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DISSERTATION ABSTRACT 

 

Hong Wu 

 

Doctor of Philosophy 

 

Department of Landscape Architecture 

 

December 2014 

 

Title: Protecting Stream Ecosystem Health in the Face of Rapid Urbanization and 

Climate Change 

 

 

The ability to anticipate and evaluate the combined impacts of urbanization and 

climate change on streamflow regimes is critical to developing proactive strategies that 

protect aquatic ecosystems.  I developed an interdisciplinary modeling framework to 

compare and contrast the effectiveness of integrated stormwater management, or its 

absence, with two regional growth patterns for maintaining streamflow regimes in the 

context of climate change.  In three adjacent urbanizing watersheds in Oregon’s 

Willamette Valley, I conducted a three-step sequence to: 1) simulate land use change 

under four future development scenarios with the agent-based model Envision; 2) model 

resultant hydrological change under the recent past and two future climate regimes using 

the Soil and Water Assessment Tool; and 3) assess scenario impacts on streamflow 

regimes using 10 ecologically significant flow metrics.  I evaluated each scenario in each 

basin using a flow metric typology based on the magnitude of change in each metric and 

the degree to which such changes could be mitigated, i.e., insensitive, sensitive and 

manageable, and sensitive and resistant. 

My results demonstrated distinct signatures of urbanization and climate change on 

flow regimes.  Urbanization and climate change in isolation led to significant flow 
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alterations in all three basins.  Urbanization consistently led to increases in flow regime 

flashiness and severity of extreme flow events, whereas climate change primarily caused 

a drying trend.  Climate change tended to exacerbate the impacts of urbanization but also 

mitigated urban impacts on several metrics.  The combined impacts of urbanization and 

climate change caused substantial changes to metric sensitivities, which further differed 

by basin and climate regime, highlighting the uncertainties of streamflow regime 

responses to development and the value of spatially explicit modeling that can reveal 

complex interactions between natural and human systems.  Scenario comparisons 

demonstrated the importance of integrated stormwater management and, secondarily, 

compact regional growth.  My findings reveal the need for regional flow-ecology 

research that substantiates the ecological significance of each flow metric, develops 

specific targets for manageable ones, and explores potential remedies for resistant ones.  

The interdisciplinary modeling framework shows promise as a transferable tool for local 

watershed management.  

This dissertation includes previously unpublished co-authored material. 
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CHAPTER I 

 

INTRODUCTION 

 

For decades, a wide array of disciplines has wrestled with stream ecosystem 

degradation.  Since 1990, the United States has spent >$1 billion annually on various 

stream restoration projects (Bernhardt et al., 2005).  However, because of the complexity 

of the problem, a shortage of knowledge and analytical tools, and conflicts among 

different socioeconomic forces, current mainstream reach-scale restoration approaches 

have shown limited effectiveness in restoring aquatic ecosystem functions (Bernhardt and 

Palmer, 2007; Bernhardt et al., 2005; Kondolf et al., 2007; Palmer et al., 2007).  Because 

rivers are products of their landscapes (Hynes, 1975), there is increasingly a call to look 

to the entire catchment basin for a more holistic approach to addressing stream ecosystem 

degradation (Walsh et al., 2005).  My dissertation contributes to this research frontier by 

investigating the combined effects of urbanization and climate change on stream 

hydrology, and testing the effectiveness of watershed management alternatives in 

maintaining historical streamflow regimes. 

Urbanization has long been recognized as a major driver of aquatic ecosystem 

degradation (Miltner et al., 2004; Wang et al., 2001).  The efficient routing of stormwater 

off large areas of urban impervious surfaces and into storm sewer systems results in a 



2 

fundamental change in flow regimes of the downstream rivers (Walsh et al., 2005).  

Global climate change is also expected to have far-reaching impacts on streams, from 

altering temperature and flow regimes to increasing the frequency and intensity of 

droughts and floods (Bates et al., 2008; Meyer et al., 1999; Milly et al., 2005).  The 

combined effects of climate change and urbanization on stream ecosystems are difficult 

to predict due to the challenges and uncertainties of projecting the impacts of either factor 

at local scales, and the potential for interactions between them.  Yet, anticipating impacts 

of such anthropogenic changes is critical to developing proactive strategies for protection 

of stream ecosystems.  

The concept of stream health has recently been embraced as a simple and 

understandable concept that can be supported by the public and policy makers (Boulton, 

1999; Karr, 1999; Meyer, 1997; Norris and Thoms, 1999).  Meyer (1997) defined a 

healthy stream as “an ecosystem that is sustainable and resilient, maintaining its 

ecological structure and function over time while continuing to meet societal needs and 

expectations”.  Biological integrity, on the other hand, emphasizes a biotic community 

comparable to that of regional natural habitat (Karr and Dudley, 1981).  I applied the 

concept of stream ecosystem health rather than biological integrity as the major 

conservation target to acknowledge that, in human-dominated watersheds, stream 

ecosystem health is a more realistic goal to achieve.  

Because the natural flow regime plays a central role in shaping and maintaining 

stream ecosystems (Poff et al., 1997), understanding how urbanization and climate 

change alter long-term flow regimes is essential for assessing their aquatic ecosystem 

consequences.  Five flow components, magnitude, frequency, duration, timing, and rate 
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of change, are all critical to the life histories of stream biota, making it necessary to 

examine a comprehensive spectrum of flow conditions rather than any single measure 

(Poff et al., 1997).  Environmental flow scientists have developed an array of metrics to 

quantify pre- and post-disturbance flow conditions and establish direct linkages between 

aspects of urbanization and stream ecology (Clausen and Biggs, 2000; Olden and Poff, 

2003; Richter et al., 1996).  Metrics that are sensitive to human perturbations while also 

demonstrating ecological significance are the most useful for defining watershed 

management targets (Arthington et al., 2006; Bunn and Arthington, 2002; Poff et al., 

1997).  However, identifying a tractable and biologically relevant suite that circumscribes 

all five facets of the flow regime is challenging.  The scarcity of paired long-term 

hydrologic and biologic time-series for deriving flow-ecology relationships typically 

makes it necessary to rely on general guidance from regional environmental flow studies 

or best available expert knowledge (Poff et al., 2010). 

Anticipating the impacts of urbanization and climate change on flow regimes is an 

enormous challenge.  Researchers are first confronted with deep uncertainty in human 

population growth and land development projections.  Future land uses may unfold in 

unexpected ways due to factors that include changes in socioeconomic drivers and land-

use policy.  For example, since the 1970s, Oregon has employed a statewide planning 

system that uses Urban Growth Boundaries (UGBs) to create compact urban footprints.  

By guiding regional population growth patterns and concentrating 90% of the growth into 

UGBs, this mechanism has effectively protected Oregon’s forested and agricultural land 

from urban sprawl.  However, recent debates on private property rights have led to voter 

initiatives (e.g., Measure 7 in 2000 and Measure 37 in 2004) that called for a substantial 
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relaxation of constraints on rural housing development.  Potential legislative changes that 

would allow more rural subdivisions raised deep concerns about the ways stream 

ecosystems would respond (Bassett, 2009). 

Compounding the uncertainties of land use change, climate change also may 

unfold in unexpected ways.  Planners must take into account both the deep uncertainties 

of climate projections and the mismatch in spatial and temporal scales between available 

climate change information and on-the-ground watershed management.  The most 

comprehensive climate projections so far come from atmosphere-ocean general 

circulation models (AOGCMs or GCMs), which operate at the global scale (e.g., 

200~300km resolution).  However, projections from different GCMs can vary 

dramatically, even under the same greenhouse gas emissions scenario.  Additionally, 

GCM outputs need to be translated to relevant spatial and temporal scales to support local 

decision-making.  Statistical or dynamic downscaling of GCM outputs has now been 

established as an appropriate method to post-process GCM results for assessments at 

regional or local scales (Bronstert et al., 2002; Wilby and Wigley, 1997).   

With current knowledge and analytical tools, our ability to anticipate complex 

interactions between urbanization, climate, and streamflows remains rudimentary.  

Despite a dramatic increase in the application of scientific tools such as dynamic 

simulation modeling, major progress in both intra- and inter- disciplinary research is 

needed to advance our modeling capacity (Nilsson et al., 2003).  Not only should 

individual disciplines continue to refine their own models, but also closer cross-

disciplinary collaboration is needed to fill in the substantial gaps in knowledge and data 
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that have constrained the development of integrated modeling systems that could capture 

more core interactions among complex human and natural systems.   

Integrated modeling systems are particularly important if planners are to act 

proactively by not only assessing potential impacts of climate change and urbanization, 

but also testing and assessing the outcomes of different management alternatives.   

Although many efforts have successfully connected land use change models with 

hydrological models for assessments of hydrological impacts, integration of models in 

ways that inform policy and planning choices remains a major challenge (Choi and Deal 

2008).  In addition, although various strategies have been proposed for the mitigation of 

development-related stormwater impacts, our ability to rigorously test them at a 

watershed scale remains limited.  One promising approach to addressing these challenges 

is alternative future scenarios analysis.  Scenario-based alternative futures approaches 

increasingly have been incorporated to explore plausible policy approaches to guiding 

landscape change in the face of future uncertainty (Godet 1987; Hulse and Gregory, 

2004).  In particular, the emergence of agent-based models (Ostrom 1998; Parker et al. 

2003) has made it possible to link spatially fine-grained human decisions to their 

potential landscape-scale consequences through the evaluation of large ensembles of 

alternative futures (Guzy et al., 2008; Hulse et al., 2009).  

The ultimate goal of impact assessments that inform decision-making highlights 

the importance of investigating promising watershed management strategies.  In 

particular, there increasingly has been a call to integrate the following two approaches for 

mitigation of development-related stormwater impacts: the application of stormwater 

Best Management Practices (BMPs), and the planning of development patterns in a 
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hydrologically-sensitive manner (Alberti et al., 2007; Brabec, 2009).  Stormwater BMPs 

refer to “techniques, measures or structural controls for managing the quantity and 

improving the quality of stormwater runoff in the most cost effective manner” (USEPA 

1999).  In contrast, development pattern refers to the spatial organization of land uses 

(Alberti, 1999). 

Integration of stormwater BMPs with strategic planning of development patterns 

holds promise for better protecting the streamflow regime and thus aquatic ecosystem 

health.  First, the application of stormwater BMPs for over 30 years in the U.S. has 

demonstrated their ability to achieve some level of watershed protection (e.g., flood 

protection) (Marsalek and Chocat, 2002).  However, because they often have a single 

target (e.g., peak-flow attenuation or pollution control), current BMP design and 

implementation do not adequately protect downstream aquatic ecosystems (Emerson et 

al., 2005; Maxted and Shaver, 1997; Roesner, 1999; Schueler, 1999).  A watershed 

approach to regulating, evaluating, and planning BMPs will likely improve their ability to 

manage a broader range of flow conditions and thus better protect streams (Pomeroy et 

al., 2008; Roesner et al., 2001; Urbonas and Wulliman, 2007; Wu et al., 2006; Zhen et 

al., 2004).  Second, landscape planners and ecologists have long wrestled with the 

question of what constitutes “good” development patterns with respect to stream health.  

Although extensive studies have shown that development patterns account for much of 

the variability in water quality and stream ecological conditions (Alberti et al., 2007), 

current theories do not offer a generalization of how stream ecosystem health and human 

well‐being could simultaneously be achieved through innovative urban planning and 

design (Alberti, 1999; Collinge, 1996; Collins et al., 2000; Forman, 1995; Grimm et al., 
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2000; Opdam et al., 2001; Pickett et al., 2001).  Additionally, very few studies have 

rigorously tested the ability of alternative development patterns to maintain streamflow 

regimes.  Exploring this research frontier may reveal important implications for 

watershed management.   

 

Dissertation Research 

The primary objective of my dissertation was to develop a transferable framework 

to investigate the combined effects of urbanization and climate change on stream 

ecosystems, and to test potential strategies to mitigate the impacts.  In particular, I focus 

on evaluating the effectiveness of regional growth pattern and integrated stormwater 

management for maintaining streamflow regimes.  For the purposes of this research, I 

define the pattern of regional population growth vis à vis urbanization as the spatial and 

proportional allocation of new urban and rural development.  In contrast, I define the 

integrated stormwater management (ISM) approach as the combination of localized 

spatial patterns of development with stormwater BMPs in those areas where urbanization 

or rural development is to occur.  

I argue that at least four components that to date have not been well integrated 

within a single study are necessary to better assess the impacts of urbanization and 

climate change and to inform watershed management.  The first is that broad spatial 

patterns of regional population growth must be considered in concert with localized 

applications of stormwater management.  The second is that rather than simply assessing 

a particular approach to regional growth and stormwater management, alternative forms 

of each should be tested and assessed simultaneously to help disentangle their individual 
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effects, and to help discern how they can best be integrated at the watershed scale.  The 

third is that assessments of these approaches should be conducted in the context of long-

term climate change to explore the deep uncertainties in future flow regime responses and 

identify potential interactions between development and climate.  Finally, hydrological 

assessments should focus on the flow regime as a whole rather than individual flow 

metrics because of the central role flow regime plays in shaping and maintaining stream 

ecosystems.  In the following chapters of my dissertation, I detail the processes of 

developing an interdisciplinary modeling framework that incorporates all the four 

components above.  Below I introduce the major objectives of each individual chapter. 

 In Chapter II, entitled “Exploring the hydrological impacts of land use change in 

the southern Willamette Valley, Oregon, USA”, I evaluate the hydrological impacts of 

urbanization and test the effectiveness of alternative planning and management strategies 

in maintaining streamflow regimes.  Towards that end, I established a multi-disciplinary 

modeling framework and conducted a three-step sequence of land use change simulation, 

hydrological modeling, and hydrological assessment in three urbanizing catchment basins 

outside of the Eugene-Springfield Urban Growth Boundary in Oregon’s Willamette 

Valley.  Additionally, I used this study to examine i) potentially ecologically significant 

flow metrics for this region, ii) potential land use change trajectories resulting from 

plausible projections of regional population growth, iii) the extent and intensity of 

urbanization impacts on flow metrics, iv) potential ecological consequences of projected 

flow alterations, and v) the potential of watershed planning and management strategies 

for maintaining historical flow regimes.  This work is co-authored with John Bolte, David 

Hulse, and Bart Johnson. 
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In Chapter III, entitled "Interactive impacts of urbanization and climate change on 

streamflow regimes in the southern Willamette Valley, Oregon, USA", I build on the 

modeling framework established in Chapter II and continue to investigate the combined 

effects of climate change and urbanization on flow regimes.  This is important for the 

intermittent streams assessed because their flow regimes are particularly sensitive to 

changes in the form, amount, and timing of precipitation, all of which are likely to be 

altered in the coming century by a changing climate.  By developing and incorporating 

two sets of fine-resolution future climate data, I examined: i) the extent and intensity of 

climate change impacts on flow regimes, ii) the distinct signatures of urbanization and 

climate change impacts; iii) potential interactions between climate change and 

urbanization, and iv) the effectiveness of compact regional growth and ISM under the 

uncertainties of future climate.  This work is co-authored with Bart Johnson. 

In Chapter IV, I summarize the results from chapters II and III and conclude with 

implications for watershed planning and management. 
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CHAPTER II 

 

EXPLORING THE HYDROLOGICAL IMPACTS OF LAND USE CHANGE  

IN THE SOUTHERN WILLAMETTE VALLEY, OREGON, USA 

 

A paper co-authored with John Bolte, David Hulse, and Bart Johnson.  John Bolte 

provided substantial help modifying Envision model codes for my research purposes.  

David Hulse played an important role guiding the research design, the development of the 

modeling framework, and the organization of the manuscript.  Bart Johnson provided 

extensive assistance with research design, development of the modeling framework, data 

analysis methods, and reviewing and editing the manuscript.   

 

 

1. Introduction 

Urbanization has been an important driver of aquatic ecosystem degradation 

around the world (Miltner et al., 2004; Wang et al., 2001).  The efficient routing of 

stormwater off large areas of urban impervious surfaces and into storm sewer systems 

results in a fundamental change in flow regimes of the downstream rivers (Walsh et al., 

2005).  Despite extensive research, the complexity of the problem, insufficient analytical 

tools, and conflicts among socioeconomic forces with conflicting interests have 

constrained the development of effective solutions that slow or arrest stream degradation.  
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Anticipating the impacts of anthropogenic changes to rivers and streams is critical to 

developing proactive strategies to maintain healthy aquatic ecosystems that, in the words 

of Meyer (1997) are “sustainable and resilient, maintaining its ecological structure and 

function over time while continuing to meet societal needs and expectations”.  

Because the natural flow regime plays a central role in shaping and maintaining 

stream ecosystems (Poff et al., 1997), understanding how urbanization alters flow 

regimes is essential for assessing its ecological ramifications for streams.  Five flow 

components, magnitude, frequency, duration, timing, and rate of change, are all critical to 

the life histories of stream biota, making it necessary to examine a spectrum of flow 

conditions rather than any single measure (Poff et al., 1997).  Environmental flow 

scientists have developed an extensive array of metrics to quantify pre- and post-

disturbance flow conditions and establish direct linkages between aspects of urbanization 

and stream ecology (Clausen and Biggs, 2000; Olden and Poff, 2003; Richter et al., 1997).  

Ideally, metrics that are sensitive to human perturbations while demonstrating ecological 

significance are the most useful for defining watershed management targets (Arthington 

et al., 2006; Bunn and Arthington, 2002; Poff et al., 1997).  However, identifying a 

tractable and biologically relevant suite that circumscribes all major facets of the flow 

regime is challenging.  The scarcity of paired long-term hydrologic and biologic time-

series for deriving flow-ecology relationships typically makes it necessary to rely on 

general guidance from regional environmental flow studies or best available expert 

knowledge (Poff et al., 2010).  In the work that follows, I have relied on both. 

Anticipating urbanization impacts on flow regimes presents multiple challenges.   

Planners are first confronted with deep uncertainty in human population growth and land 
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development projections.  Future land uses may unfold in unexpected ways due to factors 

that include changes in socioeconomic drivers and land-use policy.  For example, Oregon 

has employed a statewide planning system that uses Urban Growth Boundaries (UGBs) 

to create compact urban footprints since the 1970s.  By concentrating 90% of population 

growth into UGBs, this mechanism has effectively protected Oregon’s forests and 

agricultural land from urban sprawl by guiding regional population growth patterns.  

However, recent debates on private property rights have led to voter initiatives (e.g., 

Measure 7 in 2000 and Measure 37 in 2004) that called for a substantial relaxation of 

constraints on rural housing development.  Potential legislative changes that would allow 

more rural subdivisions raised deep concerns about ways the stream ecosystems would 

respond (Bassett, 2009). 

Furthermore, current knowledge and analytical tools limit our ability to project 

complex interactions between urbanization and streamflows, let alone to rigorously 

assess the outcomes of different management alternatives - equally essential if planners 

are to act proactively.  There has been a dramatic increase in the application of dynamic 

simulation modeling, and many studies have successfully connected land use change 

models with hydrological models for the assessments of urbanization impacts on 

hydrology (e.g., Beighley et al., 2003; Legesse et al., 2003; Lin et al., 2007; Schulze 

2000).  Nonetheless, major progress in both intra- and inter- disciplinary research is 

needed to better characterize important socio-hydrologic dynamics and connect cross-

disciplinary models in ways that inform policy and planning choices (Choi and Deal, 

2008; Nilsson et al., 2003).  The alternative futures approach offers a promising 

overarching framework for such cross-disciplinary integration.  Scenario-based 
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alternative futures increasingly have been incorporated to explore plausible policy 

approaches for guiding landscape change in the face of future uncertainty (Godet 1987; 

Hulse and Gregory, 2004).  In particular, the emergence of agent-based models (Ostrom 

1998; Parker et al. 2003) has made it possible to link spatially fine-grained human 

decisions to their potential landscape-scale consequences through the evaluation of large 

ensembles of alternative futures (Guzy et al., 2008; Hulse et al., 2009; Hulse et al., in 

review). 

Developing hydrological impact assessments that inform decision-making 

requires investigating promising watershed management strategies.  In particular, there 

has been an increasing call to integrate two mitigation approaches for development-

related stormwater impacts: the application of stormwater Best Management Practices 

(BMPs), and locating development patterns in a hydrologically-sensitive manner (Alberti 

et al., 2007; Brabec, 2009).  Stormwater BMPs refer to “techniques, measures or 

structural controls for managing the quantity and improving the quality of stormwater 

runoff in the most cost effective manner” (USEPA 1999).  In contrast, development 

pattern refers to the spatial organization of land uses (Alberti, 1999). 

Integration of stormwater BMPs with strategic planning of development patterns 

holds promise for better protecting the streamflow regime and thus aquatic ecosystem 

health.  First, over 30 years of stormwater BMP application in the U.S. has demonstrated 

their ability to achieve some level of watershed protection (Marsalek and Chocat, 2002).  

However, because they often have a single target (e.g., peak-flow attenuation or pollution 

control), current BMP design and implementation do not adequately protect downstream 

aquatic ecosystems (Emerson et al., 2005; Maxted and Shaver, 1997; Roesner, 1999; 



14 

Schueler, 1999).  A watershed approach to regulating, evaluating, and planning BMPs 

will likely improve their capacity to manage a broader range of flow conditions and thus 

better protect stream ecosystems (Pomeroy et al., 2008; Roesner et al., 2001; Urbonas 

and Wulliman, 2007; Wu et al., 2006; Zhen et al., 2004).  Second, landscape planners and 

ecologists have long wrestled with the question of what constitutes “good” development 

patterns with respect to stream health.  Although extensive studies have shown that 

development patterns account for much of the variability in water quality and stream 

ecological conditions (Alberti et al., 2007), they offer few generalizations about how 

ecosystem health and human well‐being could simultaneously be achieved through 

innovative urban planning and design (Alberti, 1999; Collinge, 1996; Collins et al., 2000; 

Forman, 1995; Grimm et al., 2000; Opdam et al., 2001; Pickett et al., 2001).  

Additionally, very few studies have rigorously tested the ability of alternative 

development patterns to maintain streamflow regimes.   

We argue that three components that to date have not been well integrated within 

a single study are necessary to better assess the impacts of urbanization on stream 

ecosystems and to inform watershed management.  The first is that broad spatial patterns 

of regional population growth must be considered in concert with localized applications 

of stormwater management.  The second is that rather than simply assessing a particular 

approach to regional growth and stormwater management, alternative forms of each 

should be tested and assessed simultaneously to help disentangle their individual 

effects,and discern how they can best be integrated at the watershed scale.  Finally, we 

argue that such an approach must hydrologically assess not only individual flow 

components but also the flow regime as a whole for the reasons described above.  In the 
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following paragraphs we distinguish techniques for stormwater management from 

broader patterns of land use change related to population growth, and link these to a 

framework in which their hydrological impacts can be tested through an alternative 

futures scenario analysis. 

For the purposes of this study, we define the pattern of regional population growth 

vis à vis urbanization as the spatial and proportional allocation of new urban and rural 

development, which typically arises from a combination of regulatory policies and 

market-based forces.  We include the implementation of Oregon’s statewide land-use 

planning system in this category, as described above.  In contrast, we define integrated 

stormwater management (ISM) as the combination of localized spatial patterns of 

development with stormwater BMPs in those areas where urbanization or rural 

development is to occur.  Finally we refer to the combination of a regional growth 

strategy with a stormwater management approach as a development scenario.   

We used the knowledge and challenges posed above to establish an 

interdisciplinary modeling framework and test its utility in three urbanizing catchment 

basins outside of the Eugene-Springfield Urban Growth Boundary in Oregon’s 

Willamette Valley.  We implemented a three-step process that connected an agent-based 

model of landscape change under contrasting regional growth and ISM scenarios with a 

hydrological model to quantitatively evaluate the effects of future urbanization on 

streamflow regimes.  In particular, we focused our investigation on the following four 

questions:   

(1) How does urbanization affect streamflow metrics across different basins?  

Which flow metric components may be more sensitive to development? 
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(2) What might be the ecological consequences of projected flow regime 

alterations? 

(3) Are compact regional growth and integrated stormwater management effective 

approaches for maintaining streamflow regimes?  If so, which is more important? 

(4) How might integrated modeling frameworks such as that demonstrated here 

inform future efforts to link flow-ecology research to local watershed planning? 

 

2. Methods 

We conducted a three-step sequence of land use change simulation, hydrological 

modeling, and hydrological assessment (Figure 2.1).  We chose an agent-based model 

Envision (Bolte et al., 2007; Hulse et al., 2009) to simulate multiple development 

scenarios comprised of different combinations of regional growth and ISM strategies.  A 

hydrological model, the Soil and Water Assessment Tool (SWAT) (Gassman et al., 2007), 

was then applied to the resulting landscape of each scenario to model long-term daily 

streamflows.  Next, we used a set of 10 flow metrics to assess the degree of flow 

alterations from different future scenarios and develop watershed management 

implications.   

The simulation models Envision and SWAT constitute the core of this modeling 

framework.  Envision is a spatially explicit multi-agent framework for assessment of 

policies and alternative futures (Figure 2.2).  Central to Envision are the interactions 

among three components: actors (aka agents), policies (plan of actions), and the  
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Figure 2.1. The overall modeling process under urbanization impacts alone. 
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landscape (Hulse et al., 2009).  Actors make decisions about the portion of the landscape 

for which they have authority by selecting policies responsive to their objectives.  

Landscape changes resulting from these decisions as well as other autonomous processes 

such as vegetation succession are simulated and assessed.  Envision offers several key 

advantages for our modeling: 1) by retaining the taxlot boundaries in its spatial reporting 

structure, i.e., the Integrated Decision Units (IDU, described later), Envision operates at a 

spatial scale where land use decisions are made; 2) it establishes a direct linkage between 

policies and land use trajectories; 3) Envision can specifically incorporate Oregon’s 

unique UGB-centered statewide land use planning system; and 4) by supporting multiple 

policy sets, each of which can generate numerous alternative future landscapes, Envision 

enables the evaluation of planning actions across large ensembles of plausible futures 

(Hulse et al., 2009). 

 

Figure 2.2. Conceptual structure of the Envision model (Bolte et al., 2007). 
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SWAT is a physically-based continuous-event model developed to predict the 

impact of land management practices on water, sediment and chemical yields in 

watersheds with varying soils, land use, and management conditions over long periods of 

time (Gassman et al., 2007).  We selected SWAT for multiple reasons: 1) it employs a 

comprehensive approach to integrate interactions among physical processes (e.g., 

weather, plant growth, management, etc.); 2) its Hydrologic Response Unit (HRU) spatial 

structure (Nietsch et al., 2009) accords well with the IDU structure of Envision; 3) its 

temporal scale (daily time step and long term) supports our objective to assess long term 

flow alteration; 4) climate information can be easily incorporated; and 5) SWAT can 

simulate both urbanized and rural watersheds of various sizes.   

Below we introduce the area of interest, the selection of flow metrics supported 

by calibration and validation of SWAT, the processes of setting up the land use change 

simulation and hydrological modeling, and methods for data analysis. 

 

2.1. Study Area 

Oregon’s Willamette Valley population is projected to double between 1990 and 

2050, growing over this 60-year period from approximately 2 million to 4 million people, 

providing a natural laboratory for experimenting with innovative planning strategies 

(Baker et al., 2002).  The land use change simulation area (dashed outline, Figure 2.3) 

closely corresponds to that (solid outline) of a precedent research project, the Southern 

Willamette Coupled Natural and Human Systems (SWCNH) project, which simulated the 

interactions and feedbacks among climate change, wildfire, vegetation, policies and 

landowner decisions (Johnson et al., in prep).  The 409 km
2
 hydrological modeling area 
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includes three catchment basins (A, B, and C, Figure 2.3) adjacent to the UGBs of Veneta 

(2010 population 4,561), Creswell (population 5,031), and the larger Eugene-Springfield 

Metropolitan Area (population 215,588).  Our simulation took advantage of a large 

amount of data compiled or developed by the SWCNH project, including detailed 

statewide population projections that were localized to the modeling area through an 

intensive stakeholder engagement process.  Data sources and characteristics for this study 

are introduced in Table S1 (see Appendix A for all supplemental tables). 

The hydrological modeling area as a whole is primarily rural with ~0.27 

people/ha (70 people/mi
2
).  Urban, agricultural, forestry, and rural residential land uses 

occupy 2.8%, 18.5%, 56.8%, and 9.8% of the landscape ca. 2000 (Figure S1, see 

Appendix A for all supplemental figures), respectively, providing substantial capacity for 

urbanization as well as rural residential growth.  Average slope of the three basins is 

14.8%.  Low infiltration capacity soils dominant the landscape, with <0.001% 

Hydrologic Soil Group (HSG) A, 7% HSG B, 60% HSG C, and 33% HSG D soils.  

Landscape characteristics vary substantially across the three basins (Table S2).   The 

Strahler orders of the basins are second-order for A and B, and fourth-order for C.  The 

smallest Basin A is the flattest and most urban with the least permeable soils.  The 

intermediate-sized Basin B has the most permeable soils.  The largest Basin C is the 

steepest and most rural.  We use the same alphabetic character to describe the catchment 

basin and its outlet. 
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Figure 2.3. Study area in southern Willamette Valley, Oregon. 
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2.2. Selection of Flow Metrics 

As noted above, identifying a plausible set of ecologically significant flow metrics 

is critical for subsequent hydrological assessment to be useful for local watershed 

management.  Such a task proved challenging due to the absence of existing flow-

ecology knowledge for small streams in the foothills of the southern Willamette Valley.  

We drew from research in nearby regions as well as consultation with regional 

professionals and based our selection on the following four criteria: 1) the set of metrics 

circumscribes all major flow components for intermittent streams (Olden and Poff, 2003); 

2) they demonstrate biological significance in the U.S. Pacific Northwest (Derek Booth, 

Martin Dieterich, and Curtis DeGasperi, personal communications, 2014); 3) metrics 

calculated from simulated hydrographs are in reasonably good agreement with those 

calculated from gauged data; and 4) annual values can be calculated either directly or 

using the Indicators of Hydrologic Alteration (IHA) tool (Richter et al., 1997; Richter et 

al., 2003).  Because it is important to simulate the metrics accurately, the SWAT model 

calibration process examined the goodness of fit between simulated and observed values 

for the candidate metrics.  Our final selection included the following 10 metrics: Annual 

Average Flow (Qmean), 1-day Maximum Flow (1DMAX), 7-day Minimum Flow 

(7DMIN), Low Pulse Count (LPC), High Pulse Count (HPC), Number of Zero-flow Days 

(N0D), Low Pulse Duration (LPD), High Pulse Duration (HPD), Date of Annual 

Minimum (TL1), and Richards-Baker Flashiness Index (RBI).  See Table 2.1 for 

definitions and the rationale for linking each metric to urbanization and biological 

responses.  Next, we elaborate the process of SWAT calibration and validation.
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Table 2.1. Description of the 10 selected flow metrics and rationale linking them to urbanization and biological responses.  

Component  Flow Metrics Definition Rationale Linking Flow Metrics to Urbanization 

and Biological Responses 

Reference 

Magnitude  

  

Qmean Average daily flow for each 

water year 

  

1) Critical component of the water balance with 

various uses to humans. 

2) Related to water quality, habitat area, and fish 

and benthic assemblages. 

3) Expected response to urbanization: varied. 

Konrad and 

Booth, 2005; 

Monk et al., 

2008 

Annual 

Average Flow 

(cfs)  

 1DMAX Maximum daily flow rate 

for each water year 

1) Measure of the largest annual flow disturbance. 

2) Expected response to urbanization: increase. 

3) An increase indicates larger disturbance for 

habitat structuring and floodplain exchange, 

more direct mortality or transport of organisms, 

and longer recovery time, etc. 

Konrad and 

Booth, 2005; 

Richter et al., 

1996 

1-Day 

Maximum 

(cfs) 

 7DMIN Centered seven-day moving 

average annual minimum 

flow (calendar year) 

1) A decrease indicates reduced aquatic habitat 

availability and more desiccation stress. 

2) Expected response to urbanization: varied. 

Cassin et al., 

2005; Richter 

et al., 1996 

7-Day 

Minimum (cfs) 

Frequency  

  

LPC 

Low Pulse 

Count 

(Count) 

  

  

Number of times that the 

daily average flows are 

equal to or less than the 

low-flow threshold (set at 

50% of the long term daily 

average flow-rate) for each 

calendar year 

1) Negatively correlated with the Benthic Index of 

Biotic Integrity (B-IBI) in the Pacific Northwest 

(PNW). 

2) Demonstrated sensitivity to urbanization in the 

PNW, expected response: increase. 

3) An increase indicates more interruptions of the 

low-flow season.  Frequent disturbances may 

degrade biological diversity. 

Cassin et al., 

2005; 

DeGasperi et 

al., 2009; 

Konrad and 

Booth, 2005; 

Richter et al., 

1996 
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Table 2.1. (continued). 

Component  Flow Metrics Definition Rationale Linking Flow Metrics to Urbanization 

and Biological Responses 

Reference 

 HPC 

High Pulse 

Count 

(Count) 

Number of times that the 

daily hydrograph rose above 

the high-flow threshold (set 

at twice the long term daily 

average flow-rate) for each 

water year 

  

1) Negatively correlated with B-IBI in the PNW. 

2) Demonstrated sensitivity to urbanization in the 

PNW, expected response: increase. 

3) An increase indicates more frequent high-flow 

disturbances that continually destabilize 

channels. 

4) Provides the single most useful measure for 

benthic assemblages. 

Cassin et al., 

2005; Clausen 

and Biggs, 

1997; 

DeGasperi et 

al., 2009; 

Konrad et al., 

2002; Richter 

et al., 1996 

Duration  N0D 

Number of 0 

Days (Days) 

Number of days with a daily 

average flow equal to zero 

for each water year 

1) A measure of the accumulation of desiccation 

effects on aquatic organisms; may determine 

whether a particular life-cycle phase can be 

completed. 

2) An increase indicates longer desiccation effects. 

Richter et al., 

1996 

  

  

LPD 

Low Pulse 

Duration 

(Days)  

  

Annual average duration of 

low flow pulses during a 

calendar year 

  

  

1) Positively correlated with B-IBI in the PNW. 

2) Demonstrated sensitivity to urbanization in the 

PNW, expected response: decrease. 

3) A decrease indicates shorter recovery time 

between disturbances for stream organisms. 

Cassin et al., 

2005; 

DeGasperi et 

al., 2009; 

Richter et al., 

1996 

  HPD 

High Pulse 

Duration 

(Days) 

Annual average duration of 

high flow pulses during a 

water year 

  

1) Positively correlated with B-IBI in the PNW. 

2) Demonstrated sensitivity to urbanization in the 

PNW, especially during the wet season; 

expected response: decrease. 

3) A decrease means flow conditions alter more 

rapidly from high to low flow conditions, i.e., 

higher flashiness. 

Cassin et al., 

2005; 

DeGasperi et 

al., 2009; 

Richter et al., 

1996 
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Table 2.1. (continued). 

Component  Flow Metrics Definition Rationale Linking Flow Metrics to Urbanization 

and Biological Responses 

Reference 

Timing of 

Low Flows 

  

TL1 

Date of annual 

minimum 

(Julian date) 

Julian day of the date of the 

minimum daily average 

flow during a calendar year 

  

1) Relates to life cycles of organisms, influences 

predictability of stress (e.g., higher 

temperatures). 

2) Expected response to urbanization: earlier. 

Clausen and 

Biggs, 2000; 

Richter et al., 

1996  

Flashiness RBI A dimensionless index of 

flow oscillations relative to 

total flow based on daily 

average discharge measured 

during a water year 

1) Negatively correlated with B-IBI in the PNW. 

2) Low interannual variability and thus greater 

power to detect trends in the daily rate of 

change. 

3) Demonstrated sensitivity to urbanization in the 

PNW, expected response: increase. 

4) An increase can indicate significant disturbance 

for organisms adapted to more stable flows. 

Baker et al., 

2004; Cassin 

et al., 2005; 

DeGasperi et 

al., 2009; 

Richards-

Baker 

Flashiness 

Index 

(Unitless)   
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2.3. SWAT Calibration and Validation 

The SWAT model must be calibrated to ensure that local hydrological processes 

are represented appropriately.  We went beyond the standard procedure of developing a 

general goodness of fit between simulated and observed daily hydrographs (Arnold et al., 

2012; Douglas-Mankin et al., 2010) to achieve a specific calibration for the 10 flow 

metrics noted above. 

Observed daily streamflow data from 1977 to 1987 at the discontinued USGS 

Coyote creek gauge (Station ID 14167000, Figure 2.3) was used as a reference to 

evaluate simulated hydrographs.  Water years (WY) 1978 through 1982 (1977/10/1 to 

1982/9/30) were used as the calibration period, and WY 1983 through 1987 (1982/10/1 to 

1987/9/30) for validation.  Meteorological data were extracted from historic records at 

the Eugene/Mahlon Sweet Airport Weather Station.  Calibration and validation was 

performed with the ca. 1990 land cover map due to a lack of reliable earlier land cover or 

climate information.  Historic aerial photos (ca. 1968 and 1979) were carefully examined 

to ensure that few land cover changes occurred within the study area during 1977-1990, 

following adoption of Oregon’s statewide planning laws enacted in the early 1970s.  In 

particular, the Oregon Forest Practices Act (1971) set limits on intensive forest clear-cuts 

(Oregon Department of Forestry, 2012), and the nation’s first UGB system was in place 

since 1973 (Nelson and Moore, 1996).   

A large number of manual (~400) and auto-calibration (~4000) repetitions were 

performed in either SWAT or SWAT Calibration and Uncertainty Procedures (SWAT-

CUP) (Abbaspour, 2007).  In a standard procedure, the Nash and Sutcliffe Efficiency 

(NSE) and r
2
 (coefficient of determination) tests are the most commonly used statistics to 
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assess SWAT predictions (Arnold et al., 2012).  Ranging from -∞ to 1, NSE measures 

how well the simulation matches the observation along a 1:1 line, where NSE=1 indicates 

a perfect fit.  Similarly, ranging from 0 to 1, an r
2
=1 statistics represents a perfect 

correlation.  In general, a value exceeding 0.5 for both NSE and r
2
 is deemed satisfactory 

for monthly calibrations.  This criterion could be appropriately relaxed for daily 

evaluations (Arnold et al., 2012; Moriasi et al., 2007).  Our final daily calibration 

achieved an NSE = 0.775 and r
2
 = 0.777 for the calibration period and NSE = 0.785 and 

r
2
=0.786 for the validation period (Figure 2.4).  In addition to these two measures, we 

applied the Wilcoxon Signed-Rank Test to compare the 10 flow metrics calculated from 

gauged and simulated data.  Except for the 1-day Maximum Flow and Richards-Baker 

Flashiness Index (both consistently under-predicted), all the other metrics presented non-

significant differences when calculated from the two sources (p>0.05) (Table S3).  In fact, 

tests of another 32 default metrics in the IHA tool revealed an 84% passing rate, 

providing further evidence that our calibration produced sufficiently accurate projections 

of the flow conditions.  The values of calibrated parameters are reported in Table S4. 

It is notable that metrics calculated with gauge and simulated data are not 

expected to be identical.  Gauged data reflect an integration of environmental changes 

over time, while simulations can only account for a single static land cover due to data or 

model limitations (Cassin et al., 2005).  Consequently, the fit between observed and 

simulated metrics was not the sole criterion for identifying which flow metrics were 

suitable for use.  The 1-day Maximum Flow and Richards-Baker Flashiness Index were 

retained as important measures of their respective flow components with the caveat that 

their results were interpreted in the context of their consistent model under-estimation. 



28 

Figure 2.4. Mean daily flows from observed vs. simulated data for WY 1978-1987 (USGS 14167000 Coyote Creek near Crow, 

Oregon). 
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2.4. Land Use Simulation with Envision 

In this section we briefly overview the three major components of Envision 

(landscape, policies, and actors), basic steps for setting up the land use change simulation, 

and important model mechanisms in Envision.  We follow with detailed descriptions of 

our scenario design and policy development. 

 

2.4.1. Basic Envision Structure 

The landscape simulated in Envision is represented by a vector-based space-

filling map of Integrated Decision Units (IDU).  IDUs were delineated in ArcGIS by 

intersecting taxlots, topography, and soil phase polygons, mimicking the way landowners 

manage their land based on its physical characteristics and ownership boundaries (Hulse 

et al., in review).  Each IDU is associated with a large number of static or dynamic 

attributes, e.g., Hydrological Soil Group (static), land use land cover type (dynamic), 

number of dwelling units (dynamic), etc.  Dynamic attributes are updated each annual 

time step corresponding to land management actions or autonomous processes.   

Policies are the fundamental descriptors of land management actions in Envision.  

They define the characteristics of the land (i.e., site attributes) to which they will be 

applied, the goals they are intended to accomplish (i.e., outcomes), and the probability 

that the policy will be adopted (i.e., adoption rates) by an actor should their IDU be 

eligible.  Table 2.2 offers an example of a riparian conservation policy.   
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Table 2.2. Example of policy representation in Envision. 

Conservation Easement on Riparian Vegetated Lands with Highly Permeable Soils 

 Site Attributes:  Outcome:  

   Envision 

Syntax  

CONSERVE = 0 and BUFF_DIST = 120 

{within the 120ft riparian buffer} and (Lulc_A 

= 4 {Forest} or Lulc_A = 5 {Wetlands} or 

Lulc_A = 6 {Other Vegetation}) and 

(HYDGRP = "A" or HYDGRP = "B" {have 

highly permeable soils}) 

Expand(  TAXLOTID=@TAXLOTID {same taxlot as nucleus IDU} 

and CONSERVE = 0 and Publands = 0 and (Lulc_A = 4 {Forest} or 

Lulc_A = 5 {Wetlands} or Lulc_A = 6 {Other Vegetation}) and 

(HYDGRP = "A" or HYDGRP = "B" {have highly permeable 

soils}),  40469 {10ac},  Publands = 33 {Unbuildable, DEQ easement 

or R/W} and Conserve = 1 {Conservation Easement} and 

EXP_POLICY=151 ) and EXP_POLICY=-151 {RIP1. Conservation 

Easement on Riparian Vegetated Lands with Highly Permeable 

Soils } : 50 

 

English The site must be within 1000m distance to a 

stream. Site contains highly permeable HSG A 

or B soils; land cover is forest, wetlands, or 

other vegetation. 

Conservation easements will be established in 50% of the cases to 

protect all the natural vegetation within the 120 ft. buffer.  This 

policy will expand to adjacent IDUs with the same site attributes 

within the same taxlot, for up to a total area of 10 ac. 
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Individual actors make management decisions on IDUs under their control.  Each 

actor is associated with a set of values that reflect how their value systems influence land 

use and management decisions.  Actors adopt available policies that are consistent with 

their values, resulting in a temporal series of changes to the IDUs.  A set of five rural 

actor types was developed and parameterized based on surveys of nearby 1,000 rural 

landowners in the southern Willamette Valley, and an actor assigned to each IDU based 

on its site attributes (Nielsen-Pincus et al., in press).  We added two additional actor 

types, urban residents and a public lands manager, to better incorporate urban areas into 

the model. 

The following steps were used to set up land use change simulations in Envision. 

1) Develop a study area IDU map with over 40,000 IDUs averaging 1 ha in 

area.  Populate the IDUs with potentially relevant site attributes.  A 

dictionary of 52 key attributes is included in Table S5. 

2) Assign one of seven types of actors and associated actor values to each 

IDU (Nielsen-Pincus et al., in press). 

3) Develop a set of four land development scenarios and associated 

assumptions. 

4) Define the regional population projections for each scenario, i.e., 

proportions of population growth directed into urban vs. rural areas, based 

on previous research from the SWCNH project. 

5) Develop a specific set of policies for each scenario that implement both 

the spatial population allocation needed to fulfill the selected regional 



32 

growth scenario, and the spatial implementation (or absence) of specific 

ISM strategies. 

Once these essential components are assembled, the following processes operate 

in Envision to generate landscape outcomes for each scenario. 

1) Population growth is allocated according to the available population 

capacity of each IDU.  Every IDU belongs to a zoning category with an 

allowable population density, and which can be updated through policies.  

As population grows, Envision prioritizes the locations of new residents in 

favor of IDUs with larger available population capacity.  New population 

is allocated proportionally into existing or expanded UGBs, or into new 

rural residential zones based on scenario assumptions. 

2) Envision mimics the mechanism of Oregon’s UGB-centered planning 

systems and updates the UGBs every 10 years to meet capacity targets 

based on maintaining at least a 20-year urban land supply.  When total 

population within a UGB reaches 80% of the build-out capacity, that 

particular UGB is expanded. 

3) Actors make management decisions (or take no action) on their IDUs 

every 5 to 10 years depending on the actor type by selecting policies that 

best align with their values. 

4) IDU attributes are updated each annual time step based on population 

growth, policy applications, or vegetation succession simulated through 

the Climate-Sensitive Vegetation State-and-Transition sub-model (Yospin 

et al., 2014). 
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5) Because of Envision’s stochastic processes, replicate model runs can be 

conducted for each scenario to examine variations in landscape outcomes 

within and across scenarios.  

 

2.4.2. Design of Scenarios and Policies 

Below we introduce the design of our scenarios and policies.  Our development 

scenarios consisted of 2 x 2 factorial combinations of regional growth and stormwater 

management scenarios.  In response to the recent challenges to Oregon’s land use 

planning laws mentioned above, we defined two contrasting regional growth scenarios, 

i.e., Compact vs. Dispersed Growth, to explore the consequences of potential legislative 

changes.  To examine the effectiveness of various stormwater management strategies, we 

developed two contrasting management scenarios, i.e., with vs. without Integrated 

Stormwater Management (ISM).  The four scenarios are referred to as Compact Growth 

with ISM (CM), Compact Growth without ISM (CnM), Dispersed Growth with ISM (DM), 

and Dispersed Growth without ISM (DnM), respectively. 

The assumptions and policy emphasis of the four scenarios differ in important 

ways (Table 2.3).  The compact growth scenarios assumed that current statewide 

planning policies continue to accommodate 90% of new population within existing or 

expanded UGBs, and 10% within rural areas.  In contrast, the dispersed growth scenarios 

relaxed state planning laws and distributed only 65% of population growth into UGBs, 

allowing 35% to be dispersed into the rural landscape.  The two management scenarios 

differed mainly in implementation of ISM strategies.  The no-ISM scenarios (CnM and 

DnM) involved very limited protection of hydrologically sensitive areas, whereas the 

ISM scenarios (CM and DM) incorporated a wide range of ISM strategies to mitigate 
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stormwater impacts.  We structured the scenarios in this manner to explore potential 

remedies in case of a much more populated rural landscape. 

 

Table 2.3. Contrasts in scenario assumptions and policy emphasis.  

 Scenarios Assumptions Policy Emphasis 

Regional 

Growth 

Scenarios 

Compact 

Growth 

Anticipated population 

growth primarily (90%) 

absorbed into UGBs, 

10% into rural 

developments. 

Retain UGBs; 

Encourage urban infill and 

redevelopment; 

Promote high density 

development. 

 Dispersed 

Growth 

Constraints on rural 

development relaxed, 

35% of new residents 

live in the rural 

landscape. 

Relax constraints on UGBs; 

Allow more rural residential 

development; 

Continued emphasis on low 

density development. 

Integrated 

Stormwater 

Management 

Scenarios 

With ISM More willingness and 

better capacity to 

mitigate stormwater 

impacts at both 

landscape and site 

scales. 

Strategically plan watershed-

scale stormwater BMPs; 

Minimize effective impervious 

area;  

Conservation and rehabilitation 

of hydrologically sensitive 

areas;  

Promote site-scale Low Impact 

Development (LID) strategies. 

 Without 

ISM 

Conventional urban 

drainage management 

continues with little 

motivation or efforts for 

mitigating stormwater 

impacts.  

Little consideration for 

watershed scale stormwater 

BMPs; 

Limited conservation and 

rehabilitation of hydrologically 

sensitive areas; 

Development built in 

conventional ways without 

LIDs. 

 

Testing integrated stormwater management strategies is new in Envision 

applications. We drew from previous research to incorporate a variety of watershed 

planning strategies into the development of plausible ISM policies.  These include: 1) 
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limiting development on steep slopes and permeable soils (Yang and Li, 2011); 2) 

protecting large vegetative patches, riparian buffers and wetlands (Alberti et al., 2007; 

Meador and Goldstein, 2003; Morley and Karr, 2002); 3) limiting total impervious 

surface percentage to 10-25% (10% for relatively undeveloped and 25% for developed 

catchments) of the watershed area (Schueler, 1994; Schueler et al., 2009); 4) minimizing 

runoff impacts by reducing directly connected impervious area using widespread re-

infiltration LIDs (Booth et al., 2004; Lee and Heaney, 2003); 5) encouraging cluster or 

high density development to protect natural vegetative cover and provide more open 

space (Berke et al., 2003; Booth et al., 2002; Girling and Kellett, 2002; May and Horner, 

2002; Richards, 2006; USEPA, 2006); and 6) encouraging development close to existing 

infrastructure and permeable pavement on light-duty roads to reduce the impacts of roads 

(Alberti et al., 2003).  

Seven categories of policies were developed to incorporate urban and rural 

growth processes and ISM strategies (Table S6): i) urban development, ii) urban 

conservation & restoration, iii) rural development, iv) public lands conservation & 

restoration, v) rural upland conservation & restoration, vi) riparian conservation & 

restoration, and vii) Low Impact Development.  A specific policy set was assembled for 

each scenario.  The compact growth scenarios and their dispersed counterparts generally 

employed the same policies sets, whereas a majority of the ISM policies (e.g., UC, RC, 

RIP, and LID) were exclusively applied to the ISM scenarios.  Note that policies with the 

same titles can have variations (e.g., in their site attributes or adoption rates) when 

applied to different scenarios.  For example, the urban development policies for scenarios 
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CM and DM (as compared to CnM and DnM) further protected highly permeable soils 

(HSG A and HSG B) from developing into high-density residential uses. 

Next, 10 replicates of every scenario, with its associated policy set, were run in 

Envision from ca. 2007 until the year 2050 using an annual time step.  As noted before, 

multiple model runs in Envision can produce a large number of alternative futures for 

each scenario.  Evaluation of the hydrological impacts of each scenario needs to consider 

potential within-scenario variation resulting from differences in policy and land cover 

outcomes.  Because modeling every run of every scenario in SWAT is cumbersome, we 

developed a procedure (Appendix B) to select one alternative future for each scenario 

that represented the scenario’s central tendency.  Based on the most frequent land 

use/land cover (LULC) outcome (the mode) for each IDU, the model run that generated 

the highest percentage of IDUs with the same LULC types as the modes was deemed 

representative of that scenario.  A total of four LULC maps were generated.  These four 

alternative landscapes were then subjected to hydrological modeling in SWAT. 

 

2.5. Hydrological Modeling with SWAT 

As noted before, both intra- and inter-disciplinary development is necessary to 

enhance current modeling capacity, in our case to incorporate stormwater management.  

Below we introduce the curve number runoff estimation method in SWAT and several 

procedures we developed to expand the SWAT databases and achieve a more accurate 

representation of land cover types associated with stormwater management.  We then 

introduce the hydrological modeling processes for the future development scenarios.   
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2.5.1. Curve Number Modeling 

SWAT estimates surface runoff through two approaches, one of which is the 

curve number (CN) procedure (SCS, 1984).  CN reflects the rainfall-runoff relationship 

for each unique combination of land cover and hydrologic soil group (HSG) (Srinivasan 

and Arnold, 1994).  Ranging from 0 to 100, a larger CN corresponds to a lower 

infiltration capacity (e.g., a concrete road has a CN of 98).   

Despite increasing application in urban environments, SWAT’s urban CN 

database remains underdeveloped for incorporating stormwater management.  For 

instance, only four urban residential land cover types were available, i.e., high, medium, 

medium-low, and low density residential development, with no differentiation in 

stormwater management strategies.  For this reason, we applied three procedures to 

modify and expand SWAT’s urban CN database.  First, our major means to incorporate 

BMPs on an IDU basis was to develop CNs for new prototype land use/land cover and 

BMP associations (LULC-BMP) such as “new high-density residential development with 

a full range of lot-level LIDs”.  This was achieved by engaging an outside model called 

Low Impact Development L-THIA (Long Term Hydrologic Impact Analysis) 

(Ahiablame et al., 2012).  An L-THIA application example and complete list of new 

LULC-BMP associations and Curve Numbers are included in Appendix C.  Furthermore, 

hydrologic soil groups on developed lands were adjusted (i.e., HSG A shifted to C and 

HSG B shifted to D) during modeling to account for severe impacts on soil integrity by 

construction (Ahiablame et al., 2012; Lim et al., 2006).  Second, given that high density 

development was encouraged in certain scenarios, we needed to provide further evidence 

for the widely-applied, but rarely-verified assumption that total imperviousness in urban 
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residential zones doesn’t significantly increase once density reaches 20 du/ha (8 du/ac).  

We conducted an ArcGIS analysis on a high-resolution land cover map (9 x 9m. 

resolution) of the Portland metropolitan area.  Under Oregon’s compact urban center 

practices, residential zones with densities from 20-60 du/ha (8-24 du/ac) have an identical 

imperviousness of about 58%, in good agreement with the existing SWAT database.  

Third, given the scarcity of local high-resolution imperviousness data for rural residential 

development, we measured 40 rural residential houses in different county zoning classes 

in Google Earth Pro.  Impervious area per dwelling unit information was translated to 

IDU-based CNs through the L-THIA model (Appendix C). 

 

2.5.2. Scenario Modeling 

With the expanded CN database, the previously calibrated SWAT model was next 

used to simulate the 30-year daily streamflows for the four development scenarios at each 

of the three outlets.  Simulated daily streamflow based on the ca. 1990 landscape over the 

period of WY 1978 to 2007 was chosen as the reference flow regime for each basin.  To 

examine development impacts alone, simulations of future scenarios used the same 

climate data as the reference scenario.  We acknowledge that the reference flow regime 

may be different from the pre-Euro-American settlement natural flow regimes, which 

could be considered an “ideal” target for native stream biota.  However, given both the 

problematic nature of comparing streamflows under contemporary climate to those of 

over 150 years ago, and the unrealistic goal of returning the landscape to its pre-

settlement conditions, we focused on evaluating the degree of departure from the 

reference.  As in other studies, the scenario resulting in the least flow regime departure 
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was deemed the most preferable (Poff et al., 1997; Bunn and Arthington, 2002).  Upon 

completion of the SWAT modeling, the 10 selected flow metrics were calculated either 

directly or in the IHA tool.  Our final raw data thus contained 30 annual values for each 

of the 10 metrics for 3 basins over a total of 5 development scenarios. 

 

2.3. Data Analysis  

We applied multiple group comparison tests to compare responses of individual 

flow metrics under each development scenario for each basin.  Based on the specific 

responses, we developed a classification system that categorizes the flow metrics into 

three different sensitivity categories based on each metric’s sensitivity to the types of 

changes represented in each development scenario.  In addition, we evaluated the overall 

flow regime difference from the reference for each future scenario based on a parameter 

we derived and named the Equivalent Standard Deviation (ESD). 

Because our flow metric data were severely skewed (and of different units), we 

applied a non-parametric repeated measures analysis of variance statistical test (the 

Friedman’s ANOVA) to compare flow metrics among the five development scenarios (1 

baseline and 4 future), i.e., 30 annual values per metric per scenario, for each of the three 

basins.  When p<0.05, the Wilcoxon Signed-Rank Test with Bonferroni correction 

(significance level set as p<0.05) was used for post-hoc paired comparisons. 

To interpret flow metrics responses for watershed management, we developed a 

sensitivity classification system (Table 2.4) that categorizes the flow metrics into three 

types according to the magnitude of change in their medians and the degree to which 

such changes could be mitigated: insensitive to development, sensitive to development 
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Table 2.4. Typology for flow metric sensitivity to stressors and management.  Each flow metric was classified in each basin as either 

insensitive to development, sensitive to development and manageable by development alternatives, or sensitive to development and 

resistant to development alternatives.  For a metric to be classified insensitive, there was either no statistical difference from reference 

conditions under any development scenario, or if there was a significant difference the magnitude of change was < 5% (or <3 days for 

N0D and TL1).  For a metric to be classified as sensitive, there must be statistically significant effects with a magnitude of change >5% 

(or >3 days for N0D and TL1) in one or more development scenarios.  For a metric to be classified as sensitive and manageable, there 

must be statistically significant effects with a magnitude between 5%-25% (or 3-7 days for N0D and TL1) in one or more 

development scenarios.  For a metric to be classified as sensitive and resistant, there must be statistically significant effects of >25% 

(or >7 days for N0D and TL1) under every development scenario.   

 

Type Sensitivity to Change Manageability 

Magnitude of Significant 

Absolute Median Change Number of 

scenarios For N0D/TL1 For all other  

8 metrics 

1. Insensitive Not influenced by 

development 

NA non-significant 

or < 3 days 

non-significant  

or < 5% 

All scenarios 

2. Sensitive 

and   

    Manageable 

Substantially influenced by 

development 

Impacts mitigated by 

one or more 

alternatives 

3 - 7 days  5% - 25% 

One or more 

scenarios 

3. Sensitive 

and 

    Resistant 

Substantially influenced by 

development 

Impacts unmitigated 

by development 

alternatives  

> 7 days  > 25% 

All scenarios 
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and manageable by development alternatives, and sensitive to development and resistant 

to development alternatives.  Insensitive refers to metrics not influenced by development 

in any future scenario compared to the reference (historical climate/current landscape) 

scenario.  Sensitive and manageable (aka manageable) refer to metrics substantially 

affected by development, but for which impacts could be mitigated by compact growth 

and/or ISM.  Sensitive and resistant (aka resistant) refers to metrics that were 

significantly affected by urbanization in all future scenarios, but were resistant to 

simulated planning and management strategies.  The manageable metrics suggest 

important opportunities for flow management, whereas the resistant metrics indicate flow 

alterations that consistently follow future development with fewer opportunities to 

mitigate using the tools tested. 

Additionally, we developed a procedure with a rank-transformed flow metrics 

dataset to explore the overall difference between each future scenario and the reference.  

For each flow metric in each year and basin, we calculated the rank difference between 

the reference and each future scenario, and then the sum of the squares of the 30 rank 

differences (SSrd).  We then computed the equivalent of a standard deviation (hereafter 

called ESD) for each future flow regime from the reference, based on the square root of 

the (sums of the squares of all the rank differences across all years for each scenario)/(the 

number of flow metrics x the number of years).  The SSrd of each future scenario for 

each flow metric thus indicates the relative difference of that scenario from the reference.  

The ESD measures the overall difference of each future flow regime relative to the 

reference, assuming each metric is of equal importance.  
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3. Results 

3.1. Land Development Conditions 

Future population outcomes and land development patterns varied substantially 

across the four scenarios and three basins.  In general, a tripling of the population was 

projected by 2050 across the three basins (Table S7).  The dispersed scenarios (DM and 

DnM) resulted in larger total population numbers than their compact counterparts (Table 

S7) because more growth was distributed into the rural areas of the larger study area used 

for the population growth model (Figure 2.3).  Moreover, the ISM scenarios (CM and 

DM) created more compact overall development patterns than their no-ISM counterparts 

because land conservation at strategic locations was employed as an ISM strategy (Figure 

2.5).  The amount of urban land uses increased in all future scenarios, with the three-

basin total averaging a 79% increase across the four scenarios (range 33-86%).  ISM 

scenarios showed larger increases than their no-ISM counterparts due to the area required 

within urban areas for BMPs (Table S7).  The amount of agricultural land uses decreased 

an average of 40% across all future scenarios (range 14-59%) due to urban and rural 

residential expansion as well as restoration of hydrologically-sensitive areas, and was 

nearly twice as large in no-ISM scenarios as their ISM counterparts.  The amount of 

forested land uses increased ~20% in the two ISM scenarios due to maturing of natural 

vegetation and restoration of hydrologically-sensitive areas and showed only a small 

increase or decrease in the no-ISM scenarios.  The amount of rural residential land uses 

increased an average of 80% with the largest increase in DnM (+144%) and smallest in 

CM (+34%). 
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Figure 2.5. Land use land cover outcomes of the four future development scenarios. 
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3.2. Flow Metric Alteration 

Next, we report changes in individual flow metrics.  In general, most metrics 

showed the same direction of change from reference conditions across all future 

development scenarios, although there were important exceptions.  Even when the 

direction and effect were the same, the magnitude of change varied substantially among 

scenarios.  Figure 2.6 highlights significantly different scenario groups for each flow 

metric and basin.  See Figure S2 for the same results by catchment basin and Table S8 for 

detailed statistics. 

Of the ten flow metrics, 50% showed significant changes in all three basins (80% 

for Basins A and C, 60% for B) for one or more development scenarios.  For Basin A, 

Low and High Pulse Duration did not change.  For Basin B, 7-day Minimum, Number of 

Zero Days, Low Pulse Duration, and Date of Annual Minimum did not change.  For 

Basin C, 7-day Minimum and High Pulse Duration did not change.  Below we examine 

the detailed changes in each individual metric under each flow component. 

 

Figure 2.6 (next page). Flow metric responses across future development scenarios (ca. 

2050) assessed with historical climate.  Central column “REF” indicates the reference 

scenario (1990 landscape, historical climate).  Scenarios are ranked from minimum to 

maximum according to median flow metric values.  Median values may be similar even 

when statistical differences are present.  Compact and dispersed scenarios are represented 

in green and purple, respectively.  ISM scenarios are patterned with diagonal lines.  

Scenarios that are not significantly different are bounded by a bold black outline.   

*: N0D and TL1 are represented with difference in “days” instead of % difference.   

†: When the median value of the reference flow regime was 0, actual difference instead 

of % difference from the reference is reported. 

‡: Means instead of medians are reported in this unique case (N0D in Basin A) to more 

appropriately represent the trend in this metric.   

§: Direction of change compared to the reference conditions.  "+" = increase, "-" = 

decrease, ns = no significant change. 

: Expected effects of significant changes on native aquatic biota as indicated by 

literature and regional professionals.  NA = not applicable.   
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a) Magnitude 

Annual Average Flow (Qmean). Qmean differed from the reference in certain 

future development scenarios for all three basins, although the overall degree of change 

in medians was small (-2% to 5%).  The sign of change varied across scenarios and 
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basins.  In Basins A and B, CM and DM led to a decrease, while CnM and DnM led to an 

increase.  In Basin C, all the future scenarios led to an increase.  The SSrd for Qmean 

suggested only one consistent scenario ranking: DnM led to the most departure for all 

three basins (Figure 2.7, see full data in Table S9), with changes in the medians varying 

from 4% to 5%.  

 

Figure 2.7. Individual flow metric impacts across scenarios as indicated by the sum of 

squares of rank differences (SSrd) from the reference.  The SSrd of each future scenario 

for each flow metric indicates the relative difference of that scenario from the reference.  

Calculations of SSrd were based on the rank differences between each future scenario 

and the reference calculated for each of the 30 annual values of the flow metrics.  
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Annual Maximum Flood (1DMAX).  The 1DMAX increased in all future scenarios 

for all three basins.  Degree of change in the medians varied from 2% to 31%.  Basin C 

showed the greatest change (13% to 31%), while B presented the smallest (2% to 25%).  

The SSrd for 1DMAX suggested an identical scenario ranking for all three basins in 

terms of distance from the reference: CM < DM < CnM < DnM (Figure 2.7).  The CM 

scenario maintained the changes in the medians within 6% for Basin A, 2% for B, and 

13% for C.  In contrast, the DnM scenario caused a 30% increase in Basin A, 25% in B 

and 31% in C. 

7-day Minimum (7DMIN).  The 7DMIN only substantially decreased (-85% to -

90%) in Basin A, where differences among the four future scenarios were minimal.  The 

medians couldn’t decrease in Basins B and C because their values were already zero.   

b) Frequency 

Low Pulse Count (LPC).  In general, the LPC showed an increase in future 

scenarios.  Overall degree of change in the medians was substantial, i.e., -10% to 600%.  

Basins presented varied responses to different scenarios.  Changes were pronounced in 

DM, CnM, and DnM for Basin A (+25% to +50%), CnM and DnM for Basin B (0% to 

+20%), and in all four future scenarios in Basin C (+400% to +600%).  Basin C, with the 

largest changes, had only 1 continuous low-flow event per year under the reference 

conditions, but the summer low-flow was projected to be more frequently interrupted by 

4-6 additional higher-flow events, resulting in a much flashier dry season.  The SSrd for 

LPC suggested that either CM or DM was the closest to the reference (CM for Basins A 

and C, CM and DM equal for Basin B) (Figure 2.7).  DnM generated the most increase 

for all three basins with 1 to 6 more low pulses/year. 
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High Pulse Count (HPC).  In general, the HPC showed an increase in future 

scenarios.  Degree of change in the medians ranged from 14% to 21% for Basin A, -6% 

to 13% for B, and 14% to 43% for C.  The SSrd for HPC suggested that either CM or DM 

was the closest to the reference (CM for Basins A and B, DM for Basin C) (Figure 2.7).  

DnM generated the most increase for all three basins with 1-3 more high pulses/year. 

c) Duration 

Number of Zero-flow Days (N0D).  The N0D significantly changed in future 

scenarios, with varied responses across basins.  More dry days occurred in Basin A but 

less in B and C.  Changes were the most pronounced in Basin A (reflected in means 

instead of medians).  Basin A had year-long continuous flows under the reference, but in 

all the future scenarios, it was projected to dry out for an additional 7.5-10 days/year on 

average.  In contrast, Basins B and C showed 1-2.5 fewer dry days/year under future 

scenarios.   

Low Pulse Duration (LPD).  The LPD only showed a significant decrease in the 

median (-61%) in one scenario (DnM) in one basin (C). 

High Pulse Duration (HPD).  The HPD only showed a significant decrease in the 

median (-26%) in one scenario (DnM) in one basin (B).  

d) Timing  

Date of Annual Minimum (TL1).  The TL1 significantly changed in future 

scenarios in two basins (A and C), although the directions of change were different.  In 

Basin A, the first annual minimum will likely occur earlier, with a median change of 5 (in 

scenario CM) to 13 days (in DnM).  In Basin C, scenarios CM and DM caused a slight 

delay (an average of 1-2.5 days). 
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e) Flashiness 

Richards-Baker Flashiness Index (RBI).  The RBI increased in every future 

development scenario for all three basins.  Overall degree of change in the medians 

ranged from 6% to 36%.  Basin B showed a slightly smaller increase (6%-31%) than A 

(11%-36%) and C (15%-36%).  The SSrd for RBI revealed a consistent scenario ranking 

in departure from the reference, CM < DM < CnM < DnM, for all three basins (Figure 

2.7).  Scenario CM maintained the change in medians within 6% to15%. 

 

3.3. Flow Metric Sensitivity Classification 

The flow metric classification system identified 43.3% of the metrics as 

insensitive, 46.7% as manageable, and 10% as resistant (Table 2.5).  Metrics that showed 

no more than minor changes (insensitive) included Qmean (all three basins), 7DMIN, 

N0D, and TL1 (Basins B and C), LPD (Basins A and B), and HPD (Basins A and C).  

Metrics that were manageable under simulated strategies include 1DMAX, HPC, and 

RBI (all three basins), LPC (Basins A and B), LPD (Basin C), HPD (Basin B), and TL1 

(Basin A).  Flow alterations that consistently followed future development and were not 

mitigated by any scenario (resistant) included a substantial decrease in 7DMIN and 

increase of N0D in Basin A, as well as a substantial increase in LPC in Basin C. 

The overall flow regime differences of future scenarios from the reference 

presented an identical trend in all three basins, i.e., CM < DM < CnM < DnM (Figure 

2.8).  Compact scenarios caused less flow alteration than their dispersed counterparts, and 

ISM scenarios caused less flow alteration than their no-ISM counterparts.  Scenario CM, 

which consistently showed the least overall difference from the reference, constrained the 
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absolute changes in the medians of the manageable metrics within 25% for Basin A, 6% 

for B and 15% for C.  In contrast, DnM restricted the corresponding changes within 50% 

for Basin A, 31% for B and 58% for C.   

 

Table 2.5. Sensitivity classifications of flow metrics by basin under urbanization impacts 

alone.  

 

 Flow  

Metric 

Type 1 Type 2 Type 3 

 Insensitive Sensitive and  

Manageable 

Sensitive and 

Resistant 

Magnitude Qmean ABC   

 1DMAX  ABC  

 7DMIN BC  A 

Frequency LPC  AB C 

 HPC  ABC  

Duration N0D BC  A 

 LPD AB C  

 HPD AC B  

Timing TL1 BC A  

Rate of 

Change 

RBI  ABC  

Total 

Counts 

 13 13 3 

  43.3% 46.7% 10% 

 

Basins A and C experienced more considerable changes than B, as indicated by 

the consistently larger ESD values in A and C under every development scenario (Figure 

2.8).  Basin A was the most influenced based on the average ESD values for the four 

scenarios (Table S9).  Basins A and C also had more resistant metrics than B.  

Specifically, A had 30% insensitive, 50% manageable, and 20% resistant flow metrics; B 

had 50% insensitive and 50% manageable flow metrics; and C had 50% insensitive, 40% 

manageable, and 10% resistant flow metrics. 
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Figure 2.8. Overall flow regime differences from the reference for each future scenario 

as evaluated by the Equivalent Standard Deviation (ESD). 

 

 

 

4. Discussion 

Our overall modeling results were largely consistent with those of other studies of 

urbanization impacts on streams, while also highlighting the challenges of developing 

reliable rules of thumb for management purposes.  In particular, although there were 

consistent effects of different regional growth and integrated stormwater strategies on 

overall flow regimes, the impacts to individual flow metrics varied substantially in both 

sign and magnitude across the three adjacent basins.  Below we connect hydrological 

responses with watershed management by addressing our four original questions.  

 

(Q1) How does urbanization affect streamflow metrics across different basins?  Which 

flow metric components may be more sensitive to development? 

All future development scenarios tended to change the majority of flow metrics, 

and to do so in a consistent direction across all basins (Figure 2.6).  In general, the 

projected flow metric responses were consistent with literature generalizations of 
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urbanization impacts on stream hydrology (Coleman et al., 2011; Konrad and Booth, 

2005; Wenger et al., 2009).  All three streamflows became flashier under future 

development: the magnitude of the largest flood (1DMAX) increased, extreme low flows 

(7DMIN) became lower, both low- and high-flow events occurred more frequently (LPC 

and HPC increased), and the overall flashiness (RBI) increased. 

However, results also differed among basins in important ways, showing the 

varied basin sensitivity to development even among adjacent catchments.  For example, 

aquatic organisms will likely experience more summer dry days (N0D) in Basin A under 

all development scenarios, but fewer in C.  Similarly, the first annual minimum flow 

(TL1) will likely occur earlier in Basin A but later in C.  The varied directions of change 

in these two metrics across different basins, both measures of extreme low flows, suggest 

that urbanization impacts on certain types of flow metrics may be more dependent on 

basin physiography than others. 

Certain flow metrics may be more sensitive to urbanization impacts than others.  

The sensitivity classification system identified the 1DMAX, LPC, HPC, and RBI as 

being sensitive in at least 2 out of 3 basins, whereas Qmean, LPD, HPD, and TL1 

remained insensitive in at least 2 basins and were never resistant in any basin (Table 2.5).  

In some cases, metrics showed high sensitivity in a certain basin as opposed to others 

(e.g., 7DMIN and N0D were resistant in Basin A but insensitive in Basins B and C) 

(Table 2.5).  Overall, the magnitude of extreme flow events (1DMAX and 7DMIN), 

frequency of high and low flow events (LPC and HPC), and flashiness (RBI) may be 

more sensitive to urbanization than average flows (Qmean), duration of both high and 

low flows (LPD and HPD), and the timing of extreme low flows (TL1).  This pattern of 
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varied sensitivity could be broadly applicable to other geographic locations and was only 

possible to discern through our use of a broad suite of variables across multiple basins. 

Similarly, certain flow components may be more manageable with mitigation 

strategies than others.  All the manageable metrics except for TL1 (1DMAX, LPC, HPC, 

LPD, HPD, and RBI) are measures of flow regime flashiness or extreme high flows, 

whereas all the resistant metrics (7DMIN, LPC, and N0D) are related to low flows.  This 

suggests that the mitigation strategies tested were effective in constraining increases in 

hydrologic variability, whereas maintaining historical low flow conditions may be more 

challenging. 

 

(Q2) What might be the ecological consequences of projected flow regime alterations? 

Given the paucity of knowledge about how alterations of different flow 

components may affect aquatic organisms in the southern Willamette Valley, it is 

difficult to evaluate the potential ecological ramifications of our results.  Nonetheless, the 

consistently high levels of impact on four of the flow metrics (1DMAX, LPC, HPC, and 

RBI, Figure 2.6) in directions that have been shown to have negative impacts on aquatic 

organisms in the PNW, and more generally on ecological processes (Poff et al., 1997), 

suggests that projected human population growth is likely to impose substantial 

detrimental effects on aquatic organisms.   

First, as a consequence of more frequent flooding (e.g., HPC being resistant with 

21-43% increase in 2 of 3 basins), increased scouring and sedimentation of the stream 

beds are likely to affect both fish and macroinvertebrate population assemblages, likely 

favoring non-natives more tolerant of higher sediment loads (Coleman et al., 2011; 
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Matthaei et al. 1999; Poff and Allan, 1995).  Second, more extreme floods (e.g., 25-31% 

increase of 1DMAX in the worst-case scenario) could cause direct mortality.  Third, flow 

regime flashiness during the low-flow season also showed an increase (e.g., LPC being 

resistant with 400-600% increase in one basin).  The overall substantially flashier flow 

regime (e.g., 31-36% increase in RBI in the worst-case scenario) will likely favor fish 

species with more generalized feeding strategies over those with specialized strategies 

(Poff and Allan, 1995).  Smaller and more mobile benthic invertebrate species that 

reproduce multiple times a year (i.e., multivoltine species) may be better adapted than 

larger and univoltine or semivoltine species with limited mobility (Cassin et al., 2005).  

Fourth, as a result of lower summer flows (e.g., >85% decrease of 7DMIN in Basin A), 

reductions in the wetted perimeter are likely to reduce habitat availability and discourage 

lateral exchanges between the in-stream habitat and riparian corridor (Coleman et al., 

2011). Projected lower summer flows also are likely to have indirect effects such as 

increased water temperatures and reduced dissolved oxygen, imposing more stress on 

native stream biota.  The potential for such direct and indirect impacts to aquatic 

organisms highlights the importance of regional flow-ecology studies that can link 

projections of hydrological modifications to their ecological consequences. 

 

(Q3) Are compact regional growth and integrated stormwater management effective 

approaches for maintaining streamflow regimes?  If so, which is more important? 

Our results provide strong evidence that an integrated stormwater management 

approach combined with compact regional growth can protect streamflow regimes.  First, 

scenario rankings for overall flow regime differences from the reference were identical 
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for all three basins: CM < DM < CnM < DnM (Figure 2.8).  In addition, the compact and 

ISM scenarios outperformed their counterparts in limiting alterations to the majority of 

individual flow metrics, as shown by the same scenario rankings for most metrics (Figure 

2.7).  Second, the small proportion of resistant metrics (overall 10%) suggests that, at 

least under the relatively low population growth rate tested, compact growth combined 

with ISM may effectively constrain alterations to the majority of sensitive flow metrics to 

within the threshold we defined as manageable.  Third, the substantial differences in 

magnitude of flow metric alterations across the four scenarios underscore the importance 

of compact growth and ISM.  In every case but one (HPC in Basin A) when metrics were 

manageable, the best-case scenario (CM) incurred less than half the change of the worst-

case scenario (DnM).  This highlights the risks of not attempting to mitigate urbanization 

impacts.  For example, the increase in annual maximum flood intensity (1DMAX) can be 

trivial (2%) under the best-case scenario (CM), but considerable (>25%) under the worst-

case scenario (DnM).  The real-world increase under DnM would likely exceed model 

predictions given the tendency of the SWAT model to under-predict this metric.  Despite 

the consistent, negative ecological impacts of population growth and urbanization on the 

four flow metrics described above (1DMAX, LPC, HPC and RBI), scenario CM reduced 

flow alterations 60-75% over DnM across these metrics, suggesting that ISM and 

compact regional growth provide a reliable means to reduce impacts on stream ecosystem 

health. 

Integrated stormwater management may be more important than compact regional 

growth at the scale addressed in this study.  First, ISM scenarios outperformed the no-

ISM scenarios in maintaining overall flow regimes in all three basins, i.e., CM < DM < 
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CnM < DnM (Figure 2.8).  Second, compact growth appeared to provide limited 

additional reduction in overall flow regime alteration when ISM was in place.  In contrast, 

when ISM was absent, compact growth consistently outperformed dispersed growth in 

reducing the alterations in both individual metrics and the flow regime as a whole.   

However, the conclusions above may be confounded by the differences in 

population outcomes across scenarios and basins (Table S7), when less flow alterations 

could in fact be partially attributed to lower levels of population increase.  To further 

explore the relative importance of compact growth vs. ISM, we carefully examined the 

development variables calculated for each scenario and basin (Table S7) and specifically 

analyzed seven pairwise scenario comparisons in which scenarios with equal or larger 

population growth still generated less flow alterations than their counterparts.  We detail 

the comparisons in Appendix D and discuss key lessons below.  

Several nuanced lessons about the relative importance of compact growth and 

ISM emerged from better accounting for differences in overall population growth among 

scenarios.  Due to the complexities of the agent-based model, not only did different 

scenarios shift population allocation among basins, but different scenarios also had 

different total population growth because they altered population distribution within the 

larger study area.  On average, future scenarios accommodated a tripling of population 

from 11,000 to 33,000 residents in the three basins.  However, dispersed scenarios 

averaged 14% larger final populations than their compact counterparts and ISM scenarios 

averaged 15% larger populations than their no-ISM counterparts.  This interaction meant 

that CM and DnM resulted in almost identical populations, whereas at the extremes DM 

had 30% greater population than CnM.  In turn, this means that compact scenarios, which 
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performed better than their dispersed counterparts, had to accommodate somewhat less 

total population growth, whereas ISM scenarios accommodated more growth than their 

no-ISM counterparts.  The former suggests that further investigations would be necessary 

to conclusively assess the effectiveness of compact growth, whereas the latter further 

emphasized the importance of ISM.  The caveats above show that the complexities of the 

agent-based model, a critical foundation of this work, also created certain challenges for 

deconvolving the impacts of key factors in isolation.  One approach for future research 

could be to apply greater experimental control of population projections within and 

among basins to reduce the number of confounding factors.   

At the same time, the scenario-specific differences in population increase also 

strengthen other conclusions.  The fact that compact regional growth scenarios 

incorporated less population increase than dispersed scenarios gives further reason to 

infer that ISM may be more important than compact regional growth.  The fact that ISM 

scenarios incorporated more growth than non-ISM counterparts suggests that ISM may 

allow greater population growth while still limiting impacts.  The comparison that 

becomes more difficult to interpret is the degree to which compact growth outperformed 

dispersed growth in terms of reducing flow alterations.  There are many reasons why 

compact regional growth may provide benefits to society over more dispersed growth.  

However, it might be relatively unimportant from a stormwater management perspective 

in the presence of ISM.  With that said, our results provide a cautionary that compact 

regional growth without ISM may increase the risk of stream degradation.  
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(Q4) How might integrated modeling frameworks such as that demonstrated here inform 

future efforts to link flow-ecology research to local watershed planning?   

The modeling framework developed presents four key innovations toward an 

integrated framework for flow ecology research intended to manage the impacts of 

urbanization on stream ecosystems.  First, the identification of key regional flow metrics 

with both ecological importance and modeling tractability establishes a bridge from 

hydrological impacts to ecosystem consequences.  Second, the typology of flow metric 

sensitivity to development creates a direct linkage from flow alterations to planning and 

management alternatives.  Third, the incorporation of an agent-based land use change 

model not only revealed specific effects of contrasting alternative futures, but also 

provided the ability to directly assess policies.  Lastly, investigations of multiple 

catchment basins generated useful insights on potential variations in hydrological 

responses across different catchment characteristics. 

By identifying a suite of ecologically relevant flow metrics that cover each major 

flow component (rather than a single or a small set of isolated metrics), our modeling 

framework begins to link mechanisms of landscape planning to the goals of anticipating 

aquatic ecosystem consequences.  Reliance on a suite of metrics selected based on best 

available regional knowledge should make extrapolations to their effects on stream biota 

more robust in the absence of empirical local flow-ecology knowledge.  Whereas the 

specific selection of flow metrics may not be directly transferable to other geographies, 

the framework itself is broadly applicable.  In addition, the specific patterns of sensitivity 

and manageability for different flow components can help guide flow metric selection for 

future urbanization impact studies.  
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One of the pressing needs for addressing urbanization impacts on aquatic 

ecosystems is to link flow regime alterations to the means to manage them through 

planning and management prescriptions.  By distinguishing the sensitivity and 

manageability of individual flow metrics, the classification system developed holds 

promise for guiding future watershed planning and research.  For this typology to best 

inform planning decisions, future flow-ecology research should emphasize the 

identification of the ecological consequences of each flow metric to ascertain which flow 

components are the most important to local stream biota.  Acceptable values for the 

manageable metrics need to be identified to develop flow management targets and to 

prioritize the implementation of strategies that are likely to successfully mitigate the key 

impacts.  In addition, the identification of sensitive metrics that were resistant to 

mitigation under the approaches tested helps to pinpoint the types of planning and 

management interventions that should be explored further. 

Incorporation of an agent-based model (ABM) of land use change into the 

modeling framework provided the capacity to simultaneously evaluate alternative forms 

of regional growth and stormwater management, and to disentangle their individual 

effects.  This framework is highly adaptable and allows the testing of many different 

strategies in local landscape contexts.  One of the challenges was that whereas the 

stochastic nature of ABM allows simulating multiple alternative futures for each scenario, 

the way SWAT was structured made it very inefficient and thus infeasible to test all the 

alternative futures generated.  To this end, we developed an approach to identify the 

individual run of each scenario that represented the central tendencies of that scenario.  

This allowed the incorporation of information from multiple scenario runs of the ABM 
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without breaking down the integrity of a single run.  Although not as nuanced as 

evaluating the hydrological outcomes of multiple scenarios runs, it was a step in the right 

direction compared to the lack of variability from deterministic scenario models of the 

future that assume one and only one possible outcome.  Despite using only a single 

landscape for each scenario, the use of 30 years of data provided the basis for tests of 

statistical differences.  

Furthermore, the direct linkages between policies and land use trajectories in the 

agent-based model allowed us to specifically assess the effectiveness of applied policies.  

The high performance of scenarios incorporating ISM emphasizes the importance of the 

suite of underlying ISM strategies.  They included: 1) limiting development on steep 

slopes and permeable soils; 2) protecting large vegetative patches, riparian buffers and 

wetlands; 3) limiting overall watershed imperviousness by encouraging cluster or high 

density development; 4) reducing directly connected imperviousness by re-infiltration 

LIDs; and 5) reducing road impacts by encouraging compact development and re-

infiltration LIDs.  Moreover, the greater flow regime flashiness projected under 

population growth specifically points out the importance of riparian and wetland 

conservation.  Species recovery after intensified flow disturbances may require greater 

reliance on nearby refugia (e.g., hyporheic zones, adjacent hydrodynamic dead zones) 

sustained by a continuous and healthy riparian corridor (Lancaster and Belyea, 1997; 

Matthaei et al., 1999; Niemi et al., 1990).  Future modeling could be used to explore the 

relative importance of the five strategies above, so that public budgets could be targeted 

to implementing the most effective policies in strategic locations.   
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By investigating multiple basins, our analyses also suggested potential 

relationships between watershed characteristics and hydrological responses, which would 

not have been revealed if only a single basin had been studied.  For example, as discussed 

above, responses of certain flow components (e.g., extreme low flows) may be more 

dependent on basin physiography than others, highlighting the importance of river 

classification prior to developing regional flow-ecology relationships.  Furthermore, 

some basins are likely to present higher sensitivity to urbanization than others, although 

further research is needed to identify the dominant reasons.  For example, the overall 

largest hydrological impacts occurred in the smallest basin (A) despite the lowest level of 

population growth.  We suspect that this could be attributed to the amplification of runoff 

volume due to increases in imperviousness, and the rapid flow concentration time 

resulting from a small catchment area, high initial urbanization level, as well as very 

impermeable soils in this basin.  Future research could incorporate more sensitivity 

analyses that reduce the number of confounding factors to reveal the underlying causes.  

Protecting stream ecosystem health under the pressures of population growth will 

continue to challenge our design and planning capabilities given the high flow regime 

sensitivities revealed.  Even under the best-case development scenario, an imperviousness 

increase from 2.2% to 4.5% in one of the basins created one resistant metric and >13% 

increase in three others, suggesting that even low levels of urbanization could have 

substantial impacts on stream biota.  Contemporary planning approaches, such as setting 

a low overall watershed impervious threshold (e.g., 5%-10%), may not sufficiently 

protect aquatic ecosystem health.  Rigorous but flexible approaches that link flow-

ecology science to local watershed planning, such as that explored here, may be better 
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able to sustain resilient stream ecosystems while continuing to meet societal expectations 

for development and growth.  

 

5. Conclusions 

Through integrating a human decision model with a hydrological model, we 

evaluated four distinctive future land development scenarios for their hydrological 

impacts in three urbanizing watersheds in southern Oregon.  We summarize our major 

conclusions as follows. 

1) Expected population growth in the near future will likely result in significant flow 

regime changes in all three catchment basins evaluated.  Urbanization impacts 

aligned closely with increases in flow regime flashiness and severity of extreme 

flow events.  Most of the changes were associated with negative impacts on native 

aquatic organisms in other studies of PNW streams. 

2) By concentrating 90% of the population growth within UGBs, the compact 

growth approach of Oregon’s statewide land use planning policies better protected 

streams in the three basins assessed than a more dispersed growth approach as 

would likely occur with a weakening of Oregon’s land use planning system. 

3) Integrated stormwater management (ISM), defined as the integration of strategic 

organization of land uses with site-scale stormwater BMPs, proved to be highly 

effective in reducing the flow regime impacts of urbanization.  ISM was more 

important than compact growth, and the latter appeared to provide limited 

additional reduction in overall flow regime alteration when ISM was in place. 
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4) Certain flow component alterations may consistently and inevitably follow 

urbanization despite attempts to mitigate them (i.e., the sensitive and resistant 

metrics).  Future flow-ecology research is required to determine the ecological 

significance of these metrics and to explore additional management strategies 

targeted toward their protection. 

5) A number of other metrics sensitive to urbanization appear to provide greater 

opportunities for mitigation (i.e., the sensitive and manageable metrics).  Future 

research should emphasize identification of their ecological significance to 

develop specific flow management targets and to prioritize the implementation of 

specific strategies that are likely to successfully mitigate the impacts on these 

metrics. 

6) Significant hydrologic alteration and thus loss of stream ecosystem functions 

could happen at very low urbanization levels. 

7) Our ability to anticipate complex interactions between urbanization, streamflows, 

and ecosystem consequences is still rudimentary.  Despite the substantially varied 

hydrological impacts across the three basins, the modeling system demonstrated 

was able to tease out both nuanced differences and generalizable trends.   

8) Interdisciplinary modeling frameworks such as that demonstrated in this study can 

support collaborative efforts by planners and researchers to examine the 

implications of alternative local urbanization strategies, and to develop site-

specific solutions.  They hold promise for linking the mechanisms of land use 

planning to the goals of sustaining stream ecosystem health, and can serve as 

important tools to guide watershed planning and management. 
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6. Bridge to Chapter III 

In this chapter, we examined the hydrological impacts of urbanization itself and 

tested the effectiveness of compact regional growth and integrated stormwater 

management strategies in maintaining streamflow regimes.  We found significant flow 

alterations under every future scenario, and development consistently led to increases in 

flow regime flashiness and severity of extreme flow events.  Additionally, both compact 

growth and integrated stormwater management proved effective in reducing 

development-related flow alterations, with the latter more important than the former.  In 

the following chapter, we further explore the combined hydrological impacts of 

urbanization and climate change by incorporating fine-resolution future climate 

projections from two climate models.  We were particularly interested in understanding 

the potential interactions between development and climate change.  Additionally, we 

wanted to explore the effectiveness of compact regional growth and ISM in maintaining 

flow regimes under the uncertainties of future climate.   
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CHAPTER III 

 

INTERACTIVE IMPACTS OF URBANIZATION AND CLIMATE CHANGE  

ON STREAMFLOW REGIMES  

IN THE SOUTHERN WILLAMETTE VALLEY, OREGON, USA 

 

A paper co-authored with Bart Johnson, who provided extensive assistance with 

research design, identifying the data analysis methods, and reviewing and editing the 

manuscript.   

 

 

1. Introduction  

Global change is expected to have far-reaching impacts on stream ecosystems 

through both broad-scale climate change effects on the hydrological cycle (Thomson et 

al. 2005) and more localized effects from expanding urbanization (Walsh et al. 2005).  

The combined effects of climate change and urbanization on stream ecosystems are 

difficult to predict due to the challenges and uncertainties of projecting the impacts of 

either factor at local scales, and the potential for interactions between them.  Responding 

to these challenges requires a plausible assessment of their joint impacts at relevant 

spatial and temporal scales.  In this article we build on a previous study that investigated 
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the hydrological impacts of urbanization alone (Chapter II) and focus on the interactive 

effects of climate change and urbanization on stream hydrology. 

To understand the ecological consequences of climate change and urbanization 

vis-à-vis hydrology, it is essential to evaluate their impacts on streamflow regimes.  

Characterized by the five components of magnitude, frequency, duration, timing, and rate 

of change, the natural flow regime plays a central role in shaping and maintaining stream 

ecosystems (Poff et al. 1997).  While changes in even one flow component can have 

substantial impacts on aquatic organisms, it is critical to assess flow regimes in their 

totality (Poff et al. 1997).  In this study we evaluate potential flow regime alterations 

through a set of ecologically meaningful hydrological metrics that provide direct linkages 

between urbanization and stream ecosystems (Eisele et al. 2003; Booth et al. 2004; 

Cassin et al. 2005).   

Incorporating such knowledge into local watershed planning is both essential and 

challenging.  On the one hand, changes in climatic regimes, especially precipitation, may 

alter multiple flow regime components and could, in turn, lead to cascading ecosystem 

consequences (Poff et al. 1997).  On the other hand, planners must take into account the 

deep uncertainties of climate projections and the mismatch in spatial and temporal scales 

between available climate change information and on-the-ground watershed 

management.  So far, the most comprehensive climate projections come from 

atmosphere-ocean general circulation models (AOGCMs or GCMs), which operate at the 

global scale (e.g., 200-300 km resolution).  However, projections from different GCMs 

can vary dramatically, even under the same emissions scenario.  Additionally, GCM 

outputs need to be translated to relevant spatial and temporal scales to support local 
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planning decisions.  Statistical or dynamic downscaling of GCM outputs has been 

established as an appropriate method to post-process GCM results for assessments at 

regional or local scales (Wilby and Wigley 1997; Bronstert et al. 2002). 

Compounding the uncertainties of climate change, land use change also may 

unfold in unexpected ways, causing significant alterations of streamflow regimes.  For 

example, Oregon has employed a statewide planning system that uses Urban Growth 

Boundaries (UGBs) to create compact urban footprints since the 1970s.  By concentrating 

90% of population growth into UGBs, this mechanism has effectively protected Oregon’s 

rural forest and agricultural land.  However, recent debates on private property rights 

have led to voter initiatives (e.g., Measure 7 in 2000 and Measure 37 in 2004) that called 

for a substantial relaxation of constraints on rural housing development.  Potential 

legislative changes that would allow more rural subdivisions raised deep concerns about 

ways the stream ecosystems would respond (Bassett 2009). 

Anticipating the potential impacts of climate and land use change is not enough.  

Testing and assessing the outcomes of different management alternatives is also essential 

if planners are to act proactively.  A wide array of disciplines has wrestled with the issues 

of protecting stream ecosystem health.  Various strategies have been proposed for the 

mitigation of development-related stormwater impacts on streamflow regimes, from 

limiting watershed total imperviousness (e.g., paved surfaces) to applying Low Impact 

Development (LID) practices in subdivisions (Forman 1995; Collinge 1996; Alberti 

1999; Collins et al. 2000; Grimm et al. 2000; Opdam et al. 2001; Pickett et al. 2001).  

Increasingly, there has been a call to integrate the spatial organization of land uses (i.e., 

development patterns) with local stormwater Best Management Practices (BMPs) to 
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protect a wider range of streamflow conditions ( Roesner et al. 2001; Zhen et al. 2004; 

Wu et al. 2006; Alberti et al. 2007; Urbonas and Wulliman 2007; Pomeroy et al. 2008; 

Brabec 2009).  Chapter II defined such integration as the Integrated Stormwater 

Management (ISM) approach and evaluated its effectiveness in mitigating development-

related stormwater impacts and maintaining historical flow regimes.  However, the 

degree to which ISM may be effective under future climatic regimes remains to be 

investigated. 

Exploring watershed management alternatives requires an interdisciplinary 

approach that blends a wide range of expertise and research tools.  A wealth of 

quantitative methods for anticipating landscape change and assessing environmental 

impacts are currently available, including simulation modeling.  For instance, scenario-

based alternative futures approaches increasingly have been used to explore land 

management options in the presence of deep uncertainty (Godet 1987; Hulse et al. 2004; 

Liu et al. 2007).  However, a major constraint in current modeling capacity is that most 

models can only capture limited system components and mechanisms out of the many 

core interactions among human and natural systems.  A closer integration of disciplines 

and models is necessary to better inform local planning and management decisions that 

may affect stream ecosystem health. 

In a previous study, we established a three-step interdisciplinary modeling 

framework (Chapter II) that incorporated land use simulation, hydrological modeling, and 

hydrological assessment to evaluate the impacts of urbanization on streamflow regimes in 

three urbanizing catchment basins in the southern Willamette Valley, Oregon (Figure 

2.3).  Alterations of historical flow regimes, as measured by 10 ecologically meaningful 
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flow metrics (Table 2.1), were used as surrogates (Poff et al. 1997) of ecological 

consequences.  An agent-based land use change model, Envision (Guzy et al. 2008; Hulse 

et al. 2009), was used to generate four spatially explicit alternative futures for three 

catchment basins for the year 2050 based on two regional population growth scenarios 

(Compact vs. Dispersed Growth) crossed with two stormwater management approaches 

(with or without Integrated Stormwater Management) in a fully factorial design.  A 

watershed-scale hydrologic model, the Soil and Water Assessment Tool (SWAT) 

(Gassman et al. 2007), was then applied to simulate long-term daily streamflows under 

baseline (1990 landscape) and the four future development scenarios (2050 landscapes).  

To explicitly simulate development impacts on streamflow regimes, all hydrological 

modeling consistently used historic climate records for WY 1978-2007. 

Our results suggested that projected population growth over the next 3-4 decades 

is likely to result in substantial flow regime changes in all three basins.  Urbanization 

impacts consistently led to increases in flow regime flashiness and severity of extreme 

flow events.  Both compact growth and ISM proved to be important strategies for 

maintaining critical aspects of the flow regime.  ISM, in particular, was more effective 

than compact growth at reducing flow alterations.   

While it was useful to assess the possible impacts of urbanization in isolation 

from other factors, the potential for additional, and critically, interactive effects with 

climate change make it equally important to investigate whether the compact growth and 

ISM strategies continue to protect stream ecosystem health under the uncertainties of 

future climate.  In the Willamette Valley, this is especially important because the flow 

regimes of intermittent streams are particularly sensitive to changes in the form, amount, 



 

70 

and intensity of the precipitation (Gibson et al. 2005; Konrad and Booth 2005).  For these 

reasons, we investigated the consequences of future climatic projections in the region, 

adapting the modeling framework (Figure 3.1), and investigating the following five 

questions. 

(1) How does climate change impact streamflow regimes in comparison to 

urbanization?  Will different future climate regimes lead to different effects?  

(2) How might climate change and urbanization interact to influence the overall 

flow regimes as well as individual flow metrics? Is climate change likely to exacerbate or 

attenuate urbanization impacts?  

(3) Will compact regional growth and integrated stormwater management remain 

effective strategies in reducing flow alterations under different climate regimes?   

(4) How will the manageability of the overall flow regime as well as individual 

flow metrics change?  

(5) Do differences in catchment basin characteristics lead to different local effects 

from climate and urbanization? 
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Figure 3.1. The modeling process under the combined impacts of urbanization and climate change. 
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2. Methods 

In the simulation modeling section, we briefly introduce the study area, the 

selection of 10 flow metrics, the creation of 4 future land development scenarios and 3 

future climate regimes, and the processes of hydrological modeling and assessment.  We 

follow with descriptions of statistical analysis for climate impacts, combined impacts, 

and flow regime displacement. 

 

2.1. Simulation Modeling 

2.1.1. Study Area 

The Willamette Valley population is projected to double between 1990 and 2050, 

growing over this 60-year period from approximately 2 million to 4 million people, 

providing a natural laboratory for experimenting with innovative planning strategies 

(Baker et al. 2002).  The 409 km
2
 hydrological modeling area includes three catchment 

basins (A, B, and C, Figure 2.3) adjacent to the UGBs of Veneta (2010 population 4,561), 

Creswell (population 5,031), and the larger Eugene-Springfield Metropolitan Area 

(population 215,588).  The three basins as a whole are primarily rural with ≈70 

people/mi
2
.  Urban, agricultural, forestry, and rural residential land uses occupy 2.8%, 

18.5%, 56.8%, and 9.8%, respectively (Figure S1), providing substantial capacity for 

urbanization as well as rural residential growth.   

Landscape characteristics vary substantially across the three basins (Chapter II).  

The Strahler orders of the basins are second-order for A and B, and fourth-order for C.  

The smallest Basin A is the flattest and most urban with the least permeable soils.  The 

intermediate-sized Basin B has the most permeable soils.  The largest Basin C is the 
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steepest and most rural.  We use the same alphabetic character to describe the catchment 

basin and its outlet. 

 

2.1.2. Selection of Flow Metrics 

We selected a suite of flow metrics based on the literature, regional ecological 

knowledge, and our ability to simulate them accurately and assess them efficiently.  

Specifically, we applied the following criteria: 1) the set of metrics circumscribes all 

major flow components for intermittent streams (Olden and Poff 2003); 2) they 

demonstrate biological significance in the Pacific Northwest (Derek Booth, Martin 

Dieterich, and Curtis DeGasperi, personal communications, 2014); 3) metrics calculated 

from simulated hydrographs are in good agreement with those calculated from gauged 

data; and 4) annual values can be calculated either directly or using the Indicators of 

Hydrologic Alteration (IHA) tool (Richter et al. 1997; Richter et al. 2003).  The final set 

included the following 10 metrics: Annual Average Flow (Qmean), 1-day Maximum 

Flow (1DMAX), 7-day Minimum Flow (7DMIN), Low Pulse Count (LPC), High Pulse 

Count (HPC), Number of Zero-flow Days (N0D), Low Pulse Duration (LPD), High Pulse 

Duration (HPD), Date of Annual Minimum (TL1), and Richards-Baker Flashiness Index 

(RBI).  Additionally, we specifically calibrated the SWAT model for these flow metrics 

(Chapter II).   

 

2.1.3 Land Development Scenarios 

As described above, we designed a 2 x 2 factorial combination of land 

development scenarios representing two regional population growth patterns (Compact vs. 
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Dispersed Growth) and two stormwater management approaches (with vs. without ISM).  

The four scenarios are referred to as Compact Growth with ISM (CM), Compact Growth 

without ISM (CnM), Dispersed Growth with ISM (DM), and Dispersed Growth without 

ISM (DnM), respectively.  Major assumptions of the four scenarios are provided in Table 

2.3. 

The Compact Growth scenarios assumed a continuation of current statewide 

planning practices by concentrating 90% of new population growth into UGBs, whereas 

the Dispersed Growth scenarios allowed 35% of new population growth to be dispersed 

into rural areas.  To achieve these targets, the land use change model Envision generated 

population growth and land development processes from 2007-2050, under a 7% annual 

population growth rate during which it distributed population growth spatially using the 

above proportions (Chapter II). 

The ISM scenarios incorporated both spatial organization of land uses and site-

scale BMPs to address stormwater impacts, whereas the no-ISM scenarios continued with 

only limited protection of hydrologically sensitive areas.  The no-ISM scenarios (CnM 

and DnM) implemented just enough ISM policies to seem plausible, whereas the ISM 

(CM and DM) blended a wide range of ISM strategies that include: 1) limiting 

development on steep slopes and permeable soils (Yang and Li, 2011); 2) protecting large 

vegetative patches, riparian buffers and wetlands (Morley and Karr 2002; Meador and 

Goldstein 2003; Alberti et al. 2007); 3) limiting watershed total imperviousness (Schueler 

1994; Schueler et al. 2009); 4)reducing directly connected impervious area through 

widespread re-infiltration LIDs (Lee and Heaney 2003; Booth et al. 2004); 5) 

encouraging cluster or high density development to protect natural vegetative cover and 
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more open space (Booth et al. 2002; Girling and Kellett 2002; May and Horner 2002; 

Berke et al. 2003; Richards 2006; USEPA 2006); and 6) encouraging development close 

to existing infrastructure and permeable pavement on light-duty roads to reduce the 

notorious impacts of roads (Alberti et al. 2003).  A complete list of policies employed in 

scenario simulations is included in Table S6.   

 

2.1.4. Future Climate Regimes 

We next elaborate the process of developing two sets of fine-resolution future 

climate regimes.  This involved a) selecting 2 GCMs that performed well in replicating 

historical climate in the U.S. Pacific Northwest, b) selecting 2 contrasting Representative 

Concentration Pathways (RCPs), c) statistically downscaling the GCM outputs to the 

weather station location used in SWAT calibration, and d) performing tests of all four 

resultant climate scenarios (2 GCMs x 2 RCPs) to determine the two that produced the 

greatest contrasts for scenarios evaluation.  

We first selected two GCMs from the latest generation of climate models 

coordinated by the Coupled Model Inter-Comparison Project 5 (CMIP5) (Taylor et al. 

2012) based on the evaluation by Rupp et al. (2013) of the performance of 41 CMIP5 

models in replicating the historical climate of the U.S. Pacific Northwest (Figure S3).  

The French model CNRM -CM5 and Canadian model CanESM2 ranked the highest with 

the least total relative error from historical conditions for the combined set of all climate 

variables assessed.  In particular, they performed the best in reproducing precipitation-

related variables. 
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We then selected two Representative Concentration Pathways to apply to the 

GCMs.  The RCPs are a set of four new climate trajectories (i.e., RCP 2.6, 4.5, 6, and 

8.5) that integrate emission, concentration, land use change, and socio-economic 

responses (Van Vuuren et. al. 2011).  We selected an intermediate trajectory of RCP 4.5 

to represent a future with relatively ambitious emissions reductions, and an extreme 

trajectory of RCP 8.5 for a future with no policy changes to reduce emissions.  

Specifically, RCP 4.5 refers to a “stabilization without overshoot” pathway with the 

radiative forcing stabilizing at 4.5 W/m
2
 after 2100 (Clarke et al. 2007).  In contrast, RCP 

8.5 represents a rising pathway leading to 8.5 W/m
2
 by 2100 (Riahi et al. 2007).   

Next, we downscaled and bias-corrected each of the four GCM x RCP 

combinations (CanESM2_RCP4.5, CanESM2_RCP8.5, CNRM-CM5_RCP4.5, and 

CNRM-CM5_RCP8.5) to the weather station location used in SWAT calibration for 

historical climate (Chapter II) using the latest Multivariate Adaptive Constructed Analogs 

(MACA) data product (version v2-LIVNEH, see details in Table S10) (Abatzoglou 2013; 

Livneh et al. 2013).  MACA employs a statistical downscaling approach that uses an 

observation dataset to eliminate historical biases meanwhile matching model output 

spatial patterns (Abatzoglou and Brown 2012).  Because the MACA data are based on 4 

km grid cells, microclimate differences within a cell can be substantial, especially for the 

temperature and precipitation variables.  As a result, the grid values of the cell containing 

our study area were bias-corrected to the SWAT climate station location through the non-

parametric EDCDFm quantile-mapping method described in Li et al. (2010). 

Finally, we compared the four resulting climate datasets (Table S11) for WY 

2036-2065 and selected two, the CanESM2_RCP4.5 and CNRM-CM5_RCP4.5, to 
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represent the driest and wettest future conditions among the four.  The 

CanESM2_RCP4.5 showed the largest increase in both annual precipitation (+3%) and 

the largest storm intensity (+14%), while CNRM-CM5_RCP4.5 featured the largest 

decrease in annual precipitation (-6%) and smallest increase in annual maximum storm 

(+4%).  For ease of interpretation, we call the CanESM2_RCP4.5 the “wet” future 

climate, and the CNRM-CM5_RCP4.5 the “dry” future climate.  It is notable, however, 

that the “wet” climate has wetter winters but drier summers due to a greater 

intensification of Mediterranean summer drought. 

 

2.1.5. Hydrological Modeling and Assessment 

The ca. 2050 landscape outcomes of the four development scenarios were then 

subjected to hydrological modeling in SWAT under observed and two future climate 

regimes.  Each SWAT simulation was run for 30 years (WY 2035-2065).  A total of 12 (3 

climate regimes x 4 development scenarios) daily time-step hydrographs were produced 

for each basin outlet.  As in Chapter II, we defined the reference hydrograph as the 

modeled results from the ca. 1990 landscape under the WY 1978-2007 observed climate.  

We acknowledge that this reference may be different from the pre-Euro-American 

settlement natural flow regimes, which could be considered an “ideal” target for native 

stream biota.  However, given both the problematic nature of comparing streamflows 

under contemporary climate to those of over 150 years ago, and the unrealistic goal of 

returning the landscape to its pre-settlement conditions, we focused on evaluating the 

degree of departure from the recent past.  As in other studies (Poff et al. 1997; Bunn and 

Arthington 2002), future flow regimes with the least departure from the reference were 
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deemed the most preferable.  Thirty annual values for each flow metric were then 

calculated from the 12 hydrographs to evaluate flow alterations in each basin.  Our final 

raw data thus includes 30 annual values for 10 flow metrics for 3 basins over a total of 12 

combinations of development and climate scenarios.  

 

2.2. Data Analyses  

We applied three types of non-parametric statistical tests to address our research 

questions, rather than parametric tests, because the flow metric data were in general 

severely skewed to the right (i.e., large events were rare) (Sokal and Rohlf 1995).  The 

Climate Impacts Alone test compared flow metrics under the three different climatic 

regimes within the same development scenario for each basin.  The Combined Impacts 

test evaluated flow metric differences among all future development x climate 

combinations in relation to the reference flow regime for each basin.  The Flow Regime 

Displacement test integrated the 10 flow metrics to represent the flow regime as a whole, 

and then visualized the dissimilarities among the 12 developed flow regimes (3 climate x 

4 development) and the reference for each basin. 

Climate Impacts Alone.  We used multiple Kruskal–Wallis tests (non-parametric 

one-way ANOVA) to examine whether climate change alone will trigger significant flow 

metric responses.  Flow metrics were compared on a group basis, with 30 annual values 

in each group.  Within each development scenario, we compared the 3 flow metric groups 

under the three climate regimes (historical, wet, and dry) for each metric and basin.  A 

total of 120 (10 flow metrics x 4 development scenarios x 3 basins) tests were performed.  

When p<0.05 for the Kruskal-Wallis test, post-hoc Mann-Whitney U tests (non-
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parametric two-sample comparison) with Bonferroni correction were applied to identify 

whether the differences occurred between the historical and future climates, or between 

the two future climates.   

Combined Impacts.  Using the reference flow regime as the control, we conducted 

240 pairwise Mann-Whitney comparisons (10 flow metrics x 2 future climates x 4 

development x 3 basins) to explore instances when future scenarios significantly changed 

a flow metric.  As above, flow metrics were compared on a group basis, with 30 annual 

values in each group.  Pairwise comparisons were conducted between the reference and 

each of the 8 combinations of future development and climate (CM, DM, CnM, and DnM 

under either dry or wet future climate) for each basin.  When p<0.05 for the Mann-

Whitney U tests, we calculated the differences in the flow metric medians between the 

future scenarios and the reference.   

Adapting the sensitivity classification system developed in Chapter II, we 

categorized the flow metrics into three types according to the magnitude of change in 

their medians and the degree to which such changes could be mitigated (Table 2.4): 

insensitive to development and/or climate change, sensitive to development and/or 

climate change and manageable by development alternatives, and sensitive to 

development and/or climate change and resistant to development alternatives.  

Insensitive refers to metrics not influenced by development and/or climate change in any 

future scenario compared to the reference (historical climate/current landscape) scenario.  

Sensitive and manageable (aka manageable) refer to metrics significantly affected in one 

or more scenario, but for which impacts could be mitigated by compact growth and/or 

ISM.  Sensitive and resistant (aka resistant) refers to metrics that were significantly 
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affected by development and/or climate change in all future scenarios, but were resistant 

to simulated planning and management strategies.  The manageable metrics suggest 

important opportunities for flow management, whereas the resistant metrics indicate flow 

alterations that consistently follow future development and climate change with fewer 

opportunities to mitigate using the tools tested in our scenarios.  Lastly, we compared the 

magnitudes of change in the medians of the flow metrics and their categories with the 

results under urbanization impacts alone to explore potential interactions between 

urbanization and climate change.   

 Flow Regime Displacement.  We used Non-metric Multidimensional Scaling 

(NMDS) to visualize and interpret differences among the 12 future flow regimes (3 

climate x 4 development) and the reference flow regime as a whole for each basin.  

NMDS is an ordination technique commonly used in ecological research for 

differentiating communities (Kenkel and Orloci 1986).  It allowed us to collapse 

information from all 10 flow metrics into a small number of dimensions.  Additionally, 

its non-parametric character makes it extremely flexible (McCune et al. 2002), for 

instance, for accommodating a variety of metrics of different scales, including multiple 

metrics with variously skewed distributions.  Because only one value per metric could be 

used in the NMDS, we used the median of the 30 annual values to represent the central 

tendency of each flow metric, and thus a total of ten medians to together describe a 

certain flow regime.  A separate NMDS was initially performed for each basin.  Because 

the axes loadings for Basins B and C were very similar (Table S12), we used a single 

ordination for B and C (NMDS-BC), while keeping Basin A in a separate ordination 

(NMDS-A).   
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3. Results 

In this section we first describe responses of individual flow metrics for each 

basin under the Climate Impacts Alone and Combined Impacts tests, and then examine 

overall flow regime alterations in relation to climate, regional growth pattern, and ISM 

through the Flow Regime Displacement test. 

 

3.1. Individual Flow Metric Responses 

The Climate Impacts Alone test examined differences among flow metric groups 

under historical vs. dry vs. wet climate regimes within each development scenario for 

each basin.  The results showed that five of the ten flow metrics (7DMIN, LPC, N0D, 

TL1, and RBI) were sensitive to climate change under certain development scenarios 

(Table 3.1).  Four of these five are measures of low flow conditions.  All differences 

occurred between historic and future climate rather than between the two future climates.  

Not all significant scenario differences resulted in significant pairwise comparisons.  In 

most cases with significant pairwise differences, the historical results differed from those 

of both future climates.  When only one future climate scenario was different, it was 

always the “wet” future climate (CanESM2_RCP4.5), and never the “dry” future climate 

(CNRM-CM5_RCP4.5). 

In terms of individual metrics, 7DMIN was affected by climate under all 

development scenarios in all basins, with the exception of Basin A under scenario CM.  

When individual climate contrasts were significant, 7DMIN showed a decrease from the 

historical to the future climate.  The LPC decreased under the wet climate in one basin 

(A) in one scenario (DnM).  The N0D increased in one basin (A) under all development  
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Table 3.1. Climate change impacts alone on flow metrics under each development 

scenario for each basin.  Each Kruskal-Wallis p-value indicates the significance of a test 

for differences among climate scenarios (historical v. wet v. dry) for each flow metric 

within each development scenario for each basin (A, B, or C).  Only significant scenario 

results are shown  When p<0.05 (*) for the Kruskal-Wallis Test, a Mann-Whitney U Test,  

adjusted using the Bonferroni correction, was used to examine pairwise comparisons 

among climate scenarios with the significance level set as p<0.10(†).  Not all significant 

scenario differences resulted in significant pairwise comparisons.  N=30 for all data 

groups.  Development scenarios were color coded for easier visualization of the patterns.  

★ indicates differences between historical vs. dry future climate.  ● indicates 

differences between historical vs. wet future climate (i.e., his vs. wet).  

 
his vs. dry vs. wet  

Kruskal–Wallis comparisons 
 Post-hoc Mann-Whitney U Tests 

with Bonferroni adjusted Exact Prob>|U| 

Flow 
Metric 

  A 
p 

 B 
p 

 C 
p 

 Pairs  A 
Diff. 

 
p 

 B 
Diff. 

 
p 

 C 
Diff. 

 
p 

7DMIN CM ns * * CM his v. dry ns ns  ns 
      his v. wet ns ns ns 
      wet v. dry ns ns ns 

 DM * * * DM his v. dry ns ns ns 
       his v. wet ● -100% † ns ns 
       wet v. dry ns ns ns 

 CnM * * * CnM his v. dry ★ -100% † ns ns 
       his v. wet ● -100% † ns ns 
       wet v. dry ns ns ns 

 DnM * * * DnM his v. dry ★ -100% † ns ns 
       his v. wet ● -100% † ns ns 
       wet v. dry ns  ns ns 

LPC DnM * ns ns DnM his v. dry ns     
       his v. wet ●   -33% †     
       wet v. dry ns     
N0D CM * ns ns CM his v. dry ★  +13d *     
       his v. wet ●  +10d †     
       wet v. dry ns     

 DM * ns ns DM his v. dry ★  +15d *     
       his v. wet ●  +12d †     
       wet v. dry ns     

 CnM * ns ns CnM his v. dry ★  +16d *     
       his v. wet ●  +15d †     
       wet v. dry ns     

 DnM * ns ns DnM his v. dry ★  +17d †     
       his v. wet ●  +17d †     
       wet v. dry ns     
TL1 CnM ns ns * CnM his v. dry     ns 
       his v. wet     ●  -23d * 

       wet v. dry     ns 

 DnM ns ns * DnM his v. dry     ns 
       his v. wet     ●  -18d * 

       wet v. dry     ns 
RBI DnM ns * ns DnM his v. dry   ns   
      his v. wet   ●  +6% *   
      wet v. dry   ns   
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scenarios for both future climates.  The TL1 advanced in one basin (C) under the wet 

climate in both no-ISM scenarios (CnM and DnM).  The RBI increased in one basin (B) 

under the wet future climate for the DnM scenario. 

In contrast to the Climate Impacts Alone test, the Combined Impacts test used 240 

paired comparisons between the future flow metrics and the reference and explored when 

and how much future climate x development combinations changed individual flow 

metrics.  First, counts of significant flow metric changes across all scenario x climate 

combinations show which flow metrics were altered most often and which basins 

experienced the most alterations (Figure 3.2a).  The 1DMAX, RBI, and TL1 showed the 

greatest numbers of changes across the three basins, whereas HPD, Qmean, and LPD 

showed the fewest.  Basin A showed the most changes across the 8 scenarios (2 future 

climate x 4 development) and Basin B had the fewest (<1/2 of those of A and C).  The 

same data also shows which development and climate scenarios incurred the most 

instances of flow alterations (Figure 3.2b and 3.2c).  Scenario DnM generated the most 

total counts for every basin, while CM and DM generated the fewest (Figure 3.2b).  The 

dispersed scenarios generated more counts of changes than their compact counterparts for 

every basin, while the no-ISM scenarios similarly generated more counts than their ISM 

counterparts for every basin (Figure 3.2b).  The wet climate scenarios generated more 

counts than the dry climate scenarios overall and did so consistently for every basin 

(Figure 3.2b).  Finally, the wet/dispersed/no-ISM scenario showed the greatest number of 

impacts across all metrics and basins (Figure 3.2c).   



 

84 

Figure 3.2. Counts of significant differences in flow metrics summarized by basin, flow metric, and scenario.  This figure summarizes 

the results of the Combined Impacts test and reveals when and how much future climate x development combinations changed 

individual flow metrics.  (a) shows which flow metrics were altered most often, and which basins experienced the most alterations.  

The maximum possible count of significant differences for each basin is 8.  (b) shows which development and climate scenarios 

incurred the most instances of flow alterations.  The maximum possible count of significant differences for each basin is 20 for the 

development scenarios (left) and 40 for the climate scenarios (right).  (c) breaks down the results of (b) into individual climate x 

development combinations.  The maximum possible count of significant differences for each basin is 10.   
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When flow metrics were altered under both climate scenarios, the directions of 

changes were always the same, and the magnitudes tended to be very similar (Table 3.2-

I).  However, as noted above, there were more alterations under the wet future climate 

than the dry future climate.  Furthermore, when more than one basin was impacted, the 

directions of changes were always the same, but the magnitudes could be substantially 

different.  Finally, it is notable that under both future climates, metrics affected under the 

ISM scenarios were also affected under the no-ISM scenarios but that the only scenarios 

showing additional changes were the no-ISM ones.   

Changes incurred by the combined impacts (Table 3.2-II column M1) exceeded 

those under urbanization impacts alone (column M2) under at least one future climate 

regime in 57% of all occasions where there were substantial differences in flow metric 

medians between the two assessments.  In particular, changes to 1DMAX (all basins), 

N0D (Basin A), and TL1 (all basins) were substantially amplified over urbanization alone, 

while Qmean (Basin C), 7DMIN (Basin A), LPD (Basin C), and RBI (all basins) were 

increased to lesser degrees.  On the other hand, changes to three other flow metrics, LPC 

(for all basins), HPC (Basins A and B) and HPD (for Basin B), were reduced under the 

combined impacts.   

Finally, the combined impacts changed the sensitivity categories of 7 of the 10 

flow metrics (except for 7DMIN, HPC, and RBI) from those of urbanization impacts 

alone.  For those 7 metrics, over one-half (12 of 21) of the metric x basin sensitivity 

ratings were altered.  Of those changes, ¾ increased sensitivity or resistance, and ¼ 

attenuated them (Table 3.3).  These alterations changed overall sensitivities across all 

metrics from 43% insensitive, 47% manageable, and 10% resistant metrics under  
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Table 3.2. The Combined Impacts test.  Panel I reports median changes from the reference (1990 landscape, historical climate) for the 

significantly altered flow metrics for all the eight future scenarios.  N=30 for all data groups.  Panel II compares changes in medians 

between those assessed with the combined impacts (Column M1) and the urbanization impacts alone (Column M2).  In Panel II, 0% 

represents non-significant differences in medians.  Codes: * = Means instead of medians are reported to more appropriately represent 

the trend.  † = Evaluates whether changes in medians were amplified or attenuated (M1 vs. M2).  Varied = different directions of 

change across scenarios; minor = minor changes (≤5% or 3 days for N0D); bold text = substantial differences between M1 and M2. 

 

Flow 
Metric Bsn 

Panel I Panel II 
Change in the Medians from the Reference in Future Scenarios Range of Sig. Diff. in Medians 

Amplify (+) 
or  

attenuate (-)† 

Dry (CNRM) Wet (CAN) M1 M2 

CM DM CnM DnM CM DM CnM DnM 
Combined 

Devel. only 
Dry Wet 

Qmean A   
  

  
   

+13% 0 0-13% 0-4% varied 

 
B                 0 0  -1-5% minor 

 
C   

  
  

  
+14% +15% 0 0-15% 0-5% + (wet) 

1DMAX A   
 

+25% +37% +34% +45% +51% +61% 0-37% 34-61% 6-30% + (wet) 

 
B   

 
+23% +32% 

 
+30% +46% +58% 0-32% 0-58% 2-25% + (wet) 

 
C   

 
+35% +41% +34% +37% +51% +61% 0-41% 34-61% 13-31% + (wet) 

7DMIN A -100% -100% -100% -100% -100% -100% -100% -100% -100% -100% -90% to -85%  + (dry & wet) 

 
B   

  
  

   
  0 0  0   

 
C                 0 0  0   

LPC A   
  

  
   

  0 0 0-50% - (dry & wet) 

 
B                 0 0  0-20% - (dry & wet) 

 
C +400% +400% +400% +400% +350% +350% +400% +500% 400% 350-500% 400-600% - (dry & wet) 

HPC A   
  

  
  

+29% +29% 0 0-29% 14-21% - (dry) 

 
B   

  
  

   
+13% 0 0-13% 0-13% - (dry) 

 
C   

  
+43% 

  
+43% +43% 0-43% 0-43% 14-43% varied 

N0D A +13d +15d +16d +18d +11d +12d +15d +18d +13 to +18d +11 to +18d +7 to +10d* + (dry & wet) 
(days) B   

  
  

   
+13d 0 0 to +13d 0 varied 

 
C   

  
  

   
  0 0 -2 to -1d minor 

LPD A   
  

  
   

  0 0 0  

 
B   

  
  

   
  0 0 0  

 
C   

  
-57% -57% -59% -55% -54% -57% to 0 -59 to -54% -58% to 0 + (wet) 

HPD A   
  

  
   

  0 0 0  

 
B   

  
  

   
  0 0 -26% to 0 - (dry & wet) 

 
C   

  
  

   
  0 0 0  

TL1 A -10d -14d -17d -18d -10d -17d -18d -23d -18 to -10d -23 to -10d -13 to -5d + (dry & wet) 
(days) B   

  
  

   
-18d 0 -18d to 0 0 + (wet) 

 
C   

  
  -20d -20d -22d -22d 0 -22 to -20d 0 to +2.5d + (wet) 

RBI A +13% +24% +27% +38% +13% +23% +28% +39% 13-38% 13-39% 11-36% minor 

 
B +11% +13% +25% +35% +12% +14% +28% +38% 11-35% 12-38% 6-31% minor 

 
C +18% +21% +32% +39% +19% +22% +34% +41% 18-39% 19-41% 15-36% minor 
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urbanization impacts alone, to 40% insensitive, 47% manageable, and 13% resistant 

metrics under the dry future climate, and 37% insensitive, 37% manageable, and 26% 

resistant metrics under the wet future climate.  The total counts of metrics in each 

sensitivity category altered little under the dry future climate but substantially under the 

wet future climate.  In particular, the resistant metrics more than doubled under the wet 

future climate over urbanization impacts alone.  In fact, even when the total counts 

remained similar, substantial turnover of metric types occurred (Table 3.3).  Under the 

insensitive category, 30-40% of development-only insensitive metrics shifted to sensitive 

under the combined impacts.  Under the manageable category, the dry future climate 

resulted in nearly 1/3 metric turnover, whereas the wet future climate caused removal of 

½ of the original metrics and addition of 4 other metrics.  No metrics were removed from 

the resistant category under the combined impacts.  The dry future climate added 1 

metric, whereas the wet future climate added 5. 

 In terms of individual metrics, 7 out of 10 metrics changed their sensitivity 

categories under the combined impacts.  The other 3 (7DMIN, HPC, and RBI) remained 

in their original categories under the combined impacts.  The majority of the changes (5 

out of 7 metrics) progressed from less to more affected, i.e., from insensitive (T1) to 

manageable (T2) to resistant (T3), whereas 2 other metrics changed in the opposite 

direction.  Specifically, the following 5 metrics became more affected: the Qmean 

(Basins A and C), N0D (Basin B), and TL1 (Basin B) changed from T1 insensitive to T2 

manageable under both climates; the 1DMAX (Basins A and C) and LPD (Basin C) 

changed from T2 manageable to T3 resistant under the wet future climate; the TL1 

(Basin A) changed from T2 manageable to T3 resistant under both climates; and the TL1  
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Table 3.3. Sensitivity classifications of flow metrics under the combined impacts in comparison to under urbanization impacts alone. 

 

Flow 

Metrics 

Type 1 (T1) 

Insensitive 

Type 2 (T2) 

Sensitive and 

Manageable 

Type 3 (T3) 

Sensitive and Resistant 

Change of Types 

 Devel. 

Only 

Combined 

Impacts 

Devel. 

Only 

Combined 

Impacts 

Devel. 

Only 

Combined 

Impacts 

 

Dry Wet Dry Wet Dry Wet  

Qmean ABC B B  AC AC    2 T1s  T2s under both future climates 

1DMAX    ABC ABC B   AC 2 T2s T3s under wet future climate 

7DMIN BC BC BC    A A A No change – T1 in 2 basins, T2 in 1 basin 

LPC  AB AB AB   C C C 2 T2s T1s under both future climates 

HPC    ABC ABC ABC    No change – T3 in all basins, all 

scenarios 

N0D BC C C  B B A A A 1 T1 T2 under both future climates 

LPD AB AB AB C C     C 1 T2 T3 under wet climate 

HPD AC ABC ABC B      1 T2 T1 under both future climates 

TL1 BC C  A B B  A AC 1 T1 T2 and 1 T2  T3 under both 

future climates, 1 T1 T3 under wet 

future climate 

RBI    ABC ABC ABC    No change – T3 in all basins, all 
scenarios 

Tot. Counts 13 12 11 14 14 11 3 4 8  

Unchanged  9 8  10 7  3 3  

Added  +3 +3  +4 +4  +1 +5  

Removed  -4 -5  -4 -7  0 0  

Bold letters = development-only impact (ca. 2050 development w/ historical climate) unchanged under both combined impacts 

scenarios (ca. 2050 development with wet or dry future climate); underlined letters = added to this category for one or both combined 

impacts scenario; double underlined letters = removed from this category for one or both combined impacts scenarios. 
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(Basin C) changed from T1 insensitive to T3 resistant under the wet climate.  In contrast, 

the 2 metrics of LPC (Basins A and B) and HPD (Basin B) became less affected, 

changing from T2 manageable to T1 insensitive.   

 

3.2. Flow Regime Displacement  

Both ordinations NMDS-A and NMDS-BC (Figure 3.3) preserved the original 

dissimilarities among the scenario flow regimes in reduced dimensions, with stress = 

0.104 for NMDS-A, and 0.098 for NMDS-BC (0.05<stress<0.1 considered excellent 

representation, McCune et al. 2002).  We first interpret the NMDS axes based on the 

loadings of individual flow metrics (Table S13) and then describe the patterns of flow 

regime displacement in relation to climate, regional growth pattern, and ISM across the 

three basins. 

Flow metric loadings in each ordination showed related but distinctive patterns.  

In NMDS-A, flow metrics that loaded ≥0.5 on Axis A1 included RBI, 1DMAX, N0D, 

and HPC (all positive, in order of decreasing magnitude), and TL1, 7DMIN, and LPD (all 

negative, in order of decreasing magnitude).  Those that loaded ≥0.5 on Axis A2 included 

LPC and N0D (both positive, in order of decreasing magnitude), and HPD, Qmean, LPD, 

and HPC (all negative, in order of decreasing magnitude) (Table S13).  We interpret the 

left-to-right gradient along Axis A1 as reflecting an increase in flow regime flashiness 

and magnitude of extreme flow events, while the upward gradient along Axis A2 

indicates a trend of flow reduction.  In NMDS-BC, flow metrics that loaded ≥0.5 on Axis 

BC1 included Qmean, RBI, 1DMAX, and HPC (all positive, in order of decreasing 

magnitude), and HPD and LPD (both negative, in order of decreasing magnitude).  Those  



 

90 

Figure 3.3. Patterns of flow regime alterations as revealed by the NMDS ordinations.  

Rows show basins (A, B, C).  Columns show themes.  Panel I depicts scenario clusters 

under different climates (colored ellipses: grey = historical climate, blue = wet future 

climate, sienna = dry future climate).  Panel II reclassifies the individual scenario x 

climate results to show the effects of regional growth patterns and management (colored 

triangles: green = compact, purple = dispersed; ISM = diagonal lines, no ISM = no 

pattern).  Legend shows symbols used to identify each scenario by growth and 

management class (star = reference landscape and climate, circle v. square = Compact v. 

Dispersed, open v. solid = with v. without ISM).  Flow metric vectors were rescaled to 

1/2 of their original lengths for graphic clarity.   
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that loaded ≥0.5 on Axis BC2 included N0D (positive), and TL1 and LPC (both negative, 

in order of decreasing magnitude) (Table S13).  Axis BC1 thus reflects a gradient 

associated with increasing flashiness and magnitude of high flows from left to right, 

whereas upward along Axis BC2 primarily represents changes in frequency, duration, 

and timing of low flows leading to more extremes.   

Each climate regime imposed a distinctive effect on streamflow regimes as shown 

by the distinct clustering of scenario flow regimes by climate in all three basins (ellipses 

of Figure 3.3 Panel I).  Climate impacts aligned closely with advancement and increased 

duration of extreme low flows (all basins), and increased flashiness (Basin A).  In general, 

the 2050 landscapes under future climate (yellow and blue ellipses) showed greater 

displacement from the reference (the star symbol) than did the 2050 landscape under 

historical climate (grey ellipse).  Moreover, the wet future climate scenarios showed 

greater flow regime displacement from the reference than the dry future climate scenarios 

in all basins, as indicated by the larger distances from the reference to the wet climate 

flow regimes (blue symbols) than to their dry climate counterparts (yellow symbols).  

This result is supported by the Climate Impacts Alone and Combined Impacts tests in 

which the wet climate produced more instances of significant differences in flow metrics 

in all three basins (Table 3.1 and Figure 3.2).   

Similarly, the ordinations revealed generalizable patterns of development impacts 

across the three basins (triangles of Figure 3.3 Panel II).  Urbanization impacts aligned 

closely with increases in flow regime flashiness (all basins) and magnitude of high 

(Basins B and C) or both high and low extreme flow events (Basin A).  Both compact 

growth and ISM scenarios led to less flashiness and fewer extreme high flow events than 
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their dispersed and no-ISM counterparts, respectively (i.e., they are to the left of their 

counterparts in almost all comparisons).  This is also supported by the Combined Impacts 

test where compact growth and ISM produced fewer instances of flow metric alterations 

than their respective counterparts in all basins (Figure 3.2).  In addition, ISM constrained 

flow regime displacement more than compact regional growth.  The distances between 

the ISM scenarios and their no-ISM counterparts (triangles with vs. without diagonal 

lines) were larger than those between the compact growth and their dispersed 

counterparts (green vs. purple triangles of Figure 3.3 Panel II) in all three basins.   

 Furthermore, the Dispersed without ISM (DnM) scenarios exhibited the greatest 

displacement from the reference conditions for every basin, as indicated by the longest 

distance from the star symbol to the plain purple triangle (Figure 3.3 Panel II).  This was 

also verified by the Combined Impacts test where DnM produced the most instances of 

significantly altered flow metrics for every basin (Figure 3.2-b).  In addition, DnM 

showed the least flow regime variability under different climate conditions, as illustrated 

by the smallest area of the plain purple triangle compared to the other three triangles 

(Figure 3.3 Panel II).   

 The relative importance of urbanization vs. climate change varied across the three 

basins.  The effects of urbanization alone are shown by the distances between the star 

symbol (1990 landscape, historical climate) and the grey ellipse (future landscapes, 

historical climate) in each basin (Figure 3.3 panel I).  The effects of the two future 

climate regimes are shown by the distance between the grey ellipse and the yellow and 

blue ellipses, respectively.  In Basin A, urbanization and climate appear to have effects of 

similar magnitude.  In Basin B, climate change caused a larger impact than urbanization.  
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In Basin C, urbanization produced a stronger impact than climate, as indicated by the 

close clustering of all future scenarios (grey ellipse of Figure 3.3, C-II) far away from the 

reference.   

Individual basins showed several specific responses.  In Basin A, the Compact 

with ISM (CM) scenarios were particularly effective in constraining the flow regime 

displacement across all three climates, as indicated by the clear separation of the green 

patterned triangle from the others (Figure 3.3, A-II).  Additionally, although the ISM 

scenarios (triangles with diagonal lines) constrained the overall displacement, they 

allowed greater differences between the effects of the two future climates (e.g., the large 

angle of α) than the no-ISM scenarios (e.g., the small angle of β).  In Basin C, both 

compact growth and ISM effectively reduced the flashiness of the flow regime (left shift 

along Axis BC1 in Figure 3.3, C-I) under the historical or dry climate regimes.  However, 

under the wet future climate, growth patterns and management mattered little (all four 

blue points all clustered closely together).  

 

4. Discussion 

The key opportunities presented in this research lie in the integration of an 

alternative futures planning analysis, an agent-based model of landscape change, and a 

hydrological assessment of the landscape-level outcomes under past and projected future 

climates, the latter through the lens of a suite of 10 ecologically meaningful metrics of 

streamflow regimes.  The complex interactions among climate, urbanization, and 

hydrology generated a diverse set of flow regime responses among alternative 
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development scenarios and across catchment basins.  We use these results to address our 

five original questions.   

 

(Q1) How does climate change impact streamflow regimes in comparison to urbanization?  

Will different future climate regimes lead to different effects?  

 Climate change by itself significantly altered flow regimes across all three basins 

with highly individualistic responses among metrics (Table 3.1).  Importantly, all 

pairwise climate x scenario differences within individual metrics occurred between 

historic and future climates rather than between the two future climates.  Of the 10 flow 

metrics, five were affected by climate change in at least one basin and scenario.  Four out 

of the five were measures of low flows (7DMIN, LPC, N0D, and TL1), suggesting that 

climate change in our region is most likely to lead to a drying trend with more dry days, 

lower low flows, and earlier annual minimums.  Only two of the metrics (7DMIN and 

N0D) were affected by climate change in all scenarios and only the former was affected 

in all basins, suggesting the climate change effects are likely to be sensitive to both 

geography and the pattern of development. 

The NMDS ordinations further support the conclusion that climate change is most 

likely to affect low flows based on the distinct signatures of climate and development on 

flow regimes as a whole (Figure 3.3, Panels I vs. II).  Climate scenarios were consistently 

separated along Axis 2 (either reduced flows in NMDS-A or more extreme low flows in 

NMDS-BC), but not well differentiated along Axis 1 (flashiness and either high flows in 

NMDS-A or both high and low flows in NMDS-BC).  Conversely, development appears 

to exert greater control over flashiness and extreme flow conditions, showing strong 
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differentiation along Axis 1, but no such differentiation along Axis 2.  This is also 

consistent with the flow metric responses evaluated under urbanization alone (Chapter II).  

The specific signatures of climate change and urbanization may be a direct consequence 

of how both future regional climate regimes project reduced precipitation inputs in at 

least 2 out of 4 seasons while increasing summer evapotranspiration (Table S11), 

whereas development reduces sponginess of the landscape and in doing so increases the 

magnitude of extreme events as well as the overall flashiness of the flow regime.  Given 

that future climate projections may be much more variable across different geographies 

than urbanization, the former mechanism may be less applicable to regions other than the 

Pacific Northwest than the latter. 

Whereas the two future climate regimes affected streamflows through a consistent 

mechanism as elaborated above, the intensity of their effects differed.  The wet future 

climate (CanESM2_RCP4.5) resulted in 60% more instances of flow metric alterations 

than the dry future climate (CNRM-CM5_RCP4.5) (Figure 3.2-c).  However, when 

metrics were altered under both future climates, the directions of changes were always 

the same, and the magnitudes were similar (Table 3.2-I).  The similarities of effect type 

but differences in intensity from the two future climate regimes begin to help bracket the 

range of uncertainty in the potential hydrological effects of local climate change 

projections, while highlighting the importance of investigating multiple future climates.  

Future evaluation of more regionally downscaled climate regimes would allow an 

assessment of the consistency of their effects and better bracket the range of variability in 

potential hydrological responses.  
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(Q2) How might climate change and urbanization interact to influence the overall flow 

regimes as well as individual flow metrics? Is climate change likely to exacerbate or 

attenuate urbanization impacts?   

 In general, climate change exacerbated rather than attenuated the impacts of 

urbanization, as evidenced by both the combined impacts and the flow regime 

displacement tests.  The combined impacts test demonstrated that six of the ten metrics 

showed amplified changes due to climate change over urbanization alone in one or more 

basins (Table 3.2).  The flow regime displacement test further illustrated that climate 

change caused greater flow regime displacement from the reference landscape under 

historical climate than under urbanization alone for every basin (Figure 3.3).  

 A review of the individual metrics reveals how climate projections affected 

different flow components.  Annual runoff (Qmean) tended to increase; both high and 

low extreme flow events became more extreme (1DMAX and N0D increased and 

7DMIN and TL1 decreased); and the overall flashiness (RBI) increased.  Magnitude of 

amplification could be substantial, especially under the wet future climate.  In Basin A 

for example, the increase in the largest annual flood intensity (1DMAX) was minor (+6%) 

under the best-case scenario (CM) simulated with the historical climate (Figure 2.6), but 

much greater (+34%) under the same scenario with the wet future climate (Table 3.2).  

The wet future climate added at least a 30% increase in 1DMAX under every future 

development scenario in this basin.  Furthermore, this basin (A) historically had almost 

year-long continuous flows (N0D≈0), but will likely experience 11-18 more dry days 

with no flows under both future climates.  Additionally, in two out of three basins (A and 

C), annual minimums were anticipated to occur much earlier under the wet future climate 
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than the historical climate, regardless of the development scenario.  Degree of 

advancement was as substantial as 3-3.5 weeks in Basin C.  The amplified effects in a 

majority of flow metrics highlight the importance of incorporating potential climate 

change into watershed impact assessments.  Enacting management plans for future 

development based solely on assessments under historical climate may not provide the 

required capacity for streams to cope with future flow regimes. 

In contrast, a small number of metrics showed attenuated effects under the 

combined impacts, suggesting that climate change may in some cases counteract the 

effects of urbanization.  Specifically, changes to three measures of flashiness (LPC, HPC, 

and HPD) were reduced under the combined impacts.  This is potentially due to the 

"drying" effects of climate change compensating for the “wetting” effects of urbanization.  

This suggests the intriguing possibility that climate change under certain combinations of 

geography and urbanization pattern could in fact offset effects on certain flow 

components, whereas other components may require specific, individualized management 

responses to prevent amplification of urbanization effects.    

More extreme high and low flow events under the combined impacts of climate 

change and urbanization will likely amplify the negative effects on native aquatic 

organisms resulting from urbanization alone.  More direct mortality may occur during 

high-flow seasons because of more extreme floods.  More desiccation may occur during 

low-flow seasons due to earlier and reduced low flows that may lead to higher water 

temperatures and reduced dissolved oxygen (Coleman et al., 2011).  On the other hand, 

reduced changes in measures of frequency and duration (LPC, HPC, and HPD) under the 

combined impacts that in combination affect flow regime flashiness may offset certain 
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negative impacts brought by urbanization alone, e.g., increased scouring and 

sedimentation of the stream beds.  

 

(Q3) Will compact regional growth and integrated stormwater management remain 

effective strategies in reducing flow alterations under different climate regimes?   

 As demonstrated by all three tests, compact regional growth and integrated 

stormwater management proved effective in reducing flow regime impacts, just as under 

urbanization impacts alone (Chapter II).  This conclusion is based on analyses from the 

three basins as a whole.  The Climate Impact Alone test showed that the compact and 

ISM scenarios provided less opportunity for future climate regimes to generate 

significant flow alterations than their dispersed and no-ISM counterparts (Table 3.1). The 

Combined Impacts test further showed that the dispersed scenarios generated more 

instances of flow alterations than their compact counterparts for every basin, and the no-

ISM scenarios similarly generated more instances of changes than their ISM counterparts 

for every basin (Figure 3.2-b).  Furthermore, the relatively small increase in the number 

of instances where metrics became resistant in one or more basins shows that compact 

growth and ISM effectively maintained the majority of flow metrics within the specific 

threshold for the manageable category even under climate change.  Specifically, 87% and 

73% of metric x basin instances remained in the insensitive or manageable categories 

under the dry and wet future climate, respectively, as compared to 90% under the 

historical climate.  Only three metrics exhibited instances where they became resistant in 

one or more basins (a total of 5 instances) under the combined impacts.  All but one of 

these instances occurred only under the wet climate regime. In addition, in all cases 
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where metrics were manageable, the best-case scenario incurred less than half the change 

than the worst-case scenario (Table 3.2), highlighting the effectiveness of compact 

growth and ISM.  Last but not least, as visualized by the NMDS ordinations, compact 

growth and ISM scenarios are closer to the references than their dispersed and no-ISM 

counterparts in almost all comparisons.   

In particular, ISM was more effective than compact growth in reducing flow 

regime alterations, a consistent conclusion across all basins.  The NMDS ordinations 

illustrated smaller flow regime displacement by the ISM scenarios than compact growth 

(Figure 3.3).  Furthermore, the differences in the counts of metric alterations between the 

compact scenarios and their dispersed counterparts were always smaller than those 

between the ISM and their no-ISM counterparts, with one exception (Basin B under the 

wet future climate) (Figure 3.2c).  

When individual basin x climate combinations were considered, the relative 

importance of compact growth vs. ISM showed a more complex pattern.  Under the dry 

climate, compact growth itself appeared to have little effect, as indicated by the identical 

counts of metric alterations between the compact vs. their dispersed counterparts across 

all three basins with only one exception of Basin C when ISM was absent (Figure 3.2c).  

Under the wet climate, the effectiveness of compact growth improved in Basin B, 

especially when ISM was absent, but remained limited in the other two basins A and C 

(Figure 3.2c).  It is notable that this picture is different from that provided by the NMDS 

ordinations (Figure 3.3), which showed that, when the median values (rather than counts) 

of the metrics were taken into account, compact growth consistently did better than 
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dispersed growth in reducing flow regime displacement in Basin A, but only had a 

substantial effect in the absence of ISM in Basins B and C (Figure 3.3).   

 

(Q4) How will the manageability of the overall flow regime as well as individual flow 

metrics change?  

Despite the effectiveness of compact growth and ISM, the overall manageability 

of the flow regimes decreased with the combined impacts, especially under the wet future 

climate.  The decrease of insensitive and manageable metrics was minor (-3%) under the 

dry future climate, but considerable (-17%) under the wet future climate with a doubling 

of the resistant metrics over historical climate.  

Not only did the overall manageability of the flow regimes change, substantial 

turnover of metric types occurred under the combined impacts, highlighting the complex 

ways climate change and urbanization may interact with each other.  Three metrics 

(7DMIN, HPC, and RBI) exhibited no change in category, two metrics (LPC and HPD) 

saw a tendency for climate change to offset development impacts, and five metrics 

(Qmean, 1DMAX, N0D, LPD, and TL1) showed increased impacts with climate change.  

Sensitivity changes in measures of both high and low extreme flows tended to be more 

predictable (1DMAX, N0D, and TL1 all became less manageable) due to the distinct 

signatures of urbanization and climate change, i.e., urbanization exerted greater control 

over extreme flow conditions, whereas climate change itself primarily led to more 

extreme low flows.  In particular, the fact that no metrics were removed from the 

resistant category suggests that the low flow components (7DMIN, LPC, and N0D), 

which were difficult to manage under urbanization alone, will likely remain resistant to 
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mitigation under the combined impacts.  In contrast, measures of flow regime flashiness 

exhibited more complex patterns of category change, i.e., LPC and HPD became more 

manageable, LPD became less manageable, and HPC and RBI exhibited no change in 

category.  This is potentially due to the tendency of climate change to offset 

urbanization’s effects on flashiness.  We suspect that such counteracting effects will 

create large uncertainties in the responses of flashiness measures in future investigations 

under different urbanization levels or future climate regimes, not only for our basins, but 

also for other regions.  Once again, the uncertainties in flow metric manageability 

highlight the value of spatially explicit modeling in revealing complex site-specific 

interactions among climate, urbanization, and hydrology. 

The changes in flow metric sensitivity types also suggest important implications 

for watershed management.  On the one hand, the majority of changes progressed from 

less to more affected, i.e., from insensitive (T1) to manageable (T2) to resistant (T3).  

Changes from T1 to T2 (insensitive to manageable) revealed possible benefits of 

implementing compact growth and ISM that were not evident under urbanization alone.  

Those from T1 or T2 to T3 (insensitive or manageable to resistant) provided important 

clues about the potential risks of not implementing mitigation strategies based on 

assessments under historical climate.  On the other hand, changes from more to less 

affected (T2 to T1, manageable to insensitive) provide a cautionary against overreliance 

on the success or failure of current management efforts.  The limited number of these 

occurrences (only two metrics exhibited such change), however, indicates that such 

counteracting effects between climate change and urbanization are likely to be small. 
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(Q5) Do differences in catchment basin characteristics lead to different local effects from 

climate and urbanization? 

 Each basin responded differently to the combination of urbanization and climate 

change, as indicated by the complex responses of individual flow metrics.  First, the 

smallest, flattest, and most urban basin with the least permeable soils (A) appeared to be 

particularly susceptible to both development and climate change.  This basin experienced 

the most instances of individual metric alterations under both the combined impacts 

(Figure 3.2-a) and urbanization impacts alone (Chapter II).  This is potentially due to the 

amplified runoff volume from increased impervious surfaces and the relatively short flow 

concentration time to the watershed outlet in Basin A.  Second, the combined impacts 

imposed nearly as large a set of flow alterations on the largest, steepest, and most rural 

basin (C), suggesting a potentially significant phenomenon that remains to be verified 

with further research: flow regime alterations in undeveloped basins may occur with even 

a small increase in imperviousness (e.g., from 2.2% to 4.5% in Basin C).  Impacts of the 

dry future climate were only half of those under the wet future climate in Basins B and C, 

but only modestly less in Basin A (Figure 3.2b), highlighting how expressions of climate 

change impacts can substantially vary even in adjacent basins.  Lastly, the basin of 

intermediate size and urbanization level but with the most permeable soils (B) showed 

the smallest overall flow regime changes under all three circumstances (urbanization 

impacts alone, climate impacts alone and combined impacts), again reinforcing the 

importance of local conditions.  With that said, the need for local lessons to be 

transferable to other geographies calls for further research (e.g., sensitivity analyses) that 



 

103 

reveals the underlying reasons (e.g., size, topography, soil, characteristics of development, 

etc.) for the varied basin sensitivity to urbanization and/or climate change. 

 

5. Conclusions 

 Using spatially downscaled daily future climate data from two climate models, we 

modeled the hydrological impacts of four land development scenarios in three urbanizing 

watersheds in southern Oregon where human populations are projected to double in 

coming decades.  We evaluated the combined effects of urbanization and climate change 

in comparison to the results of our previous study of urbanization impacts alone.  Despite 

substantially varied hydrological impacts across the three adjacent basins, the modeling 

framework allowed us to tease out both nuanced differences and generalizable trends.  

We summarize the major conclusions as follows. 

 1) Climate change appears likely to significantly alter future flow regimes across 

diverse development scenarios and watershed types, primarily causing a drying trend 

with more dry days, reduced low flows, and earlier annual minimums.  The types of 

impacts were similar but their intensity differed substantially under the two climate 

models considered among the most suitable for the U.S. Pacific Northwest. 

 2) Climate change generally exacerbated the impacts of urbanization, making it 

more challenging to mitigate flow regime impacts under future climate.  At the same time, 

a few flow alterations that were resistant to mitigation under urbanization and historic 

climate became more manageable under the combined impacts of urbanization and 

climate change.  This provides a caution against overreliance on either modeling results 

that do not consider future climate or the success or failure of current management efforts. 
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 3) In general, both compact regional growth and integrated stormwater 

management were effective strategies for reducing flow regime impacts of urbanization 

under all three climate regimes assessed (two future and one historical) for all three 

basins.  ISM was always more effective than compact growth and compact growth 

provided little additional benefit when ISM was implemented across both the urban and 

rural portions of the landscape.   

 4) Some flow metrics were relatively insensitive to either development or climate 

change, whereas at the other extreme were those consistently impacted despite attempts 

to mitigate them (i.e., metrics that are sensitive to change but resistant to mitigation).  For 

7 (out of 9) metrics that were sensitive to the combined impacts in at least one basin, 

however, the strategies of compact growth and ISM were able to mitigate their effects 

(i.e., sensitive and manageable) in at least one basin.  Future flow-ecology research 

should endeavor to determine the ecological significance of each flow metric.  In 

particular, efforts should focus on developing specific flow management targets for the 

sensitive and manageable metrics and prioritizing the implementation of specific 

strategies that are likely to successfully mitigate their impacts.  In addition, further 

investigations are required to explore management policies other than those tested here to 

identify potential means of mitigation for the sensitive and resistant metrics.   

 5) The effects of both climate change and urbanization differed among adjacent 

catchment basins due to differences in geography, development or both.  Some flow 

metrics were consistently affected across all basins, whereas others were impacted in one 

or two basins.  Which basins were most affected and how they were affected could be 
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explained to some degree by their size, topography and soils in relation to the amount and 

distribution of urban and rural development.  

 6) Our ability to anticipate complex interactions between climate, urbanization 

and streamflows across different watersheds is still rudimentary.  A fundamental 

assumption of this research, like that of many other hydrological studies, has been that 

maintaining extant streamflow regimes under urbanization is preferable to their alteration.  

However, many flow regimes already have been substantially modified by development 

and may be poorly aligned to the needs of native stream biota.  Particularly under climate 

change uncertainties, questions of what is an appropriate reference to target and the 

degree to which novel flow regimes will require adjustments to what is considered 

acceptable or desirable, including the species toward whose needs flow regimes are 

targeted, become central.  Such issues make assessing the ecological consequences of 

development-related hydrological alterations even more complicated.  Interdisciplinary 

modeling frameworks that can guide watershed management by linking the mechanisms 

of landscape planning to the goals of sustaining stream ecosystem function and 

biodiversity will become increasingly important as such futures unfold. 
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CHAPTER IV 

 

CONCLUSIONS 

 

 

Watershed planning and management is a challenging field to work in, which in 

turn indicates considerable potential for emerging research and knowledge.  Over the past 

two decades, researchers and planners have been seeking cures for the degradation of 

aquatic ecosystem health through both site-scale stream restoration techniques as well as 

watershed scale planning approaches.  Despite extensive efforts, cross-disciplinary 

integration remains insufficient for the purposes of anticipating aquatic ecosystem 

consequences as well as informing planning decisions.  With this research, I attempt to 

advance this emerging field by developing a transferable methodology that better links 

the approaches of landscape planning to the goal of sustaining stream ecosystem health.  

In particular, I explored the combined hydrological impacts of urbanization and climate 

change, and tested the effectiveness of compact regional growth and integrated 

stormwater management in maintaining streamflow regimes in three adjacent watersheds 

in the southern Willamette Valley, Oregon. 
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Summary of Flow Regime Responses 

1. Expected population growth in the next 3-4 decades in the Willamette River Basin 

will likely result in significant flow regimes changes in all three catchment basins 

evaluated.  Urbanization appears to exert greater control over flow regime 

flashiness and extreme flow conditions.  The magnitude of extreme flow events, 

frequency of high and low flow events, and flashiness are likely to be more 

sensitive to urbanization than average flows, duration of both high and low flows, 

and the timing of extreme low flows.   

2. Climate change by itself also significantly changed the flow regime with highly 

individualistic metric responses, primarily leading to a drying trend with more dry 

days, even lower low-flows, and earlier annual minimums.   

3. In general, climate change exacerbated the impacts of urbanization by causing 

further displacement of the flow regimes from the reference conditions.  

However, under circumstances where the “drying” effect of climate change 

compensated the “wetting” effect of urbanization, alterations of three measures of 

flashiness were reduced.  This suggests the intriguing possibility that climate 

change under certain combinations of climate, geography and urbanization pattern 

could in fact offset effects on certain flow components, whereas other components 

may require specific, individualized management responses to prevent 

amplification of urbanization effects.   
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Implications for Management 

1. By concentrating over 90% of the population growth within UGBs, the Compact 

Regional Growth approach representing Oregon’s current statewide planning 

systems outperformed the Dispersed Regional Growth in reducing hydrological 

alterations in the three basins assessed under both the historical climate and the 

two future climate regimes tested.  However, compact growth appeared to have 

limited added reduction of flow alterations when ISM was also present.  Further 

investigations would be necessary to determine the transferability of this 

statement to other geographies due to confounding factors created by the 

complexity of the agent-based landscape change model. 

2. Integrated stormwater management (ISM), i.e., the integration of localized spatial 

patterns of development with site-scale stormwater BMPs, proved to be highly 

effective in protecting the flow regimes under both the historical climate and the 

two future climates.  In particular, ISM was always more effective than compact 

growth.  

3. The high performance of ISM emphasizes the importance of the suite of 

underlying strategies it represented.  Watershed planning and management 

programs should create opportunities to implement the following ISM strategies: 

a) limiting development on steep slopes and permeable soils; b) protecting large 

vegetative patches, riparian buffers and wetlands; c) limiting overall watershed 

imperviousness by encouraging cluster or high density development; d) reducing 

directly connected imperviousness by re-infiltration LIDs; and e) reducing road 

impacts by encouraging compact development and re-infiltration LIDs.   
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4. Some flow metrics were relatively insensitive to either development or climate 

change, whereas at the other extreme were those consistently impacted despite 

attempts to mitigate them (i.e., sensitive and resistant metrics).  For a large 

number of metrics sensitive to the combined impacts, however, the strategies of 

compact growth and ISM were able to largely mitigate their effects (i.e., sensitive 

and manageable).  Future flow-ecology research should endeavor to determine 

the ecological significance of each flow metric.  In particular, efforts should focus 

on developing specific flow management targets for the sensitive and manageable 

metrics and prioritizing the implementation of specific strategies that are likely to 

successfully mitigate their impacts.  In addition, further investigations are 

required to explore management policies other than those tested here to identify 

potential means of mitigation for the resistant metrics.   

5. The effects of both climate change and urbanization differed among adjacent 

catchment basins due to differences in geography, development or both.  Some 

flow metrics were consistently affected across all basins, whereas others were 

impacted in one or two of them. Which basins were most affected and how they 

were affected could be explained to some degree by their size, topography and 

soils in relation to the amount and distribution of urban and rural development. 

6. Protecting stream ecosystem health under the pressure of population growth will 

continue to challenge our design and planning capabilities because significant 

hydrologic alteration that may prove critical to the stream biota could happen at a 

very low urbanization level.  Rigorous but flexible approaches that link flow-

ecology science to local watershed planning, such as that explored here, may be 
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better able to sustain resilient stream ecosystems while continuing to meet societal 

expectations for development and growth. By developing detailed hydrological 

foundations and revealing site-specific hydrological responses to projected 

urbanization, our modeling results provide valuable contributions that will further 

the ability of local planners to set specific targets for watershed planning and 

management.  At the same time, the demonstrated interdisciplinary framework 

established a transferable methodology that begins to link the mechanisms of 

landscape planning to the goals of sustaining stream ecosystem health, which 

could be broadly applicable to other geographic locations. 

 

Methodological Contributions 

The modeling framework developed presents seven key methodological 

innovations toward an integrated framework that begins to link the mechanisms of 

landscape planning to the goals of sustaining stream ecosystem health.   

1. The identification of a coherent suite of ecologically relevant flow metrics that 

cover each major flow component established a bridge from hydrological impacts 

to ecosystem consequences, and made it possible to anticipate the ecological 

ramifications of projected urbanization in the absence of quantitative and spatially 

explicit local flow-ecology knowledge.   

2. The flow metric sensitivity classification system created a direct linkage between 

flow alterations and the ability to manage them through planning and 

management prescriptions.  It furthers the ability of local planners to set specific 
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flow management goals and holds promise for broader applications in future 

watershed planning and management.   

3. Incorporation of an agent-based landscape change model not only provided the 

capacity to simultaneously evaluate alternative forms of regional growth and 

stormwater management and disentangle their individual effects, but also to do so 

in a way that extracts the central tendencies of contrasting alternative futures.   

4. The agent-based landscape change model provided the ability to directly assess 

plans of actions by establishing direct linkages between policies and landscape 

change trajectories. 

5. By incorporating the Long-Term Hydrologic Impact Assessment (L-THIA) model 

and analyzing high resolution land cover data from both urban and rural areas, the 

framework improved the ability of SWAT to incorporate stormwater 

management, and to more accurately represent the hydrological characteristics of 

both high and low density developments.  

6. By spatially downscaling GCM projections to the study area, the framework was 

able to assess the localized hydrological impacts of urbanization in the context of 

climate change.  And by investigating multiple future climate regimes, the 

framework revealed the substantially varied flow responses under different future 

climates.  More importantly, it informed the potentially distinct signatures of 

climate change vs. urbanization on flow regimes and demonstrated the complex 

interactions between climate change and urbanization. 

7. Lastly, by investigating multiple catchment basins, the framework generated 

useful insights on potential relationships between watershed characteristics and 
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hydrological responses, which would not have been revealed if only a single basin 

had been studied.   

 

Methodological Limitations 

1. A major limitation of the integrated modeling approach we adopted is that it 

focuses on exploring what might happen by simultaneously modeling multiple 

changing variables, rather than identifying the reasons beneath the modeling 

outcomes (i.e., “why”).  Future research could build upon this modeling 

framework and conduct more sensitivity analyses that apply greater control of 

real-world complexities to reveal the underlying causes of the phenomenon (e.g., 

why a certain basin was more affected by urbanization and/or climate change, 

which ISM strategy may be the most effective in reducing flow alterations, etc.) 

2. The lack of quantitative and spatially explicit local flow-ecology knowledge made 

it challenging to justify the selection of specific flow metrics and to quantify the 

ecological consequences of the modeled flow alterations on native aquatic biota.  

This is likely to be true in most other parts of the country due to the paucity of 

paired biological and hydrological data. 

3. The difficulties of integrating Envision and SWAT made it computationally 

challenging to model the hydrological outcomes of multiple alternative futures for 

each scenario.  At the same time, the approach of identifying the scenario that best 

represented the mode of scenario outcomes across all land units (IDUs) allowed 

us to represent the central tendencies of the model without decoupling the 
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complex interactions and feedbacks that lead to landscape-scale scenario 

outcomes. 

4. A key caveat in the landscape simulation in Envision is that the importance of 

compact regional population growth could not be definitively determined at the 

scale addressed in this study because of the confounding factor of varying 

population growth across scenarios and basins.  Future research could apply 

greater experimental control of population projections within and among basins. 

5. For computational efficiency, the hydrological modeling in SWAT was based on 

a static landscape representation (i.e., the ca. 2050 landscape) over the 30-year 

time span (WY 2036-2065) for each future scenario.  However, the landscape 

change model Envision in fact provided the opportunity to incorporate dynamic 

landscape change by generating landscape representations for each annual time 

step.  Future research could model dynamic landscape representations for each 

scenario to explore the degree to which the resulting flow regimes might be 

different from those simulated with a static landscape.  One step even further 

would be to incorporate SWAT as a plug-in to Envision so that hydrological 

change could influence agent decisions and other processes during the course of a 

simulation.  

 

My research contributes original knowledge to the fields of flow-ecology 

research, watershed planning and stormwater management, alternative futures research, 

and hydrological modeling.  Having demonstrated the utility and transferability of my 

integrated modeling framework, I hope to transform the way scholars investigate the 
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hydrological impacts of climate change and/or urbanization with an ultimate goal to 

inform real-world decision-making. 
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APPENDIX A 

SUPPLEMENTAL TABLES AND FIGURES 

Table S1. Data sources and quantitative tools.  

Data and Sources   

Category Timeframe Description Source 

Mixed Mixed Integrated Decision Units database SWCNH Research Project 

Weather 1970-2013 Historical climate National Weather Service 

LULC 1968/1979 Historical aerial photography University of Oregon Map library 

LULC 1990/2000 30m x 30m raster Pacific Northwest Ecosystem Research Consortium 

Hydrology 1977-1987 Observed daily streamflow USGS National Water Information System 

LULC 2007 High resolution (30 ft. x 30 ft.) land 

cover for Portland 

Portland Metro Regional Land Information 

Database (RLID)  

Quantitative Tools   

Model Name Developer URL 

Envision Integrated Modeling 

Platform  (Version 6) 

Oregon State University http://envision.bioe.orst.edu/ 

The Soil and Water Assessment Tool 

(SWAT) (Version 2012) 

Texas A&M University http://swat.tamu.edu/ 

SWAT Calibration and Uncertainty 

Procedures (SWAT-CUP) 

Swiss Federal Institute of Aquatic 

Science and Technology (Eawag) 

http://www.eawag.ch/forschung/siam/software/swa

t/index 

L-THIA (Long-Term Hydrologic 

Impact Assessment) Low Impact 

Development Model 

Purdue University https://engineering.purdue.edu/mapserve/LTHIA7/l

thianew/lidIntro.php  

Indicators of Hydrologic Alteration 

(IHA, version 7.1.0.10) 

The Nature Conservancy https://www.conservationgateway.org/Conservatio

nPractices/Freshwater/EnvironmentalFlows/Metho

dsandTools/IndicatorsofHydrologicAlteration/  

 

http://www.rlid.org/
http://www.rlid.org/
https://engineering.purdue.edu/mapserve/LTHIA7/lthianew/lidIntro.php
https://engineering.purdue.edu/mapserve/LTHIA7/lthianew/lidIntro.php
https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/IndicatorsofHydrologicAlteration/Pages/indicators-hydrologic-alt.aspx
https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/IndicatorsofHydrologicAlteration/Pages/indicators-hydrologic-alt.aspx
https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/IndicatorsofHydrologicAlteration/Pages/indicators-hydrologic-alt.aspx
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Table S2. Catchment basin characteristics. 

  Basin  A Basin  B Basin  C 

Area (km
2
)  28 111 270 

Ave. Slope (%)  6% 13% 17% 

Soil 

Permeability 

HSG A 0% 0% 0% 

HSG B 1% 14% 5% 

HSG C 36% 48% 65% 

HSG D 63% 38% 30% 

Land Uses  

(ca. 2000) 

Urban 11% 3% 2% 

Rural Residential 23% 8% 9% 

Agricultural 24% 26% 15% 

Forest 31% 53% 61% 
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Table S3. Comparison of flow metric values calculated with stream gauge and SWAT data.  

 Flow Metric  N Mean Median Std. Dev. Minimum Maximum Wilcoxon p Pass? 

1 Qmean (cfs) Observed 15 154.51 145.22 75.12 15.69 305.19 0.12 Pass * 

Simulated 15 159.90 150.78 70.91 27.73 306.44 

2 1DMAX (cfs) Observed 15 2946.26 2979.85 1833.96 388.11 6889.89 0.00 Fail 

Under-predict Simulated 15 2009.92 2051.08 1007.13 424.84 4191.85 

3 7DMIN (cfs) Observed 15 0.12 0.00 0.25 0.00 0.77 0.72 Pass ** 

Simulated 15 0.10 0.00 0.24 0.00 0.90  

4 N0D (days) Observed 15 25 23 22 0 72 0.20 Pass * 

Simulated 15 16 10 18 0 53 

5 LPC (count) Observed 15 5.07 5.00 1.98 2.00 8.00 0.91 Pass ** 

Simulated 15 5.21 4.00 2.91 2.00 10.00 

6 HPC (count) Observed 15 6.87 7.00 2.72 1.00 11.00 0.46 Pass * 

Simulated 15 7.13 7.00 2.29 3.00 11.00 

7 LPD (days) Observed 15 24.82 7.50 42.08 2.00 128.50 0.55 Pass ** 

Simulated 15 33.50 11.50 43.43 4.50 121.50 

8 HPD (days) Observed 15 5.27 5.00 2.07 2.00 10.50 0.83 Pass ** 

Simulated 15 5.67 4.50 3.94 1.00 16.00 

9 TL1 (Judian 

Date) 

Observed 15 235 235 23 197 279 0.18 Pass * 

Simulated 15 223 217 23 193 276 

10 RBI  

(unitless) 

Observed 15 0.30 0.31 0.05 0.22 0.39 0.00 Fail 

Simulated 15 0.26 0.25 0.03 0.22 0.31 Under-predict 
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Table S4. Calibrated SWAT parameters.  Parameters were calibrated by identifying either fixed values or global modification terms 

that scale the initial parameter values by a multiplicative, or an additive term.  The following scheme (consistent with that  in the 

SWAT-CUP tool) is used for the parameter identifiers (Abbaspour, 2013): 

x__<parname>.<ext>__<landuse>__<subbsn> 

Where x__ = Code to indicate the type of change to be applied to the parameter:      

v__ means the existing parameter value is to be replaced by the given value,      

a__ means the given value is added to the existing parameter value, and      

r__ means the existing parameter value is multiplied by (1+ a given value).   

<parname> = SWAT parameter name.  

<ext>  = SWAT file extension code for the file containing the parameter <landuse> = name of the land use category 

<subbsn> = subbasin number(s) 

 

Parameter Identifiers Definition Calibration Specifications 

v__IPET.bsn Potential evapotranspiration (PET) method 2 Hargreaves method 

v__ICN.bsn Daily curve number calculation method 1 Calculate daily CN value as a 

function of plant evaporation 

v__CNCOEF.bsn Plant ET curve number coefficient 1.141  

v__SURLAG.bsn Surface runoff lag coefficient 0.185  

r__SOL_AWC.sol Available water capacity of the soil layer 

(mm H2O/mm soil) 

-0.055  

r__CN2.mgt Initial SCS runoff curve number for 

moisture condition II 

0.042  

v__ALPHA_BF.gw Baseflow alpha factor (days) 0.0657  

v__GWQMN.gw Threshold depth of water in the shallow 

aquifer for return flow to occur (mm H2O) 

100  

v__GW_DELAY.gw Groundwater delay time (days) 100  

v__GW_REVAP.gw Groundwater "revap" coefficient 0.101  

v__REVAPMN.gw Threshold depth of water in the shallow 

aquifer for "revap" or percolation to deep 

aquifer to occur (mm H2O) 

366.25  

v__RCHRG_DP.gw Deep aquifer percolation fraction 0.5  
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Table S4. (continued). 

Parameter Identifiers Definition Calibration Specifications 

v__CANMX.hru Maximum canopy storage (mm H2O) 5  

v__ESCO.hru Soil evaporation compensation factor 0.451  

r__HRU_SLP.hru Average slope steepness 0.123  

v__LAT_TTIME.hru Lateral flow travel time (days) 3  

v__OV_N_FRSD.hru Manning's "n" value for overland flow 0.743 For LULC “Forest – Deciduous” 

v__OV_N_FRST.hru 0.793 For LULC “Forest – Mixed” 

v__OV_N_FRSE.hru 0.8 For LULC “Forest – Evergreen” 

v__CH_N(1)_1&6.sub Manning's "n" value for the tributary 

channels 

0.05 For subbasins 1 and 6 

v__CH_N(1)_2&3&7.sub 0.065 For subbasins 2, 3, and 7 

v__CH_N(1)_4&5&8.sub 0.1 For subbasins 4, 5, and 8 

v__CH_N(2)_1.sub Manning's "n" value for the main channels 0.05 For subbasin 1 

v__CH_N(2)_2&4&5&8.sub 0.1 For subbasins 2, 4, 5, and 8 

v__CH_N(2)_3&7.sub 0.065 For subbasins 3 and 7 

v__CH_N(2)_6.sub 0.025 For subbasin 6 
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Table S5. Dictionary of 52 most important IDU attributes. 

No. Categories Attributes Definition 

1 ID IDU_INDEX Unique IDU Identifier used by ENVISION 

2 Spatial AREA Area of polygon in m
2
 

3 Topography SLOPEAV Area weighted average topographic slope 

4 Topography ASPECT Area weighted dominant topographic aspect classification 

5 Soil MUKEY NRCS SSURGO Map Unit primary identifier 

6 Soil CURSI  Site index 

7 Soil FUTSI  Future site soil productivity index maintained by ENVISION during modeling 

8 Soil SOILACCC  Soil agricultural capability class 

9 Soil SEPSUITPC  Fraction of IDU area with soils suitable for septic systems 

10 Soil HYDGRP Soil hydrological groups 

11 Location SUBBSN Specifies which watershed the majority of the IDU area is in 

12 Location BUFF Specifies whether the IDU is inside the 120ft riparian buffer 

13 Location FLD100 Specifies whether the majority of the IDU is inside a FEMA 100 year flood zone 

14 Wetland WETLAND  Area of significant NWI wetlands within IDU 

15 Location CRO/COA Specifies whether the majority of the IDU is inside Conservation and Restoration Opportunities areas 

16 Ownership PUBLANDS  Area weighted dominant public land ownership type  

17 Taxlot TAXLOTID  County taxlot map parcel identifier 

18 Taxlot TLAREA  Area of parent taxlot of IDU 

19 Taxlot PCNTTL Fraction of parent taxlot area in IDU 

20 Taxlot RMVLAND00  Ca. 2000 assessed real market value of land of parent taxlot 

21 Taxlot RMVIMP00  Ca. 2000 assessed real market value of improvements of parent taxlot 

22 Lulc STARTLULC  Ca. 2000 land use land cover type 

23 Lulc LULC_A  Area weighted dominant land use land cover classification - Coarse 

24 Lulc LULC_B  Area weighted dominant land use land cover classification - Intermediate 

25 Lulc LULC_C  Area weighted dominant land use land cover classification - Fine 

26 Vegetation VEGCLASS  Highly articulated vegetation classification 
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Table S5. (continued). 

No. Categories Attributes Definition 

27 Vegetation PVT Potential vegetation type 

28 Distance D_ROADS Average distance to roads and highways for the IDU 

29 Distance D_STREAMS  Average distance to streams for the IDU 

30 Distance RDSMAJ  Average distance to major roads 

31 Distance RDSMIN  Average distance to minor roads 

32 Zoning ZONE  Generalized zoning class  

33 Population POPDEN00 Ca.2000 population density of this IDU 

34 Population POPDENS  Dynamic population density of this IDU 

35 Population ALLOW_DENS Allowed population density 

36 Population POP_CAP Population Capacity  

37 Population POP_AVAIL Available Population Capacity  

38 Population P_POP_AVAI % Population Available 

39 UGB IN_UGB  Specifies whether the majority of the IDU is inside an Urban Growth Boundary 

40 UGB NEAREST_UG Nearest UGB 

41 UGB D_UGB  Distance to UGB 

42 UGB U_EXPEVENT Specifies whether a UGB expansion event has happened 

43 UGB U_PRIORITY UGB expansion priority 

44 Dwelling Units NUMRS  Ca. 2000 number of rural structures 

45 Dwelling Units N_DU Number of dwelling units 

46 Dwelling Units NEW_DU Number of new dwelling units 

47 Actor ACTOR  Type of actors 

48 Policy POLICY  Policy applied to this IDU 

49 Policy POLICYAPPS  Total number of policies applied to this IDU 

50 Policy EXP_POLICY Type of expansion policy applied to this IDU 

51 management CONSERVE  Conservation Status 

52 management LID Type of Low Impact Development strategies applied to this IDU 
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Table S6. Complete list of Envision policies. 

ID Policy Title Scenarios Brief Description 

 Urban Development (UD)  
The 3 UD policies apply to IDUs close to major roads, slope <20%, 

no wetlands or conservation/restoration opportunity areas (COA), not 
public, not in floodplain or riparian buffers.         

UD1 Urban Densification (0-4 to 4-

9 du/ac) 

CnM DnM CM DM UD1 upgrades low- to med-density urban residential zones when IDU 

population density is approaching allowed density. 

UD2 Urban Densification (4-9 to 9-

16 du/ac) 

CnM DnM CM DM UD2 upgrades med- to high-density urban residential zones when 

IDU population density is approaching allowed density.  

UD3 Urban Densification (9-16 

to >16 du/ac) 

CnM DnM CM DM UD3 upgrades high- to very-high-density urban residential zone when 

IDU population density is approaching allowed density.  

 Urban Conservation & Restoration (UC)   
Conserves undeveloped urban land with low development suitability 

(publands, floodplain, riparian, wetlands, & w/ high permeability 

soils), high habitat quality (natural vegetative patches>1ha), or high 
habitat potential (in COA). 

UC1 Conservation at Strategic 

Locations within UGBs 

  CM DM 

 Rural Development (RD)      

RD1 Conversion of Agricultural 

Lands to Rural Residential 

CnM DnM CM DM Allows new rural residential development in agriculture zones (<10% 

slope, not public, low agricultural productivity, no wetlands, close to 

transportation, outside 100-year floodplain). 

RD2 Conversion of Agricultural 

Lands to Clustered Rural 

Residential 

 DnM CM DM Allows new rural cluster development in agriculture zones (<10% 

slope, not public, low agricultural productivity, no wetlands, close to 

transportation, outside 100-year floodplain). 

RD3 Conversion of Forest Lands to 
Rural Residential 

CnM DnM CM DM Allows new rural residential development in forest zones (<20% 
slope, not public, close to transportation, outside 100-year 

floodplain). 

RD4 Conversion of Forest Lands to 
Clustered Rural Residential 

 DnM CM DM Allows new rural cluster development in forest zones (<20% slope, 
not public, close to transportation, outside 100-year floodplain). 

RD5 Clustered Development in 

Rural Residential Zones 

  CM DM Encourages clustered development in rural residential zones. 
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Table S6. (continued). 

ID Policy Title Scenarios Brief Description 

 Publands Conservation & Restoration (PC)    

PC1 Watershed Public Lands 

Rehabilitation 

CnM DnM CM DM Converts non-forested upland public lands (exclude those with 

substantial infrastructure) to open forest, young conifer, or 
shrublands. 

PC2 Riparian Buffers on Non-

forested Public Lands 

CnM DnM CM DM Converts non-forested riparian public lands (exclude those with 

substantial infrastructure) to open forest, young conifer, or 

shrublands. 

 Rural Upland Conservation & Restoration (RC)   

RC1 Conservation within Low 

Suitability Rural Residential 

Zones 

  CM DM Protects low development suitability areas (wetlands, high 

agricultural productivity, w/ highly permeable soils, public, or inside 

100-year floodplain) that were however designated by county zoning 
as Rural Residential Zones. 

RC2 Rehabilitation of Upland 

Agricultural Lands with High 

Infiltration Capacity and 
Habitat Potential  

  CM DM Converts upland private agricultural lands with significant 

wetlands/highly permeable soils or inside COA into mixed open 

forest, young conifer forest, or shrublands. 

RC3 Conservation Easement on 

Upland Forests with High 
Infiltration Capacity and 

Habitat Value 

  CM DM Establishes conservation easements on upland private forests with 

significant wetlands/highly permeable soils, or inside COA. 

 Riparian Conservation & Restoration (RIP)    

RIP1 Conservation Easement on 

Private Riparian Vegetated 
Lands with Highly Permeable 

Soils 

  CM DM Establishes conservation easements on private riparian vegetative 

buffers with high permeability soils.  
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Table S6. (continued). 

ID Policy Title Scenarios Brief Description 

RIP2 Conservation Easement on 

Private Riparian Vegetated 
Lands with low permeability 

soils 

  CM DM Establishes conservation easements on private riparian vegetative 

buffers with low permeability soils.  

RIP3 Riparian Buffers on Rural 
Private Lands with Highly 

Permeable Soils 

  CM DM Establishes 120ft-wide riparian vegetative buffers on private lands 
with high permeability soils. 

RIP4 Riparian Buffers on Rural 

Private Lands with Low 
Permeability Soils 

  CM DM Establishes 120ft-wide riparian vegetative buffers on private lands 

with low permeability soils. 

 Low Impact Development (LID)     

LID1 LID on New Residential 

Developments 

  CM DM Applies LIDs (disconnection of streets, roofs, sidewalks, & 

parking/driveways, adding a rain garden, & 25% woodlands 

preservation) to new residential developments. 

LID2 LID on New Commercial 

Developments 

  CM DM Applies LIDs (green roofs, porous pavements on parking lot, &10% 

woodland preservation) to new commercial developments. 

LID3 Porous Pavements on Existing 
Low Traffic Roads 

  CM DM Rebuilds the secondary and light duty roads within 1000m to streams 
with porous pavements. 

LID4 LID on Existing Residential 

Development 

  CM DM Applies LIDs (downspout disconnection, rain garden, & 25% 

woodlands rehabilitation) to existing residential developments within 
1000m to the streams. 

LID5 LID on Existing 

Commercial/Industrial 

Development 

  CM DM Applies LIDs (greenroofs, raingardens, & 10% woodland 

rehabilitation) to existing commercial/industrial developments within 

1000m to streams. 
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Table S7. Population and land development characteristics of the present and future 

landscapes. 

 

 Present Future (Ca. 2050) 

 Ca. 2000 CM DM CnM DnM 

3-basin Total      

Total population (#) 11266 33797 37446 28588 33673 

Total urban developed area (km
2
) 11.52 21.41  21.47  16.85  15.32  

Total rural residential area (km
2
) 40.07 53.65  70.12  65.67  97.51  

Total footprint (km
2
) 51.60 75.06  91.59  82.52  112.84  

Total imperviousness (%) 2.87%  4.72% 5.21% 4.40% 5.11% 

Land uses (%):      

Urban 2.79% 5.74% 5.74% 4.54% 3.96% 

Agriculture 18.54% 7.58% 6.32% 15.99% 14.43% 

Forest 56.76% 68.69% 66.39% 57.94% 52.91% 

Rural Residential 9.79% 13.16% 17.19% 16.13% 23.90% 

Other Vegetation 11.62% 4.78% 4.32% 5.29% 4.70% 

Basin A      

Total population (#) 3039  5541 6951 5782 6258 

Urban developed area (km
2
) 3.24  3.73  3.72  3.75  3.74  

Rural residential area (km
2
) 6.45  6.82  11.35  8.47  11.33  

Total footprint (km
2
) 9.70  10.55  15.07  12.22  15.07  

Total imperviousness (%) 9.73% 10.93% 12.84% 11.68% 12.88% 

Urban density (du/ac) 0.81 1.66  1.36  1.64  1.36  

Rural density (du/ac) 0.60 0.63  0.66  0.56  0.55  

Overall density (du/ac) 0.67 0.99  0.83  0.89  0.75  

Basin B      

Total population (#) 3233  6575 8403 6975 9049 

Urban developed area (km
2
) 3.29  4.28  4.29  4.20  4.08  

Rural residential area (km
2
) 9.16  13.22  17.49  16.68  25.74  

Total footprint (km
2
) 12.44  17.50  21.78  20.87  29.83  

Total imperviousness (%) 2.77% 3.75% 4.22% 4.08% 5.01% 

Urban density (du/ac) 0.76 1.22  1.07  1.37  1.17  

Rural density (du/ac) 0.47 0.52  0.59  0.41  0.42  

Overall density (du/ac) 0.55 0.69  0.69  0.60  0.52  

Basin C      

Total population (#) 4994  21680 22093 15831 18366 

Urban developed area (km
2
) 4.99  13.41  13.46  8.91  7.50  

Rural residential area (km
2
) 24.46  33.60  41.28  40.52  60.44  

Total footprint (km
2
) 29.46  47.01  54.74  49.43  67.94  

Total imperviousness (%) 2.20% 4.47% 4.82% 3.78% 4.35% 

Urban density (du/ac) 0.26 1.78  1.27  1.58  1.18  

Rural density (du/ac) 0.48 0.53  0.59  0.42  0.44  

Overall density (du/ac)  0.44 0.88  0.76  0.63  0.52  
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Table S8. Statistical results of the non-parametric repeated measures ANOVA (Friedman Test).  N=30 for all comparisons.  

Development scenarios were ranked from smallest to largest according to median values of the corresponding flow metric.  Post-hoc 

Wilcoxon test p values were adjusted with Bonferroni Correction.  Although Wilcoxon tests were applied no matter the previous 

Friedman test turned out significant or not, p values were not reported for those with no significant differences in either group or 

pairwise comparisons.  

 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Friedman Test Statistics 

Group p Pairs 
Adjusted 

Wilcoxon p 

Qmean  A DM 17.398 17.907 7.446 1.291 34.840 0.000 DM vs. CM 0.221 

(cfs)  CM 17.498 17.946 7.419 1.413 34.732  DM vs. 1990 1.000 

  1990 17.666 17.991 7.367 1.711 34.697  DM vs. CnM 0.000 

  CnM 18.208 18.619 7.493 1.748 35.365  DM vs. DnM 0.000 

  DnM 18.412 18.833 7.532 1.709 35.628  CM vs. 1990 1.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         1990 vs. CnM 0.000 

         1990 vs. DnM 0.000 

         CnM vs. DnM 0.000 

 B CM 67.384 69.114 27.932 8.336 134.184 0.000 CM vs. DM 0.000 

  DM 67.562 69.274 27.949 8.304 134.400  CM vs. 1990 0.000 

  1990 68.016 69.662 27.901 8.961 134.211  CM vs. CnM 0.000 

  CnM 70.504 71.894 28.367 9.634 137.385  CM vs. DnM 0.000 

  DnM 71.409 72.630 28.555 9.608 138.471  DM vs. 1990 0.005 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         1990 vs. CnM 0.000 

         1990 vs. DnM 0.000 

         CnM vs. DnM 0.000 



 

127 

Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 C 1990 153.309 156.642 67.123 17.932 319.492 0.000 1990 vs. CM 0.001 

  CM 153.418 157.769 67.837 16.332 320.798  1990 vs. DM 0.000 

  DM 153.819 158.315 67.930 16.328 321.490  1990 vs. CnM 0.000 

  CnM 159.510 164.180 68.686 18.872 327.198  1990 vs. DnM 0.000 

  DnM 161.555 166.091 69.089 18.737 329.634  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 

1DMAX  A 1990 165.749 176.620 77.978 20.539 367.626 0.000 1990 vs. CM 0.000 

(cfs)  CM 175.726 186.942 80.882 17.428 383.870  1990 vs. DM 0.000 

  DM 188.863 200.972 87.437 15.037 411.416  1990 vs. CnM 0.000 

  CnM 200.693 207.101 87.333 23.336 413.182  1990 vs. DnM 0.000 

  DnM 215.190 220.669 92.173 21.493 434.724  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 B 1990 676.452 733.593 354.043 84.614 1688.041 0.000 1990 vs. CM 0.000 

  CM 689.342 750.687 362.241 77.057 1732.184  1990 vs. DM 0.000 

  DM 702.056 763.725 367.840 76.703 1758.317  1990 vs. CnM 0.000 

  CnM 797.758 844.859 396.056 103.295 1889.688  1990 vs. DnM 0.000 

  DnM 848.788 894.171 416.610 103.119 1984.684  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 

 C 1990 1748.076 1914.687 976.649 182.577 4537.935 0.000 1990 vs. CM 0.000 

  CM 1976.385 2089.284 1048.620 165.202 4852.235  1990 vs. DM 0.000 

  DM 2012.053 2125.036 1062.273 163.895 4915.802  1990 vs. CnM 0.000 

  CnM 2181.564 2289.545 1102.305 220.399 5131.221  1990 vs. DnM 0.000 

  DnM 2294.217 2397.425 1141.649 216.338 5314.857  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 



 

129 

Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

7DMIN A DnM 0.004 0.009 0.015 0.000 0.074 <0.001 DnM vs. CnM 0.000 

(cfs)  CnM 0.005 0.010 0.017 0.000 0.083  DnM vs. DM 0.001 

  DM 0.006 0.010 0.017 0.000 0.082  DnM vs. CM 0.000 

  CM 0.006 0.012 0.017 0.000 0.079  DnM vs. 1990 0.000 

  1990 0.042 0.047 0.032 0.003 0.125  CnM vs. DM 1.000 

         CnM vs. CM 1.000 

         CnM vs. 1990 0.000 

         DM vs. CM 0.004 

         DM vs. 1990 0.000 

         CM vs. 1990 0.000 

 B DnM 0.000 0.022 0.087 0.000 0.454 0.691   

  CnM 0.000 0.026 0.098 0.000 0.510    

  CM 0.000 0.038 0.126 0.000 0.618    

  DM 0.000 0.038 0.126 0.000 0.612    

  1990 0.000 0.045 0.154 0.000 0.762    

 C DnM 0.000 0.034 0.162 0.000 0.881 0.842   

  CnM 0.000 0.040 0.185 0.000 1.005    

  DM 0.000 0.059 0.224 0.000 1.178    

  1990 0.000 0.059 0.248 0.000 1.334    

  CM 0.000 0.059 0.228 0.000 1.207    
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Table S8. (continued). 

Metric Bsn Scenario Median Mean Std. Dev. Min. Max. Group p Pairs Adj. Wilcoxon p 

LPC A 1990 4.000 4.400 2.253 1.000 10.000 <0.001 1990 vs. CM 1.000 

(Count)  CM 5.000 4.700 2.395 1.000 10.000  1990 vs. DM 0.015 

  DM 5.000 5.133 2.193 2.000 10.000  1990 vs. CnM 0.002 

  CnM 5.000 5.267 2.518 1.000 11.000  1990 vs. DnM 0.000 

  DnM 6.000 5.767 2.300 1.000 11.000  CM vs. DM 0.258 

         CM vs. CnM 0.082 

         CM vs. DnM 0.000 

         DM vs. CnM 1.000 

         DM vs. DnM 0.023 

         CnM vs. DnM 0.041 

 B DM 4.500 4.967 2.251 2.000 10.000 <0.001 DM vs. CM 1.000 

  CM 5.000 5.033 2.220 2.000 10.000  DM vs. 1990 1.000 

  1990 5.000 5.100 2.234 2.000 11.000  DM vs. CnM 0.000 

  CnM 5.000 5.867 2.583 2.000 12.000  DM vs. DnM 0.000 

  DnM 6.000 6.133 2.776 3.000 14.000  CM vs. 1990 1.000 

         CM vs. CnM 0.001 

         CM vs. DnM 0.000 

         1990 vs. CnM 0.002 

         1990 vs. DnM 0.000 

         CnM vs. DnM 0.313 

 C 1990 1.000 1.467 1.042 0.000 4.000 <0.001 1990 vs. CM 0.000 

  CM 5.000 5.400 2.608 1.000 13.000  1990 vs. DM 0.000 

  DM 6.000 5.633 2.512 2.000 11.000  1990 vs. CnM 0.000 

  CnM 6.000 6.333 2.294 3.000 13.000  1990 vs. DnM 0.000 

  DnM 7.000 6.933 2.504 4.000 12.000  CM vs. DM 1.000 

         CnM vs. CM 0.259 

         CM vs. DnM 0.015 

         CnM vs. DM 0.010 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.046 
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

HPC A 1990 7.000 7.033 2.895 0.000 14.000 <0.001 1990 vs. CM 0.002 

(Count)  CM 8.000 7.833 3.323 0.000 15.000  1990 vs. DM 0.000 

  DM 8.500 8.267 3.403 0.000 15.000  1990 vs. CnM 0.000 

  CnM 8.500 8.667 3.872 0.000 20.000  1990 vs. DnM 0.000 

  DnM 8.500 8.833 3.752 0.000 19.000  CM vs. DM 0.005 

         CM vs. CnM 0.003 

         CM vs. DnM 0.000 

         DM vs. CnM 1.000 

         DM vs. DnM 0.086 

         CnM vs. DnM 1.000 

 B CM 7.500 7.467 3.683 0.000 18.000 <0.001 CM vs. 1990 1.000 

  1990 8.000 7.400 3.410 0.000 17.000  CM vs. DM 0.078 

  DM 8.000 7.733 3.667 0.000 18.000  CM vs. CnM 0.004 

  CnM 8.500 8.533 3.693 0.000 18.000  CM vs. DnM 0.001 

  DnM 9.000 8.933 3.685 0.000 18.000  1990 vs. DM 0.745 

         1990 vs. CnM 0.000 

         1990 vs. DnM 0.000 

         DM vs. CnM 0.047 

         DM vs. DnM 0.004 

         CnM vs. DnM 0.020 
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 C 1990 7.000 7.500 3.256 0.000 14.000 <0.001 1990 vs. CM 0.000 

  CM 8.000 8.467 3.739 0.000 19.000  1990 vs. DM 0.000 

  DM 8.000 8.500 3.830 0.000 19.000  1990 vs. CnM 0.000 

  CnM 10.000 9.633 4.098 0.000 20.000  1990 vs. DnM 0.000 

  DnM 10.000 10.000 4.235 0.000 20.000  CM vs. DM 1.000 

         CM vs. CnM 0.001 

         CM vs. DnM 0.000 

         DM vs. CnM 0.001 

         DM vs. DnM 0.001 

         CnM vs. DnM 0.359 

N0D A 1990 0.000 0.100 0.548 0.000 3.000 <0.001 1990 vs. CM 0.002 

(days)  CM 0.000 7.467 11.723 0.000 45.000  1990 vs. DM 0.002 

  DM 0.000 8.533 12.797 0.000 46.000  1990 vs. CnM 0.001 

  CnM 0.000 9.067 13.321 0.000 48.000  1990 vs. DnM 0.001 

  DnM 0.500 10.267 14.200 0.000 50.000  CM vs. DM 0.010 

         CM vs. CnM 0.006 

         CM vs. DnM 0.002 

         DM vs. CnM 0.234 

         DM vs. DnM 0.004 

         CnM vs. DnM 0.002 

 B DnM 35.000 37.333 25.979 0.000 92.000 0.296   

  CnM 35.500 37.033 25.877 0.000 92.000    

  DM 36.000 36.200 26.637 0.000 91.000    

  CM 36.000 36.233 26.605 0.000 91.000    

  1990 37.500 36.700 26.562 0.000 91.000    
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 C CnM 36.500 36.900 25.200 0.000 89.000 <0.001 CnM vs. DnM 0.078 

  DnM 36.500 37.333 25.157 0.000 90.000  CnM vs. DM 0.027 

  DM 37.000 35.000 25.354 0.000 87.000  CnM vs. CM 0.021 

  CM 37.500 35.133 25.258 0.000 87.000  CnM vs. 1990 0.159 

  1990 38.500 37.833 25.815 0.000 90.000  DnM vs. DM 0.007 

         DnM vs. CM 0.005 

         DnM vs. 1990 1.000 

         DM vs. CM 1.000 

         DM vs. 1990 0.000 

         CM vs. 1990 0.000 

LPD  A DnM 9.750 25.483 43.867 1.000 206.000 0.959   

(days)  DM 10.000 27.600 39.165 1.000 134.000    

  CnM 11.750 37.633 59.165 1.000 205.000    

  CM 13.750 45.367 59.912 2.000 204.000    

  1990 14.000 39.983 55.131 1.000 203.000    

 B CnM 7.750 13.517 15.787 3.000 88.000 0.038 CnM vs. DnM 1.000 

  DnM 8.500 11.450 7.824 3.000 28.500  CnM vs. 1990 1.000 

  1990 11.500 22.317 27.753 3.000 97.000  CnM vs. CM 1.000 

  CM 15.000 24.100 28.326 3.000 98.500  CnM vs. DM 1.000 

  DM 15.000 24.350 28.302 2.500 98.500  DnM vs. 1990 1.000 

         DnM vs. CM 1.000 

         DnM vs. DM 1.000 

         1990 vs. CM 1.000 

         1990 vs. DM 1.000 

         CM vs. DM 1.000 
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 C DnM 7.750 11.500 10.713 1.000 45.000 0.081 DnM vs. CnM 0.108 

  CnM 9.750 13.800 14.513 2.000 72.000  DnM vs. DM 0.282 

  DM 10.250 23.817 33.555 2.500 132.500  DnM vs. CM 1.000 

  CM 10.500 22.467 37.035 2.000 178.000  DnM vs. 1990 0.015 

  1990 18.500 25.517 20.762 0.000 73.000  CnM vs. DM 1.000 

         CnM vs. CM 1.000 

         CnM vs. 1990 0.108 

         DM vs. CM 1.000 

         DM vs. 1990 1.000 

         CM vs. 1990 1.000 

HPD A DnM 3.750 4.800 3.274 0.000 14.000 0.034 DnM vs. CnM 1.000 

(days)  CnM 4.000 4.950 3.354 0.000 14.000  DnM vs. DM 1.000 

  DM 4.000 5.183 3.990 0.000 16.000  DnM vs. CM 1.000 

  CM 4.000 5.650 4.459 0.000 15.500  DnM vs. 1990 0.119 

  1990 5.000 6.217 4.437 0.000 16.000  CnM vs. DM 1.000 

         CnM vs. CM 1.000 

         CnM vs. 1990 0.202 

         DM vs. CM 0.352 

         DM vs. 1990 0.077 

         CM vs. 1990 0.162 
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 B DnM 3.250 4.133 3.159 0.000 14.000 0.009 DnM vs. CnM 0.078 

  CnM 4.000 4.467 3.118 0.000 14.000  DnM vs. DM 0.183 

  DM 4.000 5.317 4.213 0.000 15.000  DnM vs. CM 0.122 

  CM 4.000 5.583 4.233 0.000 15.000  DnM vs. 1990 0.014 

  1990 4.500 5.550 4.149 0.000 15.000  CnM vs. DM 0.985 

         CnM vs. CM 0.407 

         CnM vs. 1990 0.090 

         DM vs. CM 1.000 

         DM vs. 1990 1.000 

         CM vs. 1990 1.000 

 C CnM 2.750 3.650 3.023 0.000 15.000 0.103   

  DnM 3.000 3.667 2.922 0.000 15.000    

  CM 3.000 3.983 3.067 0.000 13.000    

  DM 3.000 4.117 3.446 0.000 15.000    

  1990 4.000 4.633 4.150 0.000 20.500    

TL1 A DnM 226.500 229.967 23.000 186.000 274.000 0.021 DnM vs. CnM 0.151 

(Julian 

date) 

 CnM 228.000 231.667 22.538 190.000 270.000  DnM vs. DM 0.010 

 DM 231.500 233.433 22.820 192.000 270.000  DnM vs. CM 0.001 

  CM 234.500 234.900 24.390 192.000 293.000  DnM vs. 1990 0.007 

  1990 239.500 244.167 21.890 209.000 293.000  CnM vs. DM 0.313 

         CnM vs. CM 0.013 

         CnM vs. 1990 0.014 

         DM vs. CM 0.078 

         DM vs. 1990 0.022 

         CM vs. 1990 0.080 
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Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 B 1990 215.000 224.800 34.645 178.000 280.000 0.411   

  DnM 215.000 227.333 35.914 180.000 282.000    

  CM 215.500 225.567 34.367 179.000 281.000    

  DM 215.500 225.633 34.546 179.000 281.000    

  CnM 218.500 228.267 35.496 180.000 282.000    

 C DnM 215.000 229.267 35.183 181.000 283.000 <0.001 DnM vs. 1990 1.000 

  1990 219.000 229.800 34.511 181.000 281.000  DnM vs. CnM 1.000 

  CnM 220.000 230.267 34.683 181.000 283.000  DnM vs. CM 0.000 

  CM 221.500 231.567 33.731 182.000 283.000  DnM vs. DM 0.000 

  DM 221.500 231.633 33.682 183.000 283.000  1990 vs. CnM 0.230 

         1990 vs. CM 0.000 

         1990 vs. DM 0.000 

         CnM vs. CM 0.004 

         CnM vs. DM 0.004 

         CM vs. DM 1.000 

RBI A 1990 0.212 0.213 0.021 0.176 0.269 0.000 1990 vs. CM 0.000 

(unitless)  CM 0.236 0.239 0.024 0.197 0.313  1990 vs. DM 0.000 

  DM 0.261 0.262 0.024 0.216 0.323  1990 vs. CnM 0.000 

  CnM 0.265 0.268 0.024 0.222 0.326  1990 vs. DnM 0.000 

  DnM 0.289 0.289 0.024 0.241 0.335  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 



 

137 

Table S8. (continued). 

Flow 

Metric 

Bsn Devel. 

Scenario 

Median Mean Std. Dev. Min. Max. Group p Pairs Adjusted 

Wilcoxon p 

 B 1990 0.220 0.222 0.020 0.182 0.267 0.000 1990 vs. CM 0.000 

  CM 0.234 0.235 0.021 0.194 0.282  1990 vs. DM 0.000 

  DM 0.240 0.240 0.022 0.199 0.288  1990 vs. CnM 0.000 

  CnM 0.267 0.268 0.024 0.221 0.320  1990 vs. DnM 0.000 

  DnM 0.288 0.288 0.025 0.237 0.343  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 

 C 1990 0.256 0.257 0.028 0.202 0.319 0.000 1990 vs. CM 0.000 

  CM 0.294 0.293 0.032 0.235 0.369  1990 vs. DM 0.000 

  DM 0.301 0.299 0.032 0.240 0.375  1990 vs. CnM 0.000 

  CnM 0.329 0.326 0.032 0.267 0.404  1990 vs. DnM 0.000 

  DnM 0.347 0.344 0.034 0.279 0.422  CM vs. DM 0.000 

         CM vs. CnM 0.000 

         CM vs. DnM 0.000 

         DM vs. CnM 0.000 

         DM vs. DnM 0.000 

         CnM vs. DnM 0.000 
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Table S9. Sum of the squares of the rank differences (SSrd) for each flow metric and the 

Equivalent Standard Deviation (ESD) for each future flow regime.  

 

  

Flow Metric 

SS (Rank Dif.) 

Bsn  REF CM DM CnM DnM 

A 1 Qmean 0 39 107 122 257 

 2 1DMAX 0 30 120 265 465 

 3 7DMIN 0 122 192 192 347 

 4 LPC 0 94 117 112 187 

 5 HPC 0 46 115 188 207 

 6 N0D 0 70 206 26 104 

 7 LPD 0 104 174 189 178 

 8 HPD 0 114 163 173 211 

 9 TL1 0 103 139 170 241 

 10 RBI 0 30 120 270 480 

 ESD=√(∑SS/(10*30)) 0 1.58 2.20 2.38 2.99 

    REF CM DM CnM DnM 

B 1 Qmean 0 93 45 77 185 

 2 1DMAX 0 42 102 223 403 

 3 7DMIN 0 11 22 29 50 

 4 LPC 0 80 80 113 131 

 5 HPC 0 46 52 114 174 

 6 N0D 0 62 81 117 135 

 7 LPD 0 132 134 91 105 

 8 HPD 0 74 79 113 161 

 9 TL1 0 65 56 73 75 

 10 RBI 0 30 120 270 480 

 ESD=√(∑SS/(10*30)) 0 1.45 1.60 2.02 2.52 

    REF CM DM CnM DnM 

C 1 Qmean 0 36 108 239 427 

 2 1DMAX 0 30 120 265 465 

 3 7DMIN 0 7 21 19 36 

 4 LPC 0 142 133 216 301 

 5 HPC 0 75 73 227 263 

 6 N0D 0 169 173 99 109 

 7 LPD 0 204 190 158 200 

 8 HPD 0 131 119 159.75 167 

 9 TL1 0 133 145 50 43 

 10 RBI 0 30 120 270 480 

 ESD=√(∑SS/(10*30)) 0 1.79 2.00 2.38 2.88 
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Table S10. Characteristics of the MACAv2-LIVNEH data product.  

 MACAv2-LIVNEH 

(http://maca.northwestknowledge.net/) 

Training Dataset Developed by Livneh et. al, (2013) 

Covering time period 1950-2011 

Temporal Extent 1950-2100 

Temporal Resolution Daily 

Resolution 4~6km (1/16-deg) 

Spatial Extent Contiguous USA (CONUS) and Columbia Basin into 

Canada 

Downscaled Variables Maximum daily temperature near surface 

Minimum daily temperature near surface 

Average daily precipitation amount at surface 

Average daily downward shortwave radiation at surface 

Average daily wind speed near surface 

Average daily specific humidity near surface 

 

(only one ensemble run, i.e., r1i1p1, was downscaled for 

each model even though some models had multiple 

ensemble runs) 
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Table S11. Precipitation comparison of future climate datasets.  Nine climate variables were calculated for both historical climate 

records (1978-2007) and the four future climate datasets (2036-2065).  Variable definitions are as follows.   

Max-T: 30-yr average daily maximum temperature (°C).   

Min-T: 30-yr average daily minimum temperature (°C).   

Mean-P-Annual: 30-yr average annual precipitation (mm).   

Max-P: 30-yr average daily maximum precipitation (mm).   

Mean-P-XXX stands for 30-yr average seasonal precipitation (mm).   

Season designation: DJF (December, January, and February), MAM (March, April, and May), JJA (June, July, and August), 

and SON (September, October, and November).   

No. of Days w/ no Precipitation: Average number of days in a year without any precipitation. 

 

Variables  Historical CanESM2 

_RCP4.5 

CanESM2 

_RCP8.5 

CNRM-CM5 

_RCP4.5 

CNRM-CM5 

_RCP8.5 

Temperature:      

Max-T (°C) 38 40 42 39 39 

Min-T (°C ) -9 -6 -6 -8 -9 

Precipitation:      

Mean-P-Annual (mm) 1202 1239 1209 1128 1150 

Dif% from historical 
 

3% 1% -6% -4% 

Max-P (mm) 68 77 74 70 75 

Dif% from historical 
 

14% 9% 4% 11% 

Mean-P-DJF (mm) 528 594 559 537 532 

Mean-P-MAM (mm) 284 253 270 244 259 

Mean-P-JJA (mm) 70 52 46 53 53 

Mean-P-SON (mm) 320 340 335 295 305 

No. of Days w/ no Precipitation 225 226 231 228 218 
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Table S12. Similarity of flow metric loadings for the two separate NMDS ordinations for 

Basins B and C.  Flow metric loadings for Basins B and C were sufficiently similar for 

each axis that a combined ordination was used.  7DMIN had no loadings for Basins B or 

C because median values for all scenarios were zero.  Significance codes: <0.05 = *, < 

0.01 = **, < 0.001 = ***, ns = ≥ 0.05. 

 

 Basin MDS1 MDS2 Pr(>r) 

Qmean B 0.83 -0.56 * 

 C 0.77 -0.63 ** 

1DMAX B 0.99 -0.13 *** 

 C 0.87 0.49 *** 

7DMIN B -- --  

 C -- --  

LPC B -0.02 -1.00 * 

 C -0.02 -1.00  

HPC B 0.38 -0.92 *** 

 C 0.92 -0.39 ** 

N0D B 0.74 0.68 ** 

 C 0.48 0.88 *** 

LPD B -0.68 0.73 ** 

 C -0.65 0.76 *** 

HPD B -0.80 -0.60  

 C -0.71 -0.70  

TL1 B -0.78 -0.63 ** 

 C -0.67 -0.74 *** 

RBI B 0.87 -0.49 *** 

 C 0.99 0.15 ** 
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Table S13. Flow metric loadings for the two NMDS ordinations.  Axis loading values ≥0.5 are in bold, and ≤ -0.5 are in bold and 

underlined.  7DMIN had no loadings for Basins B or C because median values for all scenarios were zero.  Significance codes: <0.05 

= *, < 0.01 = **, < 0.001 = ***, ns = ≥0.05. 

 

Flow metrics Axis A1  

loading 

Axis A2  

loading 

Pr(>r) Axis A1 

(left to right) 

Axis A2 

(down to up) 

Basin A       

TL1 Date of Annual Minimum -0.97 0.26 *** Earlier 1st annual minimum  

7DMIN 7-day Minimum -0.89 -0.46 *** 7-day minimum ↓  

LPD Low Pulse Duration -0.68 -0.74 * Duration of low flows ↓ Duration of low flows ↓ 

HPD High Pulse Duration -0.21 -0.98 **  Duration of high pulses ↓ 

LPC Low Pulse Count -0.20 0.98 ns   No. of low-flow events ↑ 

Qmean Annual Average Flow 0.46 -0.89 ***  Annual average ↓ 

HPC High Pulse Count 0.73 -0.68 ns No. of high pulses ↑ No. of high pulses ↓ 

N0D No. of Zero-flow Days 0.81 0.58 ** No. of dry days ↑ No. of dry days ↑ 

1DMAX 1-day Maximum 0.90 -0.44 *** Largest flood ↑  

RBI R-B Index 0.91 0.42 ** Flashiness ↑  

Flow metrics Axis BC1  

loading 

Axis BC2  

loading 

Pr(>r) Axis BC1 

(left to right) 

Axis BC2 

(down to up) 

Basin B & C      

HPD High Pulse Duration -0.99 0.16 *** Duration of high pulses ↓  

LPD Low Pulse Duration -0.94 0.35 *** Duration of low flows ↓  

TL1 Date of Annual Minimum -0.22 -0.98 ***  Earlier 1st annual minimum 

N0D No. of Zero-flow Days 0.26 0.97 ***  No. of dry days ↑ 

LPC Low Pulse Count 0.41 -0.91 ***  No. of low-flow events ↓ 

HPC High Pulse Count 0.95 -0.31 *** No. of high pulses ↑  

1DMAX 1-day Maximum 0.98 0.18 *** Largest flood ↑  

Qmean Annual Average Flow 1.00 -0.07 *** Annual average ↑  

RBI R-B Index 1.00 -0.06 *** Flashiness ↑  

7DMIN 7-day Minimum -- -- --   
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Figure S1. The ca. 2000 landscape. 
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Figure S2. Flow metric responses under future development scenarios (organized by 

catchment basin).     Central column “REF” indicates the reference scenario (1990 

landscape, historical climate).  Scenarios are ranked from minimum to maximum 

according to flow metric median values.  Median values may be similar even when 

statistical differences are present.  Compact and Dispersed scenarios are represented in 

green and purple, respectively.  ISM scenarios are patterned with diagonal lines.  

Scenarios that are not significantly different are bounded by a bold black outline.   
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*: Number of Zero-flow Days (N0D) and Date of Annual Minimum (TL1) are 

represented with difference in “days” instead of % difference.   

†: When the median value of the reference flow regime was 0, actual difference 

instead of % difference from the reference is reported.   

★: Because stories told by means vs. medians were drastically different for N0D 

in Basin A, and comparison of means more appropriately represented the trend  in 

this case (a unique situation among all flow metrics), means instead of medians 

are reported.) 

 

 

Figure S3. CMIP5 GCM evaluation matrix (adapted from Rupp et al. 2013).  This figure 

was adapted from Rupp et al. (2013), which assessed the performance of CMIP5 models 

in simulating the historical climate of the U.S. Pacific Northwest.  Different colors 

indicate the magnitude of relative error in the ensemble mean of each metric in relation to 

historical data (blue = the smallest relative error/best performance, red = the largest 

relative error/worst performance).  Models on the left showed smaller total relative error 

(sum of relative errors from all the metrics) than those on the right.  The Blue dots 

underneath the model names indicate availability of downscaled data from the MACAv2-

LIVNEH data product.  The first two, the CNRM-CM5 and CanESM2, were chosen 

because they ranked the highest for general performance across all climate variables and 

were particularly good for precipitation-related variables. 
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APPENDIX B 

 

METHOD FOR DEVELOPING A LANDSCAPE MAP THAT REPRESENTS THE 

CENTRAL TENDENCY OF EACH LAND DEVELOPMENT SCENARIO 

 

Each land development scenario was run in Envision for 10 times.  Because of the 

stochastic character of Envision, actual population allocation among simulation runs can 

be different from the targeted population.  We then selected 5 of the 10 runs that showed 

the closest population allocation to the targets for further land cover inspections.  For 

example, in Table B-1 below, runs 3, 4, 6, 8, and 9 of scenario DM were selected because 

of the relatively small differences in population outcomes from the targets.  The land use 

land cover outcomes of runs 3, 4, 6, 8, and 9 were then examined.  For each IDU, the 

LULC type that happened the most often during the 5 runs (i.e., the Mode) was identified, 

and the percentage of IDUs with the same LULC types as the Modes were calculated for 

each run.  

The variability in land cover types among replicate runs turned out to be small 

according to Table B-2 below.  For every scenario, I modeled the differences in 

hydrological outcomes between the two runs with the largest land cover contrasts in 

SWAT.  For instance, 4.3% (the largest among the 4 scenarios, Table B-2) of the IDUs 

had different LULC outcomes between Run 2 and Run 4 in scenario DnM.  Hydrological 

divergence caused by this 4.3% difference was then modeled in SWAT.  The correlation 

coefficient between the two resulted hydrographs was equal to 0, as in all other 3 

scenarios.  Therefore, we concluded that Run 0 (CnM), Run 5 (CM), Run 4 (DnM), and 
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Run 9 (DM) sufficiently represented the central tendency in LULC and hydrological 

outcomes of its corresponding scenario. 

 

Table B-1. Different population outcomes of the 10 runs for scenario DM. 

  Popu. 

Targets 

Runs 

1 2 3 4 5 6 7 8 9 10 

Creswell 2734 2927 2901 2662 2632 2834 2622 2800 2517 2560 2875 

 Dif.%  7% 6% -3% -4% 4% -4% 2% -8% -6% 5% 

Veneta 2239 2483 2455 2188 2172 2431 2112 2433 2102 2168 2445 

 Dif.%  11% 10% -2% -3% 9% -6% 9% -6% -3% 9% 

Rural 16290 17981 18320 16502 16397 18117 16455 17904 16590 16425 18083 

 Dif.%  10% 12% 1% 1% 11% 1% 10% 2% 1% 11% 

 

Table B-2. Percentages of IDUs with the same LULC types as the modes for each 

scenario run. 

 

Scenario Run Convergence 

toward Modes 
Max.-Min. 

CnM Run 0 85.3% (max.)  

 Run 2 83.0%  

 Run 3 82.1%  

 Run 4 81.8% (min.)  

 Run 7 82.4% 3.50% 

CM Run 1 82.2% (min.)  

 Run 3 82.6%  

 Run 5 85.2% (max.)  

 Run 6 83.3%  

 Run 9 82.8% 3.00% 

DnM  Run 1 80.1%  

 Run 2 79.4% (min.)  

 Run 4 83.7% (max.)  

 Run 5 79.7%  

 Run 7 79.4% 4.30% 

DM Run 3 82.3% (min.)  

 Run 4 83.1%  

 Run 6 82.9%  

 Run 8 83.8%  

 Run 9 85.5% (max.) 3.20% 
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APPENDIX C 

APPLYING L-THIA TO DEVELOP NEW CURVE NUMBERS 
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Table C-1. Curve numbers developed in L-THIA for new land cover types. 

Category Land Cover Type Density FIMP Curve Numbers 

HSG  

A 

HSG 

B 

HSG 

C 

HSG 

D 

Urban 

Residential 

Residential-high density - w/out LID 8-24 du/ac 58% 70 80 87 90 

Residential-high density - new w/ full LID 50 65 74 79 

Residential-high density - existing w/ partial LID 67 76 82 85 

Residential-high/medium density - w/out LID 4-8 du/ac 48% 66 78 85 89 

Residential-high/medium density - new w/ full LID 48 63 73 78 

Residential-high/medium density - existing w/ partial LID 62 72 80 83 

Residential-medium density - w/out LID 2-4 du/ac 38% 61 75 83 87 

Residential-medium density - new w/ full LID 45 61 71 77 

Residential-medium density - existing w/ partial LID 56 68 77 81 

Residential-med/low density - w/out LID 0.5-2 du/ac 20% 51 68 79 84 

Residential-med/low density - new w/ full LID 40 57 68 75 

Residential-med/low density - existing w/ partial LID 44 60 71 76 

Commercial/ 

Industrial 

Commercial/Industrial - w/out LID  77% 84 89 92 94 

Commercial/industrial - new w/ full LID 48 63 72 76 

Commercial/Industrial - existing w/ partial LID 80 85 88 90 

Transportation Transportation - existing w/ porous pavement  / 85 87 87 87 

Rural 

Residential 

Rural Residential - 1 ac lot - w/out LID  18% 44 64 76 82 

Rural Residential - 1 ac lot - w/ LID 39 56 68 74 

Rural Residential - 2 ac lot - w/out LID  12% 43 64 76 81 

Rural Residential - 2 ac lot - w/ LID 21 29 35 38 

Rural Residential - 2.7 ac lot - w/out LID  14% 56 69 77 81 

Rural Residential - 2.7 ac lot - w/ LID 47 66 76 81 
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APPENDIX D 

 

SCENARIO COMPARISONS TO EXPLORE THE IMPORTANCE OF  

INTEGRATED STORMWATER MANAGEMENT 

AND COMPACT REGIONAL GROWTH  

 

The fact that the compact and ISM scenarios exceeded their counterparts in 

reducing flow alterations suggests that both compact regional growth and the application 

of ISM are effective approaches to protecting the hydrology of the catchment basins in 

question.  However, due to the differences in population growth outcomes across 

scenarios and basins (Table S7), the story is more complicated.  Here, I consider 

landscape outcomes and flow alterations in light of the population differences. 

For each watershed, I further compared the compact scenarios with their dispersed 

counterparts (CM vs. DM, CnM vs. DnM), and the ISM scenarios with their no-ISM 

counterparts (CM vs. CnM, DM vs. DnM) to explore the relationship among regional 

population growth, ISM, and hydrologic outcome.  Additionally, I searched for scenarios 

with equal or larger population growth that still generated less flow alterations.  The eight 

development variables (Table S7) were carefully examined to explore generalizable 

implications for watershed planning.   

First, comparisons between the best- (CM) and worst-case (DnM) scenarios 

across the entire study area suggest that dispersion of growth into the rural areas without 

any mitigation may incur substantial hydrological impacts.  Scenarios CM and DnM 

resulted in almost identical total population for the study area as a whole.  Despite the 



 

151 

 

varied population distribution among the three basins, CM led to less flow alteration in 

every basin.  This makes a strong case for the benefits of integrating compact growth and 

ISM for reducing development impacts. 

Second, the importance of ISM was repeatedly demonstrated by paired 

comparisons between the ISM scenarios and their no-ISM counterparts.  In the two 

dispersed scenarios (DM vs. DnM) in Basin A, urban population and urban developed 

area were almost identical.  However, DM allocated 11% more people into the rural area 

without enlarging the rural footprint.  Thus, with a higher rural density and an identical 

total development footprint, DM achieved a better hydrological outcome by application 

of ISM.  Furthermore, comparisons of CM vs. CnM and DM vs. DnM in Basin C 

conveyed a similar message.  Accommodating >20% more people than their no-ISM 

counterparts, the ISM scenarios resulted in smaller total development footprints 

accompanied by larger urban but smaller rural areas.  Both urban and rural densities were 

higher in the ISM scenarios.  This indicates that, in this case, the exacerbated hydrologic 

impacts from a more dispersed, larger, and unmanaged rural landscape was more 

overwhelming than that of a larger, denser, but managed urban area. 

Additionally, limiting the development footprint may not be the absolute most 

important principle as long as ISM is applied.  Comparisons between scenarios DM and 

CnM showed that, for every basin, DM featured more population growth and a larger 

total development footprint than CnM.  Both urban and rural footprints in DM were 

either larger than or almost identical to those in CnM.  Yet the former resulted in less 

flow alterations.  This provides further evidence for the effectiveness of ISM in 

mitigating stormwater impacts.   
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