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DISSERTATION ABSTRACT

Victor Norvison Fiore

Doctor of Philosophy

Department of Physics

June 2015

Title: Optomechanical Light Storage and Related Transient Optomechanical
Phenomena

An optomechanical system consists of an optical cavity coupled to a mechanical

oscillator. The system used for this work was a silica microsphere. In a silica

microsphere, the optical cavity is formed by light that is confined by total internal

reflection while circulating around the equator of the sphere. The mechanical

oscillator is the mechanical breathing motion of the sphere itself. The optical cavity

and mechanical oscillator are coupled by radiation pressure and by the mechanical

oscillator physically changing the length of the optical cavity.

The optomechanical analog to electromagnetically induced transparency (EIT),

known as optomechanically induced transparency (OMIT), has previously been

studied in its steady state. One topic of this dissertation is an experimental study

of OMIT in the time domain. The results of these experimental demonstrations

continue comparisons between EIT and OMIT, while also building a foundation for

optomechanical light storage.

In OMIT, an off-resonance control laser controls the interaction between on-

resonance light and the mechanical oscillator. Optomechanical light storage makes

use of this arrangement to store an optical signal as a mechanical excitation, which

is then retrieved at a later time as an optical signal. This is done by using two
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temporally separated off-resonance control laser pulses. This technique is extremely

flexible in frequency and displays a storage lifetime on the order of microseconds.

Use of optomechanical systems for quantum mechanical applications is hindered

by the thermal background noise of the mechanical oscillator. Addressing this issue

by first cooling the mechanical oscillator is costly and fraught with difficulties. The

final topic presented in this dissertation deals with this issue through the use of an

optomechanical dark mode. Two optical modes can interact with the same mechanical

mode. The dark mode is a state that couples the two optical modes but is decoupled

from the mechanical oscillator. While our specific optomechanical system is limited

by its somewhat modest optomechanical cooperativity, this conversion process can, in

principle, preserve the quantum state of the signal, even at room temperature, opening

the possibility for this technique to be applied in quantum information processing.
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CHAPTER I

INTRODUCTION TO OPTOMECHANICS

“There are two ways of spreading light: to be the candle or the mirror that reflects

it.”

– Edith Wharton

1.1. Motivation

Quantum computing and quantum networking are at the forefront of modern

physics research[4, 5]. Such systems would make use of quantum nodes connected

through quantum channels. The nodes process and store information, and consist of

matter qubits[6, 7]. The channels move information from one node to another and

would typically consist of optical signals.

Optomechanics offers an exciting avenue to add to the list of tools available

for quantum information processing. In particular, many of the proposed systems

for matter qubits involve experiments that operate at specific optical frequencies.

Since an optomechanical system can couple an extremely flexible range of optical

frequencies to a single mechanical oscillator, optomechanics presents a means for

optical frequency conversion[8]. This allows quantum state transfer from one optical

frequency to another, and can bridge the gap between systems that have conflicting

optical frequency requirements.

Additionally, the mechanical oscillator itself can be used as a means for storing

an optical signal as a mechanical excitation[2, 3]. Since this process is predominantly

limited by the lifetime of the mechanical oscillator, it is possible to achieve relatively

long storage lifetimes.

1



1.2. What Is Optomechanics?

Optomechanics is a rapidly growing field in modern physics. In simple terms, an

optomechanical system consists of an optical cavity coupled to a mechanical oscillator.

By constructing such a system, it becomes possible to use light to both measure and

manipulate the mechanical oscillator. This chapter will touch upon the nature of the

optical cavity, the mechanical oscillator, and the means by which they are coupled

to one another. It will also touch upon some of the consequences and applications of

optomechanics.

1.3. Radiation Pressure

At the heart of optomechanics is the phenomenon known as “radiation pressure”.

Radiation pressure provides the means by which the optical cavity is able to influence

the mechanical oscillator. Light carries momentum, with the momentum of a single

photon being given by p = ~ω/c. Consequently, when light reflects off of a surface,

the change in momentum of the light necessitates an equal and opposite momentum

change for the reflecting surface. When this occurs for a specific rate of incoming

photons over a specific surface area, the resulting force per unit area is seen as a

pressure, hence the term “radiation pressure”.

Radiation pressure is by no means a recent discovery. The concept was first

proposed by Johannes Kepler in 1619 as a method to explain the fact that a comet’s

tail is always seen pointing away from the Sun[9]. The idea was later formalized

by James Maxwell in 1862, as consequence of his equations describing classical

electromagnetic radiation[10]. Later, Pyotr Lebedev in 1900, as well as Ernest Nichols

and Gordon Hull in 1901, announced the first experimental demonstrations of the

2



effect[11, 12]. As a side note, the light-mill style Crookes radiometer that is sometimes

found adorning window sills is occasionally incorrectly described as being powered by

radiation pressure. Radiation pressure by itself is far too weak to be observable with

such a simple device. Indeed, the feeble nature of radiation pressure required near-

vacuum conditions for the experiments of Lebedev, Nichols, and Hull, so as to not be

overwhelmed by thermal effects.

Since then, the phenomenon of radiation pressure has become a prominent fixture

in modern optical physics. In 1970, Arthur Ashkin demonstrated the use of focused

laser light to control dielectric particles[13], laying the foundation for what is now

commonly referred to as “optical tweezers”. While it is easier to conceptualize this

phenomenon in terms of electric field gradients, it is intrinsically a consequence of

radiation pressure. By focusing the laser, photons that are absorbed or scattered by

the dielectric particle do so in a way that has a net effect of pushing the particle

towards the center of the beam’s focus.

Similarly, radiation pressure can be used to slow and trap atoms, thus becoming

an essential tool in the field of ultracold atoms. In this application, a clever use of the

Doppler effect provides a means for damping the thermal motion of an atomic vapor.

A specific frequency of light is required in order to excite a given atomic transition.

When light is shined upon an atomic vapor, however, the optical frequency that an

individual atom experiences is Doppler shifted as a consequence of the individual

atom’s motion. Hence if the incoming light is slightly lower than the frequency

required to excite the atom, then the atom will only absorb photons when the atom is

moving contrary to the photon’s direction of travel. In that configuration, the photon

momentum associated with every absorption will have the effect of incrementally

slowing the atom. The photons are subsequently re-emitted randomly, so the re-

3



emitted photons have no net effect. Thus the atomic population can be cooled and

trapped by hitting it with light in this manner from every direction. This process is

referred to as “Doppler cooling”.

While there are other important techniques involved in ultracold atoms, Doppler

cooling is a cornerstone. The technique was first proposed by Theodor Hänsch and

Arthur Schawlow[14], and separately by Hans Dehmelt and David Wineland[15] in

1975, and was first experimentally demonstrated by Wineland, Drullinger, and Walls

in 1978[16]. The technique has since allowed for countless groundbreaking discoveries.

The first Bose-Einstein condensate was created in this manner by Eric Cornell and

Carl Wieman in 1995[17]. Later, in 2003, Deborah Jin took that research a step

further by creating the first fermionic condensate[18]. Other applications range from

optical atomic clocks to precision measurements of gravity.

Radiation pressure is also the basis for solar sails, which have been proposed

as an alternative method for space travel within our solar system[19–21]. The weak

magnitude of radiation pressure means that this propulsion method would only be

feasible in the near-vacuum of space. For the sake of comparison, the strength of the

solar radiation pressure 1 au from the Sun on a perfect reflector is only 9 µPa. To

put that into perspective, an average apple weighs about 1 N on the Earth. A solar

sail with an area of roughly 105 m2 would be required to produce the same amount

of force as the weight of the apple.

1.4. Optical Cavities

Evidently, the radiation pressure from a single reflection by itself is quite weak.

This is overcome in optomechanics, however, through the use of a high quality factor

optical cavity. In an optical cavity, light can reflect off of the same surface repeatedly,

4



Incoming laser light Light resonates in optical cavity

Outgoing reflected 
light is sent to detector

Mirror Mirror

Outgoing transmitted 
light is sent to detector

FIGURE 1.1. Schematic of a Fabry-Pérot resonator.

thus compounding the effect of the radiation pressure. The simplest example of

an optical cavity is a Fabry-Pérot cavity, which is shown schematically in Fig. 1.1.

A Fabry-Pérot cavity consists of two semi-reflective mirrors oriented in such a way

that light can resonate between them. As a result of this arrangement, only specific

frequencies of light are able to resonate within the cavity, with the resonance condition

for a Fabry-Pérot cavity being given by nλ = L. Here, n is an integer, λ is the

wavelength of the light, and L is the round trip distance for the light (i.e. L is two

times the distance between the two end-mirrors). This resonance condition will play

an important role in optomechanics, which we will return to after a brief description

of optical resonators.

The optical resonance is a consequence of constructive interference between light

that has circulated in the cavity a different number of times. As the frequency of the

incoming laser light is swept across multiple resonances, a sharp peak is seen at each

resonance, which is illustrated in Fig. 1.2. The sharpness of the peaks is determined

by the optical cavity’s quality factor, Qc, which is a measure of how well the cavity

holds light. Light has a chance to exit the cavity through a variety of mechanisms,

such as scattering, being absorbed, or leaking through an end-mirror. The overall
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FIGURE 1.2. Illustration of transmission and reflection spectra from a Fabry-Pérot
cavity. Adjacent peaks are separated by a frequency ωFSR, which is the “free spectral
range” of the cavity. The width of each peak at half of its total height is its “full
width at half maximum”, or ωFWHM .

cavity decay rate, κ, takes all of these decay channels and lumps them together into

one single parameter.

A high Qc means that light will circulate more times before exiting, which results

in sharper resonance peaks. As such, Qc is related to κ and to the frequency of light

in the cavity, ωc, as follows:

Qc =
ωc
κ
. (1.1)

For the most part, it is desirable for a cavity to have as high a quality factor as is

reasonably practicable. Another parameter, known as the optical finesse, F , is often

used as a similar metric. The optical finesse is useful because it relates directly to

frequencies found in the cavity’s spectrum.

F =
ωFSR
ωFWHM

(1.2)

Here, ωFSR is the “free spectral range” of the cavity, i.e. the spacing between adjacent

resonances. ωFWHM is the “full width at half maximum”, which is the width of the
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FIGURE 1.3. Schematic of a Fabry-Pérot optomechanical system.

peaks at half their height. Note that both Qc and F are dimensionless. It should also

be said that these resonances are seen as negative dips when looking at light reflected

back through the first mirror, and positive peaks when looking at light transmitted

through the second mirror.

1.5. Introducing the Mechanical Oscillator

The Fabry-Pérot cavity can be made into an optomechanical system by mounting

one of its end-mirrors on a spring, with the spring-mounted end-mirror now playing

the role of a mechanical oscillator. This arrangement is shown in Fig. 1.3. As light

resonates within the optical cavity, it exerts radiation pressure upon the mirror, thus

allowing the optical cavity to influence the mechanical oscillator. Conversely, the

vibration of the end-mirror changes the effective length of the optical cavity, providing

a means for the mechanical oscillator to influence the optical cavity. We now have a

complete picture of coupling between the optical cavity and the mechanical oscillator.

The radiation pressure allows the optical cavity to affect the mechanical oscillator,

while the mechanical oscillator affects the optical cavity by physically changing the

length of the cavity.
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Now that we have introduced the mechanical oscillator, it would be prudent

to discuss several pertinent attributes relating to mechanical oscillators. There are

different mechanisms through which energy can leave the mechanical oscillator. The

overall mechanical decay rate, Γm, includes all of these mechanisms and is analogous

to previously introduced optical decay rate, κ. This mechanical decay rate is different

for each mode of oscillation, which is especially significant when we consider more

complex oscillators. This being the case, each mode has its own mechanical quality

factor,

Qm =
ωm
Γm

, (1.3)

where ωm is the frequency of the specific mechanical mode. As with the optical quality

factor, high mechanical quality factors are preferred.

1.6. Consequences and Applications of Optomechanics

There are a number of intriguing consequences that arise from an optomechanical

system. One such consequence is bistability in the effective mechanical potential of

the mechanical oscillator, which is due to the influence of the radiation pressure of the

optical cavity. The radiation pressure force depends on the photon population of the

optical mode, which in turn depends on the mechanical displacement. Thus, by acting

upon the mechanical oscillator, the existence of the radiation pressure introduces

an additional term into the function for the mechanical potential energy, with this

additional term having a dependence on the mechanical displacement. The optical

influence upon the mechanical potential is given by[22]

Vrad(x) = −1

2
~κn̄maxc arctan[2(

ωc
L
x+ ∆)/κ], (1.4)
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mechanical displacement, modified by increasing the laser power. Note that increasing
the laser power introduces an additional local minimum. Right: Sketch of the
intracavity optical population as a function of the laser frequency. This illustrates
the hysteresis caused by the bistability.

where n̄maxc is the intracavity photon number when the laser is at resonance, L is

the length of the optical cavity, and ∆ is the detuning of the driving laser, with

∆ = ωL − ωc. The overall mechanical potential is then given by[22]

V (x) =
meffω

2
m

2
x2 + Vrad(x), (1.5)

with meff being the effective mass of the mechanical oscillator and Vrad being the

change in mechanical potential as a consequence of the radiation pressure. Derivations

for Eqs. 1.4 and 1.5 can be found in [22].

A full analysis of Eqs. 1.4 and 1.5 is beyond the scope of this dissertation. In

the context of our current discussion, the important consequence of Eqs. 1.4 and 1.5

is that increasing the laser power, and hence increasing n̄maxc , will alter the effective

mechanical potential in such a way that there are two local minima, as shown in

Fig. 1.4. This effects a hysteresis in the intracavity optical population, n̄c, which is also

shown in Fig. 1.4. As the laser frequency is scanned across the resonance, a different
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local minimum is chosen depending on which direction the laser is scanned. Speaking

in terms of what might be observed in a laboratory experiment while adjusting the

laser frequency by hand, this effect gives the impression of being able to drag the

optical mode in one direction along with the laser frequency. Such behavior is quite

undesirable for the experiments presented in this thesis, necessitating care when

selecting laser power. The laser locking method described in Chapter III will not

work if substantial optical bistability is present.

Changing the curvature of the effective mechanical potential in Eq. 1.5 also

results in a change in the effective spring constant, which is often referred to as

the “optical spring effect”. This can be used to produce an artificially larger spring

constant by several orders of magnitude, thus providing a means for reducing the

impact of damping and environmental heating of the mechanical oscillator[23, 24].

Another remarkable application of optomechanics has been to cool the vibration

of the mechanical oscillator[1, 25–27]. This technique has been shown to be so effective

that several optomechanical systems have been successfully brought to their quantum

mechanical ground state[28–30], with several other systems rapidly approaching this

limit[31]. This is quite a ground breaking achievement, as this opens the possibility for

performing quantum mechanical experiments on macroscopic systems, thus bridging

the gap between the worlds of quantum mechanics and classical mechanics.

The mechanism for the cooling process can be viewed in two different ways: as

a consequence of the retarded nature of the radiation pressure, or as a scattering

phenomenon. First we shall examine the former. As the mechanical oscillator moves,

and subsequently changes the length of the optical cavity, light of a specific frequency

is only resonant with the cavity for a specific displacement of the mechanical oscillator.

Relative to the timescale of the mechanical oscillations, it takes a consequential
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FIGURE 1.5. Optomechanical cooling or heating as a consequence of the retarded
nature of the radiation force. As the mechanical oscillator changes the length of the
cavity, the response of the optical cavity is slightly delayed. This leads to a hysteresis
during the mechanical oscillator’s motion; thus work is done on or by the system with
each mechanical oscillation. The work is determined by the encompassed area, and
the sign of the work determined by the direction of the path integral.

amount of time for light to build up to resonance, hence the radiation pressure

is said to be retarded. By carefully selecting the frequency of light, it is possible

to time the resonance such that the population of light in the cavity reaches its

maximum at a point in time when its radiation pressure opposes the movement of

the mechanical oscillator. By doing so, the resulting radiation pressure has a net effect

of opposing the movement of the mechanical oscillations, thus cooling the mechanical

oscillator. Figure 1.5 illustrates this processes by examining a plot of radiation force

vs. mechanical displacement. As a consequence of being retarded, the radiation force

lags behind the mechanical displacement. Thus each mechanical oscillation traces out

an area within this plot, indicating that work is being done on or by the system[22, 25].

The sign of the path integral determines whether the system is being heated or cooled.

This phenomenon can also be viewed conceptually as a scattering phenomenon,

where red-detuned light necessitates the absorption of a phonon via the anti-Stokes
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FIGURE 1.6. Energy level diagram for an optomechanical system, showing
the process of optomechanical cooling as a scattering phenomenon, with |n,m〉
representing the optical state, n, and the mechanical state, m. Different transitions
can leave the system in a different mechanical state. By selecting laser light of
frequency that is red detuned by ωm, i.e. ωl = ωc − ωm, the |n,m〉 to |n+ 1,m− 1〉
transition is preferred while the other two transitions are suppressed. Thus the anti-
Stokes scattering reduces the mechanical population.

process[32–34], as shown in Fig. 1.6. Different transitions within Fig. 1.6 correspond

to changes in the system’s phonon number. Selecting laser light that is at the anti-

Stokes position means that the favored transition is such that the phonon number

decreases, thus cooling the system. This perspective is described in more detail in

Chapter II.

Optomechanics also provides a means for performing precision measurements

of the mechanical oscillator. The incredible precision of this arrangement has been

implemented in both large and small systems, ranging from micron-sized polystyrene

microspheres capable of detecting individual viruses[35] to kilometer-sized facilities,

such as the LIGO facility, which was designed for detecting gravitational waves[36].

12



1.7. Dissertation Outline

The primary motivation for the work presented in this dissertation is the use of

an optomechanical system as a means for manipulating optical signals. While many

systems exist for optical communications, most of these systems involve processes that

destroy the quantum state of the optical signal. Optomechanics provides a system

where optical signals can be either stored or transferred to other optical frequencies

in a manner that preserves the quantum state of the optical signal.

To lay the foundation for these goals, the first experiment presented in this work

deals with the optomechanical analog to electromagnetically induced transparency

(EIT). In atomic EIT, the opacity of an atomic medium with regards to a specific

optical frequency is altered by the presence of light at a second optical frequency.

That is to say that an optical “pump” beam is used to alter the transparency

of the system with respect to an optical “probe” beam, with the two being

of different frequencies. The optomechanical analog, known as optomechanically

induced transparency or OMIT, accomplishes the same result but through the use of

the mechanical oscillator[37]. This is done with a single optical mode and a single

mechanical mode, with the probe beam being on-resonance with the optical mode

and the pump beam being red-shifted to the anti-Stokes position. Previous work

involving OMIT has examined its steady state behavior. The work presented in this

dissertation involves the transient or time-domain behavior of OMIT, which is the

topic of Chapter IV.

The transient OMIT experiments involve two optical pulses that arrive

simultaneously. By introducing an additional optical pulse at a later time, this

arrangement can be extended to become a means for storing an optical signal as

a mechanical excitation, which is later converted back into an optical signal. In this
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application, it is helpful to change the names of the respective optical pulses to match

their function for light storage. The initial “pump” pulse is instead referred to as the

“writing” pulse, while the “probe” pulse is instead the “signal” pulse. These two

pulses arrive simultaneously, allowing the writing pulse to convert the signal into a

mechanical excitation. At a later time, a “readout” pulse, which is also red-shifted

to the anti-Stokes position, converts this mechanical excitation back into an optical

signal that is at-resonance with the optical mode. This optomechanical light storage

process is examined in Chapter V.

Finally, a second optical mode can be introduced to allow this system to

convert an optical signal from one frequency to another, with each optical frequency

corresponding to its own optical mode. This transition is facilitated by the mechanical

oscillator, with both optical modes coupling to the same mechanical mode. An

especially intriguing possibility with this arrangement is that the system can be put

into a state where the two optical modes are coupled to each other but decoupled

from the mechanical oscillator. This can be done even though the mechanical

oscillator is the connecting link between the two optical modes. We refer to such

a state as an “optomechanical dark mode”, which is the topic of the eponymous

chapter. This decoupling from the mechanical oscillator is fortuitous because it

means that the optical transfer is protected from the unwanted contamination of

the thermal background noise of the mechanical oscillator. Isolating the signal from

the contamination of the thermal background noise means that this application can

be performed with quantum signals at room temperature. This is in contrast to other

arrangements which would require the mechanical mode to be cooled to its quantum

ground state before working with quantum mechanical signals.
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Individual chapters are dedicated to each of the three aforementioned

topics; those topics being transient OMIT, optomechanical light storage, and the

optomechanical dark mode. Prior to addressing these three topics, however, we shall

first examine optomechanics theory in a more broad manner, as well as examining

the aspects of the experimental apparatus that are mutually relevant to all of the

individual topics.
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CHAPTER II

OPTOMECHANICS THEORY

“There is a theory which states that if ever anyone discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced by

something even more bizarre and inexplicable. There is another theory which states

that this has already happened.”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

2.1. Coupling Light to Mechanical Vibrations

  FIGURE 2.1. Schematic of a Fabry-
Pérot optomechanical resonator.

  FIGURE 2.2. Schematic of a
silica microsphere optomechanical
resonator.

An optomechanical system consists of an optical resonator that is coupled to

a mechanical oscillator. As introduced in Chapter I, one simple example of an

optomechanical system is a Fabry-Pérot cavity in which one of the mirrors is mounted

on a spring, which is shown schematically in Fig. 2.1. A Fabry-Pérot cavity by itself

consists of two semi-reflective mirrors which face each other. Light enters by passing

through one mirror, resonates between the two mirrors, and then exits through either

mirror. Due to the boundary conditions, specific frequencies of light will resonate as

optical modes within the cavity. By mounting one mirror on a spring, the Fabry-

Pérot cavity can be made into an optomechanical system. The Fabry-Pérot cavity

itself serves as an optical resonator, while the spring mounted mirror is a mechanical
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oscillator. The optical modes can influence the mechanical modes through radiation

pressure while the mechanical modes influence the optical modes by changing the

length of the optical cavity.

The optomechanical system used for the work presented here is instead a silica

microsphere, which is shown schematically in Fig. 2.2. In a microsphere, light is

coupled into the sphere, circulates within the sphere, and then exits the sphere. The

circulating light is confined through total internal reflection, and travels in a great

circle along the surface of the sphere (i.e. around the sphere’s equator). Due to the

fact that the light loops back upon itself, these conditions form an optical resonator.

The mechanical oscillator in this case is the mechanical breathing motion of the sphere

itself. Once again, radiation pressure and the change in optical path length provide

coupling between the optical cavity and the mechanical oscillator. More specifically,

the circulating light exerts a radial radiation pressure force in order to maintain

its circular trajectory, while the mechanical motion of the sphere’s breathing modes

changes the circumference through which the light must travel.

A more in depth description of the silica microsphere system can be found in

Chapter III. For now, the preceding description provides a sufficient basis for our

theoretical model. Additionally, while a silica microsphere is quite different from a

Fabry-Pérot cavity, the two systems turn out to be mathematically equivalent, at

least as far as optomechanics is concerned. After demonstrating this mathematical

equivalency, which will be presented in the next section, it becomes unnecessary to

differentiate between the two systems.
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2.2. Hamiltonian Formulation

The Hamiltonians for an optical cavity (ĤL) and for a mechanical oscillator (Ĥm)

can be written as the following[32, 33, 38]:

ĤL = ~ωcâ†â (2.1)

Ĥm = ~ωmb̂†b̂, (2.2)

where â and b̂ are the annihilation operators for the optical and mechanical modes,

respectively, ωc is the optical cavity resonance frequency, and ωm is the frequency of

resonance for the mechanical oscillator. It should be noted that the 1/2 terms for

the zero-point energy have been omitted from these Hamiltonians, as they will not

have any effect on the dynamics of the system. We can now introduce the coupling

between the optical cavity and the mechanical oscillator by relating the the optical

resonance condition to the mechanical displacement, x̂:

ωc(x̂) = ωc +
δωc
δx̂

x̂+ . . . , (2.3)

where ωc on the right hand side of is now the optical resonance frequency in the

absence of any mechanical displacement, and the ωc previously shown in Eq. 2.1

corresponds to ωc(x̂) on the left hand side of Eq. 2.3.

To find δωc

δx̂
, we need an expression for ωc in terms of x̂. For a Fabry-Pérot

cavity, ωc can be related to the cavity round trip distance, L. The optical resonance

condition is met when the length of the cavity is an integer multiple of the optical

wavelength, λ:

nλ = L (2.4)
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Since ωc = 2πc/λ, we can now say that

ωc =
2πnc

L
. (2.5)

Since the constant term in the numerator will cancel itself out very soon, we can

simplify this expression by saying

ωc =
constant

L
. (2.6)

Before proceeding further, we shall provide a similar treatment for a microsphere

of radius R. Equation 2.6 is also applicable to the microsphere, but we need to write

this expression to instead be in terms of R, the radius of the sphere. Here, the cavity

length, L, is given by the circumference of a great circle of the sphere, which is to say

that L = C“greatcircle” = 2πR. Since it is now shown that the effective cavity length

for the microsphere is directly proportional to its radius, an expression identical to

Eq. 2.6 can be written for a microsphere:

ωc =
constant

R
. (2.7)

The only difference between the Fabry-Pérot cavity and the microsphere is in the

constant term in the numerator, which is about to cancel itself out. With the Fabry-

Pérot cavity or with the microsphere, the mechanical displacement causes a change

in L or R, respectively, with both L and R having a linear dependence on x̂. In this

context, it can be seen that both the Fabry-Pérot cavity and the microsphere are

mathematically identical, with L and R being interchangeable. Past this point it is

no longer necessary to treat the two separately.
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Differentiating Eq. 2.6 or 2.7 gives us the following (for either system),

δωc
δx̂

=
−constant

R2
=
−1

R

(
constant

R

)
=
−ωc
R

, (2.8)

which, along with Eq. 2.3, can be inserted into the optical Hamiltonian from Eq. 2.1

to give a complete Hamiltonian for an optomechanical system:

Ĥ = ĤL + Ĥm = ~ωcâ†â+ ~ωmb̂†b̂− ~
ωc
R
â†âx̂, (2.9)

It is now also beneficial to switch to a frame of reference rotating at the frequency

of the driving laser, ωL. This is done by applying a unitary transformation Û =

exp(iωLâ
†ât), which, at this point, essentially has the effect of adding a new term of

−~ωLâ†â to the Hamiltonian. It should be mentioned, however, that shifting to this

rotating frame would also have the effect of removing the time dependence from the

driving laser’s driving term. This driving term has not been introduced yet, however,

but it will be introduced in Section 2.3. Since we are shifting to the rotating frame

now, it will be unnecessary to include the time dependence in the driving term when

it is introduced in Section 2.3. This is important to remember because later on, in

Section 2.5, it will become necessary to undo our shift to the rotating reference frame.

That said, shifting to the rotating frame of reference gives us a new Hamiltonian

of the form

Ĥ = − ~∆â†â+ ~ωmb̂†b̂︸ ︷︷ ︸
Ĥ0

− ~
ωc
R
â†âx̂︸ ︷︷ ︸

Ĥint

. (2.10)

where ∆ = ωL−ωc is the detuning of the driving laser. The interaction Hamiltonian,

labeled Ĥint, contains the optomechanical interaction, so this is the part that we are
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more interested in (while Ĥ0 contains everything else):

Ĥint = −~ωc
R
â†âx̂ (2.11)

Note that the negative sign in Ĥint is sometimes dropped in some literature. This

can be justified by saying that x > 0 would indicate a decrease in cavity length. For

the sake of simplicity, however, we will keep the negative sign.

As an aside, at this point it is possible to find an expression for the radiation

pressure force, F̂ , by differentiating Ĥint with respect to x̂.

F̂ = −dĤint

dx̂
= − d

dx̂

(
−~ωc

R
â†âx̂

)
= ~

ωc
R
â†â (2.12)

For a sanity check, this expression can be compared to what we would get from simply

examining the change in momentum of photons colliding with the Fabry-Pérot end-

mirror. Each individual photon carries a momentum of ~ωc/c, so the momentum

change due to the collision of a single photon is 2~ωc/c. This event occurs once per

round trip of the photon, with the round trip time being τc = 2L/c. Since the number

of photons is given by â†â, the total radiation force is given by

F̂ =
2~ωc
c

â†â

τc
= ~

ωc
L
â†â, (2.13)

which agrees with the result from the Hamiltonian formulation (recalling that L and

R are interchangeable).

Returning to the interaction Hamiltonian in Eq. 2.11, we can examine x̂ to

allow us to write Ĥint in terms of b̂ and b̂†, which will paint a clearer picture of the

optomechanical interaction. The operator x̂ depends on the zero point fluctuation of
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the mechanical mode (xzpf ), the effective mass of the mechanical oscillator (m), and

on the phonon annihilation operator as follows:

x̂ = xzpf (b̂+ b̂†) (2.14)

xzpf =

√
~

2mωm
(2.15)

We can also introduce g0, which is the coupling rate between a single photon and a

single phonon,

g0 =
ωc
R
xzpf (2.16)

Equations 2.14, 2.15, and 2.16 can be substituted into the interaction Hamiltonian to

yield

Ĥint = −~g0â
†â(b̂+ b̂†). (2.17)

Note that the process described by the Hamiltonian in Eq. 2.17 involves

three operators, and hence is nonlinear. However, we can apply the mean-field

approximation, treating the the optical field as the sum of a large classical average

value and a small varying term. This will allow us to linearize the interaction

Hamiltonian with respect to the weak varying term.

â ≈ ᾱ + δâ, (2.18)

where ᾱ∗ᾱ = n̄c is the average classical photon number and δâ is the annihilation

operator for the weak varying field. â†â now becomes

â†â = (ᾱ∗ + δâ†)(ᾱ + δâ)

= ᾱ∗ᾱ + ᾱ∗δâ+ ᾱδâ† + δâ†δâ.
(2.19)
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The δâ†δâ term can be discarded because it is negligible in comparison to the other

terms. Substituting the remaining expression for â†â into the interaction Hamiltonian

yields

Ĥint = −~g0(ᾱ∗ᾱ + ᾱ∗δâ+ ᾱδâ†)(b̂+ b̂†). (2.20)

Here, the ᾱ∗ᾱ term (when combined with b̂ and b̂†) describes an average, non-

fluctuating radiation force, and can be removed by shifting our definition of the

origin for the mechanical displacement. Removing this term, and then distributing

the remaining terms, gives us

Ĥint = −~g0(α∗δâb̂+ αδâ†b̂†)− ~g0(α∗δâb̂† + αδâ†b̂) (2.21)

Additionally, we can simplify Ĥint further by assuming that ᾱ is real-valued, i.e.

ᾱ =
√
n̄c. This allows us to factor out

√
n̄c and then make the substitution

g = g0

√
n̄c, (2.22)

which produces an interaction Hamiltonian of

Ĥint = −~g(δâb̂+ δâ†b̂†)︸ ︷︷ ︸
“Parametric Down-conversion”

− ~g(δâb̂† + δâ†b̂)︸ ︷︷ ︸
“Beam-Splitter”

. (2.23)

The full, linearized Hamiltonian is now

Ĥ = −~∆δâ†δâ+ ~ωmb̂†b̂− ~g(δâb̂+ δâ†b̂†)− ~g(δâb̂† + δâ†b̂). (2.24)

The effective optomechanical coupling strength, g, performs much the same role

as g0, except that g depends on the strength of the control field, n̄c. This dependence
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on n̄c is a crucial feature because it means that the effective optomechanical coupling

strength can be controlled by changing the strength of the control field.

Controlling the effective optomechanical coupling strength in this manner makes

processes like optomechanical light storage possible. In optomechanical light storage,

which is covered in Chapter V, an on-resonant optical “signal” pulse is sent to the

microresonator at the same time as the red-detuned control pulse. This allows the

control pulse to act as a “writing” pulse because it allows the on-resonant signal pulse

to interact with the mechanical mode. At a later time, a second control pulse can

be sent (by itself, with no signal pulse), this time acting as a “reading” pulse. The

reading pulse again allows the mechanical mode to interact with the on-resonant field,

which converts the mechanically stored signal back into an optical signal. All of this

is made possible by the n̄c dependence of g.

It is important to observe that the processes described by the interaction

Hamiltonian in Eq. 2.23 take the form of scattering phenomena. In the Stokes and

anti-Stokes processes, by selecting laser light that is off-resonance, the mechanical

oscillator can be heated or cooled by creating or destroying phonons. In the anti-

Stokes process, red detuned light causes a phonon to be absorbed; in the Stokes

process, blue detuned light causes the creation of a phonon. This process effectively

allows us to map a photon state to a phonon state, and vice versa, which is

fundamental to all of the specific optomechanical processes that will be covered here.

In our case, we are primarily interested in what happens when the control laser

is at the anti-Stokes resonance condition, which allows us to focus our attention

on several terms in the interaction Hamiltonian in particular. The first half of the

interaction Hamiltonian of Eq. 2.23 has a form that is analogous to the Hamiltonian

for parametric down-conversion. The second half of Eq. 2.23 has the form of a
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beam-splitter Hamiltonian. In the resolved sideband regime, where the mechanical

frequency is significantly larger than the mechanical linewidth [39, 40], it is possible

to select one set of terms or the other by changing the detuning of the control laser,

∆. When ∆ ≈ −ωm, i.e. the optical control field is near the anti-Stokes position,

the beam-splitter type terms dominate. Eliminating the parametric down-conversion

type terms from our full, linearized Hamiltonian (Eq. 2.24) gives us

Ĥ = −~∆δâ†δâ+ ~ωmb̂†b̂− ~g(δâb̂† + δâ†b̂). (2.25)

Note that under the Stokes condition (∆ ≈ ωm), however, the parametric down-

conversion type terms would instead dominate. The experiments presented in this

thesis were performed with the ∆ ≈ −ωm.

2.3. Equations of Motion

The Heisenberg Equation can be used to find the equations of motion for this

system:
dδâ

dt
=

1

i~
[δâ, Ĥ]

db̂

dt
=

1

i~
[b̂, Ĥ]

(2.26)

Using the above with the full Hamiltonian from Eq. 2.25 yields the following equations

of motion:
dδâ

dt
= i∆δâ+ igb̂

db̂

dt
= −iωmb̂+ igδâ

(2.27)

Up until this point damping and driving effects have not been taken into account

for either the mechanical oscillator or the optical resonator. Damping and driving

do not affect the interaction Hamiltonian, but now that we have turned our interest
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to the equations of motion it is desirable to introduce these effects. Damping and

driving manifest themselves as additional terms in ĤL and Ĥm, and subsequently

additional terms in Ĥ. We can introduce these effects at this point by simply adding

them to the equations of motion:

dδâ

dt
=
(
i∆− κ

2

)
δâ+ igb̂+

√
κexδŝp +

√
κ0f̂in

db̂

dt
=

(
−iωm −

Γm
2

)
b̂+ igδâ+

√
Γmb̂in

(2.28)

Here we have introduced several decay rates. κex is the cavity decay rate associated

with input coupling, i.e. whatever method is used to get light into the optical cavity.

κ0 is the optical decay rate for everything else, including scattering and absorption.

κ is the overall optical cavity decay rate, with κ = κex + κ0. Γm is the decay rate

for the mechanical oscillator, which includes clamping losses due to the supporting

stem of the microsphere, viscous damping due to the surrounding gas, and all other

sources of mechanical damping. f̂in and b̂in are the quantum or thermal noise for the

optical cavity and the mechanical oscillator, respectively. For the optical frequencies

and experimental conditions we are concerned with,
〈
f̂in

〉
= 0, so the

√
κ0f̂in term

can be ignored.

b̂in, however, is nonzero at room temperature, as a consequence of the thermal

energy of in the experimental chamber. The presence of this thermal noise means

that the mechanical mode is already populated with thermal phonons. This poses a

problem if the desire is to use the mechanical mode to store quantum information,

given that the thermal background will swamp any sort of quantum signal. However,

this issue can be circumvented by the use of an optomechanical dark mode, which is

the topic of Chapter VI.
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In Eq. 2.28, we have also introduced several new fields to describe the input

probe laser. ŝp is the input probe optical field, due to the probe laser, such that the

input probe power is Pp = ~ωc
〈
ŝ†pŝp

〉
. The frequency of the probe laser is ωp, so ŝp

would have a frequency of ωp, i.e. ŝp = s̄pe
−iωp . Since we are currently in a frame of

reference rotating at the frequency of the driving laser, ωL, Eq. 2.28 instead uses δŝp,

with δŝp = s̄pe
−i(ωp−ωL)t. Thus the

√
κexδŝp term is the driving term as a consequence

of the probe laser.

2.4. Steady State Solution and OMIT

The equations of motion presented in Eq.2.28 can be solved analytically to find

the steady state behavior of the system. Doing so will demonstrate that our system

will display the effect of optomechanically induced transparency(OMIT)[41].

We first make an educated guess that our solutions for δâ and b̂ will take the

following forms[37]:

δâ = A−e−iΩt + A+e+iΩt

b̂ = B−e−iΩt +B+e+iΩt

(2.29)

Here, Ω = ωp − ωL is the spectral separation between the pump and probe lasers.

Our goal is to find a spectrum of the OMIT dip as a function of an adjustable ωp, so

at this point Ω is our adjustable parameter. This educated guess is based partly on

the fact that δŝp = s̄pe
−i(ωp−ωL)t = s̄pe

−iΩt. The time derivatives are subsequently

dδâ

dt
= −iΩA−e−iΩt + iΩA+e+iΩt

db̂

dt
= −iΩB−e−iΩt + iΩB+e+iΩt.

(2.30)
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We can now plug Eqs. 2.29 and 2.30 into Eq. 2.28. In this specific solution we

are not interested in the contribution of the mechanical thermal noise, so we will drop

that term. Doing so, we obtain the following set of equations:

− iΩA−e−iΩt + iΩA+e+iΩt

=
(
i∆− κ

2

)
A−e−iΩt +

(
i∆− κ

2

)
A+e+iΩt

+ igB−e−iΩt + igB+e+iΩt +
√
κexs̄pe

−iΩt

− iΩB−e−iΩt + iΩB+e+iΩt

=

(
−iωm −

Γm
2

)
B−e−iΩt +

(
−iωm −

Γm
2

)
B+e+iΩt

+ igA−e−iΩt + igA+e+iΩt

(2.31)

If we focus only on the terms involving e−iΩt, we get

−iΩA− =
(
i∆− κ

2

)
A− + igB− +

√
κexs̄p

−iΩB− =

(
−iωm −

Γm
2

)
B− + igA−.

(2.32)

It is possible to come up with two more equations that involve A+ and B+ by

examining the terms involving e+iΩt. However, we are not particularly interested

in the terms involving e+iΩt, since A+ ≈ 0 in the resolved sideband regime. Thus it

is A− that we are interested in.

We can now solve Eq. 2.32 algebraically for A−. Doing so results in an intracavity

field of

A− =

(
Γm

2
− i(Ω− ωm)

)√
κexs̄p(

κ
2
− i(Ω + ∆)

) (
Γm

2
− i(Ω− ωm)

)
+ g2

. (2.33)
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This expression can be further simplified by making the assumption that the

optomechanical coupling is weak compared to the optical losses of the system. This

allows for the approximation
(
κ
2
− i(∆ + Ω)

)
≈ κ

2
. To make these equations cleaner,

we also introduce ∆p ≡ Ω− ωm, which is the detuning of the probe laser away from

the optical cavity resonance. Doing so gives us an intracavity field of the following

form:

A− =

(
Γm

2
− i∆p

)√
κexs̄p

κ
2

(
Γm

2
− i∆p

)
+ g2

. (2.34)

We can now relate this expression to the transmitted optical field, viz. the light

that is coupled back into the waveguide by the microsphere, or equivalently the light

that is reflected by the Fabry-Pérot cavity. This transmitted optical field is given

by[22]

ŝout = ŝin −
√
κexâ, (2.35)

where ŝin is the total input optical field from all lasers. This includes both the pump

laser (also referred to as the control laser), with an input optical field of ŝc, and the

probe laser (also referred to as the signal laser), with an input optical field of ŝp.

Thus the total input optical field is ŝin = ŝc + ŝp. The expression for the transmitted

optical field can be broken down into components relative to each relevant optical

frequency:

ŝout = (ŝc −
√
κexᾱ)e−iωct + (ŝp −

√
κexA

−)e−iωpt (2.36)

At this point, we can now connect our derivation to an experimentally testable

quantity. The transmission of the probe beam, which can be measured experimentally,

is defined as being the ratio between the output and input optical field amplitudes at
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the probe frequency:

tp =
ŝp −

√
κexδâ

ŝp
= 1−

(
Γm

2
− i∆p

)
κex

κ
2

(
Γm

2
− i∆p

)
+ g2

(2.37)

This expression, however, includes all of the less interesting effects of optical coupling

into the optical cavity. In order to examine the OMIT process by itself, it is desirable

to normalize the transmission to remove the effects of optical coupling. This can be

done by finding the residual on-resonance (∆p = 0) transmission for the probe laser

as it would appear in the absence of the pump laser (g = 0), and then subtracting

this residual from tp. This residual is

tp(∆p = 0, g = 0) = 1− 2
κex
κ
, (2.38)

and thus the normalized probe transmission is

t′p = tp− tp(∆p = 0, g = 0) = 1−
−
(

Γm

2
− i∆p

)
κex

κ
2

(
Γm

2
− i∆p

)
+ g2

−1+2
κex
κ

=
2κex

κ
g2

κ
2

(
Γm

2
− i∆p

)
+ g2

.

(2.39)

One final simplification can be made by assuming the case of critical coupling into

the optical cavity, which means that κex/κ = 1/2.

t′p =
g2

κ
2

(
Γ
2
− i∆p

)
+ g2

=
(2g)2

κ

Γm + (2g)2

κ
− 2i∆p

(2.40)

In terms of optical power, the probe transmission is

|t′p|2 =
(2g)4

κ2(
Γm + (2g)2

κ

)2

+ (2∆p)2

. (2.41)
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This is the spectrum of the OMIT dip as a function of the detuning of the probe laser,

∆p. This shows that the OMIT dip has a Lorentzian line shape. The half-width at

half-maximum for this OMIT dip is

γOMIT = Γm +
(2g)2

κ
, (2.42)

and the peak value is

|t′p(∆p = 0)|2 =
(2g)4

κ2(
Γm + (2g)2

κ

)2 . (2.43)

It is customary and convenient at this point to introduce the optomechanical

cooperativity, C = (2g)2/Γmκ, which allows the width and height of the OMIT dip

to be expressed more simply as

γOMIT = Γm(1 + C) (2.44)

|t′p(∆p = 0)|2 =

(
C

1 + C

)2

. (2.45)

2.5. Transient Solution and Light Storage

The Hamiltonian in Eq. 2.25 has a form that allows for state transfer and Rabi

oscillations. To see this, we shall first examine the general case for the state transfer

process for a two level system. Here we start with a system whose Hamiltonian has

the form

Ĥ = E1 |1〉 〈1|+ E2 |2〉 〈2|︸ ︷︷ ︸
Ĥ0

+ γRabie
iωt |1〉 〈2|+ γRabie

−iωt |2〉 〈1|︸ ︷︷ ︸
Ĥint

. (2.46)
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This system has an exact solution[42]:

c1(0) = 1, c2(0) = 0, (2.47)

|c2(t)|2 =
γ2
Rabi/~2

γ2
Rabi/~2 + (ω − ω21)2/4

sin2

[(
γ2
Rabi

~2
+

(ω − ω21)2

4

)1/2

t

]
, (2.48)

|c1(t)|2 = 1− |c2(t)|2. (2.49)

In the above, we define ω21 ≡ (E2 − E1)/~, and set the system in the initial

configuration where only c1 is populated. Equation 2.48 shows the characteristic

Rabi oscillation, where the population oscillates between c1 and c2 as time goes on.

The frequency of this oscillation, known as the Rabi frequency, is given by

ΩRabi =

√(
γ2
Rabi

~2

)
+
ω − ω21

4
. (2.50)

Note that if ω = ω21, the amplitude of the Rabi oscillation becomes such that a

complete state transfer occurs with each oscillation and the Rabi frequency becomes

ΩRabi =
γRabi
~

. (2.51)

If ω is detuned away from ω21, the amplitude of the oscillation decreases, with a

smaller peak value for |c2(t)|2.

To complete the connection to optomechanics, we must remember that the

optomechanical Hamiltonian presented in Eq. 2.25 is in the rotating frame of reference.

If we undo the shift to the rotating reference frame, the Hamiltonian of Eq. 2.25 is

instead

Ĥ = ~ωcδâ†δâ+ ~ωmb̂†b̂− ~g(eiωLtδâb̂† + e−iωLtδâ†b̂). (2.52)
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Now it becomes apparent that the optomechanical Hamiltonian in Eq. 2.52 is of

exactly the same form as the Hamiltonian in Eq. 2.46 which gave rise to Rabi

oscillations. Note that since ωc > ωm, E2 corresponds to ~ωc and E1 corresponds

to ~ωm. In this case, the resonance condition is met when ωL = ωc − ωm, i.e. when

∆ = −ωm, which is what is to be expected. γRabi corresponds to ~g, so the on-

resonance Rabi frequency is given by

ΩRabi = g. (2.53)

It should also be mentioned that, strictly speaking, the analogy could be made more

exact by instead saying that c1(0) = 0 and c2(0) = 1 (since we want the population

to start in the optical mode), but the consequence of this reversal is simply a phase

shift by half a cycle.

This configuration can be taken a step further and used as a mechanism for

storing an optical signal as a mechanical excitation. This is accomplished simply by

turning off the on-resonance control laser after half of a Rabi cycle. The signal can

then be later retrieved by applying the on-resonance control laser again for another

half of a Rabi cycle. This can be described mathematically by allowing g to vary with

respect to time. With ∆ = −ωm, and continuing with our previous example,

|b̂(t)|2 = sin2 [θ(t)] , (2.54)

where θ(t) =
∫ τ

0
g(t)dt. Note that the time evolution is governed by a sin2 function,

so one full cycle corresponds to θ(τ) = π. Thus by pulsing the control laser such that

θ(τ) = π/2, we leave the system in a state where |b̂(τ)|2 is populated.
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In a more general sense, we can write the time evolution of the system as follows:

δâ(t) =
(
δâ(0) cos[θ(t)]− ib̂(0) sin[θ(t)]

)
e−iωct (2.55)

b̂(t) =
(
b̂(0) cos[θ(t)]− iδâ(0) sin[θ(t)]

)
e−iωmt (2.56)

Written in this manner, we can clearly see that a “π/2 pulse”, i.e. θ(τ) = π/2, swaps

the optical and mechanical states. This allows the control laser’s π/2 pulse to act as

either a “writing” or “reading” pulse, thus providing the mechanism for light storage

that will be presented experimentally in Chapter V.

2.6. Summary

In this chapter, the interaction Hamiltonian and the equations of motion have

been derived for our optomechanical system. We have examined the steady state

solution in the absence of damping, which gave rise to the effect of OMIT. The

transient solution was also presented, giving us the foundation for optomechanical

light storage. This informs us as to what to expect from our system in the following

experimental chapters.

The examples derived in this chapter for OMIT and optomechanical light

storage were performed in the absence of damping. These damping effects, however,

are intrinsic to the experimental observations. As such, many of the theoretical

predictions that accompany experimental measurements are found by numerically

solving the equations of motion, such as those presented in Eq. 2.28.

It bears repeating that the effective optomechanical coupling rate, g, which is

present in both the interaction Hamiltonian and the equations of motion, is dependent

upon the strength of the anti-Stokes positioned control laser. As such, this allows the
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strength of the optomechanical coupling to be controlled by the strength of the control

laser. This effect plays a prominent role in all of the experiments in this dissertation.
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CHAPTER III

EXPERIMENTAL APPARATUS

“Experience without theory is blind, but theory without experience is mere

intellectual play.”

– Immanuel Kant

3.1. Silica Microspheres

While the Fabry-Pérot cavity with a movable end-mirror provides a simple

example for describing optomechanics theory, there is a wide variety of elegant

optomechanical systems that have been developed for experimental work[43]. Such

systems include silicon nitride membranes[44], silica microtoroids[45], and mirror

coated AFM cantilevers[46], to name just a few. For the experiments discussed in

this dissertation, however, the optomechanical system is a silica microsphere[1, 25],

shown schematically in Fig. 3.1. Figure 3.2 shows an image of an actual microsphere.

Silica microspheres were chosen for their simplicity, which presents them as

a preferable platform for performing proof of principle procedures. The typical

diameter for our microspheres is 30 µm. Light is coupled into the sphere, travels

around a great circle of the sphere due to total internal reflection, and then exits

the sphere. Similar to the Fabry-Pérot cavity, the microsphere also has boundary

conditions which support a harmonic series of optical modes. The optical modes

of silica microspheres are commonly referred to as “whispering gallery modes” [47].

This somewhat whimsical term is a reference to a similar phenomenon that can be

observed with sound waves in large buildings with domed ceilings.
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Light resonates 
in optical cavity

Radial breathing mode 
of sphere is the 
mechanical oscillator

Incoming laser light

Reflected light is
sent to detector

Transmitted light is 
sent to detector

FIGURE 3.1. Schematic of a silica microsphere.

FIGURE 3.2. Image of a microsphere, with the path of the optical cavity drawn for
clarity. Note the presence of the stem, which is how the sphere is held in place.
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(1,2) (1,0) (1,4)

FIGURE 3.3. Finite element analysis of three relevant mechanical modes in silica
microspheres. (n,l) indicate the radial (n) and angular (l) quantum numbers.[1]

In a silica microsphere, the vibrations of the sphere itself play the role of the

mechanical oscillator, some of which are show in Fig. 3.3. There are different modes

of oscillation, each exhibiting a different frequency relative to the others, as can

be seen in Fig. 3.4. The modes are typically labeled with their quantum numbers,

(n,l), with n being the radial quantum number and l being the angular. There are

advantages and disadvantages involved when selecting a specific mechanical mode

for experiments. For example, the (1,2) can be convenient because it is the lowest

frequency mode. At the same time, the (1,2) mode can suffer from a distorted spectral

shape owing to a badly deformed sphere breaking the mode’s degeneracy. The (1,2)

mode was used for most of the work presented in this dissertation.

The frequency of the mechanical modes is also affected by the diameter of the

microsphere, as shown in Fig. 3.5. Our experiments typically use a microsphere near

30 µm. This size was chosen based on the ability to reliably fabricate a sphere with

the desired deformity and the desired ratio of sphere diameter to stem diameter.

Moving on in our treatment of silica microspheres, we will now examine the

coupling between the optical and mechanical modes. This coupling is easiest to

conceptualize by considering the fundamental radial breathing mechanical mode,
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FIGURE 3.4. Noise power spectrum of a typical silica microsphere, with a diameter of
30 µm, showing the spectral position of the three most relevant mechanical modes.[1]

the (1,0) mode, in which the entire radius of the sphere uniformly expands and

contracts. The radiation pressure from the whispering gallery modes is radial, and is

a consequence of the curved path that the light follows, as shown in Fig. 3.6. Since

the mechanical oscillator’s ability to influence the optical cavity relies on changing the

optical path length, only vibrational modes that change the sphere’s circumference

will affect the optical cavity. Such modes are said to be “optically active”. All of the

modes depicted in Figs. 3.3, 3.4, and 3.5 are optically active.

The desire for high quality factors, both mechanical and optical, is one of the

chief motivations behind the development of the previously mentioned assortment of

optomechanical systems. Indeed, the different quality factors are one of the major

trade-offs that differentiates one system from another. Other considerations include

the the overall size of the system, as well as the optomechanical coupling rate, i.e. how

well the optical cavity and mechanical oscillator are able to influence one another. A

complete comparison between these devices is beyond the scope of this work. Such a

comparison can be found in [22]. In this regard, the microsphere system chosen for this
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FIGURE 3.5. Effect of microsphere size on the frequencies of two mechanical
modes.[1]

Frad

FIGURE 3.6. The radiation force in a microsphere is radial, as a consequence of the
curved optical path. Green arrows denote the optical path as it follows the curved
surface of the sphere, while red arrows indicate the radial radiation force.
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work might be described as a jack of all trades, master of none. Silica microspheres

do feature excellent optical cavities and mechanical oscillators, but our configuration

does not hold any records for the relevant parameters. The microspheres are made

from high purity silica, which produces an atomically smooth surface and features

extremely small optical losses from absorption or scattering. More specifically, Qc

and Qm for a 30 µm silica microsphere are typically on the order of 108 and 104

respectively, with ωc and ωm being on the order of 1014 Hz and 108 Hz respectively.

Thus, these parameters in a microsphere are sufficient to allow the experiments to

be performed, while the overall simplicity of the system makes it a good system for

proof of principle experiments.

3.2. Fabricating Silica Microspheres

A CO2 laser was used to fabricate silica microspheres out of single-mode optical

fiber[1]. A diagram of the sphere fabrication apparatus is shown in Fig. 3.7. The

final product of this fabrication process is a sphere of silica, approximately 30 µm in

diameter, attached to a stem that tapers to a thickness of 5 µm. The first step in

the fabrication process is to strip the jacket from a small length of fiber and mount it

vertically in a fiber chuck, with the loose end of the fiber facing downwards. A small

weight (a washer for 1/4” machine screws) was then taped to the loose end of the

fiber.

The CO2 laser was focused near the fiber and then brought just close enough to

the fiber to burn away the cladding. Next, the fiber was rotated about its vertical

axis by 90 degrees and this process repeated for a total of four times from each angle.

Considerable care was taken when burning the cladding so as to not leave behind

soot. Melting the fiber core while burning away the cladding can result in burying
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FIGURE 3.7. Top view of the apparatus for sphere fabrication, with a close-up side
view of the sample mount. The sphere is made out of a piece of optical fiber, which
hangs vertically and is tensioned by the weight of a small washer. A CO2 laser is
used to sculpt the sphere. The system is imaged 90◦ from the axis of the laser.

soot in the fiber core, and subsequently the final product, leading to poor optical

quality factors.

Once the cladding has been successfully removed, the remaining silica fiber core

can be sculpted into a microsphere. First, the core is gently heated by bringing

the focused laser progressively closer, which melts the fiber and allows the weight to

stretch the fiber into a thin strand. The diameter of the strand should taper down

to the desired stem thickness. Next, the laser was used to sever the strand at a lower

point, allowing the weighted end of the fiber to drop away. The amount of material

left after severing the strand will determine the size of the sphere. The remaining

material was gently fed into the focused laser. As the material melts, its surface

tension pulls it into a spherical shape. Some degree of practice is required during the

aforementioned step in order to produce a final product with the desired dimensions,

given that a considerable amount of material is lost while it is being fed into the
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focused laser. It can be helpful to heat this material from some distance up the side,

rather than directly from the bottom, so as to cause a larger sphere to accumulate

without losing quite as much material. If this is done, however, it is important to

make sure that the final stoke of melting of the sphere is done from below rather than

from the side, in order for the final product to be as symmetrical as possible.

The goal of this procedure is to produce a sphere of the desired diameter while

keeping the stem as short and narrow as possible. The diameter of the stem at

the point where it meets the sphere is one of the primary limiting factors for the

mechanical quality factor, so it is best to keep the stem as thin as possible. The

length of the stem is also important because a long stem is extremely fragile. If the

stem is too long, the stem will break while attempting to transfer the sample into

the experimental chamber. Keeping the sample in a vertical position while moving it

can help mitigate this problem, but it is still important to keep the stem short. Our

stems are typically 5 µm thick at the point where they connect to the sphere, and

approximately 200 µm long.

If a tapered optical fiber is used to couple light into the microsphere then the

sphere is complete at this point. If, however, it is desired to preform free-space

optical excitation, then it is now necessary to deform the sphere[48]. We have tried

several methods to accomplish this. One method is to hit the sphere from the side

with a quick pulse of the CO2 laser. Another is to make two separate spheres, and

then carefully melt them together, heating them gently enough that the final product

has not yet become perfectly spherical. The former method is significantly less time

consuming, but we have found that the latter method yields better results. The

necessary deformity is beyond the resolution of the viewing screen of the fabrication

apparatus. In light of this, it’s best to start with a deformity that is higher than
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desired, test the sphere in the experimental chamber, and then transfer it back

to the fabrication table to reduce the deformation incrementally until reaching the

desired deformation. A deformation that is too high will have low quality optical and

mechanical modes. A deformation that is too low will have poor optical coupling.

3.3. Tapered Optical Fibers

For some of the experiments presented here, light was coupled to the microsphere

through the evanescent field of a tapered optical fiber[49–51]. This approach

has several advantages. One significant advantage is that a perfectly round

microsphere can be used, as opposed to the free-space method which requires

deformed microspheres.

To fabricate the tapered fibers, optical fiber was heated with a hydrogen torch

and pulled until the desired thickness was achieved. Once the taper has been

fabricated, its tension within its mount needs to be properly adjusted. The ends of

the tapered fiber were clamped into a removable holding device and transferred to a

separate tensioning station. The removable holding device also contains a mechanism

for adjusting the fiber tension. The tensioning station consists of a 3-axis stand for

the tapered fiber holder, a microscope imaging system, and a dispensable microsphere

similar to the experimental samples. The microsphere was brought close enough to

the tapered fiber that the two would stick together through electrostatic forces. The

microsphere was then pulled away until the two separated. The amount of movement

required to pull the sphere away from the fiber was used to gauge the tension of the

fiber. A sufficient amount of tension allows the sphere to be positioned close to the

fiber without the two getting stuck together.
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Once the desired tension has been achieved, the ends of the fiber are glued into

a separate, smaller fiber holder using UV cure epoxy. At this point, the fiber is ready

for use.

3.4. Experimental Chambers

Two different experimental chambers were used for the work presented here.

One chamber was used for free-space coupling, and the other for fiber coupling. The

purpose of both chambers was to provide a controlled, clean environment for the

samples, and to isolate the samples from both air currents and vibrations in the

room.

For isolation from vibrations, both chambers were laid upon vibration damping

foam. Additionally, the chambers were bolted to the optical table, with a vibration

damping foam washer accompanying each bolt. Once a sample was in position, the

chambers were purged with nitrogen or helium. It is important to use a gas source

that is free from moisture, as absorption of water vapor can degrade the optical quality

of silica microspheres significantly in less than an hour.

Both chambers used Attocube micropositioners to achieve high precision

movement control. Attocube positioners are piezo-electric based devices that provide

the precision of piezo technology without the limited range of motion that is typically

associated with the use of piezo-electrics. This is accomplished by allowing the control

mechanism to slip when the piezo moves quickly and to stick when the piezo moves

slowly. By applying a saw-tooth waveform to the piezo, the control mechanism

essentially shuffles the sample in one direction. This action can be compared to

sitting in a cardboard box on a linoleum floor and scooting the box across the

floor by moving one’s body weight quickly in one direction and slowly in the other.
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The shuffling movement is used for course movement, while a constant voltage can

be applied to the piezo crystal to achieve fine movement control. In addition to

the Attocube positioners, both chambers also included screw-threaded actuators for

coarse movement control.

The free-space chamber was a rectangular enclosure, which is shown

diagrammatically in Fig. 3.8. This chamber had two windows on opposing walls and

a narrow gap in between the two windows. The attocube positioners were mounted

inside the chamber between the two windows, and the microsphere sample was

mounted on top of the attocube positioners so that the microsphere hung vertically

between the two windows. The entire chamber was mounted on top of a three-

axis stage for course control of the sample’s position. A microscope objective was

mounted in front of each window, with each microscope objective having its own

three-axis stage. The microscope objectives focused light near the microsphere to

provide input and output coupling. Additionally, there was a third window in the

top of the chamber which was used for an additional CCD imaging system.

The fiber coupling chamber was a circular enclosure, with two fiber feedthroughs

for the tapered optical fiber, as shown in Fig. 3.9. These feedthroughs were made by

inserting the fiber through a hole drilled through a rubber cylinder and then clamping

the rubber cylinder in a Swagelok tube feedthrough. As with the free-space chamber,

the microsphere sample was mounted on an attocube stack to hang vertically. In

this case, however, the attocube stack was then mounted on top of a mechanical

three-axis stage, which was used for course positioning prior to closing the chamber.

Additionally, the tapered fiber was mounted on a goniometer to allow its pitch to

be adjusted. It was found that mounting the sphere on the attocubes is preferable

rather than mounting the tapered fiber on attocubes, as moving the tapered fiber
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Three-axis
Attocube positioner

Microsphere sample

FIGURE 3.8. Experimental chamber for free-space optical coupling. Incoming and
outgoing light was coupled to the microsphere sample using two microscope objectives.
Both microscope objectives were mounted outside of the chamber, with each having
its own three-axis manual positioning stage. Due to the short focal length of these
microscope objectives it was necessary for the chamber windows to be recessed within
the chamber walls, thus allowing the microscope objectives to both be positioned
sufficiently close to the microsphere sample. The microsphere was mounted upon
a three-axis Attocube micropositioner for precision position adjustment. A detailed
diagram of the microsphere holder, which sits on top of the Attocube positioners, can
be found in Fig. B.2. The entire chamber was mounted upon a three-axis manual
positioning stage to allow for coarse adjustment of the microsphere’s position. The
three-axis stage rested on vibration damping foam.
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with attocubes causes the fiber to vibrate significantly. The fiber coupling chamber

also contained a CCD imaging system. For our earlier work, the entire CCD imaging

system was mounted inside the chamber. Later, the chamber was modified to have a

window and an externally mounted imaging system.

3.5. Detection and Laser Locking

The Pound-Drever-Hall technique was used to lock the frequency of the laser

relative to the optical modes of the microsphere[52, 53]. Part of this process is to

create what is commonly referred to as an “error signal”. The error signal varies

with frequency, is centered around the desired optical mode, and has a shape that is

characterized by several other parameters. The error signal was then sent to a PID

controller, which uses the error signal to determine what corrections are necessary

to keep the laser frequency locked relative to the optical mode. The feedback loop

is completed by sending the output of the PID to the laser to control the laser’s

frequency.

Understanding the function of the PID circuit is crucial to understanding the

the laser locking feedback loop as a whole. Historically, the PID controller was first

developed as autopilot for ocean-going vessels, and as such it is helpful to compare

adjusting the laser frequency to the steering a ship. The error signal is sent to the

PID and the PID essentially attempts to maintain a constant set-point for the error

signal. For a ship, the error signal would vary in some way with respect to the ship’s

heading. In our case, the error signal varies with respect to the laser frequency. If

the PID receives an input that is above or below the set-point, then the PID gives

an output that tells the laser (or ship) to “steer” back towards the set-point. It is

important to note that this happens regardless of the specific shape of the error signal
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FIGURE 3.9. Experimental chamber for tapered fiber optical coupling. The tapered
section of the fiber was held by a custom made forked holder that allowed the tapered
fiber and microsphere sample to be correctly positioned relative to each other, while
still allowing room for a microscope objective for imaging. The tapered fiber holder
was mounted upon a goniometer, which allowed the tapered fiber to be tilted relative
to the microsphere. A diagram of the tapered fiber holder is presented in Fig. B.1. The
tapered fiber’s goniometer was subsequently mounted upon a linear translation stage
that moved along the axis of the fiber, thus allowing different sections of fiber to be
used. The microsphere itself was mounted upon a two-axis Attocube micropositioner,
which in turn was mounted upon a three-axis manual positioning stage. A diagram of
the microsphere holder, which sits on top of the Attocube positioners, can be found
in Fig. B.2. Only two axes of fine control were necessary, with movement along the
axis of the tapered fiber not requiring high precision. The entire chamber rested on
vibration damping foam.
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or how the error signal varies with respect to the ship’s heading or the laser frequency.

That is to say, the PID is only concerned with the difference between the set-point

and the current value of the error signal, and the PID has no knowledge of the shape

of the error signal.

PID stands for “proportional-integral-derivative”, which are the different

methods that it uses to decide how to steer. The proportional component is a real-

time response, meaning that if the ship is pointing too far to the left then the PID will

tell the ship to steer to the right. The integral component is a cumulative time-based

response that is a reflection of how much time the ship has spent pointing at the

wrong heading. This means that if the ship has been pointing too far to the left for

a very long time then the integral component will produce a very strong response.

If the ship has been pointing too far to the left for only a short period of time then

the integral response will be weak. The derivative component, however, looks at how

quickly the ship’s heading is changing. If the ship gets hit by a wave and suddenly

veers off to the left, then there will be a large response from the derivative component.

Another way to look at these components is to say that the proportional component

looks at the present error signal, the integral component keeps track of the past error

signal, and the derivative component tries to predict the future error signal.

The choice between different locking methods is generally a choice between

different methods for creating the error signal and the subsequent shape of the error

signal. Different methods will effect different shapes, and the shape of the error signal

has a large influence on the behavior of the laser lock. The most straightforward

method is to simply use some type of spectral peak or dip (such as an optical

resonance) as the error signal itself. The PID set-point is then chosen to be an

intermediate value between the background level and the top of the peak. The PID
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PID Setpoint

Point of no returnLock point

FIGURE 3.10. Illustration of side-locking. The feedback circuitry attempts to
keep the optical feedback signal at a specific setpoint. If the signal deviates below
the setpoint, the locking circuitry responds by adjusting the laser frequency in one
direction (red arrow), while a deviation above the setpoint results in an adjustment in
the opposite direction (green arrow). Note that this configuration will actively shift
the laser away from the desired lock point if the frequency jumps past the point where
the setpoint crosses the optical feature on the other side (labeled here as “point of no
return”).

then attempts to maintain that intermediate value, thus keeping the laser at the

frequency that corresponds to that part of the spectral feature, as shown in Fig. 3.10.

As such, this configuration is typically referred to as “side-locking”.

While the side-locking approach is easy to set up, it suffers from several

drawbacks. One drawback is highlighted by the name “side-locking” itself. For most

applications it is preferred that the laser be locked as close as possible to the center of

the spectral feature. It is possible to adjust the set-point of the side lock to get ever

closer to the center of the spectral feature, but doing so reduces the stability of the

lock. As shown in Fig. 3.10, if the laser’s frequency deviates into the red region on

the right then the feedback system actively moves away from the lock point. Shifting

the set-point closer to the center of the spectral feature decreases the safety cushion

between the set-point and this region, making it progressively easier for the laser to

lose its lock.
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While the aforementioned drawbacks can often be overcome with some ingenuity,

there is yet another problem with side-locking that is not so easily overcome.

Fluctuations in various experimental parameters, such as fluctuations in the

amplitude of the laser’s power output, will cause the relative size of the spectral peak

to fluctuate. As this happens, the laser frequency corresponding to the set-point

changes. Thus, side locking causes amplitude fluctuations of any kind to manifest

themselves as fluctuations in the lock frequency. This can be a substantial issue for

many experiments.

A more refined alternative is to dither the frequency of the laser, thus allowing

the frequency to be locked at the center of the optical feature. This is possible by

comparing the relative amplitude between the dithered laser frequency and the optical

output of the system, as shown in Fig. 3.11. This essentially produces a measurement

of the slope of the optical output. With the slope being measured, it is now possible

to send that measurement to the PID. The laser can now be locked to the point where

the slope is zero, which is the center of the optical feature.

The Pound-Drever-Hall method provides a rather similar method for center-

locking. This is done by using an electro-optic modulator (EOM) to modulate the

laser light prior to the experimental sample. Rather than modulating the laser’s

frequency, we are instead modulating the phase. The optical signal after the sample

is sent to a lock-in amplifier, which has the effect of measuring the relative phase

between the laser’s modulation and the phase of the subsequently modulated optical

signal. This arrangement produces an error signal from the output of the lock-in

amplifier that has the shape shown in Fig. 3.12. An important trait to notice about

this error signal is that it crosses zero at the center of the optical feature. This

means that with a set-point of zero, the laser can be center locked and the locking
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FIGURE 3.11. Center locking by laser frequency dithering. Prior to being sent to the
experimental sample, the laser light is frequency modulated. The feedback circuitry
determines the laser’s position by comparing the relative amplitude between the laser
and the optical signal. A positive slope produces a positive correlation between the
laser frequency and the optical signal, while a negative slope produces a negative
correlation. A PID setpoint of zero will lock the laser at the location where the slope
is zero.

frequency is unaffected by amplitude fluctuations. Also, the fact that the setpoint is

at a zero crossing means that the locking frequency is unaffected by laser amplitude

fluctuations.

Another useful aspect of the Pound-Drever-Hall error signal is that it has

additional zero crossings corresponding to the side-bands of the EOM. These side-

band zero crossings have the opposite slope from the central zero crossing. By

changing the sign of the PID circuit, it becomes possible to lock the laser at a set

amount away from the optical feature, with the amount of detuning being determined

by the EOM frequency. This can be particularly useful when optical bistability

distorts the optical feature when at resonance.

3.6. Pulsing the Light and Time Gated Heterodyne Detection

The experiments presented in this work involve measurements in the time

domain. As such, it is necessary to pulse the various incoming optical beams and
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FIGURE 3.12. Sketch of the error signal produced by the Pound-Drever-Hall method.
Note the zero crossing at both the center of the optical feature and at the EOM side-
bands.

to have a time-gated detection method. This also necessitates special considerations

concerning the laser locking procedure.

The optical pulses were, for the most part, produced by pulsing the electronic

driving signals for acousto-optic modulators (AOMs) and using the first-order

diffracted light beam as the pulsed beam. Pulsing of the electronic driving signals was

achieved by using programmable arbitrary-waveform generators (AFGs) to amplitude

modulate the RF sources for the AOMs. The AFGs were synchronized by using

one AFG as the trigger source to trigger the other AFGs and the other time-

gated equipment. The specific waveforms for each AFG were supplied by a desktop

computer. The computer used Labview programs that were written to control these

experiments.

Outgoing light from the microsphere was detected using time-gated heterodyne

detection. The optical beam of interest (i.e. the signal beam for the light storage

experiments or the probe beam for the OMIT and dark mode experiments) is shifted

from the driving optical beam by an amount equal to the frequency of the chosen
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mechanical mode of the microsphere. As such, this beam can be detected via

heterodyne detection by virtue of its beating against the unshifted pump beam.

Fortunately, the geometry of these experiments (both with free-space and tapered-

fiber) is such that these beams are already collinear. By using a photodetector with

an appropriate frequency response and sending its electrical output to a spectrum

analyzer (SA), it is possible to detect the optical signal by looking for this beating.

Furthermore, this detection can be performed in the time domain by using a time-

gated spectrum analyzer. This feature of the SA is able to examine an RF signal in

a specific time window by electronically masking its input signal.

It is also necessary to make provisions to allow the laser locking equipment to

function properly when the locking beams are pulsed. The locking optical beam is

pulsed prior to the microsphere such that it is only present when it will not interfere

with experimental measurements. After leaving the microsphere, the portion of

outgoing light that is sent to the locking equipment is also pulsed with an AOM

so that changing experimental parameters will not have an impact on the lock.

Additionally, the lock-in amplifier is configured such that its time-constant is longer

than the repetition period of the experiment cycle. Typically a time constant of 3 ms

was used. This was done so that the lock would not be affected by the gaps in time

where the locking optical beam was shuttered off during experimental measurements.

3.7. Bringing It All Together

Details for adapting the experimental apparatus for each specific experiment are

described in the chapters for each specific experiment. Before concluding this chapter,

however, we shall touch upon the overall arrangement of the system. Figures 3.13 and

3.14 show diagrams of the experimental apparatus for the light storage experiments.
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FIGURE 3.13. Optical layout for light storage experiments. Modulators are used
to create the optical pulses. In this particular example, light is coupled to the
microsphere using a tapered optical fiber.

56



ArbitraryPWaveformP
Generator

forPLockingPSignals

Modulator
Driver

Lock-in
Amplfier

LockingP
EOM

Photodetector

PID

Ti:Sapphire
RingPLaser

TweeterPMirror

ArbitraryPWaveform
Generator

forPExperimentPSignals

SpectrumP
Analyzer

ExperimentP
AOM

Experiment
EOM

Modulator
Driver

Modulator
Driver

Photodetector

Trigger

Trigger

Output

Output

Reference

Modulator
Driver

LockingP
AOM

FIGURE 3.14. Electronics layout for light storage experiments. Arbitrary waveform
generators are used to control the amplitudes of the various optical pulses. These
signals then amplitude modulate the drivers for the individual modulators. The lock-
in amplifier and the spectrum analyzer each have their own separate photodetector,
which reduces electronic cross-talk between the lock-in amplifier and the spectrum
analyzer.
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The configuration for the other experiments is similar to the configuration for light

storage, so this arrangement provides a good example.

The various optical pulses were derived from a Coherent 899 Ti:Sapphire ring

laser. This laser light then passes through a sequence of acousto-optic modulators

(AOMs) and electro-optic modulators (EOMs) in order to generate the necessary

optical pulses. The specific frequencies and timings required for these pulses are

particular for each specific experiment, so the exact configuration of these modulators

is covered in more detail in each relevant chapter. Generally speaking, pulses

necessary for locking are alternated with pulses for taking experimental data. This

light is then coupled to the microsphere sample, either by free-space coupling or

through the use of a tapered optical fiber. Outgoing light is collected with high speed

photodetectors. Locking and data collection each had a dedicated photodetector in

order to avoid contamination of either electrical signal. The electrical signals from

these photodetectors were sent to the lock-in amplifier and the time-gated spectrum

analyzer. The lock-in amplifier provides the error signal for the locking circuitry,

while the spectrum analyzer performs the data collection.
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CHAPTER IV

TRANSIENT OPTOMECHANICALLY INDUCED TRANSPARENCY

“A lack of transparency results in distrust and a deep sense of insecurity.”

– Dalai Lama

4.1. Motivation

It has been predicted[41, 54] and experimentally demonstrated[37, 55–57] that

optomechanical systems exhibit a phenomenon analogous to electromagnetically

induced transparency (EIT). In the context of optomechanical light storage, it is useful

to examine optomechanically induced transparency (OMIT) in more detail, especially

in the transient domain, in order to compare optomechanical light storage to light

storage using EIT. OMIT plays a central role in optomechanical light storage and

optomechanical dark modes, but these processes take place in the transient domain.

Much of the previous work involving OMIT focuses only on its steady state behavior.

It is thus desirable to extend the scope of OMIT research to encompass the transient

domain.

EIT is a process by which the opacity of an atomic system, with regards to a

specific frequency of light, is altered by the presence of light of another frequency [58–

60]. The optical beam whose opacity is altered is sometimes referred to as the “probe”,

and the other referred to as the “pump” (sometimes the “pump” beam is instead

referred to as the “control” beam). In order to facilitate EIT, an atomic system must

have three separate atomic states such that one transition is dipole forbidden and the

other two dipole allowed. The pump and probe are tuned such that each corresponds

with one of the dipole allowed transitions. There are several different configurations
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FIGURE 4.1. Energy level diagrams for EIT.

that fit this description, which are shown in Fig 4.1. The different configurations are

typically named based on which transition is dipole forbidden.

The optomechanical analog to EIT is OMIT. In a similar manner, OMIT also

uses a pump beam to render an optomechanical system transparent to a probe beam.

With OMIT, the probe beam is at resonance with an optical mode, while the pump

beam is one mechanical frequency, ωm, below that optical mode. The pump beam

excites an intracavity optical field via the anti-Stokes process. In the absence of

the pump beam, the probe beam would interact with the optical mode, displaying

a transmission dip when at resonance. In presence of the pump beam, however, the

intracavity optical field generated by the pump beam destructively interferes with

that of the probe beam, preventing the probe from exciting the optical mode. Thus

the pump beam causes the system to be transparent with respect to the probe.

It should also be noted that the overall width of the transmission dip of the probe

field is determined by the optical quality factor, while the width of the transparency

window is governed by the mechanical quality factor. This means that the observed

OMIT effect is a narrow transparency window within the broader optical mode. The

width and depth of the peak can be related to the optomechanical cooperativity,

C = (2g)2/Γmκ, as was presented in Eqs. 2.44 and 2.45 and derived in Chapter II.
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For convenience, we restate Eqs. 2.44 and 2.45 here:

γOMIT = Γm(1 + C) (4.1)

|t′p(∆ = 0)|2 =

(
C

1 + C

)2

(4.2)

Additionally, the spectral position of the transparency window is dictated by the

spectral separation between the pump and probe. If the pump-probe separation is

exactly ωm then the transparency window will be at the center of the optical mode.

Our work with OMIT focuses specifically on its transient behavior[61]. This is

of particular interest because of the similarities between optomechanical light storage

and light storage through EIT. Prior to the work presented here, much of the research

involving OMIT has focused on its steady state behavior. Many of the processes that

involve OMIT, however, take place under transient conditions. Such processes include

optomechanical light storage and optomechanical dark modes. In this chapter, we

examine the transient behavior of OMIT, by means of time-gated detection and by

pulsing the incident light. This allows us to directly observe the evolution of the

system as it approaches its steady state.

4.2. Experimental Details

A general description of the experimental techniques is presented in Chapter III.

Figure 4.2 shows a diagram of the apparatus, as configured specifically for the work in

this chapter. The OMIT experiments were performed using the tapered fiber coupling

method described in Chapter III. These experiments were performed with the (1,0)

radial-breathing mechanical mode. The following details were necessary to tailor the

apparatus to OMIT in particular.
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FIGURE 4.2. (a) Spectral position of the pump (Epu) and probe (Epr) pulses, relative
to the optical cavity mode. The probe pulse is at resonance with the cavity mode,
while the pump pulse is separated by a distance of one mechanical frequency, ωm. (b)
Diagram of temporal positioning. The pump and probe pulse arrive simultaneously
while the position of the detection gate is adjustable. The duration of the optical
pulses is 8 µs, and the detection gate duration is 0.5 µs. (c) Experimental layout for
OMIT experiments. The AOM is used to gate both experimental pulses. The first
order, blue sideband of the EOM serves as the probe pulse while the zeroth order
light serves as the pump. These modulators also create the necessary signal to lock
the laser.
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Unlike the light storage and dark mode experiments, which will be presented

in subsequent chapters, the optical pulses for the OMIT experiments arrive

simultaneously. These pulses then last long enough for the system to reach its steady

state. The spectrum analyzer detection gate is adjusted iteratively to measure the

temporal profile of the heterodyne signal, with the profile beginning at the arrival of

the optical pulses. This is essentially the equivalent to performing the light storage

experiments, but examining only the behavior at the arrival of the writing pulse. In

the case of OMIT, however, we refer to the on-resonance light as the “probe” pulse,

and the Stokes shifted light as the “pump” (as opposed to the names “signal” and

“writing” which we will introduce when discussing light storage).

These two pulses are produced by an acousto-optic modulator (AOM) and an

electro-optic modulator (EOM). The AOM is used to pulse the laser by using its

first order diffracted beam. Downstream from the AOM, the EOM is used to split

this pulse into the pump and probe pulses, with the zeroth being the pump and the

blue shifted first order sideband being the probe. These modulators also provide the

necessary signal to lock the laser. Also, it should be noted that the time resolution of

the temporal profiles is determined by the spectrum analyzer’s resolution bandwidth

of 3 MHz and its detection gate duration of 0.5 µs.

4.3. Results

The following results were obtained using a silica microsphere with a diameter

of ∼30 µm and with (ωm, Γm, κ)/2π = (160.9, 0.096, 20) MHz. The peak powers of

the pump pulse and the probe pulse are 1.6 mW and 0.01 mW, respectively.

Figure 4.3 shows the optical emission power as a function of time. This is with

time = 0 being the time that both the pump and probe are turned on and with the
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FIGURE 4.3. Optical emission power as a function of the delay of the detection gate.
The probe pulse is at resonance with the optical mode and ∆ = −ωm.

probe being at resonance with the WGM. This emission power decreases over time

while approaching its steady state value. At time = 8 µs, both pulses are turned

off. This same measurement was performed while instead sweeping the frequency

of the probe beam across the WGM resonance at different time points to produce

Fig. 4.4. That is to say, this figure shows the transparency windows as a function of

the pump-probe separation, Ω. The dip at Ω = ωm is the transparency induced by

the presence of the pump field. It should be noted that the WGM emission powers

shown in these two figures are the result of the probe being absorbed and emitted by

the microsphere. Hence, a decrease in the power shown in these figures is indicative

of an increase in the transmission of the probe beam.

Also note that the spectral linewidth of the transparency dip becomes narrower

as the system approaches steady state. This is shown in Fig. 4.5, which plots the

linewidth as a function of time.
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FIGURE 4.4. OMIT spectra at various points in time, showing the transparency
window as a dip in the emission. These spectra were obtained by measuring
the emission power while sweeping the frequency of the probe across the WGM
resonance, with each plot showing a different detection gate delay. Colors and symbols
correspond to specific data points shown in Fig.4.3.
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FIGURE 4.5. Spectral linewidths of the features shown in Fig. 4.4, shown as a
function of detection gate delay.

The optomechanical coupling rate is related to the strength of the pump field.

This is relevant for Fig. 4.6, which shows the transient OMIT behavior for several

different pump strengths. Figure 4.6a is similar to Fig. 4.3, but now with various

pump strengths. Each plot in Fig. 4.6a corresponds to a plot in Fig. 4.6b, which

shows the OMIT dip, obtained by measuring the optical emission from the WGM at

6.7 µs, while sweeping the probe frequency across the optical resonance.

The optomechanical coupling rate can also be characterized by the system’s

optomechanical cooperativity, which is a dimensionless parameter given by C =

(2g)2/κΓm. In Fig. 4.7, both the WGM emission power and spectral linewidths from

Fig. 4.6b are plotted as a function of the optomechanical cooperativity.
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FIGURE 4.6. (a) Optical emission power as a function of the delay of the detection
gate, with four different pump powers. From top to bottom, the incident pump
powers are 0.4, 1.6, 2.9, and 4.8 mW. These correspond to g/2π = 0.2, 0.45, 0.58,
and 0.7 MHz, respectively. As with Fig. 4.3, the probe pulse is at resonance with the
optical mode and ∆ = −ωm. (b) Corresponding OMIT spectra obtained by sweeping
the frequency of the probe across the WGM resonance. Each plot corresponds to a
power shown in the figure to the left. These measurements were performed with a
gate delay of 6.7 µs. For both figures, solid lines indicate theoretical predictions.
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FIGURE 4.7. Spectral linewidths for each power shown in Fig. 4.6, plotted as a
function of optomechanical cooperativity. Solid lines indicate theoretical predictions.

4.4. Discussion

As shown in Eq. 2.28 from Chapter II, this system can be expressed as two

coupled oscillators:

dδâ

dt
=
(
i∆− κ

2

)
δâ+ igb̂+

√
κexδŝp +

√
κ0f̂in

db̂

dt
=

(
−iωm −

Γm
2

)
b̂+ igδâ+

√
Γmb̂in

(4.3)

The above assumes the pump field is fixed one mechanical frequency below the optical

resonance, and that the optomechanical resonator is in the resolved sideband regime.

The steady state intracavity optical field is given by

A− =

(
Γm

2
− i(Ω− ωm)

)√
κexs̄p(

κ
2
− i(Ω + ∆)

) (
Γm

2
− i(Ω− ωm)

)
+ g2

. (4.4)
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where Ω is the spectral separation between the pump and probe fields. This equation

was derived in Chapter II as Eq. 2.33. The optical transmission of the probe field,

from Eq. 2.41, can be written as a function of ∆p, which is the detuning of the probe

laser from the optical cavity:

|t′p|2 =
(2g)4

κ2(
Γm + (2g)2

κ

)2

+ (2∆p)2

(4.5)

Under the conditions given, the spectral linewidth of the OMIT dip is γOMIT =

Γm + (2g)2/κ, which can be written in terms of the optomechanical cooperativity as

γOMIT = Γm(1+C). The normalized depth of the OMIT dip is given by C2/(1+C)2.

The theoretical plots shown as solid lines in Figs. 4.3, 4.4, 4.5, and 4.6 were

obtained by numerically solving Eq. 4.3. The necessary values for κ and Γm were

measured through independent experiments. The theoretical plots in Fig. 4.7 are

given by the steady state equations involving the cooperativity. It should be noted

that there is some distortion in the experimental results at the leading and trailing

edges of the pulse. This is due to the duration of the detection gate of the time-

gated spectrum analyzer, which is the limiting factor in the time resolution of the

experiment and essentially smooths sudden changes. This smoothing is somewhat

similar to what one might expect from a boxcar averaging method. In light of this,

considerable effort was put forth to reduce the duration of the detection gate as much

as possible. Aside from the aforementioned distortion, the theoretical plots show good

agreement with the experimental results.

The characteristic time scale for the mechanical excitation of this system is

predicted to be [(1 + C)Γm]−1, with a damping rate of CΓm being the damping

rate associated just the optomechanical coupling[39, 40]. This agrees with our
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experimental observations. Just after the arrival of the pulse, the optical emission

power and the linewidth of the OMIT dip are dictated entirely by the small, preceding

duration of the pulse. As time progresses, the dynamics of the mechanical excitation

become increasingly involved. This is evident in Fig. 4.3, as the emission power

monotonically approaches its steady state value. It is also expected that the evolution

of the linewidth of the OMIT dip should follow the same characteristic time scale.

This appears to be true, as evidenced by the results shown in Fig. 4.5.

For Figs. 4.3 and 4.4, the cooperativity was estimated to be C = 0.4. Increasing

the cooperativity should increase the rate at which the system approaches its steady

state. The cooperativity can be changed by adjusting the pump power, which is what

was done in Fig. 4.6. To verify that all four plots do indeed reach steady state by the

end of the pulse, Fig. 4.7 plots the values taken at 6.7 µs for the width and depth of

the OMIT dip, and compares those with the calculated steady state values for each

cooperativity. Evidently, the steady state is reached by this time, even for the lowest

cooperativity tested.

4.5. Conclusion

This chapter examines the OMIT process in the time domain. This was

facilitated by our experimental apparatus, which allows time-gated detection and

pulsed optical excitation of a silica microsphere. Our experiments were able to

observe the approach of the OMIT process to its steady state, with several different

cooperativity values. These studies suggest that the characteristic time scale for the

OMIT process is [(1+C)Γm]−1, with a damping rate of CΓm, both of which are limited

by the mechanical decay lifetime of the optomechanical system. It is anticipated that
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this should be the characteristic time scale for other OMIT related processes. One

such process, optomechanical light storage, is the subject of the next chapter.
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CHAPTER V

OPTOMECHANICAL LIGHT STORAGE

“The good thing about SUVs is they have storage.”

– P. J. O’Rourke

5.1. Motivation

In the modern world, fiber optics have become one of the most widely used

methods for delivering information. Given that the fields of quantum networking

and quantum computing both rely heavily on optical signals, the rapid development

of these fields will necessitate new techniques for dealing with light. Of particular

concern for us is the ability to store an optical signal, both for buffering an incoming

signal in a network or for serving as memory in a quantum computer[62, 63]. In

traditional digital communications, a fiber optic signal is stored by reading the optical

data and storing it as electronic data. This approach is insufficient for quantum

mechanical applications, as this process would destroy the quantum state.

The most straightforward approach to solving this problem would be to store the

light itself in an optical resonator, such as a Fabry-Pérot cavity, thus preserving the

light’s quantum state. This topic has been pursued to some extent but has proven to

have considerable drawbacks. One significant drawback is that the storage lifetime of

such an approach is determined by the optical decay lifetime of the optical resonator,

which is typically on the order of 100 ps[64].

Another approach that has been pursued would be to trap the light in an atomic

system using electromagnetically induced transparency (EIT)[58, 59, 65, 66]. Given

that our approach, which will be described momentarily, bears some similarities to
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this method, a brief description may be prudent. The premise of EIT is to send

two frequencies of laser light to an atomic ensemble, with each frequency chosen

to correspond to a specific atomic transition. Typically the two different beams

are referred to as “pump” and “probe”. Since the probe beam is resonant with an

atomic transition, the sample is opaque for the probe beam under normal conditions.

However, by choosing appropriate atomic transitions, the pump beam can be used

to make the sample transparent for the probe beam. This can be used as a storage

mechanism by using the probe beam to carry the optical signal, and then trapping

the signal by temporarily turning off the pump beam, which essentially stores the

signal as a superposition of the atomic states. While this technique has been shown

to boast storage lifetimes on the order of seconds, it suffers from the drawback that

the frequency of light is inflexible and must be chosen to be resonant with specific

atomic transitions. This is a significant problem if the goal is to connect to other

quantum systems with other light frequency requirements.

As the experiments with EIT have shown, it is beneficial to convert the optical

signal into something that is longer lived than simply light itself. While the EIT

experiments store the signal in atomic states, it is also possible to convert the

optical signal into a mechanical excitation within an optical fiber through the use

of stimulated Brillouin scattering [67]. This approach is considerably more flexible in

terms of optical frequencies, but has thus far shown a relatively short storage lifetime

on the order of 4 ns.

Given this context, optomechanics offers an appealing option for storing an

optical signal, which is the focus of this chapter. The work presented here is an

experimental demonstration of storing an optical signal as a mechanical excitation

in a silica microsphere[2, 3]. Silica microspheres were chosen for their ease of
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fabrication, since the goal here was simply proof-of-principle. As with the case of

the stimulated Brillouin scattering, the signal is stored as a mechanical excitation. In

the case of optomechanics, however, the mechanical excitation is in a high quality-

factor mechanical oscillator, which leads to a significantly longer storage lifetime.

Additionally, in comparison to the EIT experiments, the light in the optical resonator

of an optomechanical system can be virtually any frequency, limited only by the

absorptive properties of the materials used. This means much greater flexibility in

terms of optical frequency. All of this is accomplished while satisfying the requirement

that the storage process preserve the quantum state of the stored signal.

In addition to the aforementioned benefits, an individual mechanical mode can

interact with many different optical modes within an optomechanical system. This

has the additional benefit of allowing the signal to be retrieved with an entirely

different frequency of light. Thus, not only is this approach useful for storing the

signal, but also for the conversion of the signal from one optical frequency to another.

This opens up the possibility to connect one type of quantum system to another,

despite differing wavelength requirements. Another possibility is the ability to map

a signal to a wavelength that is suitable for long distance communication.

Although it is not investigated here, it is worth mentioning that an array of

optomechanical resonators would allow the spatial-temporal profile of an optical pulse

to be stored.

For the following experiments, the laser is locked in such a way that “writing”

and “reading” laser pulses are tuned to one mechanical frequency, ωm, below the

optical resonance, with a “signal” laser pulse at resonance, as illustrated in Fig. 5.1.

The writing and signal pulses arrive simultaneously, followed later by the readout

pulse, which is shown in Fig. 5.2. The writing pulse converts the optical signal pulse
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  FIGURE 5.1. Spectral positions of the writing, reading, and signal pulses.

  

FIGURE 5.2. Typical pulse timing.

into a mechanical excitation, and the reading pulse later converts the mechanical

excitation back into an optical pulse at the cavity resonance.

This is all possible because the red detuned writing and reading pulses

effectively control the coupling strength between the on-resonance optical field and

the mechanical mode. The specific mechanical mode affected is determined by how

far the writing and reading pulses are tuned away from the optical resonance.
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FIGURE 5.3. Experimental apparatus for our earlier single color light storage
experiments[2]. Light from a CW Ti:Sapphire laser is sent through a sequence of
modulators to create the necessary optical pulses, as described in the text. This
light is then coupled to a silica microsphere using free-space coupling. Light from the
cavity is heterodyne detected, and the signal sent to a time-gated spectrum analyser
for data collection. The laser is frequency stabilized relative to the relevant optical
mode using a Pound-Drever-Hall technique.

5.2. Experimental Details

The following experiments were performed using the experimental apparatus

described in Section 3.7, with the specific arrangement shown in Figs. 5.3 and

5.4. For these experiments, light was coupled to the silica microsphere using the

previously described tapered optical fiber method. The acousto-optic and electro-

optic modulators are used to generate the pulse shapes shown in Fig. 5.2.

The retrieved optical pulse emitted by the silica microsphere is heterodyne

detected and sent to the time-gated spectrum analyzer. The gate delay time of the

spectrum analyzer can be changed relative to the optical pulses. Other parameters,
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FIGURE 5.4. Experimental apparatus for our later single color light storage
experiments[3]. In this later work, we switched to tapered optical fiber for coupling
to the microsphere. Also note the introduction of a two-pass AOM for the locking
beam, which allowed the lock position to be tuned more easily.

such as the detuning of the writing and reading pulses, can also be adjusted. Profiles

of the system can then be constructed by changing any of these parameters iteratively

and taking a measurement at each value. At each individual value for the parameter

in question, the spectrum analyzer takes a spectrum of the heterodyne response and

sends this spectrum a desktop computer. A sample of what these spectra look like is

shown in Fig. 5.5. The computer fits a Lorentzian function to this spectrum, and the

area under this curve is used to determine the intensity of the response.

5.3. Results

A typical heterodyne detected emission from the resonator is shown in Fig. 5.7,

plotted with respect to time. For comparison, a theoretical prediction for the intensity

of the intracavity optical field is shown in Fig. 5.6. At t = 0 the on-resonance signal

pulse arrives, which is converted to a mechanical excitation by the red-detuned writing

pulse. The mechanical excitation, shown as the orange trace in Fig. 5.6, then decays
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FIGURE 5.5. Heterodyne detected signal field.

exponentially due to mechanical losses. At a later time, the red-detuned reading

pulse arrives. The reading pulse converts the mechanical excitation into the retrieved

optical signal, which can be seen at t = 8 µs.

The results[3] shown in Fig.5.7 are a significant improvement in time resolution

as compared to some of our earlier work [2]. This improvement is primarily due to

a modification of the spectrum analyser parameters used for data collection. The

previous results were collected with a resolution bandwidth (RBW) of 1 MHz, with

a gate length of 3 µs. The gate length was chosen to accommodate the set-up time

required by the Agilent E4401B spectrum analyser with the 1 MHz RBW. For our

more recent work, a larger resolution bandwidth of 30 MHz was used, allowing for a

gate length of 100 ns. The improved time resolution was also facilitated by reducing

the beam diameter of light passing through AOM1.
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FIGURE 5.6. Theoretical plot of the signal field (black) and intensity of the stored
mechanical oscillation (orange).
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FIGURE 5.7. Power of the heterodyne-detected signal and retrieved pulses emitted
from the resonator.
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FIGURE 5.8. Power of the heterodyne detected signal and retrieved pulses as a
function of time with varying separations between the writing and reading pulses.
For these data, all pulses are 1 µs in duration.

Since the storage process relies on a mechanical excitation, the storage lifetime is

determined by the mechanical decay lifetime. Figure 5.8 shows the temporal profile

of the signal and retrieved pulses with varying separations between the writing and

reading pulses. Note that the area of the retrieved pulse, and consequently the energy

of the retrieved pulse, decays as the pulse separation is increased. The mechanical

decay lifetime can be determined independently from the mechanical linewidth. As

shown in Fig. 5.9, the decay of the storage efficiency with respect to the pulse

separation shows good agreement with the mechanical decay lifetime determined by

the mechanical linewidth, indicating that the storage lifetime is limited only by the

mechanical loss of the system. For the experiments described here, the primary source

for mechanical loss is clamping loss due to the stem of the microsphere. By keeping

the stem diameter as small as possible, we are able to achieve mechanical linewidths

on the order of κ/2π = 16 kHz, which corresponds to a decay lifetime of 8.5 µs.
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FIGURE 5.9. Dependance of reading intensity on delay between writing and reading
pulses.

The light storage process requires the writing and reading pulses to be ωm away

from the signal pulse, satisfying the anti-Stokes resonance condition. Figure 5.10 plots

the retrieved pulse energy against the detuning of the writing and reading pulses,

which illustrates the necessity of this spectral configuration. Also shown in this figure

is the theoretically determined spectral feature, which is in good agreement with the

experimental results, both in shape and linewidth. It should also be noted that the

theoretically determined feature is independent of the power of the reading pulse.

The optomechanical light storage process also relates to the optomechanical

analog to EIT, known as optomechanically induced transparency or OMIT[37]. Light

storage has been successfully demonstrated in atomic systems utilizing EIT, where

an optical pulse is converted into a stationary superposition of atomic states and

then back into an optical signal at a later time[58, 59]. Optomechanical light storage

relates similarly to OMIT. In OMIT, a strong pump field at the red sideband renders

the system transparent to a weak, on-resonance probe field. By turning the pump
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FIGURE 5.10. Retrieved pulse energy as a function of ωp − ωL − ωm.

field off and then on again at a later time, the probe field is stored as a mechanical

excitation.

To make the comparison to OMIT, we have performed both light storage

and OMIT measurements on the same experimental sample. The black trace of

Fig. 5.11 shows a typical emission spectrum, detected during the writing phase of the

experiment. For these data, the red-detuned control field is held at a fixed frequency

relative to the optical mode, while the on-resonance signal field is swept over the

optical resonance. In this case, OMIT is observed, with the control field acting as the

pump and the signal field acting as the probe. The larger, positive Lorentzian feature

is due to the interaction between the signal field and the optical mode. This feature

is simply the optical emission from the microsphere, with to the probe pulse entering

an optical WGM and being re-emitted. As such, this feature has a linewidth that is

determined by the optical linewidth of the microsphere’s WGM. The sharp dip at the

center of the emission spectrum occurs when the anti-Stokes resonance condition is

met between the writing and signal fields. This dip corresponds to OMIT and is the
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FIGURE 5.11. (a),(b) Optical emission from WGM, detected once the writing pulse
has reached steady state (black) and during the reading pulse (red), as a function of
detuning, ∆ = ωs − ωL. The solid red line represents the theoretical prediction, and
the solid blue line is a Lorentzian fit.

transparency window for the signal pulse. The red trace of Fig. 5.11 is detected during

the reading phase, and shows the light storage efficiency as the frequency of the signal

field is swept over the optical resonance. This retrieved optical field corresponds to

the dip in the OMIT measurement.

Measurements were also performed during the reading phase with varying

intensities of the reading pulse, which are shown in Fig. 5.12. As the reading pulse

intensity is increased, the mechanical excitation is converted to an optical signal at a

faster rate. This leads to a faster decay of the signal.
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FIGURE 5.12. Heterodyne-detected retrieved optical emission, obtained directly from
oscilloscope. The emission is bandpass filtered with the mechanical frequency around
161 MHz.

It is desirable to demonstrate the coherence of the retrieved pulse. In light of this,

the measurements performed in Fig. 5.12 were collected by sending the photodetector

output directly to an oscilloscope. The RF source used to drive EOM1 was phase

locked to the trigger source for the experiment. The oscilloscope was used to view

the retrieved signal with signal averaging. When this was done, a consistent phase

was observed for the retrieved signal, suggesting that the retrieved pulse is coherent

with the signal pulse.

5.4. Conclusion

We have experimentally demonstrated a system to store an optical signal as a

mechanical excitation of a silica microsphere. The storage lifetime is determined by

the mechanical damping time, which is on the order of 8.5 µs. These experiments were
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carried out at room temperature. At room temperature, the thermal background noise

of the mechanical mode prevents this technique from being applied to the quantum

regime. There are, however, promising methods that could be used to deal with

this thermal noise. For one, recent experimental studies have successfully cooled

the mechanical resonator of an optomechanical system to its quantum ground state.

Through a combination of these techniques, it may be possible to optomechanically

store quantum information.
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CHAPTER VI

OPTOMECHANICAL DARK MODE AND OPTICAL MODE CONVERSION

“Fear is the path to the dark side. Fear leads to anger. Anger leads to hate. Hate

leads to suffering.”

– Yoda, Star Wars: The Phantom Menace

6.1. Motivation

There are many applications of optomechanics that gain their usefulness by

virtue of their ability to deal with quantum information. This presents an additional

challenge, however, given that the mechanical modes of an optomechanical resonator

are populated by thermal noise when at room temperature. This thermal noise will

swamp any quantum information, thus preventing the system from being used as

a quantum device. The most heavily pursued method for overcoming this obstacle

has been to cool the mechanical mode to its quantum ground state. This has been

met with a reasonable degree of success, but implementation requires a considerable

amount of expertise and equipment. While it is possible to perform proof of principle

experiments at room temperature, it would be desirable to pursue a method of

implementation that would not necessitate the heavy burden of cooling to the ground

state.

An alternate approach is to utilize an optomechanical dark mode[68–70]. This

approach involves two optical modes that are coupled to the same mechanical mode.

An optomechanical dark mode is a superposition of the two optical modes, but is

decoupled from the mechanical mode. As such, the dark mode facilitates coupling

between the two optical modes, but is protected from the unwanted thermal noise.
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FIGURE 6.1. (a) Energy level diagram of a Λ type system, which can be used to form
a dark mode in atomic systems. (b) An optomechanical system with two separate
optical modes interacting with a single mechanical oscillator. Each optical mode has
its own optomechanical coupling rate, g1 and g2.

This would allow several quantum applications of optomechanics to be free from the

requirement a quantum ground state.

The optomechanical dark mode is similar to the dark modes that have been

demonstrated in atomic systems. In the context of atomic systems, the dark mode

phenomenon is thoroughly tested, both with atomic vapors and with solid state

systems such as quantum dots and diamond nitrogen vacancy centers. The energy

level diagram for the Λ configuration for such a system is shown in Fig. 6.1a. Here,

the states |1〉 and |2〉 are both coupled to an excited state, |e〉. A dark mode is

formed by stimulating both transitions, such that destructive interference prevents

the excited state from interacting. This also induces a conversion between the two

lower states, thus allowing those two states to be swapped with each other without

being corrupted by the excited state.

In this chapter, we examine the optomechanical variant of the dark mode, using

our silica microsphere system in the weak coupling regime[8]. In this optomechanical

dark mode, two separate optical whispering gallery modes are coupled to a single

mechanical breathing mode. A dark mode is formed by allowing both optomechanical

interactions to occur simultaneously, facilitated by the presence of an anti-Stokes

shifted optical pulse for each optical mode. The dark mode is immune to the thermal
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FIGURE 6.2. Spectral position of optical fields relevant to the formation of an
optomechanical dark mode. The control lasers, sc,1 and sc,2 are at the red sideband
of each optical mode, and together allow for the formation of the dark mode.

contamination of the mechanical mode, while still allowing an exchange between the

two optical modes.

One application that would benefit from the optomechanical dark mode is an

optical frequency conversion system[71–75]. The light storage process described in

Chapter V can be used to instead convert an optical signal from one optical frequency

to another optical frequency by using two different optical modes to interact with the

same mechanical mode. This is the system that we use to examine the optomechanical

dark mode.

6.2. Dark Mode Theory

To form a dark mode in this system, we use two optical “control” pulses, sc,1

and sc,2, with each being one mechanical frequency, ωm, below its respective optical

mode, as shown in Fig. 6.2. The frequencies of these two control pulses are ωL,1 and

ωL,2, while the frequencies of the optical modes are ωc,1 and ωc,2. Subsequently, we

introduce both ∆1 = ωL,1 − ωc,1 and ∆2 = ωL,2 − ωc,2. We also define â1 and â2 as

relevant linearized intracavity fields for each mode (i.e. â1 and â2 each correspond
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to δâ). Each mode has its own optomechanical coupling strength, g1 and g2. The

optomechanical dark mode, âD, and bright mode, âB, can be defined as follows:

âD ≡ (g2â1 − g1â2)/g̃

âB ≡ (g1â1 + g2â2)/g̃,

(6.1)

where we have also introduced g̃ =
√
g2

1 + g2
2. We can also instead write the

intracavity fields in terms of the bright and dark modes:

â1 = (g1âB + g2âD)/g̃

â2 = (g2âB − g1âD)/g̃,

(6.2)

At this point we revisit our optomechanical Hamiltonian from Eq. 2.25, but now

modifying this Hamiltonian to include the second optical mode[68, 70]:

Ĥ = −~∆1â
†
1â1 − ~∆2â

†
2â2 + ~ωmb̂†b̂− ~g(â1b̂

† + â†1b̂)− ~g(â2b̂
† + â†2b̂) (6.3)

Making the assumption that ∆1 = ∆2 = −ωm and substituting â1 and â2 from 6.2

into the Hamiltonian in Eq. 6.3 produces a Hamiltonian written in terms of the bright

and dark modes:

H = ~ωm(â†BâB + â†DâD + b̂†b̂)− ~g̃(â†Bb+ âBb
†) (6.4)

It can be seen from this Hamiltonian that the dark mode is decoupled from the

mechanical oscillator, and indeed only the bright mode interacts with the mechanical

oscillator. The dark mode is not present in the interaction component of the
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Hamiltonian. The bright mode, however, is coupled to the mechanical oscillator

with an effective optomechanical coupling rate of g̃.

Looking back at the Hamiltonian in Eq. 6.3, we can follow a similar procedure

to that used in Section 2.3 to find the equations of motion for this system. First the

Heisenberg Equation is used, followed by the introduction of damping and driving

terms. Doing so results in the following equations of motion:

dâ1

dt
=
(
i∆1 −

κ1

2

)
â1 + ig1b̂+

√
κex,1δŝp

dâ2

dt
=
(
i∆2 −

κ2

2

)
â2 + ig2b̂

db̂

dt
=

(
−iωm −

Γm
2

)
b̂+ ig1â1 + ig2â2

(6.5)

Here we have also introduced total cavity decay rates κ1 and κ2 for each mode, as

well as the cavity decay rates associated with each mode’s input coupling, κex,1 and

κex,2.

What we really want are equations of motion in terms of the bright and dark

modes. We can find these by taking the time derivative of our definitions of aD and

aB:
dâD
dt

= (g2
˙̂a1 − g1

˙̂a2)/g̃

dâB
dt

= (g1
˙̂a1 + g2

˙̂a2)/g̃

(6.6)

Our system can be simplified at this point by saying that ∆1 = ∆2 = −ωm and that

κ1 = κ2 ≡ κ. We can now substitute the expressions for â1 and â2 from Eq. 6.2 into

Eq. 6.5 to write dâ1/dt and dâ2/dt in terms of âD and âB, then substitute these new

expressions for dâ1/dt and dâ2/dt into Eq. 6.6, and finally perform a little algebra to
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obtain the following equations of motion:

dâD
dt

=
(
−iωm −

κ

2

)
âD +

g2

g̃

√
κex,1δŝp

dâB
dt

=
(
−iωm −

κ

2

)
âB + ig̃b̂+

g1

g̃

√
κex,1δŝp

db̂

dt
=

(
−iωm −

Γm
2

)
b̂+ ig̃âB

(6.7)

In the new equations of motion in Eq. 6.7, it is apparent once again that the dark

mode does not interact with the mechanical oscillator. This makes it much easier to

find a solution. We can follow a line of reasoning similar to the process used to get

from Eq. 2.28 to Eq. 2.34, which was done back in Section 2.4. Doing so results in

the following solution:

A−D =
2

κ

g2

g̃

√
κex,1s̄p

A−B =

(
Γm

2
− i∆p

)
κ
2

(
Γm

2
− i∆p

)
+ g̃2

(
g1

g̃

)
√
κex,1s̄p

B− =
−ig1

κ
2

(
Γm

2
− i∆p

)
+ g̃2

√
κex,1s̄p

(6.8)

Recall that ∆p is the detuning of the near-resonance probe laser (referred to in this

chapter instead as the signal laser), with ∆p = Ω− ωm = ωp − ωL − ωm.
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If the signal laser is at resonance with the optical cavity, then ∆p = 0. In that

case, we have

A−D(∆p = 0) =
2

κ

g2

g̃

√
κex,1s̄p

A−B(∆p = 0) =
2Γm

κΓm + 4g̃2

(
g1

g̃

)
√
κex,1s̄p

B−(∆p = 0) =
−4ig1

κΓm + 4g̃2

√
κex,1s̄p,

(6.9)

which can be simplified by introducing the overall optomechanical cooperativity, C̃ ≡

4g̃2/Γmκ:

A−D(∆p = 0) =
2

κ

g2

g̃

√
κex,1s̄p

A−B(∆p = 0) =
1

1 + C̃

(
2g1

κg̃

)
√
κex,1s̄p

B−(∆p = 0) =
−1

1 + C̃

(
4ig1

κΓm

)
√
κex,1s̄p

(6.10)

Evidently, the coupling between the bright mode and the mechanical oscillator

displays what could be described as OMIT. The presence of the strong anti-Stokes

control lasers suppresses the formation of the bright mode. As shown in Eq. 6.10, the

bright mode is suppressed by a factor of (1 + C̃).

In the limit of ultrastrong coupling, where g1 and g2 are much greater than

κ1, κ2, and ωm, the dark mode becomes spectrally separated from the bright mode.

Our system, however, falls into the regime of weak optomechanical coupling. In this

regime, the dark mode can no longer be spectrally resolved from the bright mode.

Fortunately, this does not preclude the formation of the dark mode, as we have just

seen from Eq. 6.10. OMIT gives us a way to suppress the formation of the bright

mode.

92



Another way to express the suppression of the bright mode is to examine the

ratio of the dark mode amplitude to bright mode amplitude (at ∆p = 0):

A−D
A−B

=

(
g2

g1

)2

(1 + C̃)2 (6.11)

As shown here, the suppression of the bright mode occurs when the optomechanical

cooperativity is sufficiently high. When compared to the notion of using ultrastrong

coupling to spectrally resolve the dark mode from the bright mode, we can see that

using OMIT is more practical, given that most optomechanical systems feature optical

linewidths that far exceed their mechanical linewidths, whereas most optomechanical

systems do not fall into the category of ultrastrong coupling.

If we had not made the assumption that κ1 = κ2, this dark-to-bright ratio would

instead take the following form:

A−D
A−B

=

(
g2

g1

)2 [
1 + C2 + C1

(
κ1

κ2

)]2

, (6.12)

with C1 and C2 being the cooperativities for each individual optical mode, viz. Ci =

4g2
i /Γmκi. This shows that a sufficiently large cooperativity is still able to suppress

bright mode formation, even if the optical modes differ in optical damping[69, 70].

Now that a method for the formation of the dark mode has been established,

we can focus on how the dark mode can be detected. Substituting the result from

Eq. 6.10 into the equivalent of the definitions from Eq. 6.2 produces

A−1 =

(
C1

1 + C̃
+ C2

)
2

κ

1

C̃

√
κex,1s̄p

A−2 =

(
1

1 + C̃
− 1

)
2

κ

√
C1C2

C̃

√
κex,1s̄p.

(6.13)
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In these equations, the first term in the parenthesis is due to the bright mode while the

second term is due to the dark mode. In A−2 there is destructive interference between

the bright mode contributions. This means that excitation of the second optical

mode is a direct consequence of the suppression of the bright mode, and is thus an

indication that this suppression has occurred. Additionally, with the excitation of

the dark mode and for values of C2 that are comparable to C1, increasing C2 should

lead to an increase in both mode 1 and mode 2. This means that examining the

behavior of these populations as C2 is increased will also give an indication of dark

mode formation.

6.3. Experimental Details

A description of the individual components of the experimental apparatus is

presented in Chapter III. For the dark mode experiments, it is necessary to interact

with two different optical modes. The dark mode is formed by two simultaneous

anti-Stokes shifted optical pulses, one for each optical mode, which we will refer to

as “control” pulses. Another simultaneous optical pulse is at resonance with the first

of the two optical modes and serves as our signal pulse. The spectral positioning of

these pulses is shown in Fig. 6.1b. The dark mode formed by the two control pulses

allows the signal to transfer to the other optical mode.

To generate these pulses, two different lasers were used, each with its own locking

circuitry and modulators. The modulators allowed all of these beams to be pulsed,

with the experiment beams all arriving simultaneously and having an 8 µs duration.

After passing through the modulators for the individual lasers, the light from the two

lasers is combined and coupled to the microsphere using the tapered fiber method.

Transmitted light is then sent to a diffraction grating, which is used to separate the
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FIGURE 6.3. Simplified diagram of the experimental apparatus for the dark mode
experiments. Two separate lasers are used to generate the necessary optical pulses,
with each laser locked to one of the relevant optical modes. After exiting the
microsphere, the two frequencies of light are separated by a diffraction grating.

light associated with each individual laser. Each separated beam then has its own set

of detectors for locking and detection of relevant experimental signals. The spectrum

analyzer gate is set to a gate delay of 6 µs from the arrival of the experiment pulses,

with a gate duration of 1 µs. When all is said and done, this is essentially the same

experimental setup as the OMIT experiment in Chapter IV, but with a duplicate

laser and duplicate equipment related to that laser. This is shown diagrammatically

in Fig. 6.3.

Two different microsphere samples were used for the data shown in this

chapter. For sample A, (κ1, κ2, ωm,Γm)/2π ≈ 19, 16, 150, 0.055 MHz. For sample

B, (κ1, κ2, ωm,Γm)/2π ≈ 15, 15, 154, 0.06 MHz. Sample A was used for Figs. 6.4, 6.5,

and 6.7. Sample B was used for Fig. 6.6.

6.4. Results

The optomechanical cooperativities for each of the two optical modes can be

controlled by adjusting the power of each respective control pulse. Figure 6.4a shows

the emission spectrum from optical mode 1 in the absence of a control pulse for optical

mode 2, i.e. C1 = 1.4 and C2 = 0. This spectrum is obtained by scanning the signal
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field across the optical resonance, thereby adjusting the detuning, ∆ = ωin−ωc1. The

result is a typical OMIT spectrum for optical mode 1, as the second optical mode

does not have any effect under these conditions. The value for C1 is determined by

fitting a function to this OMIT spectrum, with the width of the OMIT dip being

given by ωm(1 + C1). The same process was performed, but instead exciting optical

mode 2 in the absence of control pulse 1, in order to establish subsequent values for

C2. This measurement was performed to obtain all listed values for C1 and C2.

By introducing the second control pulse, both optical modes become capable of

interacting with the mechanical mode. This allows the formation of the dark mode.

The plot in Fig. 6.4b was taken in the same manner as Fig. 6.4a, but now with

the introduction of the second control pulse, and hence non-zero values for C2. The

presence of the dark mode leads to a diminishing OMIT dip (and spectral broadening

of the dip) as C2 is increased, due to the increasing excitation of optical mode 1. The

dip in the emission spectrum persists, however, even at high values of C2, due to the

conversion from optical mode 1 to optical mode 2 via the dark mode. In other words,

at low C2 this dip is due to OMIT, while at high C2 the dip is a consequence of dark

mode facilitated optical mode conversion.

These spectra are juxtaposed with similar spectra taken at optical mode 2, shown

in Fig. 6.4c. The peaks in Fig. 6.4c depict an increasing emission from optical mode

2 as C2 is increased. As described previously, this emission heralds the formation of

the dark mode and the suppression of the light mode. The dip in Fig. 6.4b and the

peak in Fig. 6.4 also undergo a noticeable spectral shift as C2 is increased. This shift

arises as a result of the optical spring effect, where the increasing radiation pressure

of control pulse 2 causes a shift in ωm.
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FIGURE 6.4. (a) Optical emission power spectrum for optical mode 1 in the absence
of control pulse 2, shown as a function of the detuning, ∆ = ωin − ωc1. (b and
c) Optical emission power spectra for optical mode 1, (b), and optical mode 2, (c),
shown as a function of ∆. Pin, P1, and P2 are the optical powers for Ein, E1, and E2,
respectively. For these three figures, P1 = 2.5 mW, which corresponds to C1 = 1.4.
For (a) and (b), Pin = 10 µW . For (c), Pin = 20 µW . Solid lines depict theoretical
predictions. For these and all subsequent plots, the emission power is normalized
with respect to the emission power at resonance when C1 = C2 = 0.
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FIGURE 6.5. (a) Emission powers from optical mode 1 (squares) and optical mode
2 (circles), as a function of C2 and with ∆ = −ωm. Solid lines indicate theoretical
predictions. (b) Calculated dark-mode-to-light-mode fraction as a function of C2.
Diamonds correspond to the individual experimental results shown in (a). (Inset)
Timing of the detection gate used for this figure and for Fig. 6.4. The optical pulses
arrive simultaneously, with a duration of 8 µs. The detection gate begins 6 µs after
the arrival of the optical pulses, and has a gate duration of 1 µs.
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The spectra in Figs. 6.4b and c permit the calculation of the optical emission

powers for both modes at ∆ = −ωm, which are shown in Fig. 6.5a. Note that for

relatively small C2, emission from both optical modes increases with increasing C2.

As C2 becomes sufficiently large and the ratio of dark mode population to light mode

population becomes sufficiently high, the emission from optical mode 2 saturates and

begins to decrease with further increase in C2.

The preceding results are also compared to theoretical predictions given by the

coupled oscillator model. The parameters necessary for these predictions, κ1, κ2, ωm,

Γm, C1, C2, and η1η2 = 0.16, were all determined experimentally. η1 and η2 are the

output coupling ratios for each respective optical mode, with η = κex/κ. Additionally,

these experimentally determined values are used to compute the dark mode fraction,

i.e. the ratio of dark mode population to bright mode population, which is shown

in Fig. 6.5b. The dark mode fraction reaches 99% at the highest value for C2, with

C1 = 1.4 and C2 = 3.5.

It is important to note that while these proof-of-concept experiments exhibit a

rather modest photon conversion efficiency, this is not a limitation of optomechanical

dark modes in general. The photon conversion efficiency, which is the ratio of output

flux from mode 2 over input flux to mode 1, can be written as

χ = 4η1η2
C1C2

(1 + C1 + C2)2
. (6.14)

Thus, in our system, the relatively low output couplings and cooperativities lead to

our low conversion efficiency. In the limit that η1 = η2 = 1 and C1 = C2 � 1,

however, the system approaches a unity conversion efficiency.

The detected signal in these experiments is the heterodyne signal from the mixing

between the driving field E2 and the emitted light from optical mode 2. The rise time
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FIGURE 6.6. Heterodyne detected signal resulting from the mixing between the
driving field E2 and the emitted light from optical mode 2, obtained with Pin = 0.1
mW, C1 = 0.25, and C2 = 0.4. Dashed red lines indicate the theoretically predicted
envelope with an adjustable offset. (Inset) Expanded plot of the same signal, showing
the frequency of oscillation of the heterodyne signal (squares). For reference, the solid
line shows a periodic oscillation with a frequency of ωm/2π = 154 MHz.

for this heterodyne signal is given by 1/[(1 + C1 + C2)Γm]. This rise time was a

critical factor when selecting the detection gate delay of 6 µs. Figure 6.6 shows the

heterodyne signal as a function of time, prior to being sent to the spectrum analyzer,

with C1 = 0.25 and C2 = 0.4. The rise time of this signal matches the theoretical

prediction. Additionally, the frequency of oscillation of this signal was found to match

ωm as expected, which suggests the coherent nature of the optical mode conversion.

It is also desirable to probe the population of the mechanical oscillator, so as

to investigate the bright mode population. This was done by the addition of a weak

“reading” pulse at the same frequency as E1, with the reading pulse beginning 1 µs

after the termination of the other pulses and lasting 3 µs. The spectrum analyzer

gate was then moved to be centered on the reading pulse. These timings are shown

in the inset of Fig. 6.7. Additionally, ωc1 and ωc2 were fixed at their respective red
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line denotes the theoretical prediction using the coupled oscillator model. (Inset)
Timing of pulses used for this figure. The shaded area indicates the spectrum analyzer
detection gate.

sidebands. This detection process is essentially the same as the light storage readout

process described in Chapter V.

The average phonon number of the mechanical oscillator, 〈N〉, is then determined

by spectrally integrating the power density spectrum obtained from the spectrum

analyzer. These measurements were performed with a relatively strong input signal

of 10 µW, and with C1 = 0.7. This strong input signal power was chosen in order

to keep the detected phonon numbers well above the background thermal phonon

number. Under these conditions, the phonon number at C2 = 0, 〈N0〉, is two orders

of magnitude greater than the thermal background.

These measurements are shown in Fig. 6.7, plotted as a function of C2. The

results are in good agreement with the theoretical prediction, which is also shown

in Fig. 6.7. This agreement supports the concept that the system is driven to a
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dark mode at high values for C2, with the mechanical oscillation being increasingly

dampened by anti-Stokes scattering of E2.

6.5. Conclusion

This chapter presents a successful demonstration of the formation of an

optomechanical dark mode. The dark mode is used to pass an optical signal from one

optical whispering gallery mode to another, facilitated by coupling to a mechanical

mode. By utilizing the dark mode, this optical transfer can occur without the signal

being contaminated by the thermal background of the mechanical oscillator.

The experiments presented here use silica microspheres, which feature relatively

modest optomechanical cooperativities. Other optomechanical systems, such as

optomechanical membranes or nanobeams, feature cooperativites of 103 or higher,

which is significantly larger than ours. It should be possible to extend the dark mode

process to the quantum regime by applying it to one of these ultrahigh quality factor

systems.
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CHAPTER VII

SUMMARY

7.1. Dissertation Summary

This dissertation examines the transient behavior of an optomechanical system.

This includes experimental demonstrations of time-dependent optomechanically

induced transparency (OMIT), the use of an optomechanical system as a means

for storing an optical signal as a mechanical excitation, and formation of an

optomechanical dark mode to facilitate optical mode conversion.

The optomechanical system used for these experiments was a silica microsphere.

For most of the experiments, light was coupled to the sphere using a tapered

optical fiber. Some of the earlier work involved free-space coupling. Tapered fiber

coupling is preferred over free-space coupling, as the free-space method requires the

microspheres to be deformed. All of the experiments presented were performed at

room temperature.

OMIT is a process where the presence of an anti-Stokes shifted “pump” laser

renders an optomechanical system transparent to an on-resonance “probe” laser. In

the absence of the pump laser, the on-resonance probe would enter the optical cavity

and hence show a dip in its transmitted power, with the width of this transmission dip

being determined by the optical quality factor. With the introduction of the pump

laser, the pump laser creates a destructive interference which prevents the probe from

interacting with the optical cavity. This causes a transparency feature to appear in

the probe’s transmission, with the width of this OMIT feature being determined by
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the mechanical quality factor. Thus the transparency window of OMIT is a narrow

feature that appears within the broader absorption feature due to the optical mode.

Previous work involving OMIT focuses on its steady state behavior. The

experiments presented in this dissertation examine the time-domain behavior of

OMIT. Experimental observation supports a characteristic time scale for OMIT given

by [(1+C)Γm]−1, and a damping rate of CΓm. These affect both the width and depth

of the OMIT feature.

By gating the pump laser, the OMIT configuration can be used instead as a

mechanism for storing an optical signal as a mechanical excitation, as was covered in

Chapter V. The presence of the pump laser causes Rabi-like oscillations between the

on-resonance optical field and the mechanical oscillator. By applying a π/2 pulse with

the pump laser, an on-resonance optical signal can be converted into a mechanical

excitation, and vice versa. The storage lifetime was found to be determined by the

mechanical damping rate, which was on the order of 8.5 µs for our experimental

conditions. At room temperature, the thermal background noise of the mechanical

mode prevents this technique from being used for quantum signals.

Finally, introducing a second optical mode allows for the formation of an

optomechanical dark mode. By forming a dark mode, it is possible to pass an optical

signal from one optical whispering gallery mode to another, using the mechanical

mode as a mediator. This dark mode is formed by the presence of two anti-

Stokes shifted control lasers, one for each optical mode. The dark mode is a special

superposition of the two optical modes that allows for optical mode conversion without

interacting with the mechanical oscillator, despite the fact that the mechanical

oscillator is the facilitator for this conversion. An experimental demonstration of

the formation of an optomechanical dark mode was presented in Chapter VI.
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7.2. Future Work

Our demonstration of optomechanical light storage was performed at room

temperature. As such, the mechanical mode is already populated by thermal

background noise. While this thermal background does not inhibit the use of

this system for classical applications, it precludes its use as a system for storing

quantum information. This limitation can be overcome, however, by first cooling

the mechanical oscillator to its quantum ground state. Several optomechanical

systems have been successfully cooled to their mechanical ground state[28, 29]. By

combining these techniques, it should be possible to store quantum information

optomechanically. This could lead to applications in quantum memory, as well as

other methods for quantum optical wavelength conversion that do not necessarily

require the formation of a dark mode.

Also, in the classical domain, our implementation of optomechanical light storage

is unable to preserve the shape of an optical signal. By constructing a system where

a series of optomechanical systems are connected one after another, it should be

possible to store an optical signal and still preserve its shape. Such an arrangement

would effectively allow for the group delay to be dynamically tuned[22, 54, 76, 77].

Additionally, the microspheres used for our experimental realization of the

optomechanical dark mode possess cooperativities slightly greater than 1, and less

than 10. This was sufficient to demonstrate the dark mode formation, but would be

insufficient for working with quantum signals. There are several other optomechanical

systems, such as membranes or nanobeams, that exhibit much higher cooperativities,

with some 103 or greater[44, 78]. By combining our method for dark mode formation

with one of these high cooperativity systems, it should be possible to perform work

in the quantum regime while at room temperature.
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APPENDIX A

TABLE OF SYMBOLS

Symbol Meaning

ĤL Hamiltonian for the optical cavity

Ĥm Hamiltonian for the mechanical oscillator

Ĥ0 Non-perturbed Hamiltonian

Ĥint Interaction Hamiltonian

â Photon annihilation operator

b̂ Phonon annihilation operator

ᾱ Optical cavity average coherent amplitude

n̄c Average classical photon number for the strong control field

δâ Optical cavity fluctuating term

ŝin Total input optical field; ŝin = ŝc + ŝp

ŝc Pump/control input optical field

ŝp Probe/signal input optical field

δŝp Probe/signal input optical field in frame rotating at ωL

âout Outgoing optical field (Trans. for spheres, refl. for Fabry-Pérot)

f̂in Thermal noise for the optical cavity

b̂in Thermal noise for the mechanical oscillator

x̂ Displacement of the mechanical oscillator

xzpf Zero point fluctuation of the mechanical mode

R Radius of the microsphere
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Symbol Meaning

ωc Optical cavity resonance frequency

ωm Mechanical oscillator resonance frequency

ωL Frequency of pump/control laser

ωp Frequency of probe/signal laser

∆ Detuning of the pump/control laser; ∆ = ωL − ωc

Ω Spectral separation between pump and probe; Ω = ωp − ωL

∆p Detuning of probe/signal laser; ∆p = Ω− ωm = ωp − ωL − ωm

g0 Photon-phonon coupling strength; g0 = xzpfωc/R

g Effective optomechanical coupling strength; g = g0

√
n̄c

κex Optical cavity decay rate associated with input coupling

κ0 Optical cavity decay rate associated with all other effects

κ Total optical cavity decay rate; κ = κex + κ0

η Optical coupling parameter; η = κex/κ

Γm Mechanical oscillator decay rate

C Optomechanical cooperativity; C = (2g)2/Γmκ
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APPENDIX B

DIAGRAMS OF MACHINED PARTS

Following are several schematics for aluminum sample holders used for the

experiments presented in this thesis.

0.3
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FIGURE B.1. Holder for tapered fiber. The fiber is glued into the groves on each
fork. The shape of this holder allows a microscope objective for imaging to be brought
in close to the microsphere and tapered section of the fiber. All measurements are in
inches.
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FIGURE B.2. Microsphere sample holder. The microsphere is suspended vertically
and is held in a fiber chuck. The fiber chuck sets into the hole in this sample mount
and is secured with a set screw. All measurements are in inches.
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S. Gröblacher, M. Aspelmeyer, and O. Painter. Laser cooling of a
nanomechanical oscillator into its quantum ground state. Nature, 478:89, 2011.

[31] E. Verhagen, S. Delglise, S. Weis, A. Schliesser, and T. J. Kippenberg.
Quantum-coherent coupling of a mechanical oscillator to an optical cavity
mode. Nature, 482:63, 2012.

[32] J. Zhang, K. Peng, and S. L. Braunstein. Quantum-state transfer from light to
macroscopic oscillators. Phys. Rev. A, 68:013808, 2003.

[33] C. Genes, A. Mari, P. Tombesi, and D. Vitali. Robust entanglement of a
micromechanical resonator with output optical fields. Phys. Rev. A, 78:032316,
2008.

[34] D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J.
Kimble, and P. Zoller. Cavity opto-mechanics using an optically levitated
nanosphere. PNAS, 107:1005, 2010.

[35] F. Vollmer, S. Arnold, and D. Kengb. Single virus detection from the reactive
shift of a whispering-gallery mode. PNAS, 105:20701, 2009.

[36] LIGO Scientific Collaboration. Observation of a kilogram-scale oscillator near its
quantum ground state. New J. of Phys., 11:073032, 2009.
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