shell 359544 2017 Sellier-Segard Lesser marine Beta- St. Martin St. Martin 3 Grand Case shell BK 76 1580 30 +0.7 and Samuelian Antilles shell 386284 2017 Sellier-Segard Lesser marine Beta- St. Martin St. Martin 3 Grand Case shell BK 76 1510 30 +1.9 and Samuelian Antilles shell 286285 2017 374 Sellier-Segard Lesser marine Beta- St. Martin St. Martin 3 Grand Case shell BK 77 1390 30 +0.4 and Samuelian Antilles shell 417001 2017 Sellier-Segard Lesser marine Beta- St. Martin St. Martin 3 Grand Case shell BK 77 1490 30 +0.4 and Samuelian Antilles shell 417000 2017 Sellier-Segard Lesser human Beta- St. Martin St. Martin 3 Grand Case collagen BK 77 950 30 +14.5 and Samuelian Antilles bone/teeth 416998 2017 charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE A3-2 1490 35 — Antilles 0445 1998:341 material Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 13-A-14 1590 70 — Antilles 82153 Hénocq and material Petit 1998 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 13-B-16 1710 60 — Antilles 82154 Hénocq and material Petit 1998 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 13-D-16 1540 50 — Antilles 82155 Hénocq and material Petit 1998 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 13-D-21 1870 60 — Antilles 82156 Hénocq and material Petit 1998 charcoal/ Lesser LGQ- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE 16-US-18 1760 160 — Antilles 1099 1998 material 375 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 17-G-10 1800 60 — Antilles 82157 Hénocq and material Petit 1998 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 17-H-10 1800 50 — Antilles 82158 Hénocq and material Petit 1998 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 18-B-11 1760 50 — Antilles 82160 Hénocq and material Petit 1998 Bonnissent charcoal/ Lesser Beta- 1998:341; St. Martin St. Martin 2 Hope Estate charcoal charred HE 18-D-9 1910 50 — Antilles 82159 Hénocq and material Petit 1998 charcoal/ Lesser Beta- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE 19-M-17 1000 50 — Antilles 82165 1998:341 material charcoal/ Lesser Beta- Bonnissent et St. Martin St. Martin 2 Hope Estate charcoal charred HE 20-14-D 1770 50 — Antilles 106228 al. 2002 material charcoal/ Lesser Beta- Bonnissent et St. Martin St. Martin 2 Hope Estate charcoal charred HE 22-4C/B 1670 50 — Antilles 106229 al. 2002 material charcoal/ Lesser Beta- Bonnissent et St. Martin St. Martin 2 Hope Estate charcoal charred HE 23-5-B 1960 60 — Antilles 106230 al. 2002 material charcoal/ Lesser Beta- Bonnissent et St. Martin St. Martin 2 Hope Estate charcoal charred HE 25-12-B 1560 60 — Antilles 106231 al. 2002 material charcoal/ Lesser Beta- Bonnissent et St. Martin St. Martin 2 Hope Estate charcoal charred HE 25-12-C 1650 70 — Antilles 106232 al. 2002 material charcoal/ Lesser Beta- Bonnissent et St. Martin St. Martin 2 Hope Estate charcoal charred HE 26-06-C 1710 70 — Antilles 106233 al. 2002 material 376 charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE A3-3 2250 45 — Antilles 0446 1998:341 material charcoal/ Lesser PITT- Haviser 1991; St. Martin St. Martin 2 Hope Estate charcoal charred HE A3-7 1660 55 — Antilles 0452 Hoogland 1999 material charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE A5-8 2050 45 — Antilles 0448 1998:341 material charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE T20-3 2300 55 — Antilles 0449 1998:341 material charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE T20-3 2510 40 — Antilles 0450 1998:341 material charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE Test 1-5 2275 60 — Antilles 0219 1998:341 material charcoal/ Lesser PITT- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE Test 1-6 2250 45 — Antilles 0220 1998:341 material Bonnissent Lesser faunal HE 10-C-3 GrN- St. Martin St. Martin 2 Hope Estate land crab 1530 30 — 1998; Haviser Antilles material (posthole) 20168 1997:62 Hoogland Lesser faunal GrN- 1999, St. Martin St. Martin 2 Hope Estate land crab HE 6-D-6 1535 30 — Antilles material 20170 Bonnissent 1998:341 Lesser faunal GrN- Bonnissent St. Martin St. Martin 2 Hope Estate crab HE 7-B-4 1520 35 — Antilles material 20169 1998:341 Lesser human GrN- Haviser St. Martin St. Martin 3 Hope Estate human bone — 1520 35 — Antilles bone/teeth 20169 1997:62 Lesser marine LGQ- Bonnissent St. Martin St. Martin 3 Hope Estate shell HE 16-US- 19 2070 140 — Antilles shell 1100 1998 Hénocq and Lesser marine Beta- Petit 1998, St. Martin St. Martin 3 Hope Estate marine shell HE 19-F-14 1900 60 — Antilles shell 82163 Bonnissent 1998:341 377 Hénocq and Lesser marine Beta- Petit 1998, St. Martin St. Martin 3 Hope Estate marine shell HE 19-I-10 1930 80 — Antilles shell 82162 Bonnissent 1998:341 Hénocq and Lesser marine Beta- Petit 1998, St. Martin St. Martin 3 Hope Estate marine shell HE 19-J-6 2265 110 — Antilles shell 82161 Bonnissent 1998:341 Bonnissent Lesser marine Beta- 1998:341; St. Martin St. Martin 3 Hope Estate marine shell HE 19-O-15 3360 70 — Antilles shell 82164 Hénocq and Petit 1998 Lesser St. Martin St. Martin 4 Hope Estate — unknown HE 98 2917A AA-30805 1610 45 -4.87 Serrand 1999 Antilles charcoal/ Lesser LGQ- Bonnissent St. Martin St. Martin 2 Hope Estate charcoal charred HE 16-US-16 1610 150 — Antilles 1098 1998 material Lesser marine PITT- Bonnissent St. Martin St. Martin 3 Hope Estate shell HE A2 5-3 1510 35 — Antilles shell 0451 1998 Lesser marine Lyon- Bonnissent et St. Martin St. Martin 3 Hope Hill Lobatus gigas — 3140 40 — Antilles shell 9190 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3120 30 — Antilles shell 361277 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3150 30 — Antilles shell 361273 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3330 30 — Antilles shell 361280 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3390 30 — Antilles shell 361279 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3390 30 — Antilles shell 390239 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3520 30 — Antilles shell 361278 al. 2016 Lesser Codakia marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 — 3540 30 — Antilles orbicularis shell 390240 al. 2016 Lesser Codakia marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 — 3550 30 — Antilles orbicularis shell 390242 al. 2016 378 Lesser Codakia marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 — 3750 30 — Antilles orbicularis shell 361282 al. 2016 Lesser Codakia marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 — 3580 30 — Antilles orbicularis shell 390241 al. 2016 Lesser marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 Lobatus gigas — 3830 30 — Antilles shell 361281 al. 2016 Lesser Codakia marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 — 3820 30 — Antilles orbicularis shell 390243 al. 2016 Lesser Codakia marine Beta- Bonnissent et St. Martin St. Martin 3 Lot 73 — 3850 30 — Antilles orbicularis shell 390244 al. 2016 Lesser Norman Estate Strombidae marine Beta- Hénocq 1995a, St. Martin St. Martin 2 NE92 Surf. 3580 90 — Antilles 1 blade shell 41782 1995b charcoal/ Lesser Norman Estate Beta- Bonnissent St. Martin St. Martin 2 charcoal charred NE2D2 2610 40 — Antilles 2 224792 2008 material Lesser Norman Estate Strombus marine Beta- Bonnissent St. Martin St. Martin 2 NE2D4 3240 60 — Antilles 2 gigas shell 224793 2008 Lesser marine GrN- Hénocq 1995a, St. Martin St. Martin 3 Norman Estate shell NE 19-2 3590 50 — Antilles shell 20158 1995b Lesser marine GrN- Hénocq 1995a, St. Martin St. Martin 3 Norman Estate shell NE 23-D-1 3730 30 — Antilles shell 20157 1995b Lesser marine GrN- Hénocq 1995a, St. Martin St. Martin 3 Norman Estate shell NE 6-E-3 3780 40 — Antilles shell 20159 1995b Lesser Strombus marine KIA- Bonnissent St. Martin St. Martin 2 Petite Plage 1 PPO4B2 1585 25 — Antilles gigas shell 28963 2008 Lesser Strombus marine Beta- Bonnissent St. Martin St. Martin 2 Petite Plage 2 PPO4B 1330 60 — Antilles gigas shell 200098 2008 charcoal/ Lesser Beta- Bonnissent St. Martin St. Martin 2 Pinel Ouest charcoal charred PO1104n°3 1560 40 — Antilles 187940 2008 material Lesser Strombus marine Beta- Bonnissent St. Martin St. Martin 2 Pinel Ouest PO1706B2n°2 1810 40 — Antilles gigas shell 187941 2008 Lesser Pointe du Strombus marine Bonnissent St. Martin St. Martin 2 PTE-BLUFF surf Erl-9064 3460 50 — Antilles Bluff gigas shell 2008 Lesser Pointe du Strombus marine Beta- Bonnissent St. Martin St. Martin 2 PDC6006C2n°2 1540 40 — Antilles Canonnier gigas shell 187938 2008 379 Lesser Pointe du Beta- Bonnissent St. Martin St. Martin 4 — unknown PDC6006C4n°5 1290 40 — Antilles Canonnier 187939 2008 Lesser Salines Strombus marine Bonnissent St. Martin St. Martin 2 SAOR-1004-1 Erl-9071 3750 50 — Antilles d’Orient gigas shell 2008 Lesser Salines Strombus marine Bonnissent St. Martin St. Martin 2 SAOR-1004-2 Erl-9072 3610 50 — Antilles d’Orient gigas shell 2008 Lesser Sandy Ground marine Bonnissent St. Martin St. Martin 2 blade conch SAND-GR1 Erl-9065 3340 50 — Antilles 1 shell 2008 Lesser Sandy Ground marine Bonnissent St. Martin St. Martin 2 blade conch SAND-GR2 Erl-9066 4200 50 — Antilles 2 shell 2008 charcoal/ Lesser Bonnissent St. Martin St. Martin 2 Trou David 1 charcoal charred TD1n1 Erl-9074 3515 45 — Antilles 2008 material Lesser Strombus marine Bonnissent St. Martin St. Martin 2 Trou David 1 TD1n4 Erl-9073 3510 50 — Antilles gigas shell 2008 Lesser human Bonnissent St. Martin St. Martin 2 Trou David 2 human bone TRD2-SURF Erl-8235 2070 50 — Antilles bone/teeth 2008 Lesser marine Beta- Sellier-Ségard St. Martin St. Martin 3 Rue Maurasse — — 3140 30 — Antilles shell 435488 2016 Tilden 1976: U.S. Virgin Lesser Chione marine Pit 10, Level E, St. Thomas 2 Arboretum L-1380B 2410 60 — 244; Rouse et Islands Antilles cancellata shell 35-45 cmbs al. 1978:468 Tilden 1976: U.S. Virgin Lesser Chione marine Pit, 10, Level J, St. Thomas 2 Arboretum L-1380A 1900 70 — 244; Rouse et Islands Antilles cancellata shell 85-95 cmbs al. 1978:468 Gross U.S. Virgin Lesser marine 1976:234; St. Thomas 3 Cancel Hill Arca zebra — I-8643 2820 85 — Islands Antilles shell Rouse et al. 1978:468 380 Rouse et al. U.S. Virgin Lesser TP 5, 100-110 1978:468; St. Thomas 4 Hull Bay — unknown RL-409 640 110 — Islands Antilles cmbs Lundberg 1992:table 2 Rouse et al. U.S. Virgin Lesser TP 6B and 13, 1978:468; St. Thomas 4 Hull Bay — unknown RL-411 730 110 — Islands Antilles 80-90 cmbs Lundberg 1992:table 2 U.S. Virgin Lesser Grambokola marine Gross St. Thomas 3 Arca zebra — I-8642 2785 85 — Islands Antilles Hill shell 1976:234 Bullen and Sleight U.S. Virgin Lesser marine St. Thomas 2 Krum Bay Busycon gigas third midden level I-621 2400 175 — 1963:41; Islands Antilles shell Rouse et al. 1978:46 Lundberg U.S. Virgin Lesser marine St. Thomas 2 Krum Bay Arca zebra Unit 5, level N Beta-7022 2860 70 +1.33 1989:table 3, Islands Antilles shell 87 U.S. Virgin Lesser marine Lundberg St. Thomas 2 Krum Bay Arca zebra Unit 6, level C SI-5848 1805 75 — Islands Antilles shell 1989:table 3 U.S. Virgin Lesser marine Lundberg St. Thomas 2 Krum Bay Arca zebra Unit 6, level E SI-5849 1595 75 — Islands Antilles shell 1989:table 3 U.S. Virgin Lesser marine Lundberg St. Thomas 2 Krum Bay Arca zebra Unit 6, level I SI-5850 2130 60 — Islands Antilles shell 1989:table 3 U.S. Virgin Lesser marine Lundberg St. Thomas 2 Krum Bay Arca zebra Unit 6, level K SI-5851 2700 65 — Islands Antilles shell 1989:table 3 charcoal/ U.S. Virgin Lesser moder Gross St. Thomas 3 Krum Bay charcoal charred B1, L-III RL-412 — — Islands Antilles n 1976:234 material 381 charcoal/ U.S. Virgin Lesser Lundberg St. Thomas 3 Krum Bay charcoal charred Unit 6, level N Beta-5778 3580 270 — Islands Antilles 1989:table 3 material U.S. Virgin Lesser marine Lundberg St. Thomas 3 Krum Bay Arca zebra Unit 6, level O SI-5852 2535 55 — Islands Antilles shell 1989:table 3 charcoal/ U.S. Virgin Lesser Lundberg St. Thomas 4 Krum Bay charcoal charred Unit 6, level B Beta-5777 120 90 — Islands Antilles 1989:table 3 material U.S. Virgin Lesser marine Lundberg St. Thomas 4 Krum Bay Arca zebra Unit 6, level B SI-5847 2030 80 — Islands Antilles shell 1989:table 3 Bullen and Sleight U.S. Virgin Lesser marine St. Thomas 2 Krum Bay Busycon gigas first midden level I-620 2175 160 — 1963:41; Islands Antilles shell Rouse et al. 1978:468 Gross U.S. Virgin Lesser marine Unit B1, Stratum 1976:234; St. Thomas 2 Krum Bay Arca zebra I-8641 2775 85 +2.2 Islands Antilles shell III Rouse et al. 1978:468 Gross U.S. Virgin Lesser marine Unit B1, Stratum 1976:234; St. Thomas 2 Krum Bay Arca zebra I-8640 2830 85 +2.3 Islands Antilles shell VI Rouse et al. 1978:468 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay A shell Hatt's layer 2 2600 30 +1.6 Toftgaard 2019 Islands Antilles shell 445042 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay A shell Hatt's layer 4 2420 30 +1.1 Toftgaard 2019 Islands Antilles shell 445861 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay A shell Hatt's layer 3 3080 30 +3.2 Toftgaard 2019 Islands Antilles shell 445862 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay A shell Hatt's layer 3 2900 30 +2.1 Toftgaard 2019 Islands Antilles shell 445863 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay B shell Hatt's layer 2 3280 30 +2.6 Toftgaard 2019 Islands Antilles shell 445038 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay B shell Hatt's layer 2 3190 30 +1.6 Toftgaard 2019 Islands Antilles shell 445039 382 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay B shell Hatt's layer 2 3120 30 +3.9 Toftgaard 2019 Islands Antilles shell 445040 U.S. Virgin Lesser marine Beta- St. Thomas 3 Krum Bay B shell Hatt's layer 1 2920 30 +2.8 Toftgaard 2019 Islands Antilles shell 445041 Lundberg et al. charcoal/ U.S. Virgin Lesser Beta- 1992:table 2; St. Thomas 2 Magens Bay charcoal charred Unit 3, level B 1040 150 — Islands Antilles 49751 Wing et al. material 2002 charcoal/ Utility trench, Rouse 1989; U.S. Virgin Lesser St. Thomas 2 Main Street charcoal charred lowest cultural GX-12845 1770 235 — Lundberg et al. Islands Antilles material stratum 1992:table 2 U.S. Virgin Lesser Kreuger Wing et al. St. Thomas 4 Main Street — unknown Lowest Stratum — — — Islands Antilles Ent. 2002 Righter A 1, charcoal/ 2002:table 1.3; U.S. Virgin Lesser 2097N/1821.50E Beta- St. Thomas 2 Tutu charcoal charred 2710 120 — Lundberg Islands Antilles (EU 3), E/gravel 111459 material personal 1 communication charcoal/ Area 1, U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2097N/1821.50E 1500 50 -25.3 Islands Antilles 108889 2002:table 5.1 material (EU 3), BI charcoal/ Area 1, U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2097N/1821.50E 1980 50 — Islands Antilles 111462 2002:table 5.1 material (EU 3), BIII charcoal/ Area 1, U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2097N/1822.50E 2090 50 -27.2 Islands Antilles 108917 2002:table 5.1 material (EU 10), D charcoal/ Area 1, U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2097N/1823.50E 1720 140 -24.6 Islands Antilles 108888 2002:table 5.1 material (EU 4), B 383 Righter charcoal/ Area 9N, 2002:table 1.3; U.S. Virgin Lesser Beta- St. Thomas 2 Tutu charcoal charred 2075N/1810E 1580 50 -26.6 Lundberg Islands Antilles 65472 material (EU 33), B2 personal communication charcoal/ Area 9S, U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2036N/1842E 560 80 — Islands Antilles 111452 2002:table 5.4 material (EU 26), C charcoal/ Area 9S, U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2037N/1842E 650 50 — Islands Antilles 111461 2002:table 5.4 material (EU 25), C Righter charcoal/ Area 9S, 2002:table 1.3; U.S. Virgin Lesser Beta- St. Thomas 2 Tutu charcoal charred 2037N/1842E 810 140 — Lundberg Islands Antilles 48742 material (EU 25), I personal communication Righter 2002, charcoal/ F-20, Posthole U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charred wood charred burial 14 (unit 1310 60 — Islands Antilles 65469 personal material and level) communication Righter 2002; charcoal/ U.S. Virgin Lesser P-15, Str. 1 (unit Beta- Lundberg St. Thomas 2 Tutu charred wood charred 730 80 — Islands Antilles and level) 42277 personal material communication Righter 2002; U.S. Virgin Lesser P-407A, Str. 2 Beta- Lundberg St. Thomas 2 Tutu Guaiacum sp. wood 810 70 — Islands Antilles (unit and level) 43437 personal communication 384 Righter charcoal/ Area 4, 2002:table 1.3; U.S. Virgin Lesser Beta- St. Thomas 3 Tutu charcoal charred 2087N/1952E 40 50 — Lundberg Islands Antilles 65470 material (EU 31), A personal communication Righter charcoal/ Area 4, 2002:table 1.3; U.S. Virgin Lesser Beta- St. Thomas 3 Tutu charcoal charred 2087N/1952E 70 50 — Lundberg Islands Antilles 65471 material (EU 31), BIII personal communication U.S. Virgin Lesser human Beta- St. Thomas 3 Tutu human bone Burial 39, Str. 8 80 30 -18.9 Righter 2002 Islands Antilles bone/teeth 83002 charcoal/ U.S. Virgin Lesser P-101, Str. 3 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108904 material charcoal/ U.S. Virgin Lesser P-103 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 111454 material charcoal/ U.S. Virgin Lesser P-1067 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 112964 material charcoal/ U.S. Virgin Lesser P-114, Str. 7 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108885 material charcoal/ U.S. Virgin Lesser P-116(2)A, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108894 material charcoal/ U.S. Virgin Lesser P-146 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108899 material charcoal/ U.S. Virgin Lesser P-1763A, Str. 7 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108893 material charcoal/ U.S. Virgin Lesser P-1764A, Str. 7 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 111456 material charcoal/ U.S. Virgin Lesser P-1822 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108921 material 385 charcoal/ U.S. Virgin Lesser P-1841, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 111463 material charcoal/ U.S. Virgin Lesser P-192 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108890 material charcoal/ U.S. Virgin Lesser P-2071A, Str. 5 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108911 material charcoal/ U.S. Virgin Lesser P-2073A, Str. 5 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108916 material charcoal/ U.S. Virgin Lesser P-283A, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108898 material charcoal/ U.S. Virgin Lesser P-3024A, Str. 5 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 111458 material charcoal/ U.S. Virgin Lesser P-3063A, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108913 material charcoal/ U.S. Virgin Lesser P-3078 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108915 material charcoal/ U.S. Virgin Lesser P-526, Str. 6 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 111460 material charcoal/ U.S. Virgin Lesser P-531, Str. 6 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 111455 material charcoal/ U.S. Virgin Lesser P-535A, Str. 6 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 111457 material charcoal/ U.S. Virgin Lesser P-53A, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108908 material charcoal/ U.S. Virgin Lesser P-54A, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108895 material charcoal/ U.S. Virgin Lesser P-552, Str. 5 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108892 material charcoal/ U.S. Virgin Lesser P-59, Str. 7 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108910 material 386 charcoal/ U.S. Virgin Lesser P-601A, Str. 3 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 112968 material charcoal/ U.S. Virgin Lesser P-61 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108901 material charcoal/ U.S. Virgin Lesser P-77 (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108906 material charcoal/ U.S. Virgin Lesser P-78(2)A, Str. 7 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 108909 material charcoal/ U.S. Virgin Lesser P-81A, Str. 8 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 112969 material charcoal/ U.S. Virgin Lesser P-82A (unit and Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles level) 108912 material charcoal/ U.S. Virgin Lesser P-830, Str. 4 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108897 material charcoal/ U.S. Virgin Lesser P-834, Str. 4 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108907 material charcoal/ U.S. Virgin Lesser P-884A(2), Str. 4 Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles (unit and level) 112965 material charcoal/ U.S. Virgin Lesser P-92, Str. 8 (unit Beta- St. Thomas 4 Tutu charred wood charred — — — Righter 2002 Islands Antilles and level) 108900 material U.S. Virgin Lesser P-111A (unit and Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles level) 108919 U.S. Virgin Lesser P-131A (unit and Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles level) 108891 U.S. Virgin Lesser P-214A (unit and Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles level) 108903 U.S. Virgin Lesser P-294(1)A, Str. 8 Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles (unit and level) 108905 387 U.S. Virgin Lesser P-3, Tr-1 (unit Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles and level) 111453 U.S. Virgin Lesser P-41A, Str. 7 Beta- St. Thomas 4 Tutu Croton sp. wood — — — Righter 2002 Islands Antilles (unit and level) 108887 U.S. Virgin Lesser P-4A, Str. 7 (unit Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles and level) 112967 U.S. Virgin Lesser P-760A, Str. 8 Beta- St. Thomas 4 Tutu Acacia sp. wood — — — Righter 2002 Islands Antilles (unit and level) 108896 charcoal/ Area 1; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2096N/1827E, 1800 80 — Islands Antilles 65474 2002:table 5.1 material (EU 6), B Wing et al. charcoal/ Area 4; U.S. Virgin Lesser Beta- 2002, St. Thomas 2 Tutu charcoal charred 2087N/1952E, 1610 70 — Islands Antilles 50066 Lundberg material (EU 31), B 2002:table 5.2 charcoal/ Area 4; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2090N/1948E, 1560 90 — Islands Antilles 54646 2002:table 5.2 material (EU 26), D Wing et al. 2002; Righter charcoal/ Area 8; U.S. Virgin Lesser Beta- 2002:table 1.3; St. Thomas 2 Tutu charcoal charred 2113N/1840E 1570 60 — Islands Antilles 65473 Lundberg material (EU 15), B personal communication charcoal/ U.S. Virgin Lesser Area 9N, CAMS- Wing et al. St. Thomas 2 Tutu charcoal charred 1550 50 — Islands Antilles 2075N/1810E, B2 10696 2002 material charcoal/ Area 9S; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2036N/1842E 720 120 — Islands Antilles 51355 2002:table 5.4 material (EU 26), B base 388 charcoal/ Area 9S; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2036N/1842E 560 120 — Islands Antilles 51354 2002:table 5.4 material (EU 26), B top charcoal/ Area 9W; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2044N/1837E, 1430 90 — Islands Antilles 62568 2002:table 5.3 material (EU 1), D charcoal/ Area 9W; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2044N/1837E, 1400 120 — Islands Antilles 62569 2002:table 5.3 material (EU 1), F charcoal/ Area 9W; U.S. Virgin Lesser Beta- Lundberg St. Thomas 2 Tutu charcoal charred 2044N/1837E, 1380 90 — Islands Antilles 62570 2002:table 5.3 material (EU 1), I U.S. Virgin Lesser human Burial 1, N2059 Beta- St. Thomas 2 Tutu human bone 640 60 -17.2 Righter 2002 Islands Antilles bone/teeth E1835 73390 U.S. Virgin Lesser human Burial 10, N2097 Beta- St. Thomas 2 Tutu human bone 1390 40 -17.7 Righter 2002 Islands Antilles bone/teeth E1858 88345 U.S. Virgin Lesser human Burial 11, N2096 Beta- St. Thomas 2 Tutu human bone 390 40 -16.9 Righter 2002 Islands Antilles bone/teeth E1842 88346 U.S. Virgin Lesser human Burial 12, Str. in Beta- St. Thomas 2 Tutu human bone 540 30 -19.8 Righter 2002 Islands Antilles bone/teeth Area 4 83008 U.S. Virgin Lesser human Burial 13, Str. in Beta- St. Thomas 2 Tutu human bone 1300 30 -17.6 Righter 2002 Islands Antilles bone/teeth Area 1 83009 U.S. Virgin Lesser human Burial 13A, Str. Beta- St. Thomas 2 Tutu human bone 1280 40 -15.3 Righter 2002 Islands Antilles bone/teeth in Area 1 83006 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 16, Area 6 1190 60 -17.7 Righter 2002 Islands Antilles bone/teeth 73392 U.S. Virgin Lesser human Burial 19, Str. in Beta- St. Thomas 2 Tutu human bone 600 60 -17.5 Righter 2002 Islands Antilles bone/teeth Area 9N 73393 U.S. Virgin Lesser human Burial 2, N2061 Beta- St. Thomas 2 Tutu human bone 450 50 -18.8 Righter 2002 Islands Antilles bone/teeth E1833 109070 389 U.S. Virgin Lesser human Burial 20, Str. in Beta- St. Thomas 2 Tutu human bone 380 50 -18.3 Righter 2002 Islands Antilles bone/teeth Area 4 109072 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 21, Area 5 1390 40 -17.5 Righter 2002 Islands Antilles bone/teeth 83011 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 22B, Str. 2 600 30 -18.3 Righter 2002 Islands Antilles bone/teeth 83005 U.S. Virgin Lesser human Burial 23B, Area Beta- St. Thomas 2 Tutu human bone 1330 30 -19.3 Righter 2002 Islands Antilles bone/teeth 6 83000 U.S. Virgin Lesser human Burial 26, Trench Beta- St. Thomas 2 Tutu human bone 560 40 -18.8 Righter 2002 Islands Antilles bone/teeth 6, Area 6 88347 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 29, Str. 3 630 60 -18.2 Righter 2002 Islands Antilles bone/teeth 73394 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 3, Area 9S 1090 30 -19.4 Righter 2002 Islands Antilles bone/teeth 83010 U.S. Virgin Lesser human Burial 30, Area Beta- St. Thomas 2 Tutu human bone 470 40 -17.7 Righter 2002 Islands Antilles bone/teeth 9N 88348 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 31, Str. 8 500 30 -22.4 Righter 2002 Islands Antilles bone/teeth 83004 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 33 Str. 4 460 40 -17.1 Righter 2002 Islands Antilles bone/teeth 88349 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 36, Area 5 1390 30 -16.6 Righter 2002 Islands Antilles bone/teeth 83003 U.S. Virgin Lesser human Burial 38 N2081 Beta- St. Thomas 2 Tutu human bone 590 90 -16.1 Righter 2002 Islands Antilles bone/teeth E1842 73395 U.S. Virgin Lesser human Burial 4, N2015 Beta- St. Thomas 2 Tutu human bone 1330 30 -20.7 Righter 2002 Islands Antilles bone/teeth E1855 83001 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 5, Str. 8 300 40 -18.6 Righter 2002 Islands Antilles bone/teeth 88344 U.S. Virgin Lesser human Beta- St. Thomas 2 Tutu human bone Burial 6, Str. 3 480 50 -19.5 Righter 2002 Islands Antilles bone/teeth 109071 U.S. Virgin Lesser human Burial 8B, N2083 Beta- St. Thomas 2 Tutu human bone 340 30 -16.9 Righter 2002 Islands Antilles bone/teeth E1839 83007 390 U.S. Virgin Lesser human Burial 9, Area 4, Beta- St. Thomas 2 Tutu human bone 580 60 -16.1 Righter 2002 Islands Antilles bone/teeth Str. 6 73391 Bullen and St. Vincent charcoal/ Bullen Lesser black cultural St. Vincent and the 2 Arnos Vale charcoal charred RL-75 1540 110 — 1972:77; Antilles zone Grenadines material Haviser 1997:60 St. Vincent Lesser Museum X-2345- Ostapkowicz et St. Vincent and the 3 Battowia Guaiacum sp. wood 775 50 — Antilles collections 50 al. 2011 Grenadines St. Vincent Lesser Brighton marine Unit A, level 3, GrA- Boomert et al. St. Vincent and the 3 shell 1810 30 — Antilles Beach shell find number 194 52054 2017 Grenadines St. Vincent Unit A, level 14- Lesser Brighton marine GrA- Boomert et al. St. Vincent and the 3 shell 15, find number 2100 30 — Antilles Beach shell 52053 2017 Grenadines 170 St. Vincent charcoal/ Lesser Brighton Unit A, level 16, GrA- Boomert et al. St. Vincent and the 2 charcoal charred 1855 30 — Antilles Beach find number 190 52187 2017 Grenadines material Bullen and St. Vincent charcoal/ Bullen Lesser Buccament St. Vincent and the 2 charcoal charred 120 cm; base RL-73 1670 160 — 1972:79, 112, Antilles West Grenadines material 153; Haviser 1997:60 St. Vincent charcoal/ Lesser Bullen and St. Vincent and the 2 Fitz-Hughs charcoal charred exposed bank RL-74 930 110 — Antilles Bullen 1972:53 Grenadines material St. Vincent Lesser marine deposit below Bullen and St. Vincent and the 2 Indian Bay Livonia pica RL-72 370 110 — Antilles shell midden Bullen 1972:73 Grenadines 391 Bullen and Bullen 1972:79, 94, St. Vincent Lesser Kingston Post Strombus marine 153-154; St. Vincent and the 2 lower level RL-28 1790 100 — Antilles Office gigas shell Rouse Grenadines 1989:397; Haviser 1997:60 northern Trinidad and Golden Grove iguana faunal IV/13 83/86- Beta- Steadman and Tobago South 2 1180 40 -22.6 Tobago (TOB-13) vertebra material 88/90 172209 Jones 2006 America northern Trinidad and Golden Grove peccary pedal faunal IV/16 98/100- Beta- Steadman and Tobago South 2 1110 40 -22.2 Tobago (TOB-13) phalanx material 102/103 172210 Jones 2006 America northern Trinidad and Golden Grove faunal Beta- Steadman and Tobago South 2 agouti pelvis Layer II, Level 2 900 40 -18.9 Tobago (TOB-13) material 153149 Stokes 2002 America northern peccary Trinidad and Golden Grove faunal Layer III/Level Beta- Steadman and Tobago South 2 thoracic 1170 40 -21.7 Tobago (TOB-13) material 10 153150 Stokes 2002 America vertebra northern Trinidad and Golden Grove peccary faunal V/19 113/115- Beta- Steadman and Tobago South 2 1700 40 -20.4 Tobago (TOB-13) humerus material 117-120 172211 Jones 2006 America northern Trinidad and Golden Grove marine Pit B7, L. 13, 60- GrN- Tobago South 3 bulk shell 1100 35 — Boomert 2000 Tobago (TOB-13) shell 65 14956 America bulk shell northern (Melongena Trinidad and Golden Grove marine GrN- Tobago South 3 melongena, Pit B7, L 4, 15-20 995 35 — Boomert 2000 Tobago (TOB-13) shell 14960 America Strombus gigas) bulk shell (Crassostrea northern Trinidad and Golden Grove rhizophorae, marine Pit B7, L. 11, 50- GrN- Tobago South 3 880 50 — Boomert 2000 Tobago (TOB-13) Isognomon shell 55 14957 America alatus, Strombus sp.) 392 bulk shell (Crassostrea northern rhizophorae, Trinidad and Golden Grove marine Pit B7, L. 17, 80- GrN- Tobago South 3 Phacoides 1040 35 — Boomert 2000 Tobago (TOB-13) shell 85 14955 America pectinatus, Strombus gigas) bulk shell (Melongena northern Trinidad and Golden Grove melongena, marine Pit B7, L. 5, 20- GrN- Tobago South 3 860 35 — Boomert 2000 Tobago (TOB-13) Murex sp., shell 25 14959 America Pacoides pectinatus) bulk shell (Crassostrea northern Trinidad and Golden Grove rhizophorae, marine Pit B7, L. 8, 35- GrN- Tobago South 3 890 60 — Boomert 2000 Tobago (TOB-13) Isognomon shell 40 14958 America alatus, Strombus sp.) northern Great charcoal/ Trinidad and Zone 4, Stratum Beta- moder Tobago South 4 Courtland Bay charcoal charred — — Boomert 2000 Tobago A 129261 n America (TOB-23) material northern Great charcoal/ Trinidad and Beta- Tobago South 2 Courtland Bay charcoal charred Zone 4, Stratum E 550 40 -25.0 Boomert 2000 Tobago 129264 America (TOB-23) material northern Great charcoal/ Trinidad and Zone 5, Stratum Beta- Tobago South 2 Courtland Bay charcoal charred 590 40 -25.0 Boomert 2000 Tobago A 129262 America (TOB-23) material northern Great charcoal/ Trinidad and Beta- Tobago South 2 Courtland Bay charcoal charred Zone 6, Statum F 600 50 -25.0 Boomert 2000 Tobago 129265 America (TOB-23) material northern Lovers' charcoal/ Trinidad and Area A, Pit A, L. Rouse Tobago South 2 Retreat (TOB- charcoal charred Y-1336 1300 120 — Tobago 9, 80-90 1963:table C America 69) material northern Lovers' charcoal/ Area B, Pits Trinidad and Tobago South 2 Retreat (TOB- charcoal charred GMQR, L. 2 & 3, Beta-4905 760 105 -23.1 Boomert 2000 Tobago America 69) material 10-30 cm 393 northern Lovers' Reid, personal Trinidad and human Beta- Tobago South 2 Retreat (TOB- bone collagen Area B Phase 2A 810 40 -14.8 communication Tobago bone/teeth 221319 America 69) s northern Lovers' Reid, personal Trinidad and human Beta- Tobago South 2 Retreat (TOB- bone collagen Area B Phase 2B 810 40 -14.7 communication Tobago bone/teeth 221320 America 69) s northern Lovers' Reid, personal Trinidad and human Beta- Tobago South 2 Retreat (TOB- bone collagen Area B Phase 2C 850 40 -15.6 communication Tobago bone/teeth 221321 America 69) s northern Trinidad and Milford 1 marine Pit 2, level 9, 40- GrN- Boomert 1996: Tobago South 3 bulk shell 4315 45 — Tobago (TOB-3) shell 45 cm 14963 80 America northern Trinidad and Milford 1 marine Pit 2, level 8, 35- GrN- Boomert 1996: Tobago South 3 bulk shell 4020 70 — Tobago (TOB-3) shell 40 cm 14964 80 America northern Trinidad and Milford 1 marine Pit 2, level 7, 30- GrN- Boomert 1996: Tobago South 4 bulk shell 4875 45 — Tobago (TOB-3) shell 35 cm 14965 80 America northern Trinidad and Milford 1 peccary faunal Beta- Steadman and Tobago South 2 Layer II, Level 3 2700 40 -21.3 Tobago (TOB-3) humerus material 153151 Stokes 2002 America northern Trinidad and Milford 1 peccary faunal Beta- Steadman and Tobago South 2 Layer II, Level 5 1750 40 -24.3 Tobago (TOB-3) dentary material 153936 Stokes 2002 America northern Trinidad and Sandy Point marine GrN- Tobago South 3 bulk shell Pit 3, L. 11, 50-55 1940 35 — Boomert 2000 Tobago (TOB-1) shell 14961 America bulk shell northern (Cittarium Trinidad and Sandy Point marine GrN- Tobago South 3 pica, Pit 3, L. 10, 45-50 1840 35 — Boomert 2000 Tobago (TOB-1) shell 14962 America Strombus gigas) northern charcoal/ Trinidad and Atagual (VIC- Area A6, exposed Trinidad South 2 charcoal charred Beta-4903 1680 115 -25.85 Boomert 2000 Tobago 30) base of midden America material 394 northern charcoal/ Trinidad and Atagual (VIC- Area A6, exposed Trinidad South 2 charcoal charred Beta-4904 1350 85 -25.55 Boomert 2000 Tobago 30) base of midden America material northern charcoal/ Lower part Harris, pers Trinidad and Atagual (VIC- Trinidad South 2 charcoal charred Stratum 2, 17-34 I-10766 540 75 — comm. In Tobago 30) America material cm Boomert 2000 northern charcoal/ Trinidad and Atagual (VIC- Pit A1, L. 5, 40- Trinidad South 2 charcoal charred Beta-4898 1040 260 -25.3 Boomert 2000 Tobago 30) 50 cm America material northern charcoal/ Trinidad and Atagual (VIC- Pit A1, L. 6, 50- Trinidad South 2 charcoal charred Beta-4899 1755 150 -25.3 Boomert 2000 Tobago 30) 60 America material northern charcoal/ Trinidad and Atagual (VIC- Trinidad South 2 charcoal charred Pit A1, L.7 60-70 Beta-4900 1145 65 -25.5 Boomert 2000 Tobago 30) America material northern charcoal/ Trinidad and Atagual (VIC- Pit A2, L. 6, 50- Trinidad South 2 charcoal charred Beta-4901 1300 110 -25.52 Boomert 2000 Tobago 30) 60 America material northern charcoal/ Trinidad and Atagual (VIC- Pit A2, L. 7, 60- Trinidad South 2 charcoal charred Beta-4902 1805 90 -24.59 Boomert 2000 Tobago 30) 70 America material northern Trinidad and Banwari Trace Pit C, level 1, 25 UGa- Tankersley et Trinidad South 3 bulk carbon bulk carbon 4770 25 — Tobago (SPA-28) cmbs 14932 al. 2018 America northern charcoal/ Trinidad and Banwari Trace Pit C, level 2, 50 UGa- Tankersley et Trinidad South 2 charcoal charred 6100 25 — Tobago (SPA-28) cmbs 14458 al. 2018 America material northern charcoal/ Trinidad and Banwari Trace Pit C, level 2, 85 UGa- Tankersley et Trinidad South 2 charcoal charred 6370 25 — Tobago (SPA-28) cmbs 14459 al. 2018 America material northern charcoal/ Trinidad and Banwari Trace Pit C, level 3, 115 UGa- Tankersley et Trinidad South 2 charcoal charred 7030 25 — Tobago (SPA-28) cmbs 14460 al. 2018 America material northern cortical Trinidad and Banwari Trace faunal Pit C, level 1, 40 UGa- Tankersley et Trinidad South 2 artiodactyl 5300 25 — Tobago (SPA-28) material cmbs 14457 al. 2018 America bioapatite 395 northern charcoal/ Trinidad and Banwari Trace Excavation A, 0- Tamers Trinidad South 4 charcoal charred IVIC-784 2550 100 — Tobago (SPA-28) 25 cmbs 1973:309-310 America material northern charcoal/ Trinidad and Banwari Trace Excavation A, Tamers Trinidad South 2 charcoal charred IVIC-891 6190 100 — Tobago (SPA-28) 100-125 cmbs 1973:309-310 America material northern charcoal/ Trinidad and Banwari Trace Excavation A, Tamers Trinidad South 2 charcoal charred IVIC-889 6780 70 — Tobago (SPA-28) 125-150 cmbs 1973:309-310 America material northern charcoal/ Trinidad and Banwari Trace Excavation A, Tamers Trinidad South 2 charcoal charred IVIC-888 7180 80 — Tobago (SPA-28) 175-200 cmbs 1973:309-310 America material northern charcoal/ Trinidad and Banwari Trace Excavation A, 25- Tamers Trinidad South 2 charcoal charred IVIC-783 5650 100 — Tobago (SPA-28) 50 cmbs 1973:309-310 America material northern charcoal/ Trinidad and Banwari Trace Excavation A, 50- Tamers Trinidad South 2 charcoal charred IVIC-887 6170 90 — Tobago (SPA-28) 75 cmbs 1973:309-310 America material northern charcoal/ Trinidad and Banwari Trace Excavation A, 75- Tamers Trinidad South 2 charcoal charred IVIC-890 6100 90 — Tobago (SPA-28) 100 cmbs 1973:309-310 America material northern Batiment charcoal/ Trinidad and Testpit A, L. 2, 3, Trinidad South 2 Crase 1 (SPA- charcoal charred Beta-6808 650 50 -26.02 Boomert 2000 Tobago & 4 America 26) material northern Batiment Trinidad and Tivela marine Testpit A, L. 3 & Trinidad South 2 Crase 1 (SPA- Beta-6809 990 50 +4.0 Boomert 1985 Tobago mactroides shell 4, 40-80 America 26) northern charcoal/ Reid, personal Trinidad and Blanchisseuse charred Beta- Trinidad South 2 charred Context 1 1570 40 -26.0 communication Tobago (SGE-8) material 189113 America material s northern charcoal/ Reid, personal Trinidad and Blanchisseuse charred Beta- Trinidad South 2 charred Context 1 1650 40 -26.3 communication Tobago (SGE-8) material 196706 America material s northern charcoal/ Reid, personal Trinidad and Blanchisseuse charred Beta- Trinidad South 2 charred Context 1 740 40 -27.5 communication Tobago (SGE-8) material 196707 America material s 396 northern charcoal/ Reid, personal Trinidad and Blanchisseuse charred Beta- Trinidad South 2 charred Context 1 1920 40 -27.5 communication Tobago (SGE-8) material 196708 America material s northern charcoal/ Reid, personal Trinidad and Blanchisseuse charred Beta- Trinidad South 2 charred Context 1 1880 40 -26.9 communication Tobago (SGE-8) material 196709 America material s northern charcoal/ test ecavation at Trinidad and Blanchisseuse Beta- Steadman and Trinidad South 2 wood charcoal charred 125W/25N, 40 1720 50 -26.6 Tobago (SGE-8) 134571 Stokes 2002 America material cmbs, northern charcoal/ Trinidad and Cedros (SPA- Olsen 1974, Trinidad South 2 charcoal charred A1, L. 2, 25-50 IVIC-642 2140 70 — Tobago 1) Boomert 2000 America material northern charcoal/ Trinidad and Cedros (SPA- Olsen 1974, Trinidad South 2 charcoal charred A1, L. 3, 50-75 IVIC-643 1850 80 — Tobago 1) Boomert 2000 America material northern charcoal/ Trinidad and Guayaguayare Testpit C, L. 1, 0- Rouse et al. Trinidad South 2 charcoal charred IVIC-785 1260 100 — Tobago (MAY-16) 25 1978 America material northern charcoal/ Trinidad and Guayaguayare Testpit C, L. 2, Rouse et al. Trinidad South 2 charcoal charred IVIC-786 1720 90 — Tobago (MAY-16) 25-50 1978 America material northern Trinidad and organic Farrell et al. Trinidad South 4 Cedros swamp sediment CE07-1, 128 cm AA-82470 2490 40 -28.3 Tobago sediment 2018 America northern Trinidad and organic Farrell et al. Trinidad South 4 Cedros swamp sediment CE07-1, 315 cm AA-82469 4280 40 -28.1 Tobago sediment 2018 America northern Trinidad and organic CE07-1, 433-436 Siegel et al. Trinidad South 4 Cedros swamp sediment AA-77444 4730 40 -27.9 Tobago sediment cm 2015 America northern charcoal/ Trinidad and Clairboy seed or Flot Sample Fea. ISGS- Lopinot and Trinidad South 2 charred 1210 15 -27.4 Tobago (SGE-44) nutshell 1 A2628 Ray 2018 America material northern charcoal/ Feature 3 from Trinidad and Clairboy ISGS- Lopinot and Trinidad South 2 charcoal charred base of Ap 410 20 -25.2 Tobago (SGE-44) A2629 Ray 2018 America material horizon 397 northern charcoal/ Trinidad and Hernandez IGS- Trinidad South 4 charcoal charred Unit 2, level 2 — — — Lopinot 2013 Tobago Site (SGE-43) A2360 America material bulk northern shell(Donax Trinidad and Guayaguayare marine Testpit D, L. 2, 5- Boomert Trinidad South 3 sp., Beta-6823 550 50 +2.77 Tobago (MAY-16) shell 10 cm 1985a:table 6 America Melongena melongena) bulk shell northern Trinidad and Guayaguayare (Donax sp., marine Testpit D, L. 3 & Boomert Trinidad South 3 Beta-6824 780 60 +3.37 Tobago (MAY-16) Tivela shell 4, 10-20 1985a:table 6 America mactroides) bulk shell northern Trinidad and Guayaguayare (Donax sp., marine Testpit D, L.7 & Boomert Trinidad South 3 Beta-6825 1200 60 +2.6 Tobago (MAY-16) Tivela shell 8, 30-40 1985a:table 6 America mactroides) northern charcoal/ Trinidad and Icacos (SPA- Testpit A, Lev. 3 Boomert 1985, Trinidad South 2 charcoal charred Beta-6807 1130 50 -27.8 Tobago 7) & 4, 50-100 table 6 America material northern La charcoal/ Trinidad and Beta- Lopinot and Trinidad South 2 Reconnaissanc charcoal charred Unit 17; PP#2 1210 30 -26.8 Tobago 296726 Ray 2018 America e (SGE-34B) material northern La charcoal/ Trinidad and Unit 17; Stata IIb, Beta- Lopinot and Trinidad South 2 Reconnaissanc charcoal charred 1490 30 -26.6 Tobago 82 cmbs 296724 Ray 2018 America e (SGE-34B) material northern La charcoal/ Trinidad and Unit 17; Stata I, Beta- Lopinot and Trinidad South 2 Reconnaissanc charcoal charred 1400 30 -25.3 Tobago 48 cmbs 296723 Ray 2018 America e (SGE-34B) material northern charcoal/ Trinidad and Hernandez ISGS- Lopinot and Trinidad South 2 charcoal charred Unit 2, level 2 385 20 -26.8 Tobago (SGE-43) A2630 Ray 2018 America material Nieweg and northern charcoal/ Trinidad and GrA- Dorst 2001, Trinidad South 4 Manzanilla charcoal charred Feature 1-B-7 39000 500 — Tobago 13866 Delsol and America material Grouard 2016 398 Nieweg and northern charcoal/ Trinidad and GrA- Dorst 2001; Trinidad South 2 Manzanilla charcoal charred Feature 1-A-14 1590 40 — Tobago 13865 Delsol and America material Grouard 2016 Nieweg and northern charcoal/ Trinidad and GrA- Dorst 2001, Trinidad South 2 Manzanilla charcoal charred Feature 1-B-4 1220 40 — Tobago 13867 Delsol and America material Grouard 2016 northern Trinidad and human Beta- Healy et al. Trinidad South 2 Manzanilla human bone Ft. 16 630 40 — Tobago bone/teeth 193442 2013 America northern Trinidad and human Beta- Healy et al. Trinidad South 2 Manzanilla human bone Ft. 18 620 40 — Tobago bone/teeth 193443 2013 America northern Trinidad and Maracas organic Ramcharan Trinidad South 4 sediment M 210-225 cm BGS-2396 2930 80 — Tobago Swamp sediment 2004 America northern Trinidad and Maracas organic Beta- Ramcharan Trinidad South 4 sediment M 350-385 cm 3960 60 — Tobago Swamp sediment 124614 2004 America northern Trinidad and Maracas organic Beta- Ramcharan Trinidad South 4 sediment M 805-840 cm 5880 60 — Tobago Swamp sediment 124615 2004 America northern Trinidad and preserved plant NV08-1, 100-105 Beta- Siegel et al. Trinidad South 4 Nariva Swamp 1750 30 -26.5 Tobago plant matter material cm 379162 2015 America northern Trinidad and organic NV08-1, 100-105 Beta- Siegel et al. Trinidad South 4 Nariva Swamp sediment 3220 30 -27.4 Tobago sediment cm 378825 2015 America northern Trinidad and organic NV08-1, 100-105 Beta- Siegel et al. Trinidad South 4 Nariva Swamp sediment 3260 30 -27.2 Tobago sediment cm 382069 2015 America northern Trinidad and preserved NV08-1, 208-210 Beta- Siegel et al. Trinidad South 4 Nariva Swamp wood 5900 30 -25.0 Tobago wood cm 343380 2015 America 399 northern Trinidad and preserved NV08-1, 250-251 Siegel et al. Trinidad South 4 Nariva Swamp wood AA-82681 6160 70 -30.4 Tobago wood cm 2015 America northern Trinidad and preserved Farrell et al. Trinidad South 4 Nariva Swamp wood NV08-2, 374 cm AA-82679 3260 50 -26.5 Tobago wood 2018 America northern Trinidad and preserved NV08-3, 196-204 Beta- Farrell et al. Trinidad South 4 Nariva Swamp wood 2480 30 -27.0 Tobago wood cm 343381 2018 America northern Trinidad and preserved NV08-3, 445-447 Farrell et al. Trinidad South 4 Nariva Swamp wood AA-84719 3990 35 -29.2 Tobago wood cm 2018 America northern Trinidad and preserved NV08-4, 280-281 Farrell et al. Trinidad South 4 Nariva Swamp wood AA-85865 3280 45 -29.3 Tobago wood cm 2018 America northern Trinidad and preserved NV08-4, 685-686 Siegel et al. Trinidad South 4 Nariva Swamp wood AA-82680 5910 50 -28.6 Tobago wood cm 2015 America northern Trinidad and preserved Siegel et al. Trinidad South 4 Nariva Swamp wood NV08-4, 235 cm AA-85864 3575 45 -25.7 Tobago wood 2015 America northern Trinidad and Nariva Swamp organic Ramcharan Trinidad South 4 sediment N(R) 125-145 cm GrN-9097 1360 50 — Tobago Raphael sediment 2004 America northern Nariva Swamp Trinidad and organic N(SHW) 220-225 Ramcharan Trinidad South 4 Sand Hill sediment GrN-9094 2720 55 — Tobago sediment cm 2004 America West northern Nariva Swamp Trinidad and organic N(SHW) 475-525 Ramcharan Trinidad South 4 Sand Hill sediment GrN-9326 4790 70 — Tobago sediment cm 2004 America West northern Nariva Swamp Trinidad and organic N(SHW) 638-693 Ramcharan Trinidad South 4 Sand Hill sediment GrN-9095 5260 70 — Tobago sediment cm 2004 America West northern Trinidad and Nariva Swamp organic Ramcharan Trinidad South 4 sediment N(T) 160-180 cm GrN-9327 555 45 — Tobago Trough sediment 2004 America 400 northern Trinidad and Nariva Swamp organic Ramcharan Trinidad South 4 sediment N(T) 525-590 cm GrN-9096 4250 70 — Tobago Trough sediment 2004 America Rouse Trench A, two 1960:10-11; northern charcoal/ combined Bullen and Trinidad and Trinidad South 2 Ortoire charcoal charred sections, 80-100 Y-260-1 2750 130 — Sleight Tobago America material cm, Zones I and 1963:42; II Rouse et al. 1978:457 Trench A, two northern Trinidad and combined Trinidad South 3 Ortoire bulk carbon bulk carbon Y-260-2 2760 130 — Boomert 2000 Tobago sections, 100-140 America cm, Zone 1 northern Oropuche Trinidad and organic SJ07-2, 165-170 Beta- Farrell et al. Trinidad South 4 Lagoon, St. sediment 820 30 -26.4 Tobago sediment cm 378826 2018 America John northern Oropuche Trinidad and organic Farrell et al. Trinidad South 4 Lagoon, St. sediment SJ07-2, 464 cm AA-77388 4790 40 -28.4 Tobago sediment 2018 America John northern charcoal/ Midden 1, Trinidad and Palo Seco Rouse et al. Trinidad South 2 charcoal charred Section D4, L. 2, IVIC-638 2130 80 — Tobago (SPA-30) 1978:table 13.4 America material 25-50 northern charcoal/ Midden 1, Trinidad and Palo Seco Rouse et al. Trinidad South 2 charcoal charred Section D4, L. 3, IVIC-639 1480 70 — Tobago (SPA-30) 1978:table 13.4 America material 50-75 northern charcoal/ Midden 1, Trinidad and Palo Seco Rouse et al. Trinidad South 2 charcoal charred Section D4, L. 5, IVIC-641 2060 70 — Tobago (SPA-30) 1978:table 13.4 America material 100-125 401 northern charcoal/ Midden 1, Trinidad and Palo Seco Rouse et al. Trinidad South 2 charcoal charred Section D4, L. IVIC-640 1990 70 — Tobago (SPA-30) 1978:table 13.4 America material 75-100 northern Trinidad and plant OxA- Ostapkowicz et Trinidad South 2 Pitch Lake Andira sp. museum 1538 29 -25.1 Tobago material 19174 al. 2011 America bulk shell northern (Donax sp., Trinidad and Point Radix 1 marine Testpit A, L. 4, moder Boomert Trinidad South 4 Tivela Beta-6826 — -1.51 Tobago (MAY-1) shell 15-20 n 1985:table 6 America mactroides, Astraea tuber) bulk shell northern (Donax sp., Trinidad and Point Radix 1 marine Testpit A, L. 5, Boomert Trinidad South 3 Tivela Beta-6827 960 50 -0.57 Tobago (MAY-1) shell 20-25 1985:table 6 America mactroides, Astraea tuber) northern charcoal/ Trinidad and Excavation B, Trinidad South 2 Poonah Road charcoal charred I-6444 2120 135 — Boomert 2000 Tobago level 2, 25-35 cm America material northern charcoal/ Trinidad and St. John (SPA- UGa- Pagán-Jiménez Trinidad South 2 charcoal charred Unit 1, 40-50 cm 6890 30 -26.7 Tobago 11) 12303 et al. 2015 America material northern Trinidad and St. John (SPA- bulk Excavation B, no ARC- Trinidad South 3 bulk shell 6866 50 — Boomert 2000 Tobago 11) sample depth 1153 America northern Reid, personal Trinidad and St. John (SPA- marine Beta- Trinidad South 3 shell Unit 1 5490 50 -8.8 communication Tobago 11) shell 264892 America s northern Trinidad and St. John (SPA- marine UGa- Pagán-Jiménez Trinidad South 3 shell Unit 1, 40-50 cm 6870 25 -8.1 Tobago 11) shell 12304 et al. 2015 America northern Trinidad and St. John (SPA- marine UGa- Pagán-Jiménez Trinidad South 3 shell Unit 1, 50-60 cm 6980 30 -8.6 Tobago 11) shell 12305 et al. 2015 America 402 northern Reid, personal Trinidad and St. John (SPA- marine Beta- Trinidad South 3 shell Unit 2 6560 50 -6.7 communication Tobago 11) shell 264893 America s northern Trinidad and St. John (SPA- marine UGa- Pagán-Jiménez Trinidad South 3 shell Unit 2, 50-60 cm 6710 25 -9.3 Tobago 11) shell 12306 et al. 2015 America northern Trinidad and St. John (SPA- marine UGa- Pagán-Jiménez Trinidad South 3 shell Unit 3, 10-20 cm 6190 25 -10.9 Tobago 11) shell 12307 et al. 2015 America northern Trinidad and St. John (SPA- marine UGa- Pagán-Jiménez Trinidad South 3 shell Unit 3, 20-30 cm 6050 25 -9.2 Tobago 11) shell 12308 et al. 2015 America northern Trinidad and St. John (SPA- marine UGa- Pagán-Jiménez Trinidad South 3 shell Unit 3, 30-40 5080 30 -10.9 Tobago 11) shell 13634 et al. 2015 America Bullen and Bullen St. Vincent 1972:25, 77; Lesser Strombus marine Union Island and the 3 Chatham Bay — RL-70 1470 110 — Rouse Antilles gigas shell Grenadines 1989:397; Haviser 1997:60 Narganes Greater Cerro marine deposit 1, Unit S- Beta- Vieques Puerto Rico 3 shell 1210 60 — Storde Antilles Martineau shell 1 152062 2005:280-281 Narganes Greater Cerro marine deposit 1, Unit S- Beta- Vieques Puerto Rico 3 shell 500 70 — Storde Antilles Martineau shell 1 152063 2005:280-281 Rodríguez- charcoal/ Ramos et al. Greater Block Z (newest Beta- Vieques Puerto Rico 2 La Hueca charcoal charred 1810 60 — 2010; Antilles sample) 129948 material Narganes Storde 1991 charcoal/ Rodríguez- Greater Block Z: Z-11 Vieques Puerto Rico 2 La Hueca charcoal charred I-10980 1735 85 — Ramos et al. Antilles (190-200 cmbs) material 2010 403 charcoal/ Rodríguez- Greater Block Z: Z-15 Vieques Puerto Rico 2 La Hueca charcoal charred I-11140 1730 80 — Ramos et al. Antilles (200-220 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z: Z-15 Vieques Puerto Rico 2 La Hueca charcoal charred I-11139 1800 80 — Ramos et al. Antilles (240-260 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z: Z-16 Vieques Puerto Rico 2 La Hueca charcoal charred I-11141 1705 80 — Ramos et al. Antilles (160-180 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z: Z-8 Vieques Puerto Rico 2 La Hueca charcoal charred I-10979 1820 85 — Ramos et al. Antilles (200-210 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z: Z-V Vieques Puerto Rico 2 La Hueca charcoal charred I-11321 1845 80 — Ramos et al. Antilles (160-170cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z: Z-W Vieques Puerto Rico 2 La Hueca charcoal charred I-11320 1770 80 — Ramos et al. Antilles (160-170 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z: Z-X Vieques Puerto Rico 2 La Hueca charcoal charred I-11322 1945 80 — Ramos et al. Antilles (170-180 cmbs) material 2010 Rodríguez- charcoal/ Ramos et al. Greater Block Z-T-2: K-7 Vieques Puerto Rico 2 La Hueca charcoal charred I-12742 900 80 — 2010; Antilles (20-40cmbs) material Narganes Storde 1991 Rodríguez- charcoal/ Ramos et al. Greater Block Z-T-2: K-9 Vieques Puerto Rico 2 La Hueca charcoal charred I-12744 1640 80 — 2010; Antilles (20-40 cmbs) material Narganes Storde 1991 Rodríguez- charcoal/ Ramos et al. Greater Block Z-T-2: L-8 Vieques Puerto Rico 2 La Hueca charcoal charred I-12743 950 80 — 2010; Antilles (20-40 cmbs) material Narganes Storde 1991 404 Rodríguez- charcoal/ Ramos et al. Greater Block Z-T-2: L-9 Vieques Puerto Rico 2 La Hueca charcoal charred I-12745 1560 80 — 2010; Antilles (20-40 cmbs) material Narganes Storde 1991 Rodríguez- charcoal/ Ramos et al. Greater Block Z-T-2: LL- Vieques Puerto Rico 2 La Hueca charcoal charred I-12746 1600 80 — 2010; Antilles 9 (20-40 cmbs) material Narganes Storde 1991 charcoal/ Rodríguez- Greater Block Z-T-B: B-3 Vieques Puerto Rico 2 La Hueca charcoal charred I-12858 1820 80 — Ramos et al. Antilles (100 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z-T-B: C-1 Vieques Puerto Rico 2 La Hueca charcoal charred I-12860 1780 80 — Ramos et al. Antilles (120 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z-T-B: C-4 Vieques Puerto Rico 2 La Hueca charcoal charred I-12859 1880 80 — Ramos et al. Antilles (100 cmbs) material 2010 charcoal/ Rodríguez- Greater Block Z-T-B: C-8 Vieques Puerto Rico 2 La Hueca charcoal charred I-12856 1810 80 — Ramos et al. Antilles (80 cmbs) material 2010 charcoal/ New Extension, Rodríguez- Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: A-9 I-15188 700 70 — Ramos et al. Antilles material (150 cmbs) 2010 Rodríguez- charcoal/ New Extension, Ramos et al. Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: B-10 I-15238 570 80 — 2010; Antilles material (190 cmbs) Narganes Storde 1991 Rodríguez- charcoal/ New Extension, Ramos et al. Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: B-10 I-15239 660 80 — 2010; Antilles material (200 cmbs) Narganes Storde 1991 405 Rodríguez- charcoal/ New Extension, Ramos et al. Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: B-10 I-15240 630 80 — 2010; Antilles material (210 cmbs) Narganes Storde 1991 Rodríguez- charcoal/ New Extension, Ramos et al. Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: B-9 I-15187 690 80 — 2010; Antilles material (100 cmbs) Narganes Storde 1991 charcoal/ New Extension, Rodríguez- Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: B-9 I-11189 790 85 — Ramos et al. Antilles material (160 cmbs) 2010 Rodríguez- charcoal/ New Extension, Ramos et al. Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: C-10 I-15186 520 80 — 2010; Antilles material (80 cmbs) Narganes Storde 1991 charcoal/ New Extension, Rodríguez- Greater Vieques Puerto Rico 2 La Hueca charcoal charred Block Z: C-12 I-15185 540 80 — Ramos et al. Antilles material (60cmbs) 2010 Rodríguez- Greater Block Z: Z-20 Vieques Puerto Rico 2 La Hueca wood wood I-11142 405 75 — Ramos et al. Antilles (20-40 cmbs) 2010 charcoal/ Chanlatte-Baik Greater Vieques Puerto Rico 3 La Hueca charcoal charred pit z 11 — 244 85 — and Narganes Antilles material 1980 charcoal/ Chanlatte-Baik Greater Vieques Puerto Rico 3 La Hueca charcoal charred pit z 8 — 159 85 — and Narganes Antilles material 1980 406 Rodríguez- Ramos et al. Greater marine Block Z (newest Vieques Puerto Rico 3 La Hueca marine shell I-18448 1710 80 — 2010; Antilles shell sample) Narganes Storde 2005 Rodríguez- Ramos et al. Greater marine Block Z (newest Vieques Puerto Rico 3 La Hueca marine shell I-18449 1740 80 — 2010; Antilles shell sample) Narganes Storde 2005 Rodríguez- Ramos et al. Greater marine Block Z (newest 2010; Vieques Puerto Rico 3 La Hueca marine shell I-18450 1640 80 — Antilles shell sample) Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block Z (newest 2010; Vieques Puerto Rico 3 La Hueca marine shell I-18660 1650 80 — Antilles shell sample) Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block Z (newest Vieques Puerto Rico 3 La Hueca marine shell I-18661 1670 80 — 2010; Antilles shell sample) Narganes Storde 2005 Rodríguez- Ramos et al. Greater marine Block Z (newest 2010; Vieques Puerto Rico 3 La Hueca marine shell I-18662 1480 80 — Antilles shell sample) Narganes Storde 2005:280-281 407 Rodríguez- Ramos et al. Greater marine Block Z (newest 2010; Vieques Puerto Rico 3 La Hueca marine shell I-18723 1500 80 — Antilles shell sample) Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block Z (newest 2010; Vieques Puerto Rico 3 La Hueca marine shell I-18724 1350 80 — Antilles shell sample) Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block Z (newest 2010; Vieques Puerto Rico 3 La Hueca marine shell I-15241 1880 80 — Antilles shell sample), Area P Narganes Storde 1991, 2005:280-281 Rodríguez- Greater marine Block Z: Z-9 Vieques Puerto Rico 3 La Hueca marine shell I-10553 1565 80 — Ramos et al. Antilles shell (150-160 cmbs) 2010 Rodríguez- Ramos et al. Greater marine Block Z-T-2: K-7 Vieques Puerto Rico 3 La Hueca marine shell I-13426 1810 80 — 2010; Antilles shell (20 cmbs) Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Z-T-3: H-4 Vieques Puerto Rico 3 La Hueca marine shell I-13427 1840 80 — 2010; Antilles shell (20 cmbs) Narganes Storde 1991 Rodríguez- Greater marine Block Z-T-4: E-5 Vieques Puerto Rico 3 La Hueca marine shell I-13428 1930 80 — Ramos et al. Antilles shell (20-40 cmbs) 2010 408 Rodríguez- Ramos et al. Greater marine Block Z-T-5: H- Vieques Puerto Rico 3 La Hueca marine shell I-15242 1230 80 — 2010; Antilles shell 10 (40 cmbs) Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Z-T-6: G-5 Vieques Puerto Rico 3 La Hueca marine shell I-13429 1640 80 — 2010; Antilles shell (20-40 cmbs) Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Z: Z-9 (60- Vieques Puerto Rico 2 La Hueca Cittarium pica I-10549 1525 85 — 2010; Antilles shell 70 cmbs) Narganes Storde 1991 Narganes Greater marine deposit 1, Unit S- Beta- Vieques Puerto Rico 3 La Siembra shell 1260 60 — Storde Antilles shell 1 175762 2005:280-281 Narganes Greater marine Vieques Puerto Rico 2 Puerto Ferro Cittarium pica deposit 1 I-16899 3780 100 — Storde Antilles shell 2005:280-281 Narganes Greater marine Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-11 I-16898 2770 90 — Storde Antilles shell 2005:280-281 Narganes Greater marine Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-12 I-16896 2650 90 — Storde Antilles shell 2005:280-281 Narganes Greater marine Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-12 I-16897 3470 100 — Storde Antilles shell 2005:280-281 409 Narganes Greater Strombus marine Vieques Puerto Rico 2 Puerto Ferro Unit J-15 I-18971 4095 80 — Storde Antilles gigas shell 2005:280-281 Greater marine Narganes Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-11 I-16406 3850 100 — Antilles shell Storde 2015 Greater marine Narganes Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-12 I-16397 3530 100 — Antilles shell Storde 2015 Greater marine Narganes Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-12 I-16396 3510 100 — Antilles shell Storde 2015 Greater marine Narganes Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit I-12 I-16395 2790 100 — Antilles shell Storde 2015 Greater marine Narganes Vieques Puerto Rico 2 Puerto Ferro Cittarium pica Unit K-12 I-16407 2740 100 — Antilles shell Storde 2015 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16151 1700 80 — Antilles (new) Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16152 1650 80 — Antilles (new) Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16153 2590 90 — Antilles (new) Narganes material Storde 2005:280-281 410 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16154 1620 80 — Antilles (new) Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16173 1590 80 — Antilles (new) Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16174 1600 80 — Antilles (new) Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater Block Area P 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16175 1450 80 — Antilles (new) Narganes material Storde 2005:280-281 Rodríguez- charcoal/ Ramos et al. Greater Vieques Puerto Rico 2 Sorcé charcoal charred Block Area X I-10548 1440 85 — 2010; Antilles material Narganes Storde 1991 Rodríguez- charcoal/ Ramos et al. Greater Vieques Puerto Rico 2 Sorcé charcoal charred Block Area X I-10550 1505 85 — 2010; Antilles material Narganes Storde 1991 411 Rodríguez- charcoal/ Ramos et al. Greater Vieques Puerto Rico 2 Sorcé charcoal charred Block Area X-T-3 I-14813 1180 80 — 2010; Antilles material Narganes Storde 1991 Rodríguez- charcoal/ Ramos et al. Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-11318 1490 75 — 2010; Antilles 1 material Narganes Storde 1991 charcoal/ Rodríguez- Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-11319 1915 80 — Ramos et al. Antilles 1 material 2010 charcoal/ Rodríguez- Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-11686 1575 80 — Ramos et al. Antilles 2 material 2010 charcoal/ Rodríguez- Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-11925 1665 80 — Ramos et al. Antilles 2 material 2010 charcoal/ Rodríguez- Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-11926 1720 80 — Ramos et al. Antilles 2 material 2010 charcoal/ Rodríguez- Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-11927 1565 80 — Ramos et al. Antilles 2 material 2010 Rodríguez- charcoal/ Ramos et al. Greater Block Area YTA- Vieques Puerto Rico 2 Sorcé charcoal charred I-10547 1575 85 — 2010; Antilles 3 material Narganes Storde 1991 charcoal/ Rodríguez- Greater Block Area Z-T- Vieques Puerto Rico 2 Sorcé charcoal charred I-13425 2110 80 — Ramos et al. Antilles A material 2010 charcoal/ Rodríguez- Greater Block Area Z-T- Vieques Puerto Rico 2 Sorcé charcoal charred I-12857 1580 80 — Ramos et al. Antilles B material 2010 412 Rodríguez- Ramos et al. charcoal/ Greater Block Area Z-T- 2010; Vieques Puerto Rico 2 Sorcé charcoal charred I-16176 1270 90 — Antilles B P (new) Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater 2010; Vieques Puerto Rico 2 Sorcé charcoal charred Block X (new) I-15657 410 80 — Antilles Narganes material Storde 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater 2010; Vieques Puerto Rico 2 Sorcé charcoal charred Block X (new) I-15658 470 80 — Antilles Narganes material Storde 2005:280-281 charcoal/ Rodríguez- Greater Block YTA-1: G- Vieques Puerto Rico 2 Sorcé charcoal charred I-11316 1555 75 — Ramos et al. Antilles 5 material 2010 charcoal/ Rodríguez- Greater Block YTA-1: L- Vieques Puerto Rico 2 Sorcé charcoal charred I-11685 1740 75 — Ramos et al. Antilles 36 material 2010 charcoal/ Rodríguez- Greater Block YTA-1: L- Vieques Puerto Rico 2 Sorcé charcoal charred I-11317 1615 75 — Ramos et al. Antilles 5 material 2010 charcoal/ Rodríguez- Greater Block YTA-2: I- Vieques Puerto Rico 2 Sorcé charcoal charred I-11687 1565 75 — Ramos et al. Antilles 22 material 2010 charcoal/ Greater midden Z, unit B- Narganes Vieques Puerto Rico 2 Sorcé charcoal charred I- 15188 700 80 — Antilles 9 Storde 1991 material charcoal/ Greater midden Z, unit B- Narganes Vieques Puerto Rico 2 Sorcé charcoal charred I-15189 790 80 — Antilles 9 Storde 1991 material 413 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area X-T-3 I-14845 1080 80 — 2010; Antilles shell Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area X-T-3 I-14846 1150 80 — 2010; Antilles shell Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area X-T-3 I-14847 1220 80 — 2010; Antilles shell Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area X-T-3 I-14848 1190 80 — 2010; Antilles shell Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area X-T-3 I-14850 1340 80 — 2010; Antilles shell Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Area X-T- 2010; Vieques Puerto Rico 3 Sorcé marine shell I-18725 780 80 — Antilles shell 3(new) Narganes Storde 2005:280-281 414 Rodríguez- Ramos et al. Greater marine Block Area X-T- 2010; Vieques Puerto Rico 3 Sorcé marine shell I-18972 1715 70 — Antilles shell 3(new) Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block Area X-T- 2010; Vieques Puerto Rico 3 Sorcé marine shell I-18973 1960 110 — Antilles shell 3(new) Narganes Storde 2005:280-281 Rodríguez- Greater marine Block Area X-T- Vieques Puerto Rico 3 Sorcé marine shell I-18726 1810 80 — Ramos et al. Antilles shell 3, Unit I-16 2010 Rodríguez- Ramos et al. Greater marine Block Area YTA- Vieques Puerto Rico 3 Sorcé marine shell I-10551 1210 85 — 2010; Antilles shell 3 Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Area YTA- Vieques Puerto Rico 3 Sorcé marine shell I-10552 1230 80 — 2010; Antilles shell 3 Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area Z-T I-14815 1380 80 — 2010; Antilles shell Narganes Storde 1991 415 Rodríguez- Ramos et al. Greater marine Vieques Puerto Rico 3 Sorcé marine shell Block Area Z-T I-14816 1350 80 — 2010; Antilles shell Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Area Z-T Beta- 2010; Vieques Puerto Rico 3 Sorcé marine shell 1920 60 — Antilles shell (new) 129949 Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block Area Z-T- Vieques Puerto Rico 3 Sorcé marine shell I-14814 1240 80 — 2010; Antilles shell A Narganes Storde 1991 Rodríguez- Ramos et al. Greater marine Block Area Z-T- 2010; Vieques Puerto Rico 3 Sorcé marine shell I-18970 1765 70 — Antilles shell A (new) Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine 2010; Vieques Puerto Rico 3 Sorcé marine shell Block X (new) I-15718 1270 80 — Antilles shell Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine 2010; Vieques Puerto Rico 3 Sorcé marine shell Block X (new) I-15719 1320 80 — Antilles shell Narganes Storde 2005:280-281 416 Rodríguez- Ramos et al. Greater marine 2010; Vieques Puerto Rico 3 Sorcé marine shell Block X (new) I-15727 1350 80 — Antilles shell Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine 2010; Vieques Puerto Rico 3 Sorcé marine shell Block X (new) I-15728 1340 80 — Antilles shell Narganes Storde 2005:280-281 Rodríguez- Ramos et al. Greater marine Block YTA- Beta- 2010; Vieques Puerto Rico 3 Sorcé marine shell 1680 60 — Antilles shell 2(new) 129950 Narganes Storde 2005:280-281 Greater marine midden Z, unit B- Narganes Vieques Puerto Rico 3 Sorcé shell I- 10553 1565 85 — Antilles shell 9 Storde 1991 Narganes Greater marine Vieques Puerto Rico 3 Sorcé shell X-T-3 I-18762 1810 80 — Storde Antilles shell 2005:280-281 Rodríguez- Ramos et al. charcoal/ Greater 2010; Vieques Puerto Rico 3 Sorcé charcoal charred Block X (new) I-15656 300 80 — Antilles Narganes material Storde 2005:280-281 charcoal/ Narganes Greater Midden X, Unit Vieques Puerto Rico 3 Sorcé charcoal charred I-15655 290 80 — Storde Antilles K-10 material 2005:280-281 417 Greater marine Midden P, Unit F- Beta- Narganes Vieques Puerto Rico 2 Sorcé Cittarium pica 1840 50 — Antilles shell 24 259410 Storde 2015 Greater marine Midden P, Unit F- Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1570 50 — Antilles shell 25 259409 Storde 2015 Greater marine Midden YTA-2, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1960 50 — Antilles shell Unit M-21 259407 Storde 2015 Greater marine Midden YTA-2, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1680 40 — Antilles shell Unit S-2 129950 Storde 2015 Greater marine Midden XT-3, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 2130 40 — Antilles shell Unit I-16 276589 Storde 2015 Greater marine Midden XT-3, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1780 40 — Antilles shell Unit I-16 276590 Storde 2015 Greater marine Midden XT-3, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1750 40 — Antilles shell Unit H-14 276591 Storde 2015 Greater marine Midden XT-3, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1700 50 — Antilles shell Unit H-9 301604 Storde 2015 Greater marine Midden XT-3, Beta- Narganes Vieques Puerto Rico 3 Sorcé marine shell 1620 50 — Antilles shell Unit H-9 301605 Storde 2015 Greater marine Midden z, Unit Z- Beta- Narganes Vieques Puerto Rico 2 Sorcé Cittarium pica 2240 40 — Antilles shell 58 276588 Storde 2015 U.S. Virgin Lesser Strombus marine 50 cm below Beta- Water Island 2 12VAm3-56 800 60 -25.0 (est.) Anderson 1998 Islands Antilles gigas shell surface 58095 U.S. Virgin Lesser Strombus marine Beta- Water Island 2 12VAm3-56 base of midden 1420 60 -25.0 (est.) Anderson 1998 Islands Antilles gigas shell 58094 U.S. Virgin Lesser Strombus marine Beta- Water Island 2 12VAm3-56 surface of midden 740 60 -25.0 (est.) Anderson 1998 Islands Antilles gigas shell 58096 418 Banana Bay U.S. Virgin Lesser Strombus marine Beta- Anderson et al. Water Island 2 South EU 5, Level 8 790 50 +1.0 Islands Antilles gigas shell 144769 2003 (12VAM210) Banana Bay U.S. Virgin Lesser Strombus marine Beta- Anderson et al. Water Island 2 South EU1, Level 6 940 70 +2.1 Islands Antilles gigas shell 144767 2003 (12VAM210) Banana Bay U.S. Virgin Lesser Strombus marine Beta- Anderson et al. Water Island 2 South EU2, Level 7 940 50 +2.5 Islands Antilles gigas shell 144768 2003 (12VAM210) Banana Bay U.S. Virgin Lesser Strombus marine Beta- Anderson et al. Water Island 2 South EU5, Level 8 620 40 +3.2 Islands Antilles costatus shell 144770 2003 (12VAM210) Turks and Bahamian marine Beta- West Caicos 3 WC-2 shell — 820 60 — Carlson 1999 Caicos Archipelago shell 70800 419 S4. SQL code for 100 yr outlier models, 1,000 yr outlier models, and single-phase models. 100 yr Outlier Model SQL Code Anguilla Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence() { Boundary("Anguilla Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-19957", 1550, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-15824", 1530, 140) { Outlier("Charcoal", 1); }; 420 R_Date("Beta-18740", 1430, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-21858", 1410, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110397", 1310, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-19956", 1290, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110396", 1290, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-106439", 1270, 60) { Outlier("Charcoal", 1); 421 }; R_Date("Beta-110394", 1230, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-15485", 1220, 70); R_Date("Beta-106444", 1180, 60); R_Date("Beta-106443", 1180, 60); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0546", 1180, 45) { Outlier("Charcoal", 1); }; R_Date("Beta-110395", 1170, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-19955", 1150, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110393", 1140, 60) 422 { Outlier("Charcoal", 1); }; R_Date("PITT-0545", 1135, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-15486", 1130, 80); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-106442", 1120, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-18738", 1120, 70) { Outlier("Charcoal", 1); }; R_Date("PITT-0547", 1085, 55) { Outlier("Charcoal", 1); }; R_Date("Beta-21861", 1080, 90) 423 { Outlier("Charcoal", 1); }; R_Date("Beta-18739", 1000, 110) { Outlier("Charcoal", 1); }; R_Date("Beta-120152", 950, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-21863", 940, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257181", 910, 40); R_Date("Beta-257182", 890, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-21862", 880, 90) { Outlier("Charcoal", 1); }; 424 R_Date("Beta-120157", 880, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257184", 860, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-120154", 850, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-106441", 840, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257185", 780, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-110398", 780, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 425 R_Date("Beta-141202", 740, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-120153", 740, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-120156", 710, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257183", 680, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-106440", 510, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-120155", 440, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-60776", 400, 60); 426 }; Boundary("Anguilla End"); }; }; Antigua Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Antigua") { Boundary("Antigua Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("I-7830", 2785, 80) { Outlier("Charcoal", 1); }; R_Date("I-7842", 2785, 80) { Outlier("Charcoal", 1); }; 427 R_Date("I-7980", 1915, 80) { Outlier("Charcoal", 1); }; R_Date("I-7981", 1855, 80) { Outlier("Charcoal", 1); }; R_Date("I-7979", 1790, 85) { Outlier("Charcoal", 1); }; R_Date("I-7855", 1765, 80) { Outlier("Charcoal", 1); }; R_Date("I-7838", 1750, 80) { Outlier("Charcoal", 1); }; R_Date("I-7837", 1715, 80) { Outlier("Charcoal", 1); 428 }; R_Date("I-7854", 1670, 80) { Outlier("Charcoal", 1); }; R_Date("Beta- 124127", 1610, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-124126", 1600, 50) { Outlier("Charcoal", 1); }; R_Date("I-7355", 1505, 85) { Outlier("Charcoal", 1); }; R_Date("I-7356", 1505, 85) { Outlier("Charcoal", 1); }; R_Date("I-7352", 1440, 85) { 429 Outlier("Charcoal", 1); }; R_Date("Beta-101500", 1430, 50) { Outlier("Charcoal", 1); }; R_Date("I-7353", 1230, 85) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c") Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("SUERC-34163", 950, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-101499", 720, 50) { Outlier("Charcoal", 1); }; }; Boundary("Antigua End"); }; }; 430 Aruba Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Aruba") { Boundary("Aruba Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("GrN-7341", 3300, 35) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ua-1501", 2210, 95); R_Date("Ua-1341", 1740, 110); R_Date("Ua-1342", 1520, 100); R_Date("Ua-1340", 1520, 110); R_Date("Ua-1514", 1420, 150); 431 Curve("IntCal13","IntCal13.14c"); R_Date("GrN-2788", 1080, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-7339", 1040, 45) { Outlier("Charcoal", 1); }; R_Date("GrN-21665", 1030, 40) { Outlier("Charcoal", 1); }; R_Date("GrN-21666", 1030, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-7340", 1000, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-7342", 990, 30) { 432 Outlier("Charcoal", 1); }; R_Date("GrA-2789", 990, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-7338", 940, 25) { Outlier("Charcoal", 1); }; R_Date("GrN-21656", 910, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-17460", 910, 170); R_Date("GrN-17459", 870, 80); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-21664", 860, 40) { Outlier("Charcoal", 1); 433 }; R_Date("GrA-2785", 860, 50) { Outlier("Charcoal", 1); }; R_Date("GrA-2778", 830, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-16915", 825, 30) { Outlier("Charcoal", 1); }; R_Date("I-4025", 765, 110) { Outlier("Charcoal", 1); }; R_Date("GrA-2784", 750, 50) { Outlier("Charcoal", 1); }; R_Date("I-4026", 740, 105) { 434 Outlier("Charcoal", 1); }; R_Date("GrA-2790", 340, 50) { Outlier("Charcoal", 1); }; }; Boundary("Aruba End"); }; }; Barbados Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Barbados") { Boundary("Barbados Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("D-AMS 001792", 4366, 32); R_Date("Beta-297522", 4360, 40); 435 R_Date("D-AMS 001793", 4278, 29); R_Date("Beta-297521", 4230, 50); R_Date("D-AMS 001794", 4091, 27); R_Date("I-16840", 3980, 100); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-20723", 1950, 150) { Outlier("Charcoal", 1); }; R_Date("I-2486", 1570, 95) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("1-16189", 1120, 80); }; Boundary("Barbados End"); }; }; Barbuda Plot() { 436 Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Barbuda") { Boundary("Barbuda Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("UCI-107938", 3430, 15); R_Date("SUERC-33604 (GU-23530)", 3280, 35); R_Date("SUERC 33605 (GU-23531)", 2790, 35); R_Date("UCI-107937", 2565, 20); R_Date("Beta-103891", 2030, 60); Curve("IntCal13","IntCal13.14c"); R_Date("SUERC 18562", 2025, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 18560", 2005, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 18561", 1920, 35) { 437 Outlier("Charcoal", 1); }; R_Date("SUERC 18558", 1785, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 18557", 1755, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 34971", 1565, 35) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-103894", 1400, 60); R_Date("PITT-1234", 1365, 45); R_Date("Beta-103892", 1360, 60); R_Date("Beta-103893", 1350, 60); R_Date("Beta-103890", 1210, 60); R_Date("PITT-1233", 1135, 50); R_Date("PITT-1231", 1050, 30); Curve("IntCal13","IntCal13.14c"); 438 R_Date("SUERC 18556", 820, 35) { Outlier("Charcoal", 1); }; }; Boundary("Barbuda End"); }; }; Bonaire Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Bonaire") { Boundary("Bonaire Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("GrN-32756", 3610, 25); R_Date("GrN-32758", 3410, 20); R_Date("GrN-32751", 3245, 25); R_Date("GrN-32750", 3095, 20); 439 R_Date("GrN-32749", 2785, 20); R_Date("GrN-32755", 2735, 25); R_Date("GrN-32752", 2705, 30); R_Date("GrN-32757", 2680, 25); R_Date("GrN-32754", 2665, 20); R_Date("GrN-32753", 2575, 20); R_Date("GrN-32748", 2412, 15); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0267", 1480, 25) { Outlier("Charcoal", 1); }; R_Date("PITT-0268", 885, 45) { Outlier("Charcoal", 1); }; R_Date("PITT-0265", 710, 65) { Outlier("Charcoal", 1); }; R_Date("PITT-0264", 560, 40) { Outlier("Charcoal", 1); 440 }; R_Date("PITT-0266", 505, 35) { Outlier("Charcoal", 1); }; }; Boundary("Bonaire End"); }; }; Carriacou Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Carriacou") { Boundary("Carriacou Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("AA-62278", 1917, 37); R_Date("Beta-206685", 1870, 70); R_Date("AA-62280b", 1822, 41); 441 R_Date("AA-62280a", 1789, 38); Curve("IntCal13","IntCal13.14c"); R_Date("AA-67535", 1588, 36) { Outlier("Charcoal", 1); }; R_Date("AA-67536", 1584, 36) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("GX-30424", 1570, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-111935", 1565, 15); Curve("Marine13","Marine13.14c"); R_Date("GX-30425", 1460, 60); R_Date("GX-30423", 1400, 60); Curve("IntCal13","IntCal13.14c"); R_Date("AA-62281", 1339, 36) { Outlier("Charcoal", 1); 442 }; R_Date("AA-67534", 1333, 57) { Outlier("Charcoal", 1); }; R_Date("D-AMS 016647", 1328, 20) { Outlier("Charcoal", 1); }; R_Date("D-AMS 16649", 1321, 20) { Outlier("Charcoal", 1); }; R_Date("D-AMS 016648", 1315, 20) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-233647", 1310, 40); R_Date("UCIAMS-94046", 1265, 20); Curve("IntCal13","IntCal13.14c"); R_Date("AA-62279", 1243, 36) { 443 Outlier("Charcoal", 1); }; R_Date("AA-62282", 1227, 36) { Outlier("Charcoal", 1); }; R_Date("OS-71467", 1220, 20) { Outlier("Charcoal", 1); }; R_Date("AA-67533", 1172, 36) { Outlier("Charcoal", 1); }; R_Date("AA-81055", 1158, 45) { Outlier("Charcoal", 1); }; R_Date("OS-71463", 1140, 15) { Outlier("Charcoal", 1); }; R_Date("AA-67531", 1133, 38) 444 { Outlier("Charcoal", 1); }; R_Date("OS-71464", 1100, 20) { Outlier("Charcoal", 1); }; R_Date("OS-71465", 1080, 15) { Outlier("Charcoal", 1); }; R_Date("AA-67532", 1073, 38) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-62283", 1062, 44); Curve("IntCal13","IntCal13.14c"); R_Date("AA-67530", 1039, 35) { Outlier("Charcoal", 1); 445 }; R_Date("OS-41358", 1030, 30) { Outlier("Charcoal", 1); }; R_Date("UCIAMS-94045", 1020, 20) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-120951", 1015, 15); Curve("IntCal13","IntCal13.14c"); R_Date("AA-81056", 994, 45) { Outlier("Charcoal", 1); }; R_Date("UCIAMS-94044", 990, 20) { Outlier("Charcoal", 1); }; R_Date("AA-67529", 988, 42) 446 { Outlier("Charcoal", 1); }; R_Date("OS-71462", 975, 20) { Outlier("Charcoal", 1); }; R_Date("OS-71408", 970, 15) { Outlier("Charcoal", 1); }; R_Date("OS-71407", 960, 15) { Outlier("Charcoal", 1); }; R_Date("RL-29", 940, 100) { Outlier("Charcoal", 1); }; R_Date("OS-71409", 925, 15) { Outlier("Charcoal", 1); }; 447 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-257793", 870, 40); Curve("IntCal13","IntCal13.14c"); R_Date("OS-71466", 680, 15) { Outlier("Charcoal", 1); }; R_Date("AA-81054", 657, 44) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-111933", 715, 15); R_Date("UCIAMS-111934", 690, 15); }; Boundary("Carriacou End"); }; }; 448 Cuba Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Cuba") { Boundary("Cuba Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("LE-4283", 5270, 120) { Outlier("Charcoal", 1); }; R_Date("GD-250", 5140, 170) { Outlier("Charcoal", 1); }; R_Date("MC-860", 4420, 100) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 449 R_Date("OxA-15267", 4408, 37); Curve("IntCal13","IntCal13.14c"); R_Date("MC-859", 4240, 100) { Outlier("Charcoal", 1); }; R_Date("UBAR-170", 4200, 79) { Outlier("Charcoal", 1); }; R_Date("Beta-140079", 4180, 80) { Outlier("Charcoal", 1); }; R_Date("LE-1783", 4110, 50) { Outlier("Charcoal", 1); }; R_Date("SI-429", 4000, 150) { Outlier("Charcoal", 1); }; R_Date("LE-1784", 3870, 40) 450 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15180", 3861, 28); Curve("IntCal13","IntCal13.14c"); R_Date("LE-1782", 3760, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-133951", 3720, 70) { Outlier("Charcoal", 1); }; R_Date("UNAM-0716", 3460, 60) { Outlier("Charcoal", 1); }; R_Date("GD-204", 3460, 160) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 451 R_Date("OxA-15264", 3273, 33); R_Date("OxA-15263", 3271, 29); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1764", 3250, 100) { Outlier("Charcoal", 1); }; R_Date("LE-4270", 3110, 180) { Outlier("Charcoal", 1); }; R_Date("SI-428", 3110, 200) { Outlier("Charcoal", 1); }; R_Date("UBAR-169", 3060, 180) { Outlier("Charcoal", 1); }; R_Date("AA-101053", 3057, 39) { Outlier("Charcoal", 1); }; 452 R_Date("LE-4288", 3030, 180) { Outlier("Charcoal", 1); }; R_Date("LE-4287", 3030, 180) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101054", 2999, 61); R_Date("AA-101057", 2996, 53); Curve("Marine13","Marine13.14c"); R_Date("Beta-184894", 2980, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89061", 2960, 33); R_Date("AA-101052", 2946, 57); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4282", 2930, 300) { 453 Outlier("Charcoal", 1); }; R_Date("GD-591", 2930, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89063", 2922, 34); Curve("IntCal13","IntCal13.14c"); R_Date("GD-613", 2880, 70) { Outlier("Charcoal", 1); }; R_Date("A-14316", 2845, 90) { Outlier("Charcoal", 1); }; R_Date("GD-1046", 2840, 60) { Outlier("Charcoal", 1); }; 454 R_Date("GD-601", 2805, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101059", 2791, 51); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-133950", 2780, 40) { Outlier("Charcoal", 1); }; R_Date("LE-4272", 2750, 160) { Outlier("Charcoal", 1); }; R_Date("GD-614", 2720, 65) { Outlier("Charcoal", 1); }; R_Date("LE-2720", 2680, 40) { 455 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-184896", 2680, 60); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4290", 2610, 120) { Outlier("Charcoal", 1); }; R_Date("LE-4281", 2610, 120) { Outlier("Charcoal", 1); }; R_Date("LE-2718", 2610, 40) { Outlier("Charcoal", 1); }; R_Date("LE-4275", 2580, 90) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-318171", 2570, 30); 456 Curve("IntCal13","IntCal13.14c"); R_Date("UNAM-0717", 2520, 60) { Outlier("Charcoal", 1); }; R_Date("A-14315", 2515, 75) { Outlier("Charcoal", 1); }; R_Date("SI-427", 2510, 200) { Outlier("Charcoal", 1); }; R_Date("LE-4273", 2420, 100) { Outlier("Charcoal", 1); }; R_Date("LE-4279", 2390, 170) { Outlier("Charcoal", 1); }; R_Date("LE-4271", 2380, 80) { 457 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-422938", 2350, 30); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4276", 2250, 150) { Outlier("Charcoal", 1); }; R_Date("LE-4267", 2220, 160) { Outlier("Charcoal", 1); }; R_Date("GD-1039", 2160, 55) { Outlier("Charcoal", 1); }; R_Date("LE-2719", 2160, 40) { Outlier("Charcoal", 1); }; R_Date("SI-426", 2070, 150) { 458 Outlier("Charcoal", 1); }; R_Date("LC-H 1034", 2070, 110) { Outlier("Charcoal", 1); }; R_Date("LE-4274", 2030, 160) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-214957", 2020, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Lv-2063", 2020, 80) { Outlier("Charcoal", 1); }; R_Date("LE-2717", 2010, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15262", 2005, 27); 459 Curve("IntCal13","IntCal13.14c"); R_Date("GD-1051", 1990, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15266", 1978, 33); R_Date("Beta-214958", 1910, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-93862", 1890, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15183", 1873, 26); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-93866", 1850, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-318170", 1750, 30); Curve("IntCal13","IntCal13.14c"); 460 R_Date("UM-1953", 1745, 175) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15184", 1686, 26); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-72801", 1670, 70); R_Date("AA-101055", 1661, 52); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-133948", 1640, 130) { Outlier("Charcoal", 1); }; R_Date("SI-424", 1620, 150) { Outlier("Charcoal", 1); }; R_Date("AA-89064", 1617, 46) { Outlier("Charcoal", 1); 461 }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("OxA-15260", 1617, 29); R_Date("Beta-72802", 1590, 60); Curve("Marine13","Marine13.14c"); R_Date("OxA-15181", 1561, 24); R_Date("OxA-15146", 1557, 25); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89062", 1536, 51); Curve("IntCal13","IntCal13.14c"); R_Date("GD-617", 1495, 60) { Outlier("Charcoal", 1); }; R_Date("LE-4269", 1470, 110) { Outlier("Charcoal", 1); }; R_Date("LC-H 1035", 1450, 70) 462 { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89060", 1420, 59); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7621", 1404, 60) { Outlier("Charcoal", 1); }; R_Date("GD-616", 1350, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-93863", 1350, 50) { Outlier("Charcoal", 1); }; R_Date("TO-7624", 1320, 60) { Outlier("Charcoal", 1); 463 }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101056", 1289, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-140078", 1280, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-133947", 1210, 60) { Outlier("Charcoal", 1); }; R_Date("GD-619", 1170, 90) { Outlier("Charcoal", 1); }; R_Date("Y-1994", 1120, 160) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 464 R_Date("OxA-15179", 1112, 26); Curve("IntCal13","IntCal13.14c"); R_Date("LC-H-1106", 1100, 130) { Outlier("Charcoal", 1); }; R_Date("SI-347", 1020, 100) { Outlier("Charcoal", 1); }; R_Date("GD-203", 1010, 110) { Outlier("Charcoal", 1); }; R_Date("Mo-399", 1000, 105) { Outlier("Charcoal", 1); }; R_Date("Y-1556", 970, 80) { Outlier("Charcoal", 1); }; R_Date("SI-352", 970, 100) 465 { Outlier("Charcoal", 1); }; R_Date("Y-465", 960, 60) { Outlier("Charcoal", 1); }; R_Date("LC-H 565", 960, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15151", 950, 24); R_Date("OxA-15152", 939, 24); Curve("IntCal13","IntCal13.14c"); R_Date("GD-618", 910, 85) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15148", 891, 23); Curve("IntCal13","IntCal13.14c"); R_Date("FS AC 2418", 880, 40) 466 { Outlier("Charcoal", 1); }; R_Date("Beta-148961", 880, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15145", 879, 26); R_Date("OxA-15149", 874, 25); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-148956", 870, 70); Curve("Marine13","Marine13.14c"); R_Date("OxA-15182", 857, 24); R_Date("OxA-15259", 827, 36); R_Date("OxA-15154", 820, 24); Curve("IntCal13","IntCal13.14c"); R_Date("Y-206", 810, 80) { Outlier("Charcoal", 1); }; 467 Curve("Marine13","Marine13.14c"); R_Date("OxA-15261", 782, 26); Curve("IntCal13","IntCal13.14c"); R_Date("Lv-2062", 780, 100) { Outlier("Charcoal", 1); }; R_Date("FS AC 2414", 770, 35) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15265", 763, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1555", 760, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-148957", 730, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 468 R_Date("OxA-15153", 714, 25); Curve("IntCal13","IntCal13.14c"); R_Date("OxA-15123", 710, 27) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15178", 709, 26); Curve("IntCal13","IntCal13.14c"); R_Date("GD-621", 705, 65) { Outlier("Charcoal", 1); }; R_Date("FS AC 2419", 690, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-148949", 690, 60) { Outlier("Charcoal", 1); }; R_Date("FS AC 2415", 690, 50) { 469 Outlier("Charcoal", 1); }; R_Date("Beta-148958", 670, 70) { Outlier("Charcoal", 1); }; R_Date("GD-1053", 665, 50) { Outlier("Charcoal", 1); }; R_Date("FS AC 2416", 660, 35) { Outlier("Charcoal", 1); }; R_Date("OxA-15144", 651, 24) { Outlier("Charcoal", 1); }; R_Date("SI-425", 650, 200) { Outlier("Charcoal", 1); }; R_Date("SI-348", 640, 120) 470 { Outlier("Charcoal", 1); }; R_Date("FS AC 2417", 620, 30) { Outlier("Charcoal", 1); }; R_Date("Beta-148962", 620, 60) { Outlier("Charcoal", 1); }; R_Date("GD-1056", 600, 55) { Outlier("Charcoal", 1); }; R_Date("SI-353", 590, 90) { Outlier("Charcoal", 1); }; R_Date("SI-351", 590, 100) { Outlier("Charcoal", 1); }; 471 R_Date("GD-1055", 575, 60) { Outlier("Charcoal", 1); }; R_Date("TO-7628", 560, 50) { Outlier("Charcoal", 1); }; R_Date("SI-349", 550, 150) { Outlier("Charcoal", 1); }; R_Date("TO-7626", 540, 50) { Outlier("Charcoal", 1); }; R_Date("OxA-15150", 531, 23) { Outlier("Charcoal", 1); }; R_Date("TO-7618", 510, 50) { Outlier("Charcoal", 1); 472 }; R_Date("GD-624", 505, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-148960", 500, 50) { Outlier("Charcoal", 1); }; R_Date("SI-350", 500, 100) { Outlier("Charcoal", 1); }; R_Date("GD-1057", 490, 45) { Outlier("Charcoal", 1); }; R_Date("GD-1054", 485, 50) { Outlier("Charcoal", 1); }; R_Date("TO-8068", 480, 60) { 473 Outlier("Charcoal", 1); }; R_Date("FS AC 2424", 475, 35) { Outlier("Charcoal", 1); }; R_Date("TO-7627", 460, 50) { Outlier("Charcoal", 1); }; R_Date("FS AC 2420", 450, 35) { Outlier("Charcoal", 1); }; R_Date("TO-8072", 430, 60) { Outlier("Charcoal", 1); }; R_Date("TO-7620", 430, 50) { Outlier("Charcoal", 1); }; R_Date("FS AC 2422", 420, 45) 474 { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("ICA 17B/0756", 420, 40); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7623", 390, 50) { Outlier("Charcoal", 1); }; R_Date("FS AC 2421", 375, 25) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-148955", 360, 80); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7625", 340, 50) { 475 Outlier("Charcoal", 1); }; R_Date("TO-7617", 330, 50) { Outlier("Charcoal", 1); }; R_Date("TO-7622", 320, 40) { Outlier("Charcoal", 1); }; R_Date("FS AC 2423", 315, 45) { Outlier("Charcoal", 1); }; }; Boundary("Cuba End"); }; }; Curaçao Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); 476 Sequence("Curacao") { Boundary("Curacao Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-247", 4490, 60) { Outlier("Charcoal", 1); }; R_Date("IVIC-246", 4160, 80) { Outlier("Charcoal", 1); }; R_Date("IVIC-234", 4110, 65) { Outlier("Charcoal", 1); }; R_Date("IVIC-242", 4070, 65) { Outlier("Charcoal", 1); }; R_Date("IVIC-240", 3990, 50) 477 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("PITT-1200", 1965, 35); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-1183", 1875, 430) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-12914", 1500, 200); Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-237", 1440, 60) { Outlier("Charcoal", 1); }; R_Date("IVIC-250", 1230, 60) { Outlier("Charcoal", 1); }; 478 R_Date("IVIC-233", 910, 50) { Outlier("Charcoal", 1); }; R_Date("PITT-1198", 875, 35) { Outlier("Charcoal", 1); }; R_Date("IVIC-244", 830, 60) { Outlier("Charcoal", 1); }; R_Date("PITT-1196", 775, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("DIC-3138", 660, 20); Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-248", 630, 50) { 479 Outlier("Charcoal", 1); }; R_Date("IVIC-249", 630, 60) { Outlier("Charcoal", 1); }; R_Date("GrN-31926", 605, 15) { Outlier("Charcoal", 1); }; R_Date("PITT-1195", 590, 50) { Outlier("Charcoal", 1); }; R_Date("PITT-1188", 475, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-32016", 450, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-9997", 420, 15) 480 { Outlier("Charcoal", 1); }; R_Date("PITT-1197", 395, 115) { Outlier("Charcoal", 1); }; R_Date("GrN-32017", 370, 25) { Outlier("Charcoal", 1); }; R_Date("IVIC-241", 340, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-9998", 325, 35) { Outlier("Charcoal", 1); }; }; Boundary("Curacao End"); }; }; 481 Grand Turk Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Grand Turk") { Boundary("Grand Turk Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-80911", 1280, 60) R_Date("Beta-98698", 1230, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-93912", 1170, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-80910", 1160, 60) R_Date("Beta-114924", 1120, 50) { Outlier("Charcoal", 1); 482 }; R_Date("Beta-66151", 1120, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-98697", 1010, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-96700", 940, 60) Curve("Marine13","Marine13.14c"); R_Date("Beta-93913", 930, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-242672", 910, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-98699", 900, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-242675", 850, 50); 483 R_Date("Beta-242673", 790, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-253527", 780, 40) { Outlier("Charcoal", 1); }; R_Date("Beta 242670", 690, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-242671", 610, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-242674", 460, 40); }; Boundary("Grand Turk End"); }; }; Grenada Plot() 484 { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Grenada") { Boundary("Grenada Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("PSUAMS-3017", 2820, 20); R_Date("PSUAMS-3022", 2145, 20); Curve("IntCal13","IntCal13.14c"); R_Date("PSUAMS-1317", 1685, 20) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("PSUAMS-3020", 1510, 20); Curve("IntCal13","IntCal13.14c"); R_Date("PSUAMS-1287", 1500, 25) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 485 R_Date("UCIAMS-179806", 1380, 20); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-85941", 1270, 50) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-1565", 1215, 20) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-3946", 1215, 20) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-1320", 1180, 25) { Outlier("Charcoal", 1); }; R_Date("Beta-85935", 1110, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-98365", 1080, 50) 486 { Outlier("Charcoal", 1); }; R_Date("Beta-86831", 1050, 90) { Outlier("Charcoal", 1); }; R_Date("Beta-98368", 980, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-86827", 900, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-85938", 850, 40) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-1322", 835, 25) { Outlier("Charcoal", 1); }; 487 R_Date("Beta-86833", 810, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-86832", 790, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-85939", 770, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-86830", 770, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-86828", 650, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-86829", 550, 60) { Outlier("Charcoal", 1); 488 }; R_Date("Beta-98367", 510, 60) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-3945", 380, 25) { Outlier("Charcoal", 1); }; R_Date("Beta-98366", 340, 50) { Outlier("Charcoal", 1); }; }; Boundary("Grenada End"); }; }; Guadeloupe Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Guadeloupe") 489 { Boundary("Guadeloupe Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Erl-10156", 3052, 41) { Outlier("Charcoal", 1); }; R_Date("Ly-9162", 1815, 30) { Outlier("Charcoal", 1); }; R_Date("Ly-9161", 1580, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-36672", 1340, 25) { Outlier("Charcoal", 1); }; R_Date("KIA-36677", 1245, 30) { 490 Outlier("Charcoal", 1); }; R_Date("KIA-36671", 1230, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-31187", 1210, 20) { Outlier("Charcoal", 1); }; R_Date("Y-1246", 1100, 80) { Outlier("Charcoal", 1); }; R_Date("KIA-36678", 1065, 30) { Outlier("Charcoal", 1); }; R_Date("Erl-10159", 1056, 36) { Outlier("Charcoal", 1); }; R_Date("KIA-36684", 1000, 30) 491 { Outlier("Charcoal", 1); }; R_Date("KIA-36673", 945, 35) { Outlier("Charcoal", 1); }; R_Date("KIA-36674", 945, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36675", 915, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-8466", 770, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-36680", 690, 30) { Outlier("Charcoal", 1); 492 }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36682", 650, 140); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-36679", 625, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36681", 625, 25); R_Date("KIA-36681", 620, 25); R_Date("KIA-36676", 565, 25); R_Date("KIA-36676", 431, 22); R_Date("KIA-36676", 348, 39); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-36683", 330, 25) { Outlier("Charcoal", 1); }; 493 }; Boundary("Guadeloupe End"); }; }; Hispaniola Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Hispaniola") { Boundary("Hispaniola Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("I-6756", 3890, 95) { Outlier("Charcoal", 1); }; R_Date("I-5940", 3840, 130) { Outlier("Charcoal", 1); }; 494 Curve("Marine13","Marine13.14c"); R_Date("I-9541", 3575, 90); Curve("IntCal13","IntCal13.14c"); R_Date("I-9539", 3205, 90) { Outlier("Charcoal", 1); }; R_Date("I-6781", 2585, 90) { Outlier("Charcoal", 1); }; R_Date("I-5818", 2095, 135) { Outlier("Charcoal", 1); }; R_Date("SI-991", 1805, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("GrN-29933", 1750, 30); R_Date("GrN-31416", 1745, 20); R_Date("GrN-31413", 1705, 20); 495 R_Date("GrN-30532", 1525, 25); R_Date("GrN-31415", 1520, 20); R_Date("GrN-29932", 1495, 30); R_Date("GrN-31414", 1435, 20); R_Date("Beta-293244", 1340, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-31412", 1230, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("GrN-30531", 1170, 25); R_Date("Beta-293242", 1120, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-29934", 1110, 25); Curve("Marine13","Marine13.14c"); R_Date("GrN-30533", 1040, 25); R_Date("Beta-293243", 1030, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-108313", 990, 70) { Outlier("Charcoal", 1); }; 496 R_Date("Beta-107023", 940, 30); R_Date("GrN-31418", 925, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-31417", 915, 20) { Outlier("Charcoal", 1); }; R_Date("Beta-112400", 910, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-96782", 870, 60) { Outlier("Charcoal", 1); }; R_Date("GrN-29931", 815, 35) { Outlier("Charcoal", 1); }; R_Date("Beta-47758", 810, 70) { 497 Outlier("Charcoal", 1); }; R_Date("Beta-46760", 800, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-46759", 720, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-18173", 680, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-96781", 680, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-01527", 640, 260) { Outlier("Charcoal", 1); }; R_Date("Beta-108314", 620, 70) 498 { Outlier("Charcoal", 1); }; R_Date("Beta-18172", 600, 70) { Outlier("Charcoal", 1); }; R_Date("GrN-30534", 600, 25) { Outlier("Charcoal", 1); }; R_Date("GrN-30535", 580, 30) { Outlier("Charcoal", 1); }; R_Date("Beta-108315", 540, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-29035", 535, 25) { Outlier("Charcoal", 1); }; 499 R_Date("Beta-018469", 440, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-10526", 430, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-010528", 340, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-046761", 320, 70) { Outlier("Charcoal", 1); }; }; Boundary("Hispaniola End"); }; }; Jamaica Plot() 500 { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Jamaica") { Boundary("Jamaica Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-153378", 970, 40) { Outlier("Charcoal", 1); }; R_Date("WK 43115", 938, 20) { Outlier("Charcoal", 1); }; R_Date("Beta-167740", 680, 60) { Outlier("Charcoal", 1); }; R_Date("A-6140", 630, 40) { Outlier("Charcoal", 1); 501 }; R_Date("WK 43114", 627, 20) { Outlier("Charcoal", 1); }; R_Date("OxA-21058", 615, 24) { Outlier("Charcoal", 1); }; R_Date("A-6058", 570, 45) { Outlier("Charcoal", 1); }; R_Date("A-6061", 525, 45) { Outlier("Charcoal", 1); }; R_Date("OxA-21057", 396, 24) { Outlier("Charcoal", 1); }; R_Date("OxA- 21056", 384, 24) { 502 Outlier("Charcoal", 1); }; }; Boundary("Jamaica End"); }; }; Montserrat Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Montserrat") { Boundary("Montserrat Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-83043", 2770, 60) { Outlier("Charcaol", 1); }; R_Date("Beta-83050", 2140, 110) { 503 Outlier("Charcaol", 1); }; R_Date("Beta-83046", 2050, 80) { Outlier("Charcaol", 1); }; R_Date("Beta-83045", 1950, 90) { Outlier("Charcaol", 1); }; R_Date("Beta-83048", 1860, 100) { Outlier("Charcaol", 1); }; R_Date("Beta-83049", 1730, 100) { Outlier("Charcaol", 1); }; R_Date("Beta-83044", 1650, 130) { Outlier("Charcaol", 1); }; R_Date("Beta-83051", 1540, 120) 504 { Outlier("Charcaol", 1); }; R_Date("Beta-83047", 1270, 130) { Outlier("Charcaol", 1); }; R_Date("Beta-282302", 1120, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-282300", 1070, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-277241", 1010, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-282301", 980, 40) { Outlier("Charcaol", 1); }; 505 R_Date("Beta-282299", 980, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-277242", 880, 40) { Outlier("Charcaol", 1); }; }; Boundary("Montserrat End"); }; }; Nevis Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Nevis") { Boundary("Nevis Start"); Phase() { Curve("Marine13","Marine13.14c"); 506 R_Date("D-AMS 007668", 1541, 33); R_Date("D-AMS 07667", 1464, 24); R_Date("Beta-290341", 1420, 40); R_Date("Beta-290340", 1350, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-47807", 1070, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-46940", 1060, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-46944a", 940, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-46942", 880, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-324952", 720, 30); 507 R_Date("Beta-324951", 570, 30); }; Boundary("Nevis End"); }; }; Puerto Rico Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Puerto Rico") { Boundary("Puerto Rico Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-77165", 4060, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-178680", 4110, 40) { Outlier("Charcoal", 1); 508 }; R_Date("GX-28807", 3920, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-17566", 4250, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-116372", 3820, 70) { Outlier("Charcoal", 1); }; R_Date("UGM-17565", 3810, 25) { Outlier("Charcoal", 1); }; R_Date("GX-28814", 3740, 100) { Outlier("Charcoal", 1); }; R_Date("UGM-5106", 3740, 30) { Outlier("Charcoal", 1); 509 }; Curve("Marine13","Marine13.14c"); R_Date("UGM-5108", 3740, 30); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28805", 3700, 30) { Outlier("Charcoal", 1); }; R_Date("Beta-294434", 3680, 40) { Outlier("Charcoal", 1); }; R_Date("GX-28808", 3670, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-17561", 3640, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-130451", 3640, 70) { Outlier("Charcoal", 1); }; 510 Curve("Marine13","Marine13.14c"); R_Date("UGM-17562", 3630, 25); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28806", 3570, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-5107", 3520, 30); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28809", 3470, 40) { Outlier("Charcoal", 1); }; R_Date("I-14745", 3340, 90) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-5105", 3170, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30042", 3140, 40) { 511 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-17564", 3120, 20); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30031", 2910, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-130450", 2730, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-178678", 2520, 40) { Outlier("Charcoal", 1); }; R_Date("UGM-30033", 2390, 35) { Outlier("Charcoal", 1); }; R_Date("Beta-178677", 2330, 110) { 512 Outlier("Charcoal", 1); }; R_Date("I-14744", 2270, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-294435", 2120, 30) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("I-14979", 2120, 80); Curve("IntCal13","IntCal13.14c"); R_Date("I-11296", 2100, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-9970", 2060, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-14380", 2060, 60) { 513 Outlier("Charcoal", 1); }; R_Date("I-14978", 2020, 80) { Outlier("Charcoal", 1); }; R_Date("I-13855", 2020, 80) { Outlier("Charcoal", 1); }; R_Date("I-11297", 1995, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-14381", 1960, 90) { Outlier("Charcoal", 1); }; R_Date("I-13930", 1950, 80) { Outlier("Charcoal", 1); }; R_Date("Y-1235", 1920, 120) 514 { Outlier("Charcoal", 1); }; R_Date("Beta-87611", 1920, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-347456", 1910, 30); R_Date("Y-1234", 1910, 100) { Outlier("Charcoal", 1); }; R_Date("I-11266", 1865, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-9972", 1840, 50); R_Date("Y-1233", 1830, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-14993", 1810, 60) { 515 Outlier("Charcoal", 1); }; R_Date("Beta-14997", 1810, 70) { Outlier("Charcoal", 1); }; R_Date("I-10914", 1780, 85) { Outlier("Charcoal", 1); }; R_Date("I-13922", 1780, 85) { Outlier("Charcoal", 1); }; R_Date("I-9680", 1775, 80) { Outlier("Charcoal", 1); }; R_Date("I-10916", 1720, 80) { Outlier("Charcoal", 1); }; R_Date("I-10921", 1705, 85) 516 { Outlier("Charcoal", 1); }; R_Date("Beta-14992", 1660, 100) { Outlier("Charcoal", 1); }; R_Date("I-14361", 1650, 80) { Outlier("Charcoal", 1); }; R_Date("I-14431", 1650, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-222869", 1630, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-14430", 1610, 80) { Outlier("Charcoal", 1); 517 }; R_Date("I-14427", 1610, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6809", 1600, 55); Curve("IntCal13","IntCal13.14c"); R_Date("I-14428", 1600, 150) { Outlier("Charcoal", 1); }; R_Date("I-14383", 1600, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75810", 1582, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1232", 1580, 80) { Outlier("Charcoal", 1); 518 }; R_Date("Beta-17637", 1580, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-178670", 1580, 90) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79415", 1566, 46); Curve("IntCal13","IntCal13.14c"); R_Date("I-14362", 1560, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78513", 1557, 44); Curve("IntCal13","IntCal13.14c"); 519 R_Date("Beta-87610", 1550, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-272032", 1550, 40) { Outlier("Charcoal", 1); }; R_Date("I-14429", 1550, 80) { Outlier("Charcoal", 1); }; R_Date("I-6595", 1545, 90) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75128", 1539, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17631", 1530, 90) { 520 Outlier("Charcoal", 1); }; R_Date("I-14382", 1530, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6805", 1525, 55); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-14994", 1520, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-178681", 1520, 40) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4100", 1515, 50); 521 Curve("IntCal13","IntCal13.14c"); R_Date("I-9677", 1515, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78495", 1505, 44); Curve("IntCal13","IntCal13.14c"); R_Date("I-13932", 1500, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74638", 1493, 45); Curve("IntCal13","IntCal13.14c"); R_Date("I-13923", 1490, 80) { Outlier("Charcoal", 1); }; 522 R_Date("I-9108", 1480, 95) { Outlier("Charcoal", 1); }; R_Date("I-13924", 1480, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-178674", 1470, 40) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82397", 1469, 47); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-223566", 1460, 60) { Outlier("Charcoal", 1); }; R_Date("I-14360", 1460, 80) { 523 Outlier("Charcoal", 1); }; R_Date("I-9873", 1460, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79371", 1456, 45); R_Date("AA-75816", 1455, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-178666", 1450, 40) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72872", 1443, 50); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30035", 1440, 30) { 524 Outlier("Charcoal", 1); }; R_Date("Beta-17641", 1440, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-87601", 1440, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74637", 1434, 45); R_Date("AA-78492", 1434, 44); }; Boundary("Puerto Rico End"); }; }; San Salvador Plot() { 525 Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("San Salvador") { Boundary("San Salvador Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("UM-2275", 1384, 65); Curve("IntCal13","IntCal13.14c"); R_Date("YSU #3", 1130, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGa-00836", 1054, 37); R_Date("AA-51432", 1028, 34); Curve("IntCal13","IntCal13.14c"); R_Date("YSU #1", 840, 40) { Outlier("Charcoal", 1); }; R_Date("UM-2244", 660, 100) { 526 Outlier("Charcoal", 1); }; R_Date("UM-2274", 620, 70) { Outlier("Charcoal", 1); }; R_Date("UM-2273", 580, 90) { Outlier("Charcoal", 1); }; R_Date("Beta-16732", 530, 65) { Outlier("Charcoal", 1); }; R_Date("YSU #4", 470, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-105988", 450, 50) { Outlier("Charcoal", 1); }; R_Date("YSU #2", 350, 70) 527 { Outlier("Charcoal", 1); }; R_Date("UM-2271", 305, 75) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UM-2245", 425, 75); }; Boundary("San Salvador End"); }; }; St. Eustatius Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("St Eustatius") { Boundary("St Eustatius Start"); Phase() { 528 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ua-1488", 1735, 220); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-11512", 1755, 20) { Outlier("Charcoal", 1); }; R_Date("GrN-11513", 1635, 20) { Outlier("Charcoal", 1); }; R_Date("GrN-11510", 1545, 35) { Outlier("Charcoal", 1); }; R_Date("GrN-11509", 1415, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-11514", 1350, 60) { 529 Outlier("Charcoal", 1); }; R_Date("GrN-11516", 1340, 20) { Outlier("Charcoal", 1); }; R_Date("GrN-17074", 1325, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-17075", 1260, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-11517", 1210, 20) { Outlier("Charcoal", 1); }; R_Date("GrN-11515", 1205, 30) { Outlier("Charcoal", 1); }; }; 530 Boundary("St Eustatius End"); }; }; St. John Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("St. John") { Boundary("St. John Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17080", 1630, 100) { Outlier("Charcoal", 1); }; R_Date("Beta-32239", 1460, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-16647", 1210, 80) 531 { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-27793", 1170, 80); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-192223", 1160, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-192224", 1140, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-25891", 1130, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-59781", 1120, 100) { Outlier("Charcoal", 1); 532 }; R_Date("Beta-20605", 1050, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-59780", 970, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-18513", 970, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-26964", 900, 100) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-191882", 840, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-19863", 660, 60) 533 { Outlier("Charcoal", 1); }; }; Boundary("St. John End"); }; }; St. Lucia Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("St. Lucia") { Boundary("St. Lucia Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Y-1115", 1460, 80) { Outlier("Charcoal", 1); }; R_Date("Y-650", 1220, 100) 534 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("RL-30", 1240, 100); R_Date("RL-31", 1120, 100); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-46607", 1000, 40); R_Date("GrN-32330", 960, 35); R_Date("GrN-32324", 920, 25); R_Date("GrN-32326", 865, 35); R_Date("GrN-32328", 820, 35); R_Date("GrN-32325", 790, 35); R_Date("GrN-32319", 770, 35); R_Date("GrN-31944", 750, 30); R_Date("GrN-32327", 745, 30); R_Date("GrN-32314", 740, 30); R_Date("GrN-32317", 725, 35); R_Date("GrN-32315", 720, 35); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-46604", 645, 35) 535 { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-32329", 620, 40); }; Boundary("St. Lucia End"); }; }; St. Martin Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("St. Martin") { Boundary("St. Martin Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("KIA-28815", 4830, 40); 536 R_Date("KIA-28108", 4770, 40); R_Date("KIA-28116", 4505, 35); R_Date("KIA-28115", 4275, 30); R_Date("Erl-9066", 4200, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28121", 3828, 27) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28114", 3800, 30); R_Date("KIA-28112", 3775, 30); R_Date("Erl-9071", 3750, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28123", 3684, 27) { Outlier("Charcoal", 1); }; R_Date("KIA-28119", 3655, 25) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 537 R_Date("Erl-9072", 3610, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28124", 3598, 29) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-41782", 3580, 90); Curve("IntCal13","IntCal13.14c"); R_Date("Erl-9074", 3515, 45) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Erl-9073", 3510, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-190805", 3490, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Erl-9064", 3460, 50); R_Date("Beta-187936", 3450, 40); 538 Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28126", 3447, 26) { Outlier("Charcoal", 1); }; R_Date("KIA-28127", 3429, 35) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28111", 3380, 40); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28120", 3366, 27) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Erl-9065", 3340, 50); R_Date("KIA-28113", 3320, 30); R_Date("Beta-224793", 3240, 60); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28125", 3235, 26) { 539 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28110", 3185, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-187937", 3140, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28109", 3105, 30); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28117", 3095, 23) { Outlier("Charcoal", 1); }; R_Date("KIA-28118", 2951, 52) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-146427", 2850, 60); Curve("IntCal13","IntCal13.14c"); 540 R_Date("Beta-224792", 2610, 40) { Outlier("Charcoal", 1); }; R_Date("PITT-0450", 2510, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-145372", 2420, 40) { Outlier("Charcoal", 1); }; R_Date("PITT-0449", 2300, 55) { Outlier("Charcoal", 1); }; R_Date("PITT-0219", 2275, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-146425", 2270, 40) { Outlier("Charcoal", 1); 541 }; R_Date("PITT-0220", 2250, 45) { Outlier("Charcoal", 1); }; R_Date("PITT-0446", 2250, 45) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Erl-8235", 2070, 50); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0448", 2050, 45) { Outlier("Charcoal", 1); }; R_Date("Beta-146424", 2020, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-106230", 1960, 60) 542 { Outlier("Charcoal", 1); }; R_Date("Beta-82159", 1910, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-32785", 1900, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82156", 1870, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-187941", 1810, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82158", 1800, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-82157", 1800, 60) { 543 Outlier("Charcoal", 1); }; R_Date("Beta-106228", 1770, 50) { Outlier("Charcoal", 1); }; R_Date("LGQ-1099", 1760, 160) { Outlier("Charcoal", 1); }; R_Date("Beta-82160", 1760, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-82154", 1710, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-106233", 1710, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-106229", 1670, 50) 544 { Outlier("Charcoal", 1); }; R_Date("PITT-0452", 1660, 55) { Outlier("Charcoal", 1); }; R_Date("Beta-106232", 1650, 70) { Outlier("Charcoal", 1); }; R_Date("LGQ-1098", 1610, 150) { Outlier("Charcoal", 1); }; R_Date("Beta-82153", 1590, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28963", 1585, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-187940", 1560, 40) 545 { Outlier("Charcoal", 1); }; R_Date("Beta-106231", 1560, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-82155", 1540, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-187938", 1540, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-20170", 1535, 30); R_Date("GrN-20168", 1530, 30); R_Date("GrN-20169", 1520, 35); R_Date("KIA-28122", 1494, 26) { Outlier("Charcoal", 1); }; R_Date("PITT-0445", 1490, 35) { 546 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-200098", 1330, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-9163", 1230, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-20161", 1225, 30); R_Date("GrN-20160", 1180, 30); R_Date("GrN-20162", 1170, 30); Curve("Marine13","Marine13.14c"); R_Date("GrN- 20164", 1170, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82165", 1000, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ly-2019(OxA)", 895, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-11437", 890, 30) { 547 Outlier("Charcoal", 1); }; R_Date("Ly-11435", 890, 30) { Outlier("Charcoal", 1); }; }; Boundary("St. Martin End"); }; }; St. Thomas Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("St. Thomas") { Boundary("St. Thomas End"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("I-8640", 2830, 85); R_Date("Beta-7022", 2860, 70); 548 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-111459", 2710, 120) { Outlier("Charcoal", 1); }; R_Date("I-8641", 2775, 85) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("SI-5851", 2700, 65); R_Date("L-1380B", 2410, 60); R_Date("I-621", 2400, 175); R_Date("I-620", 2175, 160); R_Date("SI-5850", 2130, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-108917", 2090, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-111462", 1980, 50) { Outlier("Charcoal", 1); 549 }; Curve("Marine13","Marine13.14c"); R_Date("L-1380A", 1900, 70); R_Date("SI-5848", 1805, 75); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65474", 1800, 80) { Outlier("Charcoal", 1); }; R_Date("GX-12845", 1770, 235) { Outlier("Charcoal", 1); }; R_Date("Beta-108888", 1720, 140) { Outlier("Charcoal", 1); }; R_Date("Beta-50066", 1610, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("SI-5849", 1595, 75); 550 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65472", 1580, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-65473", 1570, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-54646", 1560, 90) { Outlier("Charcoal", 1); }; R_Date("CAMS-10696", 1550, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-108889", 1500, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-62568", 1430, 90) { 551 Outlier("Charcoal", 1); }; R_Date("Beta-62569", 1400, 120) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-88345", 1390, 40); R_Date("Beta-83011", 1390, 40); R_Date("Beta-83003", 1390, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-62570", 1380, 90) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83000", 1330, 30); R_Date("Beta-83001", 1330, 30); Curve("IntCal13","IntCal13.14c"); 552 R_Date("Beta-65469", 1310, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83009", 1300, 30); R_Date("Beta-83006", 1280, 40); R_Date("Beta-73392", 1190, 60); R_Date("Beta-83010", 1090, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-49751", 1040, 150) { Outlier("Charcoal", 1); }; R_Date("Beta-48742", 810, 140) { Outlier("Charcoal", 1); }; R_Date("Beta-43437", 810, 70) { Outlier("Charcoal", 1); 553 }; R_Date("Beta-42277", 730, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-51355", 720, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-111461", 650, 50) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-73390", 640, 60); R_Date("Beta-73394", 630, 60); R_Date("Beta-73393", 600, 60); R_Date("Beta-83005", 600, 30); R_Date("Beta-73395", 590, 90); R_Date("Beta-73391", 580, 60); Curve("IntCal13","IntCal13.14c"); 554 R_Date("Beta-51354", 560, 120) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-88347", 560, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-111452", 560, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83008", 540, 30); R_Date("Beta-83004", 500, 30); R_Date("Beta-109071", 480, 50); R_Date("Beta-88348", 470, 40); R_Date("Beta-88349", 460, 40); R_Date("Beta-109070", 450, 50); R_Date("Beta-88346", 390, 40); 555 R_Date("Beta-109072", 380, 50); R_Date("Beta-83007", 340, 30); R_Date("Beta-88344", 300, 40); }; Boundary("St. Thomas End"); }; }; Tobago Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Tobago") { Boundary("Tobago Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-15351", 2700, 40) R_Date("Beta-15936", 1750, 40) R_Date("Beta-172211", 1700, 40) R_Date("Y-1336", 1300, 120) { 556 Outlier("Charcaol", 1); }; R_Date("Beta-172209", 1180, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-153150", 1170, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-172210", 1110, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-153149", 900, 40) { Outlier("Charcaol", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-221321", 850, 40); R_Date("Beta-221319", 810, 40); 557 R_Date("Beta-221320", 810, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-4905", 760, 105) { Outlier("Charcaol", 1); }; R_Date("Beta-129265", 600, 50) { Outlier("Charcaol", 1); }; R_Date("Beta-129262", 590, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-129264", 550, 40) { Outlier("Charcaol", 1); }; }; Boundary("Tobago End"); }; }; 558 Trinidad Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Trinidad Start") { Boundary("Trinidad End"); Phase() { R_Date("IVIC-888", 7180, 80) { Outlier("charcoal", 1); }; R_Date("UGa-14460", 7030, 25) { Outlier("charcoal", 1); }; R_Date("UGa-12303", 6890, 30) { Outlier("charcoal", 1); }; R_Date("IVIC-889", 6780, 70) { 559 Outlier("charcoal", 1); }; R_Date("UGa-14459", 6370, 25) { Outlier("charcoal", 1); }; R_Date("IVIC-891", 6190, 100) { Outlier("charcoal", 1); }; R_Date("IVIC-887", 6170, 90) { Outlier("charcoal", 1); }; R_Date("UGa-14458", 6100, 25) { Outlier("charcoal", 1); }; R_Date("IVIC-890", 6100, 90) { Outlier("charcoal", 1); }; R_Date("IVIC-783", 5650, 100) 560 { Outlier("charcoal", 1); }; R_Date("UGa-14457", 5300, 25); R_Date("Y-260-1", 2750, 130) { Outlier("charcoal", 1); }; R_Date("IVIC-642", 2140, 70) { Outlier("charcoal", 1); }; R_Date("IVIC-638", 2130, 80) { Outlier("charcoal", 1); }; R_Date("I-6444", 2120, 135) { Outlier("charcoal", 1); }; R_Date("IVIC-641", 2060, 70) { Outlier("charcoal", 1); 561 }; R_Date("IVIC-640", 1990, 70) { Outlier("charcoal", 1); }; R_Date("Beta-196708", 1920, 40) { Outlier("charcoal", 1); }; R_Date("Beta-196709", 1880, 40) { Outlier("charcoal", 1); }; R_Date("IVIC-643", 1850, 80) { Outlier("charcoal", 1); }; R_Date("Beta-4902", 1805, 90) { Outlier("charcoal", 1); }; R_Date("Beta-4899", 1755, 150) { 562 Outlier("charcoal", 1); }; R_Date("Beta-134571", 1720, 50) { Outlier("charcoal", 1); }; R_Date("IVIC-786", 1720, 90) { Outlier("charcoal", 1); }; R_Date("Beta-4903", 1680, 115) { Outlier("charcoal", 1); }; R_Date("Beta-196706", 1650, 40) { Outlier("charcoal", 1); }; R_Date("GrA-13865", 1590, 40) { Outlier("charcoal", 1); }; R_Date("Beta-189113", 1570, 40) 563 { Outlier("charcoal", 1); }; R_Date("OxA-19174", 1538, 29) { Outlier("charcoal", 1); }; R_Date("Beta-296724", 1490, 30) { Outlier("charcoal", 1); }; R_Date("IVIC-639", 1480, 70) { Outlier("charcoal", 1); }; R_Date("Beta-296723", 1400, 30) { Outlier("charcoal", 1); }; R_Date("Beta-4904", 1350, 85) { Outlier("charcoal", 1); }; 564 R_Date("Beta-4901", 1300, 110) { Outlier("charcoal", 1); }; R_Date("IVIC-785", 1260, 100) { Outlier("charcoal", 1); }; R_Date("GrA-13867", 1220, 40) { Outlier("charcoal", 1); }; R_Date("Beta-296726", 1210, 30) { Outlier("charcoal", 1); }; R_Date("ISGS-A2628", 1210, 15) { Outlier("charcoal", 1); }; R_Date("Beta-4900", 1145, 65) { Outlier("charcoal", 1); 565 }; R_Date("Beta-6807", 1130, 50) { Outlier("charcoal", 1); }; R_Date("Beta-4898", 1040, 260) { Outlier("charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-6809", 990, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-196707", 740, 40) { Outlier("charcoal", 1); }; R_Date("Beta-6808", 650, 50) { Outlier("charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); 566 R_Date("Beta-193442", 630, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-193443", 620, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-10766", 540, 75) { Outlier("charcoal", 1); }; R_Date("ISGS-A2629", 410, 20) { Outlier("charcoal", 1); }; R_Date("ISGS-A2630", 385, 20) { Outlier("charcoal", 1); }; }; Boundary("Trinidad"); }; }; 567 Vieques Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Vieques") { Boundary("Vieques Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("I-18971", 4095, 80); R_Date("I-16406", 3850, 100); R_Date("I-16899", 3780, 100); R_Date("I-16397", 3530, 100); R_Date("I-16396", 3510, 100); R_Date("I-16897", 3470, 100); R_Date("I-16395", 2790, 100); R_Date("I-16898", 2770, 90); R_Date("I-16407", 2740, 100); R_Date("I-16896", 2650, 90); Curve("IntCal13","IntCal13.14c"); R_Date("I-16153", 2590, 90) { 568 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-276588", 2240, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-13425", 2110, 80) { Outlier("Charcoal", 1); }; R_Date("I-11322", 1945, 80) { Outlier("Charcoal", 1); }; R_Date("I-11319", 1915, 80) { Outlier("Charcoal", 1); }; R_Date("I-12859", 1880, 80) { Outlier("Charcoal", 1); }; R_Date("I-11321", 1845, 80) { 569 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-259410", 1840, 50); Curve("IntCal13","IntCal13.14c"); R_Date("I-10979", 1820, 85) { Outlier("Charcoal", 1); }; R_Date("I-12858", 1820, 80) { Outlier("Charcoal", 1); }; R_Date("I-12856", 1810, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-129948", 1810, 60) { Outlier("Charcoal", 1); }; R_Date("I-11139", 1800, 80) { 570 Outlier("Charcoal", 1); }; R_Date("I-12860", 1780, 80) { Outlier("Charcoal", 1); }; R_Date("I-11320", 1770, 80) { Outlier("Charcoal", 1); }; R_Date("I-11685", 1740, 75) { Outlier("Charcoal", 1); }; R_Date("I-10980", 1735, 85) { Outlier("Charcoal", 1); }; R_Date("I-11140", 1730, 80) { Outlier("Charcoal", 1); }; R_Date("I-11926", 1720, 80) 571 { Outlier("Charcoal", 1); }; R_Date("I-11141", 1705, 80) { Outlier("Charcoal", 1); }; R_Date("I-16151", 1700, 80) { Outlier("Charcoal", 1); }; R_Date("I-11925", 1665, 80) { Outlier("Charcoal", 1); }; R_Date("I-16152", 1650, 80) { Outlier("Charcoal", 1); }; R_Date("I-12744", 1640, 80) { Outlier("Charcoal", 1); }; 572 R_Date("I-16154", 1620, 80) { Outlier("Charcoal", 1); }; R_Date("I-11317", 1615, 75) { Outlier("Charcoal", 1); }; R_Date("I-12746", 1600, 80) { Outlier("Charcoal", 1); }; R_Date("I-16174", 1600, 80) { Outlier("Charcoal", 1); }; R_Date("I-16173", 1590, 80) { Outlier("Charcoal", 1); }; R_Date("I-12857", 1580, 80) { Outlier("Charcoal", 1); 573 }; R_Date("I-11686", 1575, 80) { Outlier("Charcoal", 1); }; R_Date("I-10547", 1575, 85) { Outlier("Charcoal", 1); }; R_Date("I-11687", 1565, 75) { Outlier("Charcoal", 1); }; R_Date("I-11927", 1565, 80) { Outlier("Charcoal", 1); }; R_Date("I-12745", 1560, 80) { Outlier("Charcoal", 1); }; R_Date("I-11316", 1555, 75) { 574 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("I-10549", 1525, 85); Curve("IntCal13","IntCal13.14c"); R_Date("I-10550", 1505, 85) { Outlier("Charcoal", 1); }; R_Date("I-11318", 1490, 75) { Outlier("Charcoal", 1); }; R_Date("I-16175", 1450, 80) { Outlier("Charcoal", 1); }; R_Date("I-10548", 1440, 85) { Outlier("Charcoal", 1); }; R_Date("I-16176", 1270, 90) { 575 Outlier("Charcoal", 1); }; R_Date("I-14813", 1180, 80) { Outlier("Charcoal", 1); }; R_Date("I-12743", 950, 80) { Outlier("Charcoal", 1); }; R_Date("I-12742", 900, 80); R_Date("I-11189", 790, 85) { Outlier("Charcoal", 1); }; R_Date("I-15189", 790, 80) { Outlier("Charcoal", 1); }; R_Date("I- 15188", 700, 80) { Outlier("Charcoal", 1); }; 576 R_Date("I-15188", 700, 70) { Outlier("Charcoal", 1); }; R_Date("I-15187", 690, 80) { Outlier("Charcoal", 1); }; R_Date("I-15239", 660, 80) { Outlier("Charcoal", 1); }; R_Date("I-15240", 630, 80) { Outlier("Charcoal", 1); }; R_Date("I-15238", 570, 80) { Outlier("Charcoal", 1); }; R_Date("I-15185", 540, 80) { Outlier("Charcoal", 1); 577 }; R_Date("I-15186", 520, 80) { Outlier("Charcoal", 1); }; R_Date("I-15658", 470, 80) { Outlier("Charcoal", 1); }; R_Date("I-15657", 410, 80) { Outlier("Charcoal", 1); }; R_Date("I-11142", 405, 75) { Outlier("Charcoal", 1); }; }; Boundary("Vieques End"); }; }; 1,000 yr Outlier Model SQL Code 578 Anguilla Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence() { Boundary("Anguilla Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-19957", 1550, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-15824", 1530, 140) { Outlier("Charcoal", 1); }; R_Date("Beta-18740", 1430, 70) { Outlier("Charcoal", 1); }; 579 R_Date("Beta-21858", 1410, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110397", 1310, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-19956", 1290, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110396", 1290, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-106439", 1270, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110394", 1230, 70) { Outlier("Charcoal", 1); 580 }; Curve("Marine13","Marine13.14c"); R_Date("Beta-15485", 1220, 70); R_Date("Beta-106444", 1180, 60); R_Date("Beta-106443", 1180, 60); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0546", 1180, 45) { Outlier("Charcoal", 1); }; R_Date("Beta-110395", 1170, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-19955", 1150, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-110393", 1140, 60) { Outlier("Charcoal", 1); }; R_Date("PITT-0545", 1135, 40) 581 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-15486", 1130, 80); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-106442", 1120, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-18738", 1120, 70) { Outlier("Charcoal", 1); }; R_Date("PITT-0547", 1085, 55) { Outlier("Charcoal", 1); }; R_Date("Beta-21861", 1080, 90) { Outlier("Charcoal", 1); }; R_Date("Beta-18739", 1000, 110) 582 { Outlier("Charcoal", 1); }; R_Date("Beta-120152", 950, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-21863", 940, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257181", 910, 40); R_Date("Beta-257182", 890, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-21862", 880, 90) { Outlier("Charcoal", 1); }; R_Date("Beta-120157", 880, 80) { Outlier("Charcoal", 1); }; 583 Curve("Marine13","Marine13.14c"); R_Date("Beta-257184", 860, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-120154", 850, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-106441", 840, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257185", 780, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-110398", 780, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-141202", 740, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-120153", 740, 60) { 584 Outlier("Charcoal", 1); }; R_Date("Beta-120156", 710, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-257183", 680, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-106440", 510, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-120155", 440, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-60776", 400, 60); }; Boundary("Anguilla End"); }; }; 585 Antigua Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Antigua") { Boundary("Antigua Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("I-7830", 2785, 80) { Outlier("Charcoal", 1); }; R_Date("I-7842", 2785, 80) { Outlier("Charcoal", 1); }; R_Date("I-7980", 1915, 80) { Outlier("Charcoal", 1); }; 586 R_Date("I-7981", 1855, 80) { Outlier("Charcoal", 1); }; R_Date("I-7979", 1790, 85) { Outlier("Charcoal", 1); }; R_Date("I-7855", 1765, 80) { Outlier("Charcoal", 1); }; R_Date("I-7838", 1750, 80) { Outlier("Charcoal", 1); }; R_Date("I-7837", 1715, 80) { Outlier("Charcoal", 1); }; R_Date("I-7854", 1670, 80) { Outlier("Charcoal", 1); 587 }; R_Date("Beta- 124127", 1610, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-124126", 1600, 50) { Outlier("Charcoal", 1); }; R_Date("I-7355", 1505, 85) { Outlier("Charcoal", 1); }; R_Date("I-7356", 1505, 85) { Outlier("Charcoal", 1); }; R_Date("I-7352", 1440, 85) { Outlier("Charcoal", 1); }; R_Date("Beta-101500", 1430, 50) { 588 Outlier("Charcoal", 1); }; R_Date("I-7353", 1230, 85) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c") Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("SUERC-34163", 950, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-101499", 720, 50) { Outlier("Charcoal", 1); }; }; Boundary("Antigua End"); }; }; Aruba Plot() { 589 Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Aruba") { Boundary("Aruba Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("GrN-7341", 3300, 35) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ua-1501", 2210, 95); R_Date("Ua-1341", 1740, 110); R_Date("Ua-1342", 1520, 100); R_Date("Ua-1340", 1520, 110); R_Date("Ua-1514", 1420, 150); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-2788", 1080, 50) { Outlier("Charcoal", 1); 590 }; R_Date("GrN-7339", 1040, 45) { Outlier("Charcoal", 1); }; R_Date("GrN-21665", 1030, 40) { Outlier("Charcoal", 1); }; R_Date("GrN-21666", 1030, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-7340", 1000, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-7342", 990, 30) { Outlier("Charcoal", 1); }; R_Date("GrA-2789", 990, 50) { 591 Outlier("Charcoal", 1); }; R_Date("GrN-7338", 940, 25) { Outlier("Charcoal", 1); }; R_Date("GrN-21656", 910, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-17460", 910, 170); R_Date("GrN-17459", 870, 80); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-21664", 860, 40) { Outlier("Charcoal", 1); }; R_Date("GrA-2785", 860, 50) { Outlier("Charcoal", 1); 592 }; R_Date("GrA-2778", 830, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-16915", 825, 30) { Outlier("Charcoal", 1); }; R_Date("I-4025", 765, 110) { Outlier("Charcoal", 1); }; R_Date("GrA-2784", 750, 50) { Outlier("Charcoal", 1); }; R_Date("I-4026", 740, 105) { Outlier("Charcoal", 1); }; R_Date("GrA-2790", 340, 50) { 593 Outlier("Charcoal", 1); }; }; Boundary("Aruba End"); }; }; Barbados Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Barbados") { Boundary("Barbados Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("D-AMS 001792", 4366, 32); R_Date("Beta-297522", 4360, 40); R_Date("D-AMS 001793", 4278, 29); R_Date("Beta-297521", 4230, 50); R_Date("D-AMS 001794", 4091, 27); R_Date("I-16840", 3980, 100); 594 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-20723", 1950, 150) { Outlier("Charcoal", 1); }; R_Date("I-2486", 1570, 95) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("1-16189", 1120, 80); }; Boundary("Barbados End"); }; }; Barbuda Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Barbuda") { Boundary("Barbuda Start"); 595 Phase() { Curve("Marine13","Marine13.14c"); R_Date("UCI-107938", 3430, 15); R_Date("SUERC-33604 (GU-23530)", 3280, 35); R_Date("SUERC 33605 (GU-23531)", 2790, 35); R_Date("UCI-107937", 2565, 20); R_Date("Beta-103891", 2030, 60); Curve("IntCal13","IntCal13.14c"); R_Date("SUERC 18562", 2025, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 18560", 2005, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 18561", 1920, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 18558", 1785, 35) { 596 Outlier("Charcoal", 1); }; R_Date("SUERC 18557", 1755, 35) { Outlier("Charcoal", 1); }; R_Date("SUERC 34971", 1565, 35) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-103894", 1400, 60); R_Date("PITT-1234", 1365, 45); R_Date("Beta-103892", 1360, 60); R_Date("Beta-103893", 1350, 60); R_Date("Beta-103890", 1210, 60); R_Date("PITT-1233", 1135, 50); R_Date("PITT-1231", 1050, 30); Curve("IntCal13","IntCal13.14c"); R_Date("SUERC 18556", 820, 35) { Outlier("Charcoal", 1); }; 597 }; Boundary("Barbuda End"); }; }; Bonaire Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Bonaire") { Boundary("Bonaire Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("GrN-32756", 3610, 25); R_Date("GrN-32758", 3410, 20); R_Date("GrN-32751", 3245, 25); R_Date("GrN-32750", 3095, 20); R_Date("GrN-32749", 2785, 20); R_Date("GrN-32755", 2735, 25); 598 R_Date("GrN-32752", 2705, 30); R_Date("GrN-32757", 2680, 25); R_Date("GrN-32754", 2665, 20); R_Date("GrN-32753", 2575, 20); R_Date("GrN-32748", 2412, 15); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0267", 1480, 25) { Outlier("Charcoal", 1); }; R_Date("PITT-0268", 885, 45) { Outlier("Charcoal", 1); }; R_Date("PITT-0265", 710, 65) { Outlier("Charcoal", 1); }; R_Date("PITT-0264", 560, 40) { Outlier("Charcoal", 1); }; R_Date("PITT-0266", 505, 35) 599 { Outlier("Charcoal", 1); }; }; Boundary("Bonaire End"); }; }; Carriacou Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Carriacou") { Boundary("Carriacou Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("AA-62278", 1917, 37); R_Date("Beta-206685", 1870, 70); R_Date("AA-62280b", 1822, 41); R_Date("AA-62280a", 1789, 38); Curve("IntCal13","IntCal13.14c"); 600 R_Date("AA-67535", 1588, 36) { Outlier("Charcoal", 1); }; R_Date("AA-67536", 1584, 36) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("GX-30424", 1570, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-111935", 1565, 15); Curve("Marine13","Marine13.14c"); R_Date("GX-30425", 1460, 60); R_Date("GX-30423", 1400, 60); Curve("IntCal13","IntCal13.14c"); R_Date("AA-62281", 1339, 36) { Outlier("Charcoal", 1); }; R_Date("AA-67534", 1333, 57) 601 { Outlier("Charcoal", 1); }; R_Date("D-AMS 016647", 1328, 20) { Outlier("Charcoal", 1); }; R_Date("D-AMS 16649", 1321, 20) { Outlier("Charcoal", 1); }; R_Date("D-AMS 016648", 1315, 20) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-233647", 1310, 40); R_Date("UCIAMS-94046", 1265, 20); Curve("IntCal13","IntCal13.14c"); R_Date("AA-62279", 1243, 36) { Outlier("Charcoal", 1); }; 602 R_Date("AA-62282", 1227, 36) { Outlier("Charcoal", 1); }; R_Date("OS-71467", 1220, 20) { Outlier("Charcoal", 1); }; R_Date("AA-67533", 1172, 36) { Outlier("Charcoal", 1); }; R_Date("AA-81055", 1158, 45) { Outlier("Charcoal", 1); }; R_Date("OS-71463", 1140, 15) { Outlier("Charcoal", 1); }; R_Date("AA-67531", 1133, 38) { Outlier("Charcoal", 1); 603 }; R_Date("OS-71464", 1100, 20) { Outlier("Charcoal", 1); }; R_Date("OS-71465", 1080, 15) { Outlier("Charcoal", 1); }; R_Date("AA-67532", 1073, 38) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-62283", 1062, 44); Curve("IntCal13","IntCal13.14c"); R_Date("AA-67530", 1039, 35) { Outlier("Charcoal", 1); }; R_Date("OS-41358", 1030, 30) 604 { Outlier("Charcoal", 1); }; R_Date("UCIAMS-94045", 1020, 20) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-120951", 1015, 15); Curve("IntCal13","IntCal13.14c"); R_Date("AA-81056", 994, 45) { Outlier("Charcoal", 1); }; R_Date("UCIAMS-94044", 990, 20) { Outlier("Charcoal", 1); }; R_Date("AA-67529", 988, 42) { Outlier("Charcoal", 1); 605 }; R_Date("OS-71462", 975, 20) { Outlier("Charcoal", 1); }; R_Date("OS-71408", 970, 15) { Outlier("Charcoal", 1); }; R_Date("OS-71407", 960, 15) { Outlier("Charcoal", 1); }; R_Date("RL-29", 940, 100) { Outlier("Charcoal", 1); }; R_Date("OS-71409", 925, 15) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 606 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-257793", 870, 40); Curve("IntCal13","IntCal13.14c"); R_Date("OS-71466", 680, 15) { Outlier("Charcoal", 1); }; R_Date("AA-81054", 657, 44) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-111933", 715, 15); R_Date("UCIAMS-111934", 690, 15); }; Boundary("Carriacou End"); }; }; Cuba Plot() 607 { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Cuba") { Boundary("Cuba Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("LE-4283", 5270, 120) { Outlier("Charcoal", 1); }; R_Date("GD-250", 5140, 170) { Outlier("Charcoal", 1); }; R_Date("MC-860", 4420, 100) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15267", 4408, 37); Curve("IntCal13","IntCal13.14c"); 608 R_Date("MC-859", 4240, 100) { Outlier("Charcoal", 1); }; R_Date("UBAR-170", 4200, 79) { Outlier("Charcoal", 1); }; R_Date("Beta-140079", 4180, 80) { Outlier("Charcoal", 1); }; R_Date("LE-1783", 4110, 50) { Outlier("Charcoal", 1); }; R_Date("SI-429", 4000, 150) { Outlier("Charcoal", 1); }; R_Date("LE-1784", 3870, 40) { Outlier("Charcoal", 1); 609 }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15180", 3861, 28); Curve("IntCal13","IntCal13.14c"); R_Date("LE-1782", 3760, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-133951", 3720, 70) { Outlier("Charcoal", 1); }; R_Date("UNAM-0716", 3460, 60) { Outlier("Charcoal", 1); }; R_Date("GD-204", 3460, 160) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15264", 3273, 33); R_Date("OxA-15263", 3271, 29); 610 Curve("IntCal13","IntCal13.14c"); R_Date("Y-1764", 3250, 100) { Outlier("Charcoal", 1); }; R_Date("LE-4270", 3110, 180) { Outlier("Charcoal", 1); }; R_Date("SI-428", 3110, 200) { Outlier("Charcoal", 1); }; R_Date("UBAR-169", 3060, 180) { Outlier("Charcoal", 1); }; R_Date("AA-101053", 3057, 39) { Outlier("Charcoal", 1); }; R_Date("LE-4288", 3030, 180) { 611 Outlier("Charcoal", 1); }; R_Date("LE-4287", 3030, 180) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101054", 2999, 61); R_Date("AA-101057", 2996, 53); Curve("Marine13","Marine13.14c"); R_Date("Beta-184894", 2980, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89061", 2960, 33); R_Date("AA-101052", 2946, 57); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4282", 2930, 300) { Outlier("Charcoal", 1); }; 612 R_Date("GD-591", 2930, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89063", 2922, 34); Curve("IntCal13","IntCal13.14c"); R_Date("GD-613", 2880, 70) { Outlier("Charcoal", 1); }; R_Date("A-14316", 2845, 90) { Outlier("Charcoal", 1); }; R_Date("GD-1046", 2840, 60) { Outlier("Charcoal", 1); }; R_Date("GD-601", 2805, 60) { 613 Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101059", 2791, 51); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-133950", 2780, 40) { Outlier("Charcoal", 1); }; R_Date("LE-4272", 2750, 160) { Outlier("Charcoal", 1); }; R_Date("GD-614", 2720, 65) { Outlier("Charcoal", 1); }; R_Date("LE-2720", 2680, 40) { Outlier("Charcoal", 1); }; 614 Curve("Marine13","Marine13.14c"); R_Date("Beta-184896", 2680, 60); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4290", 2610, 120) { Outlier("Charcoal", 1); }; R_Date("LE-4281", 2610, 120) { Outlier("Charcoal", 1); }; R_Date("LE-2718", 2610, 40) { Outlier("Charcoal", 1); }; R_Date("LE-4275", 2580, 90) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-318171", 2570, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UNAM-0717", 2520, 60) 615 { Outlier("Charcoal", 1); }; R_Date("A-14315", 2515, 75) { Outlier("Charcoal", 1); }; R_Date("SI-427", 2510, 200) { Outlier("Charcoal", 1); }; R_Date("LE-4273", 2420, 100) { Outlier("Charcoal", 1); }; R_Date("LE-4279", 2390, 170) { Outlier("Charcoal", 1); }; R_Date("LE-4271", 2380, 80) { Outlier("Charcoal", 1); }; 616 Curve("Marine13","Marine13.14c"); R_Date("Beta-422938", 2350, 30); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4276", 2250, 150) { Outlier("Charcoal", 1); }; R_Date("LE-4267", 2220, 160) { Outlier("Charcoal", 1); }; R_Date("GD-1039", 2160, 55) { Outlier("Charcoal", 1); }; R_Date("LE-2719", 2160, 40) { Outlier("Charcoal", 1); }; R_Date("SI-426", 2070, 150) { Outlier("Charcoal", 1); }; 617 R_Date("LC-H 1034", 2070, 110) { Outlier("Charcoal", 1); }; R_Date("LE-4274", 2030, 160) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-214957", 2020, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Lv-2063", 2020, 80) { Outlier("Charcoal", 1); }; R_Date("LE-2717", 2010, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15262", 2005, 27); Curve("IntCal13","IntCal13.14c"); R_Date("GD-1051", 1990, 80) 618 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15266", 1978, 33); R_Date("Beta-214958", 1910, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-93862", 1890, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15183", 1873, 26); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-93866", 1850, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-318170", 1750, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UM-1953", 1745, 175) { 619 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15184", 1686, 26); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-72801", 1670, 70); R_Date("AA-101055", 1661, 52); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-133948", 1640, 130) { Outlier("Charcoal", 1); }; R_Date("SI-424", 1620, 150) { Outlier("Charcoal", 1); }; R_Date("AA-89064", 1617, 46) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); 620 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("OxA-15260", 1617, 29); R_Date("Beta-72802", 1590, 60); Curve("Marine13","Marine13.14c"); R_Date("OxA-15181", 1561, 24); R_Date("OxA-15146", 1557, 25); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89062", 1536, 51); Curve("IntCal13","IntCal13.14c"); R_Date("GD-617", 1495, 60) { Outlier("Charcoal", 1); }; R_Date("LE-4269", 1470, 110) { Outlier("Charcoal", 1); }; R_Date("LC-H 1035", 1450, 70) { Outlier("Charcoal", 1); 621 }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89060", 1420, 59); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7621", 1404, 60) { Outlier("Charcoal", 1); }; R_Date("GD-616", 1350, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-93863", 1350, 50) { Outlier("Charcoal", 1); }; R_Date("TO-7624", 1320, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); 622 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101056", 1289, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-140078", 1280, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-133947", 1210, 60) { Outlier("Charcoal", 1); }; R_Date("GD-619", 1170, 90) { Outlier("Charcoal", 1); }; R_Date("Y-1994", 1120, 160) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("OxA-15179", 1112, 26); Curve("IntCal13","IntCal13.14c"); 623 R_Date("LC-H-1106", 1100, 130) { Outlier("Charcoal", 1); }; R_Date("SI-347", 1020, 100) { Outlier("Charcoal", 1); }; Boundary("Cuba End"); }; }; }; Curaçao Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Curacao") { Boundary("Curacao Start"); Phase() { Curve("IntCal13","IntCal13.14c"); 624 R_Date("IVIC-247", 4490, 60) { Outlier("Charcoal", 1); }; R_Date("IVIC-246", 4160, 80) { Outlier("Charcoal", 1); }; R_Date("IVIC-234", 4110, 65) { Outlier("Charcoal", 1); }; R_Date("IVIC-242", 4070, 65) { Outlier("Charcoal", 1); }; R_Date("IVIC-240", 3990, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("PITT-1200", 1965, 35); Curve("IntCal13","IntCal13.14c"); 625 R_Date("PITT-1183", 1875, 430) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-12914", 1500, 200); Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-237", 1440, 60) { Outlier("Charcoal", 1); }; R_Date("IVIC-250", 1230, 60) { Outlier("Charcoal", 1); }; R_Date("IVIC-233", 910, 50) { Outlier("Charcoal", 1); }; R_Date("PITT-1198", 875, 35) { 626 Outlier("Charcoal", 1); }; R_Date("IVIC-244", 830, 60) { Outlier("Charcoal", 1); }; R_Date("PITT-1196", 775, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("DIC-3138", 660, 20); Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-248", 630, 50) { Outlier("Charcoal", 1); }; R_Date("IVIC-249", 630, 60) { Outlier("Charcoal", 1); }; 627 R_Date("GrN-31926", 605, 15) { Outlier("Charcoal", 1); }; R_Date("PITT-1195", 590, 50) { Outlier("Charcoal", 1); }; R_Date("PITT-1188", 475, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-32016", 450, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-9997", 420, 15) { Outlier("Charcoal", 1); }; R_Date("PITT-1197", 395, 115) { Outlier("Charcoal", 1); 628 }; R_Date("GrN-32017", 370, 25) { Outlier("Charcoal", 1); }; R_Date("IVIC-241", 340, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-9998", 325, 35) { Outlier("Charcoal", 1); }; }; Boundary("Curacao End"); }; }; Grand Turk Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Grand Turk") 629 { Boundary("Grand Turk Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-80911", 1280, 60) R_Date("Beta-98698", 1230, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-93912", 1170, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-80910", 1160, 60) R_Date("Beta-114924", 1120, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-66151", 1120, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-98697", 1010, 50) 630 { Outlier("Charcoal", 1); }; R_Date("Beta-96700", 940, 60) Curve("Marine13","Marine13.14c"); R_Date("Beta-93913", 930, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-242672", 910, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-98699", 900, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-242675", 850, 50); R_Date("Beta-242673", 790, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-253527", 780, 40) { Outlier("Charcoal", 1); }; 631 R_Date("Beta 242670", 690, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-242671", 610, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-242674", 460, 40); }; Boundary("Grand Turk End"); }; }; Grenada Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Grenada") { Boundary("Grenada Start"); Phase() 632 { Curve("Marine13","Marine13.14c"); R_Date("PSUAMS-3017", 2820, 20); R_Date("PSUAMS-3022", 2145, 20); Curve("IntCal13","IntCal13.14c"); R_Date("PSUAMS-1317", 1685, 20) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("PSUAMS-3020", 1510, 20); Curve("IntCal13","IntCal13.14c"); R_Date("PSUAMS-1287", 1500, 25) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UCIAMS-179806", 1380, 20); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-85941", 1270, 50) { Outlier("Charcoal", 1); }; 633 R_Date("PSUAMS-1565", 1215, 20) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-3946", 1215, 20) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-1320", 1180, 25) { Outlier("Charcoal", 1); }; R_Date("Beta-85935", 1110, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-98365", 1080, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-86831", 1050, 90) { Outlier("Charcoal", 1); 634 }; R_Date("Beta-98368", 980, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-86827", 900, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-85938", 850, 40) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-1322", 835, 25) { Outlier("Charcoal", 1); }; R_Date("Beta-86833", 810, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-86832", 790, 60) { 635 Outlier("Charcoal", 1); }; R_Date("Beta-85939", 770, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-86830", 770, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-86828", 650, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-86829", 550, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-98367", 510, 60) { Outlier("Charcoal", 1); }; R_Date("PSUAMS-3945", 380, 25) 636 { Outlier("Charcoal", 1); }; R_Date("Beta-98366", 340, 50) { Outlier("Charcoal", 1); }; }; Boundary("Grenada End"); }; }; Guadeloupe Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Guadeloupe") { Boundary("Guadeloupe Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Erl-10156", 3052, 41) 637 { Outlier("Charcoal", 1); }; R_Date("Ly-9162", 1815, 30) { Outlier("Charcoal", 1); }; R_Date("Ly-9161", 1580, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-36672", 1340, 25) { Outlier("Charcoal", 1); }; R_Date("KIA-36677", 1245, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-36671", 1230, 30) { Outlier("Charcoal", 1); }; 638 R_Date("KIA-31187", 1210, 20) { Outlier("Charcoal", 1); }; R_Date("Y-1246", 1100, 80) { Outlier("Charcoal", 1); }; R_Date("KIA-36678", 1065, 30) { Outlier("Charcoal", 1); }; R_Date("Erl-10159", 1056, 36) { Outlier("Charcoal", 1); }; R_Date("KIA-36684", 1000, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-36673", 945, 35) { Outlier("Charcoal", 1); 639 }; R_Date("KIA-36674", 945, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36675", 915, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-8466", 770, 30) { Outlier("Charcoal", 1); }; R_Date("KIA-36680", 690, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36682", 650, 140); Curve("IntCal13","IntCal13.14c"); 640 R_Date("KIA-36679", 625, 30) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36681", 625, 25); R_Date("KIA-36681", 620, 25); R_Date("KIA-36676", 565, 25); R_Date("KIA-36676", 431, 22); R_Date("KIA-36676", 348, 39); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-36683", 330, 25) { Outlier("Charcoal", 1); }; }; Boundary("Guadeloupe End"); }; }; Hispaniola 641 Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Hispaniola") { Boundary("Hispaniola Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("I-6756", 3890, 95) { Outlier("Charcoal", 1); }; R_Date("I-5940", 3840, 130) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("I-9541", 3575, 90); Curve("IntCal13","IntCal13.14c"); R_Date("I-9539", 3205, 90) { Outlier("Charcoal", 1); 642 }; R_Date("I-6781", 2585, 90) { Outlier("Charcoal", 1); }; R_Date("I-5818", 2095, 135) { Outlier("Charcoal", 1); }; R_Date("SI-991", 1805, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("GrN-29933", 1750, 30); R_Date("GrN-31416", 1745, 20); R_Date("GrN-31413", 1705, 20); R_Date("GrN-30532", 1525, 25); R_Date("GrN-31415", 1520, 20); R_Date("GrN-29932", 1495, 30); R_Date("GrN-31414", 1435, 20); R_Date("Beta-293244", 1340, 40); Curve("IntCal13","IntCal13.14c"); 643 R_Date("GrN-31412", 1230, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("GrN-30531", 1170, 25); R_Date("Beta-293242", 1120, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-29934", 1110, 25); Curve("Marine13","Marine13.14c"); R_Date("GrN-30533", 1040, 25); R_Date("Beta-293243", 1030, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-108313", 990, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-107023", 940, 30); R_Date("GrN-31418", 925, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-31417", 915, 20) 644 { Outlier("Charcoal", 1); }; R_Date("Beta-112400", 910, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-96782", 870, 60) { Outlier("Charcoal", 1); }; R_Date("GrN-29931", 815, 35) { Outlier("Charcoal", 1); }; R_Date("Beta-47758", 810, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-46760", 800, 60) { Outlier("Charcoal", 1); }; 645 R_Date("Beta-46759", 720, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-18173", 680, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-96781", 680, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-01527", 640, 260) { Outlier("Charcoal", 1); }; R_Date("Beta-108314", 620, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-18172", 600, 70) { Outlier("Charcoal", 1); 646 }; R_Date("GrN-30534", 600, 25) { Outlier("Charcoal", 1); }; R_Date("GrN-30535", 580, 30) { Outlier("Charcoal", 1); }; R_Date("Beta-108315", 540, 50) { Outlier("Charcoal", 1); }; R_Date("GrN-29035", 535, 25) { Outlier("Charcoal", 1); }; R_Date("Beta-018469", 440, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-10526", 430, 80) { 647 Outlier("Charcoal", 1); }; R_Date("Beta-010528", 340, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-046761", 320, 70) { Outlier("Charcoal", 1); }; }; Boundary("Hispaniola End"); }; }; Jamaica Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Jamaica") { Boundary("Jamaica Start"); Phase() 648 { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-153378", 970, 40) { Outlier("Charcoal", 1); }; R_Date("WK 43115", 938, 20) { Outlier("Charcoal", 1); }; R_Date("Beta-167740", 680, 60) { Outlier("Charcoal", 1); }; R_Date("A-6140", 630, 40) { Outlier("Charcoal", 1); }; R_Date("WK 43114", 627, 20) { Outlier("Charcoal", 1); }; R_Date("OxA-21058", 615, 24) 649 { Outlier("Charcoal", 1); }; R_Date("A-6058", 570, 45) { Outlier("Charcoal", 1); }; R_Date("A-6061", 525, 45) { Outlier("Charcoal", 1); }; R_Date("OxA-21057", 396, 24) { Outlier("Charcoal", 1); }; R_Date("OxA- 21056", 384, 24) { Outlier("Charcoal", 1); }; }; Boundary("Jamaica End"); }; }; 650 Montserrat Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Montserrat") { Boundary("Montserrat Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-83043", 2770, 60) { Outlier("Charcaol", 1); }; R_Date("Beta-83050", 2140, 110) { Outlier("Charcaol", 1); }; R_Date("Beta-83046", 2050, 80) { Outlier("Charcaol", 1); }; 651 R_Date("Beta-83045", 1950, 90) { Outlier("Charcaol", 1); }; R_Date("Beta-83048", 1860, 100) { Outlier("Charcaol", 1); }; R_Date("Beta-83049", 1730, 100) { Outlier("Charcaol", 1); }; R_Date("Beta-83044", 1650, 130) { Outlier("Charcaol", 1); }; R_Date("Beta-83051", 1540, 120) { Outlier("Charcaol", 1); }; R_Date("Beta-83047", 1270, 130) { Outlier("Charcaol", 1); 652 }; R_Date("Beta-282302", 1120, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-282300", 1070, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-277241", 1010, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-282301", 980, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-282299", 980, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-277242", 880, 40) { 653 Outlier("Charcaol", 1); }; }; Boundary("Montserrat End"); }; }; Nevis Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Nevis") { Boundary("Nevis Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("D-AMS 007668", 1541, 33); R_Date("D-AMS 07667", 1464, 24); R_Date("Beta-290341", 1420, 40); R_Date("Beta-290340", 1350, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-47807", 1070, 70) 654 { Outlier("Charcoal", 1); }; R_Date("Beta-46940", 1060, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-46944a", 940, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-46942", 880, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-324952", 720, 30); R_Date("Beta-324951", 570, 30); }; Boundary("Nevis End"); }; }; 655 Puerto Rico Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Puerto Rico") { Boundary("Puerto Rico Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-77165", 4060, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-178680", 4110, 40) { Outlier("Charcoal", 1); }; R_Date("GX-28807", 3920, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 656 R_Date("UGM-17566", 4250, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-116372", 3820, 70) { Outlier("Charcoal", 1); }; R_Date("UGM-17565", 3810, 25) { Outlier("Charcoal", 1); }; R_Date("GX-28814", 3740, 100) { Outlier("Charcoal", 1); }; R_Date("UGM-5106", 3740, 30) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-5108", 3740, 30); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28805", 3700, 30) { 657 Outlier("Charcoal", 1); }; R_Date("Beta-294434", 3680, 40) { Outlier("Charcoal", 1); }; R_Date("GX-28808", 3670, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-17561", 3640, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-130451", 3640, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-17562", 3630, 25); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28806", 3570, 40) { Outlier("Charcoal", 1); 658 }; Curve("Marine13","Marine13.14c"); R_Date("UGM-5107", 3520, 30); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28809", 3470, 40) { Outlier("Charcoal", 1); }; R_Date("I-14745", 3340, 90) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-5105", 3170, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30042", 3140, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGM-17564", 3120, 20); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30031", 2910, 50) 659 { Outlier("Charcoal", 1); }; R_Date("Beta-130450", 2730, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-178678", 2520, 40) { Outlier("Charcoal", 1); }; R_Date("UGM-30033", 2390, 35) { Outlier("Charcoal", 1); }; R_Date("Beta-178677", 2330, 110) { Outlier("Charcoal", 1); }; R_Date("I-14744", 2270, 80) { Outlier("Charcoal", 1); }; 660 R_Date("Beta-294435", 2120, 30) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("I-14979", 2120, 80); Curve("IntCal13","IntCal13.14c"); R_Date("I-11296", 2100, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-9970", 2060, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-14380", 2060, 60) { Outlier("Charcoal", 1); }; R_Date("I-14978", 2020, 80) { Outlier("Charcoal", 1); }; 661 R_Date("I-13855", 2020, 80) { Outlier("Charcoal", 1); }; R_Date("I-11297", 1995, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-14381", 1960, 90) { Outlier("Charcoal", 1); }; R_Date("I-13930", 1950, 80) { Outlier("Charcoal", 1); }; R_Date("Y-1235", 1920, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-87611", 1920, 80) { Outlier("Charcoal", 1); 662 }; R_Date("Beta-347456", 1910, 30); R_Date("Y-1234", 1910, 100) { Outlier("Charcoal", 1); }; R_Date("I-11266", 1865, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-9972", 1840, 50); R_Date("Y-1233", 1830, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-14993", 1810, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-14997", 1810, 70) { Outlier("Charcoal", 1); }; 663 R_Date("I-10914", 1780, 85) { Outlier("Charcoal", 1); }; R_Date("I-13922", 1780, 85) { Outlier("Charcoal", 1); }; R_Date("I-9680", 1775, 80) { Outlier("Charcoal", 1); }; R_Date("I-10916", 1720, 80) { Outlier("Charcoal", 1); }; R_Date("I-10921", 1705, 85) { Outlier("Charcoal", 1); }; R_Date("Beta-14992", 1660, 100) { Outlier("Charcoal", 1); 664 }; R_Date("I-14361", 1650, 80) { Outlier("Charcoal", 1); }; R_Date("I-14431", 1650, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-222869", 1630, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-14430", 1610, 80) { Outlier("Charcoal", 1); }; R_Date("I-14427", 1610, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); 665 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6809", 1600, 55); Curve("IntCal13","IntCal13.14c"); R_Date("I-14428", 1600, 150) { Outlier("Charcoal", 1); }; R_Date("I-14383", 1600, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75810", 1582, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1232", 1580, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-17637", 1580, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-178670", 1580, 90) 666 { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79415", 1566, 46); Curve("IntCal13","IntCal13.14c"); R_Date("I-14362", 1560, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78513", 1557, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-87610", 1550, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-272032", 1550, 40) { 667 Outlier("Charcoal", 1); }; R_Date("I-14429", 1550, 80) { Outlier("Charcoal", 1); }; R_Date("I-6595", 1545, 90) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75128", 1539, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17631", 1530, 90) { Outlier("Charcoal", 1); }; R_Date("I-14382", 1530, 80) { Outlier("Charcoal", 1); }; 668 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6805", 1525, 55); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-14994", 1520, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-178681", 1520, 40) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4100", 1515, 50); Curve("IntCal13","IntCal13.14c"); R_Date("I-9677", 1515, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); 669 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78495", 1505, 44); Curve("IntCal13","IntCal13.14c"); R_Date("I-13932", 1500, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74638", 1493, 45); Curve("IntCal13","IntCal13.14c"); R_Date("I-13923", 1490, 80) { Outlier("Charcoal", 1); }; R_Date("I-9108", 1480, 95) { Outlier("Charcoal", 1); }; R_Date("I-13924", 1480, 80) { 670 Outlier("Charcoal", 1); }; R_Date("Beta-178674", 1470, 40) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82397", 1469, 47); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-223566", 1460, 60) { Outlier("Charcoal", 1); }; R_Date("I-14360", 1460, 80) { Outlier("Charcoal", 1); }; R_Date("I-9873", 1460, 80) { Outlier("Charcoal", 1); }; 671 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79371", 1456, 45); R_Date("AA-75816", 1455, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-178666", 1450, 40) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72872", 1443, 50); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30035", 1440, 30) { Outlier("Charcoal", 1); }; R_Date("Beta-17641", 1440, 70) { Outlier("Charcoal", 1); }; 672 R_Date("Beta-87601", 1440, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74637", 1434, 45); R_Date("AA-78492", 1434, 44); }; Boundary("Puerto Rico End"); }; }; San Salvador Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("San Salvador") { Boundary("San Salvador Start"); Phase() { 673 Curve("Marine13","Marine13.14c"); R_Date("UM-2275", 1384, 65); Curve("IntCal13","IntCal13.14c"); R_Date("YSU #3", 1130, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("UGa-00836", 1054, 37); R_Date("AA-51432", 1028, 34); Curve("IntCal13","IntCal13.14c"); R_Date("YSU #1", 840, 40) { Outlier("Charcoal", 1); }; R_Date("UM-2244", 660, 100) { Outlier("Charcoal", 1); }; R_Date("UM-2274", 620, 70) { Outlier("Charcoal", 1); }; 674 R_Date("UM-2273", 580, 90) { Outlier("Charcoal", 1); }; R_Date("Beta-16732", 530, 65) { Outlier("Charcoal", 1); }; R_Date("YSU #4", 470, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-105988", 450, 50) { Outlier("Charcoal", 1); }; R_Date("YSU #2", 350, 70) { Outlier("Charcoal", 1); }; R_Date("UM-2271", 305, 75) { Outlier("Charcoal", 1); 675 }; Curve("Marine13","Marine13.14c"); R_Date("UM-2245", 425, 75); }; Boundary("San Salvador End"); }; }; St. John Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("St. John") { Boundary("St. John Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17080", 1630, 100) { Outlier("Charcoal", 1); }; R_Date("Beta-32239", 1460, 80) 676 { Outlier("Charcoal", 1); }; R_Date("Beta-16647", 1210, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-27793", 1170, 80); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-192223", 1160, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-192224", 1140, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-25891", 1130, 70) { Outlier("Charcoal", 1); 677 }; R_Date("Beta-59781", 1120, 100) { Outlier("Charcoal", 1); }; R_Date("Beta-20605", 1050, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-59780", 970, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-18513", 970, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-26964", 900, 100) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 678 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-191882", 840, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-19863", 660, 60) { Outlier("Charcoal", 1); }; }; Boundary("St. John End"); }; }; St. Lucia Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("St. Lucia") { Boundary("St. Lucia Start"); Phase() { 679 Curve("IntCal13","IntCal13.14c"); R_Date("Y-1115", 1460, 80) { Outlier("Charcoal", 1); }; R_Date("Y-650", 1220, 100) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("RL-30", 1240, 100); R_Date("RL-31", 1120, 100); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-46607", 1000, 40); R_Date("GrN-32330", 960, 35); R_Date("GrN-32324", 920, 25); R_Date("GrN-32326", 865, 35); R_Date("GrN-32328", 820, 35); R_Date("GrN-32325", 790, 35); R_Date("GrN-32319", 770, 35); R_Date("GrN-31944", 750, 30); 680 R_Date("GrN-32327", 745, 30); R_Date("GrN-32314", 740, 30); R_Date("GrN-32317", 725, 35); R_Date("GrN-32315", 720, 35); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-46604", 645, 35) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-32329", 620, 40); }; Boundary("St. Lucia End"); }; }; St. Martin Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("St. Martin") 681 { Boundary("St. Martin Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("KIA-28815", 4830, 40); R_Date("KIA-28108", 4770, 40); R_Date("KIA-28116", 4505, 35); R_Date("KIA-28115", 4275, 30); R_Date("Erl-9066", 4200, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28121", 3828, 27) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28114", 3800, 30); R_Date("KIA-28112", 3775, 30); R_Date("Erl-9071", 3750, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28123", 3684, 27) { Outlier("Charcoal", 1); 682 }; R_Date("KIA-28119", 3655, 25) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Erl-9072", 3610, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28124", 3598, 29) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-41782", 3580, 90); Curve("IntCal13","IntCal13.14c"); R_Date("Erl-9074", 3515, 45) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Erl-9073", 3510, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-190805", 3490, 40) 683 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Erl-9064", 3460, 50); R_Date("Beta-187936", 3450, 40); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28126", 3447, 26) { Outlier("Charcoal", 1); }; R_Date("KIA-28127", 3429, 35) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28111", 3380, 40); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28120", 3366, 27) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); 684 R_Date("Erl-9065", 3340, 50); R_Date("KIA-28113", 3320, 30); R_Date("Beta-224793", 3240, 60); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28125", 3235, 26) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28110", 3185, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-187937", 3140, 40) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28109", 3105, 30); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28117", 3095, 23) { Outlier("Charcoal", 1); }; R_Date("KIA-28118", 2951, 52) 685 { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-146427", 2850, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-224792", 2610, 40) { Outlier("Charcoal", 1); }; R_Date("PITT-0450", 2510, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-145372", 2420, 40) { Outlier("Charcoal", 1); }; R_Date("PITT-0449", 2300, 55) { Outlier("Charcoal", 1); }; R_Date("PITT-0219", 2275, 60) 686 { Outlier("Charcoal", 1); }; R_Date("Beta-146425", 2270, 40) { Outlier("Charcoal", 1); }; R_Date("PITT-0220", 2250, 45) { Outlier("Charcoal", 1); }; R_Date("PITT-0446", 2250, 45) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Erl-8235", 2070, 50); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0448", 2050, 45) { Outlier("Charcoal", 1); 687 }; R_Date("Beta-146424", 2020, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-106230", 1960, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-82159", 1910, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-32785", 1900, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82156", 1870, 60) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-187941", 1810, 40); Curve("IntCal13","IntCal13.14c"); 688 R_Date("Beta-82158", 1800, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-82157", 1800, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-106228", 1770, 50) { Outlier("Charcoal", 1); }; R_Date("LGQ-1099", 1760, 160) { Outlier("Charcoal", 1); }; R_Date("Beta-82160", 1760, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-82154", 1710, 60) { Outlier("Charcoal", 1); 689 }; R_Date("Beta-106233", 1710, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-106229", 1670, 50) { Outlier("Charcoal", 1); }; R_Date("PITT-0452", 1660, 55) { Outlier("Charcoal", 1); }; R_Date("Beta-106232", 1650, 70) { Outlier("Charcoal", 1); }; R_Date("LGQ-1098", 1610, 150) { Outlier("Charcoal", 1); }; R_Date("Beta-82153", 1590, 70) { 690 Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("KIA-28963", 1585, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-187940", 1560, 40) { Outlier("Charcoal", 1); }; R_Date("Beta-106231", 1560, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-82155", 1540, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-187938", 1540, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-20170", 1535, 30); R_Date("GrN-20168", 1530, 30); R_Date("GrN-20169", 1520, 35); 691 R_Date("KIA-28122", 1494, 26) { Outlier("Charcoal", 1); }; R_Date("PITT-0445", 1490, 35) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-200098", 1330, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-9163", 1230, 30) { Outlier("Charcoal", 1); }; R_Date("GrN-20161", 1225, 30); R_Date("GrN-20160", 1180, 30); R_Date("GrN-20162", 1170, 30); Curve("Marine13","Marine13.14c"); R_Date("GrN- 20164", 1170, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82165", 1000, 50); Curve("IntCal13","IntCal13.14c"); 692 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ly-2019(OxA)", 895, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-11437", 890, 30) { Outlier("Charcoal", 1); }; R_Date("Ly-11435", 890, 30) { Outlier("Charcoal", 1); }; }; Boundary("St. Martin End"); }; }; St. Thomas Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("St. Thomas") { 693 Boundary("St. Thomas End"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("I-8640", 2830, 85); R_Date("Beta-7022", 2860, 70); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-111459", 2710, 120) { Outlier("Charcoal", 1); }; R_Date("I-8641", 2775, 85) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("SI-5851", 2700, 65); R_Date("L-1380B", 2410, 60); R_Date("I-621", 2400, 175); R_Date("I-620", 2175, 160); R_Date("SI-5850", 2130, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-108917", 2090, 50) 694 { Outlier("Charcoal", 1); }; R_Date("Beta-111462", 1980, 50) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("L-1380A", 1900, 70); R_Date("SI-5848", 1805, 75); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65474", 1800, 80) { Outlier("Charcoal", 1); }; R_Date("GX-12845", 1770, 235) { Outlier("Charcoal", 1); }; R_Date("Beta-108888", 1720, 140) { Outlier("Charcoal", 1); }; 695 R_Date("Beta-50066", 1610, 70) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("SI-5849", 1595, 75); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65472", 1580, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-65473", 1570, 60) { Outlier("Charcoal", 1); }; R_Date("Beta-54646", 1560, 90) { Outlier("Charcoal", 1); }; R_Date("CAMS-10696", 1550, 50) { Outlier("Charcoal", 1); }; 696 R_Date("Beta-108889", 1500, 50) { Outlier("Charcoal", 1); }; R_Date("Beta-62568", 1430, 90) { Outlier("Charcoal", 1); }; R_Date("Beta-62569", 1400, 120) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-88345", 1390, 40); R_Date("Beta-83011", 1390, 40); R_Date("Beta-83003", 1390, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-62570", 1380, 90) { Outlier("Charcoal", 1); }; 697 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83000", 1330, 30); R_Date("Beta-83001", 1330, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65469", 1310, 60) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83009", 1300, 30); R_Date("Beta-83006", 1280, 40); R_Date("Beta-73392", 1190, 60); R_Date("Beta-83010", 1090, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-49751", 1040, 150) { Outlier("Charcoal", 1); }; R_Date("Beta-48742", 810, 140) 698 { Outlier("Charcoal", 1); }; R_Date("Beta-43437", 810, 70) { Outlier("Charcoal", 1); }; R_Date("Beta-42277", 730, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-51355", 720, 120) { Outlier("Charcoal", 1); }; R_Date("Beta-111461", 650, 50) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-73390", 640, 60); 699 R_Date("Beta-73394", 630, 60); R_Date("Beta-73393", 600, 60); R_Date("Beta-83005", 600, 30); R_Date("Beta-73395", 590, 90); R_Date("Beta-73391", 580, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-51354", 560, 120) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-88347", 560, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-111452", 560, 80) { Outlier("Charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83008", 540, 30); 700 R_Date("Beta-83004", 500, 30); R_Date("Beta-109071", 480, 50); R_Date("Beta-88348", 470, 40); R_Date("Beta-88349", 460, 40); R_Date("Beta-109070", 450, 50); R_Date("Beta-88346", 390, 40); R_Date("Beta-109072", 380, 50); R_Date("Beta-83007", 340, 30); R_Date("Beta-88344", 300, 40); }; Boundary("St. Thomas End"); }; }; Tobago Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Tobago") { Boundary("Tobago Start"); Phase() { 701 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-15351", 2700, 40) R_Date("Beta-15936", 1750, 40) R_Date("Beta-172211", 1700, 40) R_Date("Y-1336", 1300, 120) { Outlier("Charcaol", 1); }; R_Date("Beta-172209", 1180, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-153150", 1170, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-172210", 1110, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-153149", 900, 40) { Outlier("Charcaol", 1); 702 }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-221321", 850, 40); R_Date("Beta-221319", 810, 40); R_Date("Beta-221320", 810, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-4905", 760, 105) { Outlier("Charcaol", 1); }; R_Date("Beta-129265", 600, 50) { Outlier("Charcaol", 1); }; R_Date("Beta-129262", 590, 40) { Outlier("Charcaol", 1); }; R_Date("Beta-129264", 550, 40) { Outlier("Charcaol", 1); 703 }; }; Boundary("Tobago End"); }; }; Trinidad Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t"); Sequence("Trinidad") { Boundary("Trinidad Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-888", 7180, 80) { Outlier("charcoal", 1); }; R_Date("UGa-14460", 7030, 25) { Outlier("charcoal", 1); 704 }; R_Date("UGa-12303", 6890, 30) { Outlier("charcoal", 1); }; R_Date("IVIC-889", 6780, 70) { Outlier("charcoal", 1); }; R_Date("UGa-14459", 6370, 25) { Outlier("charcoal", 1); }; R_Date("IVIC-891", 6190, 100) { Outlier("charcoal", 1); }; R_Date("IVIC-887", 6170, 90) { Outlier("charcoal", 1); }; R_Date("UGa-14458", 6100, 25) { 705 Outlier("charcoal", 1); }; R_Date("IVIC-890", 6100, 90) { Outlier("charcoal", 1); }; R_Date("IVIC-783", 5650, 100) { Outlier("charcoal", 1); }; R_Date("UGa-14457", 5300, 25); R_Date("Y-260-1", 2750, 130) { Outlier("charcoal", 1); }; R_Date("IVIC-642", 2140, 70) { Outlier("charcoal", 1); }; R_Date("IVIC-638", 2130, 80) { Outlier("charcoal", 1); }; 706 R_Date("I-6444", 2120, 135) { Outlier("charcoal", 1); }; R_Date("IVIC-641", 2060, 70) { Outlier("charcoal", 1); }; R_Date("IVIC-640", 1990, 70) { Outlier("charcoal", 1); }; R_Date("Beta-196708", 1920, 40) { Outlier("charcoal", 1); }; R_Date("Beta-196709", 1880, 40) { Outlier("charcoal", 1); }; R_Date("IVIC-643", 1850, 80) { Outlier("charcoal", 1); 707 }; R_Date("Beta-4902", 1805, 90) { Outlier("charcoal", 1); }; R_Date("Beta-4899", 1755, 150) { Outlier("charcoal", 1); }; R_Date("Beta-134571", 1720, 50) { Outlier("charcoal", 1); }; R_Date("IVIC-786", 1720, 90) { Outlier("charcoal", 1); }; R_Date("Beta-4903", 1680, 115) { Outlier("charcoal", 1); }; R_Date("Beta-196706", 1650, 40) { 708 Outlier("charcoal", 1); }; R_Date("GrA-13865", 1590, 40) { Outlier("charcoal", 1); }; R_Date("Beta-189113", 1570, 40) { Outlier("charcoal", 1); }; R_Date("OxA-19174", 1538, 29) { Outlier("charcoal", 1); }; R_Date("Beta-296724", 1490, 30) { Outlier("charcoal", 1); }; R_Date("IVIC-639", 1480, 70) { Outlier("charcoal", 1); }; R_Date("Beta-296723", 1400, 30) 709 { Outlier("charcoal", 1); }; R_Date("Beta-4904", 1350, 85) { Outlier("charcoal", 1); }; R_Date("Beta-4901", 1300, 110) { Outlier("charcoal", 1); }; R_Date("IVIC-785", 1260, 100) { Outlier("charcoal", 1); }; R_Date("GrA-13867", 1220, 40) { Outlier("charcoal", 1); }; R_Date("Beta-296726", 1210, 30) { Outlier("charcoal", 1); }; 710 R_Date("ISGS-A2628", 1210, 15) { Outlier("charcoal", 1); }; R_Date("Beta-4900", 1145, 65) { Outlier("charcoal", 1); }; R_Date("Beta-6807", 1130, 50) { Outlier("charcoal", 1); }; R_Date("Beta-4898", 1040, 260) { Outlier("charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-6809", 990, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-196707", 740, 40) { Outlier("charcoal", 1); }; 711 R_Date("Beta-6808", 650, 50) { Outlier("charcoal", 1); }; Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-193442", 630, 40); R_Date("Beta-193443", 620, 40); }; Boundary("Trinidad End"); }; }; Vieques Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence("Vieques") { Boundary("Vieques Start"); Phase() { 712 Curve("Marine13","Marine13.14c"); R_Date("I-18971", 4095, 80); R_Date("I-16406", 3850, 100); R_Date("I-16899", 3780, 100); R_Date("I-16397", 3530, 100); R_Date("I-16396", 3510, 100); R_Date("I-16897", 3470, 100); R_Date("I-16395", 2790, 100); R_Date("I-16898", 2770, 90); R_Date("I-16407", 2740, 100); R_Date("I-16896", 2650, 90); Curve("IntCal13","IntCal13.14c"); R_Date("I-16153", 2590, 90) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-276588", 2240, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-13425", 2110, 80) { Outlier("Charcoal", 1); }; 713 R_Date("I-11322", 1945, 80) { Outlier("Charcoal", 1); }; R_Date("I-11319", 1915, 80) { Outlier("Charcoal", 1); }; R_Date("I-12859", 1880, 80) { Outlier("Charcoal", 1); }; R_Date("I-11321", 1845, 80) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("Beta-259410", 1840, 50); Curve("IntCal13","IntCal13.14c"); R_Date("I-10979", 1820, 85) { Outlier("Charcoal", 1); }; 714 R_Date("I-12858", 1820, 80) { Outlier("Charcoal", 1); }; R_Date("I-12856", 1810, 80) { Outlier("Charcoal", 1); }; R_Date("Beta-129948", 1810, 60) { Outlier("Charcoal", 1); }; R_Date("I-11139", 1800, 80) { Outlier("Charcoal", 1); }; R_Date("I-12860", 1780, 80) { Outlier("Charcoal", 1); }; R_Date("I-11320", 1770, 80) { Outlier("Charcoal", 1); 715 }; R_Date("I-11685", 1740, 75) { Outlier("Charcoal", 1); }; R_Date("I-10980", 1735, 85) { Outlier("Charcoal", 1); }; R_Date("I-11140", 1730, 80) { Outlier("Charcoal", 1); }; R_Date("I-11926", 1720, 80) { Outlier("Charcoal", 1); }; R_Date("I-11141", 1705, 80) { Outlier("Charcoal", 1); }; R_Date("I-16151", 1700, 80) { 716 Outlier("Charcoal", 1); }; R_Date("I-11925", 1665, 80) { Outlier("Charcoal", 1); }; R_Date("I-16152", 1650, 80) { Outlier("Charcoal", 1); }; R_Date("I-12744", 1640, 80) { Outlier("Charcoal", 1); }; R_Date("I-16154", 1620, 80) { Outlier("Charcoal", 1); }; R_Date("I-11317", 1615, 75) { Outlier("Charcoal", 1); }; R_Date("I-12746", 1600, 80) 717 { Outlier("Charcoal", 1); }; R_Date("I-16174", 1600, 80) { Outlier("Charcoal", 1); }; R_Date("I-16173", 1590, 80) { Outlier("Charcoal", 1); }; R_Date("I-12857", 1580, 80) { Outlier("Charcoal", 1); }; R_Date("I-11686", 1575, 80) { Outlier("Charcoal", 1); }; R_Date("I-10547", 1575, 85) { Outlier("Charcoal", 1); }; 718 R_Date("I-11687", 1565, 75) { Outlier("Charcoal", 1); }; R_Date("I-11927", 1565, 80) { Outlier("Charcoal", 1); }; R_Date("I-12745", 1560, 80) { Outlier("Charcoal", 1); }; R_Date("I-11316", 1555, 75) { Outlier("Charcoal", 1); }; Curve("Marine13","Marine13.14c"); R_Date("I-10549", 1525, 85); Curve("IntCal13","IntCal13.14c"); R_Date("I-10550", 1505, 85) { Outlier("Charcoal", 1); }; 719 R_Date("I-11318", 1490, 75) { Outlier("Charcoal", 1); }; R_Date("I-16175", 1450, 80) { Outlier("Charcoal", 1); }; R_Date("I-10548", 1440, 85) { Outlier("Charcoal", 1); }; R_Date("I-16176", 1270, 90) { Outlier("Charcoal", 1); }; R_Date("I-14813", 1180, 80) { Outlier("Charcoal", 1); }; R_Date("I-12743", 950, 80) { Outlier("Charcoal", 1); 720 }; R_Date("I-12742", 900, 80); R_Date("I-11189", 790, 85) { Outlier("Charcoal", 1); }; R_Date("I-15189", 790, 80) { Outlier("Charcoal", 1); }; R_Date("I- 15188", 700, 80) { Outlier("Charcoal", 1); }; R_Date("I-15188", 700, 70) { Outlier("Charcoal", 1); }; R_Date("I-15187", 690, 80) { Outlier("Charcoal", 1); }; R_Date("I-15239", 660, 80) 721 { Outlier("Charcoal", 1); }; R_Date("I-15240", 630, 80) { Outlier("Charcoal", 1); }; R_Date("I-15238", 570, 80) { Outlier("Charcoal", 1); }; R_Date("I-15185", 540, 80) { Outlier("Charcoal", 1); }; R_Date("I-15186", 520, 80) { Outlier("Charcoal", 1); }; R_Date("I-15658", 470, 80) { Outlier("Charcoal", 1); }; 722 R_Date("I-15657", 410, 80) { Outlier("Charcoal", 1); }; R_Date("I-11142", 405, 75) { Outlier("Charcoal", 1); }; }; Boundary("Vieques End"); }; }; Single Phase Model SQL Code Anguilla Plot() { Sequence("Anguilla") { Boundary("Anguilla Start"); Phase() { 723 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-19957", 1550, 70); R_Date("Beta-15824", 1530, 140); R_Date("Beta-18740", 1430, 70); R_Date("Beta-21858", 1410, 60); R_Date("Beta-110397", 1310, 80); R_Date("Beta-19956", 1290, 60); R_Date("Beta-110396", 1290, 60); R_Date("Beta-106439", 1270, 60); R_Date("Beta-110394", 1230, 70); Curve("Marine13","Marine13.14c"); R_Date("Beta-15485", 1220, 70); R_Date("Beta-106444", 1180, 60); R_Date("Beta-106443", 1180, 60); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0546", 1180, 45); R_Date("Beta-110395", 1170, 80); R_Date("Beta-19955", 1150, 60); R_Date("Beta-110393", 1140, 60); R_Date("PITT-0545", 1135, 40); Curve("Marine13","Marine13.14c"); R_Date("Beta-15486", 1130, 80); Curve("IntCal13","IntCal13.14c"); 724 R_Date("Beta-106442", 1120, 70); R_Date("Beta-18738", 1120, 70); R_Date("PITT-0547", 1085, 55); R_Date("Beta-21861", 1080, 90); R_Date("Beta-18739", 1000, 110); R_Date("Beta-120152", 950, 70); R_Date("Beta-21863", 940, 80); Curve("Marine13","Marine13.14c"); R_Date("Beta-257181", 910, 40); R_Date("Beta-257182", 890, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-21862", 880, 90); R_Date("Beta-120157", 880, 80); Curve("Marine13","Marine13.14c"); R_Date("Beta-257184", 860, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-120154", 850, 60); R_Date("Beta-106441", 840, 80); Curve("Marine13","Marine13.14c"); R_Date("Beta-257185", 780, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-110398", 780, 80); Curve("Marine13","Marine13.14c"); 725 R_Date("Beta-141202", 740, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-120153", 740, 60); R_Date("Beta-120156", 710, 80); Curve("Marine13","Marine13.14c"); R_Date("Beta-257183", 680, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-106440", 510, 80); R_Date("Beta-120155", 440, 70); Curve("Marine13","Marine13.14c"); R_Date("Beta-60776", 400, 60); }; Boundary("Anguilla End"); }; }; Antigua Plot() { Sequence("Antigua") { Boundary("Antigua Start"); Phase() 726 { Curve("IntCal13","IntCal13.14c"); R_Date("I-7830", 2785, 80); R_Date("I-7842", 2785, 80); R_Date("I-7980", 1915, 80); R_Date("I-7981", 1855, 80); R_Date("I-7979", 1790, 85); R_Date("I-7855", 1765, 80); R_Date("I-7838", 1750, 80); R_Date("I-7837", 1715, 80); R_Date("I-7854", 1670, 80); R_Date("Beta- 124127", 1610, 80); R_Date("Beta-124126", 1600, 50); R_Date("I-7355", 1505, 85); R_Date("I-7356", 1505, 85); R_Date("I-7352", 1440, 85); R_Date("Beta-101500", 1430, 50); R_Date("I-7353", 1230, 85); R_Date("SUERC-34163", 950, 30); R_Date("Beta-101499", 720, 50); }; Boundary("Antigua End"); }; 727 }; Aruba Plot() { Sequence("Aruba") { Boundary("Aruba Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("GrN-7341", 3300, 35); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ua-1501", 2210, 95); R_Date("Ua-1341", 1740, 110); R_Date("Ua-1342", 1520, 100); R_Date("Ua-1340", 1520, 110); R_Date("Ua-1514", 1420, 150); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-2788", 1080, 50); R_Date("GrN-7339", 1040, 45); 728 R_Date("GrN-21665", 1030, 40); R_Date("GrN-21666", 1030, 30); R_Date("GrN-7340", 1000, 30); R_Date("GrN-7342", 990, 30); R_Date("GrA-2789", 990, 50); R_Date("GrN-7338", 940, 25); R_Date("GrN-21656", 910, 30); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-17460", 910, 170); R_Date("GrN-17459", 870, 80); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-21664", 860, 40); R_Date("GrA-2785", 860, 50); R_Date("GrA-2778", 830, 50); R_Date("GrN-16915", 825, 30); R_Date("I-4025", 765, 110); R_Date("GrA-2784", 750, 50); R_Date("I-4026", 740, 105); R_Date("GrA-2790", 340, 50); }; Boundary("Aruba End"); 729 }; }; Barbados Plot() { Sequence("Barbados") { Boundary("Barbados Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("D-AMS 001792", 4366, 32); R_Date("Beta-297522", 4360, 40); R_Date("D-AMS 001793", 4278, 29); R_Date("Beta-297521", 4230, 50); R_Date("D-AMS 001794", 4091, 27); R_Date("I-16840", 3980, 100); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-20723", 1950, 150); R_Date("I-2486", 1570, 95); Curve("Marine13","Marine13.14c"); R_Date("1-16189", 1120, 80); 730 }; Boundary("Barbados End"); }; }; Barbuda Plot() { Sequence("Barbuda") { Boundary("Barbuda Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("UCI-107938", 3430, 15); R_Date("SUERC-33604 (GU-23530)", 3280, 35); R_Date("SUERC 33605 (GU-23531)", 2790, 35); R_Date("UCI-107937", 2565, 20); R_Date("Beta-103891", 2030, 60); Curve("IntCal13","IntCal13.14c"); R_Date("SUERC 18562", 2025, 35); R_Date("SUERC 18560", 2005, 35); R_Date("SUERC 18561", 1920, 35); 731 R_Date("SUERC 18558", 1785, 35); R_Date("SUERC 18557", 1755, 35); R_Date("SUERC 34971", 1565, 35); Curve("Marine13","Marine13.14c"); R_Date("Beta-103894", 1400, 60); R_Date("PITT-1234", 1365, 45); R_Date("Beta-103892", 1360, 60); R_Date("Beta-103893", 1350, 60); R_Date("Beta-103890", 1210, 60); R_Date("PITT-1233", 1135, 50); R_Date("PITT-1231", 1050, 30); Curve("IntCal13","IntCal13.14c"); R_Date("SUERC 18556", 820, 35); }; Boundary("Barbuda End"); }; }; Bonaire Plot() { Sequence("Bonaire") { 732 Boundary("Bonaire Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("GrN-32756", 3610, 25); R_Date("GrN-32758", 3410, 20); R_Date("GrN-32751", 3245, 25); R_Date("GrN-32750", 3095, 20); R_Date("GrN-32749", 2785, 20); R_Date("GrN-32755", 2735, 25); R_Date("GrN-32752", 2705, 30); R_Date("GrN-32757", 2680, 25); R_Date("GrN-32754", 2665, 20); R_Date("GrN-32753", 2575, 20); R_Date("GrN-32748", 2412, 15); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0267", 1480, 25); R_Date("PITT-0268", 885, 45); R_Date("PITT-0265", 710, 65); R_Date("PITT-0264", 560, 40); R_Date("PITT-0266", 505, 35); }; Boundary("Bonaire End"); 733 }; }; Carriacou Plot() { Sequence("Carriacou") { Boundary("Carriacou Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("AA-62278", 1917, 37); R_Date("Beta-206685", 1870, 70); R_Date("AA-62280b", 1822, 41); R_Date("AA-62280a", 1789, 38); Curve("IntCal13","IntCal13.14c"); R_Date("AA-67535", 1588, 36); R_Date("AA-67536", 1584, 36); Curve("Marine13","Marine13.14c"); R_Date("GX-30424", 1570, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 734 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-111935", 1565, 15); Curve("Marine13","Marine13.14c"); R_Date("GX-30425", 1460, 60); R_Date("GX-30423", 1400, 60); Curve("IntCal13","IntCal13.14c"); R_Date("AA-62281", 1339, 36); R_Date("AA-67534", 1333, 57); R_Date("D-AMS 016647", 1328, 20); R_Date("D-AMS 16649", 1321, 20); R_Date("D-AMS 016648", 1315, 20); Curve("Marine13","Marine13.14c"); R_Date("Beta-233647", 1310, 40); R_Date("UCIAMS-94046", 1265, 20); Curve("IntCal13","IntCal13.14c"); R_Date("AA-62279", 1243, 36); R_Date("AA-62282", 1227, 36); R_Date("OS-71467", 1220, 20); R_Date("AA-67533", 1172, 36); R_Date("AA-81055", 1158, 45); R_Date("OS-71463", 1140, 15); R_Date("AA-67531", 1133, 38); R_Date("OS-71464", 1100, 20); 735 R_Date("OS-71465", 1080, 15); R_Date("AA-67532", 1073, 38); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-62283", 1062, 44); Curve("IntCal13","IntCal13.14c"); R_Date("AA-67530", 1039, 35); R_Date("OS-41358", 1030, 30); R_Date("UCIAMS-94045", 1020, 20); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-120951", 1015, 15); Curve("IntCal13","IntCal13.14c"); R_Date("AA-81056", 994, 45); R_Date("UCIAMS-94044", 990, 20); R_Date("AA-67529", 988, 42); R_Date("OS-71462", 975, 20); R_Date("OS-71408", 970, 15); R_Date("OS-71407", 960, 15); R_Date("RL-29", 940, 100); R_Date("OS-71409", 925, 15); 736 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-257793", 870, 40); Curve("IntCal13","IntCal13.14c"); R_Date("OS-71466", 680, 15); R_Date("AA-81054", 657, 44); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("UCIAMS-111933", 715, 15); R_Date("UCIAMS-111934", 690, 15); }; Boundary("Carriacou End"); }; }; Cuba Plot() { Sequence("Cuba") { Boundary("Cuba Start"); 737 Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("LE-4283", 5270, 120); R_Date("GD-250", 5140, 170); R_Date("MC-860", 4420, 100); Curve("Marine13","Marine13.14c"); R_Date("OxA-15267", 4408, 37); Curve("IntCal13","IntCal13.14c"); R_Date("MC-859", 4240, 100); R_Date("UBAR-170", 4200, 79); R_Date("Beta-140079", 4180, 80); R_Date("LE-1783", 4110, 50); R_Date("SI-429", 4000, 150); R_Date("LE-1784", 3870, 40); Curve("Marine13","Marine13.14c"); R_Date("OxA-15180", 3861, 28); Curve("IntCal13","IntCal13.14c"); R_Date("LE-1782", 3760, 40); R_Date("Beta-133951", 3720, 70); R_Date("UNAM-0716", 3460, 60); R_Date("GD-204", 3460, 160); Curve("Marine13","Marine13.14c"); 738 R_Date("OxA-15264", 3273, 33); R_Date("OxA-15263", 3271, 29); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1764", 3250, 100); R_Date("LE-4270", 3110, 180); R_Date("SI-428", 3110, 200); R_Date("UBAR-169", 3060, 180); R_Date("AA-101053", 3057, 39); R_Date("LE-4288", 3030, 180); R_Date("LE-4287", 3030, 180); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101054", 2999, 61); R_Date("AA-101057", 2996, 53); Curve("Marine13","Marine13.14c"); R_Date("Beta-184894", 2980, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89061", 2960, 33); R_Date("AA-101052", 2946, 57); Curve("IntCal13","IntCal13.14c"); 739 R_Date("LE-4282", 2930, 300); R_Date("GD-591", 2930, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89063", 2922, 34); Curve("IntCal13","IntCal13.14c"); R_Date("GD-613", 2880, 70); R_Date("A-14316", 2845, 90); R_Date("GD-1046", 2840, 60); R_Date("GD-601", 2805, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101059", 2791, 51); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-133950", 2780, 40); R_Date("LE-4272", 2750, 160); R_Date("GD-614", 2720, 65); R_Date("LE-2720", 2680, 40); Curve("Marine13","Marine13.14c"); R_Date("Beta-184896", 2680, 60); Curve("IntCal13","IntCal13.14c"); 740 R_Date("LE-4290", 2610, 120); R_Date("LE-4281", 2610, 120); R_Date("LE-2718", 2610, 40); R_Date("LE-4275", 2580, 90); Curve("Marine13","Marine13.14c"); R_Date("Beta-318171", 2570, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UNAM-0717", 2520, 60); R_Date("A-14315", 2515, 75); R_Date("SI-427", 2510, 200); R_Date("LE-4273", 2420, 100); R_Date("LE-4279", 2390, 170); R_Date("LE-4271", 2380, 80); Curve("Marine13","Marine13.14c"); R_Date("Beta-422938", 2350, 30); Curve("IntCal13","IntCal13.14c"); R_Date("LE-4276", 2250, 150); R_Date("LE-4267", 2220, 160); R_Date("GD-1039", 2160, 55); R_Date("LE-2719", 2160, 40); R_Date("SI-426", 2070, 150); R_Date("LC-H 1034", 2070, 110); R_Date("LE-4274", 2030, 160); 741 Curve("Marine13","Marine13.14c"); R_Date("Beta-214957", 2020, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Lv-2063", 2020, 80); R_Date("LE-2717", 2010, 40); Curve("Marine13","Marine13.14c"); R_Date("OxA-15262", 2005, 27); Curve("IntCal13","IntCal13.14c"); R_Date("GD-1051", 1990, 80); Curve("Marine13","Marine13.14c"); R_Date("OxA-15266", 1978, 33); R_Date("Beta-214958", 1910, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-93862", 1890, 60); Curve("Marine13","Marine13.14c"); R_Date("OxA-15183", 1873, 26); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-93866", 1850, 50); Curve("Marine13","Marine13.14c"); R_Date("Beta-318170", 1750, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UM-1953", 1745, 175); Curve("Marine13","Marine13.14c"); 742 R_Date("OxA-15184", 1686, 26); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-72801", 1670, 70); R_Date("AA-101055", 1661, 52); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-133948", 1640, 130); R_Date("SI-424", 1620, 150); R_Date("AA-89064", 1617, 46); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("OxA-15260", 1617, 29); R_Date("Beta-72802", 1590, 60); Curve("Marine13","Marine13.14c"); R_Date("OxA-15181", 1561, 24); R_Date("OxA-15146", 1557, 25); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89062", 1536, 51); Curve("IntCal13","IntCal13.14c"); 743 R_Date("GD-617", 1495, 60); R_Date("LE-4269", 1470, 110); R_Date("LC-H 1035", 1450, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-89060", 1420, 59); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7621", 1404, 60); R_Date("GD-616", 1350, 70); R_Date("Beta-93863", 1350, 50); R_Date("TO-7624", 1320, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-101056", 1289, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-140078", 1280, 60); R_Date("Beta-133947", 1210, 60); R_Date("GD-619", 1170, 90); R_Date("Y-1994", 1120, 160); Curve("Marine13","Marine13.14c"); R_Date("OxA-15179", 1112, 26); 744 Curve("IntCal13","IntCal13.14c"); R_Date("LC-H-1106", 1100, 130); R_Date("SI-347", 1020, 100); R_Date("GD-203", 1010, 110); R_Date("Mo-399", 1000, 105); R_Date("Y-1556", 970, 80); R_Date("SI-352", 970, 100); R_Date("Y-465", 960, 60); R_Date("LC-H 565", 960, 50); Curve("Marine13","Marine13.14c"); R_Date("OxA-15151", 950, 24); R_Date("OxA-15152", 939, 24); Curve("IntCal13","IntCal13.14c"); R_Date("GD-618", 910, 85); Curve("Marine13","Marine13.14c"); R_Date("OxA-15148", 891, 23); Curve("IntCal13","IntCal13.14c"); R_Date("FS AC 2418", 880, 40); R_Date("Beta-148961", 880, 80); Curve("Marine13","Marine13.14c"); R_Date("OxA-15145", 879, 26); R_Date("OxA-15149", 874, 25); Curve("IntCal13","IntCal13.14c"); 745 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-148956", 870, 70); Curve("Marine13","Marine13.14c"); R_Date("OxA-15182", 857, 24); R_Date("OxA-15259", 827, 36); R_Date("OxA-15154", 820, 24); Curve("IntCal13","IntCal13.14c"); R_Date("Y-206", 810, 80); Curve("Marine13","Marine13.14c"); R_Date("OxA-15261", 782, 26); Curve("IntCal13","IntCal13.14c"); R_Date("Lv-2062", 780, 100); R_Date("FS AC 2414", 770, 35); Curve("Marine13","Marine13.14c"); R_Date("OxA-15265", 763, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1555", 760, 60); R_Date("Beta-148957", 730, 60); Curve("Marine13","Marine13.14c"); R_Date("OxA-15153", 714, 25); Curve("IntCal13","IntCal13.14c"); R_Date("OxA-15123", 710, 27); 746 Curve("Marine13","Marine13.14c"); R_Date("OxA-15178", 709, 26); Curve("IntCal13","IntCal13.14c"); R_Date("GD-621", 705, 65); R_Date("FS AC 2419", 690, 50); R_Date("Beta-148949", 690, 60); R_Date("FS AC 2415", 690, 50); R_Date("Beta-148958", 670, 70); R_Date("GD-1053", 665, 50); R_Date("FS AC 2416", 660, 35); R_Date("OxA-15144", 651, 24); R_Date("SI-425", 650, 200); R_Date("SI-348", 640, 120); R_Date("FS AC 2417", 620, 30); R_Date("Beta-148962", 620, 60); R_Date("GD-1056", 600, 55); R_Date("SI-353", 590, 90); R_Date("SI-351", 590, 100); R_Date("GD-1055", 575, 60); R_Date("TO-7628", 560, 50); R_Date("SI-349", 550, 150); R_Date("TO-7626", 540, 50); R_Date("OxA-15150", 531, 23); 747 R_Date("TO-7618", 510, 50); R_Date("GD-624", 505, 40); R_Date("Beta-148960", 500, 50); R_Date("SI-350", 500, 100); R_Date("GD-1057", 490, 45); R_Date("GD-1054", 485, 50); R_Date("TO-8068", 480, 60); R_Date("FS AC 2424", 475, 35); R_Date("TO-7627", 460, 50); R_Date("FS AC 2420", 450, 35); R_Date("TO-8072", 430, 60); R_Date("TO-7620", 430, 50); R_Date("FS AC 2422", 420, 45); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("ICA 17B/0756", 420, 40); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7623", 390, 50); R_Date("FS AC 2421", 375, 25); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); 748 R_Date("Beta-148955", 360, 80); Curve("IntCal13","IntCal13.14c"); R_Date("TO-7625", 340, 50); R_Date("TO-7617", 330, 50); R_Date("TO-7622", 320, 40); R_Date("FS AC 2423", 315, 45); }; Boundary("Cuba End"); }; }; Curaçao Plot() { Sequence("Curacao") { Boundary("Curacao Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-247", 4490, 60); R_Date("IVIC-246", 4160, 80); R_Date("IVIC-234", 4110, 65); 749 R_Date("IVIC-242", 4070, 65); R_Date("IVIC-240", 3990, 50); Curve("Marine13","Marine13.14c"); R_Date("PITT-1200", 1965, 35); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-1183", 1875, 430); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-12914", 1500, 200); Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-237", 1440, 60); R_Date("IVIC-250", 1230, 60); R_Date("IVIC-233", 910, 50); R_Date("PITT-1198", 875, 35); R_Date("IVIC-244", 830, 60); R_Date("PITT-1196", 775, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("DIC-3138", 660, 20); Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-248", 630, 50); 750 R_Date("IVIC-249", 630, 60); R_Date("GrN-31926", 605, 15); R_Date("PITT-1195", 590, 50); R_Date("PITT-1188", 475, 50); R_Date("GrN-32016", 450, 30); R_Date("GrN-9997", 420, 15); R_Date("PITT-1197", 395, 115); R_Date("GrN-32017", 370, 25); R_Date("IVIC-241", 340, 50); R_Date("GrN-9998", 325, 35); }; Boundary("Curacao End"); }; }; Grand Turk Plot() { Sequence("Grand Turk") { Boundary("Grand Turk Start"); Phase() { 751 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-80911", 1280, 60); R_Date("Beta-98698", 1230, 60); Curve("Marine13","Marine13.14c"); R_Date("Beta-93912", 1170, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-80910", 1160, 60); R_Date("Beta-114924", 1120, 50); R_Date("Beta-66151", 1120, 120); R_Date("Beta-98697", 1010, 50); R_Date("Beta-96700", 940, 60); Curve("Marine13","Marine13.14c"); R_Date("Beta-93913", 930, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-242672", 910, 40); R_Date("Beta-98699", 900, 50); Curve("Marine13","Marine13.14c"); R_Date("Beta-242675", 850, 50); R_Date("Beta-242673", 790, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-253527", 780, 40); R_Date("Beta 242670", 690, 40); R_Date("Beta-242671", 610, 40); 752 Curve("Marine13","Marine13.14c"); R_Date("Beta-242674", 460, 40); }; Boundary("Grand Turk End"); }; }; Grenada Plot() { Sequence("Grenada") { Boundary("Grenada Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("PSUAMS-3017", 2820, 20); R_Date("PSUAMS-3022", 2145, 20); Curve("IntCal13","IntCal13.14c"); R_Date("PSUAMS-1317", 1685, 20); Curve("Marine13","Marine13.14c"); R_Date("PSUAMS-3020", 1510, 20); Curve("IntCal13","IntCal13.14c"); 753 R_Date("PSUAMS-1287", 1500, 25); Curve("Marine13","Marine13.14c"); R_Date("UCIAMS-179806", 1380, 20); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-85941", 1270, 50); R_Date("PSUAMS-1565", 1215, 20); R_Date("PSUAMS-3946", 1215, 20); R_Date("PSUAMS-1320", 1180, 25); R_Date("Beta-85935", 1110, 40); R_Date("Beta-98365", 1080, 50); R_Date("Beta-86831", 1050, 90); R_Date("Beta-98368", 980, 60); R_Date("Beta-86827", 900, 60); R_Date("Beta-85938", 850, 40); R_Date("PSUAMS-1322", 835, 25); R_Date("Beta-86833", 810, 50); R_Date("Beta-86832", 790, 60); R_Date("Beta-85939", 770, 60); R_Date("Beta-86830", 770, 50); R_Date("Beta-86828", 650, 40); R_Date("Beta-86829", 550, 60); R_Date("Beta-98367", 510, 60); R_Date("PSUAMS-3945", 380, 25); 754 R_Date("Beta-98366", 340, 50); }; Boundary("Grenada End"); }; }; Guadeloupe Plot() { Sequence("Guadeloupe") { Boundary("Guadeloupe Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Erl-10156", 3052, 41); R_Date("Ly-9162", 1815, 30); R_Date("Ly-9161", 1580, 30); R_Date("KIA-36672", 1340, 25); R_Date("KIA-36677", 1245, 30); R_Date("KIA-36671", 1230, 30); R_Date("KIA-31187", 1210, 20); R_Date("Y-1246", 1100, 80); 755 R_Date("KIA-36678", 1065, 30); R_Date("Erl-10159", 1056, 36); R_Date("KIA-36684", 1000, 30); R_Date("KIA-36673", 945, 35); R_Date("KIA-36674", 945, 30); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36675", 915, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-8466", 770, 30); R_Date("KIA-36680", 690, 30); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36682", 650, 140); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-36679", 625, 30); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("KIA-36681", 625, 25); R_Date("KIA-36681", 620, 25); 756 R_Date("KIA-36676", 565, 25); R_Date("KIA-36676", 431, 22); R_Date("KIA-36676", 348, 39); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-36683", 330, 25); }; Boundary("Guadeloupe End"); }; }; Hispaniola Plot() { Sequence("Hispaniola") { Boundary("Hispaniola Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("I-6756", 3890, 95); R_Date("I-5940", 3840, 130); Curve("Marine13","Marine13.14c"); 757 R_Date("I-9541", 3575, 90); Curve("IntCal13","IntCal13.14c"); R_Date("I-9539", 3205, 90); R_Date("I-6781", 2585, 90); R_Date("I-5818", 2095, 135); R_Date("SI-991", 1805, 70); Curve("Marine13","Marine13.14c"); R_Date("GrN-29933", 1750, 30); R_Date("GrN-31416", 1745, 20); R_Date("GrN-31413", 1705, 20); R_Date("GrN-30532", 1525, 25); R_Date("GrN-31415", 1520, 20); R_Date("GrN-29932", 1495, 30); R_Date("GrN-31414", 1435, 20); R_Date("Beta-293244", 1340, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-31412", 1230, 40); Curve("Marine13","Marine13.14c"); R_Date("GrN-30531", 1170, 25); R_Date("Beta-293242", 1120, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-29934", 1110, 25); Curve("Marine13","Marine13.14c"); 758 R_Date("GrN-30533", 1040, 25); R_Date("Beta-293243", 1030, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-108313", 990, 70); R_Date("Beta-107023", 940, 30); R_Date("GrN-31418", 925, 30); R_Date("GrN-31417", 915, 20); R_Date("Beta-112400", 910, 40); R_Date("Beta-96782", 870, 60); R_Date("GrN-29931", 815, 35); R_Date("Beta-47758", 810, 70); R_Date("Beta-46760", 800, 60); R_Date("Beta-46759", 720, 50); R_Date("Beta-18173", 680, 80); R_Date("Beta-96781", 680, 60); R_Date("Beta-01527", 640, 260); R_Date("Beta-108314", 620, 70); R_Date("Beta-18172", 600, 70); R_Date("GrN-30534", 600, 25); R_Date("GrN-30535", 580, 30); R_Date("Beta-108315", 540, 50); R_Date("GrN-29035", 535, 25); R_Date("Beta-018469", 440, 60); 759 R_Date("Beta-10526", 430, 80); R_Date("Beta-010528", 340, 70); R_Date("Beta-046761", 320, 70); }; Boundary("Hispaniola End"); }; }; Jamaica Plot() { Sequence("Jamaica") { Boundary("Jamaica Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-153378", 970, 40); R_Date("WK 43115", 938, 20); R_Date("Beta-167740", 680, 60); R_Date("A-6140", 630, 40); R_Date("WK 43114", 627, 20); R_Date("OxA-21058", 615, 24); 760 R_Date("A-6058", 570, 45); R_Date("A-6061", 525, 45); R_Date("OxA-21057", 396, 24); R_Date("OxA- 21056", 384, 24); }; Boundary("Jamaica End"); }; }; Montserrat Plot() { Sequence("Montserrat") { Boundary("Montserrat Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-83043", 2770, 60); R_Date("Beta-83050", 2140, 110); R_Date("Beta-83046", 2050, 80); R_Date("Beta-83045", 1950, 90); R_Date("Beta-83048", 1860, 100); 761 R_Date("Beta-83049", 1730, 100); R_Date("Beta-83044", 1650, 130); R_Date("Beta-83051", 1540, 120); R_Date("Beta-83047", 1270, 130); R_Date("Beta-282302", 1120, 40); R_Date("Beta-282300", 1070, 40); R_Date("Beta-277241", 1010, 40); R_Date("Beta-282301", 980, 40); R_Date("Beta-282299", 980, 40); R_Date("Beta-277242", 880, 40); }; Boundary("Montserrat End"); }; }; Nevis Plot() { Sequence("Nevis") { Boundary("Nevis Start"); Phase() { 762 Curve("Marine13","Marine13.14c"); R_Date("D-AMS 007668", 1541, 33); R_Date("D-AMS 07667", 1464, 24); R_Date("Beta-290341", 1420, 40); R_Date("Beta-290340", 1350, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-47807", 1070, 70); R_Date("Beta-46940", 1060, 50); R_Date("Beta-46944a", 940, 60); R_Date("Beta-46942", 880, 60); Curve("Marine13","Marine13.14c"); R_Date("Beta-324952", 720, 30); R_Date("Beta-324951", 570, 30); }; Boundary("Nevis End"); }; }; Puerto Rico Plot() { Sequence("Puerto Rico") { 763 Boundary("Puerto Rico Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-77165", 4060, 60); R_Date("Beta-178680", 4110, 40); R_Date("GX-28807", 3920, 40); Curve("Marine13","Marine13.14c"); R_Date("UGM-17566", 4250, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-116372", 3820, 70); R_Date("UGM-17565", 3810, 25); R_Date("GX-28814", 3740, 100); R_Date("UGM-5106", 3740, 30); Curve("Marine13","Marine13.14c"); R_Date("UGM-5108", 3740, 30); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28805", 3700, 30); R_Date("Beta-294434", 3680, 40); R_Date("GX-28808", 3670, 40); Curve("Marine13","Marine13.14c"); R_Date("UGM-17561", 3640, 25); Curve("IntCal13","IntCal13.14c"); 764 R_Date("Beta-130451", 3640, 70); Curve("Marine13","Marine13.14c"); R_Date("UGM-17562", 3630, 25); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28806", 3570, 40); Curve("Marine13","Marine13.14c"); R_Date("UGM-5107", 3520, 30); Curve("IntCal13","IntCal13.14c"); R_Date("GX-28809", 3470, 40); R_Date("I-14745", 3340, 90); Curve("Marine13","Marine13.14c"); R_Date("UGM-5105", 3170, 30); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30042", 3140, 40); Curve("Marine13","Marine13.14c"); R_Date("UGM-17564", 3120, 20); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30031", 2910, 50); R_Date("Beta-130450", 2730, 70); R_Date("Beta-178678", 2520, 40); R_Date("UGM-30033", 2390, 35); R_Date("Beta-178677", 2330, 110); R_Date("I-14744", 2270, 80); 765 R_Date("Beta-294435", 2120, 30); Curve("Marine13","Marine13.14c"); R_Date("I-14979", 2120, 80); Curve("IntCal13","IntCal13.14c"); R_Date("I-11296", 2100, 80); R_Date("Beta-9970", 2060, 70); R_Date("Beta-14380", 2060, 60); R_Date("I-14978", 2020, 80); R_Date("I-13855", 2020, 80); R_Date("I-11297", 1995, 80); R_Date("Beta-14381", 1960, 90); R_Date("I-13930", 1950, 80); R_Date("Y-1235", 1920, 120); R_Date("Beta-87611", 1920, 80); R_Date("Beta-347456", 1910, 30); R_Date("Y-1234", 1910, 100); R_Date("I-11266", 1865, 80); R_Date("Beta-9972", 1840, 50); R_Date("Y-1233", 1830, 80); R_Date("Beta-14993", 1810, 60); R_Date("Beta-14997", 1810, 70); R_Date("I-10914", 1780, 85); R_Date("I-13922", 1780, 85); 766 R_Date("I-9680", 1775, 80); R_Date("I-10916", 1720, 80); R_Date("I-10921", 1705, 85); R_Date("Beta-14992", 1660, 100); R_Date("I-14361", 1650, 80); R_Date("I-14431", 1650, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-222869", 1630, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-14430", 1610, 80); R_Date("I-14427", 1610, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6809", 1600, 55); Curve("IntCal13","IntCal13.14c"); R_Date("I-14428", 1600, 150); R_Date("I-14383", 1600, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); 767 R_Date("AA-75810", 1582, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Y-1232", 1580, 80); R_Date("Beta-17637", 1580, 120); R_Date("Beta-178670", 1580, 90); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79415", 1566, 46); Curve("IntCal13","IntCal13.14c"); R_Date("I-14362", 1560, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78513", 1557, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-87610", 1550, 60); R_Date("Beta-272032", 1550, 40); R_Date("I-14429", 1550, 80); R_Date("I-6595", 1545, 90); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); 768 R_Date("AA-75128", 1539, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17631", 1530, 90); R_Date("I-14382", 1530, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6805", 1525, 55); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-14994", 1520, 50); R_Date("Beta-178681", 1520, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4100", 1515, 50); Curve("IntCal13","IntCal13.14c"); R_Date("I-9677", 1515, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78495", 1505, 44); Curve("IntCal13","IntCal13.14c"); R_Date("I-13932", 1500, 80); 769 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74638", 1493, 45); Curve("IntCal13","IntCal13.14c"); R_Date("I-13923", 1490, 80); R_Date("I-9108", 1480, 95); R_Date("I-13924", 1480, 80); R_Date("Beta-178674", 1470, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82397", 1469, 47); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-223566", 1460, 60); R_Date("I-14360", 1460, 80); R_Date("I-9873", 1460, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79371", 1456, 45); R_Date("AA-75816", 1455, 46); Curve("IntCal13","IntCal13.14c"); 770 R_Date("Beta-178666", 1450, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72872", 1443, 50); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30035", 1440, 30); R_Date("Beta-17641", 1440, 70); R_Date("Beta-87601", 1440, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74637", 1434, 45); R_Date("AA-78492", 1434, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-223977", 1430, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78512", 1430, 43); R_Date("AA-72896", 1428, 42); R_Date("AA-78483", 1427, 44); R_Date("AA-78493", 1424, 44); 771 R_Date("AA-79362", 1422, 46); R_Date("AA-79409", 1421, 48); R_Date("AA-83951", 1413, 64); R_Date("AA-79364", 1411, 45); Curve("IntCal13","IntCal13.14c"); R_Date("I-10920", 1410, 85); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79384", 1408, 46); R_Date("AA-4110", 1405, 50); R_Date("AA-74656", 1403, 44); R_Date("AA-75804", 1401, 45); Curve("IntCal13","IntCal13.14c"); R_Date("I-13854", 1400, 150); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79363", 1397, 50); R_Date("AA-78490", 1392, 43); R_Date("AA-72895", 1392, 42); Curve("IntCal13","IntCal13.14c"); R_Date("I-10915", 1390, 85); 772 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79383", 1389, 45); R_Date("AA-79410", 1387, 45); R_Date("AA-83942", 1381, 43); R_Date("AA-75130", 1374, 43); R_Date("AA-75137", 1372, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-223565", 1370, 40); R_Date("Beta-15003", 1370, 60); R_Date("I-13853", 1370, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75805", 1369, 45); R_Date("AA-79374", 1369, 45); R_Date("AA-79367", 1367, 45); R_Date("AA-72894", 1366, 44); R_Date("AA-74636", 1365, 45); R_Date("AA-79366", 1364, 45); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17635", 1360, 70); 773 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4107", 1360, 50); Curve("IntCal13","IntCal13.14c"); R_Date("I-13931", 1360, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79369", 1359, 50); R_Date("AA-79365", 1358, 48); R_Date("AA-74663", 1355, 54); R_Date("AA-82391", 1355, 46); R_Date("AA-83940", 1353, 43); R_Date("AA-72871", 1352, 43); R_Date("AA-75799", 1351, 44); R_Date("AA-72897", 1351, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-77164", 1350, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75809", 1350, 46); 774 Curve("IntCal13","IntCal13.14c"); R_Date("I-13933", 1350, 110); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82378", 1347, 45); R_Date("AA-74643", 1347, 45); R_Date("AA-79370", 1344, 62); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-221018", 1340, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75812", 1339, 45); R_Date("AA-78496", 1338, 43); R_Date("AA-78489", 1336, 43); R_Date("AA-4103", 1335, 45); R_Date("AA-4109", 1335, 45); R_Date("AA-75803", 1331, 68); R_Date("AA-4097", 1330, 45); R_Date("AA-83938", 1326, 44); R_Date("AA-72887", 1322, 42); R_Date("AA-74662", 1322, 44); 775 R_Date("AA-82383", 1321, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-9971", 1320, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74639", 1319, 42); Curve("IntCal13","IntCal13.14c"); R_Date("AA-4114", 1315, 45); R_Date("I-10913", 1315, 85); R_Date("Beta-17633", 1310, 60); R_Date("Beta-272023", 1310, 40); R_Date("I-15408", 1310, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74657", 1305, 44); R_Date("AA-82416", 1302, 45); R_Date("AA-72869", 1302, 42); R_Date("AA-74665", 1301, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17640", 1300, 70); R_Date("Beta-272028", 1300, 40); 776 R_Date("UM-398", 1300, 90); R_Date("AA-4115", 1295, 45); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6810", 1295, 60); Curve("IntCal13","IntCal13.14c"); R_Date("I-10912", 1295, 85); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82407", 1289, 46); R_Date("AA-78511", 1287, 43); Curve("IntCal13","IntCal13.14c"); R_Date("I-9107", 1285, 95); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-74664", 1285, 43); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30037", 1280, 30); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 777 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79411", 1271, 45); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-386615", 1270, 30); R_Date("Beta-178673", 1270, 70); R_Date("Beta-109680", 1270, 40); R_Date("Beta-386071", 1260, 30); R_Date("Beta-386068", 1260, 30); R_Date("Beta-17638", 1260, 60); R_Date("I-15410", 1260, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75129", 1260, 42); R_Date("AA-82377", 1260, 46); R_Date("AA-79412", 1257, 47); R_Date("AA-79414", 1255, 45); R_Date("AA-79368", 1253, 52); R_Date("AA-72881", 1251, 42); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-272025", 1250, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 778 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78491", 1249, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-127523", 1240, 40); R_Date("I-14748", 1240, 80); R_Date("Beta-272030", 1240, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79382", 1235, 45); R_Date("AA-75807", 1231, 77); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-386073", 1230, 30); R_Date("Beta-386074", 1230, 30); R_Date("UGM-30026", 1230, 65); R_Date("Beta-178667", 1230, 60); R_Date("I-15679", 1230, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75808", 1228, 47); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-225064", 1220, 40); 779 R_Date("Beta-272027", 1220, 40); Curve("Marine13","Marine13.14c"); R_Date("I-15431", 1220, 80); Curve("IntCal13","IntCal13.14c"); R_Date("I-9679", 1220, 80); R_Date("OxA-15142", 1219, 26); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75815", 1218, 46); R_Date("AA-75813", 1214, 46); R_Date("AA-79408", 1208, 45); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-30059", 1200, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75824", 1200, 44); R_Date("AA-4104", 1195, 45); R_Date("AA-82402", 1191, 48); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-283565", 1190, 40); R_Date("Beta-272026", 1190, 40); 780 Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78510", 1189, 45); R_Date("AA-6807", 1188, 55); R_Date("AA-75806", 1186, 45); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24767", 1180, 40); R_Date("I-14746", 1180, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6811", 1180, 85); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-81848", 1180, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78509", 1179, 43); R_Date("AA-75814", 1175, 45); R_Date("AA-82380", 1174, 45); R_Date("AA-75133", 1173, 42); Curve("IntCal13","IntCal13.14c"); 781 R_Date("I-15678", 1170, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75801", 1168, 43); R_Date("AA-72893", 1168, 42); R_Date("AA-72888", 1164, 41); R_Date("AA-82404", 1162, 60); R_Date("AA-79381", 1162, 45); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17636", 1160, 70); R_Date("I-14749", 1160, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75127", 1160, 42); R_Date("AA-82399", 1156, 46); R_Date("AA-79413", 1154, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17639", 1150, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); 782 R_Date("AA-82409", 1150, 45); R_Date("AA-82401", 1147, 87); R_Date("AA-6806", 1145, 55); R_Date("AA-79402", 1141, 45); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24769", 1140, 40); R_Date("Beta-17634", 1140, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4096", 1140, 45); R_Date("AA-82406", 1140, 47); R_Date("AA-78494", 1138, 43); R_Date("AA-75817", 1135, 45); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-15006", 1130, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78479", 1128, 49); R_Date("AA-75818", 1127, 45); R_Date("AA-79404", 1125, 45); R_Date("AA-79351", 1121, 44); 783 Curve("IntCal13","IntCal13.14c"); R_Date("Beta-386698", 1120, 30); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72884", 1118, 44); R_Date("AA-4111", 1110, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-272029", 1100, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79355", 1099, 44); R_Date("AA-79345", 1099, 45); R_Date("AA-82410", 1098, 45); R_Date("AA-79354", 1098, 44); R_Date("AA-75134", 1098, 43); R_Date("AA-75141", 1094, 44); R_Date("AA-83935", 1092, 42); R_Date("AA-79347", 1090, 45); Curve("IntCal13","IntCal13.14c"); R_Date("UM-399", 1090, 100); Curve("IntCal13","IntCal13.14c"); 784 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-83929", 1086, 46); R_Date("AA-78488", 1085, 43); R_Date("AA-78480", 1084, 46); R_Date("AA-75135", 1082, 42); Curve("IntCal13","IntCal13.14c"); R_Date("I-14747", 1080, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-6812", 1080, 55); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-81846", 1080, 60); R_Date("Beta-136326", 1080, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-78487", 1078, 46); R_Date("AA-79356", 1075, 44); R_Date("AA-83927", 1073, 45); R_Date("AA-75798", 1071, 43); Curve("IntCal13","IntCal13.14c"); 785 R_Date("Beta-17632", 1070, 70); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79344", 1070, 45); R_Date("AA-82381", 1070, 45); R_Date("AA-4113", 1065, 50); R_Date("AA-83930", 1065, 45); R_Date("AA-75822", 1062, 43); R_Date("AA-75136", 1061, 42); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24764", 1060, 40); R_Date("Beta-178663", 1060, 40); R_Date("Beta-81843", 1060, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75122", 1055, 41); Curve("IntCal13","IntCal13.14c"); R_Date("I-9678", 1055, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); 786 R_Date("AA-82415", 1054, 44); R_Date("AA-72874", 1053, 42); R_Date("AA-78482", 1053, 42); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30034", 1050, 30); R_Date("UGM-30036", 1050, 80); R_Date("Beta-81850", 1050, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4106", 1045, 45); R_Date("AA-4099", 1045, 45); R_Date("AA-79407", 1041, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-15007", 1040, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-4112", 1040, 45); R_Date("AA-79406", 1040, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-136325", 1040, 50); Curve("IntCal13","IntCal13.14c"); 787 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79348", 1039, 45); R_Date("AA-79372", 1038, 47); R_Date("AA-72876", 1036, 42); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30023", 1030, 20); R_Date("Beta-178660", 1030, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82411", 1027, 44); R_Date("AA-82414", 1026, 44); R_Date("AA-79353", 1026, 44); R_Date("AA-4108", 1025, 55); R_Date("AA-75140", 1016, 45); R_Date("AA-78478", 1014, 43); R_Date("AA-75139", 1011, 42); R_Date("Beta-220582", 1010, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-178676", 1010, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 788 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75124", 1010, 42); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-136327", 1010, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82400", 1008, 46); R_Date("AA-82382", 1007, 47); R_Date("AA-72886", 1006, 41); R_Date("AA-75142", 1004, 44); R_Date("AA-78484", 1004, 45); R_Date("AA-83936", 1002, 43); Curve("IntCal13","IntCal13.14c"); R_Date("I-15432", 1000, 110); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75826", 997, 44); R_Date("AA-83933", 991, 43); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24768", 990, 40); R_Date("Beta-81841", 990, 50); 789 R_Date("Beta-198877", 990, 40); R_Date("OxA-15141", 990, 24); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79400", 983, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-77168", 980, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72875", 980, 41); R_Date("AA-75123", 973, 41); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24759", 970, 30); R_Date("Beta-81845", 970, 50); R_Date("Beta-178668", 970, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75126", 966, 42); R_Date("AA-72892", 966, 41); R_Date("AA-75820", 964, 44); 790 R_Date("AA-82405", 963, 46); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-81844", 960, 50); R_Date("Beta-178669", 960, 130); R_Date("Beta-178672", 960, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82408", 953, 46); R_Date("AA-75121", 952, 41); R_Date("AA-83934", 951, 42); R_Date("AA-75823", 951, 42); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-178665", 950, 60); R_Date("Beta-87603", 950, 60); R_Date("Beta-136324", 950, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75144", 941, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-247738", 940, 40); R_Date("Beta-247739", 940, 40); 791 R_Date("Beta-77174", 940, 60); R_Date("Beta-178661", 940, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-83928", 935, 44); R_Date("AA-75143", 932, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-178679", 930, 40); R_Date("Beta-136328", 930, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-83931", 927, 45); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-178662", 910, 40); R_Date("Beta-87600", 910, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75800", 907, 45); R_Date("AA-82412", 904, 44); Curve("IntCal13","IntCal13.14c"); 792 R_Date("GrN-24761", 900, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-82413", 900, 44); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-110631", 900, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72889", 893, 41); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24766", 890, 30); R_Date("Beta-109679", 890, 40); R_Date("AA-79346", 885, 44); R_Date("GrN24762", 880, 40); R_Date("Beta-103329", 880, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-83932", 873, 42); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30028", 870, 40); 793 R_Date("Beta-87604", 870, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79401", 870, 44); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-24763", 860, 40); R_Date("Beta-272022", 860, 40); Curve("Marine13","Marine13.14c"); R_Date("I-15429", 860, 80); R_Date("I-15430", 850, 80); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-81849", 840, 60); R_Date("Beta-77175", 830, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-83926", 829, 45); R_Date("AA-75825", 804, 43); R_Date("AA-78481", 798, 45); R_Date("Beta-220581", 790, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-16414", 790, 50); 794 R_Date("GrN-24757", 760, 70); R_Date("Beta-198876", 750, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-83925", 735, 44); Curve("IntCal13","IntCal13.14c"); R_Date("UGM-30045", 730, 35); R_Date("Beta-178675", 730, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-79403", 725, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-386072", 720, 30); R_Date("GrN-30058", 710, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-75802", 710, 43); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-272031", 710, 40); Curve("IntCal13","IntCal13.14c"); 795 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("AA-72877", 699, 52); Curve("IntCal13","IntCal13.14c"); R_Date("I-15407", 690, 80); R_Date("GrN-24758", 680, 50); R_Date("GrN-24765", 680, 40); R_Date("GrN-26412", 650, 25); R_Date("UGM-30019", 640, 45); R_Date("Beta-77177", 640, 60); R_Date("GrN-30052", 640, 30); R_Date("GrN-30053", 630, 40); R_Date("UGM-30039", 630, 20); R_Date("UGM-30043", 630, 50); R_Date("Beta-178664", 630, 40); R_Date("Beta-77183", 630, 50); R_Date("GrN-30051", 625, 25); }; Boundary("Puerto Rico End"); }; }; San Salvador 796 Plot() { Sequence("San Salvador") { Boundary("San Salvador Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("UM-2275", 1384, 65); Curve("IntCal13","IntCal13.14c"); R_Date("YSU #3", 1130, 40); Curve("Marine13","Marine13.14c"); R_Date("UGa-00836", 1054, 37); R_Date("AA-51432", 1028, 34); Curve("IntCal13","IntCal13.14c"); R_Date("YSU #1", 840, 40); R_Date("UM-2244", 660, 100); R_Date("UM-2274", 620, 70); R_Date("UM-2273", 580, 90); R_Date("Beta-16732", 530, 65); R_Date("YSU #4", 470, 60); R_Date("Beta-105988", 450, 50); R_Date("YSU #2", 350, 70); 797 R_Date("UM-2271", 305, 75); Curve("Marine13","Marine13.14c"); R_Date("UM-2245", 425, 75); }; Boundary("San Salvador End"); }; }; St. Eustatius Plot() { Sequence("St. Eustatius") { Boundary("St. Eustatius Start"); Phase() { Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ua-1488", 1735, 220); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-11512", 1755, 20); R_Date("GrN-11513", 1635, 20); 798 R_Date("GrN-11510", 1545, 35); R_Date("GrN-11509", 1415, 30); R_Date("GrN-11514", 1350, 60); R_Date("GrN-11516", 1340, 20); R_Date("GrN-17074", 1325, 30); R_Date("GrN-17075", 1260, 30); R_Date("GrN-11517", 1210, 20); R_Date("GrN-11515", 1205, 30); }; Boundary("St. Eustatius End"); }; }; St. John Plot() { Sequence("St. John") { Boundary("St. John Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-17080", 1630, 100); 799 R_Date("Beta-32239", 1460, 80); R_Date("Beta-16647", 1210, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-27793", 1170, 80); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-192223", 1160, 40); R_Date("Beta-192224", 1140, 40); R_Date("Beta-25891", 1130, 70); R_Date("Beta-59781", 1120, 100); R_Date("Beta-20605", 1050, 60); R_Date("Beta-59780", 970, 80); R_Date("Beta-18513", 970, 70); R_Date("Beta-26964", 900, 100); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-191882", 840, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-19863", 660, 60); }; Boundary("St. John End"); 800 }; }; St. Lucia Plot() { Sequence("St. Lucia") { Boundary("St. Lucia Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Y-1115", 1460, 80); R_Date("Y-650", 1220, 100); Curve("Marine13","Marine13.14c"); R_Date("RL-30", 1240, 100); R_Date("RL-31", 1120, 100); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-46607", 1000, 40); R_Date("GrN-32330", 960, 35); R_Date("GrN-32324", 920, 25); 801 R_Date("GrN-32326", 865, 35); R_Date("GrN-32328", 820, 35); R_Date("GrN-32325", 790, 35); R_Date("GrN-32319", 770, 35); R_Date("GrN-31944", 750, 30); R_Date("GrN-32327", 745, 30); R_Date("GrN-32314", 740, 30); R_Date("GrN-32317", 725, 35); R_Date("GrN-32315", 720, 35); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-46604", 645, 35); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("GrN-32329", 620, 40); }; Boundary("St. Lucia End"); }; }; St. Martin Plot() { 802 Sequence("St. Martin") { Boundary("St. Martin Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("KIA-28815", 4830, 40); R_Date("KIA-28108", 4770, 40); R_Date("KIA-28116", 4505, 35); R_Date("KIA-28115", 4275, 30); R_Date("Erl-9066", 4200, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28121", 3828, 27); Curve("Marine13","Marine13.14c"); R_Date("KIA-28114", 3800, 30); R_Date("KIA-28112", 3775, 30); R_Date("Erl-9071", 3750, 50); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28123", 3684, 27); R_Date("KIA-28119", 3655, 25); Curve("Marine13","Marine13.14c"); R_Date("Erl-9072", 3610, 50); Curve("IntCal13","IntCal13.14c"); 803 R_Date("KIA-28124", 3598, 29); Curve("Marine13","Marine13.14c"); R_Date("Beta-41782", 3580, 90); Curve("IntCal13","IntCal13.14c"); R_Date("Erl-9074", 3515, 45); Curve("Marine13","Marine13.14c"); R_Date("Erl-9073", 3510, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-190805", 3490, 40); Curve("Marine13","Marine13.14c"); R_Date("Erl-9064", 3460, 50); R_Date("Beta-187936", 3450, 40); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28126", 3447, 26); R_Date("KIA-28127", 3429, 35); Curve("Marine13","Marine13.14c"); R_Date("KIA-28111", 3380, 40); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28120", 3366, 27); Curve("Marine13","Marine13.14c"); R_Date("Erl-9065", 3340, 50); R_Date("KIA-28113", 3320, 30); R_Date("Beta-224793", 3240, 60); 804 Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28125", 3235, 26); Curve("Marine13","Marine13.14c"); R_Date("KIA-28110", 3185, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-187937", 3140, 40); Curve("Marine13","Marine13.14c"); R_Date("KIA-28109", 3105, 30); Curve("IntCal13","IntCal13.14c"); R_Date("KIA-28117", 3095, 23); R_Date("KIA-28118", 2951, 52); Curve("Marine13","Marine13.14c"); R_Date("Beta-146427", 2850, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-224792", 2610, 40); R_Date("PITT-0450", 2510, 40); R_Date("Beta-145372", 2420, 40); R_Date("PITT-0449", 2300, 55); R_Date("PITT-0219", 2275, 60); R_Date("Beta-146425", 2270, 40); R_Date("PITT-0220", 2250, 45); R_Date("PITT-0446", 2250, 45); Curve("IntCal13","IntCal13.14c"); 805 Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Erl-8235", 2070, 50); Curve("IntCal13","IntCal13.14c"); R_Date("PITT-0448", 2050, 45); R_Date("Beta-146424", 2020, 40); R_Date("Beta-106230", 1960, 60); R_Date("Beta-82159", 1910, 50); Curve("Marine13","Marine13.14c"); R_Date("KIA-32785", 1900, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82156", 1870, 60); Curve("Marine13","Marine13.14c"); R_Date("Beta-187941", 1810, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82158", 1800, 50); R_Date("Beta-82157", 1800, 60); R_Date("Beta-106228", 1770, 50); R_Date("LGQ-1099", 1760, 160); R_Date("Beta-82160", 1760, 50); R_Date("Beta-82154", 1710, 60); R_Date("Beta-106233", 1710, 70); R_Date("Beta-106229", 1670, 50); 806 R_Date("PITT-0452", 1660, 55); R_Date("Beta-106232", 1650, 70); R_Date("LGQ-1098", 1610, 150); R_Date("Beta-82153", 1590, 70); Curve("Marine13","Marine13.14c"); R_Date("KIA-28963", 1585, 25); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-187940", 1560, 40); R_Date("Beta-106231", 1560, 60); R_Date("Beta-82155", 1540, 50); Curve("Marine13","Marine13.14c"); R_Date("Beta-187938", 1540, 40); Curve("IntCal13","IntCal13.14c"); R_Date("GrN-20170", 1535, 30); R_Date("GrN-20168", 1530, 30); R_Date("GrN-20169", 1520, 35); R_Date("KIA-28122", 1494, 26); R_Date("PITT-0445", 1490, 35); Curve("Marine13","Marine13.14c"); R_Date("Beta-200098", 1330, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-9163", 1230, 30); R_Date("GrN-20161", 1225, 30); 807 R_Date("GrN-20160", 1180, 30); R_Date("GrN-20162", 1170, 30); Curve("Marine13","Marine13.14c"); R_Date("GrN- 20164", 1170, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-82165", 1000, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Ly-2019(OxA)", 895, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Ly-11437", 890, 30); R_Date("Ly-11435", 890, 30); }; Boundary("St. Martin End"); }; }; St. Thomas Plot() { Sequence("St. Thomas") { 808 Boundary("St. Thomas Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("I-8640", 2830, 85); R_Date("Beta-7022", 2860, 70); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-111459", 2710, 120); R_Date("I-8641", 2775, 85); Curve("Marine13","Marine13.14c"); R_Date("SI-5851", 2700, 65); R_Date("L-1380B", 2410, 60); R_Date("I-621", 2400, 175); R_Date("I-620", 2175, 160); R_Date("SI-5850", 2130, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-108917", 2090, 50); R_Date("Beta-111462", 1980, 50); Curve("Marine13","Marine13.14c"); R_Date("L-1380A", 1900, 70); R_Date("SI-5848", 1805, 75); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65474", 1800, 80); 809 R_Date("GX-12845", 1770, 235); R_Date("Beta-108888", 1720, 140); R_Date("Beta-50066", 1610, 70); Curve("Marine13","Marine13.14c"); R_Date("SI-5849", 1595, 75); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65472", 1580, 50); R_Date("Beta-65473", 1570, 60); R_Date("Beta-54646", 1560, 90); R_Date("CAMS-10696", 1550, 50); R_Date("Beta-108889", 1500, 50); R_Date("Beta-62568", 1430, 90); R_Date("Beta-62569", 1400, 120); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-88345", 1390, 40); R_Date("Beta-83011", 1390, 40); R_Date("Beta-83003", 1390, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-62570", 1380, 90); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); 810 Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83000", 1330, 30); R_Date("Beta-83001", 1330, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-65469", 1310, 60); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83009", 1300, 30); R_Date("Beta-83006", 1280, 40); R_Date("Beta-73392", 1190, 60); R_Date("Beta-83010", 1090, 30); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-49751", 1040, 150); R_Date("Beta-48742", 810, 140); R_Date("Beta-43437", 810, 70); R_Date("Beta-42277", 730, 80); R_Date("Beta-51355", 720, 120); R_Date("Beta-111461", 650, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-73390", 640, 60); 811 R_Date("Beta-73394", 630, 60); R_Date("Beta-73393", 600, 60); R_Date("Beta-83005", 600, 30); R_Date("Beta-73395", 590, 90); R_Date("Beta-73391", 580, 60); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-51354", 560, 120); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-88347", 560, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-111452", 560, 80); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-83008", 540, 30); R_Date("Beta-83004", 500, 30); R_Date("Beta-109071", 480, 50); R_Date("Beta-88348", 470, 40); R_Date("Beta-88349", 460, 40); R_Date("Beta-109070", 450, 50); R_Date("Beta-88346", 390, 40); 812 R_Date("Beta-109072", 380, 50); R_Date("Beta-83007", 340, 30); R_Date("Beta-88344", 300, 40); }; Boundary("St. Thomas End"); }; }; Tobago Plot() { Sequence("Tobago") { Boundary("Tobago Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("Beta-15351", 2700, 40); R_Date("Beta-15936", 1750, 40); R_Date("Beta-172211", 1700, 40); R_Date("Y-1336", 1300, 120); R_Date("Beta-172209", 1180, 40); R_Date("Beta-153150", 1170, 40); 813 R_Date("Beta-172210", 1110, 40); R_Date("Beta-153149", 900, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-221321", 850, 40); R_Date("Beta-221319", 810, 40); R_Date("Beta-221320", 810, 40); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-4905", 760, 105); R_Date("Beta-129265", 600, 50); R_Date("Beta-129262", 590, 40); R_Date("Beta-129264", 550, 40); }; Boundary("Tobago End"); }; }; Trinidad Plot() { Sequence("Trinidad") { 814 Boundary("Trinidad Start"); Phase() { Curve("IntCal13","IntCal13.14c"); R_Date("IVIC-888", 7180, 80); R_Date("UGa-14460", 7030, 25); R_Date("UGa-12303", 6890, 30); R_Date("IVIC-889", 6780, 70); R_Date("UGa-14459", 6370, 25); R_Date("IVIC-891", 6190, 100); R_Date("IVIC-887", 6170, 90); R_Date("UGa-14458", 6100, 25); R_Date("IVIC-890", 6100, 90); R_Date("IVIC-783", 5650, 100); R_Date("UGa-14457", 5300, 25); R_Date("Y-260-1", 2750, 130); R_Date("IVIC-642", 2140, 70); R_Date("IVIC-638", 2130, 80); R_Date("I-6444", 2120, 135); R_Date("IVIC-641", 2060, 70); R_Date("IVIC-640", 1990, 70); R_Date("Beta-196708", 1920, 40); R_Date("Beta-196709", 1880, 40); 815 R_Date("IVIC-643", 1850, 80); R_Date("Beta-4902", 1805, 90); R_Date("Beta-4899", 1755, 150); R_Date("Beta-134571", 1720, 50); R_Date("IVIC-786", 1720, 90); R_Date("Beta-4903", 1680, 115); R_Date("Beta-196706", 1650, 40); R_Date("GrA-13865", 1590, 40); R_Date("Beta-189113", 1570, 40); R_Date("OxA-19174", 1538, 29); R_Date("Beta-296724", 1490, 30); R_Date("IVIC-639", 1480, 70); R_Date("Beta-296723", 1400, 30); R_Date("Beta-4904", 1350, 85); R_Date("Beta-4901", 1300, 110); R_Date("IVIC-785", 1260, 100); R_Date("GrA-13867", 1220, 40); R_Date("Beta-296726", 1210, 30); R_Date("ISGS-A2628", 1210, 15); R_Date("Beta-4900", 1145, 65); R_Date("Beta-6807", 1130, 50); R_Date("Beta-4898", 1040, 260); Curve("Marine13","Marine13.14c"); 816 R_Date("Beta-6809", 990, 50); Curve("IntCal13","IntCal13.14c"); R_Date("Beta-196707", 740, 40); R_Date("Beta-6808", 650, 50); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-193442", 630, 40); Curve("IntCal13","IntCal13.14c"); Curve("Marine13","Marine13.14c"); Mix_Curve("Mixed","IntCal13","Marine13",50,12); R_Date("Beta-193443", 620, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-10766", 540, 75); R_Date("ISGS-A2629", 410, 20); R_Date("ISGS-A2630", 385, 20); }; Boundary("Trinidad End"); }; }; Vieques Plot() 817 { Sequence("Vieques") { Boundary("Vieques Start"); Phase() { Curve("Marine13","Marine13.14c"); R_Date("I-18971", 4095, 80); R_Date("I-6406", 3850, 100); R_Date("I-16899", 3780, 100); R_Date("I-6397", 3530, 100); R_Date("I-6396", 3510, 100); R_Date("I-16897", 3470, 100); R_Date("I-6395", 2790, 100); R_Date("I-16898", 2770, 90); R_Date("I-6407", 2740, 100); R_Date("I-16896", 2650, 90); Curve("IntCal13","IntCal13.14c"); R_Date("I-16153", 2590, 90); Curve("Marine13","Marine13.14c"); R_Date("Beta-276588", 2240, 40); Curve("IntCal13","IntCal13.14c"); R_Date("I-13425", 2110, 80); 818 R_Date("I-11322", 1945, 80); R_Date("I-11319", 1915, 80); R_Date("I-12859", 1880, 80); Curve("Marine13","Marine13.14c"); R_Date("Beta-259140", 1840, 50); Curve("IntCal13","IntCal13.14c"); R_Date("I-11321", 1845, 80); R_Date("I-10979", 1820, 85); R_Date("I-12858", 1820, 80); R_Date("I-12856", 1810, 80); R_Date("Beta-129948", 1810, 60); R_Date("I-11139", 1800, 80); R_Date("I-12860", 1780, 80); R_Date("I-11320", 1770, 80); R_Date("I-11685", 1740, 75); R_Date("I-10980", 1735, 85); R_Date("I-11140", 1730, 80); R_Date("I-11926", 1720, 80); R_Date("I-11141", 1705, 80); R_Date("I-16151", 1700, 80); R_Date("I-11925", 1665, 80); R_Date("I-16152", 1650, 80); R_Date("I-12744", 1640, 80); 819 R_Date("I-16154", 1620, 80); R_Date("I-11317", 1615, 75); R_Date("I-12746", 1600, 80); R_Date("I-16174", 1600, 80); R_Date("I-16173", 1590, 80); R_Date("I-12857", 1580, 80); R_Date("I-11686", 1575, 80); R_Date("I-10547", 1575, 85); R_Date("I-11687", 1565, 75); R_Date("I-11927", 1565, 80); R_Date("I-12745", 1560, 80); R_Date("I-11316", 1555, 75); Curve("Marine13","Marine13.14c"); R_Date("I-10549", 1525, 85); Curve("IntCal13","IntCal13.14c"); R_Date("I-10550", 1505, 85); R_Date("I-11318", 1490, 75); R_Date("I-16175", 1450, 80); R_Date("I-10548", 1440, 85); R_Date("I-16176", 1270, 90); R_Date("I-14813", 1180, 80); R_Date("I-12743", 950, 80); R_Date("I-12742", 900, 80); 820 R_Date("I-11189", 790, 85); R_Date("I-15189", 790, 80); R_Date("I- 15188", 700, 80); R_Date("I-15188", 700, 70); R_Date("I-15187", 690, 80); R_Date("I-15239", 660, 80); R_Date("I-15240", 630, 80); R_Date("I-15238", 570, 80); R_Date("I-15185", 540, 80); R_Date("I-15186", 520, 80); R_Date("I-15658", 470, 80); R_Date("I-15657", 410, 80); R_Date("I-11142", 405, 75); }; Boundary("Vieques End"); }; }; 821 Table 2. Originally reported sample materials with current taxonomic identification. Original reported sample type Current taxonomic identification Strombus gigas Lobatus gigas Eustrombus gigas Lobatus gigas Oliva recticularis/reticularis Americoliva reticularis Xancus angulatus Turbinella sp. Lucina pectinatus/pectinata Phacoides pectinatus or Ctena Mexicana Livonia pica Cittarium pica or Livona sp. Lima scabra Ctenoides scaber agouti Dasyprocta sp. iguana Iguana sp. peccary Tayassu/pecari sp. Astraea tuber Astraea sp. Table 3. Radiocarbon laboratory abbreviation, name, and country of operation. Asterisk denotes laboratories no longer in operation. Prefix Laboratory Name Country A- University of Arizona USA AA- University of Arizona; National Science Foundation USA AAINA Lab is IVIC, but reported as AAINA Venezuela Alpha- Alpha Analytic USA ARC- A.E. Lalonde AMS Laboratories, University of Ottawa Canada Beta- Beta Analytic USA CAMS- Center for Accelerated Mass Spectrometry USA CSIS Instituto Rocasola, Instituto Superior de Investigaciones Científicas Spain DIC-* Dicar Corp and Dicarb Radioisotope Company USA Erl-* Erlangen AMS Facility Germany Esso-* Esso Research and Engineering Company USA FS AC* Igneis(?) Argentina(?) GD-* Gdansk Poland GrA- Groningen Accelerator The Netherlands GrN-* Groningen The Netherlands GX- Geochron Laboratories USA I-* Teledyne Isotopes USA ICA International Chemical Analysis, Inc. USA IGS-* Institute of Geological Science Sweden IVIC-* Caracas Venezuela KIA- Kiel AMS Germany Kreuger Ent. Geochron Laboratories Kreuger Enterprises Isotopic USA L-* Lamont-Doherty USA 822 University of Bern, Laboratory of Radiochemistry and Environmental Chemistry, Paul LC-H- Scherrer Institute USA LE- Leningrad Russia LGQ- Laboratoire de Géologie du Quaternaire, CNRS, Marseilles France Lv-* Louvain-la-Neuve Belgium Ly- University of Lyon France MC-* Centre Scientifique de Monaco Monaco Mo-* Verdanski Inst. of Geochemistry, Moscow Russia N- Rikagaku Laboratories Japan Ny-* Nancy, Centre de Recherches Radiogéologiques France O-* Humble Oil & Refining USA ORAU- Oxford Radiocarbon Accelerator Unit England OS- NOSAMS Woods Hole USA OxA- Oxford Radiocarbon Accelerator Unit England PITT-* University of Pittsburgh USA Poz- Poznán Poland PSUAMS- Penn State University Radiocarbon 14C Laboratory USA RL-* Radiocarbon, Ltd. USA S-* Saskatchewan Canada SI-* Smithsonian Institution USA SUERC- Scottish Universities Environmental Research Centre Scotland TO- IsoTrace Laboratory Canada Tx-* Texas USA Ua- Uppsala Accelerator Sweden UBAR-* University of Barcelona Spain UCI- University of California, Irvine USA UCLA-* University of California, Los Angeles USA Uga- Center for Applies Isotope Studies, the University of Georgia USA UGAMS Center for Applies Isotope Studies, the University of Georgia USA UM-* University of Miami USA WK- University of Waikato New Zealand X-* Whitworth College USA Y-* Yale University USA YSU-* Youngstown State University USA 823 Table 4. Bibliographic information for radiocarbon dates. Publication Author(s) Year Title Book/Volume Title/Journal; Publisher Allsworth-Jones, Philip 2008 Pre-Columbian Jamaica Tuscaloosa: University of Alabama Press Anderson, David G., David W. The Archaeology and History of Water Island, U.S. Virgin Report prepared for Office of Insular Affairs, U.S. Knight, and Emily M. Yates 2003 Islands Department of Interior, Washington D.C. Fincas azucareras enclavadas en la zona del Central IV Evento Nacional de Patrimonio Histórico Azucarero. Angelbello, Sylivia T. 2002 Trinidad. Cronología y Patrimonio Cultural Matanzas, Cuba. In Proceedings of the 13th Congress of the the International Association for Caribbean Archaeology, edited by E.N. Ayubi, 494–508. Curaçao: Reports of the Antczak, M. Magdalena, Andrezej Arqueologia Prehistorica Del Archipielago de Los Roques, Archaeological-Anthropological Institute of the Antczak, and J.B. Haviser 1991 Venezuela: Informe Preliminar Netherlands Antilles. El Sitio Arqueologico La Punta de Bayahibe: Primeros Agricultores Tempranos de Las Antillas Asentados En La Atiles, Gabriel, and Adolfo López 2006 Costa Sureste de La Isla de Santo Domingo Dominican Republic: Editora de Revistas, 537–51. In Proceedings of the 11th Congress of the International The Study of the Aesthetic Aspects of the Precolumbian Association of Caribbean Archaeology, Puerto Rico 1985, Ayubi, E.W. 1990 Pottery of Aruba, Curacao & Bonaire pp. 128-140. Bain, Allison, Anne-Marie Faucher, Lisa M. Kennedy, Allison R. LeBlanc, Michael J. Burn, Rebecca Boger, and Sophia Landscape Transformation During Ceramic Age and Environmental Archaeology doi: Perdikaris 2017 Colonial Occupations of Barbuda, West Indies 10.1080/1461403.2017.1345115 Archaeological Excavation at the Grand Anse Beach Site, Report on file at the Grenada National Museum, St. Banks, T.J. 1988 Grenada, W.I., Foundation for Field Research. George's, Grenada. Ceramic Period Settlement in the Virgin Island Group, PhD Dissertation, London, United Kingdom: University of Bates, Brian David 2001 United States and British Virgin Islands London. In Proceedings of the 22nd Congress of the International The ‘South-Dominica’ archaeological Mission: The Association of Caribbean Archaeology. Kingston, Jamaica: Berard, Benoit 2007 Soufrière Site Jamaica National Heritage Trust. In Proceedings of the 14th Congress of the International Berman, Mary Jane, and Perry L. The Colonization of the Bahamas Archipelago: A View Association for Caribbean Archaeology, 170–86. Gnivecki 1991 from the Three Dog Site, San Salvador Island Barbados: The Barbados Museum and Historical Society. Berman, Mary Jane, and Perry L The Colonization of the Bahama Archipelago: A Gnivecki 1995 Reappraisal World Archaeology 26 (3): 421–41. In Proceedings of the Eleventh Symposium on the Natural Blick, Jeffrey, B. Rathcke, and W. A New Projectile Point Type from Barker’s Point Shell History of the Bahamas, 158–169. San Salvador: Gerace Hayes 2007 Midden (SS-37), San Salvador, Bahamas Research Center. In Proceedings of the 16th International Congress for the Archaeology of the Caribbean, 333–45. Guadeloupe: Les Caractéristiques de La Céramique Du Site de Hope Conseil Régional de la Guadeloupe, Mission Bonnissent, Dominique 1998 Estate, Île de Saint-Martin Archéologique et du Patrimoine. Archéologie Précolombienne de L’île de Saint-Martin, PhD Dissertation, Marseille, France: Université de Bonnissent, Dominique 2008 Petites, Antilles (3300 BC–1600 AD) Provence, Aix-Marseille I. 824 Bonnissent, D., P. Bertran, A. Chancerel, S. Grouard, T. Romon, N. Serrand, C. Stouvenot, and C. Les sites de la Baie Orientale. Occupations précéramiques et Document Final de Synthèse auprès du Service Régional Tardy 2002 post-Saladoïde, Saint-Martin, Guadeloupe, Petites Antilles d’Archéologie de Guadeloupe. Bonnissent, D., P. Bertran, A. Chancerel, T. Romon, N. Serrand, and C. Tardy 2001 Saint-Martin, Baie Orientale Bilan Scientifique 2000: 43–51. In Proceedings of the 20th Congress of the International Association for Caribbean Archaeology, edited by Clenis Tavárez María and Manuel A. García Arévalo, 31–39. Un site d’habitat postsaladoïde dans les Terres Basses (Plum Santo Domingo: Museo del Hombre Domincano and Bonnissent, D., and C. Stouvenot 2005 Bay): Baie aux Prunes (Saint-Martin, Petites Antilles) Fundación García Arévalo. Bonnissent, D., N. Serrand, L. Bruxelles, P. Fouéré, S. Grouard, N. Sellier-Ségard, and C. Archéoécologie des Sociétés Insulaires des Petites Antilles Séances de la Société Préhistorique Française de Rennes Stouvenot 2016 au Mésoindien. L'enjeu des Ressources à Saint-Martin. 6:213-60. The Guayabitoid and Mayoid Series: Amerindian Culture In Proceedings of the 10th Congress of the International History in Trinidad during Late Prehistoric and Protohistoric Association for Caribbean Archaeology, 93-148. Montréal: Boomert, A 1985 Times Centre de Recherches Caraïbes. Trinidad, Tobago and the Lower Orinoco Interaction Boomert, Arie 2000 Sphere: An Archaeological/Ethnohistorical Study Leiden: Leiden University. Boomert, Arie, Angus A.A. Mol, In Proceedings of the 26th Congress of the International Corinne L. Hofman, Menno L.P. Archaeological rescue investigations at the multi-component Association of Caribbean Archaeology, edited by C.B. Hoogland, Jason E. Laffoon, and indigenous site of Brighton Beach: New insights into the Velasquez and J.B. Haviser. SIMARC Heritage Series No. Jimmy L.J.A. Mans 2017 cultural history of St. Vincent and The Grenadines 15, Sint Maarten. Blood Is Thicker than Water: Amerindian Intra- and Inter- Insular Relationships and Social Organization in the Pre- Bright, Alistair J 2011 Colonial Windward Islands Leiden: Sidestone Press. Brock, Fiona, Joanna Ostapkowicz, Christopher Bronk Ramsey, Alex Wiedenhoeft, and Caroline Paired Dating of Pith and Outer Edge (Terminus) Samples Cartwright 2012 from Pre-Hispanic Caribbean Wooden Sculptures Radiocarbon 54 (3–4): 677–88. In Proceedings of the 3rd International Congress for the Bullen, Adelaide K., and Ripley P. Study of Pre-Columbian Cultures of the Lesser Antilles, Bullen 1970 The Lavoutte Site, St. Lucia: A Carib Ceremonial Centre 61–86. Grenada: Grenada National Museum. Bullen, Ripley P., and Adelaide K. Archaeological Investigations of St. Vincent and the Orlando, Florida: Wm. L. Bryant Foundation, American Bullen 1972 Grenadines, West Indies Studies. In Proceedings of the Second International Congress for the Study of the Pre-Columbian Cultures of the Lesser Bullen, Ripley P. and Adelaide K. Antilles, edited by Ripley P. Bullen, 134–44. Barbados: Bullen 1968 Barbados Archaeology: 1966 Barbados Musem. William L. Bryant Foundation for American Studies Report Bullen, Ripley P., and Frederick The Krum Bay Site: A Preceramic Site on St. Thomas, US 5. William L. Bryant Foundation for American Studies W. Sleight 1963 Virgin Islands Report. 825 In Proceedings of the Twelfth Congress of the International Association for Caribbean Archaeology, edited by Caesar, M., Caesar, P., and The Calabash Boom Site, St. John, USVI: Preliminary Robinson, L.S., 203–16. Martinique: International Lungberg, E 1991 Report Association for Caribbean Archaeology. Aftermath of a Feast: Human Colonization of the Southern Bahamian Archipelago and Its Effects on the Indigenous Carlson, Lisabeth Anne 1999 Fauna PhD Dissertation, University of Florida: Gainesville. Carlson, Lisabeth A., and David Examining Temporal Differences in Faunal Exploitation at The Journal of Island and Coastal Archaeology 4 (2): 207– W. Steadman 2009 Two Ceramic Age Sites in Puerto Rico 22. In Proceedings of the 26th Congress of the International Association of Caribbean Archaeology, edited by C.B. Carlson, Lisabeth A., Christopher Manatee exploitation at the Early Ostinoid site of CE-34, Velasquez and J.B. Haviser. SIMARC Heritage Series No. F. Altes, Darell S. Gundrum 2017 Eastern Puerto Rico 15, Sint Maarten. Spatial Analysis of Archaeological Assemblages from the Late Ceramic Age (AD 400-1400) site of Grand Bay, Casto, Kara I. 2015 Carriacou, West Indies. M.A. Thesis, University of South Florida: Tampa. In Proceedings of the Eighth International Congress for the Study of the Pre-Columbian Cultures of the Lesser Antilles, Chanlatte-Baik, Luis A., Narganes, La Hueca Vieques: Nuevo Complejo Cultural Agroalfarero edited by Lewenstein, Suzanne M., 501–23. Tempe: Yvonne M 1980 En La Arqueologia Antillana Arizona State University. In Proceedings of the 16th Congress of the International Cinquino, Michael A., Michele H. 1994 Excavations at the Aklis Site, Sandy Point National Association for Caribbean Archaeology, edited by G. Hayward, and Inez Reed Hoffman 1999 Wildlife Refuge, St. Croix, U.S.V.I. Richard, 67–82. Guadeloupe. Clark, Jeffrey J., Walker, Jeff, and Depositional History and Evolution of the Paso Del Indio Rodrigues-Ramos, Reniel 2003 Site, Vega Baja, Puerto Rico Geoarchaeology 18 (6): 625–48. In Proceedings of the Second International Congress for Sites précolombiens de la côte nord-est de la Grande-Terre the Study of Pre-Columbian Cultures in the Lesser Antilles, Clerc, Edgar 1968 de Guadeloupe 47–60. Barbados: Barbados Museum. In Proceedings of the XIII Congress of the International Association for Caribbean Archaeology, edited by Haviser From the Site of Pearls, Grenada: Exotic Lithics & Ayubi, E.N. J.B. Curacao: Archaeological-Anthropological Cody, A.K. 1991 Radiocarbon Dates Institute of the Netherlands Antilles. Raiders and Traders: Caraïbe social and political networks at the time of European contact and colonization in the Cody Holdren, A.K. 1998 Eastern Caribbean PhD dissertation, University of California Los Angeles. Colten, Roger H., Elizabeth Terese Bulletin of the Peabody Museum of Natural History 50(1): Newman and Brian Worthington 2009 Preceramic Faunal Exploitation at the Las Obas Site, Cuba 75-84. Colten, Roger H., and Brian Faunal Remains from the Archaic and Archaic with Ceramic Worthington 2014 Site of Vega Del Palmar, Cuba Journal of Caribbean Archaeology 14: 23–49. Colten, Roger H., and Brian Museum collections and Archaic era vertebrate faunal Worthington 2019 remains from Cuba Environmental Archaeology 24 (2):211-227. Montego Bay Pottery and Cultura in Western Jamaica: Significance and Implications for Jamaican Taino Pre- PhD Dissertation, The University of the West Indies: Conolley, Ivor C. History Mona. Organic Artifacts from the Manantial de La Aleta, Conrad, Geoffrey W., John W. Dominican Republic: Preliminary Observations and Foster, and Charles D. Beeker 2001 Interpretations Journal of Caribbean Archaeology 2: 1–20. 826 Constructing Caribbean Chronologies: Comparative Cooper, Jago, and Kenneth D. Radiocarbon Dating of Shell and Wood Artefacts from pre‐ Thomas 2012 Columbian Sites in Cuba Archaeometry 54 (2): 401–25. Interisland Interaction and the Development of Chiefdoms Crock, John Gordon 2001 in the Eastern Caribbean Pittsburgh, Pennsylvania: University of Pittsburgh. In Proceedings of the Fifteenth Annual Congress for Caribbean Archaeology, edited by R.E. Alegria and M. Crock, John Gordon, James B. Preceramic Anguilla: A View from the Whitehead’s Bluff Rodriguez, 15:283–92. San Juan, Puerto Rico: Centro de Petersen, and Nik Douglas 1995 Site Estudios Avanzados de Puerto Rico y el Caribe. In Proceedings of the Nineteenth Congress of the International Congress of the International Association of Caribbean Archaeology, edited by Dijkhoff Alofs, L. Stratified Sites and Storm Events: The Formation and R.A.C.F., 204–13. Aruba: Publications of the Crock, John G., Petersen, J.B. 2001 Destruction of Beach Sites in Anguilla, West Indies Archaeological Museum Aruba. Cruxent, Jose 1965 IVIC-241 American Journal of Science, Radiocarbon 9: 243. Tibes: People, Power, and Ritual at the Center of the The Archaeological Project of the Ceremonial Center of Cosmos, edited by Stringer Curet, L.A. L.M., 38–59. Curet, L.A. 2010 Tibes Tuscaloosa: University of Alabama Press. Curet, L. Antonio, Lee A. Prehispanic Social and Cultural Changes at Tibes, Puerto Newsom, and Susan D. deFrance 2006 Rico Journal of Field Archaeology, no. 31: 1. Dacal Moure, Ramón and Manuel Rivero de la Calle 1997 Art and Archaeology of Pre-Columbian Cuba Pittsburgh: University of Pittsburgh Press. Dávila Dávila, Ovidio 2003 Arqueología de la isla de Mona San Juan: Instituto de Cultura Puertorriqueña. Archaic Settlement and Resource Exploitation in the Lesser Davis, Dave D 1982 Antilles: Preliminary Information from Antigua Caribbean Journal of Science 17 (1–4): 107–22. Calibration of the Ceramic Period Chronology for Antigua, Davis, Dave D 1988 West Indies Southeastern Archaeology 7 (1): 52–60. Jolly Beach and the Preceramic Occupation of Antigua, Yale University Publications in Anthropology 84. New Davis, Dave D 2000 West Indies Haven, Connecticut: The Yale Peabody Museum. Archaeological Reconnaissance of Anegada, British Virgin Davis, Dave, and Kevin Oldfield 2003 Islands Journal of Caribbean Archaeology 4: 1–27. Out of the Shadows: A Review of the Archaeological Evidence for the Isolation, Interaction, and Abandonment of Davis, Deborah Diane 2011 the British Virgin Islands in the Pre-Columbian Caribbean Master’s Thesis, Leicester: University of Leicester. Reconsidering Taíno Social Dynamics after Spanish Deagan, Kathleen 2004 Contact: Gender and Class in Culture Contact Studies American Antiquity 69 (4): 597–626. Deevey, Edward, LJ Gralenski, and Vaino Hoffren 1959 Yale Natural Radiocarbon Measurements, [Part] 4 Radiocarbon 1 (1): 144–72. Comments on Amerindian Hunting Practices in Trinidad Delsol, Nicolas, and Sandrine (West Indies): Tetrapods From the Manzanilla Site (Late The Journal of Island and Coastal Archaeology 11(3): 385- Grouard 2016 Ceramic Age 300–900 AD) 410. Osteological Analysis of the Human Skeletal Remains from Report to the National Park Service NADB 550819. Doran, Glen H. 1990 the Aklis Site, St. Croix, Virgin Islands Atlanta, Georgia: Interagency Archeological Service. 827 In Proceedings of the 13th Congress of the International Association for Caribbean Archaeology, edited by Edwin N. Ayubi and Jay B. Haviser, 576–88. Willemstad: Archaeological-Anthropological Institute of the Douglas, Nik 1991 Recent Amerindian Finds on Anguilla Netherlands Antilles. Early Ceramic Population Lifeways and Adaptive Early Ceramic Population Lifeways and Adaptive Strategies Strategies in the Caribbean, edited by Peter E. Siegel, 79– Drewett, Peter L. 1989 in Barbados 118. B.A.R. London, UK: Institute of Archaeology, University of Drewett, Peter 1991 Prehistoric Barbados London. Prehistoric Settlements in the Caribbean: Fieldwork in Bridgetown, Barbados: Barbados Museum and Historical Drewett, Peter L. 2000 Barbados, Tórtola and the Cayman Islands Society. The Journal of the Barbados Museum and Historical Drewett, Peter L. 2006 Dating the Prehistoric Settlement of Barbados Society 52: 202–14. Excavations at Heywoods, Barbados, and the Economic Drewett, Peter L. 1993 Basis of the Suazoid Period in the Lesser Antilles Proceedings of the Prehistoric Society 59: 113–37. Dunning, Nicholas P., John G. In Island Historical Ecology: Socionatural landscapes of Jones, Neil A. Duncan, Deborah the eastern and southern Caribbean, edited by Peter E. M. Pearsall, and Peter E. Siegel 2018a Curaçao Siegel, 155-181. New York, Berghan. Dunning, Nicholas P., John G. In Island Historical Ecology: Socionatural landscapes of Jones, Deborah M. Pearsall, and the eastern and southern Caribbean, edited by Peter E. Peter E. Siegel 2018b Barbados Siegel, 182-202. New York, Berghan. Eldridge, K. L.; J. J. Stipp, and J. Hattner 1976 University of Miami Radiocarbon Dates V Radiocarbon 18(1): 116-124 The Cultural Landscape of Jácana: Archaeological Investigations of Site PO-29, Municipio de Pone, Puerto Espenshade, Christopher 2014 Rico US Army Corps of Engineers, Jackonsville District. Faucher, Anne-Marie, Elise- Archaeobotanical Studies on Barbuda, Preliminary Results Audrée Guay, and Allison Bain 2011 from 2011 New York: Barbuda Archaeological Research Center. In Proceedings of the 6th International Congress for the Study of Pre-Columbian Cultures of the Lesser Antilles, Caño Hondo, Un Residuario Precerámico En La Isla de edited by Ripley P. Bullen, 247–52. Gainesville: Florida Figueredo, Alfredo E. 1976 Vieques State Museum, University of Florida. A Critical Approach to Dating in the Caribbean: Using Chronometric Hygiene to Evaluate Chronological Control Fitzpatrick, Scott 2006 and Prehistoric Settlement Latin American Antiquity 17 (4): 389–418. Verification of an Archaic Age Occupation on Barbados, Fitzpatrick, Scott M. 2011 Southern Lesser Antilles Radiocarbon 53: 595–604. Fitzpatrick, Scott M., and Christina New Radiocarbon Dates for the Grenadine Islands (West M. Giovas 2011 Indies) Radiocarbon 53 (3): 451–60. Fitzpatrick, Scott M., Quetta Kaye, A Radiocarbon Sequence for the Sabazan Site, Carriacou, and Michiel Kappers 2004 West Indies Journal of Caribbean Archaeology 5: 1–11. A Radiocarbon Date of 380+/-60 for a Taino Site Negra, Isla Frank, E.F. 1998 de Mona, Puerto Rico Journal of Cave and Karst Studies 60: 101–2. 828 Friðriksson, A., G. Gudmundsson, F. Feeley, V. Rousseau, O. Vésteinsson, J. Vobornick, and T. Unpublished Field Report. New York: City University of MicGovern 2011 Investigations at the RIVER Site (BAA 004) Field Report New York Fouéré, P., Sa. Sailon, D. Bonnissent, A. Chancerel, P. Courtaud, M.-F. Deguilloux, S. Grouard, A. Lenoble, P. Mora, J. Paper presented at the 26th Congress of the International Monney, K. Pinçon, A. Queffelec, La Grotte de Morne Rita, Capesterre de Marie-Galante Association for Caibbean Archaeology, 20-24 July, Sint and C. Stouvenout 2015 (Guadeloupe): Nouvelles Données. Maarten. Premier Indice D’une Occupation Preceramique En Richard, Gerard 1994 Guadeloupe Continentale Journal de La Societe Des Americanistes 80 (1): 241–42 Giovas, Christina M., Meagan Intensifying Collection and Size Increase of the Tessellated Clark, Scott M. Fitzpatrick, and Nerite Snail (Nerita Tessellata) at the Coconut Walk Site, Jessica Stone 2013 Nevis, Northern Lesser Antilles, AD 890–1440 Journal of Archaeological Science 40 (11): 4024–38. New records for prehistoric introduction of Neotropical Giovas, Christina M., Michelle J. mammals ot the West Indies: evidence from Carriacou, LeFebvre, and Scott M. Fitzpatrick 2012 Lesser Antilles. Journal of Biogeography 39(3): 476-87. Industrias de La Concha Y de La Piedra No Lascada Del Sitio Arqueologico Mesolitico Victoria I, Provincia de Estudios Arqueologicos, edited by Dominguez Febles, J. L., Godo Torres, P.P. 1994 Camaguey 140–65. La Habana: Editorial Academia. Contextos Arqueológicos del Protoagrícola en el Centro Godo, P.P. 2001 Occidente de Cuba El Caribe Arqueológico 5:62-75 Journal of the Virgin Islands Archaeological Society 5: 6– Goodwin, Christopher R. 1978 The Lesser Antillean Archaic: New Data from St. Kitts 16. The Paleontology and Evolution of Cerion II: Age and Gould, Stephen J. 1971 Fauna of Indian Shell Middens on Curaçao and Aruba Breviora 372: 1–26. In Proceedings of the 6th Congress of the International The Archaic Period of the Virgin Islands: New Association for Caribbean Archaeology, 232–38. Gross, Jeffrey M. 1976 Investigations Gainesville: Florida State Museum, University of Florida. Grouard, Sandrine, Bonnissent, Dominique, Fouere Courtard, Patrice Pierrick, Richard Lenoble, Arnaud Gerard, Serrand Romon, Thomas Nathalie, and Stouvenot, Frequentation Amerindienne Des Cavites Des Petites Archeologie Caraibe, edited by Losier Berard, Benoit Christian 2014 Antilles Catherine, 277–95. Leiden: Sidestone Press. An Abstract of Archaeological Investigations by the Journal of the Barbados Museum and Historical Society 38 Hackenberger, Steven 1988 Barbados Museum, 1986 (2): 155–162. Camáhogne's chronology: The radiocarbon settlement Hanna, Jonathan A. 2019 sequence on Grenada, West Indies Journal of Anthropological Archaeology 55:101075. Bioarchaeology, Barbados, Eastern Caribbean: Isotopic Thesis, Science Honors Research Program, Central Hansen, Tiffany 2015 analyses of teeth and bone from human remains Washington University. In Proceedings of the 4th International Congress for the Study of Pre-Columbian Cultures of the Lesser Antilles, Preliminary Report on Banwari Trace, a Preceramic Site in 115–25. Castries, St. Lucia: St. Lucia Archaeological and Harris, Peter O.B. 1973 Trinidad Historical Society. 829 Harvey, Virginia L., Victoria M. Egerton, Andrew T. Chamberlain, Phillip L. Manning, and Michael Collagen Fingerprinting: A New Screening Technique for Buckley 2016 Radiocarbon Dating Ancient Bone PLoS ONE 11(3): e0150650. Hastings, Alexander K., John Krigbaum, David W. Steadman, Domination by Reptiles in a Terrestrial Food Web of the and Nancy A. Albury 2014 Bahamas Prior to Human Occupation Journal of Herpetology 48(3): 380-388. In Proceedings from the XI International Congress for Caribbean Archaeology, edited by Iraida Vargas Arenas Agamemnon Gus Pantel Tekakis and Mario Sanoja, 11–21. Puerto Rico: La Fundación Arqueológica, Antropológica e Haviser, Jay B. 1985 Prehistoric Human Remains on Curacao Histórica de Puerto Rico. Haviser, Jay B. 1987 Amerindian Cultural Geography of Curaçao PhD Dissertation, Leiden, Netherlands: Leiden University. Institute of Archaeology and Anthropology of the Haviser, Jay B. 1988 An Archaeological Survey of St. Martin-St. Maarten Netherlands Antilles (AAINA). In Proceedings from the Thirteenth International Congress of Caribbean Archaeology, edited by Haviser Ayubi, E.N. Preliminary Results from Test Excavations at the Hope J.B., 647–66. Curacao: Archaeological-Anthropological Haviser, Jay B. 1991 Estate Site (SM-026), St. Martin Institute of the Netherlands Antilles. In The Indigenous Peoples of the Caribbean, edited by Samuel Wilson, pp. 59-69. University Press of Florida, Haviser, Jay B. 1997 Settlement Strategies in the Early Ceramic Age. Gainesville. In Proceedings of the 19th Congress of the International Association for Caribbean Archaeology, 9:110–23. edited by Dijkhoff Alofs, L. R.A.C.F.Aruba: Publications of the Haviser, Jay B. 2001 New Data for the Archaic Age on Curaçao Archaeological Museum Aruba. The 'Old Netherlands Style' and Seventeenth-Century Dutch In First Forts, Edited by Eric Kingelhofer, pp. 167-188, Haviser, Jay B. 2010 Fortifications of The Caribbean Brill: Leiden. In Proceedings of the 15th International Congress for Caribbean Archaeology, pp. 71-82. Centro de Estudios Excavations at the Zuurzac site: A possible 17th century Avanzados de Puerto Rico y el Caribe, San Juan, Puerto Haviser, Jay B., and 1995 Dutch slave camp on Curaçao, Netherlands Antilles Rico. Hayward, Michele H., and Michael Archaeological Investigations at the Aklis Site. Sandy Point SEAC Technical Reports 10. Tallahassee, Florida: A. Cinquino 2002 National Wildlife Refuge, St. Croix, U.S. Virgin Islands Southeast Archaeological Center. In Proceedings of the 16th Congress of the International Association for Caribbean Archaeology, 287–99. Excavations at the Muddy Bay Site (PH-14), Antigua: Basseterre, Guadeloupe: Archaeological Mission for Healy, Paul F., and A Reg. Murphy 1995 Preliminary Report on the 1994 Investigations Patrimony. In Proceedings of the 18th Congress of the International Association for Caribbean Archaeology, 216–32. St. Healy, Paul F., A. Reg Murphy, Excavations at the Royall’s Site (Jo-11), Antigua: An Inland George, Grenada: l’Association Internationale des and David M. Cruz 2001 Saladoid Settlement Archéologues de la Caraïbe Région, Guadeloupe. Healy, Paul F., Keenleyside, A., Isotope Analysis and Radiocarbon Dating of Prehistoric and Dorst, M.C. 2013 Human Bone from the Manzanilla (SAN 1) Site, Trinidad Caribbean Connections 3 1: 30–45. 830 In Proceedings of the Twentieth International Congress for Caribbean Archaeology, edited by Garcia Arevale Tavarez, Healy, Paul F., Thornton, Erin, and The Post Saladoid Faunal Assemblage from The Coconut C. M.A., 20–22. Santo Domingo: Museo del Hombre Fuess, Martin T. 2003 Hall Site, Antigua, West Indies Dominicano and Fundacion Garcia Arevalo. Preliminary Report on the Excavation Henrıquez-I Site, Heidecker, L., and M.I. Siegel 1969 Tanki Flip, Aruba, Netherland Antilles The Florida Anthropologist 22: 12–26. Saint-Martin. Anse Des Peres. Bilan Scientifique de La Service Regional de l’Archeologie. Ministere de la Culture Hénocq, Christophe 1995a Region Guadeloupe. 1992-1994 et de la Francophonie. Direction du Patrimoine. Saint-Martin. Baie Orientale. Bilan Scientifique de La Service Regional de l’Archeologie. Ministere de la Culture Hénocq, Christophe 1995b Region Guadeloupe. 1992-1994 et de la Francophonie. Direction du Patrimoine. In Proceedings of the 16th Congress of the International Association for Caribbean Archaeology, edited by G. Hénocq, Christophe, and François Présentation de six sites archéologiques de Saint-Martin et Richard, 300–315. Basseterre, Guadeloupe: Editions du Petit 1998 de leur environnement Ponant. In Proceedings of the 16th Congress of the International Association for Caribbean Archaeology, edited by G. Baie Rouge, Gisement Archéologique Tardif de Saint- Richard, 316–32. Basseterre, Guadeloupe: Editions du Hénocq, Christophe 1998 Martin Ponant. Higham, Thomas FG, Christopher Bronk Ramsey, Fiona Brock, D Radiocarbon Dates from the Oxford AMS System: Baker, and P Ditchfield 2007 Archaeometry Datelist 32 Archaeometry 49 (s1): S1–60. In Search of the Native Population of Precolumbian Saba (400-1450 A.D.) Part One. Pottery Styles and Their PhD Dissertation, Leiden, The Netherlands: Leiden Hofman, Corinne L. 1993 Implications University. Rapport de fouille programmée, DRAC Guadeloupe 18. Hofman, Corinne L. 1995 Grande Anse, Terre-de-Bas, Guadeloupe Leiden, Netherlands: University of Leiden. Hofman, Corinne L., and Menno Evidence for Archaic Seasonal Occupation on Saba, L.P. Hoogland 2003 Northern Lesser Antilles around 3300 BP Journal of Caribbean Archaeology 4: 12–27. Hofman, Corinne L., Menno L.P. Hoogland, Hayley L. Mickleburgh, Jason E. Laffoon, Darlene A. Life and Death at Precolumbian Lavoutte, Saint Lucia, Weston, and Mike H. Field 2012 Lesser Antilles Journal of Field Archaeology 37 (3): 209–25. Hofman, Corinne L., Lewis Borck, In Early Settlers of the Insular Caribbean: Dearchaizing Emma Slayton, and Menno L.P. Archaic Age voyaging, networks and resource mobility the Archaic, edited by Corinne L. Hofman and Andrzej T. Hoogland 2019 around the Caribbean Sea Antczak, 245-62. Leiden, Sidestone Press. Hooghiemstra, Henry, Thomas Olijhoek, Menno Hoogland, Maarten Prins, Bas van Geel, Timme Donders, William Gosling, Columbus' environmental impact in the New World: Land and Corinne Hofman 2018 use change in the Yaque River Valley, Dominican Republic The Holocene 28 (11): 1818-35. Direction Régional de L'Archéologie. Ministère de la Sainte-Anne. Pointe Helleux. Bilan scientifique de la Région Culture et de la Francophonie. Direction du Patriomonie. Hoogland, Menno L.P. 1995 Guadeloupe. 1992-1992. Sous-direction de l'Archéologie. 831 Archaelogical Investigations on St. Martin (Lesser Antilles). The Sites of Norman Estate, Anse Des Pères and Hope Estate with a Contribution to the" La Hueca Problem, 127–47. Leiden, Netherlands: Archaeological Studies, Hoogland, Menno L.P. 1999 Methods and Strategy, Part Three, Hope Estate Leiden University Faculty of Archaeology. In Proceedings of the 23rd International Association for Hoogland, Menno LP, and Corinne Caribbean Archaeology, edited by R. Murphy, 631–639. L. Hofman 2011 Archaeological Investigations at Spanish Water, Curaçao Antigua. Kelbey’s Ridge 2, A 14th Century Taino Settlement on Hoogland, M., Hofman, C. 1993 Saba, Netherlands Antilles Analecta Praehistorica Leidensia 26 26: 163–81. Horn, Sally P., Kenneth H. Orvis, Lisa M. Kennedy, and G. Michael Prehistoric Fires in the Highlands of the Dominican Clark 2000 Republic: Evidence from Charcoal in Soils and Sediments Caribbean Journal of Science 36 (1–2): 10–18. δ18O analysis of Donax denticulatus: Evaluating a proxy for Jew, Nicholas P., Scott M. sea surface temperature and nearshore paleoenvironmental Fitzpatrick, and Kelsey J. Sullivan 2016 reconstructions for the northern Caribbean Journal of Archaeological Science: Reports 8: 216-223. In Island Historical Ecology: Socionatural landscapes of Jones, John G., Nicholas P. the eastern and southern Caribbean, edited by Peter E. Dunning, Neil A. Duncan 2018a Antigua Siegel, 239–69. New York, Berghan. Jones, John G., Nicholas P. In Island Historical Ecology: Socionatural landscapes of Dunning, Neil A. Duncan, Deborah the eastern and southern Caribbean, edited by Peter E. M. Pearsall, and Peter Siegel 2018b Barbuda Siegel, 270–84. New York, Berghan. 51. Miscellaneous Project Report. Florida Museum of Keegan, William F. 1993 Inagua Archaeology Natural History, Department of Anthropology. Archaeological investigations on Ile A Rat, Haiti: Avoid the In Proceedings of the XVIII International Congress for Keegan, William F. 2001 oid Caribbean Archaeology 2: 233-239. Keegan, William F., Roger W. Changes in Invertebrate Taxa at Two Pre-Columbian Sites Portell, and John Slapcinsky 2003 in Southwestern Jamaica, AD 800–1500 Journal of Archaeological Science 30 (12): 1607–17. In Early Settlers of the Insular Caribbean: Dearchaizing Kelly, Harold, and Corinne L. The Archaic Age of Aruba: New evidence on the first the Archaic, edited by Corinne L. Hofman and Andrzej T. Hofman 2019 migrations to the island Antczak, 147-62. Leiden, Sidestone Press. Kendall, Aaron, Manigault, Norie, Schreiner Guðmundsson, Garðar Amanda, Williams Khalsa, Santmukh Lucretia, Riggle Witter, Lauren Rebecca, Olavarria Plummer, Jeanette Grissel, and Preliminary Report of the 2011 Excavation at Seaview, BARC Report 2011-4. New York: Barbuda Archaeological Adkins, Rachel 2011 Barbuda, Antigua/Barbuda Research Center. Kepecs, Susan L. Antonio Curet 2nd ed. Tuscaloosa, Alabama, USA: University of Alabama and Gabino La Rosa Corzo 2010 Beyond the Blockade: New Currents in Cuban Archaeology Press. in Glumac, Bosiljka and Michael Savarese (eds.) The 16th Analysis of a sediment core from Triangle Pond, San Symposium on the Geology of the Bahamas and other Kjellmark, Eric W., and Jeffrey P. Salvador Island, Bahamas: Pollen, paleoclimate, human Carbonate Regions, Gerace Research Centre, San Salvador, Blick 2016 impacts, and insights into Lucayan Lifeways Bahamas. 832 In Proceedings of the 19th Congress of the International Association for Caribbean Archaeology, edited by L. Alofs and R.A.C.F. Dijkhoff, 88–98. Oranjestad, Aruba: Knippenberg, S. 2001 Flint Collecting Strategies on Long Island Archaeological Museum Aruba. Kraan, Claudia, Amy Victorina, Scott M. Fitzpatrick, Taylor Dodrill, Maggie Gebhardt, Paul Gerard, Haden Kingrey, Natasha Minugh, Martin Nelson-Harrington The Journal of Island and Coastal Archaeology 12(1): 138- and Mark Rempel 2017 New Archaeological Research on Curaçao 144. Lalueza-Fox, Carles, M. Thomas P. Gilbert, Antonio J. Martínez Fuentes, Francesc Calafell, and Mitochondrial DNA from pre‐Columbian Ciboneys from American Journal of Physical Anthropology 121 (2): 97– Jaume Bertranpetit 2003 Cuba and the Prehistoric Colonization of the Caribbean 108. Lane, Chad S., Sally P. Horn, and The Earliest Evidence of Ostionoid Maize Agriculture from Kenneth H. Orvis 2008 the Interior of Hispaniola Caribbean Journal of Science 44 (1): 43–52. Lazell, James 2005 Island: Fact and Theory in Nature Berkeley, California: University of California Press. Quaternary occurrence of the rare land snail Amphibulima Lenoble, Arnaud, Alain Bertrand, patula (Bruguière, 1789) in Guadeloupe (mollusca; Laurant Charles, Jean-Bapstise amphibulimidae): ecological and paleoenvironmental Mallye, and Nathalie Serrand 2018 implications Quaternaire 29 (2):121-130. Summary of Archaeological Research by the Center for Archaeological Research, Missouri State University- March Lopinot, Neal H. 2013 21-April 3, 2013 The University of the West Indies. Investigating Amerindian Occupations in the Northern Lopinot, Neal H. and Jack H. Ray 2018 Range of Trinidad Journal of Caribbean Archaeology 18:34-69 Interpreting the Cultural Associations of Aceramic Deposits Lundberg, Emily R. 1985 in the Virgin Islands Journal of Field Archaeology 12 (2): 201–12. Preceramic Procurement Patterns at Krum Bay, Virgin Ph.D. thesis, University of Illinois at Urbana-Champaign. Lundberg, Emily R. 1989 Islands University Microfilms International, Ann Arbor, MI. In Proceedings of the 18th Congress of the International Association for Caribbean Archaeology, 214–224. St. A Vessel-Analysis Approach to Early Ostionoid Pottery George, Guadeloupe: L’Association Internationale des Lundberg, Emily R. 2001 from Peter Bay, Virgin Islands Archéologues de la Caraïbe. In The Tutu Archaeological Village Site: A Multidisciplinary Case Study in Human Adaptation, edited Lundberg, Emily R. 2002 Tutu Pottery and Ceramic Chronology by Elizabeth Righter, 166–98. New York: Routledge. The Calabash Boom Site (VAm2-25), St. John, USVI: Phase Report prepared for Robert L. Lechner and Mercedes K. C. II and III Cultural Resource Investigation of Parcel 3B-11 in Dullum, submitted to the Virgin Islands State Historic Lundberg, Emily R. 2005 Johnson Bay Estates Preservation Office, St. Thomas, USVI. Lundberg, Emily R., Elizabeth C. Paper presented at the 57th Annual Meeting of the Society Righter, and Margaret D. Casesar 1992 The Late Ceramic Age in the Northern Virgin Islands for American Archaeology, April 11, 1992, Pittsburgh. Veloz Maggiolo, Marcio 1975 Cayo Cofresí, Un Sitio Precerámico de Puerto Rico Santo Domingo: Ediciones de Taller. Saint-Martin, Étang Rouge 3. Lot 411 (97150 Guadeloupe), Unpublished. Rapport de Diagnostic INRAP. DRAC Martias, R. 2005 Les Terres Basses Guadeloupe. 833 Martínez Fuentes, A., Lalueza Fox, El Poblamiento Antiguo Del Caribe. Analisis Del ADN C., Lazo Valdivia Gilbert, T. P. A., Mitocondrial En Preagroalfareros de La Region Occidental and Bertranpetit Callafell, F. J. 2003 de Cuba Catauro: Revista Cubana de Antropologia 5 (8): 62–74. Mielke, James E., and Austin Long 1969 Smithsonian Institution Radiocarbon Measurements V Radiocarbon 11 (1): 163–82. In Proceedings of the 23rd Congress of the International New Evidence and Understanding of the Antiguan Association of Caribbean Archaeology, 428–46. Antigua: de Mille, Christy 2011 Preceramic Dockyard Museum. In Proceedings of the 17th Congress of the International Association for Caribbean Archaeology, edited by J.H. de Mille, Christy, A. Reg Murphy, Preliminary Archaeological Investigations at Winthorpe’s Winter, 105–21. Rockville Centre, New York: Molloy and Paul F. Healy 1999 Bay, Antigua College. 9. Reports of the Archaeological-Anthropological Institute Moore, Clark 1991 Cabaret: Lithic Workshop Sites in Haiti of the Netherlands Antilles. Settlement Patterns in pre-Columbian Haiti: An Inventory of Manuscript in archive, Bureau National d'Etnologie, Port Moore, C.R., and N. Tremmel 1997 Archaeological Sites. au Prince. Cronología de Radiocarbono (C-14) para la Isla de Santo Morbán Laucer, F. 1979 Domingo Boletín del Museo del Hombre Dominicano 12:147-159. In Proceedings of the 16th Congress of the International Morse, Birgit Faber, and Irving The Indian Creek Period: A Late Saladoid Manifestation on Association of Caribbean Archaeology, edited by G. Rouse 1995 the Island of Antigua Richard, 312–21. Basseterre, Guadeloupe. The Prehistory of Antigua, Ceramic Age: Subsistence, Settlement, Culture and Adaptation within an Insular Murphy, Arthur Reginald 1999 Environment PhD Dissertation, Calgary: University of Calgary. In Proceedings of the 14th Congress of the International Los Restos Faunísticos Del Sitio de Puerto Ferro, Vieques, Association for Caribbean Archaeology, 94–114. Narganes Storde, Y.M. 1991 Puerto Rico Barbados: Barbados Museum and Historical Society. In Proceedings of the 21st Congress of the International Nueva Cronologia de Varios Sitios de Puerto Rico Y Association for Caribbean Archaeology, 275–94. St. Narganes Storde, Yvonne M. 2005 Vieques Augustine, Trinidad: University of the West Indies. PhD Dissertation, Puerto Rico: Centro Estudios Avanzados Narganes Storde, Yvonne M. 2015 Sorcé, historia de una aldea Saladoide de pescadores de Puerto Rico y el Caribe. Navarrete, Ramon 1990 Caimanes III: Arqueologia Havana: Editorial de Ciencias Sociales. In Proceedings of the 6th Congress of the International Association for Caribbean Archaeology, edited by Ripley P. Bullen, 98–105. Gainesville, Florida: Florida State Nicholson, Desmond V. 1975 Precolumbian Seafaring Capabilities in the Lesser Antilles Museum, University of Florida. In Proceedings of the 19th Congress of the International Association for Caribbean Archaeology, 9:173–85. Nieweg, D.C., and M.C. Dorst 2001 The Manzanilla 1 (SAN-1) Site, Trinidad Oranjestand, Aruba: Archaeological Museum Aruba. Aceramic Interactions in the Lesser Antilles: Evidence from Nodine, Bruce K. 1990 Antigua, West Indies Las Vegas, Nevada. Geological examination of archaeological middens in the PhD Dissertation, Bloomington, Indiana: Indiana Nold, Katherine D. 2018 Dominican Republic University. 834 O’Day, Sharyn Jones, and William F. Keegan 2001 Expedient Shell Tools from the Northern West Indies Latin American Antiquity 12 (3): 274–90. In Proceedings of the XV International Congress of Caribbean Archaeology, edited by Arévalo Clenis, Tavárez Oliver, José R., Narganes Storde, The Zooarcheaological Remains from Juan Miguel Cave María Manuel Antonio García, 227–42. Santo Domingo: Y. 2003 and Finca de Doña Rosa, Barrio Caguana, Puerto Rico Museo del Hombre Dominicano. In Proceedings of the 25th International Congress of Caribbean Archaeology, pp. 94-125. Instituto de Cultura Puertorriqueña, el Centro de Estudios Avanzados de Puerto Rico y el Caribe y la Oliver, José R., and Isabel Rivera A Reassessment of María de La Cruz Cave Site, Puerto Universidad de Puerto Rico, Recinto de Río Piedras: San Collazo 2015 Rico: The 2012 Excavations Juan. Oliver, José R., and Juan Rivera Bateyes de Viví (U-1), Utuado, Puerto Rico: Archaeological US Department of the Interior, National Park Service Fontán 2007 Documentaion for its Inclusion in the NRHP Cultural Resources In Proceedings of the First International Conference for the Study of Pre-Columbian Civilization in the Caribbean, pp. 95-102. Société d'Histoire de la Martinique: Fort-de- Olsen, Fred 1961 Arawak Campsites on Antigua France. Indian Creek; Arawak Site on Antigua, West Indies: 1973 Excavation by Yale University and the Antigua Olsen, Fred 1974 Archeological Society Norman, Oklahoma: University of Oklahoma Press. In Proceedings of the 20th Congress of the International Association of Caribbean Archaeology, 407–16. Santo Ortega, Elpidio, Gabriel Atiles, and Investigaciones Arqueológicas En El Yacimiento La Iglesia. Domingo: Museo del Hombre Dominicano and Fundación Jorge Ulloa Hung 2003 Provincia La Altagracia, República Dominicana García Arévalo. Either a piece of domestic furniture of the Indiands of one of Ostapkowicz, Joanna 2015 their Gods: The study of Lucayan duhos Journal of Caribbean Archaeology 15:62-101. Ostapkowicz, Joanna, Christopher In Communities in Contact: Essays in archaeology, Bronk Ramsey, Alex C. ethnohistory and ethnography of the Amerindian circum- Widenhoeft, Fiona Brock, Tom This Relic of Antiquity': Fifth to fifteenth century wood Caribbean. Edited by Corinne L. Hofman and Anne van Highan, and Samuel M. Wilson 2011 carvings from the southern Lesser Antilles. Dujvenbode, pp. 137-170. Sidestone Press: Leiden. Ostapkowicz, Joanna, Christopher Bronk Ramsey, Fiona Brock, Birdmen, Cemís and Duhos: Material Studies and AMS 14 Caroline Cartwright, Rebecca C Dating of Pre-Hispanic Caribbean Wood Sculptures in the Stacey, and Mike Richards 2013 British Museum Journal of Archaeological Science 40(12):4675-4687. Ostapkowicz, Joanna, Christopher Bronk Ramsey, Fiona Brock, Thomas Higham, Alex C. Widenhoeft, Erika Ribechini, Jeanette J. Lucejko, and Samuel Chronologies in Wood and Resin: AMS 14 C Dating of Pre- Wilson 2012 Hispanic Caribbean Wood Sculpture Journal of Archaeological Science 39 (7): 2238–51. Pagán-Jiménez, Jaime R., Reniel Rodríguez-Ramos, Basil A. Reid, Martijn van den Bel, and Corinne Early Dispersals of Maize and Other Food Plants into the L. Hofman 2015 Southern Caribbean and Northeastern South America Quaternary Science Reviews 123: 231–46. 835 Evaluación de Recursos Culturales de Fase II. Yacimiento Precolombino Maruca, Barrio Canas. Municipio de Ponce, Submitted to the Cansejo para la Protección del Pantel, A.G. 1994 Puerto Rico Patrimonion Arqueológico Terrestre de Puerto Rico. In Proceedings of the XV Congress of the International Association for Caribbean Archaeology, edited by Miguel Rodriguez Ricardo E. Alegria, 15–40. San Juan: Research Progress Report, Robin Bay Site (12V Aml-27) St. Asociacion Internacional de Arqueología del Caribe Centro Payne, T.M. 1995 Croix, U.S.V.I.: A Site in the Ceramic Age de Estudios Avanzados de Puerto Rico y el Caribe Pazdur, Anna, Romuald Awsiuk, Andrzej Bluszcz, M.F. Pazdur, Adam Walanus, and Andrzej Zastawny 1982 Gliwice Radiocarbon Dates VII Radiocarbon 24 (2): 171–81 Pendergast, David M., Elizabeth The Houses in Which They Dwelt: The Excavation and Graham, R. Jorge Calvera, and M. Dating of Taino Wooden Structures at Los Buchillones, Juan Jardines 2002 Cuba Journal of Wetland Archaeology 2 (1): 61–75. Diet and Society in Prehistoric Puerto Rico: An Isotopic PhD Dissertation, Chicago, Illinois: University of Illinois at Pestle, William J. 2010 Approach Chicago. Fishing Down a Prehistoric Caribbean Marine Food Web: Pestle, William J. 2013 Isotopic Evidence From Punta Candelero, Puerto Rico The Journal of Island and Coastal Archaeology 8: 228–54. Pyroclastic, Storm Surge, and Saladoid Villager Deposits: In Proceedings of the 16th Congress of the International Petersen, James B., Robert N. The Archaeological and Geological Stratigraphy of the Association for Caribbean Archaeology, 40–51. Basseterre, Bartone, and David R. Watters 1999 Trants Site, Montserrat Guadeloupe: Editions du Ponant. In Proceedings of the 18th Congress of the International Association for Caribbean Archaeology, edited by Richard, G., 124–35. St. George, Grenada: L’Association Petersen, James B., and John G. Late Saladoid to Late Prehistoric Occupation in Anguilla: Internationale des Archéologues de la Caraïbe Région Crock 2001 Site Setting, Chronology and Settlement Hierarchy Guadeloupe. Petitjean-Roget, J. 1970 L’Archéologie Martiniquaise Parallèles 36/37: 4-67. Actualizacion de Fechados Radiocarbónicos de Sitios Pino, M. 1995 Arqueológicos de Cuba Hasta Diciembre de 1993 La Habana: Editorial Academia. Mid-to-late Holocene sea level inflluence on coastal wetland Ramcharan, Eugene K. 2004 development in Trinidad Quaternary International 120 (1): 145-151. Late Holocene ecological development of the Graeme Hall Ramcharan, Eugene K. 2005 Swamp, Barbados, West Indies Caribbean Journal of Science 41: 147-150. Estudio Arqueologicos, edited by J. Febles, L. Dominguez, Estudio Del Sitio Arqueologico de ‘Cabagan’, Circuito Sur, F. Ortega, F. La Rosa, A. Martinez, and A. Rives. Havana: Rankin, S. 1994 Provincia de Santi Spiritus Editorial Academia. Arawak Archaeology in Jamaica: New Approaches, New Reid, Basil 1992 Perspectives Caribbean Quarterly 38 (2–3): 15–20. Premier Indice D’une Occupation Précéramique En Richard, Gérard 1994 Guadeloupe Continentale Journal de La Société Des Américanistes 80: 241–42 In Proceedings of the 20th Congress of the International Association for Caribbean Archaeology, edited by Clenis The Archaeological Site Of Roseau’s Seaside At Capesterre Tavárez María and Manuel A. García Arévalo, 15–22. Belle Eau. Revealer Of Insular Carib’s Occupation In Santo Domingo: Museo del Hombre Dominicano and Richard, Gérard 2003 Guadeloupe Fundación García Arévalo. 836 In The Tutu Archaeological Village Site: A Post hole patterns: Structures, chronology and spatial Multidisciplinary Case Study in Human Adaptation, edited Righter, Elizabeth 2002 distribution at the Tute site by Elizabeth Righter, 284-341. New York: Routledge. El Horizonte Ceramista Temprano en Santo Domingo y Editorial de la Universidad Autónoma de Santo Domingo, Rímoli, R., and J. Nadal 1983 Otras Antillas Santo Domingo. Rivera-Collazo, Isabel, Amos Winter, Denis Scholz, Augusto Magini, Thomas Miller, Yochanan Human Adaptation Strategies to Abrupt Climate Change in Kushnir, and David Black 2015 Puerto Rico Ca. 3.5 Ka. Holocene 25 (4): 627–40. The Zoned Incised Crosshatch (ZIC) Ware of Early Precolumbian Ceramic Age Sites in Puerto Rico and Early Ceramic Populatbn Lifways and Adaptive Strategies Rodríguez, Miguel 1989 Vieques Island in the Caribbean, edited by Peter E. Siegel, 249–66. B.A.R. In Proceedings of the 13th International Congress of the International Association for Caribbean Archaeology, 9:605–27. Willemstad, Curaçao: Archaeological- Rodríguez, Miguel 1991 Arqueologica de Punta Candelero, Puerto Rico Anthropological Institute of the Netherlands Antilles Excavaciones en el Yacimiento Arcaico de Maruca, Ponce, Consejo para la Protección del Patrimonio Arqueológico Rodríguez López, M. 2004 Puerto Rico: Informe Final Terrestre de Puerto Rico, San Juan. In Proceedings of the 12th Congress of the International Association for Caribbean Archaeology, edited by Linda S. Robinson, 217–26. Fort-de-France, French Guiana: Rodríguez López, M., and Virginia Puerto Rico and the Caribbean Pre-Saladoïd ‘Crosshatch L’Association Internationale des Archéologues de la Rivera 1991 Connection Caraïbe. Report to Oficina Estatl de Conservacíon Histórica La temporalidad absoluta del arte rupestre pictográfico en Proyecto subvencionado con un Historic Preservation Fund Rodríguez Ramos, Reniel 2017 Puerto Rico Grant (#2017-1550) Report to Oficina Estatl de Conservacíon Histórica La Ocupación Temprana del Interior Montañoso de Puerto Proyecto subvencionado con un Historic Preservation Fund Rodríguez Ramos, Reniel 2014 Rico: Los Casos de Cueva Ventana y Salto Arriba Grant (#2014-155062) In Island Shores, Distant Pasts: Archaeological and Biological Approaches to the Pre-Columbian Settlement of Rodriguez-Ramos, R., Torres, J., Rethinking Time in Caribbean Archaeology: The Puerto the Caribbean, edited by Fitzpatrick, S.M., and A.H. Ross, and Oliver, J. 2010 Rico Case Study 21–53. Gainesville: University Press of Florida. Roksandic, Mirjana, William M. Buhay, Yadira Chinique des Armas, Roberto Rodríguez Suárez, Matthew C. Peros, Ivan Roksandic, Radiocarbon and Stratigraphic Chronology of Canímar Stephanie Mowat, et al. 2015 Abajo, Matanzas, Cuba Radiocarbon 57 (5): 1–9. In Proceedings of the 8th International Congress for the Study of the Pre-Colombian Cultures of the Lesser Antilles, Roobol, M.J., A.L. Smith, and S.M. Archaeological Implications of Some Radiocarbon Dating 22:168–176. Anthropological Research Papers. Tempe, Lewenstein 1980 on Saba and St. Kitts Arizona: Arizona State University. Rose, Richard 1982 The Pigeon Creek Site, San Salvador, Bahamas The Florida Anthropologist 35(4): 129-145. 837 In Proceedings of the First San Salvador Conference Columbus and His World, edited by D.T. Gerace, 321–39. Rose, Richard 1987 Lucayan Lifeways at the Time of Columbus Fort Lauderdale, Florida: CCFL Bahamian Field Station. Archaeology in Lowland South America and the Caribbean, Rouse, Irving 1961 1935-60 American Antiquity 27 (1): 56–62. In Early Ceramic Population Lifeways and Adaptive Strategies, edited by P. E. Siegel, pp. 383–403. BAR Peoples and Cultures of the Saladoid Frontier in the Greater International Series 506. British Archaeological Rouse, Irving 1989 Antilles Reports, Oxford. Final Technical Report NSF-G24069: Dating of Caribbean Rouse, Irving 1963 Cultures NSF-G2069. New Haven. Vol. 61. Yale University Publications in Anthropology. Rouse, Irving 1960 The Entry of Man into the West Indies New Haven: Yale University Press. Rouse, Irving, and Ricardo E. Excavations at Maria de La Cruz Cave and Hacienda New Haven, Connecticut: Yale University Publications in Alegria 1990 Grande Village Site, Loiza, Puerto Rico Anthropology. Rouse, Irving, Louis Allaire, and C In Chronologies in the New World, edited by R Taylor, Meighan 1978 Caribbean 432–78. New York, New York: Academic Press. Rouse, Irving, and Brigit Faber New Haven, Connecticut: Yale University, Department of Morse 1999 Excavations at the Indian Creek Site, Antigua, West Indies Anthropology and Peabody Museum of Natural History. Rousseau, V. 2011 Preliminary Analyses from the River Site, Barbuda BARC Report 2011-3. Universite du Laval. Investigations at the Burton’s Field (BuF12), and Cattle Field (CaF12) Sites, Barbuda Survey and Field Report, Rousseau, V. 2012 January 2012 New York: Barbuda Archaeological Research Center. Renewing the House: Trajectories of Social Life in the Yucayeque (Community) of El Cabo, Higüey, Dominican Samson, Alice Victoria Maud 2010 Republic, AD 800 to 1504 Leiden: Sidestone Press. Samson, Alice V.M., Lucy J. Wrapson, Caroline R. Cartwright, Diana Sahy, Rebecca J. Stacey, Artists before Columbus: A multi-method characterization Jago Cooper 2017 of the material and practices of Caribbean cave art Journal of Archaeological Science 88: 24-36 Santos, Ana Luísa, Michael T. Gardner, and Philip Allsworth- Treponematosis in Pre-Columbian Jamaica: A Biocultural Jones 2013 Approach to the Human Cranium Found in Bull Savannah Journal of Archaeological Science 40: 490–96. Sara, Timothy R., Bruce J. Larson, William F. Keegan, Juan Jose In Proceedings of the 21st Congress of the International Ortize Aguilú, Betsy Carlson, Lee An Archaeological Survey of U.S. Naval Station Association for Caribbean Archaeology, 177-190. St. Newsom and Rich Macphail 2007 Guantanamo Bay, Cuba Augustine, Trinidad: University of the West Indies. Schaffer, William C., Robert S. Lucayan–Taíno Burials from Preacher’s Cave, Eleuthera, Carr, J.S. Day, and M.P. Pateman 2012 Bahamas International Journal of Osteoarchaeology 22 (1): 45–69. 838 Schroeder, Hannes, Martin Sikora, Shyam Gopalakrishnan, Lara M. Cassidy, Pierpaolo Maisano Delser, Marcela Sandoval Velasco, Joshua G. Schraiber, Simon Rasmussen, Julian R. Homburger, María C. Ávila-Arcos, Morten E. Allentoft, J. Víctor Moreno-Mayar, Gabriel Renaud, Alberto Gómez-Carballa, Jason E. Laffoon, Rachel J. A. Hopkins, Thomas F. G. Higham, Robert S. Carr, William C. Schaffer, Jane S. Day, Menno Hoogland, Antonio Salas, Carlos D. Bustamante, Rasmus Nielsen, Daniel G. Bradley, Corinne L. Proceedings of the National Academy of Sciences 115 (10): Hofman, and Eske Willerslev 2018 Origins and genetic legacies of the Caribbean Taino 2341-6. Evaluation of evidence of pre-Columbian human occupation Scudder, Sylvia, and Irvy Quitmyer 1998 at Great Cave, Cayman Brac, Cayman Islands Caribbean Journal of Science 34:41-49. Sellier-Ségard, N. 2016 COM Saint-Martin, Marigot, Rue Maurasse Inrap. Rapport de diagnostic archéologique. In Proceedings of the 26th Congress of the International Association of Caribbean Archaeology, edited by C.B. Sellier-Ségard, Nathalie, and Clara Un village de bord de mer du Néoindian récent à grand-case Velasquez and J.B. Haviser. SIMARC Heritage Series No. Samuelian 2017 (Saint Martin, Petites Antilles) 15, Sint Maarten. Baie Nettlé, Pierre à Chaux, Saint-Martin, Petites Antilles, Rapport d'opération de diagnostic archéologique, Inrap avec les Contributions de D. Todisco, P. Texier, F. GSO DOM-TOM, Bègles, Service régional de l'archéologie Serrand, N. 2009 Casagrande, O. Armand de Guadeloupe. Ideology and Culture Change in Prehistoric Puerto Rico: A Siegel, Peter E. 1996 View from the Community Journal of Field Archaeology 23 (3): 313–33. Occurrence of Exogenous Freshwater Bivalves (Unionida) In Proceedings of the 18th Congress of the International in the Lesser Antilles during the 1st Millennium AD: Association for Caribbean Archaeology, 136–52. St. Example from the Hope Estate Saladoïde Site (St. Martin, George, Grenada: L’Association Internationale des Serrand, N. 1999 French Lesser Antilles) Archéologues de la Caraïbe Région Guadeloupe. Shaklee, R., G. Fry, and T. An Archaeological Report on the Storr's Lake Site, San Delvaux 2007 Salvador Bahamas Naturalist and Journal of Science 2(1): 31-39. Pre-Columbian Regional Community Integration in Shearn, Isaac 2014 Dominica, West Indies PhD Dissertation, University of Florida: Gainesville. Site Structure, Demography, and Social Complexity in the Early Ceramic Population Lifeways and Adaptive Siegel, Peter E. 1989 Early Ceramic Age of the Caribbean. Strategies in the Caribbean, 194–245. B.A.R. Siegel, Peter E., John G. Jones, Deborah M. Pearsall, Nicholas P. Dunning, Pat Farrell, Neil A. Duncan, Jason H. Curtis, and Paleoenvironmental Evidence for First Human Colonization Sushant K. Singh 2015 of the Eastern Caribbean Quaternary Science Reviews 129: 275-295. 839 Siegel, Peter E., John G. Jones, In Ancient Borinquen: Archaeology and Ethnohistory of Deborah M. Pearsall, and Daniel P. Environmental and Cultural Correlates in the West Indies: A Native Puerto Rico, 88–121. Tuscaloosa: University of Wagner 2005 View from Puerto Rico Alabama Press. Archaeological Investigations of Two Prehistoric Sites Representing a Hispaniolan Colonization of Middle Caicos, Master’s Thesis, Gainesville, Florida: University of Sinelli, Peter T. 2001 Turks and Caicos Islands Florida. All Islands Great and Small: The Role of Small Cay Environments in Indigenous Settlement Strategies in the PhD Dissertation, Gainesville, Florida: University of Sinelli, Peter T. 2010 Turks & Caicos Islands Florida. Steadman, David W., Nancy A. Albury, Jim I Mead, J. Angel Soto- Holocene vertebrates from a dry cave on Eleuthera Island, Centeno, and Janet Franklin 2017 Commonwealth of The Bahamas The Holocene 28(5): 806-813. Steadman, David W., Richard Franz, Gary S. Morgan, Nancy A. Exceptionally Well Preserved Late Quaternary Plant and Albury, Brian Kakuk, Kenneth Vertebrate Fossils from a Blue Hole on Abaco, The Proceedings of the National Academy of Sciences 104(50): Broad, Shelley E. Franz, et al. 2007 Bahamas 19897-19902. Steadman, David W., and Sharyn Long-Term Trends in Prehistoric Fishing and Hunting on Jones 2006 Tobago, West Indies Latin American Antiquity 17(3): 316-334. Steadman, David W., and Anne V. Changing Exploitation of Terrestrial Vertebrates during the Stokes 2002 Past 3000 Years on Tobago, West Indies Human Ecology 30(3): 339-367. Steadman, David W., Nancy A. Albury, Perry Maillis, Jim I Mead, John Slapcinsky, Kenneth L. Krysko, Hayley M. Singleton, and Janet Franklin 2014 Late-Holocene faunal landscape change in the Bahamas The Holocene 24(2): 220-230 Steadman, David W., Hayley M. Singleton, Kelly M. Delancy, Nancy A. Albury, J. Angel Soto- Centeno, Harlan Gough, Neil Late Holocene Historical Ecology: The Timing of Duncan, Janet Franklin, and Vertebrate Extirpation on Crooked Island, Commonwealth William F. Keegan 2017 of The Bahamas Journal of Island and Coastal Archaeology 12(4): 572-584. Stouvenot, Christian, Jacques In Proceedings of the 25th Congress of the International Beauchêne, Dominique Bonnissent, Datations radiocarbone et le «problème vieux bois» dans Association for Caribbean Archaeology, 459–94. Puerto and Christine Oberlin 2013 l’arc antillais: état de la question Rico. Stouvenot, Christian, Sandrine Grouard, Salvador Bailon, Dominique Bonnissent, Arnaud In Proceedings of the 24th Congress of the International Lenoble, Nathalie Serrand, and L’abri Sous Roche Cadet 3 (Marie-Galante): Un Gisement Association for Caribbean Archaeology. Fort-de-France, Victor Sierpe 2014 À Accumulations de Faune et À Vestiges Archéologiques Martinique. pp.126-140. Stuckenrath, Robert, and James E. Mielke 1973 Smithsonian Institution Radiocarbon Measurements VIII Radiocarbon 15(2): 388-424. Stuiver, Minze 1969 Yale Natural Radiocarbon Measurements IX Radiocarbon 11(2): 545-658. Studies on the Physical Anthropology of the Netherlands Nieuwe West-Indische Gids/New West Indian Guide, Tacoma, Jouke 1980 Antilles: IV: A Prae-Columbian Skeleton from Bonaire 54(3/4): 229-258. 840 In Proceedings of the Eleventh Congress of the International Association for Caribbean Archaeology, 217– 23. San Juan: La Fundación Arqueológica, Antropológica e Tacoma, Jouke 1990 Skeletal Remains from de Savaan Region, Curacao Histórica de Puerto Rico. Instituto Venezolano de Investigaciones Cientificas Natural Tamers, M.A. 1973 Radiocarbon Measurements VI Radiocarbon 13(1): 32-44. Tankersley, Kenneth Barnett, Geochronology and paleoenvironmental framework for the Nicholas P. Dunning, Lewis A. oldest archaeological site (7800-7900 cal BP) in the West Owen, and Janine Sparks 2018 Indies, Banwari Trace, Trinidad Latin American Antiquity 29 (4): 681-695. In Proceedings of the 6th International Congress for the Study of Pre-Columbian Cultures of the Lesser Antilles, The Arboretum Complex: A Pre-Ceramic Culture of the 239–46. Gainesville, Florida: Florida State Museum, Tilden, Bruce E. 1976 Virgin Islands University of Florida. In Early Settlers of the Insular Caribbean: Dearchaizing The Krum Bay sites revisited: The excavations in the Krum the Archaic, edited by Corinne L. Hofman and Andrzej T. Toftgaard, Casper Jacobsen 2019 Bay area on St. Thomas, U.S. Virgin Islands Antczak, 215-228. Leiden, Sidestone Press. Turvey, Samuel T., J.R. Oliver, Y. Late Holocene Extinction of Puerto Rican Native Land M. Narganes Storde, and P. Rye 2007 Mammals Biology Letters 3(2): 193-196. Ulloa Hung, J. 2008 Una Nota al Margen. Crónica de una Datación Olvidad. El Caribe Arqueológico 11:106-10. Ulloa Hung, J. and R. Valcárel Rojas 2002 Cerámica Temprana En El Centro Del Oriente de Cuba Santo Domingo: Videograph. In Proceedings of the 20th Congress of the International Association for Caribbean Archaeology, 507–14. Santo Valcárcel Rojas, Roberto, and Domingo: Museo del Hombre Dominican and Fundación César Rodríguez Arce 2003 Chorro De Maíta. Muerte Y Desigualdad Social García Arévalo. Coleccion Premio de La Ciudad. Holguin: Ediciones Valcarecel Rojas, Roberto 2002 Banes Precolombino: La Ocupacion Agricultora Holguin. In Proceedings of the 26th Congress of the International Association of Caribbean Archaeology, edited by C.B. Mysterious LCA pits in the hinterland of Grande-Terre, Velasquez and J.B. Haviser. SIMARC Heritage Series No. Van den Bel, Martijn 2017 Guadeloupe 15, Sint Maarten. A Troumassoid site at Trois-Riviéres, Guadeloupe FWI Van den Bel, Martijn, and Thomas Funerary practices and house patters at La Pointe de Grande Romon 2010 Anse. Journal of Caribbean Archaeology 9:1-17. Dating and Dietary Reconstruction by Isotopic Analysis of Publications of the Foundation for Scientific Research in Amino Acids in Fossil Bone Collagen-with Special the Carribbean Region 128. Amsterdam: University of van Klinken, G.J. 1991 Reference to the Caribbean Groningen. El Precerámico de Santo Domingo, Nuevos Lugares y su Veloz Maggiolo, M. and E. Ortega 1973 Posible Relación con otros Puntos del Área Antillana Museo del Hombre Dominicano, Papeles Ocasionales 1. In Proceedings of the First Puerto Rican Symposium on Archaeology, edited by L. Robinson, 147-201. Fundación The Preceramic of the Dominican Republic: Some New Arqueológica, Anthropológica e Histórica de Puerto Rico, Veloz Maggiolo, M. and E. Ortega 1976 Finds and Their Possible Relationships San Juan. Veloz Maggiolo, M., E. Ortega, J. Nadal, F. Luna Calderón, and R. Ediciones de la Universidad Central del Este, San Pedro de Rímoli 1977 Arqueología de Cueva de Berna Macorís. 841 In Proceedings from the Thirteenth International Congress of Caribbean Archaeology, 105–126. Reports of the Archaeological-Anthropological Institute of the Netherlands Antilles 9. Curacao: Archaeological- Versteeg, Aad H. 1991 A Preceramic Burial Site at Malmok (Aruba) Anthropological Institute of the Netherlands Antilles. Versteeg, Aad H., and Kees The Archaeology of St.Eustatius: The Golden Rock Site Schinkel 1992 Vol. 2 Amsterdam: St. Eustatius Historical Foundation. Versteeg, Aad H., Kees Schinkel, Large-Scale Excavations versus Surveys: Examples from and Samuel L. Wilson. 1993 Nevis, St. Eustatius and St. Kitts in the Northern Caribbean Analecta Praehistorica Leidensia 26: 24. Versteeg, Aad H., Jouke Tacoma, Archaeological Investigations on Aruba: The Malmok Publication of the Archaeological Museum Aruba. and Pieter Van de Velde 1990 Cemetery. Vol. 2. Oranjestad: Archaeological Museum Aruba. Publication of the Archaeological Museum Aruba 8. Publications of the Foundation for Scientific Research in Versteeg, Aad H. 1997 The Archaeology of Aruba: The Tanki Flip Site the Caribbean Region 141. Reconnaissance of a Prehistoric Shell-ridge in Barbuda, Vésteinsson, Orri 2011 West Indies Fornleifastofnun Íslands, FS462-11032, Reykjavík. In Proceedings of the 16th Congress of the International Le Site Precolumbien de la Plage Dizac au Diamant, Association of Caribbean Archaeology, pp. 7-16. Vidal, Nathalie 1999 Martinique Basseterre, Guadeloupe: Editions du Ponant. Vinogradov, A.P., A.L. Devirts, E.I. Dobkina, and N. Markova 1968 Radiocarbon Dating in the Vernadsky Institute I-IV Radiocarbon 8: 292-323. In Ancient Borinquen: Archaeology and Ethnohistory of The Paso Del Indio Site, Vega Baja, Puerto Rico: A Native Puerto Rico, 55–87. Tuscaloosa: University of Walker, Jeffery B. 2005 Progress Report Alabama Press. Waters, Michael R., John R. Geoarchaeological Investigation of St. Ann's Bay, Jamaica: Giardino, Derek W. Ryter, James The Search for Columbus Caravels and an Assessment of Geoarchaeology 8(4): 259-279. M. Parrent 1993 1000 Years of Human Land Use In Proceedings of the 10th Congress of the International Geoarchaeological Research on Barbuda, Antigua, and Association for Caribbean Archaeology, 375–79. Montréal: Watters, David, and Jack Donahue 1990 Montserrat Centre de recherches caraïbes, Université de Montréal. In Indigenous People of the Caribbean, Edited by: Wilson, Watters, David R. 1997 Maritime trade in the prehistoric eastern Caribbean. S.M. 88-99. Gainesville: University Press Florida. In Proceedings of the 17th Congress of the International Composition of the Molluscan Fauna at the Gravenor Bay Association for Caribbean Archaeology, 181–96. Rockville Watters, David R. 1999 Shell Ridge, Barbuda Centre, New York: Molloy College. Watters, David R., Jack Donahue, In Paleoshorelines and Prehistory: An Investigation of and Robert Stuckenrath 1992 Paleoshorelines and the Prehistory of Barbuda, West Indies Method, 15–52. Boca Raton, Florida: CRC Press. In Proceedings of the 14th Congress of the International Association for Caribbean Archaeology, 25–33. St. Watters, David R. and James B. Preliminary Report on the Archaeology of the Rendezvous Michael, Barbados: Barbados Museum and Historical Petersen 1991 Bay Site, Anguilla Society. Watters, David R. 1991 Archaeology of Fountain Cavern, Anguilla, West Indies Annals of Carnegie Museum 60: 255-320. Paper presented at the 25th Congress for the International Wild, Kenneth S. 2013 A Timeline of Taíno Development in the Virgin Islands Association for Caribbean Archaeology, Puerto Rico. Wilson, Samuel M. 1989 The Prehistoric Settlement Pattern of Nevis, West Indies Journal of Field Archaeology 16(4): 427-450. 842 The Prehistory of Nevis, a Small Island in the Lesser Wilson, Samuel M. 2006 Antilles New Haven: Yale University Press. In The Tutu Archaeological Village Site: A Wing, Elizabeth S., S.D. deFrance, Multidisciplinary Case Study in Human Adaptation, 141– and L. Kozuch 2002 Faunal Remains from the Tutu Site 65. New York: Routledge. Journal of the Virgin Islands Archaeological Society 6: 45- Winter, John H. 1978a The Clifton Pier Rockshelter, New Providence, Bahamas 48. In Proceedings of the 7th International Congress for the Study of the Pre-Columbian Cultures of the Lesser Antilles, 237–42. Montréal: Centre de recherches caraïbes, Winter, John H. 1978b Preliminary Work from the McKay Site on Crooked Island Université de Montréal. In Proceedings of the First San Salvador Conference, 313– 20. Fort Lauderdale, Florida: CCFL Bahamian Field Winter, John H. 1987 San Salvador in 1492: Its Geography and Ecology Station. In Proceedings of the 9th International Congress for Preliminary Investigations of the Minnis/Ward Site, San Caribbean Archaeology, 155–62. Montréal: Centre de Winter, John H., and Jerry Stipp 1983 Salvador, Bahamas recherches caraïbes, Université de Montréal. In Proceedings of the 17th Congress of the International Winter, John H., Elizabeth S. Association for Caribbean Archaeology, 197–210. New Wing, and Lee A. Newsom 1999 A Lucayan Funeral Offering York: Molloy College. 843 APPENDIX B SUPPLEMENTARY MATERIAL FOR CHAPTER III Table 1. ΔR data for R markdown file. Lab_Code Region FKRT_zone Terrestrial_Influence deltaR deltar_error Reference L-576B Bahamas ? ? -175 42 Broecker and Olsen 1961 L-576G Bahamas ? ? -104 59 Broecker and Olsen 1961 SI-? Bahamas ? ? -12 66 Lighty et al. 1982 D-AMS 004869 Bahamas ? ? -452 43 DiNapoli_etal_2020 D-AMS 004870 Bahamas ? ? -232 33 DiNapoli_etal_2020 D-AMS 004871 Bahamas ? ? -237 30 DiNapoli_etal_2020 D-AMS 004872 Bahamas ? ? -213 37 DiNapoli_etal_2020 D-AMS 004876 Cuba ? ? -363 37 DiNapoli_etal_2020 D-AMS 004877 Cuba ? ? -66 24 DiNapoli_etal_2020 D-AMS 004878 Cuba ? ? -154 32 DiNapoli_etal_2020 D-AMS 004879 Cuba ? ? -119 26 DiNapoli_etal_2020 LAC-150280 Cuba ? ? -131 39 Diaz,_et_al,_2017 LAC-150269 Cuba ? ? -106 41 Diaz,_et_al,_2017 LAC-150281 Cuba ? ? -33 53 Diaz,_et_al,_2017 LAC-150276 Cuba ? ? -129 84 Diaz,_et_al,_2017 LAC-150271 Cuba ? ? -153 38 Diaz,_et_al,_2017 LAC-150272 Cuba ? ? -136 38 Diaz,_et_al,_2017 LAC-150270 Cuba ? ? -53 40 Diaz,_et_al,_2017 LAC-150277 Cuba ? ? -39 41 Diaz,_et_al,_2017 LAC-150278 Cuba ? ? 88 38 Diaz,_et_al,_2017 LAC-150279 Cuba ? ? -69 41 Diaz,_et_al,_2017 LAC-150284 Cuba ? ? -93 40 Diaz,_et_al,_2017 LAC-150286 Cuba ? ? -103 42 Diaz,_et_al,_2017 LAC-150283 Cuba ? ? 49 41 Diaz,_et_al,_2017 LAC-150285 Cuba ? ? -128 38 Diaz,_et_al,_2017 LAC-150282 Cuba ? ? -185 38 Diaz,_et_al,_2017 LAC-150273 Cuba ? ? -95 40 Diaz,_et_al,_2017 LAC-150287 Cuba ? ? -170 39 Diaz,_et_al,_2017 LAC-150274 Cuba ? ? -96 41 Diaz,_et_al,_2017 UGAMS- 14896A Apalachicola_Bay ? ? -198 23 Hadden,_Cherkinsky_2015 844 UGAMS-14894 Apalachicola_Bay ? ? -154 23 Hadden,_Cherkinsky_2015 UGAMS- 14897A Apalachicola_Bay ? ? 427 23 Hadden,_Cherkinsky_2015 UGAMS- 14897B Apalachicola_Bay ? ? 517 23 Hadden,_Cherkinsky_2015 UGAMS-14895 Apalachicola_Bay ? ? -73 23 Hadden,_Cherkinsky_2015 UGAMS-14891 Apalachicola_Bay ? ? -153 23 Hadden,_Cherkinsky_2015 UGAMS-14893 Apalachicola_Bay ? ? -154 23 Hadden,_Cherkinsky_2015 UGAMS-14890 Apalachicola_Bay ? ? -93 23 Hadden,_Cherkinsky_2015 UGAMS- 23653.01 Apalachicola_Bay ? ? -79 32 Hadden,_Cherkinsky_2017 UGAMS- 23653.02 Apalachicola_Bay ? ? -43 33 Hadden,_Cherkinsky_2017 UGAMS- 23653.03 Apalachicola_Bay ? ? -58 34 Hadden,_Cherkinsky_2017 GX-28109 Biscayne_National_Park Biscayne_National_Park Nearshore -170 61 Toth_et_al._2017 CAMS-167728 Biscayne_National_Park Biscayne_National_Park Nearshore -155 31 Toth_et_al._2017 CAMS-142674 Biscayne_National_Park Biscayne_National_Park Nearshore -242 27 Toth_et_al._2017 CAMS-142681 Biscayne_National_Park Biscayne_National_Park Nearshore -227 36 Toth_et_al._2017 CAMS-167734 Biscayne_National_Park Biscayne_National_Park Nearshore -282 34 Toth_et_al._2017 CAMS-167736 Biscayne_National_Park Biscayne_National_Park Nearshore -166 29 Toth_et_al._2017 UGAMS- 23652B.02 Apalachicola_Bay ? ? -28 33 Hadden,_Cherkinsky_2017 UGAMS- 23652B.03 Apalachicola_Bay ? ? 67 33 Hadden,_Cherkinsky_2017 UGAMS- 23652A.01 Apalachicola_Bay ? ? -3 33 Hadden,_Cherkinsky_2017 UGAMS- 23652A.02 Apalachicola_Bay ? ? -44 33 Hadden,_Cherkinsky_2017 UGAMS- 23652A.03 Apalachicola_Bay ? ? -10 33 Hadden,_Cherkinsky_2017 UGAMS- 23652A.04 Apalachicola_Bay ? ? -18 33 Hadden,_Cherkinsky_2017 CAMS-126062 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -244 31 Toth_et_al._2017 845 CAMS-126063 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -207 36 Toth_et_al._2017 CAMS-126064 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -211 36 Toth_et_al._2017 CAMS-126056 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -239 36 Toth_et_al._2017 CAMS-123403 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -99 31 Toth_et_al._2017 CAMS-131776 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -125 26 Toth_et_al._2017 CAMS-151246 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -151 31 Toth_et_al._2017 CAMS-168084 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -255 26 Toth_et_al._2017 CAMS-151239 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -252 33 Toth_et_al._2017 CAMS-168089 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -194 26 Toth_et_al._2017 CAMS-126050 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -318 31 Toth_et_al._2017 CAMS-123404 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -287 37 Toth_et_al._2017 CAMS-126046 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -310 36 Toth_et_al._2017 CAMS-126053 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -352 38 Toth_et_al._2017 CAMS-126054 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -286 42 Toth_et_al._2017 CAMS-126060 Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -326 36 Toth_et_al._2017 SI-? Dry_Tortugas_National_Park Dry_Tortugas_National_Park OpenOcean -45 51 Lighty,_R.G.:1982 UGAMS- 28225.1 Southwestern_Florida ? ? 247 61 Hadden,_Schwadron_2019 UGAMS- 28225.2 Southwestern_Florida ? ? 457 61 Hadden,_Schwadron_2019 UGAMS- 28225.3 Southwestern_Florida ? ? 247 61 Hadden,_Schwadron_2019 UGAMS- 28224A.1 Southwestern_Florida ? ? -24 62 Hadden,_Schwadron_2019 846 UGAMS- 28224A.2 Southwestern_Florida ? ? -64 62 Hadden,_Schwadron_2019 UGAMS- 28224A.3 Southwestern_Florida ? ? -94 62 Hadden,_Schwadron_2019 UGAMS- 28224B.1 Southwestern_Florida ? ? -124 62 Hadden,_Schwadron_2019 UGAMS- 28224B.2 Southwestern_Florida ? ? -124 62 Hadden,_Schwadron_2019 UGAMS- 28224B.3 Southwestern_Florida ? ? -14 62 Hadden,_Schwadron_2019 CAMS-172788 Lower_Keys Lower_Keys Nearshore -285 27 Toth_et_al._2017 CAMS-172458 Lower_Keys Lower_Keys Nearshore -132 26 Toth_et_al._2017 CAMS-168543 Lower_Keys Lower_Keys Nearshore -147 31 Toth_et_al._2017 CAMS-168541 Lower_Keys Lower_Keys Nearshore -221 27 Toth_et_al._2017 CAMS-168542 Lower_Keys Lower_Keys Nearshore -160 27 Toth_et_al._2017 CAMS-168540 Lower_Keys Lower_Keys Nearshore -205 26 Toth_et_al._2017 CAMS-168548 Marquesas Marquesas OpenOcean -132 28 Toth_et_al._2017 CAMS-168552 Marquesas Marquesas OpenOcean -133 26 Toth_et_al._2017 CAMS-168554 Marquesas Marquesas OpenOcean -247 28 Toth_et_al._2017 CAMS-168551 Marquesas Marquesas OpenOcean -249 25 Toth_et_al._2017 CAMS-171499 Middle_Keys Middle_Keys Nearshore -214 26 Toth_et_al._2017 CAMS-167744 Middle_Keys Middle_Keys Nearshore 205 26 Toth_et_al._2017 CAMS-171494 Middle_Keys Middle_Keys Nearshore -196 27 Toth_et_al._2017 CAMS-172468 Middle_Keys Middle_Keys Nearshore -110 36 Toth_et_al._2017 CAMS-167745 Middle_Keys Middle_Keys Nearshore -156 31 Toth_et_al._2017 CAMS-171496 Middle_Keys Middle_Keys Nearshore -181 37 Toth_et_al._2017 UGAMS- 14892A Apalachicola_Bay ? ? 56 23 Hadden,_Cherkinsky_2015 UGAMS- 28226.1 Southwestern_Florida ? ? 57 60 Hadden,_Schwadron_2019 UGAMS- 28226.2 Southwestern_Florida ? ? -53 60 Hadden,_Schwadron_2019 ucid941 Pickles_Reef Upper_Keys Nearshore -145 26 Druffel,_E.R.M._1997 ucid940 Pickles_Reef Upper_Keys Nearshore -147 25 Druffel,_E.R.M._1997 WH1454 Pickles_Reef Upper_Keys Nearshore -234 18 Druffel,_E.R.M._1997 WH1479 Pickles_Reef Upper_Keys Nearshore -188 18 Druffel,_E.R.M._1997 WH1492 Pickles_Reef Upper_Keys Nearshore -191 19 Druffel,_E.R.M._1997 ucid1051 Pickles_Reef Upper_Keys Nearshore -203 30 Druffel,_E.R.M._1997 ucid1375 Pickles_Reef Upper_Keys Nearshore -204 24 Druffel,_E.R.M._1997 ucid1368 Pickles_Reef Upper_Keys Nearshore -405 23 Druffel,_E.R.M._1997 847 WH1476 Pickles_Reef Upper_Keys Nearshore -207 19 Druffel,_E.R.M._1997 WH1460 Pickles_Reef Upper_Keys Nearshore -199 19 Druffel,_E.R.M._1997 WH1466 Pickles_Reef Upper_Keys Nearshore -277 23 Druffel,_E.R.M._1997 WH1458 Pickles_Reef Upper_Keys Nearshore -211 21 Druffel,_E.R.M._1997 WH1470 Pickles_Reef Upper_Keys Nearshore -272 23 Druffel,_E.R.M._1997 WH1457 Pickles_Reef Upper_Keys Nearshore -160 19 Druffel,_E.R.M._1997 WH1472 Pickles_Reef Upper_Keys Nearshore -170 20 Druffel,_E.R.M._1997 WH1463 Pickles_Reef Upper_Keys Nearshore -104 20 Druffel,_E.R.M._1997 WH1478 Pickles_Reef Upper_Keys Nearshore -190 20 Druffel,_E.R.M._1997 WH1464 Pickles_Reef Upper_Keys Nearshore -217 22 Druffel,_E.R.M._1997 ucid1050 Pickles_Reef Upper_Keys Nearshore -191 28 Druffel,_E.R.M._1997 WH1475 Pickles_Reef Upper_Keys Nearshore -190 31 Druffel,_E.R.M._1997 WH1461 Pickles_Reef Upper_Keys Nearshore -153 24 Druffel,_E.R.M._1997 ucid939 Pickles_Reef Upper_Keys Nearshore -187 25 Druffel,_E.R.M._1997 ucid1049 Pickles_Reef Upper_Keys Nearshore -171 44 Druffel,_E.R.M._1997 WH1477 Pickles_Reef Upper_Keys Nearshore -129 20 Druffel,_E.R.M._1997 WH1467 Pickles_Reef Upper_Keys Nearshore -201 18 Druffel,_E.R.M._1997 WH1468 Pickles_Reef Upper_Keys Nearshore -151 17 Druffel,_E.R.M._1997 WH1459 Pickles_Reef Upper_Keys Nearshore -199 18 Druffel,_E.R.M._1997 WH1462 Pickles_Reef Upper_Keys Nearshore -97 20 Druffel,_E.R.M._1997 WH1474 Pickles_Reef Upper_Keys Nearshore -158 20 Druffel,_E.R.M._1997 WH1493 Pickles_Reef Upper_Keys Nearshore -161 18 Druffel,_E.R.M._1997 WH1469 Pickles_Reef Upper_Keys Nearshore -178 19 Druffel,_E.R.M._1997 WH1456 Pickles_Reef Upper_Keys Nearshore -190 18 Druffel,_E.R.M._1997 LJ4122 The_Rocks Upper_Keys Nearshore -166 59 Druffel_&_Linick_1978 LJ4121 The_Rocks Upper_Keys Nearshore -122 60 Druffel_&_Linick_1978 LJ4051 The_Rocks Upper_Keys Nearshore -95 86 Druffel_&_Linick_1978 LJ4262 The_Rocks Upper_Keys Nearshore -154 68 Druffel_&_Linick_1978 LJ4123 The_Rocks Upper_Keys Nearshore -102 60 Druffel_&_Linick_1978 LJ4127 The_Rocks Upper_Keys Nearshore -195 59 Druffel_&_Linick_1978 LJ4125 The_Rocks Upper_Keys Nearshore -160 68 Druffel_&_Linick_1978 LJ4126 The_Rocks Upper_Keys Nearshore -167 68 Druffel_&_Linick_1978 LJ3815 The_Rocks Upper_Keys Nearshore -123 51 Druffel_&_Linick_1978 LJ3816 The_Rocks Upper_Keys Nearshore -190 51 Druffel_&_Linick_1978 LJ3817 The_Rocks Upper_Keys Nearshore -172 51 Druffel_&_Linick_1978 LJ3818 The_Rocks Upper_Keys Nearshore -196 42 Druffel_&_Linick_1978 LJ3819 The_Rocks Upper_Keys Nearshore -178 51 Druffel_&_Linick_1978 LJ4288 The_Rocks Upper_Keys Nearshore -143 68 Druffel_&_Linick_1978 848 LJ4261 The_Rocks Upper_Keys Nearshore -179 59 Druffel_&_Linick_1978 LJ4403 The_Rocks Upper_Keys Nearshore -143 34 Druffel_&_Linick_1978 LJ4234 The_Rocks Upper_Keys Nearshore -150 51 Druffel_&_Linick_1978 LJ4280 The_Rocks Upper_Keys Nearshore -189 34 Druffel_&_Linick_1978 LJ4193 The_Rocks Upper_Keys Nearshore -162 34 Druffel_&_Linick_1978 LJ4281 The_Rocks Upper_Keys Nearshore -136 51 Druffel_&_Linick_1978 LJ4196 The_Rocks Upper_Keys Nearshore -144 34 Druffel_&_Linick_1978 LJ4179 The_Rocks Upper_Keys Nearshore -153 34 Druffel_&_Linick_1978 LJ4184 The_Rocks Upper_Keys Nearshore -153 51 Druffel_&_Linick_1978 LJ4344 The_Rocks Upper_Keys Nearshore -203 25 Druffel_&_Linick_1978 LJ4206 The_Rocks Upper_Keys Nearshore -152 25 Druffel_&_Linick_1978 LJ4207 The_Rocks Upper_Keys Nearshore -150 68 Druffel_&_Linick_1978 LJ4283 The_Rocks Upper_Keys Nearshore -166 34 Druffel_&_Linick_1978 LJ4186 The_Rocks Upper_Keys Nearshore -62 43 Druffel_&_Linick_1978 LJ4277 The_Rocks Upper_Keys Nearshore -120 34 Druffel_&_Linick_1978 LJ4232 The_Rocks Upper_Keys Nearshore -136 34 Druffel_&_Linick_1978 LJ4342 The_Rocks Upper_Keys Nearshore -126 34 Druffel_&_Linick_1978 LJ4165 The_Rocks Upper_Keys Nearshore -89 43 Druffel_&_Linick_1978 LJ4278 The_Rocks Upper_Keys Nearshore -95 34 Druffel_&_Linick_1978 LJ4236 The_Rocks Upper_Keys Nearshore -161 51 Druffel_&_Linick_1978 LJ4340 The_Rocks Upper_Keys Nearshore -101 34 Druffel_&_Linick_1978 LJ4185 The_Rocks Upper_Keys Nearshore -153 59 Druffel_&_Linick_1978 LJ4343 The_Rocks Upper_Keys Nearshore -139 59 Druffel_&_Linick_1978 LJ4233 The_Rocks Upper_Keys Nearshore -133 34 Druffel_&_Linick_1978 LJ4284 The_Rocks Upper_Keys Nearshore -137 34 Druffel_&_Linick_1978 LJ4194 The_Rocks Upper_Keys Nearshore -165 51 Druffel_&_Linick_1978 LJ4926 The_Rocks Upper_Keys Nearshore -142 25 Druffel,_E.R.M._1982 LJ4924 The_Rocks Upper_Keys Nearshore -181 25 Druffel,_E.R.M._1982 LJ4927 The_Rocks Upper_Keys Nearshore -141 42 Druffel,_E.R.M._1982 LJ4925 The_Rocks Upper_Keys Nearshore -164 34 Druffel,_E.R.M._1982 LJ4930 The_Rocks Upper_Keys Nearshore -172 34 Druffel,_E.R.M._1982 LJ4928 The_Rocks Upper_Keys Nearshore -195 42 Druffel,_E.R.M._1982 LJ4929 The_Rocks Upper_Keys Nearshore -152 42 Druffel,_E.R.M._1982 LJ4740 The_Rocks Upper_Keys Nearshore -177 34 Druffel,_E.R.M._1982 LJ4889 The_Rocks Upper_Keys Nearshore -187 34 Druffel,_E.R.M._1982 LJ4893 The_Rocks Upper_Keys Nearshore -172 34 Druffel,_E.R.M._1982 LJ4742 The_Rocks Upper_Keys Nearshore -149 42 Druffel,_E.R.M._1982 LJ4786 The_Rocks Upper_Keys Nearshore -124 25 Druffel,_E.R.M._1982 849 LJ4738 The_Rocks Upper_Keys Nearshore -158 42 Druffel,_E.R.M._1982 LJ4913 The_Rocks Upper_Keys Nearshore -121 34 Druffel,_E.R.M._1982 LJ4197 The_Rocks Upper_Keys Nearshore -177 51 Druffel,_E.R.M._1982 LJ4912 The_Rocks Upper_Keys Nearshore -117 25 Druffel,_E.R.M._1982 LJ4737 The_Rocks Upper_Keys Nearshore -183 25 Druffel,_E.R.M._1982 LJ4741 The_Rocks Upper_Keys Nearshore -163 34 Druffel,_E.R.M._1982 LJ4265 The_Rocks Upper_Keys Nearshore -196 25 Druffel,_E.R.M._1982 LJ4782 The_Rocks Upper_Keys Nearshore -102 25 Druffel,_E.R.M._1982 LJ4775 The_Rocks Upper_Keys Nearshore -117 34 Druffel,_E.R.M._1982 LJ4739 The_Rocks Upper_Keys Nearshore -132 25 Druffel,_E.R.M._1982 LJ4408 The_Rocks Upper_Keys Nearshore -174 50 Druffel,_E.R.M._1982 LJ4408 The_Rocks Upper_Keys Nearshore -173 50 Druffel,_E.R.M._1982 LJ4770 The_Rocks Upper_Keys Nearshore -105 34 Druffel,_E.R.M._1982 LJ4784 The_Rocks Upper_Keys Nearshore -136 25 Druffel,_E.R.M._1982 LJ4235 The_Rocks Upper_Keys Nearshore -135 34 Druffel,_E.R.M._1982 LJ4777 The_Rocks Upper_Keys Nearshore -100 34 Druffel,_E.R.M._1982 LJ4231 The_Rocks Upper_Keys Nearshore -184 59 Druffel,_E.R.M._1982 LJ4794 The_Rocks Upper_Keys Nearshore -141 25 Druffel,_E.R.M._1982 LJ4286 The_Rocks Upper_Keys Nearshore -140 59 Druffel,_E.R.M._1982 LJ4752 The_Rocks Upper_Keys Nearshore -190 34 Druffel,_E.R.M._1982 LJ4833 The_Rocks Upper_Keys Nearshore -188 67 Druffel,_E.R.M._1982 LJ4192 The_Rocks Upper_Keys Nearshore -111 59 Druffel,_E.R.M._1982 LJ4783 The_Rocks Upper_Keys Nearshore -93 25 Druffel,_E.R.M._1982 LJ4773 The_Rocks Upper_Keys Nearshore -117 34 Druffel,_E.R.M._1982 LJ4282 The_Rocks Upper_Keys Nearshore -158 42 Druffel,_E.R.M._1982 LJ4792 The_Rocks Upper_Keys Nearshore -198 25 Druffel,_E.R.M._1982 LJ4237 The_Rocks Upper_Keys Nearshore -145 59 Druffel,_E.R.M._1982 LJ4750 The_Rocks Upper_Keys Nearshore -212 25 Druffel,_E.R.M._1982 LJ4287 The_Rocks Upper_Keys Nearshore -147 25 Druffel,_E.R.M._1982 LJ4751 The_Rocks Upper_Keys Nearshore -121 34 Druffel,_E.R.M._1982 LJ4778 The_Rocks Upper_Keys Nearshore -161 34 Druffel,_E.R.M._1982 LJ4238 The_Rocks Upper_Keys Nearshore -153 25 Druffel,_E.R.M._1982 LJ4890 The_Rocks Upper_Keys Nearshore -153 42 Druffel,_E.R.M._1982 LJ4284 The_Rocks Upper_Keys Nearshore -255 41 Druffel,_E.R.M._1982 LJ4785 The_Rocks Upper_Keys Nearshore -104 25 Druffel,_E.R.M._1982 LJ4892 The_Rocks Upper_Keys Nearshore -180 42 Druffel,_E.R.M._1982 LJ4793 The_Rocks Upper_Keys Nearshore -140 34 Druffel,_E.R.M._1982 LJ4780 The_Rocks Upper_Keys Nearshore -55 34 Druffel,_E.R.M._1982 850 LJ4772 The_Rocks Upper_Keys Nearshore -83 25 Druffel,_E.R.M._1982 LJ4429 The_Rocks Upper_Keys Nearshore -142 34 Druffel,_E.R.M._1982 LJ4832 The_Rocks Upper_Keys Nearshore -185 34 Druffel,_E.R.M._1982 LJ4894 The_Rocks Upper_Keys Nearshore -119 42 Druffel,_E.R.M._1982 LJ4831 The_Rocks Upper_Keys Nearshore -120 34 Druffel,_E.R.M._1982 LJ4428 The_Rocks Upper_Keys Nearshore -146 25 Druffel,_E.R.M._1982 LJ4891 The_Rocks Upper_Keys Nearshore -88 34 Druffel,_E.R.M._1982 LJ4430 The_Rocks Upper_Keys Nearshore -136 25 Druffel,_E.R.M._1982 LJ4406 The_Rocks Upper_Keys Nearshore -131 34 Druffel,_E.R.M._1982 LJ4431 The_Rocks Upper_Keys Nearshore -160 25 Druffel,_E.R.M._1982 LJ4404 The_Rocks Upper_Keys Nearshore -197 25 Druffel,_E.R.M._1982 LJ4409 The_Rocks Upper_Keys Nearshore -176 25 Druffel,_E.R.M._1982 LJ4432 The_Rocks Upper_Keys Nearshore -146 25 Druffel,_E.R.M._1982 UGAMS- 27881.1 Southwestern_Florida ? ? 7 61 Hadden,_Schwadron_2019 UGAMS- 27881.2 Southwestern_Florida ? ? -13 61 Hadden,_Schwadron_2019 UGAMS- 27881.3 Southwestern_Florida ? ? -63 61 Hadden,_Schwadron_2019 CAMS-151940 Upper_Keys Upper_Keys Nearshore -229 36 Toth_et_al._2017 CAMS-151942 Upper_Keys Upper_Keys Nearshore -277 31 Toth_et_al._2017 CAMS-168534 Upper_Keys Upper_Keys Nearshore -205 27 Toth_et_al._2017 CAMS-172457 Upper_Keys Upper_Keys Nearshore -177 26 Toth_et_al._2017 CAMS-171489 Upper_Keys Upper_Keys Nearshore -194 26 Toth_et_al._2017 CAMS-168532 Upper_Keys Upper_Keys Nearshore -262 26 Toth_et_al._2017 CAMS-168533 Upper_Keys Upper_Keys Nearshore -78 26 Toth_et_al._2017 CAMS-168538 Upper_Keys Upper_Keys Nearshore -149 27 Toth_et_al._2017 CAMS-151943 Upper_Keys Upper_Keys Nearshore -163 31 Toth_et_al._2017 CAMS-168528 Upper_Keys Upper_Keys Nearshore -213 27 Toth_et_al._2017 CAMS-151938 Upper_Keys Upper_Keys Nearshore -126 32 Toth_et_al._2017 CAMS-169545 Upper_Keys Upper_Keys Nearshore -174 32 Toth_et_al._2017 CAMS-171037 Upper_Keys Upper_Keys Nearshore -295 28 Toth_et_al._2017 Beta-173037 Upper_Keys Upper_Keys Nearshore -116 71 Toth_et_al._2017 UGAMS-40210 Loggerhead_Key_Light Dry_Tortugas_National_Park OpenOcean -137 18 this_publication D-AMS-015389 Loggerhead_Key_Light Dry_Tortugas_National_Park OpenOcean -91 21 this_publication D-AMS-015390 Looe_Key_Reef Lower_Keys Nearshore -117 21 this_publication D-AMS-015391 Key_West,_Sand_Key Lower_Keys Nearshore -192 20 this_publication 851 D-AMS-015392 Loggerhead_Key_Light Dry_Tortugas_National_Park OpenOcean -138 21 this_publication D-AMS-015393 Loggerhead_Key_Light Dry_Tortugas_National_Park OpenOcean -160 22 this_publication UGAMS-40207 Plantation_Key,_Conch_Reef Upper_Keys Nearshore -192 18 this_publication D-AMS-015396 Plantation_Key,_Conch_Reef Upper_Keys Nearshore -257 21 this_publication UGAMS-40206 Lower_Matecumbe_Key Upper_Keys Nearshore -176 19 this_publication D-AMS-015397 Lower_Matecumbe_Key Upper_Keys Nearshore -121 22 this_publication UGAMS-40211 Plantation_Key,_Conch_Reef Upper_Keys Nearshore -88 18 this_publication D-AMS-015398 Plantation_Key,_Conch_Reef Upper_Keys Nearshore -34 22 this_publication 852 R markdown for ΔR calculations Supplementary analyses for Napolitano et al. ‘New MarineR eservoir Corrections for the Florida Keys’ Introduction This supplementary document contains the code used to calculate the error-weighted pooled means and uncertainties presented in the main text, as well as code necessary to reproduce Figures. Load Packages library(here) library(ggplot2) library(gridExtra) Set Working Directory setwd(here()) Pooled Mean and Chi-Square Function The function below calculates the error-weighted pooled means and uncertainty as described in DiNapoli et al. 2020. Also executes chi-square tests and pooled means with external variance added. 853 w_mean_fun <- function (df, delta_r, delta_r_error){ pooled_mean <- sum(delta_r/(delta_r_error^2))/sum(1/(delta_r_error^2)) #error weighted pooled mean weighted_uncertainty <- sqrt(1/sum(1/(delta_r_error^2)))#pooled sd t_chi_sq <- sum(((delta_r-pooled_mean)^2)/(delta_r_error^2)) #t value degree_freedom <- nrow(df)-1 t_crit <- qchisq(p=0.05, df=degree_freedom, lower.tail=F) normalized_chi_sq <- t_chi_sq/(nrow(df)-1) est_se <- weighted_uncertainty*sqrt(nrow(df)) #estimated standard error ext_var <- sqrt((sd(delta_r)^2)-(est_se^2)) #external variance T_uncertainty <- sqrt((weighted_uncertainty^2)+(ext_var^2)) #delta r with external variance if(normalized_chi_sq > 1){ outliers <- "outlier(s)" } else { outliers <- "no outliers" } return(data.frame(deparse(substitute(df)), pooled_mean, weighted_uncertainty, t_chi_sq, degree_freedom, t_crit, normalized_chi_sq, outliers, T_uncertainty)) } 854 Load Delta R’s Load Delta R values. all_delta_rs <- read.csv("Supplemental_DeltaR_Table.csv") Calculate pooled means for nearshore and open-ocean locations in the Keys TI <- subset(all_delta_rs, Terrestrial_Influence !="?") #terrestriali nfluence for Keys TI_s <- split(TI, TI$Terrestrial_Influence) #split based on terrestriali nfluence attach(TI_s) NS <- w_mean_fun(Nearshore, Nearshore$deltaR, Nearshore$deltar_error) #pooledm ean for nearshore locations NS ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq# # 1 Nearshore -166.4076 2.148214 786.2193 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 174 205.7786 4.518502 outlier(s) 48.20992 OO <- w_mean_fun(OpenOcean, OpenOcean$deltaR, OpenOcean$deltar_error) #pooled mean for open-ocean locations OO ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 OpenOcean -190.1344 5.673323 170.186 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty# # 1 24 36.41503 7.091082 outlier(s) 78.17629 #boxplot of variability by terrestrial influence p1 <- ggplot(TI, aes(x=Terrestrial_Influence, y=deltaR))+ geom_boxplot() + labs(x="", y="Delta R") p1 855 # #Terrestrial Influence figure # tiff("Terrestrial_Influence.tiff", width=5, height=4, compression="lzw", units="in", res=2400) # p1 # dev.off() detach(TI_s) Calculate pooled means for different geographic locations in the region FKRT_g <- subset(all_delta_rs, FKRT_zone!="?") FRKT_g_s <- split(FKRT_g, FKRT_g$FKRT_zone) attach(FRKT_g_s) u_keys <- w_mean_fun(Upper_Keys, Upper_Keys$deltaR, Upper_Keys$deltar_error) #pooled mean for upper keys u_keys ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 Upper_Keys -166.8064 2.285565 517.5299 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 154 183.9586 3.360584 outlier(s) 38.53406 856 m_keys <- w_mean_fun(Middle_Keys, Middle_Keys$deltaR, Middle_Keys$deltar_error) #pooled mean for middle keysm _keys ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 Middle_Keys -96.26054 12.06223 177.5146 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 5 11.0705 35.50293 outlier(s) 155.5287 l_keys <- w_mean_fun(Lower_Keys, Lower_Keys$deltaR, Lower_Keys$deltar_error) #pooled mean for lower keys l_keys ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 Lower_Keys -179.3494 8.810671 32.79863 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 7 14.06714 4.685519 outlier(s) 49.8399 d_tort <- w_mean_fun(Dry_Tortugas_National_Park, Dry_Tortugas_National_Park$deltaR, Dry_Tortugas_National_Park$deltar_error) #pooled mean for dry tortugas d_tort ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 Dry_Tortugas_National_Park -189.818 6.269805 151.3749 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 20 31.41043 7.568746 outlier(s) 82.0759 b_nat <- w_mean_fun(Biscayne_National_Park, Biscayne_National_Park$deltaR, Biscayne_National_Park$deltar_error) #pooled mean for biscayne bay b_nat ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 Biscayne_National_Park -209.8177 13.47568 11.99168 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty# # 1 5 11.0705 2.398336 outlier(s) 41.14401 marq <- w_mean_fun(Marquesas, Marquesas$deltaR, Marquesas$deltar_error) #pooled mean for marquesas marq ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 Marquesas -191.5639 13.32704 18.79699 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 3 7.814728 6.265664 outlier(s) 62.56799 #boxplot of variability by geographic location p2 <- ggplot(FKRT_g, aes(x=FKRT_zone, y=deltaR))+ geom_boxplot() + labs(x='', y='Delta R') p2 857 # #FKRT zone figure # tiff("FKRT_zone.tiff", width=12, height=4, compression="lzw", units="in", res=2400) # p2 # dev.off() detach(FRKT_g_s) Pooled means for Southwestern Florida and Apalachicola Bay SW_FL <- subset(all_delta_rs, Region=="Southwestern_Florida") SW_FL_m <- w_mean_fun(SW_FL, SW_FL$deltaR, SW_FL$deltar_error) SW_FL_m ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 SW_F 32.88892 16.37607 99.25841 ## degree_freedom t_Lc rit normalized_chi_sq outliers T_uncertainty ## 1 13 22.36203 7.635262 outlier(s) 158.4278 ACB <- subset(all_delta_rs, Region=="Apalachicola_Bay") ACB_m <- w_mean_fun(ACB, ACB$deltaR, ACB$deltar_error) ACB_m ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 AC 5.179331 6.289089 1107.358 ## degree_freedom t_criBt n ormalized_chi_sq outliers T_uncertainty ## 1 17 27.58711 65.13868 outlier(s) 185.4008 Pooled means for different islands within the Florida Keys 858 #calculate pooled mean for Loggerhead Key LK <- subset(all_delta_rs, Region=="Loggerhead_Key_Light") LK_m <- w_mean_fun(LK, LK$deltaR, LK$deltar_error) LK_m ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 L -131.3722 10.15991 5.586601 ## degree_freedom t_crit Kno rmalized_chi_sq outliers T_uncertainty ## 1 3 7.814728 1.8622 outlier(s) 23.06502 #calculate pooled mean for Plantation Key PK <- subset(all_delta_rs, Region=="Plantation_Key,_Conch_Reef") PK_m <- w_mean_fun(PK, PK$deltaR, PK$deltar_error) PK_m ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 P -144.4066 9.755968 70.74304 ## degree_freedom t_critK n ormalized_chi_sq outliers T_uncertainty ## 1 3 7.814728 23.58101 outlier(s) 99.0726 #calculate pooled mean for Lower Matecumbe Key LMK <- subset(all_delta_rs, Region=="Lower_Matecumbe_Key") LMK_m <- w_mean_fun(LMK, LMK$deltaR, LMK$deltar_error) LMK_m ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 LM -152.503 14.37964 3.579882 ## degree_freedom t_crKit normalized_chi_sq outliers T_uncertainty ## 1 1 3.841459 3.579882 outlier(s) 36.13483 Pooled mean for the Clupper site combining measurements fromP lantation Key and Lower Matecumbe Key clupper <- subset(all_delta_rs, Region %in% c("Plantation_Key,_Conch_Reef","Lower_Matecumbe_Key")) clupper_m <- w_mean_fun(clupper, clupper$deltaR, clupper$deltar_error) clupper_m ## deparse.substitute.df.. pooled_mean weighted_uncertainty t_chi_sq ## 1 clupper -146.9586 8.073256 74.54001 ## degree_freedom t_crit normalized_chi_sq outliers T_uncertainty ## 1 5 11.0705 14.908 outlier(s) 77.7559 859 SQL Code for all OxCal models from the Clupper Site, Upper Matecumbe Key, Florida Associated dates from Test Pit 4 with Plantation Key/Lower Matecumbe Key ΔR Options() { kIterations=1000; }; // Delta_R values updated for Marine20 Plot() { Sequence() { Boundary("End"); Phase("TP4 Layer 1 and 2 2") { Curve("IntCal20","intcal20.14c"); R_Date("UGAMS 52040", 1270, 20); R_Date("UGAMS 52038", 1270, 20); R_Date("UGAMS 52039", 1180, 20); Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-147,78); R_Date("UGAMS-52370", 1280, 20); R_Date("UGAMS 52369", 1260, 20); 860 R_Date("UGAMS-52368", 1340, 20); }; Boundary("Start"); }; }; Associated dates from Test Pit 4 with Florida Keys ΔR Options() { kIterations=1000; }; // Delta_R values updated for Marine20 Plot() { Sequence() { Boundary("End"); Phase("TP4 Layer 1 and 2 2") { Curve("IntCal20","intcal20.14c"); R_Date("UGAMS 52040", 1270, 20); R_Date("UGAMS 52038", 1270, 20); R_Date("UGAMS 52039", 1180, 20); 861 Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-169,55); R_Date("UGAMS-52370", 1280, 20); R_Date("UGAMS 52369", 1260, 20); R_Date("UGAMS-52368", 1340, 20); }; Boundary("Start"); }; }; Associated dates from Test Pit 4 with Upper Keys ΔR Options() { kIterations=1000; }; // Delta_R values updated for Marine20 Plot() { Sequence() { Boundary("End"); Phase("TP4 Layer 1 and 2 2") { 862 Curve("IntCal20","intcal20.14c"); R_Date("UGAMS 52040", 1270, 20); R_Date("UGAMS 52038", 1270, 20); R_Date("UGAMS 52039", 1180, 20); Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-167,39); R_Date("UGAMS-52370", 1280, 20); R_Date("UGAMS 52369", 1260, 20); R_Date("UGAMS-52368", 1340, 20); }; Boundary("Start"); }; }; All radiocarbon dates with Plantation Key/Lower Matecumbe Key ΔR // Delta_R values updated for Marine20 Options() { kIterations=1000; }; // Delta_R values updated for Marine20 Plot() { 863 Sequence() { Boundary("End"); Phase("TP4 Layer 1 and 2 2") { Curve("IntCal20","intcal20.14c"); R_Date("UGAMS 52040", 1270, 20); R_Date("UGAMS 52038", 1270, 20); R_Date("UGAMS 52039", 1180, 20); Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-147,78); R_Date("UGAMS-52370", 1280, 20); R_Date("UGAMS 52369", 1260, 20); R_Date("UGAMS-52368", 1340, 20); }; Boundary("Start"); }; }; Plot() { Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-147,78); R_Date("D-AMS 013325", 1323, 21); 864 R_Date("Beta-410911", 1280, 30); R_Date("D-AMS 013326", 1278, 27); R_Date("D-AMS 013327", 1463, 22); }; Table 2. Results of single-phase Bayesian model of stratigraphically associated dates in Test Pit 4, Clupper site, Upper Matecumbe Key. Name Unmodelled (BP) Modelled (BP) from to % from to % Sequence Boundary End 1600 1150 95.449973 Phase TP4 Layer 1 and 2 2 Curve IntCal20 R_Date UGAMS 52040 1280 1150 95.449973 1280 1130 95.449974 R_Date UGAMS 52038 1280 1150 95.449973 1280 1130 95.449974 R_Date UGAMS 52039 1180 1005 95.449974 1180 1005 95.449974 Curve Marine20 - Delta_R LocalMarine -304 10 95.449974 425.5 -75 95.449974 R_Date UGAMS- 52370 1020 625 95.449974 1175 710 95.449974 R_Date UGAMS 52369 1000 610 95.449974 1170 700 95.449974 R_Date UGAMS- 52368 1075 665 95.449974 1220 760 95.449974 Boundary Start 1170 450 95.449974 Table 3. Model specification for single-phase Bayesian model of stratigraphically associated dates in Test Pit 4, Clupper site, Upper Matecumbe Key Parameter Name Type z mu sigma llim ulim - 0 intcal20 NoOp 53054.5 1960.5 1 NoOp NaN NaN 2 End Boundary 630.204 127.451 -549.5 900.5 3 NoOp NaN NaN - 4 IntCal20 Curve 53054.5 1960.5 UGAMS 5 52040 R_Date 735.459 34.752 640.5 900.5 UGAMS 6 52038 R_Date 735.4 34.6897 640.5 900.5 UGAMS 7 52039 R_Date 843.787 41.4494 665.5 1005.5 - 8 Marine20 Curve 53054.5 1965.5 - 9 LocalMarine Delta_R 249.518 93.8454 -575 290 UGAMS- 10 52370 R_Date 1008.5 122.508 620.5 1650.5 865 UGAMS 11 52369 R_Date 1020.86 123.908 635.5 1670.5 UGAMS- 12 52368 R_Date 963.358 118.854 560.5 1575.5 13 Start Boundary 1138.78 198.635 665.5 2780.5 Table 4. Results of single-phase Bayesian model with the error weighted average ΔR from the Upper Keys. Name Unmodelled (BC/AD) Modelled (BC/AD) from to % from to % Sequence Boundary End 295 770 95.449973 Phase TP4 Layer 1 and 2 2 Curve IntCal20 R_Date UGAMS 52040 670 800 95.449973 670 820 95.449973 R_Date UGAMS 52038 670 800 95.449973 670 820 95.449974 R_Date UGAMS 52039 770 945 95.449974 770 945 95.449973 Curve Marine20 - - - Delta_R LocalMarine 245.5 88.5 95.449974 -266 102.5 95.449974 R_Date UGAMS- 52370 980 1275 95.449974 925 1235 95.449974 R_Date UGAMS 52369 1000 1285 95.449974 950 1255 95.449974 R_Date UGAMS- 52368 900 1220 95.449974 880 1200 95.449974 Boundary Start 970 1590 95.449974 Table 5. Model specification for single-phase Bayesian model with error weighted average ΔR from the Upper Keys. Parameter Name Type z mu sigma llim ulim - 0 intcal20 NoOp 53054.5 1960.5 1 NoOp NaN NaN 2 End Boundary 607.554 135.02 -229.5 900.5 3 NoOp NaN NaN - 4 IntCal20 Curve 53054.5 1960.5 UGAMS 5 52040 R_Date 732.419 33.9469 640.5 900.5 UGAMS 6 52038 R_Date 732.432 33.9192 640.5 900.5 UGAMS 7 52039 R_Date 846.428 41.7501 665.5 1005.5 - 8 Marine20 Curve 53054.5 1965.5 - 9 LocalMarine Delta_R 183.832 40.35 -391 64 UGAMS- 10 52370 R_Date 1085.6 74.2892 685.5 1495.5 UGAMS 11 52369 R_Date 1099.13 73.2906 700.5 1510.5 UGAMS- 12 52368 R_Date 1036.19 78.7004 650.5 1455.5 866 13 Start Boundary 1236.62 166.975 700.5 2380.5 Figure 1. Plot of single-phase Bayesian model with error weighted average ΔR from the Upper Keys Table 6. Results of single-phase Bayesian model with error weighted average ΔR from the Florida Keys Name Unmodelled (BC/AD) Modelled (BC/AD) from to % from to % Sequence Boundary End 320 775 95.449974 Phase TP4 Layer 1 and 2 2 Curve IntCal20 R_Date UGAMS 52040 670 800 95.449973 670 820 95.449974 R_Date UGAMS 52038 670 800 95.449973 670 820 95.449974 R_Date UGAMS 52039 770 945 95.449974 770 945 95.449974 Curve Marine20 - Delta_R LocalMarine -279 -59 95.449974 -335 92.5 95.449974 R_Date UGAMS- 52370 955 1290 95.449974 865 1240 95.449974 R_Date UGAMS 52369 975 1300 95.449974 885 1255 95.449974 R_Date UGAMS- 52368 880 1240 95.449974 810 1190 95.449974 867 Boundary Start 895 1565 95.449974 Table 7. Model specification for single-phase Bayesian model with error weighted average ΔR from the Florida Keys Parameter Name Type z mu sigma llim ulim - 0 intcal20 NoOp 53054.5 1960.5 1 NoOp NaN NaN 2 End Boundary 614.364 133.315 -304.5 900.5 3 NoOp NaN NaN - 4 IntCal20 Curve 53054.5 1960.5 UGAMS 5 52040 R_Date 733.165 34.163 640.5 900.5 UGAMS 6 52038 R_Date 733.213 34.0525 640.5 900.5 UGAMS 7 52039 R_Date 846.079 41.5895 665.5 1005.5 - 8 Marine20 Curve 53054.5 1965.5 - 9 LocalMarine Delta_R 209.709 61.5387 -474 146 UGAMS- 10 52370 R_Date 1056 92.2311 655.5 1530.5 UGAMS 11 52369 R_Date 1069.72 92.1109 665.5 1545.5 UGAMS- 12 52368 R_Date 1007.09 93.5504 620.5 1480.5 13 Start Boundary 1201.32 177.959 665.5 2470.5 Figure 1. Plot of single-phase Bayesian model with error weighted average ΔR from the Florida Keys 868 APPENDIX C SUPPLEMENTAL MATERIAL FOR CHAPTER IV Table 1. Results of Bayesian modeled stratgraphically associated radiocarbon dates Indices Amodel 121.6 Name Unmodelled (BP) Modelled (BP) Aoverall 115 from to % mu sigma from to % mu sigma Acomb A L P C Curve Marine20 Delta_R - - LocalMarine1 -300 300 95.449974 0 171.464 234.6 268.2 95.449974 0.751962 128.043 100 99.1 Sequence Boundary Yap Start 2655 1755 95.449974 2130 290 97.6 Phase Layer 5 Curve =LocalMarine1 R_Date YP-1 2430 1525 95.449974 1985 225 2285 1635 95.449974 1945 160 113.6 99.6 Curve IntCal20 R_Date YP-8 1940 1745 95.449974 1860 45 1940 1745 95.449974 1860 45 99.9 99.9 Boundary Transition 5/4 1920 1340 95.449974 1670 155 99.6 Phase Layer 4 Curve =LocalMarine1 R_Date D-AMS 019908 2030 1170 95.449974 1590 215 1830 1260 95.449974 1555 145 114.8 99.7 R_Date D-AMS 019907 1790 955 95.449974 1380 205 1805 1210 95.449974 1505 150 99.1 99.6 Boundary Transition 4/3 1775 1165 95.449974 1465 155 99.6 Phase Layer 3 Curve =LocalMarine1 R_Date D-AMS 019906 1920 1090 95.449974 1500 205 1730 1125 95.449974 1430 150 109.1 99.6 Boundary Yap End 1770 720 95.449974 1290 295 97.4 869 Table 2. Model specification for Bayesian modeled stratgraphically associated radiocarbon dates Parameter Name Type z mu sigma llim ulim - 0 intcal20 NoOp 53054.5 1960.5 - 1 Charcoal Outlier_Model 158.195 181.909 -1010 20 - 2 Sum 1.87337 2.1722 -10.1 0.2 3 U 1.92532 0.0598321 0 2 - 4 Marine20 Curve 53054.5 1965.5 - 5 LocalMarine1 Delta_R 130.823 70.5603 -300 300 6 NoOp NaN NaN 7 Yap Start Boundary -384.13 165.318 -3029.5 320.5 8 NoOp NaN NaN D-AMS 10 019909 R_Date -248.92 122.962 -1339.5 1045.5 - 11 YP-1 R_Date 183.542 114.219 -1179.5 1090.5 - 12 IntCal20 Curve 53054.5 1960.5 - 13 YP-9 R_Date 209.666 110.137 -3029.5 1440.5 14 YP-8 R_Date 77.1667 42.8895 -159.5 320.5 - 15 YP-10 R_Date 65.3257 94.9222 -3029.5 1440.5 16 Transition 5/4 Boundary 170.09 64.2624 -159.5 1440.5 17 NoOp NaN NaN D-AMS 19 019908 R_Date 253.142 74.4024 -159.5 1440.5 - 20 IntCal20 Curve 53054.5 1960.5 21 YP-6 R_Date 237.213 61.9576 -159.5 1480.5 22 YP-7 R_Date 254.394 59.3968 -159.5 1480.5 D-AMS 24 019907 R_Date 297.855 86.4836 -159.5 1480.5 25 Transition 4/3 Boundary 337.553 92.1077 -159.5 1480.5 26 NoOp NaN NaN D-AMS 28 019906 R_Date 389.204 93.1476 -159.5 1480.5 29 Transition 3/2 Boundary 550.559 146.909 -159.5 1965.5 870 30 NoOp NaN NaN D-AMS 32 019905 R_Date 910.147 105.194 15.5 1965.5 - 33 IntCal20 Curve 53054.5 1960.5 34 YP-3 R_Date 1364.44 58.9143 -159.5 1965.5 35 YP-4 R_Date 750.142 116.092 -159.5 1965.5 D-AMS 37 019904 R_Date 1475.41 61.7578 1015.5 1965.5 38 Transition 2/1 Boundary 1489.57 62.8186 1015.5 1965.5 39 NoOp NaN NaN D-AMS 41 019903 R_Date 1500.45 64.6954 1015.5 1965.5 D-AMS 42 019902 R_Date 1520.25 72.1426 1015.5 1965.5 - 43 IntCal20 Curve 53054.5 1960.5 44 YP-2 R_Date 1513.68 71.7963 1015.5 2760.5 45 Yap End Boundary 1553.25 102.147 1015.5 2760.5 871 Supplemental text Bayesian modeled ΔR SQL Code // Delta_R values updated for Marine20 Options() { kIterations=1000; }; Plot() { Curve("Marine20","marine20.14c"); Delta_R("LocalMarine1",U(-300,300)); Sequence() { Boundary("Yap Start"); Phase("Layer 5") { Curve("=LocalMarine1"); R_Date("YP-1", 2500, 30); Curve("IntCal20","intcal20.14c"); R_Date("YP-8", 1939, 29); }; Boundary("Transition 5/4"); 872 Phase("Layer 4") { Curve("=LocalMarine1"); R_Date("D-AMS 019908", 2161, 57); R_Date("D-AMS 019907", 1969, 57); }; Boundary("Transition 4/3"); Phase("Layer 3") { Curve("=LocalMarine1"); R_Date("D-AMS 019906", 2078, 37); }; Boundary("Yap End"); }; }; SQL Code for Bayesian modeled colonization estimate with Saipan ΔR // Delta_R values updated for Marine20 Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); Sequence() { 873 Boundary("Yap Start"); Phase() { Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 019909", 2592, 58); R_Date("YP-1", 2500, 30); R_Date("D-AMS 026548", 2344, 28); Curve("IntCal20","intcal20.14c"); R_Date("YP-9", 2298, 30) { Outlier("Charcoal", 1); }; R_Date("S-ANU-57912", 2239, 22) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 019908", 2161, 57); R_Date("D-AMS 038879", 2123, 23); Curve("IntCal20","intcal20.14c"); R_Date("YP-10", 2122, 35) 874 { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 026457", 2114, 26); R_Date("D-AMS 019906", 2078, 37); R_Date("D-AMS 038880", 2059, 24); R_Date("D-AMS 038877", 2055, 22); R_Date("D-AMS 038878", 1995, 25); R_Date("D-AMS 019907", 1969, 57); Curve("IntCal20","intcal20.14c"); R_Date("S-ANU-57911", 1946, 22) { Outlier("Charcoal", 1); }; R_Date("YP-8", 1939, 29) { Outlier("Charcoal", 1); }; R_Date("S-ANU-57910", 1923, 22) { Outlier("Charcoal", 1); 875 }; R_Date("NZ 6668", 1905, 65) { Outlier("Charcoal", 1); }; R_Date("YP-6", 1901, 30) { Outlier("Charcoal", 1); }; R_Date("YP-7", 1844, 29) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 038871", 1716, 22); R_Date("D-AMS 038874", 1541, 22); R_Date("D-AMS 019905", 1520, 43); R_Date("D-AMS 038873", 1519, 22); Curve("IntCal20","intcal20.14c"); R_Date("YP-4", 1467, 29) { Outlier("Charcoal", 1); 876 }; R_Date("AA-21211", 1456, 40) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 019903", 1175, 35); Curve("IntCal20","intcal20.14c"); R_Date("YP-2", 1107, 35) { Outlier("Charcoal", 1); }; R_Date("AA-21208", 1037, 39) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 019902", 797, 40); Curve("IntCal20","intcal20.14c"); R_Date("YP-3", 704, 29) { 877 Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 019904", 621, 30); R_Date("D-AMS 038872", 592, 22); Curve("IntCal20","intcal20.14c"); R_Date("NZ 6625", 507, 133) { Outlier("Charcoal", 1); }; R_Date("AA-21209", 504, 38) { Outlier("Charcoal", 1); }; R_Date("NZ 6651", 469, 66) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",218,57); R_Date("D-AMS 038875", 441, 21); R_Date("D-AMS 038876", 430, 19); 878 Curve("IntCal20","intcal20.14c"); R_Date("NZ 6680", 364, 54) { Outlier("Charcoal", 1); }; R_Date("Crane M-631", 320, 200) { Outlier("Charcoal", 1); }; R_Date("AA-21210", 317, 38) { Outlier("Charcoal", 1); }; }; Boundary("Yap End"); }; }; SQL Code for Bayesian modeled colonization estimate // Delta_R values updated for Marine20 Plot() { Outlier_Model("Charcoal",Exp(1,-10,0),U(0,2),"t"); 879 Sequence() { Boundary("Yap Start"); Phase() { Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 019909", 2592, 58); R_Date("YP-1", 2500, 30); R_Date("D-AMS 026548", 2344, 28); Curve("IntCal20","intcal20.14c"); R_Date("YP-9", 2298, 30) { Outlier("Charcoal", 1); }; R_Date("S-ANU-57912", 2239, 22); Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 019908", 2161, 57); R_Date("D-AMS 038879", 2123, 23); Curve("IntCal20","intcal20.14c"); R_Date("YP-10", 2122, 35) { 880 Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 026457", 2114, 26); R_Date("D-AMS 019906", 2078, 37); R_Date("D-AMS 038880", 2059, 24); R_Date("D-AMS 038877", 2055, 22); R_Date("D-AMS 038878", 1995, 25); R_Date("D-AMS 019907", 1969, 57); Curve("IntCal20","intcal20.14c"); R_Date("S-ANU-57911", 1946, 22) { Outlier("Charcoal", 1); }; R_Date("YP-8", 1939, 29); R_Date("S-ANU-57910", 1923, 22) { Outlier("Charcoal", 1); }; R_Date("NZ 6668", 1905, 65) { Outlier("Charcoal", 1); 881 }; R_Date("YP-6", 1901, 30) { Outlier("Charcoal", 1); }; R_Date("YP-7", 1844, 29) { Outlier("Charcoal", 1); }; Delta_R("LocalMarine",-1,128); R_Date("D-AMS 038871", 1716, 22); R_Date("D-AMS 038874", 1541, 22); R_Date("D-AMS 019905", 1520, 43); R_Date("D-AMS 038873", 1519, 22); Curve("IntCal20","intcal20.14c"); R_Date("YP-4", 1467, 29) { Outlier("Charcoal", 1); }; R_Date("AA-21211", 1456, 40) { Outlier("Charcoal", 1); }; 882 Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 019903", 1175, 35); Curve("IntCal20","intcal20.14c"); R_Date("YP-2", 1107, 35); R_Date("AA-21208", 1037, 39) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 019902", 797, 40); Curve("IntCal20","intcal20.14c"); R_Date("YP-3", 704, 29); Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 019904", 621, 30); R_Date("D-AMS 038872", 592, 22); Curve("IntCal20","intcal20.14c"); R_Date("NZ 6625", 507, 133) { Outlier("Charcoal", 1); }; 883 R_Date("AA-21209", 504, 38) { Outlier("Charcoal", 1); }; R_Date("NZ 6651", 469, 66) { Outlier("Charcoal", 1); }; Curve("Marine20","marine20.14c"); Delta_R("LocalMarine",-1,128); R_Date("D-AMS 038875", 441, 21); R_Date("D-AMS 038876", 430, 19); Curve("IntCal20","intcal20.14c"); R_Date("NZ 6680", 364, 54) { Outlier("Charcoal", 1); }; R_Date("AA-21210", 317, 38) { Outlier("Charcoal", 1); }; }; Boundary("Yap End"); 884 }; Before("Fais pottery") { R_Date("NUTA2167", 1794, 152); }; }; Table 3. Model specification for single-phase Bayesian modeled with Class 1 and 2 dates. Parameter Name Type z mu sigma llim ulim - 0 intcal20 NoOp 53054.5 1960.5 - 1 Charcoal Outlier_Model 27.4302 45.8888 -1010 20 - 2 Sum 1.05573 1.00038 -10.1 0.2 3 U 1.10299 0.584846 0 2 4 NoOp NaN NaN 5 Yap Start Boundary -344.7 78.7131 -4184.5 -89.5 6 NoOp NaN NaN - 7 Marine20 Curve 53054.5 1965.5 8 LocalMarine Delta_R 28.266 107.365 -689 701 D-AMS - 9 019909 R_Date 97.1031 150.795 -1109.5 795.5 10 YP-1 R_Date 4.4796 153.405 -919.5 855.5 D-AMS 11 026548 R_Date 194.285 149.661 -774.5 1030.5 - 12 IntCal20 Curve 53054.5 1960.5 - 13 YP-9 R_Date 262.587 75.2589 -4184.5 5040.5 S-ANU- - 14 57912 R_Date 260.168 43.7491 -414.5 -89.5 - 15 Marine20 Curve 53054.5 1965.5 - 16 LocalMarine Delta_R 14.6352 122.589 -689 701 D-AMS 17 019908 R_Date 356.3 167.961 -589.5 1260.5 D-AMS 18 038879 R_Date 401.804 155.173 -434.5 1250.5 - 19 IntCal20 Curve 53054.5 1960.5 - 20 YP-10 R_Date 113.176 80.6138 -4184.5 5040.5 - 21 Marine20 Curve 53054.5 1965.5 - 22 LocalMarine Delta_R 52.7101 121.547 -689 701 D-AMS 23 026457 R_Date 368.885 155.824 -424.5 1265.5 D-AMS 24 019906 R_Date 409.095 156.284 -409.5 1300.5 885 D-AMS 25 038880 R_Date 431.112 151.918 -389.5 1305.5 D-AMS 26 038877 R_Date 435.694 151.146 -389.5 1305.5 D-AMS 27 038878 R_Date 500.792 147.239 -349.5 1350.5 D-AMS 28 019907 R_Date 525.83 155.693 -364.5 1420.5 - 29 IntCal20 Curve 53054.5 1960.5 S-ANU- 30 57911 R_Date 106.85 58.2315 -4184.5 5040.5 31 YP-8 R_Date 90.0244 46.4997 -159.5 320.5 S-ANU- 32 57910 R_Date 140.71 63.6908 -4184.5 5040.5 33 NZ 6668 R_Date 154.423 92.6704 -4184.5 5040.5 34 YP-6 R_Date 171.422 63.7071 -4184.5 5040.5 35 YP-7 R_Date 223.543 62.6481 -4184.5 5040.5 - 36 LocalMarine Delta_R 70.3799 114.594 -689 701 D-AMS 37 038871 R_Date 269.286 130.972 -419.5 1040.5 D-AMS 38 038874 R_Date 456.345 119.697 -359.5 1235.5 D-AMS 39 019905 R_Date 471.838 123.514 -364.5 1280.5 D-AMS 40 038873 R_Date 473.571 118.734 -354.5 1265.5 - 41 IntCal20 Curve 53054.5 1960.5 42 YP-4 R_Date 632.35 51.0823 -4184.5 5040.5 43 AA-21211 R_Date 633.503 50.2169 -4184.5 5040.5 - 44 Marine20 Curve 53054.5 1965.5 - 45 LocalMarine Delta_R 7.47356 133.886 -689 701 D-AMS 46 019903 R_Date 1355.31 129.827 640.5 1965.5 - 47 IntCal20 Curve 53054.5 1960.5 48 YP-2 R_Date 938.904 42.8599 665.5 1170.5 49 AA-21208 R_Date 1034.07 69.8782 -4184.5 5040.5 - 50 Marine20 Curve 53054.5 1965.5 - 51 LocalMarine Delta_R 18.5533 111.216 -689 701 D-AMS 52 019902 R_Date 1667.17 121.393 1010.5 1965.5 - 53 IntCal20 Curve 53054.5 1960.5 54 YP-3 R_Date 1304 35.5564 1170.5 1420.5 - 55 Marine20 Curve 53054.5 1965.5 56 LocalMarine Delta_R -120.23 86.694 -689 701 D-AMS 57 019904 R_Date 1734.33 104.66 1210.5 1965.5 D-AMS 58 038872 R_Date 1755.68 100.251 1245.5 1965.5 - 59 IntCal20 Curve 53054.5 1960.5 60 NZ 6625 R_Date 1469.52 122.507 -4184.5 5040.5 61 AA-21209 R_Date 1443.81 52.7494 -4184.5 5040.5 62 NZ 6651 R_Date 1483.52 83.7363 -4184.5 5040.5 - 63 Marine20 Curve 53054.5 1965.5 886 - 64 LocalMarine Delta_R 241.111 75.4783 -689 701 D-AMS 65 038875 R_Date 1778.06 91.43 1325.5 1965.5 D-AMS 66 038876 R_Date 1784.52 89.9471 1335.5 1965.5 - 67 IntCal20 Curve 53054.5 1960.5 68 NZ 6680 R_Date 1569.78 72.443 -4184.5 5040.5 69 AA-21210 R_Date 1590.45 64.3481 -4184.5 5040.5 70 Yap End Boundary 1889 92.4888 1335.5 5040.5 71 NoOp NaN NaN 72 NUTA2167 R_Date 237.782 178.003 -814.5 1035.5 887 Figures 1. Plots of single phase Bayesian modeled Class 1 and 2 dates . 888 APPENDIX D SUPPLEMENTAL MATERIAL FOR CHAPTER V Table 1. Complete elemental analysis for glass beads from Chelechol ra Orrak. Catalog No. SiO2 Na2O MgO Al2O3 P2O5 Cl K2O CaO MnO Fe2O3 CuO SnO2 PbO Li Be B 4 75.57 0.78 0.18 0.46 0.35 0.03 15.63 6.63 0.08 0.16 0.02 0.00 0.05 7 0 47 5 40.56 0.11 0.08 0.46 0.11 0.02 3.07 0.37 0.03 0.16 0.06 0.01 54.91 6 1 61 6 74.11 0.61 0.15 0.49 0.27 0.03 13.19 7.25 0.15 0.27 3.00 0.03 0.39 5 0 66 7 40.49 1.25 0.12 1.07 0.07 0.09 9.68 0.77 0.37 0.56 0.29 0.28 44.87 28 1 2513 8 64.35 2.37 0.21 4.91 0.05 0.14 19.75 7.95 0.01 0.24 0.01 0.00 0.00 5 1 9 9 74.62 0.69 0.15 0.47 0.23 0.03 12.77 7.21 0.12 0.26 3.03 0.03 0.33 5 0 68 10 42.75 0.45 0.10 0.98 0.05 0.04 7.87 1.03 0.03 0.42 0.84 1.01 44.31 15 1 865 11 74.41 0.60 0.15 0.46 0.27 0.02 12.92 7.13 0.15 0.27 3.11 0.03 0.43 5 0 69 17 65.92 2.03 4.32 1.06 0.01 0.11 12.39 12.49 0.04 0.38 0.65 0.03 0.07 8 0 14 19 48.15 0.75 0.11 0.86 0.01 0.05 7.84 2.28 0.04 0.25 0.23 0.29 39.05 12 1 1353 111STNsp 46.96 1.43 0.22 1.49 0.12 0.07 13.30 4.33 0.02 0.23 0.80 0.04 30.81 9 2 1724 19STNsp 35.51 0.14 0.20 0.67 0.21 0.03 5.96 1.16 0.05 0.28 0.12 0.03 55.49 6 0 16 26STNsp 35.61 0.14 0.20 0.76 0.22 0.03 5.65 1.31 0.05 0.29 0.12 0.04 55.43 6 0 16 27MIXSP-A (refit w/ 51STNsp1) 33.67 0.12 0.24 0.99 0.18 0.11 5.28 1.40 0.04 0.34 0.11 0.02 57.35 9 0 18 27MIXSP-B 9.95 2.02 1.41 0.99 12.59 2.31 1.11 19.45 0.00 0.41 0.02 0.13 49.56 6 0 249 27MIXSP-C 65.25 0.63 0.62 1.30 0.18 0.12 16.64 11.06 0.12 0.50 3.34 0.05 0.10 9 0 137 37 (exterior) 60.82 11.76 2.03 2.44 1.08 0.23 3.07 8.58 0.74 2.45 2.04 0.02 3.28 14 0 162 37 (interior) 62.19 12.20 1.88 1.93 0.62 0.17 3.09 8.50 0.68 1.79 1.56 0.01 3.84 16 0 155 40STNsp 38.94 0.12 0.17 0.64 0.16 0.10 3.69 1.10 0.03 0.28 0.07 0.02 54.60 5 0 14 46STNsp-A 33.45 0.11 0.24 0.92 0.18 0.10 5.17 1.30 0.04 0.32 0.11 0.02 57.90 9 0 18 46STNsp-B 33.57 0.11 0.25 0.90 0.18 0.11 5.33 1.35 0.04 0.32 0.11 0.02 57.55 9 0 18 46STNsp-C 34.20 0.12 0.22 0.80 0.19 0.11 5.42 1.34 0.04 0.34 0.11 0.02 56.93 9 0 18 46STNsp-D 33.38 0.12 0.24 0.96 0.18 0.11 5.32 1.29 0.04 0.32 0.11 0.02 57.77 9 0 18 46STNsp-E 33.34 0.12 0.24 0.95 0.19 0.11 5.29 1.29 0.04 0.31 0.11 0.02 57.86 9 0 18 50STNsp-A 35.39 0.13 0.21 0.68 0.21 0.03 5.92 1.14 0.05 0.27 0.12 0.03 55.67 6 0 15 50STNsp-B 36.17 0.14 0.20 0.82 0.19 0.03 5.65 1.13 0.05 0.26 0.11 0.03 55.07 6 0 16 51STNsp1 (refit w/ 27MIXsp-A) 39.28 0.12 0.18 0.63 0.16 0.10 3.67 1.08 0.03 0.27 0.07 0.02 54.30 5 0 14 64STNsp 35.05 0.14 0.21 0.82 0.20 0.03 5.93 1.06 0.05 0.26 0.11 0.03 55.96 6 0 15 69STNsp 38.05 0.15 0.20 0.90 0.19 0.03 5.55 1.04 0.04 0.25 0.11 0.03 53.29 5 0 14 6STNSP-A 51.56 2.05 0.22 1.66 0.03 0.28 11.17 5.38 0.02 0.24 0.70 0.08 26.37 14 1 2831 6STNSP-B 36.39 0.14 0.18 0.69 0.15 0.11 3.66 0.97 0.04 0.26 0.10 0.01 57.29 9 1 70 6STNSP-C 38.31 0.12 0.21 0.64 0.20 0.12 4.45 1.08 0.04 0.27 0.11 0.03 54.28 9 0 22 6STNSP-D 38.17 0.12 0.21 0.68 0.21 0.13 4.38 1.20 0.04 0.28 0.11 0.03 54.30 9 0 23 6STNSP-E 38.44 0.12 0.20 0.68 0.20 0.12 4.53 1.12 0.05 0.27 0.11 0.03 54.01 10 0 24 6STNSP-F 41.80 0.39 0.21 0.61 0.28 0.13 3.60 0.92 0.06 0.16 0.03 0.00 51.71 9 0 3100 6STNSP-G 50.98 9.61 0.25 0.83 0.07 1.04 4.59 5.27 0.11 0.17 0.01 0.03 26.87 16 1 33 72STNSP-A 39.68 0.11 0.18 0.63 0.16 0.10 3.58 1.04 0.03 0.27 0.07 0.02 54.03 5 0 14 72STNSP-B 39.36 0.11 0.16 0.63 0.16 0.10 3.68 1.07 0.03 0.27 0.07 0.02 54.25 5 0 14 889 72STNSP-C 39.95 0.12 0.17 0.64 0.25 0.13 3.66 1.11 0.03 0.27 0.07 0.02 53.49 5 0 16 85STNsp2 39.97 0.18 0.10 0.61 0.03 0.13 7.32 0.77 0.02 0.33 0.54 0.84 49.05 9 2 98 S C C R Z N A I C B L C P Catalog No. c Ti V r Ni o Zn As b Sr r b g n Sb s a a e r 21 62 46 301 4 5 3 5 5 7 0 55 6 80 84 52 1 1 0 8 1 48 4 7 1 10 9 18 5 2 1 2 2 3 2 19 88 26 12 7 1 4 0 8 0 14 1 3 0 25 31 104 13 6 5 9 5 18 50 7 9 5 5 92 60 1 7 1 80 1 85 4 8 1 28 34 20 319 2 1 17 11 4 7 3 5 8 4 53 4 7 9 88 26 13 1 6 0 0 1 1 3 6 1 79 1 26 10 20 1 8 5 0 0 5 3 1 26 4 27 0 3 4 0 0 1 0 7 8 6 2 25 35 11 9 5 7 5 17 51 6 3 887 7 88 60 1 6 1 83 1 70 4 8 1 22 52 5 3 27 10 3 7 5 4 17 12 8 337 29 36 17 1 7 5 5 1 39 3 7 1 24 33 109 13 11 5 5 5 18 51 7 8 3 1 89 57 1 8 1 84 1 82 4 8 1 28 36 13 66 2 17 4 7 5 2 34 13 28 27 7 5 51 2 2 1 24 0 4 8 0 2 20 21 21 499 3 1 12 19 3 4 3 2 21 5 9 3 18 60 42 1 1 0 1 1 80 3 9 1 28 76 396 11 4 25 111STNsp 5 4 5 2 11 24 6 5 14 4 41 2 0 1 8 1 86 4 9 1 16 15 295 6 54 19STNsp 4 5 4 3 11 3 2 2 26 19 12 1 2 1 8 0 19 2 3 0 17 11 347 6 53 26STNsp 4 7 4 3 13 4 7 6 24 24 12 1 2 1 5 0 21 2 4 0 27MIXSP-A (refit w/ 15 21 495 5 69 51STNsp1) 5 9 5 3 9 3 6 5 30 25 13 1 9 1 1 0 17 2 4 0 10 3 11 21 837 14 18 27MIXSP-B 2 4 4 5 2 1 7 66 6 67 6 1 3 5 7 0 39 1 3 0 31 1 17 44 445 16 16 11 10 27MIXSP-C 9 2 3 7 3 25 8 1 1 9 75 2 8 2 3 1 8 5 9 1 66 1 64 84 16 1 37 (exterior) 5 8 3 51 44 30 90 325 12 4 44 3 4 1 79 0 6 6 1 1 53 1 59 88 18 37 (interior) 5 8 2 15 42 32 71 276 10 1 36 2 3 1 99 0 0 5 9 1 15 14 236 6 47 40STNsp 4 8 3 3 10 3 3 3 26 25 12 1 5 1 5 1 23 3 5 1 14 21 433 6 69 46STNsp-A 6 7 4 3 8 3 2 9 28 23 12 1 0 1 2 0 16 2 4 0 15 20 434 5 68 46STNsp-B 6 1 4 3 8 3 9 5 30 23 12 1 9 1 5 0 16 2 4 0 15 21 398 5 68 46STNsp-C 6 9 5 4 9 3 0 3 29 24 12 1 8 1 2 0 16 2 4 0 14 20 489 5 68 46STNsp-D 6 8 4 3 8 3 0 8 30 22 12 1 9 1 6 0 15 2 4 0 14 19 505 6 68 46STNsp-E 6 9 4 3 8 3 6 0 28 22 12 1 0 1 5 0 15 2 4 0 16 15 332 6 56 50STNsp-A 4 4 4 3 11 3 1 9 23 18 11 1 3 1 2 0 18 2 3 0 15 14 332 6 53 50STNsp-B 4 9 4 2 10 3 1 0 25 18 11 1 1 1 8 0 19 2 3 0 51STNsp1 (refit w/ 15 14 237 6 50 27MIXsp-A) 4 5 3 3 10 3 2 6 25 25 12 1 6 1 2 0 22 3 5 1 15 14 343 6 56 64STNsp 4 5 4 3 10 3 2 3 22 17 10 1 2 1 2 0 18 2 3 0 14 13 343 6 54 69STNsp 4 9 3 2 10 3 8 9 21 17 10 1 0 1 7 0 17 2 3 0 890 1 33 24 721 16 2 15 11 1 6STNSP-A 0 2 6 3 19 60 11 6 19 3 59 2 2 3 5 0 5 5 1 1 14 107 4 14 6STNSP-B 8 8 4 3 8 2 52 6 41 27 12 1 6 0 0 1 27 2 4 0 16 24 407 7 80 6STNSP-C 8 4 5 3 10 3 6 1 31 26 13 1 1 1 6 0 17 2 4 0 17 26 426 7 81 6STNSP-D 8 3 5 3 11 3 9 9 31 28 14 1 1 1 2 0 18 2 4 0 16 25 405 6 78 6STNSP-E 8 6 5 4 10 4 0 3 44 26 13 1 9 1 5 1 17 2 4 0 14 4 60 6STNSP-F 8 4 4 3 1 0 42 43 59 21 10 1 9 0 3 0 24 1 3 0 21 21 312 12 64 31 6STNSP-G 9 6 7 4 8 2 4 49 26 8 41 2 4 1 2 0 4 2 4 0 15 14 237 6 51 72STNSP-A 4 1 3 2 10 3 4 7 24 24 11 1 7 1 9 0 22 3 5 1 15 14 238 6 46 72STNSP-B 4 4 3 2 10 3 4 1 26 25 12 1 6 1 3 1 22 3 5 1 15 14 267 6 52 72STNSP-C 4 4 4 3 10 3 0 8 26 31 12 1 5 1 9 0 22 2 5 1 12 59 114 5 5 35 85STNsp2 4 8 3 2 12 17 4 8 20 24 11 1 0 3 9 1 23 2 5 1 T A M N S E G T D H E T Y L H T Catalog No. a u Y Bi U W o d m u d b y o r m b u f h 23 4 4 0 0 5 6 4 1 6 3 1 0 1 0 1 0 1 0 0 0 2 2 5 0 19 1 26 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 4 5 1 1 2 4 1 0 1 0 1 0 0 0 0 0 2 2 7 0 1 3 45 1 1 1 2 1 0 1 0 1 0 0 0 0 0 0 1 8 0 0 6 0 1 0 0 7 1 0 1 0 1 0 1 0 1 0 3 4 9 0 0 4 5 1 1 2 3 1 0 1 0 1 0 0 0 0 0 2 2 10 0 1 2 70 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 3 5 1 1 2 3 1 0 1 0 1 0 0 0 0 0 2 2 17 0 0 4 2 1 0 0 6 1 0 1 0 1 0 0 0 0 0 2 3 19 0 0 2 19 1 1 0 2 0 0 0 0 0 0 0 0 0 0 1 1 111STNsp 0 1 3 65 1 1 0 4 1 0 1 0 1 0 0 0 0 0 1 2 33 19STNsp 0 23 2 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 33 26STNsp 0 27 2 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 27MIXSP-A (refit w/ 34 51STNsp1) 0 23 2 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 27MIXSP-B 0 30 1 8 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 27MIXSP-C 0 0 5 8 1 1 2 3 1 0 1 0 1 0 0 0 0 0 2 1 37 (exterior) 0 0 5 43 2 0 1 5 1 0 1 0 1 0 0 0 0 0 1 2 37 (interior) 0 0 4 29 2 0 1 4 1 0 1 0 1 0 0 0 0 0 1 1 38 40STNsp 0 27 2 6 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 35 46STNsp-A 0 24 2 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 35 46STNsp-B 0 24 2 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 34 46STNsp-C 0 23 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 34 46STNsp-D 0 23 2 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 34 46STNsp-E 0 23 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 891 34 50STNsp-A 0 24 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 33 50STNsp-B 0 23 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 51STNsp1 (refit w/ 38 27MIXsp-A) 0 27 2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 34 64STNsp 0 24 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 32 69STNsp 0 23 1 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 6STNSP-A 0 0 4 8 1 1 0 3 1 0 1 0 1 0 0 0 0 0 1 2 6STNSP-B 0 25 2 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 39 6STNSP-C 0 27 2 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 40 6STNSP-D 0 27 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 37 6STNSP-E 0 26 2 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 6STNSP-F 0 36 1 37 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 6STNSP-G 0 0 2 31 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 39 72STNSP-A 0 28 2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 38 72STNSP-B 0 27 2 7 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 37 72STNSP-C 0 27 2 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 13 85STNsp2 0 1 2 3 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 892 REFERENCES CITED Adams WH. 1997. Yap archaeology: Archaeological survey of Gachlaw village, Gilmon municipality, Yap, Federated States of Micronesia. US National Park Service. Adelaar K, Himmelmann N. 2013. Austronesian Languages of Asia and Madagascar. Hoboken: Taylor and Francis. Adhyatman S, Arifin R, 1993. Manik-Manik di Indonesia: Beads in Indonesia. Jakarta: Penerbit Djambatan. Allen JD. 2010. The Heirloom Beads of Island South East Asia. In: Munan H, Martin F, editors. Journal: Borneo International Beads Conference 2010, Sarawak: Crafthub. p. 67- 83. Allen MS. 1998. Holocene Sea-Level Change on Aitutaki, Cook Islands: Landscape Change and Human Response. Journal of Coastal Research 14(1):10–22. Allen MS, Wallace R. 2007. New evidence from the East Polynesian gateway: Substantive and methodological results from Aitutaki, southern Cook Islands. Radiocarbon 49(3):1163–1180. Allen MS. 2014. Marquesan Colonisation Chronologies and Post- Colonisation Interaction: Implications for Hawaiian Origins and the ‘Marquesan Homeland’ Hypothesis. Journal of Pacific Archaeology 5(2):1-17. Allen MS, Huebert JM. 2014. Short-lived plant materials, long-lived trees, and Polynesian 14C dating: Considerations for 14C sample selection and documentation. Radiocarbon 56(1):257-276. Allen MS, Morrison AE. 2013. Modelling Site Formation Dynamics: Geoarchaeological, Chronometric and Statistical Approaches to a Stratified Rockshelter Sequence, Polynesia. Journal of Archaeological Science 40(12):4560–475. Allen MS, Morrison AE, Lorrey AM, Zhao J-X, Jacobsen GE. 2017. Timing, magnitude and effects of Late Holocene sea level drawdown on island habitability Aitutaki, Cook Islands. Archaeology in Oceania 51(2):108-121. Alves EQ, Macario K, Ascough P, Bronk Ramsey C. 2018. The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and Prospects. Reviews of Geophysics 56:278–305. Ambrose WR. 1994. Obsidian hydration dating of a Pleistocene age site from the Manus Islands, Papua New Guinea. Quaternary Science Reviews 13(2):137-142. 893 Arneborg J, Heinemeier J, Lynnerup N, Nielsen HL, Rud N, Sveinbjörnsdóttir AE. 1999. Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and 14C dating of their bones. Radiocarbon 41(2):157-168. Anerson A. 1991. The chronology of colonization in New Zealand. Antiquity 65:767– 795. Anderson A. 1995. Current approaches in East Polynesian colonization research. Journal of the Polynesian Society 104:110-132. Anderson A. 1996. Was ‘Rattus Exulans’ in New Zealand 2000 Years Ago? AMS Radiocarbon Ages from Shag River Mouth. Archaeology in Oceania 31(3):178–184. Anderson A. 2000. Differntial Reliability of 14C AMS Ages of Rattus Exulans Bone Gelatin in South Pacific Prehistory. Journal of the Royal Society of New Zealand 30(3):243–261. Anderson A. 2008. Traditionalism, interaction, and long-distance seafaring in Polynesia. The Journal of Island and Coastal Archaeology 3:240-250. Anderson A. 2018. Ecological contingency accounts for earliest seagoing in the western Pacific Ocean. The Journal of Island and Coastal Archaeology 13(2):224-234. Anovitz LM, Elam JM, Riciputi LR. 1999. The failure of obsidian hydration dating: Sources, implications, and new directions. Journal of Archaeological Science 26:735-752 Aoyagi M. 1982. Islanders and their outside world: A report of the cultural and anthropological research in the Caroline Islands of Micronesia in 1980-1981. Committee for Micronesian Research. Tokyo: St. Paul’s (Rikkyo) University. Ardren T, Lowry JP, Memory M, Flanagan K, Busot A. 2016. Prehistoric human impact on tree island life cycles in the Florida Everglades. The Holocene 26(5):772-780. Ardren T, Thompson VD, Fitzpatrick SM, Stevenson J, Sierra RL. 2018. When foragers are managers: Social complexity and persistent foraging in the Florida Keys. In: Reid BA, editor. The Archaeology of Caribbean and Circum-Caribbean Farmers (6000 BC – AD 1500). New York: Routledge. p. 311-326. Ardren T, Thompson VD, Fitzpatrick SM, LeFebvre M, Napolitano, MF. 2018. Archaeological Investigations at the Clupper Site (8MO17) 2014 and 2015 Field Seasons Monroe County, Florida. Bureau of Natural and Cultural Resources, Division of Recreation and Parks, Department of Environmental Protection, Tallahassee, Florida. Ardren T, Fitzpatrick SM, Thompson VD. 2019. Island chain coastlines: A history of human adaptation in the Florida Keys. In: Reeder-Meyers L, Turk JA, Rick TC, editors. 894 The Archaeology of Human Environment Dynamics on the North American Atlantic Coast. Gainesville: University Press of Florida. p. 232-259. Argiriadis E, Battistel D, McWethy DB, Vecchiato M, Kirchgeorg T, Kehrwald NM, Whitlock C, Wilmshurst JM, Barbante C. 2018. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Scientific Reports 8(1):1-9. Ascough P, Cook C, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4)532-547. Ashmore PJ. 1999. Radiocarbon dating: avoiding errors by avoiding mixed samples. Antiquity 73(279):124. Athens JS, Ward JV. 2001. Paleoenvironmental evidence for early human settlement in Palau: The Ngerchau core. In: Stevenson CM, Lee G, Morin FJ, eidtors. Pacific 2000: Proceedings of the Fifth International Conference on Easter Island and the Pacific. Easter Island Foundation: Los Angeles. p. 164-177. Athens JS, Rieth TM, Dye TS. 2014. A paleoenvironmental and archaeological model- based age estimate for the colonization of Hawai’i. American Antiquity 79, 144-155. Ballendorf DA. 1991. The Obscure Johann Stanislaus Kubary and His Estimable Discourses on Palauan Money. Journal of the Pacific Society 14:19-25. Ballendorf DA. 1993. Udoud: The Origins of Palaun Traditional Money. Asian Culture Quarterly 21(3):29-33. Barlett LJ, Williams DR, Prescott GW, Balmford A, Green RE, Eriksson A, Valdes PJ, Singarayer JS, Manica A. 2016. Robustness despite uncertainty: Regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography 39(2): 152-161. Barnett HG. 1949. Palauan Society: A Study of Contemporary Native Life in the Palau Islands, Eugene: University of Oregon Publications. Barnett J, Campbell J. 2010. Climate change and small island states: power, knowledge and the South Pacific. London: Earthscan. Baron J, Clavier J. 1992. Effects of environmental factors on the distribution of the edible bivalves Atactodea striata, Gafrarium tumidum and Anadara scapha on the coast of New Caledonia (SW Pacific). Aquatic Living Resources 5:107–114. Batt CM, Schmid MME, Vésteinsson O. 2015. Constructing chronologies in Viking Age Iceland: Increasing dating resolution using Bayesian approaches. Journal of Archaeological Science 62:161-174. 895 Bayliss A. 2009. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51(1):123-147. Bayliss A. 2015. Quality in Bayesian chronological models in archaeology. World Archaeology 47(4):677-700. de Beauclair I. 1963. Some Ancient Beads of Yap and Palau. Journal of the Polynesian Society 72(1): 1-10. Beck HC. 1928. Classification and Nomenclature of Beads and Pendants. Archaeologia 77:1-76. Bedford S, Spriggs M, editors. 2019. Debating Lapita: Distribution, chronology, society and subsistence. Terra Australis 52. Canberra: ANU Press. Bedford S, Spriggs M, Regenvanu R. 2006. The Teouma Lapita site and the early human settlement of the Pacific Islands. Antiquity 80(310):812-828. Bednarik RG. 2003. Seafaring in the Pleistocene. Cambridge Archaeological Journal 13(1):41-66. Bell AV, Currie TE, Irwin G, Bradbury C. 2015. Driving factors in the colonization of Oceania: Developing island-level statistical models to test competing hypotheses. American Antiquity 80(2):397-407. Berg ML. 1992. Yapese Politics, Yapese money, and the sawei tribute network before World War I. Journal of Pacific History 27(2):150-164. Berger R, Taylor RE, Libby WF. 1966. Radiocarbon content of marine shells from the California and Mexican West Coast. Science 153:864-866. van den Bergh GD, Kaifu Y, Kurniawan I, Kono RT, Brumm A, Setiyabudi E, Aziz F, Wormwood MJ. 2016. Homo florensis-like fossils form the early Middle Pleistocene of Flores. Nature 534: 245-248. Beesley PL, Ross GJB, Wells A, editors. 1998. Mollusca: The southern synthesis. Fauna of Australia. Volume 5. Melbourne: CSIRO Publishing. Best E. 1923. Polynesian Voyagers. Monograph 5. Wellington: Dominion Museum. Bieler R, Mikkelsen PM. 2004. Marine bivalves of the Florida Keys: A qualitative faunal analysis based on original collections, museum holdings and literature data. Malacologia 46(2):503-544. 896 Billeck WT. 2008. Red-on-white drawn or cornelian beads: A 19th-century temporal marker for the Plains. Beads: Journal of the Society for Bead Research 20:49-61. Bird MI, Ayliffe LK, Fifield LK, Turney CSM, Cresswell RG, Barrows TT, David B. 1999. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41(2): 127-140. Bird, MI, Levchenko V, Ascough PL, Meredith W, Wurster CM, Williams A, Tilston EL, Snape CE, Apperley DC. 2014. The efficiency of charcoal decontamination for radiocarbon dating by three pre-treatments–ABOX, ABA and hypy. Quaternary Geochronology 22: 25-32. Blaauw M, Christen JA, Bennett KD, Reimer, PJ. 2018. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quaternary Science Reviews 188: 58-66. Blair EH. 2018. Glass Beads. In: Lightfoot KG, Gonzalez S., editors. The archaeology of Metini Village: A historic 19th century Kashaya Pomo village at Fort Ross State Historic Park. Berkeley: University of California. p. 72-78; 176-177. Blaiyok V. 1993. Archaeology survey of Airai State, Republic of Palau. Report on file with the Bureau of Cultural and Historical Preservation, Republic of Palau. Blake NJ, Shumway SE. 2006. Bay scallop and calico scallop fisheries, culture and enhancement in eastern North America. In: Shumway SE and Parsons GJ, editors. Scallops: biology, ecology and aquaculture. Elsevier. p. 945–964. Blakeslee, DJ. 1994. Reassessment of some radiocarbon dates from the Central Plains. Plains Anthropologist, 39(148):103-210. Blumenstock DI. 1960. Weather and climate. In: Johnson CG, Alvin RJ, Hetzler RL, editors. Military Geology of Yap Islands, Caroline Islands, Honolulu: Intelligence Division, Office of the Engineer HQ, US Army Pacific. p 27-45. Blust R. 2013. The Austronesian languages. Canberra: Australian National University. Boivin, NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD. Ecological consequences of human niche construction: Examining long- term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences 113(23):6388-6396. Bonsall C, Cook GT, Hedges RE, Higham TF, Pickard C, Radovanović I. 2004. Radiocarbon and stable isotope evidence of dietary change from the Mesolithic to the Middle Ages in the Iron Gates: new results from Lepenski Vir. Radiocarbon 46(1):293- 300. 897 Braje TJ, Leppard TP, Fitzpatrick SM, Erlandson JM. 2017. Archaeology, historical ecology and anthropogenic island ecosystems. Environmental Conservation 44(3): 286- 297. Brill RH. 1964. Application of fission-track dating to historic and prehistoric glasses. Archaeometry 7:51-57. Brill RH. 1999. Chemical analysis of early glasses, volume 2: The tables. Corning: The Corning Museum of Glass. Brill RH, Tong SSC, Dohrenwend D. 1991. Chemical analyses of some early Chinese glasses. In: Brill RH, Martin JH, editors. Scientific research in early Chinese glass: Proceedings of the archaeometry of glass sessions of the 1984 International Symposium on Glass, Beijin, September 7, 1984, with supplementary papers. New York: Hudson Hills Press. pp. 31-64. Brock F, Higham T, Ditchfield P, Bronk Ramsey C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103-112. Broecker WS, Olson EA. 1961. Lamont radiocarbon measurements VIII. Radiocarbon 3:176-204. Broom MJ. 1985. The biology and culture of marine bivalve molluscs of the genus Anadara. In: ICLARM Studies and Reviews. International Center for Living Aquatic Resources Management, Manila, Volume 12. Bronk Ramsey C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337- 360. Bronk Ramsey C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51: 1023-1045. Bronk Ramsey C. 2015. Bayesian approaches to the building of archaeological chronologies. In: Barceló JA, Bogdonovic I, editors. Mathematics and archaeology. Boca Raton: CRC Press. p. 272-292. Bronk Ramsey C, Higham T, Bowles A, Hedges R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155-163. Brumm AG. Jensen M, van den Bergh GD, Wormwood MJ, Kurniawan I, Aziz F, Storey M. 2010. Hominin on Flores, Indonesia, by one million years ago. Nature 464:748-752. Brumm AG, van den Bergh GD, Storey M, Kurniawan I, Alloway BV, Setiawan R, Setiyabudi E, Grün R, Moore MW, Yurnaldi D, Puspaningrum MR, Wibowo UP, Insani H, Sutisna I, Westgate JA, Pearce NJG, Duval M, Meijer HJM, Aziz F, Sutikna T, van 898 der Kaars S, Flude S, Morwood MJ. 2016. Age and context of the oldest known hominin fossibls from Flores. Nature 534: 249-253. Buck CE, Higham TF, Lowe DJ. 2003. Bayesian tools for tephrochronology. The Holocene 13(5):639-647. Bulbeck D. 2007. Where river meets sea: A parsimonious model for Homo sapiens colonization of the Indian Ocean rim and Sahul. Current Anthropology 48:315-321. Burgess LE, Dussubieux L. 2007. Chemical composition of late 18th- and 19th-century glass beads from western North America: Clues to sourcing beads. Beads: Journal of the Society of Bead Research 19:58-73. Burley D, Weisler MI, Zhao J-X. 2012. High precision U/Th dating of first Polynesian settlement. PloS One 7(11):e48769. Burley D, Edinborough K, Weisler M, Zhao J-X. 2015. Bayesian modeling and chronological precision for Polynesian settlement of Tonga. PloS One 10: e0120795. Caffrey MA, Horn SP. 2015. Long-term fire trends in Hispaniola and Puerto Rico from sedimentary charcoal: A comparison of three records. The Professional Geographer 67:229-241. Callaghan RT. 2001. Ceramic age seafaring and the interaction potential in the Antilles. Current Anthropology 42:308-313. Callaghan RT. 2008. On the question of the absence of Archaic Age sites on Jamaica. The Journal of Island and Coastal Archaeology 3:54-71. Callaghan RT. 2010. Crossing the Guadeloupe passage in the Archaic Age. In: Fitzpatrick SM, Ross AH, editors. Island shores and distant pasts: Archaeological and biological approaches to Pre-Columbian settlement of the Caribbean. Gainesville: University of Florida Press. p. 127-147. Callaghan R, Fitzpatrick SM. 2007. On the relative isolation of a Micronesian archipelago during the historic period: The Palau case study. International Journal of Nautical Archaeology 36(2):353-364. Carlson LA. 1999. First contact: The Coralie site, Grand Turk, Turks and Caicos Islands. Ph.D. dissertation, Gainesville: University of Florida. Carlson LA, Keegan WF. 2004. Resource depletion in the prehistoric northern West Indies. In: Fitzpatrick SM, editor. Voyages of discovery: The archaeology of islands. Westport: Praeger. p. 85-107. 899 Carlson LA, Steadman DW. 2009. Examining temporal differences in faunal exploitation at two Ceramic Age sites in Puerto Rico. The Journal of Island and Coastal Archaeology 4:207-222. Carpenter KE, Niem VH. 1998. The living marine resources of the western central Pacific. Vol. 1. Seaweeds, corals, bivalves and gastropods. Rome: Food and Agriculture Organization of the United Nations. Carson MT, Peterson JA. 2012. Radiocarbon dating of algal bioclasts in beach sites of Guam. The Journal of Island and Coastal Archaeology 7(1):64–75. Carter AK. 2016. The production and exchange of glass and stone beads in Southeast Asia from 500 BCE to the early second millennium CE: An assessment of the work of Peter Francis in light of recent research. Archaeological Research in Asia 6:16-29. Carter AK, Abraham SA, Kelly GO. 2016a. Updating Asia's maritime bead trade: An introduction. Archaeological Research in Asia 6:1-3. Carter AK, Dussubieux L, Beavan N. 2016b. Glass beads from 15th–17th century CE jar burial sites in Cambodia's Cardamom Mountains. Archaeometry 58:401-412. Cherkinsky A, Culp RA, Dvoracek DK, Noakes JE. 2010. Status of AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B. 268: 867-870. Cherkinsky A, Pluckhahn TJ, Thompson VD. 2014. Variation in Radiocarbon Age Determinations from the Crystal River Archaeological Site, Florida. Radiocarbon 56(2):801-810. Cherry JF, Leppard TP. 2015. Experimental archaeology and the earliest seafaring: The limitations of inference. World Archaeology 47:740-755. Cherry JF, Leppard TP. 2018. The Balearic paradox: Why were the islands colonized so late? Pyrenae 49(1): 49-70. Chinique de Armas Y, González Herrera UM, Buhay WM, Yero Masdeu JM, Viera Sanfiel LM, Burchell M, Crann C, Grau González-Quevedo ER, Roksandic M. Chronology of the archaeological site of Playa Del Mango, Rio Cauto, Granma, Cuba. 2020. Radiocarbon 62(5):1221-1236. Chisholm, BS, Nelson, DE, Schwarcz, HP. 1982. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216(4550):1131- 1132. 900 Church MJ, Arge SV, Edwards KJ, Ascough PL, Bond JM, Cook GT, Dockrill SJ, Dugmore AJ, McGovern TH, Nesbitt C, Simpson IA. 2013. The Vikings were not the first colonizers of the Faroe Islands. Quaternary Science Reviews 77(1): 228-232. Cílová Z, Woitsch J. 2011. Potash-A key raw material of glass batch for Bohemian glasses from 14th-17th centuries? Journal Archaeological Science 39:371-380. Clark GR. 2005. A 3000-year culture sequence from Palau, Western Micronesia. Asian Perspectives 44(2):349–80. Clark G. 2007. Culture contact in the Palau Islands, 1783. Journal Pacific History 42:89- 97. Clark G, Anderson A, Wright, D. 2006. Human colonization of the Palau islands, Western Micronesia. The Journal of Island and Coastal Archaeology 1:215-232. Clark G, Petchey F, Hawkins S, Reepmeyer C, Smith I, Masse WB. 2013. Distribution and extirpation of pigs in Pacific Islands: A case study from Palau. Archaeology in Oceania 48(3): 141-153. Clarkson C, Jacobs Z, Marwick B, Fullagar R, Wallis L, Smith M, Roberts RG, Hayes E, Lowe K, Carah X. 2017. Human occupation of northern Australia by 65,000 years ago. Nature 547: 306. Cochrane EE, Rieth TM. 2016. Sāmoan artefact provenance reveals limited artefact transfer within and beyond the archipelago. Archaeology in Oceania 51(2):150-157. Connor SE, van Leeuwen JFN, Rittenour TM, van der Knaap WO, Ammann B, Björck S. 2012. The ecological impact of oceanic island colonization – a palaeoecological perspective from the Azores. Journal of Biogeography 39(6):1007-1023. Conrad GW, Foster JW, Beeker CD. 2001. Organic artifacts from the Manantial de La Aleta, Dominican Republic: Preliminary observations and interpretations. Journal of Caribbean Archaeology 2:1-20. Cook GT, Bonsall C, Hedges RE, McSweeney K, Boronean, V, Pettitt PB. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453-460. Cook GT, Bonsall C, Hedges RE, McSweene, K, Boroneant V, Bartosiewicz L, Pettitt PB. 2002. Problems of dating human bones from the Iron Gates. Antiquity 76(291):77- 85. Cook GT, Ascough PL, Bonsall C, Hamilton WD, Russell N, Sayle KL, Marian Scott E, Bownes JM. 2015. Best practice methodology for 14C calibration of marine and mixed terrestrial/marine samples. Quaternary Geochronology 27:164-171. 901 Corbett DR, Chanton J, Burnett W, Dillon K, Rutowski C. 1999. Patterns of groundwater discharge into Florida Bay. Limnology and Oceanography 44(4):1045-1055. Cordy R. 1986. Archaeological settlement patterns on Yap. No. 16. Micronesian Archaeological Survey, Office of Historic Preservation, Office of the High Commissioner, Trust Territory of the Pacific Islands. Cormie AB, Schwarcz HP. 1994. Stable isotopes of nitrogen and carbon of North American white-tailed deer and implications for paleodietary and other food web studies. Palaeogeography, Palaeoclimatology, Palaeoecology 107:27-241. Couthard RD, Furze MFA, Pieńkowski AJ, Chantel Nixon F, England JH. 2010. New marine ΔR values for Arctic Canada. Quaternary Geochronology 5(4):419-434. Craib J, Price S. 1978. An archaeological reconnaissance of selected areas on Yap, Western Caroline Islands. Report submitted to the Trust Territory of the Pacific Islands Historic Preservation Office, Saipan. Crock JG. 2000. Interisland interaction and the development of chiefdoms in the Eastern Caribbean. Ph.D. dissertation. Pittsburgh: University of Pittsburgh. Crock JG. 2004. Archaeological evidence of eastern Taínos: Late Ceramic Age interaction between the Greater Antilles and the northern Lesser Antilles. In: Tavárez MC, García Arévalo MA, editors. Proceedings of the International Congress for Caribbean Archaeology 20. Santo Domingo: Departamento de Difusion y Relaciones Públicas del Museo del Hombre Dominicano. p. 835-842. Crock JG, Petersen J. 2004. Inter-island exchange, settlement hierarchy, and a Taíno- related chiefdom on the Anguilla Bank, Northern Lesser Antilles. In: Delpuech A, Hofman CL, editors. Late Ceramic Age Societies in the Eastern Caribbean. Oxford: British Archaeological Reports. p. 139-158. Culleton BJ, Kennett DJ, Ingram BL, Erlandson JM, Southon JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387–400. Cushing Falanruw MJ, Ruegorong F. 2007. Indigenous fallow management on Yap Island. In: Cairns M, editor. Voices from the Forest: Integrating Indigenous Knowledge into Sustainable Upland Farming. New York: Routledge. Davenport J, Wong TM. 1986. Responses of the blood cockle Anadara granosa (L.) (Bivalvia: Arcidae) to salinity, hypoxia and aerial exposure. Aquaculture 56(2):151-162. Davis DD. 2000. Jolly Beach and the Preceramic Occupation of Antigua, West Indies. New Haven: Yale University Press. 902 Dee M, Bronk Ramsey C. 2014. High-precision Bayesian modeling of samples susceptible to inbuilt age. Radiocarbon 56:83-94. Descantes, C., 2005. Integrating archaeology and ethnohistory: The development of exchange betweeen Yap and Ulithi, Western Caroline Islands. BAR International Series 1344. Oxford: Bar Publishing. Descantes C, Intoh M, Neff H, Glascock MD. 2004. Chemical characterization of Yapese clays and ceramics by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry 262(1):83-91. Dewar G, Pfeiffer S. 2010. Approaches to estimating marine protein in human collagen for radiocarbon date calibration. Radiocarbon 52(4):1611-1625. Diaz M, Macario KD, Gomes PRS, Álvarez-Lajonchere L, Aguilera O, Alves EQ, Radiocarbon marine reservoir effect on the northwestern coast of Cuba. Radiocarbon 59: 333-341. Dickinson WR. 1982. Temper sands from prehistoric sherds excavated at Pemrang site on Yap and from nearby Ngulu Atoll. Journal of the Indo-Pacific Prehistory Association 3:115-117. Dickinson WR. 1999. Holocene sea-level record on Funafuti and potential impact of global warming on central Pacific atolls. Quaternary Research 51(2):124-132. Dickinson WR. 2003. Impact of mid-Holocene hydro-isostatic highstand in regional sea level on habitability of islands in Pacific Oceania. Journal of Coastal Research 19(3):489- 502. Dickinson WR. 2014. Beach ridges as favored locales for human settlement on Pacific Islands. Geoarchaeology 29:249-267. Dickinson WR, Athens JS. 2007. Holocene paleoshoreline and paleoenvironmental history of Palau: Implications for human settlement. The Journal of Island and Coastal Archaeology 2(2):175-196. Dickinson WR, Shutler R. 2000. Implications of petrographic temper analysis for Oceanian prehistory. Journal of World Prehistory 14(3):203-266. DiNapoli RJ, Rieth TM, Lipo CP, Hunt TL. 2020. A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). Journal of Archaeological Science 116:105094. DiNapoli RJ, Fitzpatrick SM, Napolitano MF, Rick TC, Stone JH, Jew N. 2021. Marine Reservoir Correction (ΔR) for the Caribbean Illustrate High Intra- and Inter-Island Variability. Quaternary Geochronology. doi.org/10.1016/j.quageo.2020.101126. 903 Dodrill TN, Jew NP, Fitzpatrick SM. 2018. δ18O Analyses of the humpbacked conch (Gibberulus gibberulus): Evaluating a proxy for reconstructing sea-surface temperature at Chelechol ra Orrak, Palau. Environmental Archaeology 23:403-415. Dodson JR, Intoh M. 1999. Prehistory and palaeoecology of Yap, Federated States of Micronesia. Quaternary International 59:17–26. Donohue M, Denham T. 2010. Farming and language in Island Southeast Asia: Reframing Austronesian history. Current Anthropology 51(2): 223-256. Douglass K, Zinke J. 2015. Forging ahead by land and by sea: Archaeology and paleoclimate reconstruction in Madagascar. African Archaeological Research 32: 267- 299. Douglass K, Walz J, Morales EQ, Marcus R, Myers G, Pollini J. 2019. Historical perspectives on contemporary human–environment dynamics in southeast Africa. Conservation Biology 33(2):260-274. Druffel ERM. 1982. Banded corals: Changes in oceanic carbon-14 during the Little Ice Age. Science 218(4567):13-19. Druffel ERM. 1997. Pulses of rapid ventilation in the North Atlantic surface ocean during the past century. Science 275:1454-1457. Druffel ERM, Benavides LM. 1986. Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge. Nature 321:58-61. Druffel ERM, Linick TW. 1978. Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5(11):913-916. Druffel ERM, Robinson LF, Griffin S, Halley RB, Southon JR, Adkins JF. 2008. Low reservoir ages for the surface ocean from mid-Holocene Florida corals. Paleoceanography and Paleoclimatology 23(2):PA2209. Dupont C. 2018a. Gifts of the gods: Objects of foreign origin in traditional exchange systems in Palau. In: Brandherm D, Heymans E, Hofmann D, editors. Gifts, goods, and money: Comparing currency and circulation systems in past societies. Archaeopress, Oxford. p. 195-223. Dupont C. 2018b. Wertobjekte und gabentausch auf Palau (Ozeanien): Eine ethnologische studie zu transformationen von geld und prestige. Reimer: Dietrich. Dye TS. 1994. Apparent ages of marine shells: implications for the archaeology of Hawai’i. Radiocarbon 36(1):51-57. 904 Dye TS. 2000. “Effects of 14C Sample Selection in Archaeology: An Example from Hawai’i.” Radiocarbon 42 (2):203–217. Dye TS. 2015. Dating human dispersal in Remote Oceania: A Bayesian view from Hawai’i. World Archaeology 47:661-676. Dye TS. 2016. Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science 71:1-9. Dye TS, Buck CE. 2015. Archaeological sequence diagrams and Bayesian chronological models. Journal of Archaeological Science 63: 84-93. Elliot MB, Striewski B, Flenley JR, Sutton D. 1995. Palynological and sedimentological evidence for a radiocarbon chronology of environmental change and Polynesian deforestation from Lake Taumatawhana, Northland, New Zealand 1. Radiocarbon 37(3):899-916. Emiliani C, Hudson JH, Shinn EA, George RY. 1966. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202(4):627-629. Enos P, Perkins RD. 1979. Evolution of Florida Bay from island stratigraphy. Bulletin of the Geological Society of America 90(1):59–83. Epstein S, Mayeda T. 1953. Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213-224 450. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64:1315-1326. Erlandson JM. 2008. Racing a rising tide: Global warming, rising seas, and the erosion of human history. The Journal of Island and Coastal Archaeology 3(2):167-169. Erlandson JM. 2010. Neptune’s children: The evolution of human seafaring. In: Anderson AA, Barrett JH, Boyle KV, editors. The Global Origins and Development of Seafaring. McDonald Institute Monographs. Cambridge: University of Cambridge. p. 19- 28. Erlandson JM. 2012. As the world warms: Rising seas, coastal archaeology, and the erosion of maritime history. Journal of Coastal Conservation 16(2):137-142. Erlandson JM, Moss ML. 1999. The Systematic Use of Radiocarbon Dating in Archaeological Surveys in Coastal and Other Erosional Environments. American Antiquity 64(3):431–43. 905 Erlandson, JM, Rick TC. 2010. Archaeology meets marine ecology: the antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Annual Review of Marine Science 2:231-251. Etpison M, Dupont C, 2017. Palau in Europe. Etpison Museum, Palau. Gifford EW, Gifford DS. 1959. Archaeological excavations in Yap. Anthropological Records 18(2). Berkeley: University of California. Gladwin T. 2009. East is a big bird: Navigation and logic on Puluwat Atoll. Cambridge: Harvard University Press. Falanruw, MVC. 2015. Trees of Yap: A field guide. General Technical Report PSW- GTR-249, United States Department of Agriculture. Feinman GM, Neitzel JE. 2020. Excising culture history from contemporary archaeology. Journal of Anthropological Archaeology 60:101230. Ferentinos, G., M. Gkioni, M. Geraga, and G. Papatheodorou. 2012. Early seafaring activity in the southern Ionian Islands, Mediterranean Sea. Journal of Archaeological Science 39(7): 2167-2176. Field J, Fillios M, Wroe S. 2008. Chronological overlap between humans and megafauna in Sahul (Pleistocene Australia-New Guinea): A review of the evidence. Earth Science Reviews 89(3-4): 97-115. Field J, Wroe S, Trueman CN, Garvey J, Wyatt-Spratt S. 2013. Looking for the archaeological signature in Australian megafaunal extinctions. Quaternary International 285(8):76-88. Finney B. 1996. Colonizing an island world. Transactions of the American Philosophical Society 86(5):71-116. Finney JC. 1998. The Yapese language: Whence and how. Papers from the fifth annual meeting of the Southeastern Asian Linguistics Society, 1995:97-114. Fitzpatrick SM. 2001. Archaeological investigations of Omis Cave: A Yapese stone money quarry in Palau. Archaeology in Oceania 36:153-162. Fitzpatrick SM. 2002. A Radiocarbon chronology of Yapese stone money quarries in Palau. Micronesica 34(2):227-242. Fitzpatrick SM. 2003a. Stones of the butterfly: An archaeological investigation of Yapese stone money quarries in Palau, Western Micronesia. PhD dissertation. Eugene: University of Oregon. 906 Fitzpatrick SM. 2003b. Early human burials in the Western Pacific: Evidence for a c.3000 year old occupation on Palau. Antiquity 77(298):719-731. Fitzpatrick SM. 2003c. An archaeological study on the extraction of flowstone from caves and rockshelters for producing stone money in Western Micronesia. Cave Karst Science 30(2):75-82. Fitzpatrick SM. 2006. A critical approach to 14C dating in the Caribbean: Using chronometric hygiene to evaluate chronological control and prehistoric settlement. Latin American Antiquity 17:281-290. Fitzpatrick SM. 2008. Maritime interregional interaction in Micronesia: Deciphering multi-group contacts and exchange systems through time. Journal of Anthropological Archaeology 27:131-147. Fitzpatrick SM. 2013. Seafaring capabilities in the Pre-Columbian Caribbean. Journal of Maritime Archaeology 8:101-138. Fitzpatrick SM. 2015. The Pre-Columbian Caribbean: Colonization, population dispersal, and island adaptations. PaleoAmerica 1:305-331. Fitzpatrick SM. 2016. Yap’s famous stone money. In: Haselgrove C. Krmnicek S, editors. The archaeology of money. Leicester Archaeology Monographs 24. Leicester: University of Leicester. p. 43-65. Fitzpatrick SM, Callaghan RT. 2008. Seafaring simulations and the origins of prehistoric settlers to Madagascar. In: O’Connor S, Clark G, Leach F, editors. Islands of inquiry: Colonisation and the archaeology of maritime landscapes. Terra Australis 29. Canberra: ANU E Press. p. 47-58. Fitzpatrick SM, Jew NP. 2018. Radiocarbon dating and Bayesian modelling of one of Remote Oceania's oldest cemeteries at Chelechol ra Orrak, Palau. Antiquity 92(361):149- 164. Fitzpatrick SM, McKeon S. 2020. Banking on stone money: Ancient antecedents to bitcoin. Economic Anthropology 7(1):7-21. Fitzpatrick SM, Caruso AC, Peterson JE. 2006. Metal tools and the transformation of an oceanic exchange systems. Journal of Historical Archaeology 40:9-27. Fitzpatrick SM, Kappers M, Giovas CM. 2010. The southward route hypothesis: examining Carriacou’s chronological position in Antillean prehistory. In: Fitzpatrick SM, Ross AH, editors. Island shores and distant pasts: Archaeological and biological approaches to the Pre-Columbian settlement of the Caribbean. Gainesville: University Press of Florida. p. 163-176. 907 Fitzpatrick SM, Thompson VD, Poteate AS, Napolitano MF, Erlandson JM. 2016. Marginalization of the margins: The importance of smaller islands in prehistory. The Journal of Islands and Coastal Archaeology 11(2):155-170. Fitzpatrick SM, Napolitano MF, Stone JH. 2021. What is the most parsimonious explanation for where pre-Columbian Caribbean peoples originated? In: Napolitano MF, Stone JH, DiNapoli RJ, editors. The archaeology of island colonization: Global approaches to initial human settlement. Gainesville: University Press of Florida. p. 231- 264. Florin SA, Fairbairn AS, Nango M, Djandjomerr D, Marwick B, Fullagar R, Smith M, Wallis LA, Clarkson C. 2020. The first Australian plant foods at Madjedbebe, 65,000– 53,000 years ago" Nature Communications 11(1):1-8. Force RW. 1959. Palauan Money: Some Preliminary Comments on Material and Origins. Journal of the Polynesian Society 68:40-44. Francis P, Jr. 1979. The Czech bead story. Lake Placid: Lapis Route Books. Francis P, Jr. 1988. The glass trade beads of Europe: Their manufacture, their history, and their identification. Lapis Route Books: Lake Placid. Francis P, Jr. 1991. Beads in Indonesia. Asian Perspectives 30:217-241. Francis P, Jr. 1994. Beads at the crossroads of continents. In: Fitzhugh WW, Chaussonnet V, editors. Anthropology of the North Pacific Rim, Washington D.C.: Smithsonian Institution Press. p. 281-305. Francis P, Jr. 1997. Palau heirloom beads. The Margaretologist 10:14. Francis P, Jr. 2002. Asia's maritime bead trade: 300 B.C. to the present. Honolulu: University of Hawai'i Press. Francis P, Jr, 2009a. Glass beads from other manufacturing centers. In: Blair EH, Pendleton LSA, Francis P, Jr., editors. The beads of St. Catherines Island. Anthropological Papers of the American Museum of Natural History. New York: American Museum of Natural History. p. 97-100. Francis P, Jr, 2009b. The glass beads of the paternostri of Venice. In: Blair EH, Pendleton, LSA, Francis P, Jr, editors. The beads of St. Catherines Island. Anthropological Papers of the American Museum of Natural History. New York: American Museum of Natural History. p. 65-71. Friedman I, Smith RL. 1960. A new dating method using obsidian: Part 1, the development of the method. American Antiquity 25(4):476-522. 908 Furness WH. 1910. The island of stone money: Uap of the Carolines. Philadelphia: Lippincott. Giovas CM. 2018. Pre-Columbian Amerindian lifeways at the Sabazan Site, Carriacou, West Indies. The Journal of Island and Coastal Archaeology 13:161-190. Giovas CM, Fitzpatrick SM. 2014. Prehistoric migration in the Caribbean: Past perspectives, new models and the Ideal Free Distribution of West Indian colonization. World Archaeology 46:569-589. Glassow MA. 2015. Chronology of red abalone middens on Santa Cruz Island, California, and evidence for subsistence and settlement change. American Antiquity 80(4):745-759. Goodwin ID, Browning SA, Anderson AJ. 2014. Climate windows for Polynesian voyaging to New Zealand and Easter Island. Proceedings of the National Academy of Sciences 111(41):14716–14721. Gratuze B. 1999. Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science 26:869-81. Gratuze B, Soulier I, Blet M, Vallauri L. 1996. De L' Origine du cobalt: Du verre à la céramique. Revue d'Archéométrie 20, 77-94. Green RC, Jones M, Sheppard P. 2008. The reconstructed environment and absolute dating of SE‐SZ‐8 Lapita site on Nendö, Santa Cruz, Solomon Islands. Archaeology in Oceania 43(2):49-61. Griffin JW. 1988. The archaeology of Everglades National Park: A synthesis. Tallahassee: Southeast Archaeological Center, National Park Service. Griffin JW. 2002. Archaeology of the Everglades. Gainesville: University Press of Florida. Guiry E. 2019. Complexities of stable carbon and nitrogen isotope biochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Frontiers in Ecology and Evolution 313. Hadden CS, Cherkinsky A. 2015. 14C variations in pre-bomb nearshore habitats of the Florida panhandle, USA. Radiocarbon 57(3):469-479. Hadden CS, Cherkinsky A. 2017. Carbon reservoir effects in eastern oyster from Apalachicola Bay, USA. Radiocarbon 59(5):1497-1506. 909 Hadden CS, Schwadron M. 2019. Marine reservoir effects in eastern oyster (Crassostrea virginia) from Southwestern Florida, USA. Radiocarbon 61(5):1501-1510. Halley RB, Vacher HL, Shinn EA. 1997. Geology and Hydrogeology of the Florida Keys. In: Vacher HL, Quinn T, editors. Geology and hydrogeology of carbonate islands. San Diego: Elsevier. p. 217–248. Hamilton WD, Krus AM. 2018. The myths and realities of Bayesian chronological modeling revealed. American Antiquity 83:187-203. Hamm G, Mitchell P, Arnold LJ, Prideaux GJ, Questiaux D, Spooner NA, Levchenko VA, Foley EC, Worthy TH, et al. 2016. Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature 539: 280-283. Hann JH. 1991. Missions to the Calusa. Gainesville: University of Florida Press. Hanna JA. 2019. Camáhogne’s chronology: The radiocarbon settlement sequence on Grenada, West Indies. Journal of Anthropological Archaeology 55:101075. Harris E. 1989. Introduction to faceted beads. In: Picard J, Picard R, editors. Russian blues, faceted and fancy beads from the West African trade. Carmel: Picard African Imports. p. 3-6. Harris M, Weisler M. 2017. Intertidal foraging on atolls. Prehistoric forager decision- making at Ebon Atoll, Marshall Islands. The Journal of Island and Coastal Archaeology 12(2):200-223. Hassan FA, Robinson SW. 1987. High-precision radiocarbon chronometry of ancient Egypt, and comparisons with Nubia, Palestine and Mesopotamia. Antiquity 61:119-135. Heaton T, Köhler P, Butzin M, Bard E, Reimer R, Austin W, Bronk Ramsey C, Grootes P, Hughen K, Kromer B, Reimer P, Adkins J, Burke A, Cook M, Olsen J, Skinner L. 2020. Marine20 – the marine radiocarbon age calibration curve (0-55,000 cal BP). 2020. Radiocarbon 62(4):779-820. Hess HH. 1948. Major structural features of the Western North Pacific, an interpretation of H.O. 5485 bathymetric chart, Korea to New Guinea. Geological Society of American Bulletin 59(5):417-446. Hezel FX. 1972. Early European contact with the Western Carolines. Journal of Pacific History 7:26–44. Hezel FX. 1979. Foreign ships in Micronesia: A compendium of ship contacts with the Caroline and Marshall Islands, 1521–1885. Saipan. 910 Hezel FX. 1983. The first taint of civilization: A history of the Caroline and Marshall Islands in pre-colonial days, 1521–1885. Honolulu. Hijikata H. 1993. Collective works of Hijikata Hisakatsu: Society and life in Palau. Tokyo: Sasakawa Peace Foundation. Hīroa TR. 1938. Vikings of the sunrise. New York: Lippincott. Hofman CL, Antczak AT, editors. Early settlers of the insular Caribbean: Dearchaizing the Archaic. Leiden: Sidestone Press. Hofman CL, Bright AJ, Hoogland MLP, Keegan WF. 2008. Attractive ideas, desirable goods: Examining the Late Ceramic Age relationships between Greater and Lesser Antillean Societies. Journal of Island and Coastal Archaeology 3:17-34. Hofman CL, Hoogland MLP, Michleburgh HL, Laffoon JE, Weston DA, Field MH. 2012. Life and death at Pre-Columbian Lavoutte, Saint Lucia, Lesser Antilles. Journal of Field Archaeology 37:209-225. Hoffmeister JE, Multer HG. 1968. Geology and origin of the Florida Keys. Geological Society of America Bulletin 79:1487–1502. Hoogland MCPL, Hofman C. 1993. Kelby’s Ridge 2, A 14th century Taino settlement on Saba, Netherlands Antilles. Analecta Praehistorica Leidensia 26:163-181. Hoogland MLP, Hofman CL. 2013. From corpse taphonomy to mortuary behavior in the Caribbean. The Oxford handbook of Caribbean archaeology 52:452. Houk P, Benavente D, Fread V. 2012. Characterization and evaluation of coral reefs around Yap Proper, Federated States of Micronesia. Biodiversity Conservation 21:2045- 2059. Horrocks M, Ogden J. 1998. The effects of the Taupo Tephra eruption of c. 1718 BP on the vegetation of Mt Hauhungatahi, central North Island, New Zealand. Journal of Biogeography 25(4):649-660. Hua Q, Barbetti M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273-1298. Hunt LB. 1976. The true story of purple of cassius. Gold Bulletin 9:134-139. Hunt TL, Lipo, CP. 2006. Late colonization of Easter island. Science. 311(5767):1603- 1606. Hunter-Anderson RL. 1981. Yapese stone fish traps. Asian Perspectives 24(1):81-90. 911 Hunter-Anderson RL. 1983. Yapese settlement patterns: An ethnoarchaeological approach. Agana: Pacific Studies Institute. Hunter-Anderson RL. 1984. Recent observations on traditional Yapese settlement patterns. New Zealand Journal of Archaeology 6:95-105. Hunter-Anderson RL. 1991. A review of traditional Micronesian high island horticulture in Belau, Yap, Chuuk, Pohnpei, and Kosrae. Micronesica 24(1):1-56. Hunter-Anderson RL, Zan Y. 1996. Demystifying the Sawei, a traditional interisland exchange system. ISLA: Journal of Micronesian Studies 4(1):1-45. Hutchinson I. 2020. Spatiotemporal variation in ΔR on the West Coast of North America in the Late Holocene: Implications for dating the shells of marine mollusks. American Antiquity 85(4):676-693. Hutchinson DL, Norr, L. 2006. Nutrition and health at contact in late prehistoric central Gulf Coast Florida. American Journal of Physical Anthropology 129:375-386. Ihm P. 2005. A contribution to the history of seriation in archaeology. In: Weihs C, Gaul W, editors. Classification – the ubiquitous challenge. Studies in classification, data analysis, and knowledge organization. Berlin: Springer. Ingram BL, Southon JR. 1996. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573-582. Intoh M. 1989. Changing prehistoric Yapese pottery technology: A case study of adaptive transformation. PhD dissertation. University of Otago. Intoh M. 2017. Colonisation and/or cultural contacts: A discussion of the Western Micronesia Case. In: Piper PJ, Hirofumi M, Bulbeck D, editors, New perspectives in Southeast Asian and Pacific prehistory. Terra Australis 45. Canberra: ANU Press. p. 233- 241. Intoh M, Leach F. 1985. Archaeological investigations in the Yap Islands, Micronesia: First millennium B.C. to present day. BAR International Series 277. Oxford: BAR Publishing. Intoh M, Shigehara N. 2004. Prehistoric pig and dog remains from Fais Island, Micronesia. Anthropological Science 112:257-267. Irwin G. 1989. Against, across and down the wind: A case for the systematic exploration of the remote Pacific Islands. The Journal of the Polynesian Society 98(2):167-206. Irwin G. 1992. The Prehistoric exploration and colonisation of the Pacific. Cambridge: Cambridge University Press. 912 Irwin G. 2008. Pacific seascapes, canoe performance, and a review of Lapita voyaging with regard to theories of migration. Asian Perspectives 47(1):12-27. Jacomb C, Holdaway RN, Allentoft ME, Bunce M, Oskam CL, Walter R., Brooks E. 2014. High-precision dating and ancient DNA profiling of moa (Aves: Dinornithiformes) eggshell documents a complex feature at Wairau Bar and refines the chronology of New Zealand settlement by Polynesians. Journal of Archaeological Science 50:24–30. Jeffery B. 2013. Reviving community spirit: Furthering the sustainable, historical and economic role of fish weirs and traps. Journal of Maritime Archaeology 8:29-57. Jew NP, Fitzpatrick SM. 2015. δ18O analysis of Atactodea striata: evaluating a proxy for sea-surface temperature and shellfish foraging from a prehistoric rockshelter in Palau, Micronesia. Journal of Archaeological Science: Reports 4: 477-486. Johnson CG, Alvis RJ, Hetzler RL, Blumenstock DI. 1960. Military geology of Yap main islands, Caroline Islands. Headquarters U.S. Army Pacific, Office of the Engineer. Kalish JM. 1993. Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters 114:549-554. Kane HH, Fletcher CH, Cochrane EE, Mitrovica JX, Habel S, Barbee M. 2017. Coastal plain stratigraphy records tectonic, environmental, and human habitability changes related to sea-level drawdown,‘Upolu, Sāmoa. Quaternary Research 87(2):246-257. Karklins K. 1982. Guide to the description and classification of glass beads. Ottowa: National Historic Parks and Sites Branch, Parks Canada, Environment Canada. Karklins K. 2012. Guide to the description and classification of glass beads found in the Americas. Beads: Journal of the Society of Bead Research 24:62-90. Kaspers F. 2014. Beads from Jablonec: A History in Beads. Marblings Publishing. Kayanne H, Yasukochi T, Yamaguchi T, Yamano H, Yoneda M. 2011. Rapid settlement of Majuro Atoll, central Pacific, following its emergence at 2000 years cal BP. Geophysical Research Letters 38(20):doi.org/10.1029/2011GL049163. Keate G. 1789. An account of the Pelew Islands. Basil: J.J. Tourneisen. Keegan WF. 1989. Creating the Guanahatabey (Ciboney): The modern genesis of an extinct culture. Antiquity 69:373-379. Keegan WF. 1994. West Indian archaeology. 1. Overview and foragers. Journal of Archaeological Research 2:255-284. 913 Keegan WF. 2000. West Indian archaeology. 3. Ceramic Age. Journal of Archaeological Reports 8:135-167. Keegan WF, Diamond JM. 1987. Colonization of islands by humans: A biogeographical perspective. In: Schiffer MB, editors. Advances in archaeological method and theory, vol. 10. San Diego: Academic Press. p. 49-92. Keegan WF, DeNiro MJ. 1988. Stable carbon- and nitrogen-isotope ratios of bone collagen used to study coral-reef and terrestrial components of prehistoric Bahamian diet. American Antiquity 53:320-336. Keegan WF, Hofman CL. 2017. The Caribbean before Columbus. New York: Oxford University Press. Keith ML, Anderson GM, Eichler R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and freshwater environments. Geochim Cosmochim Acta 28:1757–1786. Kelman I. 2010. Hearing local voices from small island developing states for climate change. Local Environment 15(7): 605-619. Kelman I, West JJ. 2009. Climate change and small island developing states: a critical review. Ecological and Environmental Anthropology 5(1):1-16. Kennett D, Ingram BL, Erlandson JM, Walker P. 1997. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, southern California. Journal of Archaeological Science 24(11):1051-1059. Kenyon I, Kenyon S, Hancock RGV, Aufreiter S. 1995. Neutron activation analysis of some 19th-century facetted glass trade beads from Ontario, Canada, that have chemical compositions resembling Bohemian glass. The Bead Forum 27:4-9. Kidd KE, Kidd MA. 1970. A classification system for glass beads for the use of field archaeologists. Canadian historic sites, Occasional Papers in Archaeology and History 1:45-89. Kirch PV. 1984. The evolution of the Polynesian chiefdoms. Cambridge: Cambridge University Press. Kirch PV. 1986. Rethinking East Polynesian Prehistory. The Journal of the Polynesian Society 95(1): 9-40. Kirch PV. 1997. The Lapita peoples: Ancestors of the Oceanic world. The Peoples of South-East Asia and the Pacific. Cambridge: Blackwell. 914 Kirch PV. 2017. On the roads of the winds: An archaeological history of the Pacific Islands before European Contact. Berkeley: University of California Press. Kirch PV, Sharp WD. 2005. Coral 230Th dating of the imposition of a ritual control hierarchy in precontact Hawaii. Science 307(5706):102-104. Kirch PV, Flenley JR, Steadman DW, Lamont, F, Dawson S. 1992. Ancient environmental degradation. Research and Exploration 8(2):166-179. Kitalong AH. 2008. Forests of Palau: a long-term perspective. Micronesica 40(1/2):9-31. Klimstra WD, Dooley AL. 1990. Food of the Key deer. Florida Scientist 53(4):264-273. Klumpp DW, Bayne BL, Hawkins AJS. 1992. Nutrition of the giant clam Tridacna gigas (L.) I. Contribution of filter feeding and photosynthates to respiration and growth. Journal of Experimental marine Biology and Ecology 155:105-122. Krämer A. 1926. Palau Volume 3. Hamburg: L. Friederichsen & Co. Translated by M.E. Locker. Krigbaum J, Fitzpatrick SM, Bankaitis J. 2013. Human paleodiet at Grand Bay, Carriacou, Lesser Antilles. The Journal of Island and Coastal Archaeology 8: 210-227. Krus AM, Cook R, Hamilton WD. 2015. Bayesian chronological modeling of SunWatch, a Fort Ancient village in Dayton, Ohio. Radiocarbon 57(5):965-977. Kubary JS. 1873. Die Palau-Inseln in der Südsee. Journal des Museum Godeffroy 1:177- 238. HRAF unofficial translation. Kubary JS. 1895. Ethnographische beiträge zur kenntnis des Karolinen archipels. Leiden: Verlag Von P.W.M. Trap. HRAF unofficial translation. Kuzmin, YV, Burr GS, Gorbunov SV, Rakov VA, and Razjigaeva NG. 2007. A Tale of two seas: Reservoir age correction values, (R, ΔR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):460-462. Laffoon JE, Hoogland MLP, Davies GR, Hofman CL. Human dietary assessment in the pre-colonial Lesser Antilles: New stable isotope evidence from Lavoutte, Saint Lucia. Journal Archaeological. Science: Reports 5:168-180. Lamb K, Swart PK. 2008. The carbon and nitrogen isotopic values of particulate organic material from the Florida Keys: A temporal and spatial study. Coral Reefs 27:351-362. Land LS, Lundelius EL, Valastro Jr S. 1980. Isotopic ecology of deer bones. Palaeogeography, Palaeoclimatology, Palaeoecology 32:143-151. 915 Langhamer A. 2003. The legend of Bohemian glass: A thousand years of glassmaking in the heart of Europe. Czech Republich: Tigris. Lanting JN, van der Plicht J. 1998. Reservoir effects and apparent 14C-ages. The Journal of Irish Archaeology 9:151-165. Lartaud F, Emmanuel L, de Rafelis M, Pouvreau S, Renard M. 2010. Influence of food supply on the δ13C signature of mollusc shells: Implications for palaeoenvironmental reconstitutions. Geo-Marine Letters 30(1):23-34. Lawson IT, Edwards KJ, Church MJ, Newton AJ, Cook GT, Gathorne‐Hardy FJ, Dugmore AJ. 2008. Human impact on an island ecosystem: pollen data from Sandoy, Faroe Islands. Journal of Biogeography 35(6):1130-1152. Lee TN, Johns WE, Zantopp J, Fillenbaum E. 1996. Moored observations of volume transport and variability in western boundary currents of the subtropical North Atlantic at 26.5° N. Journal of Physical Oceanography 26:446-466. Lee TN, Williams E. 1999. Mean distribution and seasonal variability of coastal currents and temperature in the Florida Keys with implications for larval recruitment. Bulletin of Marine Science 64(1):35-56. LeGrande AN, Schmidt GA. 2006. Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters 33(12):L12604. LeGrande AN, Schmidt GA. 2009. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Climate in the Past 5:441-455. Leppard TP, Runnels C. 2017. Maritime hominin dispersals in the Pleistocene: advancing the debate. Antiquity 91(356): 510–519. Leppard TP, Smith AJ, Cherry JF. 2021. The initial colonization and settlement of the Mediterranean Islands. In: Napolitano MF, Stone JH, DiNapoli RJ, editors. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Gainesville: University Press of Florida. p. 265-292. Lepofsky D, Lyons N, Moss ML. 2003. The use of driftwood on the North Pacific Coast: an example from Southeast Alaska. Journal of Ethnobiology 23(1):125-142. Libby W. 1955. Radiocarbon dating. Chicago: University of Chicago Press. Lidz BH, Shinn EA. 1991. Paleoshorelines, reefs, and a rising sea: South Florida, U.S.A. Journal of Coastal Research 7(1):203-229. 916 Lighty RG, MacIntyre IG, Stuckernath R. 1982. Acropora palmata reef framework: A reliable indicator of sea level in the Western Atlantic for the past 10,000 years. Coral Reefs 1(2):125-130. Lin G, Sternberg LSL. 1992. Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, USA. Aquatic Botany 42:303-313. Liritzis I, Laskaris N. 2011. Fifty years of obsidian hydration dating in archaeology. Journal of Non-Crystalline Solids 357(10):2011-2023. Lipo CP, Hunt TL, DiNapoli RJ. 2021.Temporal systematics: The colonization of Rapa Nui (Easter Island) and the conceptualization of time. In: Napolitano MF, Stone JH, DiNapoli RJ, editors. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Gainesville: University Press of Florida. p. 61-86. Liston J. 2005. An assessment of radiocarbon dates from Palau, western Micronesia. Radiocarbon 47(2):295-354. Liston J. 2007a. Palau Compact Road archaeological investigations, Babeldaob Island, Republic of Palau, phase II: Archaeological data recovery, volume VIII: Appendices. Honolulu: International Archaeological Research Institute, Inc. Liston J. 2007b. Palau Compact Road archaeological investigations, Babeldaob Island, Republic of Palau, phase II: Historic preservation investigations, volume VII: Laboratory analyses, synthesis, and recommendations. Honolulu: International Archaeological Research Institute, Inc. Liston J. 2010. Archaeological data recovery at Ngerumelong, Ngermid (OR-1:1), Koror State, Republic of Palau, Prepared for: Minister Sandra S. Pierantozzi, Koror. Liston J. 2011a. Palau Compact Road archaeological investigations, Babeldaob Island, Republic of Palau, phase IV: Archaeological monitoring, volume XI: Fieldwork reports. Honolulu: International Archaeological Research Institute, Inc. Liston J. 2011b. Palau Compact Road archaeological investigations, Babeldaob Island, Republic of Palau, phase IV: Archaeological monitoring, volume XII: Laboratory analyses and synthesis. Honolulu: International Archaeological Research Institute, Inc. Liston J. 2011c. Palau Compact Road archaeological investigations, Babeldaob Island, Republic of Palau, phase IV: Archaeological monitoring, Volume XIII: Appendices. Honolulu: International Archaeological Research Institute, Inc. 917 Louys J, Braje TJ, Chang C-H, Cosgrove R, Fitzpatrick SM, Fujity M, Hawkins S, Ingicco T, Kawamura A, MacPhee RDE, McDowell MC, et al. 2021. No evidence for widespread island extinctions after Pleistocene hominin arrival. Proceedings of the National Academy of Sciences 118(20):e2023005118. Lövgren L. 2011. Glass bead money: Traditional glass bead money in Palau, Western Micronesia, and a case study of a sample of small beads. Unpublished BA thesis. Visby: Gotland University. Lowe DJ, Newnham RM, McFadgen BG, Higham TFG. 2000. Tephras and New Zealand Archaeology. Journal of Archaeological Science 27:859-870. Loy TH, Spriggs M, Wickler S. 1992. Direct evidence for human use of plants 28,000 years ago: Starch residues on stone artefacts from the northern Solomon Islands. Antiquity 66(253):898-912. Lum JK, Cann RL. 2000. mtDNA lineage analyses: Origins and migrations of Micronesians and Polynesians. American Journal of Physical Anthropology 113(2):151- 168. Lynch J, Ross M, Crowley T. 2013. The Oceanic languages. Language family series. Hoboken: Taylor and Francis. MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton: Princeton University Press. Machida H, Blong RJ, Specht J, Moriwaki H, Torrence R, Hayakawa Y, Talai B, Lolok D, Pain CF. 1996. Holocene explosive eruptions of Witori and Dakataua caldera volcanoes in west New Britain, Papua New Guinea. Quaternary International 34: 65-78. Mangerud J, Bondevik S, Gulliksen S, Karin Hufthammer A, Høisæter T. 2006. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quaternary Science Reviews 25(23):3228-3245. Marquardt WH, Krus A, Thompson VD. 2020. Rethinking the Estero Island Site: A possible satellite village of Mound Key. Journal of Anthropological Archaeology. https://doi.org/10.1016/j.jaa.2020.101145. Martinsson-Wallin H, Wallin P, Anderson A, Solsvik R. 2013. Chronogeographic variation in initial East Polynesian construction of monumental ceremonial sites. The Journal of Island and Coastal Archaeology. 8(3):405-421. Masse WB, Snyder D. 1982. The final report of the 1981 field season of the Southern Illinois University Palau Archaeological Project, Center for Archaeological Investigations. Carbondale: Southern Illinois University. 918 Maul GA, Martin DM. 1993. Sea level rise at Key West, Florida, 1846-1992: America’s longest instrument record? Geophysical Research Letters 20(18):1955-1958. McCoy MD, Alderson HA, Thompson A. 2015. A new archaeological field survey of the site of Nan Madol, Pohnpei. Rapa Nui Journal 29(1):5–22 McCoy MD, Alderson HA, Hemi R, Cheng H, Edwards RL. 2016. Earliest direct evidence of monument building at the archaeological site of Nan Madol (Pohnpei, Micronesia) identified using 230Th/U coral dating and geochemical sourcing of megalithic architectural stone. Quaternary research 86(3):295-303. McKinnon H. 1999. Investigation of a hard water effect at Aotea Harbour, North Island, New Zealand. Masters of Science dissertation. New Zealand: University of Waikato. McWethy DB, Wilmshurst JM, Whitlock C, Wood JR, McGlone MS. 2014. A high- resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS One 9(11): e111328. McWethy, DB, Whitlock C, Wilmshurst JM, McGlone MS, Fromont M, Li X, Dieffenbacher-Krall A, Hobbs WO, Fritz SC, Cook ER. 2010. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proceedings of the National Academy of Sciences 107(50):21343-21348. Micó R. 2006. Radiocarbon dating and Balearic prehistory: reviewing the periodization of the prehistoric sequence. Radiocarbon 48(3):421-434. Mickleburgh HL, Pagán-Jiménez JR. New insights into the consumption of maize and other food plants in the pre-Columbian Caribbean from starch grains trapped in human dental calculus. Journal of Archaeological Science 39(7): 2468-2478. Morgan A. 1996. Mystery in the eye of the beholder: Cross-cultural encounters on 19th century Yap. Journal of Pacific History 31(1):27-41. Mulrooney MA, Bickler SH, Allen MS, Ladefoged TN. 2011. High-precision dating of colonization and settlement in East Polynesia. Proceedings of the National Academy of Sciences 108(23): E192-E194. Napolitano MF, Fitzpatrick SM, Clark G, Stone JH. 2019a. New Investigations of Early Prehistoric Settlement on Yap, Western Caroline Islands. The Journal of Island and Coastal Archaeology 14(1):101-107. Napolitano MF, DiNapoli RJ, Stone JH, Levin MJ, Jew NP, O’Connor JT, Lane BG, Fitzpatrick SM. 2019b. Reevaluating human colonization of the Caribbean using chronometric hygiene and Bayesian modeling. Science Advances 5(12):eaar7806. 919 Napolitano MF, DiNapoli RJ, Stone JH. 2021. Introduction: The archaeology of island colonization. In: Napolitano MF, Stone JH, DiNapoli RJ, editors. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Society and Ecology in Island and Coastal Archaeology. Gainesville: University Press of Florida. p. 1-34. Nelson GC, Fitzpatrick SM. 2005. Preliminary Investigations of the Chelechol ra Orrak Cemetery, Republic of Palau: I, Skeletal Biology and Paleopathology. Journal of Anthropological Science 113(3):1-12. Nero KL. 1996. State Histories: Representations of Koror. Paper presented at the 11th PHA Conference, Hilo, Hawaii. Neuwirth W. 1994. Beads From Gablonz: Historicism, art nouveau. Vienna: Privately Printed. Neuwirth W. 2011. Beads from Gablonz, Beads: Journal of the Society of Bead Research 23:3-111. Newnham RM, Lowe DJ, McGlone MS, Wilmshurst JM, Higham TFG. 1998. The Kaharoa Tephra as a critical datum for earliest human impact in northern New Zealand. Journal of Archaeological Science 25(6):533-544. Newsom LA, Wing ES. 2004. On land and sea: Native American uses of biological resources in the West Indies. Tuscaloosa: University of Alabama Press. Nunn PD, Petchey F. 2013. Bayesian Re-Evaluation of Lapita Settlement in Fiji: Radiocarbon Analysis of the Lapita Occupation at Bourewa and Nearby Sites on the Rove Peninsula, Viti Levu Island. Journal of Pacific Archaeology 4(2):21–34. Nunn PD, Runman J, Falanruw M, Kumar R. 2017. Culturally grounded responses to coastal change on islands in the Federates States of Micronesia, northwest Pacific Ocean. Regional Environmental Change 17:959-971. Nuttle WK, Fourqurean JW, Cosby BJ, Zieman JC, Robblee MB. 2000. Influence of net freshwater supply on salinity in Florida Bay. Water Resources Research 36(7):1805- 1822. O’Connell JF, Allen J, Williams MAJ, Williams AN, Turney CSM, Spooner NA, Kamming J, Brown G, Cooper A. 2018. When did Homo sapiens first reach Southeast Asia and Sahul? Proceedings of the National Academy of Sciences 115(34):8482-8490. O’Connor S, Ulm S, Fallon SJ, Barham A, Loch I. 2010. Pre-bomb marine reservoir variability in the Kimberly Region, western Australia. Radiocarbon 52(2-3):1158-1165. 920 O’Sullivan PB, Morwood M, Hobbs D, Suminto FA, Situmorang M, Raza A, Maas R. 2001. Archaeological implications of the geology and chronology of the Sao basin, Flores, Indonesia. Geology 29(7): 607-610. Opitz CJ. 2004. Traditional money on Yap and Palau. Ocala: First Impressions Printing, Inc. Osborne D. 1958. The Palau Islands: Stepping stones into the Pacific. Archaeology 11:162-171. Osborne D. 1966. The Archaeology of the Palau Islands: An intensive survey. Honolulu: Bishop Museum Press. Papoulia C. 2017. Seaward dispersals to the NE Mediterranean islands in the Pleistocene: The lithic evidence in retrospect. Quaternary International 431:64-87. Petchey F. 2009. Dating marine shell in Oceania: issues and prospects. In: Fairbairn A, O’Connor S, Marwick B, editors. New Directions in Archaeological Science. Terra Australis 28. Canberra: ANU E Press. p. 157-172. Parmentier RJ. 1985. Times of the signs: Modalities of history and levels of social structure in Belau. In: Mertz E, Parmentier RJ, editors. Semiotic mediation: Sociocultural and psychological perspectives. Orlando: Academic Press. p. 131-154. Parmentier RJ. 2002. Money walks, people talk. L'Homme: Revue Française d’Anthropologie 162:49-79. Pearce NJG, Perkins WT, Westgate JA, Gorton MT, Jackson SE, Neal CR, Chenery SP. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and SRM 612 glass reference materials. Geostandards Newsletter XXI:114-115. Perkins RM, Krause SM. 2018. Adapting to climate change impacts in Yap State, Dederated States of Micronesia: The importance of environmental conditions and intangible cultural heritage. Island Studies Journal 13(1):65-78. Petchey F. 2009. Dating marine shell in Oceania: issues and prospects. In: Fairbairn A, O’Connor S, Marwick B, editors. New Directions in Archaeological Science. Terra Australis 28. Canberra: ANU E Press. p. 157-172. Petchey F, Green R. 2005. Use of three isotopes to calibrate human bone radiocarbon determinations from Kainapirina (SAC), Watom Island, Papua New Guinea. Radiocarbon, 47(2): 181-192. Petchey F, Clark G. 2010. A marine reservoir correction value (ΔR) for the Palauan Archipelago: Environmental and oceanographic considerations. The Journal of Island and Coastal Archaeology 5(2):236-252. 921 Petchey F, Clark G. 2011. Tongatapu hardwater: investigation into the 14C marine reservoir offset in lagoon, reef and open ocean environments of a limestone island. Quaternary Geochronology 6:539-549. Petchey F, Kirch PV. 2019. The importance of shell: Redating of the To’aga site (Ofu Island, Manu’a) and a revised chronology for the Lapita to Polynesian Plainware transition in Tonga and Samoa. PlosOne 14(9): e0211990. Petchey F, Clark G. 2021. Clarifying the age of initial settlement horizon in the Mariana Islands and the impact of hard water: A response to Carson (2020). Radiocarbon doi:10.1017/RDC.2021.27. Petchey F, Schmid MME. 2020. Vital evidence: Change in the marine 14C reservoir around New Zealand (Aotearoa) and implications for the timing of early settlement. Scientific Reports 10(14266). Petchey F, Anderson A, Zondervan A, Ulm S, Hogg A. 2008a. New marine ∆R values for the South Pacific subtropical gyre region. Radiocarbon 50(3):373-397. Petchey F, Anderson A, Hogg A, Zondervan A. 2008b. The marine reservoir effect in the Southern Ocean: An evaluation of extant and new ΔR values and their application to archaeological chronologies. Journal of the Royal Society of New Zealand 38(4):243- 262. Petchey F, Allen MS, Addison DJ, Anderson A. 2009. Stability in the South Pacific surface marine 14C reservoir over the last 750 years: Evidence from American Sāmoa, the southern Cook Islands and the Marquesas. Journal of Archaeological Science 36(10):2234-2243. Petchey F, Spriggs M, Leach F, Seed M, Sand C, Pietrusewsky M, Anderson, K. 2011. Testing the human factor: radiocarbon dating the first peoples of the South Pacific. Journal of Archaeological Science. 38(1):29-44. Petchey F, Ulm S, David B, McNiven IJ, Asmussen B, Tomkins H, Dolby N, Aplin K, Richards T, Rowe C, and Leavesley M. 2013. High-resolution radiocarbon dating of marine materials in archaeological contexts: Radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp., and Echinoidea at Caution Bay, Southern Coastal Papua New Guinea. Archaeological and Anthropological Sciences 5(1):69-80. Petchey F, Spriggs M, Bedford S, Valentin F, Buckley, H. 2014. Radiocarbon dating of burials from the Teouma Lapita cemetery, Efate, Vanuatu. Journal of Archaeological Science 50:227-242. Petchey F, Spriggs M, Bedford S, Valentin F. 2015. The chronology of occupation at Teouma, Vanuatu: Use of a modified chronometric hygiene protocol and Bayesian 922 modeling to evaluate midden remains. Journal of Archaeological Science: Reports 4:95- 105. Petchey F, Ulm S, David B, McNiven IJ, Asmussen B, Tomkins H, Richards T, Rowe C, Leavesley M, Mandui H, Stanisic J. 2016. 14C marine reservoir variability in herbivores and deposit-feedings gastropods from an open coastline, Papua New Guinea. Radiocarbon 54(3-4):967-978. Petchey F, Clark G, Winter O, O’Day P, Litster M. 2017. Colonisation of Remote Oceania: New dates for the Bapot-1 site in the Mariana Islands. Archaeology in Oceania 52:108-126. Petchey F, Clark G, Lindeman I, O’Day P, Southon J, Dabell K, Winter O. 2018. Forgotten news: Shellfish isotope insight into changing sea-level and associated impact on the first settlers of the Mariana Archipelago. Quaternary Geochronology 48:180-194. Petrie CA, Torrence R. 2008. Assessing the effects of volcanic disasters on human settlement in the Willaumez Peninsula, Papua New Guinea: a Bayesian approach to radiocarbon calibration. The Holocene 18(5):729-744. Pitts PA. 1994. An investigation of near-bottom flow patterns along and across Hawk Channel, Florida Keys. Bulletin of Marine Science 54(3):610–20. Pope KO, Terrell JE. 2008. Environmental setting of human migrations in the circum‐ Pacific region. Journal of Biogeography 35(1):1-21. Power EM. 2011. Historic beads. In: Liston J, editor. Palau Compact Road archaeological investigations, Babeldaob Island, Republic of Palau, phase IV: Archaeological monitoring, volume XII: Laboratory analyses and synthesis. Honolulu: International Archaeological Research Institute, Inc. p. 371-385. Prasad GVR, Culp R, Cherkinsky A. 2019. δ13C correction to AMS data: Values derived from AMS vs IRMS values. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 455:244-249. Prebble M, Wilmshurst JE. 2009. Detecting the initial impact of humans and introduced species on island environments in Remote Oceania using palaeoecology. Biological Invasions 11:1529-1556. Randall HA. 1964. A study of the growth and other aspects of the biology of the West Indian topshell, Cittarium pica (Linnaeus). Bulletin of Marine Science of the Gulf and Caribbean 14(3):424-443. Rawlence NJ, Collins CJ, Andersen CNK, Maxwell JJ, Smith IWG, Robertson BC, Knapp M, Horsburgh A, Stanton JL, Scofield RP, et al. 2016. Human-mediated extirpation of the unique Chatham Islands sea lion and implications for the conservation 923 management of remaining New Zealand sea lion populations. Molecular Ecology 25(16):3950-3961. Reid DG, Dyal P, Lozouet P, Glaubrecht M, Williams ST. 2008. Mudwhelks and mangroves: The evolutionary history of an ecological association (Gastropoda: Potamididae). Molecular Phylogenetics and Evolution 47(2): 680-699. Reimer RW, Reimer PJ. 2017. An online application for ΔR calculation. Radiocarbon 59(5):1623-1627. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55(3):1869-1887. Reimer P, Austin W, Bard E, Bayliss A, Blackwell P, Bronk Ramsey C, Butzin M, Cheng H, Edwards R, Friedrich M, et al. 2020. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62(4):725-757. Remengesau FK. 1997. Traditional udoud of Palau: Mysteries, recordings, and Future Use. Journal of the Pacific Society 19:9-18. Reynolds LK, Berg P, Zieman JC. 2007. Lucinid clam influence on the biochemistry of the seagrass Thalassia testudinum sediments. Estuaries and Coasts 30(3):482-490. Robertson R. 2003. The edible West Indian “Whelk” Cittarium pica (Gastropoda: Trochidae): Natural history with new observations. Proceedings of the National Academy of Natural Sciences of Philadelphia 153:27-47. Richards ZT, Chuan-Chou S, Hobbs J-P A, Wu C-C, Jiang X, Beardsley F. 2015. New precise dates for the ancient and sacred coral pyramidal tombs of Leluh (Kosrae, Micronesia). Science Advances 1(2):e1400060. Rick TC, Vellanoweth RL, Erlandson, JM. 2005. Radiocarbon dating and the “old shell” problem: Direct dating of artifacts and cultural chronologies in coastal and other aquatic regions. Journal of Archaeological Science 32(11):1641-1648. Rick TC, Henkes GA, Lowery DL, Colman SM, Culleton BJ. 2012. Marine Radiocarbon Reservoir Corrections (∆R) for Chesapeake Bay and the Middle Atlantic Coast of North America. Quaternary Research 77(1):205–210. Rick TC, Kirch PV, Erlandson JM, Fitzpatrick SM. 2013. Archeology, deep history, and the human transformation of island ecosystems. Anthropocene 4: 33-45. Ridings R. 1996. Where in the world does obsidian hydration dating work? American Antiquity 61(1):136-148. 924 Rieth TM, Hunt TL. 2008. A radiocarbon chronology for Samoan prehistory. Journal of Archaeological Science 35(7): 1901-1927. Rieth TM, Athens, JS. 2019. Late Holocene human expansion into Near and Remote Oceania: A Bayesian model of chronologies of the Mariana Islands and Bismarck Archipelago. Journal of Island and Coastal Archaeology 14(1):5-16. Rieth TM, Hamilton WD. 2021. Improving dating accuracy and precision for Mid-Late Holocene island colonization. In: Napolitano MF, Stone JH, DiNapoli RJ, editors. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Gainesville: University Press of Florida. p. 180-206. Rieth TM, Morrison AE, Addison DJ. 2008. The temporal and spatial patterning of the initial settlement of Sāmoa. The Journal of Island and Coastal Archaeology 3(2):214-239. Rieth TM, Hunt TL, Lipo C, Wilmshurst JM. 2011. The 13th century Polynesian colonization of Hawai’i Island. Journal of Archaeological Science 38(10):2740-2749. Rijsdijk KF, Zinke J, de Louw PG, Hume JP, van der Plicht H, Hooghiemstra H, Meijer HJM, Vonhof HB, Porch N, Florens FBV, et al. 2011. Mid-Holocene (4200 kyr BP) mass mortalities in Mauritius (Mascarenes): insular vertebrates resilient to climatic extremes but vulnerable to human impact. The Holocene 21(8):1179-1194. Rizal Y, Westaway KE, Zaim Y, van den Bergh GD, Bettis EA, Morwood MJ, Huffman OF, Grün, Joannes-Boyau R, Bailey RM, et al. 2020. Last appearance of Homo erectus at Ngandong, Java, 117,000-108,000 years ago. Nature 577:381-385. Ritzenthaler RE. 1954. Native money of Palau. Milwaukee: Milwaukee Public Museum Publications in Anthropology. Ross LA. 1997. Glass and ceramic trade beads from the Native Alaskan neighborhood. In: Lightfoot KG, Schiff AM, Wake TA, editors. The archaeology and ethnohistory of Fort Ross, California, volume 2: The Native Alaskan neighborhood: A multiethnic community at Colony Ross. Contributions of the University of California Archaeological Research Facility. Berkeley: University of California. p. 179-212. Ross LA. 2003. Bohemian faceted-spheroidal mold-pressed glass bead attributes: Hypothesized terminus post quem dates for the 19th century. Beads: Journal for the Society of Bead Researchers 15:41-52. Ross LA, Pflanz, B. 1989. Bohemian glass bead making: Translation and discussion of a 1913 German technical article. Beads: Journal of the Society of Bead Researchers 1:81- 94. 925 Ross M. 1996. Is Yapese Oceanic? In: Nothofer B, editor. Reconstruction, classification, description: Festschrift in honor of Isidore Dyen. Meyer: Abera-Verl. p. 121-166. Rouse I. 1986. Migrations in prehistory. New Haven: Yale University Press. Runnels C. 2014. Early Palaeolithic on the Greek Islands? Journal of Mediterranean Archaeology 27(2):211-230. Runnels C. 2021. The Paleolithic exploration of the Greek Islands and Middle Pleistocene Hominin dispersals: The case for behavioral variability over behavioral modernity. In: Napolitano MF, Stone JH, DiNapoli RJ, editors. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Gainesville: University Press of Florida. p. 87-103. Sanchez GM, Rick TC, Culleton BJ, Kennett DJ, Buckley M, Erlandson JM, Losey RL. 2018. Radiocarbon dating legacy collections: A Bayesian analysis of high-precision AMS 14C dates from the Par-Tee site, Oregon. Journal of Archaeological Science: Reports 21:833-848. Schreyer JA. 1790. Kommerz, Fabriken und Manufakturen des Königreichs Böhmen, Theil, Prag-Leipzig. Schiffer MB. 1986. Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. Journal of Archaeological Science 13(1):13-30. Schmid MM, Wood R, Newton AJ, Vesteinsson O, Dugmore AJ. 2019. Enhancing radiocarbon chronologies of colonization: chronometric hygiene revisited. Radiocarbon 61:629-647. Schmid MM, Dugmore AJ, Foresta L, Newton AJ, Vésteinsson O, Wood R. How 14C dates on wood charcoal increase precision when dating colonization: The examples of Iceland and Polynesia. Quaternary Geochronology 48:64-71. Schmid MME, Dugmore AJ, Newton AJ, Vesteinsson O. 2021. Multidisciplinary chronological data from Iceland indicate a Viking Age settlement flood, rather than a flow or a trickle. In Napolitano MF, Stone JH, DiNapoli RJ, editors. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Gainesville: University Press of Florida. p. 132-179. Schoeninger MJ, DeNiro MJ. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48:625- 639. Schott FA, Lee TN, Zantopp R. 1988. Variability of structure and transport of the Florida Current in the period range of days to seasonal. Journal of Physical Oceanography 18:1209-1230. 926 Schulting RJ, Richards MP. 2002. Finding the coastal Mesolithic in southwest Britain: AMS dates and stable isotope results on human remains from Caldey Island, South Wales. Antiquity 76:1011–1025. Sear DA, Allen MS, Hassall JD, Maloney AE, Langdon PG, Morrison AE, Henderson ACG, Mackay H, Croudace IW, Clarke C, et al. 2020. Human settlement of East Polynesia earlier, incremental, and coincident with prolonged South Pacific drought. Proceedings of the National Academy of Sciences 117(16): 8813-8819. Seersholm FV, Cole TL, Grealy A, Rawlence NJ, Greig K, Knapp M, Stat M, Hansen AJ, Easton LJ, Shepherd L, et al. 2018. Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey. Proceedings of the National Academy of Sciences 115(30):7771-7776. Sepkoski Jr. JJ. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1-560. Shade PJ, Anthony SS, Takasaki KJ. 1992. Ground-water resources reconnaissance of the Yap main islands, Federated States of Micronesia. Water-Resources Investigations Report 90-4074. U.S. Geological Survey, Honolulu. Shane P. 2000. Tephrochonology: A New Zealand case study. Earth Science Reviews 49(1- 4):223-259. Sharp WD, Kahn JG, Polito CM, Kirch PV. 2010. Rapid evolution of ritual architecture in central Polynesia indicated by precise 230Th/U coral dating. Proceedings of the National Academy of Sciences 107(30):13234-13239. Sheppard P. 2019. Early Lapita colonisation of Remote Oceania: An update on the leapfrog hypothesis. In: Bedford S, Spriggs M, editors. Debating Lapita: Distribution, chronology, society and subsistence. Terra Australis 52. Canberra: ANU Press. p. 135- 154. Shinn A, Hudson H, Halley RB, Lidz B. 1977. Topographic control and accumulation rate of some Holocene coral reefs: South Florida and Dry Tortugas. Proceedings: Third International Coral Reef Symposium. Miami: Coastal and Marine Geology Program. Siegel PE, editor. 2018. Island historical ecology: Socionatural landscapes of the Eastern and Southern Caribbean. New York: Berghahn Books. Siegel PE, Jones JG, Pearsall DM, Dunning NP, Farrell P, Duncan NA, Curtis JH, Singh SK. Paleoenvironmental evidence for first human colonization of the eastern Caribbean. Quaternary Science Reviews 129:275-295. 927 Siegel PE, Jones JG, Pearsall DM, Dunning NP, Farrell P, Duncan NA, Curtis JH. 2019. In: Hofman CL, Antczak, AT, editors. Ecosystem engineering during the human occupations of the Lesser Antilles, in Early Settlers of the Insular Caribbean: Dearchaizing the Archaic. Leiden: Sidestone Press. p. 77-88. Smith CW. 1983. Soil surveys of Islands of Yap Federated States of Micronesia. U.S. Department of Agriculture Soil Conservation Service. Smith SP. 1910. Hawaiki the original home of the Maori. Christchurch: Whitcombe and Tombs. Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WWS. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1): 167-180. Spennemann DHR. 1987. Resources of prehistoric Tongatapu, Tonga: Effects of human predation and changing environment. Archaeology in Oceania 22(3):81-96. Spriggs M. 1989. The dating of the Island Southeast Asian Neolithic: An attempt at chronometric hygiene and linguistic correlation. Antiquity 63(24):587-613. Spriggs M. 1990. Dating Lapita: Another view. In: Spriggs M, editor. Lapita design, form and composition: Proceedings of the Lapita design workshop. Canberra: Australian National University. p. 1-27. Spriggs M. 1991. Lapita origins, distribution, contemporaries and successors, revisited. In: Bellwood P, editor. Indo-Pacific prehistory 1990: Proceedings of the 14th Congress of the Indo-Pacific Prehistory Association. Canberra: Indo-Pacific Prehistory Association. p. 306–312. Spriggs M. 2011. Archaeology and the Austronesian expansion: where are we now?. Antiquity 85(328). Spriggs M, Anderson A. 1993. Late colonization of East Polynesia. Antiquity 67: 200– 217. Stevenson C, Sheppard P, Sutton D, Ambrose W. 1996. Advances in the hydration dating of New Zealand obsidian. Journal of Archaeological Science 23(2): 233-242. Stevenson CM, Abdelrehim IM, Novak SW. 2001. Infra-red photoacoustic and secondary ion mass spectrometry measurements of obsidian hydration rims. Journal of Archaeological Science 28:109-115. Stokes AV, Keegan WF. 1996. A reconnaissance for prehistoric archaeological sites on Grand Cayman. Caribbean Journal of Science 32:425-430. 928 Storlazzi CD, Gingerich SB, van Dongeren A, Cheriton OM, Swarzenski PW, Quataert E, Voss CI, Field DW, Annamalai H, Piniak GA, McCall R. 2018. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Science Advances 4(4):eaap9741. Stuiver M, Pearson GW. 1986. High-Precision Calibration of the Radiocarbon Time Scale, AD 1950-500 BC. Radiocarbon 28(2B):805–838. Stuiver M, Braziunas TF. 1993. Modeling Atmospheric 14C Influences and 14C Ages of Marine Samples to 10,000 BC. Radiocarbon 31(1):137-189. Stuiver M, Pearson GW, Braziunas TF. 1986. Radiocarbon Age Calibration of Marine Samples Back to 9000 Cal Yr BP. Radiocarbon 28(2B):980–1021. Stuiver M, Reimer PJ, Reimer RW. 2020. CALIB 8.2. www.calib.org. Sullivan RM, van Hengstum PJ, Donnelly JP, Winkler TS, Mark SE, Albury NA. 2020. Absolute and relative dating of human remains in a Bahamian sinkhole (Great Cistern, Abaco). Journal of Archaeological Science: Reports 32:102441. Summerhayes GR. 2018. Coconuts on the move: Archaeology of Western Pacific. Journal of Pacific History 53(4):375-396. Sutton DG. 1994. Origins of the first New Zealanders. Auckland: Auckland University Press. Sutton DG, Flenley JR, Li X, Todd A, Butler K, Summers R, Chester PI. 2008. The timing of the human discovery and colonization of New Zealand. Quaternary International 184(1):109-121. Swart PK, Wilson AF, Jell JS. 1983. Oxygen isotope variation on a lagoonal platform reef, Heron Island, Great Barrier Reef. Marine and Freshwater Research 34:813–819. Swart PK, Healy GF, Dodge RE, Kramer P, Hudson JH, Halley RB, Robblee MB. 1996. The stable oxygen and carbon isotopic record from coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence. Palaeogeography, Palaeoclimatology, Palaeoecology 124(1-4):219-237. Swisher CC, Rink WJ, Antón SC, Schwarcz HP, Curtis GH, Widiasmoro AS. 1996) Latest Homo erectus of Java: potential contemporaneity with Homo sapiens in Southeast Asia. Science 274(5294):1870-1874. Semper K. 1873. Die Palau-Inseln im Stillen Ocean. Leipzig: F. A. Brockhaus. Semper K. 1982 [1873]. Die Palau-Inseln im Stillen Ocean. Translated by M.L. Berg. Leipzig: F. A. Brockhaus. 929 Silliman SW. 2009. Change and continuity, practice and memory: Native American persistence in Colonial New England. American Antiquity 74(2):211-230. Stone JH. 2020. The Bioarchaeology of Initial Human Settlement in Palau, Western Micronesia. PhD dissertation. University of Oregon, Eugene. Stone JH, Fitzpatrick SM, Napolitano MF. 2017. Disproving Claims for Small-bodied Humans in the Palauan Archipelago. Antiquity 91(360):1546-1560. Taché K, Hart JP. 2013. Chronometric hygiene of radiocarbon databases for early durable cooking vessel technologies in northeastern North America. American Antiquity 78(2):359-372. Tagliabue A, Bopp L. 2008. Towards understanding global variability in ocean carbon- 13. Global Biogeochemical Cycles 22:GB1025. Takayama J. 1982. A brief report on archaeological investigations of the southern part of Yap Island and nearby Ngulu Atoll. In Aoyagi, T, editor Islanders and Their Outside World: A report of the cultural and anthropological research in the Caroline Islands of Micronesia in 1980-1981. Tokyo: Rikkyo University. Committee for Micronesian Research. P. 77-104. Tankersly TB, Dunning NP, Owen LA, Sparks J. 2018. Geochronology and paleoenvironmental framework for the oldest archaeological site (7800-7900 cal BP) in the West Indies, Banwari Trace, Trinidad. Latin American Antiquity 29:681-695. Tebano T, Paulay G. 2000. Variable recruitment and changing environments create a fluctuating resource: the biology of Anadara uropigmelana (Bivalvia: Arcidae) on Tarawa Atoll. Atoll Research Bulletin 488. Washington D.C.: National Museum of Natural History Smithsonian Institution. p. 1-5. Terry JP, Chui TFM. 2012. Evaluating the fate of freshwater lenses on atoll islands after eustatic sea-level rise and cyclone-driven inundation: A modelling approach. Global and Planetary Change 88:76-84. Thijssen-Etpison M. 1997. Palau: Portrait of Paradise, Revised third ed. Koror:NECO Marine Corporation. Titchenal PB. 1999. Palauan money beads: An analysis of glass beads found with a child's burial at site B:OR-1:8, Feature 2, Burial Pit 2, Hung Kuo, Koror, Republic of Palau. Honolulu: Jeffrey Pantaleo Consultants. Titchenal PB. 2001. Description and classification of glass beads and bangles recovered from traditional Palauan burial platforms at the village of Ngerielb, Site B:OR-1:8, Ngermid, Koror, Republic of Palau. Honolulu: Pantaleo Consultants LLC. 930 Titchenal PB. Drolet R, Pantaleo, J. 1998. Ngiwal: Archaeological data recovery and monitoring in a rural village on Babeldaob in the Republic of Palau. Guam: Garcia and Associates. Thomas DH. 2008. Native American landscapes of St. Catherines Island. II. The data. Anthropological Papers of the American Museum of Natural History 88(2). New York: American Museum of Natural History. Thomas FR. 2001. Mollusk habitats and fisheries in Kiribati: An assessment from the Gilbert Islands. Pacific Science 55(1)77-97. Thomas KD. 2015. Molluscs emergent, Part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. Journal of Archaeological Science 56:133-140. Thomas DH, Sanger MC, Hayes RH. 2013. Revising the ¹⁴C reservoir correction for St. Catherines Island, Georgia. In: Thompson VD, Thomas DH, editors. Life among the tides: Recent archaeology on the Georgia Bight. Anthropological Papers of the American Museum of Natural History 98. New York: American Museum of Natural History. p. 25- 46. Thompson VD, Krus A. 2018. Contemplating the history and future of radiocarbon dating in the American Southeast. Southeastern Archaeology 37(1):1-11. Thompson, VD, Marquardt WH, Walker KJ, Roberts Thompson A, Newsom LA. 2018. Collective action, state building, and the rise of the Calusa, Southwest Florida. Journal of Anthropological Archaeology 51:28-44. Tobler R, Rohrlach A, Soubrier J, Bover P, Llamas B, Tuke J, Bean N, Abdullah- Highfold A, Agius S, O’Donoghue A, O’Loughlin I, Sutton P, Zilio F, Walshe K, Williams AN, Turney CSM, Williams M, Richards SM, Mitchell RJ, Kowal E. 2017. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544(7649):180-184. Torrence R. 2008. Punctuated landscapes: Creating cultural places in volcanically active environments. Handbook of Landscape Archaeology 333-343. Torrence R, Swadling P. 2008. Social networks and the spread of Lapita. Antiquity 82(317): 600-616. Torrence R, Neall V, Doelman T, Rhodes E, McKee C, Davies H, Bonetti R, Guglielmetti A, Manzoni A, Oddone M, et al. 2004. Pleistocene colonisation of the Bismarck Archipelago: new evidence from West New Britain. Archaeology in Oceania 39(3):101-130. 931 Toth LT, Cheng H, Edwards RL, Ashe E, Richey JN. 2017. Millennial-scale variability in the local radiocarbon reservoir age of south Florida during the Holocene. Quaternary Geochronology 42:130-143. Tuniz C, Bird JR, Fink D, Herzog GF. 1998. Accelerated mass spectrometry: Ultrasensitive analysis for global science. Boca Raton: CRC Press. Turgeon DD, Lyons WG, Mikkelsen P, Rosenberg G, Moretzsohn F. 2009. Bivalvia (Mollusca) of the Gulf of Mexico. In: Felder DL, Camp DK, editors. Gulf of Mexico: Origins, waters, and biota. College Station: Texas A&M University Press. p. 711-744. Turvey ST, Oliver JT, Narganes Storde YM, Rye P. 2007. Late Holocene extinction of Puerto Rican native land mammals. Biological Letters 3:193-196. Ulm, S. 2006. Australian marine reservoir effects: a guide to ΔR values. Australian Archaeology 65:57-60. Ushijima I. 1982. The control of reefs and lagoons: Some aspects of the political structure of Ulithi Atoll. In: Aoyagi M (editor). Islanders and their outside world: A report of the cultural anthropological research in the Caroline Islands of Micronesia in 1980-1981. Committee for Micronesian Research. Tokyo: Rikkyo University. Vecchi GA, Harrison DE. 2000. Tropical Pacific sea surface temperature anomalies, El Niño, and Equatorial westerly wind events. Journal of Climate 13(111):1814-1830. Walker K. 2013. The Pineland site complex: Environmental contexts. In: Marquardt WH, Walker KJ, editors. The Archaeology of Pineland: A coastal Southwest Florida site complex, A.D. 50-1710. Gainesville: University Press of Florida. p. 23-52. Waller T. 1991. Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). In: Shumway SE, editor. Scallops: Biology, ecology and aquaculture. Amsterdam: Elsevier. Waller T. 1993. The evolution of “Chlamys” (Mollusca: Bivalvia: Pectinidae) in the tropical westerns Atlantic and eastern Pacific. American Malacological Bulletin 10(2):195-249. Wang F, Li Y, Wang J. 2016. Intraseasonal variability of the surface zonal currents in the western tropical Pacific Ocean: Characteristics and mechanisms. Journal of Physical Oceanography 46(12):3639-3660. Watanabe J, Inacio M. n.d. Udoud er a Belau. Koror: Palau Ministry of Education. Weisler MI, Collerson KD, Feng YX, Zhao JX, Yu, KF 2006. Thorium-230 coral chronology of a late prehistoric Hawaiian chiefdom. Journal of Archaeological Science, 33(2):273-282. 932 Weisler MI, Yamano H, Hua Q. 2012. A multidisciplinary approach for dating human colonization of Pacific atolls. The Journal of Island and Coastal Archaeology 7(1):102- 125. Wilmshurst JM. 1997. The impact of human settlement on vegetation and soil stability in Hawke's Bay, New Zealand. New Zealand Journal of Botany 35(1):97-111. Wilmshurst JM, Anderson AJ, Higham TFG, Worthy TH. 2008. Dating the Late Prehistoric Dispersal of Polynesians to New Zealand Using the Commensal Pacific Rat. Proceedings of the National Academy of Sciences of the United States of America 105(22):7676–7680. Wilmshurst J, Hunt TL, Lipo CL, Anderson AJ. 2011. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proceedings of the National Academy of Sciences 108:1815-1820. Wilson SM. 2006. The prehistory of Nevis, a Small island in the Lesser Antilles. New Haven: Yale University Press. Wilson SM, Iceland HB, Hester TR. 1998. Preceramic connections between Yucatan and the Caribbean. Latin American Antiquity 9:342-352. Wood R. 2015. From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56:61-72. Worth JE. 2014. Discovering Florida: First-contact narratives from Spanish expeditions along the Lower Gulf Coast. Gainesville: University of Florida. van Wynsberge S, Andréfouët, Gaertner-Mazouni N, Wabnitz CCC, Menoud M, Le Moullac G, Levy P, Gilbert A, Remoissenet G. 2017. Growth, survival and reproduction of the giant clam Tridanca maxima (Röding 1978, Bivalvia) in two contrasting lagoons in French Polynesia. Plos One 12(1):e0170565. Yoneda M, Kitagawa H, van der Plicht J, Uchida M, Tanaka A, Uehiro T, Shibata Y, Morita M, Ohno T. 2000. Pre-bomb marine reservoir ages in the Western North Pacific: Preliminary result on Kyoto University collection. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172(1-4):377– 381. Yoneda M, Uno H, Shibata Y, Suzuki R, Kumamoto Y, Yoshida K, Sasaki T, Suzuki A, Kawahata H. 2007. Radiocarbon marine reservoir ages in the Western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 259(1):432–37. 933 Yu Z, McCreary Jr. JP, Kessler WS, Kelly KA. 2000. Influence of equatorial dynamics on the Pacific North Equatorial Countercurrent. Journal of Physical Oceanography 30(12):3179-3190. Yuping C. 2012. The emergence of local entrepreneurs in Palau. Pacific Asia Inquiry 3, 87-101. Zerega, NJC, Ragone D, Motley T. 2004. Complex origins of breadfruit (Artocarpus altilis, Moraceae): Implications for human migrations in Oceania. American Journal of Botany 91(5)760-766. 934