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Substituting this into Eq. (2.25b) we obtain

jse(x) = _1_ V x B(x) - ~ V x H(x),
4KMn 4K

where

(2.29a)

-- -i!L ['Ij;*(x)V'Ij;(x) - 'Ij;(x)V'Ij;*(x)]
2m
2

-~ 1'Ij;(x) 1

2A(x).
m

(2.29b)

Together with Eq. (2.25a), these are the equations of motion for an effective action [29]

Seff = J [1 . 2 t 2
dx -1(V-zqA(x))'Ij;(x)1 +-I'Ij;(x)1

2m 2

'Ll 1 1 ]
+41'Ij;(xW + 8KMn B

2
(x) - 4K H(x)· B(x) ,

(2.30)

where we have dropped the now-superfluous subscript on the Landau parameters t and

u. The same result is of course obtained by starting with Eq. (2.24) and integrating

out M in a Gaussian approximation.

The quantity j se in Eqs. (2.29) is indeed the supercurrent, as can be seen by

comparing Eq. (2.29a) with Eq. (2.9a). It does not explicitly depend on Mn, see Eq.

(2.29b), and this is important for the flux quantum to be independent of Mn. The

magnetic energy B 2 /8KMn, which does explicitly depend on Mn, does not appreciably

contribute to the free energy of a thin film or wire sample, and the standard

determination of the critical current, Ref. [9], thus leads to the usual Ginzburg

Landau result with no correction due to Mn i- 1. This corroborates the educated

guess in Sec. 2.2.1.3.

For all other quantities, the usual analysis of Ginzburg-Landau theory now

applies. [9] One characteristic length scale is given by the square root of the ratio
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of the coefficients of the gradient-squared term and the 't/J2 term in Eq. (2.30). This

is the superconducting coherence length e= Vl/mltl. Another one is given by the

square root of the ratio of the coefficients of the terms quadratic in A. For a constant

7/J, this is the London penetration depth

(2.31)

This is identical with Eq. (2.16b), which had been deduced on elementary

phenomenological grounds.

For the Ginzburg-Landau parameter I), = A/e we now have I), = I),o/~, with 1),0

the value of the parameter for J1n = 1. This implies that the superconductor is of

type I or type II, respectively, for 1),0 < VJ1n/2 or 1),0 > VJ1n/2. While one can show

this by an explicit analysis of the effective action, a fast way to relate the theory

for arbitrary values of J1n to the one for J1n = 1 is to rewrite the action in terms of

dimensionless quantities. [32] In conventional Ginzburg-Landau theory, this is done by

introducing

(2.32)

Here 7/Jo = V-t/u is the superconducting order parameter scale. In terms of these

quantities, the effective action reads [32]

Self (H~~A5 Jdx [I (~ V - iA(X))~(X)I'

_1~(x)12 + ~ 1~(x)14 +~ (V X A(x))2
2 J1n

-2H(x) . (V x A(x)) ,

(2.33)

A simple further rescaling procedure shows that Seff depends only on a single
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dimensionless parameter, rather than the two parameters /),0 and /--In' Define

(2.34)

Then

Seff (Hi~2eJdx [1(V-iA(x))~(X)12

_1~(x)12 + ~ 1~(x)14 + /),6 (v x A(X))2
2 /--In

-2~ (~iI(x)). (V x A(x)).

(2.35)

This shows that the theory with an arbitrary /--In maps onto ordinary Ginzburg-Landau

theory with the replacements

(2.36)

/),0 = J /--In/2 thus indeed marks the demarcation between type I and type II

superconductors, and the critical fields can be immediately obtained from the usual

results at /--In = 1. [9] For the thermodynamic critical field He' the upper critical field

He2 , the lower critical field Hel , and the surface critical field He3 we obtain

He H~/~, (2.37a)

He2 H~2//--ln = V2/),oH~//--ln, (2.37b)

Hcl
HO g(/),o/Vfi;:) _ H2 ( /~) (2.37c)el () - y'2 9 /),0 /--In·9 /),0 /),0

He3 1.695 He2 . (2.37d)
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where the universal function 9 has the limiting behavior

{

lnx + 0.08 + oU/x)
g(x) =

1

for x» 1/V2,

for x = 1/V2.
(2.37e)

If one neglects the weak dependence of 9 on its argument, He1 is approximately

independent of Mn.

2.3.3 Superconductors at Magnetic Criticality

As one approaches a ferromagnetic instability, Mn keeps increasing and can no

longer be treated as a constant. There are two effects that become important for our

purposes. First, in a normal metal Mn becomes strongly field or induction dependent.

At r = a this dependence is nonanalytic and described by the critical exponent o.
Second, as r becomes on the order of ~~/). (see Sec. 2.2.2) in a superconducting

phase, the difference between Mn and Ms can no longer be neglected. Related to this,

the gradient squared term in Eq. (2.25c) must be taken into account. We now consider

these effects, starting with the nonanalytic field dependence in the normal state.

2.3.3.1 Thermodynamic Critical Field

At magnetic criticality in the normal state, r = 0, one has[7]

(

_) 1/0-1
Xn(r = O,H) = XO H/Ho (2.38)

Here XO is a microscopic susceptibility, and fIo is a microscopic field scale. M and,

for small values of H, B are therefore proportional to H 1/ O, or H ex: BO. For small B,

the number Mn should thus be replaced by a function of B with the following leading

B-dependence,

(2.39)
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with Ho = (4nXo)<>/(<>-1) fIo. The magnetic energy cost of the flux expulsion that

results from the formation of a Meissner phase (which equals minus the normal

state magnetic energy) is now obtained by using Eq. (2.39) in Eq. (2.30). It is

Em/V = H B /4n - B6+1/8n Hg- 1 = H~-l/<>Hl+1/<> /8n. The condensation energy is

still given by Eeond/V = t2 /4u, which yields

( )

<>/(6+1)
_ 2n 1 2<>/(6+1)

He -- ---;; Ha<>-1)/(6+1) It I . (2.40)

The thermodynamical critical field is thus weaker than in the paramagnetic case, and

the t-dependence is consistent with Eq. (2.21). By comparing with Eq. (2.5), we

see that with respect to the thermodynamical critical field, /-In effectively scales like

/-In rv 1/ltI 2(<>-1)/(6+1) at magnetic criticality.

Equations (2.38) through (2.40) hold also for small but nonzero values of r as long

as one is in the field scaling regime, i.e, as long as H in appropriate units is large

compared to r to an appropriate power. We will discuss this in more detail in Sec.

2.4. At this point we only mention that, since He vanishes as It I --+ 0, sufficiently

close to Te one will lose the field scaling for any nonzero value of r, and He will be

given by Eq. (2.37a).

2.3.3.2 Generalized London Equation

The ordinary London equation is obtained from Eq. (2.25b) by dropping M(x)

and treating 'IjJ(x) - 'IjJ as a constant (London approximation). With V x H(x) = 0

this leads to

-A0
2 B(x) = V x V x B(x). (2.41 )

Now take M into account. Using Eq. (2.25c) in Eq. (2.25b), we can eliminate Band

derive an equation for M. Once M is known, B follows from Eq. (2.25c). Within
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the London approximation one finds

M(x) -(A~//-ln)"l x Vx M(x) + (t~rV2M(X) + (t~r A~V x Vx V 2M(x)

-uM2(x)M(x) - UA~V x V x M 2 (x)M(x). (2.42)

Here /-In = (47r + r)lr as in Sec. 2.3.2, [~ = ~~/V47r + r y'al(47r + r), and U =

ul(47r + r).

As long as /-In ~ 1, the first term on the right-hand side of Eq. (2.42) leads

to a variation of M on a length scale A = AoI~. The second term is a small

correction to the first one since ~~ «Ao. So is the third term, which is of order

(t~)2 V 2
rv (t~) 2 IA6 « 1 relative to the first one. The linearized version of

Eq. (2.42) thus reduces to the ordinary London equation, Eq. (2.41), with Ao -+ A.

However, for r = 0 the first term vanishes. This makes the second term the leading

one, and the third term, which is of order A6V2 compared to the second one, cannot

be neglected either. The linearized equation thus reads

M(x) = (t~r V 2 [1 + A~V x VxJ M(x).

With the same interface geometry as in Sec. 2.2.1.2 this takes the form

(2.43)

(2.44)

This linear quartic ODE is solved by an exponential ansatz, M(x) = Moe- px
. The

real solution that falls off for x -+ 00 shows damped oscillatory behavior. From Eq.

(2.25c) we see that B(x) shows the same behavior as M(x), up to corrections of

O(t~1Ao). With the boundary condition B(x = 0) = /-lnH we finally obtain

B(x) = /-lnHe-x/V2l9n>'Q cos (XIJ2t~AO ) . (2.45)
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This is the solution of the linearized version of Eq. (2.42) at T = O. In addition to

leaving out the terms of O(M3
), we have also ignored the fact that the permeability,

whether Mn or Ms, does depend on B or M at magnetic criticality. In a mean-field

approximation, Mn ex: 1/B 2 at T = 0, see Eq. (2.39), which also leads to terms of

O(M3
) in the nonlinear equation. Depending on the ratio of the external field to

Ho, these terms mayor may not be important for the initial decay of M or B near

the normal metal-to-superconductor boundary. However, once M or B has decayed

sufficiently, these terms become subleading compared to the linear ones in Eq. (2.44),

and the asymptotic behavior as B -> 0 is always given by Eq. (2.45).

In order to make contact with the discussion in Sec. 2.2.2 for small but nonzero

values of T, let us consider the linearized Eq. (2.42) while keeping the first term.

Instead of Eq. (2.44) we then have

(2.46)

This is solved by

(2.47a)

with

1 [ 2 (-0)2
(

_ ) 2 Ao/ Mn + ~m
2A2 COo ':>m

(2.47b)

Here we have chosen the solution for p2 that yields p2 -> 1/A6 for T -> 00. Equation

(2.47b) still provides two solutions for p, and the physical solution for M is determined

by the requirement that M be real.

A discussion of Eq. (2.47b) shows that p2 becomes purely real and negative at

T = Ts = -4J1ft~/Ao + 0 ( (t~) 2 / A6). This is in agreement with the results of



42

Blount and Varma, [2] who showed that spiral magnetic order coexisting with the

superconductivity occurs at this point. For Irl « ~~IAD one has p2 f::::j -i/~~Ao,

which leads to Eq. (2.45). For r » ~~IAD one finds p2 f::::j Mnl A5, which leads to

(2.48)

in agreement with Eq. (2.31).

2.3.3.3 Penetration Depth, and Critical Current

Equation (2.45) shows that the effective penetration depth at magnetic criticality

IS

(2.49)

in agreement with the conclusions of Ref. [13] drawn from studying the ferromagnetic

phase, and with Eq. (2.22) with 1= 1. The latter approximation results from the fact

that our saddle-point equations of motion describe the magnetic equation of state in

a mean-field approximation. The discussion of Eq. (2.47b) shows that this result is

valid for Irl « ~~IAD. By comparing with Eq. (2.16b) or (2.31), we see that with

respect to the penetration depth, Mn at magnetic criticality scales like Mn rv II y'jtT
in mean-field approximation, or Mn rv I/ltl i /

2 in general. The fact that II~ in

Eqs. (2.5) and (2.16b), respectively, must be interpreted differently for }-tn ----> 00 is a

consequence of the influence of the superconductivity on the spin response.

For r » ~~I AD we have, from Eq. (2.48)

(2.50)

in agreement with Eq. (2.31).

The expression for the critical current given by Eq. (2.18) is general within the

London approximation. We have now given a derivation of the behavior of the
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thermodynamical critical field and the penetration depth given on phenomenological

grounds in Eqs. (2.21) and (2.22), respectively. The behavior of the critical current

at or near magnetic criticality is thus given by Eqs. (2.23).

2.3.3.4 Critical Field H c2

The critical exponent I is positive C'/ ~ 1.4 for typical ferromagnetic universality

classes in three dimensions[31]). The result for A, Eq. (2.22) or (2.46) in mean-field

approximation, ofthe previous subsection therefore means that Adiverges more slowly

for ItI --+ 0 than the superconducting coherence length ~ ex II \/ltT. Consequently,

superconductors at magnetic criticality (Irl « t~1Ao) are necessarily of type 1. [13]

This observation notwithstanding, the critical field Hc2 , which in a type-II

superconductor signalizes the boundary of the vortex phase, still has a physical

meaning: It is the minimum field to which the normal metal can be 'supercooled'

before it discontinuously develops a nonzero superconducting order parameter. [9] It

is thus still of interest to determine H c2 . Furthermore, the behavior will be necessarily

of type I only for Irl in an extremely narrow region. Outside of this region, Eq. (2.50)

holds, and for a sufficiently large value of /),0 = AoI~ the superconductor will still

be of type II. The determination of H c2 is done by linearizing the Ginzburg-Landau

equation, Eq. (2.25a), in 1/J. It then turns into a Schrodinger equation for a particle in

a vector potential A, with -tI/2 = -t/2 playing the role ofthe energy eigenvalue. By

means of standard arguments [9] this leads to a critical value of the magnetic induction

B = V X H given by B c2 == H~2 = -tmlq. In a paramagnetic superconductor, this

leads to

H c2 = H~2 I f.1n (f.1n = const.), (2.51)

which is the same as Eq. (2.37b). At magnetic criticality, we have, d. Eq. (2.39),

H - B J IH(J-l) Itl J
c2 - c2 0 ex . (2.52)
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Notice that, in this context, j1,n scales as j1,n rv 1/Itl<>-1, whereas it scales as j1,n rv 111tl
if the relevant field scale is He. Since He2 vanishes much faster than He, Eq. (2.40),

the field scaling region will be restricted to larger values of It I, and He2 will be given

by Eq. (2.51) in a substantial range of t-values. Will come back to this in Sec. 2.4.

2.4 Discussion and Conclusion

To summarize, we have determined the electrodynamic properties of superconductors

close to a ferromagnetic instability, i.e., materials that, in the absence of superconductivity,

would be paramagnetic with large ferromagnetic fluctuations. This work complements

previous studies of the coexistence of superconductivity with ferromagnetic order. [2,

13] We have treated the superconductivity in mean-field (Ginzburg-Landau) approximation.

In addition, we have employed the London approximation, treating the superconducting

order parameter as a constant. The ferromagnetic critical point we have treated

explicitly in a mean-field approximation, and we have used scaling arguments

to consider the consequences of the exact magnetic critical behavior for the

superconductivity. We have found that the thermodynamical critical field He

decreases due to the ferromagnetic fluctuations, as one would expect, and depends

on the magnetic critical exponent 0, see Eqs. (2.40) and (2.21). However, the London

penetration depth also decreases, which is intuitively less obvious. At magnetic

criticality the behavior of the magnetic induction at a vacuum-to-superconductor (or

normal metal-to-superconductor) interface is still characterized by exponential decay,

but the characteristic length scale A is different from the usual London penetration

depth Ao. Within a mean-field description of the magnetic criticality it is the

geometric mean of the zero-temperature magnetic correlation length and Ao, see Eqs.

(2.45) and (2.49); more generally, it depends on the magnetic critical exponent 1, see

Eq. (2.22). However, this behavior of the penetration depth is valid only within an

extremely small region of width {?nl Ao around magnetic criticality. Outside of this

region, but still within the ferromagnetic critical region, the temperature dependence
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of the penetration depth is the same as in Ginzburg-Landau theory, see Eq. (2.50). For

the critical current j e <X He/.A this implies a dependence on the reduced temperature

given by Itla, where the exponent 0: depends on both 0 and "'(, or on 0 only, depeding

on the value of r, see Eqs. (2.23). With exponent values appropriate for the usual

ferromagnetic universality classes, 0: ~ 1.8 extremely close to magnetic criticality,

and 0: ~ 2.15 somewhat farther away.

Let us now discuss these results in some more detail, and relate them to the

experimental observations reported in Ref. [27].

For the temperature dependencies of various observables at magnetic criticality

we have assumed that the system stays tuned to magnetic criticality while the

temperature is varied. Let us discuss to what extent this assumption is realistic.

Consider a phase diagram in a plane spanned by the temperature and some non

thermal control parameter x, e.g., the hole doping concentration in the case of

MgCNi3 ,[26] and consider the following two qualitatively different possibilities. Figure

2.2 shows a situation where the magnetic phase separation line does not cross the line

x = O. The stoichiometric compound thus does not enter a magnetic phase upon

cooling, although the system is close to a magnetic transition for all temperatures

below the superconducting Te . This scenario is believed to apply to MgCNi3 . Figure

2.3 shows a situation where the magnetic phase separation line does cross the line

x = 0, so that the stoichiometric compound enters a phase where superconductivity

and magnetism coexist at some temperature below Te . This is the situation that

was discussed in Refs. [2] and [13] and observed in ErRh4B4 and HoM06Ss.[15, 16]

The magnetic transition is to a phase with spiral magnetic order at a temperature Ts

slightly below the temperature T~ where ferromagnetism would occur in the absence

of superconductivity. [2]

We now can see what is required to keep r constant while varying t, namely, a

situation as shown in Fig. 2.2 with the dashed line essentially parallel to the T-axis.

r is then given by the dimensionless distance between the two lines. In order for
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FIGURE 2.2: Schematic phase diagram showing a normal metal (NM), a ferromagnet
(FM), a superconductor (SC), and a ferromagnetic superconductor (FMSC) in
a temperature (T) - control parameter (x plane. The solid line denotes the
superconducting transition, the dashed line, the magnetic one. Along x = 0 there
is only one phase transition at the superconducting Te . See the text for additional
explanation.

the penetration depth to display the non-Ginzburg-Landau behavior described by

Eq. (2.49) or, more generally, Eq. (2.22), the two lines would have to be extremely

close, in order to keep r smaller than ~~/AD, see Eq. (2.49). This would result in a

temperature dependence of the critical current given by Eqs. (2.23a, 2.23b). While

this is possible, it is a very non-generic situation, and it would result in a very large

magnetic susceptibility of the normal metal just above the superconducting transition

temperature.

A situation that is still very non-generic, but requires somewhat less fine-tuning, is

one where the dashed line is still essentially parallel to the T-axis, but in a somewhat

larger r-range, say, with r on the order of a few percent. In this case the penetration

depth will show the usual 1/ltI1
/ 2 temperature dependence, see Eq. (2.50). The

temperature dependence of the thermodynamic critical field will be more complicated
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FIGURE 2.3: Same as Fig. 2.2, but with a magnetic transition for x = 0 at a
temperature Tm < Te . On the x = 0 axis it is shown that Tm splits into the bare
magnetic transition temperature T~ and the physical transition temperature Ts to a
state with spiral magnetic order, Ref. [2]. See the text for additional explanation.

in this case. The generalization of Eq. (2.20) to nonzero values of r is

(2.53)

with I = (3(0 - 1), (3, and 0 the usual critical exponents for the magnetic transition.

In order for Eq. (2.20) to hold, the H must be large compared to r f38 in suitable

units. The latter are not determined by any universal arguments, but an analysis of

the critical equation of state for both the high-temperature ferromagnet Ni (Tm ~

630 K) [33] and the low-temperature ferromagnet CrBr3 (Tm ~ 33K)[34] shows that

in either case the relevant energy or field scale (we use units such that kB = J.-lB = 1)

is given by Tm , which is plausible. The crossover between the field scaling that leads

to Eq. (2.21) and the static scaling that leads to Eq. (2.5) thus occurs at a crossover

field

(2.54)

(30 ~ 5/3 for ferromagnetic phase transitions, and with Tm ~ 10K and r ~ 0.1, one
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finds H x ~ 0.02T~. For MgCNi 3 in the vicinity of Te , this leads to H x ~ 0.2T.

With Hc2 at zero temperature on the order of 14 T and K, ~ 40,[35] one expects

He(T = 0) = Hc2 / -J'iK, ~ 0.25 T. Since He vanishes at Te, this means that He will be

given by Eq. (2.21) sufficiently far away from Te, but cross over to He ex: It I near Te.

Consequently, the critical current exponent a will be given by Eq. (2.23c) at some

distance from Tel and cross over to the Ginzburg-Landau result a = 3/2 as It I ----> O.

In the experiment of Ref. [27], no such crossover was observed down to It I ~ 0.01.

At least within the London approximation, our results confirm the conclusion

of Ref. [13] that superconductors near a ferromagnetic instability are necessarily of

type 1. However, we have also shown that this conclusion is inevitable only within

an extremely small region around the (bare) magnetic critical point. The fact that

MgCNi3 is observed to be of type II[35] is therefore not necessarily in contradiction

to the notion that this material is almost ferromagnetic. However, Eq. (2.52) predicts

a strong deviation from Ginzburg-Landau behavior for the upper critical field He2 •

Since He2 goes to zero rapidly as It I ----> 0, this behavior will show only at substantial

values of ItI even if r is very small. No anomalous behavior was observed for It I up

to 0.5.[35] This is reconcilable with close proximity to a magnetic instability only if r

is very small close to Te , and grows with decreasing temperature, in which case H e2

might never show the magnetic critical behavior. A signature of this situation would

be a large magnetic susceptibility in the normal state just above Te .

The conclusion from this discussion with respect to the experimental observations

in Ref. [27] is as follows. While it is possible that proximity to a ferromagnetic

instability is the cause of the observed anomalous behavior of the critical current,

such an explanation requires fine tuning of the phase diagram, and would have to

be accompanied by a very large enhancement of the spin susceptibility in the normal

phase just above Te . Explaining the lack of an anomaly in the temperature dependence

of He2 probably requires that the material is closer to the magnetic instability near

Te than at T = 0 (i.e., the dashed line in Fig. 2.2 comes closer to the T-axis with
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increasing T). A direct measurement of the spin susceptibility in the normal phase

would be of great interest in this context.

Finally, we discuss our predictions for the case of a superconductor that does

undergo a transition to a magnetic state below Te , i.e., the situation represented

by Fig. 2.3. In the (very small) temperature interval of width 21T~ - Tsl around

T~, both the thermodynamic critical field He and the penetration depth Awill show

an anomalous temperature dependence, and the critical current exponent will be

given by Eq. (2.23b). Outside of this region, but not too close to Te, He will be

anomalous, but Awill be conventional, and the critical current exponent will be given

by Eq. (2.23c). Upon approaching Te, He will fall below the crossover field given

by Eq. (2.54), and its temperature dependence will cross over to the usual linear

Ginzburg-Landau behavior. The critical current exponent close to Te will thus be

the conventional a = 3/2. The location of this crossover depends on the critical field

scale, and will thus be material dependent. Critical current measurements in the

materials like ErRh4B4 , or HoMo6SS ' which are believed to fall into this class, would

be very interesting.
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CHAPTER III

NATURE OF PHASE TRANSITION IN P-WAVE

SUPERCONDUCTORS

3.1 Introduction

BCS theory predicts that the phase transition from the normal state to the

superconducting state in s-wave superconductors is continuous or second order.

However, in 1974 Halperin, Lubensky, and Ma [36] showed that the coupling between

the superconducting order parameter and the electromagnetic vector potential tends

to render the transition first order. This conclusion is inevitable for extreme type-I

superconductors where fluctuations of the order parameter are negligible and the

vector potential can be integrated out exactly, and the mechanism is analogous

to the spontaneous mass generation known in particle physics as the Coleman

Weinberg mechanism. [37] When order parameter fluctuations cannot be neglected,

and especially for type-II superconductors, the problem cannot be solved exactly.

The authors of Ref. [36] generalized the problem by considering an n/2-dimensional

complex order parameter and conducting a renormalization-group (RG) analysis in

d = 4 - c dimensions. The physical case of interest is n = 2 and d = 3. To first order

in c they found that a RG fixed point corresponding to a continuous phase transition

exists only for n > 365.9, which suggests that for physical parameter values the

transition is first order even in the type-II case. They corroborated this conclusion

by performing a large-n expansion for fixed d = 3. To first order in lin, the critical

exponent v is positive only for n > 9.72, which again strongly suggests that the

transition in the physical case n = 2 is first order. For superconductors, the size
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of the effect is too small to be observable, whereas for the analogous smectic-A to

nematic transition in liquid crystals it was predicted to be much larger. Experiments

that showed a clear second order transition in liquid crystals later prompted a re

examination of the theory by Dasgupta and Halperin. [38] Using Monte Carlo data and

duality arguments, these authors argued that a type-II superconductor in d = 3 should

show a second order transition after all. The discrepancy between these theoretical

results has never been clarified.

Recently there has been substantial interest in unconventional superconductivity.

In particular, Sr2Ru04 has emerged as a convincing case of p -wave superconductivity, [39,

40] and UGe2 is another candidate.[41] This raises the question whether for such

systems the fluctuation-induced first order mechanism also is applicable, or whether

the additional order parameter fluctuations allow for a second order transition in

situations that lead to a first order transition in the s-wave case. Here we investigate

this problem. By conducting an analysis for p-wave superconductors analogous to

the one of Ref. [36] we predict a first order transition as in the s-wave case, although

the restrictions are somewhat less stringent.

This chapter is organized as follows. In Sec. 3.2 we define our model and derive the

mean-field phase diagram. In Sec. 3.3 we determine the nature of the phase transition.

We do so first in a renormalized mean-field approximation that neglects fluctuations

of the superconducting order parameter. We then take such fluctuations into account,

first by means of a renormalization-group analysis in d = 4 - f dimensions, and then

by means of a lin-expansion. In Sec. 3.4 we discuss our results.

3.2 Model

Let us consider a Landau-Ginzburg-Wilson (LGW) functional appropriate for

describing spin-triplet superconducting order. The superconducting order parameter

is conveniently written as a matrix in spin space, [42] .6.0"10"2 = :E~=1 dj.l(k) ((7j.li(72)0"10"2'

Here (71,2,3 are Pauli matrices, k is a wave vector, and the dj.l are the components of a
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complex 3-vector d(k). p-wave symmetry implies dl-"(k) = 2..:~=1 dl-"jkj , with k a unit

wave vector. The tensor field dl-"j(x) is the general order parameter for a spin-triplet p

wave superconductor and it allows for a very rich phenomenology. For definiteness we

will constrain our discussion to a simplified order parameter describing the so-called

;3-state,[42] which has been proposed to be an appropriate description of UGed41]

It is given by a tensor product d = 'l/J (8) ¢ of a complex vector 'l/J in spin space and

a real unit vector ¢ in orbital space. The ground state is given by 'l/J = .6.0 (1, i, 0),

¢ = (0,0,1). In a weak-coupling approximation that neglects terms of higher than

bilinear order in 7/J2, q}, and \72 the action depends only on 'l/J,

s = Jdx [tl'l/J1 2 + c1D'l/J1 2 + Uo I'l/J14 + vol'l/J x'l/J*1 2

+8~'/V X A)2]. (3.1)

Here A is the vector potential, D = V - ieA is the gauge invariant gradient with

e the Cooper pair charge, and ID'l/J12 = (Di7/Ja)(D;7/J;) with summations over i and

(J implied. fJ is the normal-state magnetic permeability, and t, c, Uo, and Vo are

the parameters of the LGW functional. The fields 'l/J and A are understood to be

functions of the position x.

For later reference we now generalize the vector 'l/J from a complex 3-vector to a

complex m-vector with components 7/Ja, so that the total number of order parameter

degrees of freedom is n = 2m. In order to generalize the term with coupling constant

v we use of the following identity for 3-vectors,

(3.2)

and notice that the right-hand side is well defined for a complex m-vector. Our
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generalized action now reads

s Jdx [t1J;a1jJ~ +C(Di1jJa)(Di1jJ~)+u1jJa1jJ~1jJf31jJ~

+v1jJa1jJa1jJ~1jJ~+ 8~,u tijk(OjAk)tilm((JzAm)] ,

(3.3)

with Ci,(3 = 1, ... m, i,j, ... = 1,2,3, and summation over repeated indices implied.

Here we have defined new coupling constants U = Ua + Va and v = -Va. In addition

to the generalization of the order parameter to an m-vector we will also consider

the system in a spatial dimension d close to d = 4. The physical case of interest is

m = d= 3.

3.3 Nature of The Phase Transition

3.3.1 Mean Field Approximation

The simplest possible approximation ignores both the fluctuations of the order

parameter field 'ljJ and the electromagnetic fluctuations described by the vector

potential A. The order parameter is then a constant, 'ljJ(x) 'ljJ, and the free energy

density f reduces to

(3.4)

In order to determine the phase diagram we parameterize the order parameter as

follows, [3]

'ljJ = 1jJa (n cos ¢ + i msin ¢) . (3.5)

Here 1jJa is real-valued amplitude, nand m are independent real unit vectors, and ¢
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FIGURE 3.1: Mean-field phase diagram of a p-wave superconductor as described by
Eq. (3.1). See the text for additional information.

is a phase angle. The free energy density can then be written

(3.6)

We now need to distinguish between two cases.

case 1: '110 > O. The free energy is minimized by n = m, and 'I/J'6 = -t/2uo. The

condition Uo > 0 must be fulfilled for the system to be stable.

case 2: '110 < O. The free energy is minimized by n ...L m and ¢ = 11"/4, and

'I/J'6 = -t/2(uo +'110). The condition Uo +'110> 0 must be satisfied for the system to be

stable.

The first case implies 'l/J x 'l/J* = O. This is referred to as the unitary phase. In

the second case, 'l/J x 'l/J* =J- 0, which is referred to as the non-unitary phase. In either

case, mean-field theory predicts a continuous phase transition from the disordered

phase to an ordered phase at t = O. The mean-field phase diagram in the '11'0-'110 plane

is shown in Fig. 3.1.
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3.3.2 Renormalized Mean-field Theory

A better approximation is to still treat the order parameter as a constant, 'l/J(x) 

'l/J, but to keep the electromagnetic fluctuations. The part of the action that depends

on the vector potential then takes the form

(3.7a)

where

(3. 7b)

is the inverse London penetration depth. Since A enters SA only quadratically, it can

be integrated out exactly, and the technical development is identical to the s-wave

case. [36]The result for the leading terms in powers of I'l/J 12 in d = 3 is

(3.8)

Here w ex: ~ is a positive coupling constant whose presence drives the phase

transition first order.

There are several interesting aspects of this result. First, the additional term in

the mean-field free energy, with coupling constant w, is not analytic in 1'l/J1 2
• This is a

result of integrating out the vector potential, which is a soft or massless fluctuation.

Second, the resulting first-order transition is an example of what is known as the

Coleman-Weinberg mechanism in particle physics, [37] or a fluctuation-induced first

order transition in statistical mechanics. [36]

Let us discuss the validity of the renormalized mean-field theory. The length scale

given by the London penetration depth .A = k>..l needs to be compared with the second

length scale that characterizes the action, Eq. (3.1), which is the superconducting

coherence length ~ = JC7ltT. The ratio /'i, = .A/~ is the Landau-Ginzburg parameter.

For /'i, ---+ 0, order parameter fluctuations are negligible (this is the limit of an extreme
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type-I superconductor), and the renormalized mean-field theory becomes exact. For

nonzero values of /'1, the fluctuations of the order parameter cannot be neglected, and

the question arises whether or not they change the first-order nature of the transition.

We will investigate this question next by means of two different technical approaches.

3.3.3 t-expansion about d = 4

Here, we will follow notations of reference [43, 36] and apply the momentum shell

renormalization group to the action Eq. (3.3). By this method, we can treat both

the magnetic and superconducting fluctuations at about dimension 4. t = 4 - d

is presumed to be a small and positive parameter which will justify the asymptotic

expansion of free energy functional. Eventually t can be loosely treated to be 1, so

the critical behavior of the system at spatial dimension 3 could be extrapolated.

First, the bare propagator for the complex OP field in the Fourier space can be

identified from the quadratic terms from Eq. (3.3)

(3.9)

Coulomb gauge V . A = 0 will be used through this chapter. We denote photon

propagator as,

(3.10)

where Pij(q) is the transverse projection operator Pij(q) = Oij - q~%j. The vertices

which can be read from Eq. (3.3) are listed in the Fig. 3.2. Recursion relations for

the coupling constants can be obtained from doing the momentum shell integrals for

the diagrams in Fig. 3.3 and Fig. 3.4. Now the RG flow equations for the coupling

parameters read,
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,
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lr' ,, ,

FIGURE 3.2: Vertices from Eq. (3.3). Solid lines denote the 'IjJ field and dashed lines
its complex conjugate. Wavy lines denote the vector potential. Dotted lines separate
the localized interaction between paired electrons.
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FIGURE 3.3: Diagrams renormalize the coupling parameters

dt (d 2) 3ce
2

k 4v + (n + 2)u k (3.11)- + xt+-- d+ d
dl f-l t+c
du (d 4) (n + 8)u

2+ 8v
2+ 8uv k 48 2 2 2 4k (3.12)- + X u - ()2 d - 7r f-l C e ddl t+c

dv (d 4) _ nv
2+ 12uv k (3.13)-

dl + X v (t + C)2 d

df-l-l 27rnc3e2
(3.14)-- (d - 2 + 2XA)f-l-

1 + 3(t + C)4 (3t + c)kd
dl

dc 127r f-lce2
(3.15)- (d - 2 + 2X - ( ) kd)c

dl t+c
de

(1 + XA)e (3.16)-
dl
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Here X and XA are the rescaling parameters of fields 'l/J and A respectively kd is

the surface area of the d-dimensional(d = 4 in this case) unit sphere.

When the parameter v = 0, the above flow equations recover the recursion relation

of H.L.M [36] as should be the case.

The case e = °case which corresponds to a p-wave superfluid, will not be discussed

here. We are looking for physical fixed points for e i °case.

We choose X to keep the parameter c fixed and XA = -1 to keep the charge e

fixed and assume that the parameter t has a fixed point of order c:. We find the

value of p,*-l = 27[~kde2 from the recursion relationship Eq.(3.14). By setting the

right hand side of Eqs. (3.12,3.13) equal to zero, we get coupled quadratic algebraic
2

equations which describe the fixed point values of parameters u and v. Let u = ~d X

and v = ~: y. From Eqs. (3.12)~.13) we get

36 108
x(l +-) - ((n + 8)x2+8xy + 8y2) - -2 = °

n n
36

y(l + -) - ny2 - 12xy = °
n

(3.17a)

(3.17b)

If y = 0, Eq.(3.17a) naturally recovers s-wave case discussed by H.L.M [36] who

found a real valued fixed point for n > 365.9, there exist real valued fixed points. For

--_----:...-----. '. '

-.---.---

---_..._-

--r;----L.---,-

FIGURE 3.4: Diagrams renormalize the coupling parameter u
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v

u

FIGURE 3.5: Renormalization group flows for n=500. The top right fixed point is
stable in the u-v plane, so it is the critical fixed point

Y i- 0, the coupled quadratic equations can be reduced to one quadratic equation of

y only, whose discriminant is

.6. = -248832 - 6912n - 5424n2
- 408n3 + n4 (3.18)

To have .6. positive, n must be larger than nc = 420.928. For any n > nc , there

exist new fixed points besides the s-wave ones. It can be easily verified that these

newly appearing fixed points are falling in the non-unitary region in Fig. 3.1. We will

refer to them as p-wave fixed points. The stability of a fixed point can be analyzed

by linearizing the recursion relationship at that point to get the eigenfunctions and

eigenvalues. A typical flow in the u - v plane is plotted in Fig. 3.5.

Although the s-wave fixed point appears first when n > 365.9, it never controls

the phase transition. Only when n > nc , one of the p-wave fixed points takes the role

of the critical fixed point. The critical fixed point in the large n limit takes the form

E E * ne2

u* '" -, v* '" -, p., "'
nnE

(3.19)
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The non-vanishing value of v* implies as least close to dimension 4, p-wave

superconductors would belong to a different universality class from their s-wave

cousins. From Fig. 3.5, the left bottom corner and top corner show a typical "run

away" flow. This "run-away" flow goes to the u < 0 and v > 0 region which falls

off from the continuous phase transition region in the mean field graph Fig.3.1. It

is a strong signature of first order phase transition which is also consistent with the

extreme type I case discussion in section 3.3.2.

At first sight, the fact that a p-wave critical fixed point requires a larger number of

components than the s-wave case may lead to the conclusion that it is more unlikely

for p-wave superconductors to have a secound order phase transition. However, we

need to keep in mind that the f-expansion is valid only for small f, so this fixed

point theory may only apply to dimensions very close to 4. To get n c for d = 3,

one would have to take the f-expansion to higher loop order, which is a formidable

job. Another issue is the limitation of the f-expansion method which assumes

perturbatively accessible fixed points, so it may apply only to a small parameter

region. Outside of this region, other methods may have to be applied to study the

nature of the phase transition, for instance dual theory. [38J

Another way to partly answer this question was pointed out [36J in the s-wave case:

a lower bound nc1 = 9.7 for the critical value of n in the s-wave case was obtained by

a large n expansion in d = 3. We will now apply this techniques to the p-wave case.

3.3.4 lin-expansion in d = 3

We refer to the literature, [36, 44] for the general large n technique. The basic

idea is very similar to the f-expansion we have shown. In the f-expansion case,

the expansion is performed at the Gaussian fixed point. Large n limit O(n) model

is usually referred to as spherical model and is solvable. So perturbation expansion

around its saddle point is doable. Through the expansion, the most infrared divergent
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FIGURE 3.6: All the self energy graphs contribute to the critical exponent. The first
row is from the ungauged part and the second row is from gauged part.

terms will be summed and we will show they contribute to the critical exponents in

terms of lin.

We make the assumption for the following perturbed parameters,

1 1
1J, '" -, v '" - , and

n n
2 1

e "'
n

(3.20)

This is reasonable by setting f = 1 in Eq. (3.19). In this section we set c = 1

and p., = 1 for simplicity. To get critical exponents TJ and r in terms of lin, we will

calculate a two point electron correlation function perturbatively. In Fourier space

for small momentum k at critical temperature it reads

(3.21)

Eq.(3.21) is the usual definition of critical exponent TJ . Here, c denotes the cumulant

expansion of the full action Eq. (3.3). Now we show that, given Eq. (3.20), all the

diagrammatic contributions to G(k) can be controlled by an expansion in powers of

lin. Therefore, TJ can be expressed in terms of lin. Eq.(3.21) for small TJ can be

rewritten as

(3.22)
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So the ultimate purpose is to do the perturbation for the renormalized Green's

function, and extract the logarithmic dependence of momentum terms. Following the

notation in [44], we define the renormalized mass t and self energy ~ by

t = C- l (t, k = 0)

C- 1(t, k) = to + k2 + ~(t, k)

(3.23)

(3.24)

Where to is the bare parameter offree energy Eq.(3.3). In the following calculation,

we will use (t + k2)-1 as the electron propagator, which leads to the renormalization

rule: whenever we get a quantity of self energy insertions ~(t, k), we have to subtract

the bare self energy ~(t, k = 0). For instance, applying this rule directly to Eq(3.24),

we get

C-1(t, k) = t + k2 + ~(t, k) - ~(t, k = 0) (3.25)

A less obvious example will be given when calculating the critical exponent f.

Now compare Eq.(3.2l,3.22) and Eq.(3.25), in order to get the critical exponent

'TI, we need to extract the -k2 log k term from ~(t = 0, k) - ~(t = 0, k = 0) . The self

energy graphs of order lin are listed in Fig. 3.6. We only show order lin graphs that

contribute to this critical exponent.

In the following calculations, we will apply dimensional regularization and

Feynman integral tricks which are given in the appendix.

The self energy graphs a) and c) in Fig. 3.6 have no dependence k at all, so their

contribution to 'TI is zero. Before really calculate graph b), we refer to Fig. 3.7 for the

definition of the double dashed line. The figure shows that every bubble has double

contractions of the spin indices CY, (3, which amounts to order n, so graph b) actually

is a sum of a series of graphs which are of order lin. The single bubble repeats itself

in the sum which will be defined as polarization bubble.
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FIGURE 3.7: Dressed coupling parameter and renormalized photon propagator.

The polarization bubble in the Fig. 3.7 is

(3.26)

(3.27)

Using the methods explained in the appendix, this integral can be easily done in

dimension 3. with the result

1 2ft 1
II(t,k) = (47f)3/2-k-arctan(2Jt/k2)

at criticality t = 0, so II(O, k) = A.
A ladder resummation of the bubble graphs gives us the double dashed line. In

Fig. 3.7, we show how the double dashed line can be constructed from v vertices.

The double dashed line constructed by the u vertices can be obtained in the same

manner. By working out the combinatorial factor before every graph, we know this

sum is actually a geometric series, for example, if we take consideration of the graph

from v vertex as a piece for self energy of graph b). The contribution from this kind

of vertex is

J ddq 4v 1
~b(O, k) = (27f)d 1 + 2vmII(0, q) (q + k)2 (3.28)

As mentioned before, the first factor in the integrand IS just the geometric
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summation of the polarization bubbles. In the small q limit, it is

2

mII(O, q)
(3.29)

The parameter v drops out from the integrand which makes sense for the expected

universal property of the critical exponent.

In d = 3, the integral in Eq. 3.28 is elementary: by extracting the -k2 10g k from

~b(O, k) - ~b(O, 0), the contribution to 7) is 3~~2. The contribution from the u vertex

is straightforward to get, the result is 3n~7r2. So the overall contribution to 7) so far is

16 8 8
7)b=--+--=-

3n-7!"2 3mr2 mr2

We now check the limit v = 0, which corresponds to s-wave case. From the above

analysis, it does give the correct 3n
8
7r2 contribution to 7) as obtained by Ma [44].

The gauge field also contributes to the critical exponent 7), via the self energy

graph d). The double wavy line is the renormalized photon propagator as shown in

Fig. 3.7. We choose Coulomb gauge as before, so the bare photon propagator is Pi~~q) •

The self energy graph of the gauged field propagator is listed in Fig. 3.7. and reads

(3.30)

After some algebra, we get

(3.31)

The photon self energy has the same structure as the gauge propagator. So the

renormalized photon propagator is
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Now we can calculate graph d) which reads

~d(O k) = _e2J ddp (2k - p)i(2k - p)j Pij(P)
, (21r)d (k - p)2 p2+ ~e22p

Again, we extract the -k2 log k term from above integral, and obtain '1d = ;~;~.

This is a contribution from the gauge field only and has an opposite sign to the

ungauged part. This contribution to the critical exponent '1 is the dominant part, so

the overall critical exponent '1 is
-104

'1 = 3n1r2 (3.32)

which has a negative value just as in the s-wave case though its absolute value is

somewhat smaller.

Now we calculate the critical exponent "f. By a technique similar to the one we

used for '1, here we need to extract 0log(t) from the self energy graph. In this

calculation, all the external momenta k are set to zero. We just show some typical

contribution from self energy graphs to show how it works.

From graph a), we get

This integral can be easily done and the mass dependence is proportional to 0,

so "f = 2 which is the result for the spherical model. [7]

Graph c) is an example of the Feynman rule mentioned right below Eq. (3.24).

Here, ~b (t, 0) is inserted into graph a), so the expression reads

(3.33)
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Summing all the graphs of this kind constructed from all possible vertices, we get

a contribution to I for anisotropic ungauged part is

36
1= 2(1--)

n7f2

The gauge field also contributes to I in a very similar way from graph e)

128
Ie = --

n7f2

So the overall critical exponent is

100
1= 2(1--)

n7f2

(3.34)

(3.35)

For the physical value of n = 6, this is negative. This suggests a 1st order phase

transition, and the smallest number of components to yield a positive I is 10.1.

Compared to the s-wave case, I = 2(1- ,::2), which require n > 7.7 with a physical

n = 2, we conclude it is a little more likely for the p-wave superconductors to have a

second order phase transition.

The critical exponent v = 1 - 3~;2 can be easily obtained from the relation

I = v(2 - rJ) which requires n > 11.89 for a continuous phase transition to be

realized.

3.4 Discussion and Conclusion

The critical behavior of the p-wave superconductors with m complex components

order parameter has been studied both in an (-expansion and a large n expansion

technique at dimension 3 to the first order of the control parameter. In the physical

parameter region, a fluctuation induced first order phase transition is found. However,

from one-loop (-expansion, a new kind of critical fixed point is found for parameter

n > 420.9. This corresponds to a continuous phase transition into the non-unitary
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phase. The large n result is consistent with the RG result: to have a continuous phase

transition, a number of components n larger than some nc is required. However, the

critical lower bound of nc = 11.9 in the p-wave case is closer to the physical value

n = 6 than in the s-wave case, which suggests that p-wave critical behavior is more

likely to occur. This is the result of a leading expansion only, higher order expansions

are necessary to consolidate these results.
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CHAPTER IV

SKYRMION IN P-WAVE SUPERCONDUCTORS

4.1 Introduction

The shorter version ofthis chapter has been published in Ref. [11] with John Toner

and Dietrich Belitz.

One of the most fascinating phenomena exhibited by conventional, s-wave, type

II superconductors is the appearance of an Abrikosov flux lattice of vortices in the

presence of an external magnetic field H in a range Hel < IHI < He2 between a

lower critical field Hcl and an upper critical field He2 . [9] It has been known for quite

some time both theoretically[45, 46, 47, 48] and experimentally [49, 50] that these flux

lattices can melt. The melting curve separates an Abrikosov vortex lattice phase from

a vortex liquid phase, and the vortex lattice is found to melt in the vicinity of both

Hel and He2 , as shown in Fig. 4.1. The melting occurs because the elastic constants

of the flux lattice (Le., the shear, bulk, and tilt moduli) vanish exponentially near

these field values. As a result, in clean superconductors, root-mean-square positional

thermal fluctuations J(ju(x)12) grow exponentially as these fields are approached.

According to the Lindemann criterion, when these fluctuations become comparable

to the lattice constant a, the translational order of the flux lattice is destroyed; Le.,

the lattice melts.

Vortices are topological defects in the texture of the superconducting order

parameter, and in s-wave superconductors, where the order parameter is a complex

scalar, only one type of defect is possible. In p-wave superconductors, the more

complicated structure of the order parameter allows for an additional type of
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FIGURE 4.1: External field (H) vs. temperature (T) phase diagram for vortex flux
lattices. Shown are the Meissner phase, the vortex lattice phase, the vortex liquid,
and the normal state. Notice that the vortex lattice is never stable sufficiently close
to He!'

topological defect known as a skyrmion. In contrast to vortices, skyrmions do not

involve a singularity at the core of the defect; rather, the order parameter field is

smooth everywhere, as illustrated in Fig. 4.2.

Skyrmions were first introduced in a nuclear physics context by Skyrme,[51] and

slight variations of this concept.!

were later shown or proposed to be important in superfluid 3He,[52, 53] in the

Blue Phases of liquid crystals, [54] in Quantum Hall systems,[55, 56] in itinerant

ferromagnets, [57] and in p-wave superconductors. [3] In the latter case, skyrmions

carry a quantized magnetic flux, as do vortices, although the lowest energy skyrmion

contains two flux quanta, while the lowest energy vortex contains just one. For

strongly type-II superconductors, skyrmions have a lower free energy than vortices,

and a vortex lattice should thus be the state that occurs naturally.[3]

1Defects of this general type are known under various names in different contexts, and the action
for the defects studied here differs from the one considered by Skyrme. We follow a recent trend to
refer to all defects of this type as skyrmions.
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FIGURE 4.2: Order parameter configurations showing a vortex (a), and a skyrmion
(b). The local order parameters are represented by arrows on loci of equal distance
from the center of the defect. If the order parameter space is two-dimensional, only
vortices are possible, and there is a singularity at the center of each vortex, (a). If
the order-parameter space is three-dimensional, a skyrmion can form instead, where
the spin direction changes smoothly from "down" at the center to "up" at infinity,
(b).

Recent evidence of p-wave superconductivity in Sr2Ru04[39, 40F provides a

motivation for further exploring the properties of skyrmion flux lattices in such

systems. It was shown numerically by Knigavko et al.[3] that the interaction between

skyrmions falls off only as 1/R with distance R, as opposed to the exponentially

decaying interaction between vortices. As result, skyrmion lattices have a very

different dependence of the magnetic induction on the external magnetic field near Hcl

than do vortex lattices. In this chapter we confirm and expand on these results. We

show analytically that the skyrmion-skyrmion interaction, in addition to a leading

1/R-dependence, has a correction proportional to In R/R2 that explains a small

discrepancy between the numerical results in Ref. [3] and a strict 1/R fit, and we

calculate the interaction energy up to 0(1/R2). We further show that the melting

curve of a skyrmion lattice is qualitatively different from that of a vortex lattice.

Namely, skyrmion lattices melt nowhere in the vicinity of Hel , so there is a direct

transition from the Meissner phase to the skyrmion lattice, see Fig. 4.8 below. Finally,

we predict and discuss the magnetic induction distribution n(B) of a skyrmion lattice

state as observed in a muon spin resonance (f,lSR) experiment. For a vortex lattice,

2The precise nature of the order parameter in Sr2Ru04 is still being debated, see Ref. [58}.
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the exponential decay of the magnetic induction B at large distances from a vortex

core implies nCB) ex: In B / B. For a skyrmion lattice, we find that B decays only

algebraically, which leads to nCB) ex: B-3/ 2• Some of these results have been reported

before in Ref. [11].

The chapter is organized as follows. In Sec. 4.2 we review the formulation in

Ref. [3] of the skyrmion problem. In particular, we start from the Ginzburg-Landau

(GL) model for p-wave superconductors and consider the free energy in a London

approximation. We parameterize the skyrmion solution of the saddle-point equations,

and express the energy in terms of the solution of the saddle-point equations. In

Sec. 4.3 we analytically solve these saddle-point equations perturbatively for large

skyrmion radius R, and we calculate the energy of a single skyrmion as a power series

in 1/R to order 1/R2• In Sec. 4.4 we determine the elastic properties of the skyrmion

lattice, and we predict the magnetic induction distribution nCB) as observed in a j.lSR

experiment.

4.2 Formulation of the Skyrmion Problem

In this section we review the formulation of the skyrmion problem presented in

Ref. [3], who derived an effective action that allows for skyrmions as saddle-point

solutions. The resulting ordinary differential equations (ODEs) describing skyrmions

[3] are the starting point for our analytic treatment.

4.2.1 The Action in The London Approximation

We start from a Landau-Ginzburg-Wilson (LGW) functional appropriate for

describing spin-triplet superconducting order,

s = Jdx £(1/J(x) ,A(x)), (4.1a)
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with an action density

£ ('ljJ , A)

(4.1b)

Here 'ljJ (x) is a 3-component complex order parameter field,

A(x) is the electromagnetic vector potential, and D = V -iqA denotes the gauge

invariant gradient operator. m and q are the mass and the charge, respectively, of a

Cooper pair, and we use units such that n= c ~= 1. t, 'U, and v are the parameters of

the LGW theory.

Let us look for saddle-point solutions to this action. In a large part of parameter

space, namely, for v < 0 and 'U > -v, the stable saddle-point solution has the form

'ljJ(x) 'ljJ = fa (1, i, O)/V2, where the amplitude fa is determined by minimization

of the free energy. [42] This is known as the jJ-phase, and it is considered the most

likely case to be realized in any of the candidates for p-wave superconductivity.3

Fluctuations about this saddle point are conveniently parameterized by writing the

order parameter field as

'ljJ(x) = ~f(X) (n(x) + im(x)) , (4.2)

where it(x) and m(x) are unit real orthogonal vectors in order-parameter space and

f(x) is the modulus of order parameter. With this parameterization, the action

density can be written

t f2 + ('U + V)j4

+2~ [(V1)2 + f2[}(aJ)2 + (it· aim - qAi)2]]

1
+-(V X A)2,

87f

3See the discussion in Ref. [3], and references therein.

(4.3)
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where i = it x m, summation over repeated indices is implied, and we have made use

of the identities listed in Appendix B.1.

There are two length scales associated with the action density, Eq. (4.3). The

coherence length ~ is determined by comparing the F term with the (V1)2 term,

~ = 1/J2mjt/. (4.4a)

It is the length scale over which the amplitude of the order parameter will typically

vary. The London penetration depth A is determined by comparing the A 2 term with

the (V x A)2 term,

(4.4b)

The ratio of these two length scales, K, A/~, is the Ginzburg-Landau parameter.

Now we write f(x) = fa + bf(x), with fa = J-t/2(u + v). Deep inside the

supercondueting phase, where -t > 0 is large, the amplitude fluctuations bf are

massive, and to study low-energy excitations one can integrate out f in a tree

approximation. This approximation becomes exact in the limit of large K, and is

known in this context as the London approximation. We introduce dimensionless

quantities by measuring distances in units of A and the action in units of <P6/321f3 A,

and we introduce a dimensionless vector potential a = 21fAA/<Po, with <Po = 21f/q the

magnetic flux quantum. Ignoring constant contributions to the action we can then

write the action density in London approximation as follows,[3]

(4.5)

with b = V x a. The above derivation makes it clear that this effective action is a

generalization of the 0(3) nonlinear sigma model (represented by the first term on
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the right-hand side of Eq. (4.5)) that one obtains for a real 3-vector order parameter

by integrating out the amplitude fluctuations in tree approximation. [31]

It should be noticed the parametrization of p-wave order parameter Eq. (4.3) is

valid only in the parameter region discussed above. The stable saddle point solution

has the property 'l/J x 'l/J* # 0 which corresponds to the non-unitary phase. However,

there is another possibility which is referred as unitary phase and has been discussed

in Chapter III. Namely, it = m. In this case, the parameterization of order parameter

can be written as,

'l/J(x) = j(x)it(x) x ei<f;(x), (4.6)

This equation is nothing more than a straight forward analogy from a scalar

order parameter of s-wave to a vector one. It can be expected if some p-wave

superconductors happen to be described by Eq. (4.6), all the s-wave discussion can

be directly applied to such case. A discussion of this analogy can be found in the

reference [3], here we will focus on the non-unitary phase only.

4.2.2 Saddle-point Solutions of the Effective Action

We now are looking for saddle-point solutions to the effective field theory, Eq.

(4.5). Considering i and it independent variables, and minimizing with respect to i
subject to the constraints j2 = it2 = 1 and i· it = 0 yields

with

J= Vx b

(4.7a)

(4.7b)

the supercurrent. The variation with respect to a is straightforward and yields a
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generalized London equation,

(4.7c)

It is convenient to take the curl of Eq. (4.7c) and use Eq. (B.3) to express the right

hand side of the resulting equation in terms of i. We then obtain the saddle-point

equations as a set of coupled partial differential equations (PDEs) in terms of band

i only:

(4.8a)

(4.8b)

Notice that the right-hand side of Eq. (4.8a) is valid in this form only at points where

i(x) is differentiable, see Eq. (B.3). Field configurations that obey these PDEs have

an energy

(4.9)

where we have added a uniform external magnetic field h measured in units of

<T>o/21fA2 . Notice that the energy depends on it and m, whereas Eqs. (4.8) depend

only on i, and that different choices of it and m can lead to the same i. Therefore,

a field configuration satisfying Eqs. (4.8) is only necessary for making the energy

stationary, but not sufficient.

4.2.2.1 Meissner Solution

A very simple order parameter configuration consists of constant it(x) and m(x)

everywhere, see Fig. 4.3.

This leads to an i(x) i that is constant everywhere. Equation (4.8b) is then
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FIGURE 4.3: Configurations of the vectors £, m, and n in a Meissner phase. All
three vectors point in the same direction everywhere.

trivially satisfied. The right-hand side of Eq. (4.8a) vanishes, and hence the PDE for

b reduces to the usual London equation with a solution b(x) 0 in the bulk. This

solution describes a Meissner phase with energy EM = O.

4.2.2.2 Vortex Solution

Now consider a field configuration where n(x) and m(x) are confined to a plane

(say, the x-v plane), but rotate about an arbitrarily chosen point of origin:

n(x)

m(x)

(cos ¢, sin¢, 0),

(- sin ¢, cos ¢, 0) , (4.10)

where ¢ denotes the azimuthal angle in the x-v plane with respect to the x-axis.

This field configuration, known as a vortex and shown in Fig. 4.4, corresponds to a

constant i everywhere except at the origin, where there is a singularity. Therefore,

the right-hand side of Eq. (4.8a) is not applicable, and we return to Eq. (4.7c), which
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FIGURE 4.4: Configurations of the vectors I, m, and ii for a vortex. I is constant,
whereas mand ii rotate about the vortex core. Notice that the vector shown in Fig.
4.2(a) is ii.

takes the form

For any closed path C in the x-y plane that surrounds the origin one has

:Ie d£· V¢(x) = 27f,

Lds· (\7 x V¢(x)) = 27f,

(4.11)

(4.12a)

(4.12b)

where A is the surface whose boundary is C. 4 This quantization condition shows that,

instead of Eq. (4.8a), we have

b(x) - V 2b(x) = 27fzb(x) b(y). (4.13)

4More generally, ¢ is an element of the circle or one-sphere 8 1, and hence fc de· V ¢(x) = 21fn
with n an integer. n is a topological invariant that characterizes the singularity (known as a vortex),
and the number of flux quanta that penetrate the vortex is N = Inl. The vortex with n = 1 has the
lowest energy within this family of solutions (apart from the trivial "non-vortex" with n = 0).
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This is solved by a b that is equal to the boundary condition value everywhere along

the z-axis and that falls off exponentially away from the z-axis. This solution is

known as a vortex, and the amount of magnetic flux contained in one vortex is one

flux quantum <Po.

lt is the precise analog of, and, indeed, essentially identical to, the familiar vortex

in conventional s-wave superconductors.

The energy of a vortex given by Eq. (4.13), as calculated from Eq. (4.9), is

logarithmically infinite. This is due to the point-like nature of the vortex core where

the amplitude of the order parameter goes discontinuously to zero. In reality, the

amplitude cannot vary on length scales shorter then the coherence length ~, which

provides an ultraviolet cutoff. The energy is then proportional to in t\,. [9] In an

external magnetic field this energy cost is offset by the magnetic energy gain due to

letting some flux penetrate the sample. For t\, larger than a critical value t\,c== 1/V2,
and for external fields larger than the lower critical field Hel , a hexagonal lattice

of vortices has a lower energy than the Meissner phase. This state is known as

an Abrikosov flux lattice, and is precisely the same as that in conventional s-wave

superconductors. [9]

4.2.2.3 Skyrmion Solution

Due to the three-component nature of the order parameter, more complicated

solutions of the saddle-point equations can be constructed for which the vector i is

not fixed. Let B be the angle between i and the z-axis, and consider a cylindrically

symmetric field configuration parameterized as

i ezcosB(r)+ersinB(r),

it (ez sin B(r) - er cos B(r)) sin lp + e<p cos lp

m (e z sin B(r) - er cos B(r)) cos lp - e<p sin lp.

(4.14)
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For this to minimize the energy, [ at large distances from the origin must be constant

because of the first term in the energy, Eq. (4.9), and for a skyrmion centered in a

cylinder of radius R we take [ to point in the +z-direction for r = R, B(r = R) = O.

The quantization condition analogous to Eq. (4.12b) for the vortex is

Jdx dy tij i· (aJ x a)) = 811" (4.15)

To be consistent with this, [ must point in the -z-direction at the origin, B(r = 0) = 11".

Equation (4.14) parameterizes the order parameter in terms of a function B(r ).

In addition, the energy depends on the vector potential which we take to be purely

azimuthal, in accordance with our cylindrically symmetric ansatz,

a(x) = a(r) e'P' (4.16)

With this parameterization, we obtain from Eq. (4.9) the energy per unit length,

along the cylinder axis, of a cylindrically symmetric skyrmion in a region of radius R,

E/Eo 11R

drr [(B
1
(r))2 + :2 sin

2
B(r)]

+l R

drr [~ (1 + cosB(r)) + a(r)r
+f drr [a~) + a'(rr (4.17)

where Eo = (<I)o/411"A)2. This expression was first obtained in Ref. [3]. The three

terms correspond to the three terms in the London action, Eq. (4.5). They represent

the energy of the nonlinear sigma model, the kinetic energy of the supercurrent, and

the magnetic energy, respectively. Minimization of E with respect to B(r) and a(r)
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yields Euler-Lagrange equations

(4.18a)

1 1 1
a"(r) + - a'(r) - 2 a(r) = a(r) + - [1 + cose(r)].

r r r
(4.18b)

This set of coupled, nonlinear ODEs must be solved subject to the boundary

conditions e(r = 0) = 1r and e(r = R) = 0, as explained above. The solution is

known as a skyrmion, and each skyrmion contains two flux quanta. 5 Since Eqs. (4.8)

are necessary for making the energy stationary, the solution of Eqs. (4.18), inserted

in Eqs. (4.14,4.16), is guaranteed to be a solution of Eqs. (4.8) as well.

The energy of a single skyrmion is finite even in London approximation, see Sec.

4.3 below. For large values of the Ginzburg-Landau parameter f'\, a skyrmion therefore

has a lower energy than a vortex, and the value of the lower critical field Hel , at which

the Meissner phase becomes unstable, is correspondingly lower for skyrmions than for

vortices. This is the basis for the expectation that, in strongly type-II (i.e., large-f'\,)

p-wave superconductors, a skyrmion flux lattice will be realized rather than a vortex

flux lattice.

4.3 Analytic Solution of the Single-skyrmion Problem

We now need to solve the coupled ODEs (4.18). Due to their nonlinear nature,

this is a difficult task, and in Ref. [3] it was done numerically. It turns out, however,

that one can construct a perturbative analytical solution in the limit of large skyrmion

radius, R» .\ with AIR as a small parameter. This provides information about the

5More generally, Jdxdy Cij i· (ad x ojl) = 81rQ, with Q an integer. Q is a topological invariant
that characterizes the defect (known as a skyrmion), and the number of flux quanta that penetrate
the skyrmion is N = 2Q. [3] The skyrmion with Q = 1 ha..s the lowest energy within this family of
solutions.
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superconducting state near Hcl , where the system is always in that limit. We will

construct the perturbative solution, and calculate the energy, to second order in the

small parameter. Our general strategy is as follows. We use Eq. (4.18b) to iteratively

express a in terms of 8 and its derivatives. Substitution in Eq. (4.18a) then yields a

closed ODE for 8(r) that has to be solved.

4.3.1 Zeroth Order Solution

Let us first consider R = 00. For r -------+ 00, the left-hand side of Eq. (4.18b) falls

off as 1/r2 , and hence the vector potential, to zeroth order for large r, is given by

1
aoo(r) = -- [1 + cos 8(r)] .

r
(4.19)

Note that we use the exact 8(r) in this expression, not the zeroth order approximation

to it. Since we can only compute 8(r) perturbatively, this expression for the

zeroth order vector potential will itself have to be expanded perturbatively later.

Substitution in Eq. (4.18a) yields

r2 8"(r) + r8'(r) = ~ sin(28(r)).

The solution obeying the appropriate boundary condition is[3]

800 (r) = f (r / f) ,

with

f(x) = 2arctan(1/x).

(4.20)

(4.21a)

(4.21b)

The length scale f is arbitrary at this point and will be determined later from the
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requirement 8(r = R < 00) = O. For R » 1 it will turn out that f 0:: .fR, The

skyrmion solution is schematically shown in Fig. 4.5.

I n

FIGURE 4.5: Configurations of the vectors f, m, and n for a skyrmion. Notice that
the vector shown in Fig. 4.2(b) is i.

4.3.2 Perturbation Theory for R» 1

We now determine the corrections to the zeroth order solution. Let us write

8(r) = 8oo (r) + o8(r) and a(r) = aoo(r) + oa(r) and require loa(r)1 « laoo(r)I and

lo8(r)\ « 1.6 An inspection of the ODEs (4.18) shows that for, the corrections can

be expanded in a series in powers of 11f,

o8(r)

oa(r)

1 1
f2 9(r1f) + f4 h(r1f) + 0 (11f6) ,

1 1
f3 a(rlf) + f5 f3(rlf) + 0(1/f7

).

(4.22a)

(4.22b)

The functions a and f3 can be determined by substituting Eq. (4.22b) in Eq. (4.18b)

and equating coefficients of powers of 1/.e. The resulting equations for a and f3 are

6We emphasize that we do not require 10B(r) I « IBoo (r) I, as this requirement is neither necessary
nor desirable. Rather, we expand, for instance, sin(Boo + oB) = sin Boo cos oB + cos Boo sinoB =
cos Boo oB + O(oB2 ), which is valid for alloB« 1, not just for those that satisfy 10B(r)l« IBoo(r)l.
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linear algebraic equations, not ODE's, because terms involving derivatives of a and (3

only enter at higher order in lie, as one can verify by direct calculation. Hence, the

solutions for a and (3 can be read off at once, and are:

where

a(x)

(3(x)

16x

(1 +X2)3'

2 (3x4
- 6.1:

2
- 1) (x) _ 2 (3x 2

- 1) ,(x)
x 2 (1 + X 2 )3 9 x(l + X 2 )2 9

2+ 2 gff (x) + A (x) ,
l+x

(4.23a)

(4.23b)

A(x)
1 1

aff(x) +- a'(x) - 2 a(x)
x x

384x(x2 - 1)
(1+x2)5 .

(4.23c)

Similarly, by comparing coefficients in Eq. (4.18a) we find ODEs for the functions 9

and h,

gff(X) + ~ g'(x) - ~ cos(2j(x)) g(x) -~ sin(f(x)) a(x), (4.24a)
x x x

hff(x) + ~ h'(x) - ~ cos(2j(x)) h(x) -~ sin(f(x)) (3(x)
x x x

1 2
-2 sin(2j(x)) l(x) - - cos(f(x)) a(x) g(x), (4.24b)

x x

with j(x) from Eq. (4.24b).

The ODE (4.24a) for 9 can be solved by standard methods, see Appendix B.2.

The physical solution is the one that vanishes for x ----+ 0; it is proportional to x for
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x » 1. We find

(
x) = _i x[x2 (4 + X

2
) + 2(1 + X

2
) In(1 + x 2

)]

9 3 (1 + x 2 )2 ,
(4.25a)

the large-x asymptotic behavior of which is

4 16 lnx 8 lnx
g(x» 1) = --x- --- - - +0(-).

3 3 x 3x x 2
(4.25b)

This determines both the function {3(x) , Eq. (4.23b), and the inhomogeneity of the

ODE (4.24b) for h(x). The latter can again be solved in terms oftabulated functions,

see Appendix B.2, but we will need only the two leading terms for x -----+ 00. The

physical solution is again the one that vanishes for x -----+ 0, and its large-x asymptotic

behavior is

32 536
h(x» 1) = -- x lnx + - x + O(1/x).

9 135
(4.26)

Finally, we need to fix the length scale.e. It is determined by the requirement

O(r = R) = O. We find

(4.27a)

where

(4.27b)
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and

c

d

4/3,

536/135,

(4.27c)

(4.27d)

are the absolute values of the coefficients of the terms proportional to x in the

large-x expansions of g(x) and h(x), respectively. We see that, for R » 1, e is

indeed proportional to VR , as we had anticipated above. That is, the characteristic

skyrmion length scale e is the geometric mean of the London penetration depth .\

(recall that we measure all lengths in units of .\) and the skyrmion size R. We now

can also check our requirement 15B « 1: from Eq. (4. 22a) we see that for r « e,
I5B(r) ex 1/R, while for r » e, 15B(r) is bounded by a term proportional to 1/R1

/
2

.

For R large compared to the penetration depth the condition is thus fulfilled for all

r. Similarly, l5a is found to be small compared to aoo for all r.

4.3.3 Energy of a Single Skyrmion

By using our perturbative solution in Eq. (4.17), we are now in a position to

calculate the energy of a single skyrmion to 0(1/R2
). It is convenient to first expand

the energy in powers of 1/e2
, and then determine the R-dependence by using Eqs.

(4.27) .

Let us first consider the supercurrent energy E e , i.e., the second term in Eq. (4.17).

It can be written

(4.28)
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Using Eqs. (4.23a) we find

I 32 1 ( I 6Ec Eo = 5 £4 + 0 1 £ ). (4.29)

Now consider the magnetic energy Em, which is the third term in Eq. (4.17). It

can be written

with

b(r) = ~ aoo(r) + a~(r) + ~ rSa(r) + rSa'(r) ,
r r

(4.30)

(4.31a)

the magnetic induction in our reduced units. Notice that in calculating aoo(r), e(r)

in Eq. (4.19) needs to be expanded to first order in rS e, as noted earlier. The two

leading contributions to b2 are then

where x = r I£. Performing the integral yields

8 1 112 1 6
E lEo = - - - - - + 0(1/£ ).

m 3 £2 135 £4

(4.31b)

(4.32)

Finally, we need to calculate the energy E s coming from the gradient terms in the

first term in Eq. (4.17). The expansion of the two terms in the integrand yields seven

integrals that contribute to the desired order, they are listed in Appendix B.3. The
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result is

(4.33)

Adding the three contributions, and using Eqs. (4.27), we find our final result for

the energy of a skyrmion of radius R » 1,

E/Eo

(4.34)

Knigavko et al. [3] solved the Eqs. (4.18) numerically, and thereby numerically

determined the energy, which they fit to a 1/R-dependence. Their results are shown

in Fig. 4.6 together with the analytical result given in Eq. (4.34). The perturbative

solution up to O(ln R/R 2
) was first given in Ref. [11]. We have also solved the

equations numerically, using spectral methods to convert the boundary value problem

to a set of algebraic equations for the unknown coefficients in an expansion in

Chebyshev polynomials[59]. For the R-range shown, and on the scale of the figure,

the result is indistinguishable from the perturbative one.

4.3.4 Spectral Methods

In this section, we will briefly review some of the most important concepts in the

spectral method and apply the method to solve Eqs. (4.18).

Spectral methods have been utilized to solve both the differential and integral
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RIA.

FIGURE 4.6: Numerical data for the energy per skyrmion per unit length (circles)
together with the best fit to a pure 1/R behavior (dashed line) from Ref. [3], and the
perturbative analytic solution given by Eq. (4.34) (solid line). A numerical solution
using spectral methods is indistinguishable from the perturbative one.

equations. The basic idea is to assume that the unknown variables in the equations

interested can be expanded by N+1 basis functions rPn (x).

N

u(x) ~ UN(X) L anrPn(x)
n=O

(4.35)

A candidate for the basis functions could be the 8m functions, the Hermit

polynomials, or the Chebyshev functions, etc. In our case, since we know the

perturbation solutions are smooth rational functions without any periodic nodes,

we will choose the Chebyshev series. The Chebyshev functions are defined as,

Tn(cos B) - cos(n B) (4.36)

So Tn(x) is a polynomial functions in x. It can be seen easily that the Chebyshev

polynomial are defined in the range [-1, 1]. This means that in order to use the
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Chebyshev basis, the boundary value problems have to be transformed to this range

by using a linear variable transformation.

The Chebyshev basis has many nice properties, for instance, it has a larger

convergence basin than the Taylor power series with faster convergence. These

properties can guarantee that for not very large N, the approximated sum of series

in Eq. (4.35) will acquire a high enough accuracy.

In general, a differential equation can be written as

Lu(x) = f(x) (4.37)

Here, L is a differential operator which has a linear or nonlinear property. If the

variable u(x) is replaced by the approximation UN(X) with fixed order N, in general,

Eq. (4.37) will not be satisfied and let it be denoted as a residual function R(x),

R(x) - LUN(X) - f(x) (4.38)

We want to minimize R(x) by determining N+1 unknown coefficients an. So a

differential equation is transformed to a set of algebraic equations. A N+1 conditions

have to be artificially input to let these algebraic equation for an have a closed form.

One way is to choose at most N+1 collocation (interpolation) points in the range

[-1,1]. It should be noted that boundary conditions will also reduce the number of

chosen collocation points.

In our case, the appropriate boundary condition is a(O) = 0, a(R) = llrrR,

e(O) = 7r, and e(R) = O. These boundary conditions naturally reduce N + 1 to

N - 1 interpolation points. The simplest choice of interpolation points is an evenly

distributed N - 1 points between [-1,1]. Though this choice leads to a qualitatively

accurate result, it is not the best choice. This is because that the true solution

theta(r) as we have already known is sharp at the left bound and decays extremely

slowly at the right bound. So it is natural to think a better choice could be larger
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point density at the left bound and diluter point density at the right end. It turns

out a Chebyshev grid choice is a better choice,

2i - 1
Xi - cos[2(N + 1) 7l'], i = 1,2, .... , N - 1 (4.39)

After the collocation points are chosen, we are facing to solve 2N +2 coupled non

linear algebraic equations (NLAEs). An reasonable guess of the roots of these NLAEs

is taken to be the coefficients of the Chebyshev transformation of the zeroth order

solutions, Eq.(4.21b) and Eq.(4.19). Then sophisticated computational packages, for

instance, command FindRoot in Mathematica, can be applied to find the roots of

those NLAEs. It turns out the computed Chebyshev series solution fit extremely well

to our analytic solution for a reasonably large value of R. For small R, our analytic

solution breaks down and this numerical solution will provide a complementary

method to give the correct solution.

4.4 Observable Consequences of the Skyrmion Energy

Our calculation of the skyrmion energy in Sec. 4.3 has been for a cylindrically

symmetric skyrmion. The result shows that each skyrmion will try to maximize its

radius in order to minimize the energy, which leads to a repulsive interaction between

skyrmions whose potential is proportional to 1/R. Skyrmions are thus expected

to form a lattice structure, as do vortices, and they will thus not be cylindrically

symmetric, since the lattice is not. One expects a hexagonal lattice, as in the case

of the vortex lattice, and our treatment involves the same approximation as in the

numerical work of Ref. [3]; namely, approximating the hexagonal unit cell by a circle

of the same area. We expect this approximation to recover the correct scaling of the

energy, and to reproduce the coefficients of that scaling to the same accuracy as radius

of the circle of the same area reproduces the distance from the center of a hexagon

to the nearest point on its edge; i.e., V2V3/7l' - 1 ~ 0.05. We will now proceed to
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calculate observable consequences of the dependence of the energy on the radius of

the unit cell. These include the relation B(H) between the magnetic induction Band

the external magnetic field H, the elastic properties of the skyrmion lattice and the

resulting phase diagram in the H-T-plane, and the ,uSR signature of the skyrmion

lattice.

4.4.1 B(H) for a Skyrmion Lattice

We start by calculating the dependence of the equilibrium lattice constant Ron

an external magnetic field H. This is done by minimizing the energy per unit volume,

which is the energy per unit length per skyrmion, Eq. (4.34), divided by the area per

skyrmion, 1fR2
, plus a reduction in the energy of - 2CPoH / 41f due to the external field.

The latter is obtained from the last term in Eq. (4.9) by noting that the magnetic

flux Jdxdy (2 . b) = 2CPo for each skyrmion in the lattice. This negative external

field contribution must also be divided by 1fR2 to give the energy per unit volume.

Returning to ordinary units, we thus find a Gibbs free energy per unit volume

( ) =~ [_~ 4V6A ° (A2 In(R/A))]
9 R 41f2 R2 + 3R3 + R4 '

(4.40)

where K = CP6/21f A2
, and

(4.41)

with Bel K /ZCPo. For H < Hel , we have .6. > 0, and the free energy is minimized

by R = 00; i.e., the skyrmion density is zero. This is the Meissner phase. For H > Hel

the free energy is minimized by

R = Ro = ZV6A/.6., (4.42)
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and there is a nonzero skyrmion density. We see that H e1 is indeed the lower critical

field. Note that the equilibrium flux lattice constant Ro diverges as 1/tl, whereas

in the case of a vortex lattice it diverges only logarithmically as In(1/tl).[9] For the

averaged magnetic induction B = 2<I>o/nR6 this implies

(4.43)

For H -----j. He1 from above, B(H) in the case of a skyrmion lattice thus vanishes

with zero slope, whereas in the case of a vortex lattice it vanishes with an infinite

slope. [9] This result, with a slightly different prefactor, was first obtained from the

aforementioned numerical determination of E(R) in Ref. [3]. Note that the only

material parameter that appears in this expression for B is H e1 .

4.4.2 Elastic Properties of the Skyrmion Lattice

Now we turn to the elastic properties of skyrmion lattice. Let the equilibrium

position of the i th skyrmion line be described by a two-dimensional lattice vector

~ = (Xi, Yi), and the actual position by

(4.44)

where u = (ux , Uy) is the two-dimensional displacement vector, and we use z as the

parameter of the skyrmion line. The strain tensor ua {3 is defined as

(4.45)

For a hexagonal lattice of lines parallel to the z-axis, the elastic Hamiltonian is[60]

~ Jdx [2p (ua {3(x)ua {3(x)) + AL (uaa (x))2

+Ktiltlozu(x) 1

2
] . (4.46)
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Here summation over repeated indices is implied. J-l, AL' and K ti1t are the shear, bulk,

and tilt moduli, respectively, of the lattice, and we now need to determined these

elastic constants.

The combination J-l + AL can be obtained by considering the energy change of the

system upon a dilation of the lattice. Let R change from Ro to Ro(1 + t), with a

dilation factor t « 1. Such a dilation corresponds to a displacement field u(x) = t X..l,

where X..l is the projection of x perpendicular to the z-axis. [60] The strain tensor is

thus ua f3 = t ba f3. Inserting this in the elastic Hamiltonian, Eq. (4.46), yields the

energy per unit volume for the dilation,

(4.47a)

This should be compared with the energy as given by Eq. (4.40),

(4.47b)

Comparing Eqs. (4.47a) and (4.47b) yields

(4.48)

To obtain J-l (or Ad separately, we should consider shear deformations, which

change the shape, but not the area, of the unit cell. Since we have already

approximated the hexagonal unit cell by a circle, this is difficult to do, and we

resort to the following heuristic method, which will give the correct scaling of J-l

with ~ (but not the correct prefactors). To this end we observe that our result for

the Gibbs free energy, Eq. (4.40), is of the same form we would have obtained if

the skyrmions interacted via a pair potential U(r) that for distances r ;S Ro is of

order KA/r, and for larger distances falls off sufficiently rapidly that only nearest-
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neighbor interactions need to be considered. Treating the skyrmion lattice as if such

an "equivalent potential" were the origin of the skyrmion energy allows us to calculate

the shear modulus as follows:

If the lattice is subjected to a uniform x - y shear - i.e., a displacement field

u(x) = 2fyX - for which uxy = uyx = f, and all other components of ua {3 = 0, the

elastic energy, Eq. (4.46) predicts an elastic energy per unit volume of

(4.49)

Such a shear skews each fundamental triangle of the skyrmion lattice by displacing

the top (or bottom, for the downward-pointing triangles) to the right (or the left, for

downward-pointing triangles) by an amount of order fRo, where Ro is the skyrmion

lattice spacing found earlier, Eq. (4.42) (see Fig. 4.7). This shortens the length of

FIGURE 4.7: Shearing of the skyrmion lattice results in a change in the distance
between skyrmion centers, and hence in their effective interaction. See the text for
additional information.

one bond of the triangle by an amount of order fRo, and increases the opposite

bond's length by the same amount. Hence, the linear in f change in the "equivalent

potentials" of these two bonds cancels, and the total change (6.E jtriangle) in the

energy per unit length of fundamental triangle, per triangle, is given by:

(4.50)
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where the 0(1) factor includes both geometrical factors (e.g., sines and cosines),

and counting factors (e.g., to avoid multiple counting of each triangle). If we take

U(r) = K Air as suggested above, we have

U" (Ro) = ~; x 0(1).

Inserting this into Eq. (4.50) gives

.!:::..E = K A(2 X 0 (1).
tnangle Ro

(4.51)

(4.52)

This is the change in energy per unit cell. To get the energy per unit volume, we

must divide by the unit cell area, which is nR6. Doing so gives

Comparing this with Eq. (4.49) then determines f-l:

KA
f-l = R3 x 0(1).

o

Using Eq. (4.42) for Ro then leads to our final result for f-l:

K!:::..3
f-l =~ x 0(1).

(4.53)

(4.54)

(4.55a)

From Eq. (4.48) we see that the bulk modulus or Lame coefficient is given given by

the same expression,

(4.55b)

We now turn to the tilt modulus K tilt . This can be obtained by considering

a uniform tilt of the axes of the skyrmions away from the z-axis, i.e., away from
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the direction of the external magnetic field H, by an angle {) «1. For small {),

{) = 18u/8zl. Therefore, the tilt energy in Eq. (4.46) is identical with the change

of the B . H term in Eq. (4.9). This contribution to the energy is, per unit length

and in ordinary units, given by -1>0 H cos e/21f, and its change due to tilting is

1>0 H(l- cos {))/21f R:j 1>0 H {)2 /41f = 1>0 H 18z uI 2/41f. Dividing this result by the unit

cell area 1fR6, using Eq. (4.42) for Ro, and identifying the result with the tilt term in

the elastic Hamiltonian, Eq. (4.46), yields J{tilt in the vicinity of Hel ,

1 2 2
J{tilt = - H el ,6. .

121f
(4.56)

We now are in a position to calculate the mean-square positional fluctuations

(lu(x)1 2). Taking the Fourier transform of Eq. (4.46), and using the equipartition

theorem, yields

2 kBT '"' 1
(lu(x)1 h = 11 L...J 2 +J{ 2

qEBZ f-L ql. tilt qz

for the transverse fluctuations, and

(4.57a)

(4.57b)

for the longitudinal ones. Here ql. and qz are the projections of the wave vector

q orthogonal to and along the z-direction, respectively. The Brillouin zone BZ of

the skyrmion lattice is a hexagon (which we have approximated by a circle) of edge

length 0(1)/Ro in the plane perpendicular to the z-axis, and extends infinitely in the

z-direction.

Since f-L and AL are the same apart from a prefactor of 0(1) which we have not

determined, see Eqs. (4.55), the same is true for the transverse and longitudinal

contributions to the fluctuations, and it suffices to consider the former. Performing
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the integral over qz yields

(4.58)

The remammg integral over the perpendicular part of the Brillouin zone is

proportional to liRa, and using Eqs. (4.55) and (4.42) we obtain

(4.59)

Using Eq. (4.42) again we see that, near Hel , (lu(x)1 2) ex R~/2« R6. That is, in this

regime the positional fluctuations are small compared to the lattice constant, which

tells us that the lattice will be stable against melting. To elaborate on this, let us

consider the Lindemann criterion for melting, which states that the lattice will melt

when the ratio f L = (lu(x)12)IR6 exceeds a critical value f e = 0(1). In our case,

(4.60)

As H ----+ Hel , ,6. ----+ 0, and the Lindemann ratio vanishes. Hence, the skyrmion lattice

does not melt at any temperature for H close to Hel .

We finally determine the shape of the melting curve Hm(T) near the supercondueting

transition temperature Te . Since, in mean field theory, Hel ex (Te - T), and

A ex II JTe - T,[9] we find from Eq. (4.60) by putting f L = const. = 0(1),

The resulting phase diagram is shown schematically in Fig. 4.8. Comparing

with Fig. 4.1 we see the qualitative difference between the vortex and skyrmion flux
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lattices: whereas the vortex lattice always melts near H el , the skyrmion lattice melts

nowhere near Hel . This is a direct consequence of the long-ranged interaction between

skyrmions, as opposed to the screened Coulomb interaction between vortices.

Skyrmion
Lattice

H "

"
"\. Normal State

\.

\
\

\ H 2
\ c

\
\

\
\

\
H \
me~ \

\

\
\

T T
G

FIGURE 4.8: External field (H) vs. temperature (T) phase diagram for skyrmion
flux lattices. In contrast to the vortex case, see Fig. 4.1, there is a direct transition
from the skyrmion flux lattke to the Meissner phase. The theory predicts the shape of
the melting curve only close to Te , see Eq. (4.61); the rest of the curve is an educated
guess.

4.4.3 ,uSR Signature of a Skyrmion Flux Lattice

Muon spin rotation (,uSR) is a powerful tool which has been extensively applied

to study the vortex state in type-II superconductors. [61, 62] A crucial quantity in

this type of experiment is the ,uSR line shape n(B), which is the probability density

that a muon experiences a local magnetic induction B and precesses at the Larmor

frequency that corresponds to B. It is defined as

n(B) =(5(B(x) - B)), (4.62)
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where B(x) is the magnitude of the local magnetic induction, and (... ) denotes the

spatial average over a flux lattice unit cell.

To predict the {lSR line shape for a skyrmion flux lattice near Hel it is sufficient,

for large Ro, to use only the lowest solution for the magnetic induction obtained in

Sec. 4.3.1. Inserting Eqs. (4.21) into Eq. (4.19), we find for the magnetic induction

in reduced units

(4.63)

Restoring physical units then gives

(4.64)

where we've dropped the minus sign since only the magnitude of B can be detected

in {lSR measurements.

From Eq. (4.62) we then find, for H near Hell where our theory is valid,

3

() 1 (Hc1~)2 1 ( .)n B = 24V2 ~ H
c1

skyrmlOns. (4.65)

Of course, n(B) is only non-zero for those values of B that actually occur inside

the unit cell ofthe skyrmion lattice. From Eq. (4.64), we see that the maximum value

of B will occur at the center of the unit cell (r = 0), which gives

I I
Hc1A.2 Hc1~

IB max = B(r = 0)1 =~ = -8-' (4.66a)

The minimum value of B occurs at the edge of the unit cell (i.e., r = R), where Eq.

(4.64) gives

(4.66b)
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In the second equalities in Eqs. (4.66) we have used Eqs. (4.27) and (4.42) to express

f in terms of R and R in terms of ~, respectively.

To summarize: the prediction of our cylindrical approximation for n(B) is that the

simple power law Eq. (4.65) holds for B min < B < Bmax . For B < B min or B > Bmax ,

n(B) = O.

Since the above results were derived in the cylindrical approximation, we expect

the numerical coefficients in Eqs. (4.66) to be off by the approximately 5% mentioned

in the opening paragraph of Sec. 4.4 throughout most of the range Bmin < B < B max .

When B gets close to B min , however, we expect more radical departures from the

cylindrical approximation. This is because contours of constant B near the edge of

the hexagonal unit cell will, for B within 5% or so of B min or so, start intersecting

the unit cell boundary, leading to van Hove-like singularities in n(B). Such subtleties

cannot be captured within the cylindrical approximation. Note, however, that they

only occur over a very small range of B; for the remainder of the large window

B min < B < B max (which spans three decades even for ~ as big as 0.2), Eq. (4.65)

holds, up to the aforementioned 5% numerical error in its overall coefficient.

To compare this result with the corresponding one for a vortex flux lattice, we

recall that in that case B (r) is given by a modified Bessel function which for distances

r » A takes the form

1
B(r) ex -- e- r

/
A•

yITJ5

For small B, we then find from Eq. (4.62)

(4.67)

()
In(l/B)

n B ex B (vortices) . (4.68)

We see that the p,SR line shape is qualitatively different in the two cases, due to

the long-range nature of B(r) in the skyrmion case versus the exponential decay in

the vortex case.
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4.5 Conclusion

In summary, we have considered properties of a flux lattice formed by the

topological excitations commonly referred to as skyrmions, rather than by ordinary

vortices. For strongly type-II materials in the ,B-phase, skyrmions are more stable than

vortices. [3] We have presented an analytical calculation of the energy of a cylindrically

symmetric skyrmion of radius R up to 0(1/R2 ) in an expansion in powers of 1/R. This

provides excellent agreement with numerical solutions of the skyrmion equations. The

interaction between skyrmions is long-ranged, falling off only as the inverse distance,

in contrast to the exponentially decaying interaction between vortices. As a result,

the elastic properties of a skyrmion flux lattice are very different from those of a vortex

flux lattice, which leads to qualitatively different melting curves for the two systems.

The phase diagram thus provides a smoking gun for the presence of skyrmions. In

addition, the ,uSR line width for skyrmions is qualitatively different from the vortex

case.

We finally mention two limitations of our discussion. First, we have restricted

ourselves to a discussion of a particular p-wave ground state, namely, the non

unitary state sometimes referred to as the ,B-phase. This state breaks time-reversal

symmetry and the recently reported absence of experimental evidence for the latter

in Sr2Ru04[58] suggests to also consider other possible p-wave states and their

topological excitations, in analogy to the rich phenomenology in Helium 3. [53] Second,

in a real crystalline material, crystal-field effects will invalidate our isotropic model

at very long distances, and cause the skyrmion interaction to fall off exponentially.

This is the same effect that makes, for instance, the isotropic Heisenberg model

of ferromagnetism inapplicable at very long distances and gives the ferromagnetic

magnons a small mass. It should be emphasized that this is usually an extremely

weak effect that is also material dependent. Once p-wave superconductivity has been

firmly established in a particular material, this point needs to be revisited in order

to determine the energy scales on which the above analysis is valid.
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APPENDIX A

INTEGRAL FORMULAS USED IN CHAPTER III

Feynman integral tricks are useful to transform the anisotropic denominator into

isotropic one.
1 f(a + b) t xa - 1(1 - X)b-l

AaBb = f(a)f(b) Jo [Ax + B(1 - x)]a+b

Dimensional regularization integral formula which is extensively used in this paper.

J ddp 1 _ 1 r(n - d/2) _1 n-d/2
(27f)d(p2+~2)n- (47f)d/2 r(n) (~2)

J ddp p2 _ 1 d r(n - d/2 - 1) (_1 )n-d/2-1
(27f)d (p2 + ~2)n - (47f)d/22 r(n) ~2

Let R = a + bx + cx2
.

Jdx -1 . 2cx + b
rn = r-;. arcsm( F/5.. )yR y-C -~

where ~ = 4ac - b2 . The above integral is true if c < 0 and ~ < 0 .

(A.l)
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APPENDIX B

MISCELLANEOUS TECHNIQUES IN CHAPTER IV

B.l Properties of Orthogonal Unit Vectors

Let it and m be orthogonal real unit vectors, and i = it x m. Then the

normalization condition ni'Pti = mi'fhi = 1 and the orthogonality condition nimi = 0

imply

(B.la)

(B.lb)

With these relations it is straightforward to show that

(B.2)

Finally, in regions where i(x) is differentiable the Mermin-Ho relation[63] holds,

(B.3)

B.2 Solutions of the ODEs for 9 and h

The functions 9 and h in Sec. 4.3.2 both satisfy an ODE of the form (see Eqs.
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(4.24))

II() 1 I() (x
4

- 6x
2 + 1) () ()F x + - F x - 2( 2)2 F X = q X ,

X X 1 + X
(B.4)

with an inhomogeneity q given by the right-hand side of Eq. (4.24a) or (4.24b),

respectively. It is easy to check that the corresponding homogeneous equation,

obtained from Eq. (B.4) by putting q(x) 0, is solved by

(B.5)

(This is the solution that vanishes as X ~ O. The second solution diverges in this

limit.) Now write F(x) = Fh(x) G(x), and let y(x) = QI(x). Then y is found to obey

the elementary first-order ODE

with

The solution is

yl(X) + p(x)y(x) = q(X)/Fh(X), (B.6a)

(B.6b)

(B. 7)y(x) = e-!dxp [C1 +Jdxqe!dXP] ,

with C1 an integration constant. A second integration yields G(x), and hence F(x) in

terms of two integration constants. The latter can be determined by requiring that for

small X the solution coincides with the asymptotic solution that vanishes as X ~ O. By

using a power-law ansatz for 9 and h in Eqs. (4.24) we find g(x ~ 0) = -8x3 +O(x4
,

and h(x ~ 0) = 256x3 + O(x4
), which suffices to fix the integration constants. For
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g(x) we find the expression given in Eq. (4.25a). For h(x) we obtain

h(x) = (270X(11+ X2)4) (592 + 2x
2

(8( -1,119 + 90x
2

+ 286x
4

+ 240x
6

+ 30x
8
) +

10,320(1 + X2)3) + 2, 296(-1 + x2)(1 + X2)4 + 4x2(1 + X2)3 + 1, 704 In x

+321n(1 + x2) ( -30 + 142x2+ 276x4 + 171x6 + 52x8
- 15x10

- 15(3 + x2)

(x + x3)21n (1 + x2)) - 1, 920x2(1 + x2)3Li2(_X2)) , (B.8)

with Li the polylogarithm function. The asymptotic behavior for large x is given by

Eq. (4.26).

B.3 Contributions to Es

By expanding the integrand of the first term in Eq. (4.17), we can express the

energy Es to 0(1/R 2
) in terms of seven integrals,

7

Es/Eo = LIi + 0(1/£6), (B.9)
i=1

with

l R
/1! x (B.10a)II 4 0 dx (1 + x2)2 ,

12 2 l R
/1! 1 ((x

2
- 1) ')

£2 0 dx 1 + x2 x2 + 1 9 (x) - x9 (x) ,

(B.10b)

13
1 l R

/1! [ I 2 (x
4

- 6x
2

+ 1) 2 ]
2£4 0 dx x (g (x)) + x(l + X2)2 9 (x) ,

(B.lOc)



2 rR/i! 1 ((X
2
-1) ')

14 £4 Jo dx 1 + x2 x2 + 1 h(x) - xh (x) ,

1 fR/i!
£6 J0 dx (Xg' (X) hi (X)

(x4 -6x2 +1) )
+ x(l + X2)2 g(X)h(x) ,

4 rR/i! (x2 - 1) 3

- 3£6 Jo dx (1 + X2)2 9 (x),

1 rR/i! (x2 - I? 4

- 6£8 Jo dx x(l + X2)2 9 (X).

Evaluating the integrals to 0(1/£4) yields Eq. (4.33).
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(B.10d)

(B.10e)

(B.10f)

(B.10g)
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