
 
 
 
 
 
 
 
 

A TALE OF TWO TUNICATES: DIDEMNUM VEXILLUM AND BOTRYLLOIDES  
 

VIOLACEUS AS BIOFOULING AGENTS IN AQUACULTURE 
 
 
 
 
 
 
 
 

by 
 

ZOFIA RENATA KNOREK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A THESIS 
 

Presented to the Department of Biology 
And the Graduate School of the University of Oregon 

in partial fulfillment of the requirements 
for the degree of 

Master of Science 
 

June 2018 



 
ii 

THESIS APPROVAL PAGE 
 

Student: Zofia Renata Knorek 
 
Title: A Tale of Two Tunicates: Didemnum vexillum and Botrylloides violaceus as 
Biofouling Agents in Aquaculture 
 
This thesis has been accepted and approved in partial fulfillment of the requirements for 
the Master of Science degree in the Department of Biology by: 
 
Aaron Galloway  Chair 
Richard Emlet   Member 
Janet Hodder   Member 
 
and 
 
Sara D. Hodges  Interim Vice Provost and Dean of the Graduate School 
 
Original approval signatures are on file with the University of Oregon Graduate School. 
 
Degree awarded June 2018. 
  



 
iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2018 Zofia Renata Knorek 
This work is licensed under a Creative Commons 

Attribution-NonCommercial-NoDerivs (United States) License. 
 

 
  



 
iv 

THESIS ABSTRACT 
 

Zofia Renata Knorek 
 
Master of Science 
 
Department of Biology 
 
June 2018 
 
Title: A Tale of Two Tunicates: Didemnum vexillum and Botrylloides violaceus as 
Biofouling Agents in Aquaculture 
 
 
 Invasive colonial tunicates pose substantial economic threat to the shellfish 

aquaculture industry, but their population dynamics and ecological impacts are highly 

variable and region-specific. This thesis contributes to our regional understanding of two 

such tunicates in Oregon. The first chapter explores the population dynamics of 

Didemnum vexillum, one of Oregon’s top 100 most dangerous invasive species, at an 

oyster farm. From May 2011 to 2016 the population fluctuated extensively, though did 

not exhibit any net growth over the study period. In the second chapter, I demonstrate 

that Botrylloides violaceus had no impact on the growth, condition, or organic 

composition of oysters and mussels grown in a simulation of longline aquaculture. 

Together, these studies paint a cautiously positive outlook for the shellfish aquaculture 

industry in Oregon. 

This thesis includes previously unpublished co-authored material.  
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CHAPTER I 

GENERAL INTRODUCTION 

The two content chapters within this thesis stand alone, though the general 

introduction and conclusion provide thematic cohesion. I commence each chapter with 

more detailed introductions. While this inherently presents some redundant background 

information, it facilitates the chapters’ publication as journal articles. Both chapters 

address invasive tunicates and longline shellfish aquaculture, though each focuses on a 

specific tunicate: Didemnum vexillum (Chapter II; co-authored with Bruce Hansen, Steve 

Rumrill, and Aaron Galloway) and Botrylloides violaceus (Chapter III).  

Invasive Colonial Tunicates 

 Invasive species—organisms whose populations expand beyond their historical 

range to a degree that causes damage to environmental, economic, or human health 

(Clinton 1999)—possess a suite of traits that confer their invasiveness. Such traits include 

rapid growth, short time to sexual maturity, the ability to reproduce sexually and 

asexually, high fecundity, long annual reproductive period, release from predation 

pressure, and a tolerance to broad environmental conditions, or phenotypic plasticity 

(Sakai et al. 2001). Numerous colonial tunicates have successfully established in South 

America (Rocha 2009; Ben-Shlomo et al. 2010), New Zealand (Kott 2002; Fletcher et al. 

2013a), Europe (Izquierdo-Muñoz 2009; McKenzie et al. 2017), and both coasts of North 

America (Carver et al. 2006; Dijkstra et al. 2007a; Lambert 2009; McKenzie et al. 2017). 

These invasions were successful due to the coupling of the tunicates’ traits and their 

anthropogenic transport via ballast water, ship hulls, or aquaculture materials (Carlton 

and Geller 1993; Ruiz et al. 1997, 2000; Hulme 2009). In the systems these tunicates 
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have established, they are prominent members of and dominant competitors for space in 

marine fouling communities (Edwards and Stachowicz 2010, 2011)—altering and 

threatening the native fouling community diversity (Jackson 1977; Dijkstra et al. 2007b; 

Simkanin et al. 2013; Kaplan et al. 2017), as well as shellfish aquaculture. This thesis 

addresses two of these invasive colonial tunicates, Didemnum vexillum Kott (2002) and 

Botrylloides violaceus, and their impacts as biofouling agents in the context of longline 

shellfish aquaculture.  

Here, I seek to briefly introduce the natural history and ecology of ascidians in 

general, and the invasive colonial tunicates D. vexillum and B. violaceus (Table 1) 

specifically. I will use the terms “ascidian” and “tunicate”. Note, however, that all 

ascidians are tunicates, but not all tunicates are ascidians. Subphylum Tunicata 

(Urochordata)—whose member organisms have bodies surrounded in a gelatinous, 

acellular, and cellulose-like tunic—also includes the planktonic Classes Appendicularia 

and Thaliacea. For more comprehensive reviews of ascidians and their larvae, see Millar 

(1971), Berrill (1975), Cloney (1987), Svane and Young (1989), and Lambert (2005); 

McKenzie et al. (2017) and Carver et al. (2006) have produced extensive reviews and 

descriptions of D. vexillum and B. violaceus, respectively.  

The tadpole larvae of ascidians are short-lived and lecithotrophic, relying 

exclusively on their egg yolks for energy (Cloney 1987). Colonial ascidian larvae are 

large and vulnerable to visual predators, and some have therefore developed color 

deterrents or chemical defenses (Young and Bingham 1987; Svane and Young 1989; 

Lindquist et al. 1992). Some, though not all, ascidian larvae use oral papillae to sense, 

select, and adhere to their ultimate substratum (Svane and Young 1989). Once they attach  
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Table 1. Taxonomic classification of Didemnum vexillum and Botrylloides violaceus. 

Rank                          Taxon 
 

Phylum 
 

Subphylum 
 

Class 
 

Order 
 

Family  
 

Genus 
 

Species 

 

Chordata 
 

Urochordata/Tunicata 
 

Ascidiacea 
 

Aplousobranchia 
 

Didemnidae 
 

Didemnum 
 

Didemnum vexillum  

 

Chordata 
 

Urochordata/Tunicata 
 

Ascidiacea 
 

Pleurogona 
 

Styelidae 
 

Botrylloides 
 

Botrylloides violaceus 

 
and metamorphose, adult ascidians use a ciliary mucus apparatus to filter and feed on 

phytoplankton, as well as other suspended particulates and bacteria (Millar 1971; 

Lambert 2005). In temperate regions they are reproductively most active during summer, 

when primary productivity is highest. The distributions of ascidians are primarily 

influenced by temperature, salinity, light, and hydrodynamics (Lambert 2005).  

Ascidians are either solitary or colonial, wherein multiple zooids share common 

tissue. Colonial ascidians may be social, with stolons that connect zooids each 

surrounded by a separate test, or compound, with morphologically and genetically 

identical zooids contained within a common tunic. All ascidians reproduce sexually. In 

addition to sexual reproduction, all colonial tunicates also exhibit growth by asexual 

reproduction via budding, or blastogenesis (Cloney 1987). Therefore, many colonial 

ascidians are strong competitors for space, especially in disturbed habitats (Ayling 1981; 

Altman and Whitlatch 2007) or as epibionts that can settle on, overgrow, and smother 

other organisms. Together, these abilities make colonial tunicates—such as D. vexillum 

and B. violaceus—optimal invaders (Sutherland and Karlson 1977).  
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Didemum vexillum: Biology and Ecology  

 Didemnum vexillum is native to Japan (Lambert 2009; Stefaniak et al. 2012), 

though it was only recently first described outside its native range in New Zealand (Kott 

2002). Due to the diversity of the genus Didemnum, the identification of D. vexillum is 

challenging. As a result, researchers used the nomenclature “Didemnum sp. A” and 

“Didemnum vexillum” interchangeably for this cryptic species prior to 2009, wherein 

Stefaniak et al. (2009) demonstrated with genetic analyses that they are indeed the same 

species. The individual zooids are small—approximately 1-2 mm (Kott 2002; Daniel and 

Therriault 2007; Lambert 2009)—and colonies can fuse and form chimeras (Smith et al. 

2012). The zooids’ gut loops, eggs, embryos, and calcareous spicules contained within 

the colony tunic surface result in yellow, tan, or cream-colored colonies (Kott 2002; 

Lambert 2009; McKenzie et al. 2017). At the tough tunic surface, each zooid possesses a 

six-lobed oral siphon through which it feeds (Millar 1971; Lambert 2005; Fig. 1a, b). 

Additional distinguishing features of D. vexillum include: the dark lines around their 

irregular zooid groupings where spicules are absent (McKenzie et al. 2017); the nine coils 

of vas deferens surrounding their testis (Kott 2002; Lambert 2009); and, as larvae, the six 

pairs of lateral ampullae and three adhesive ampullae (Lambert 2009). 

 Comparable to other invasive species, D. vexillum exhibits a wide tolerance to 

numerous environmental parameters, including temperature (-2 to 24ºC; Valentine 2009), 

salinity (10-36‰; Bullard and Whitlatch 2009; Gröner et al. 2011), depth (0-81m; 

Valentine et al. 2007b), habitat (Bullard and Whitlatch 2009), and settlement substrate 

(including over loose cobble, artificial structures, established benthic invertebrate 

communities, or eelgrass; Valentine et al. 2007a; Daley and Scavia 2008; Bullard and 
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Figure 1. D. vexillum illustration depicting A) colony surface and B) a lateral section 
through the colony. 

Whitlatch 2009; Carman and Grunden 2010). Growth rates may slow or stop during 

unfavorable conditions (e.g., cold), however, and colonies may even exhibit regression—

but not necessarily complete death (McKenzie et al. 2017). Conversely, during the warm 

months D. vexillum colonies can expand at remarkable rates. For example, Valentine and 

colleagues (2009) observed a 6- to 11-fold increase in colony surface area in just 15 days. 

Further, D. vexillum has few predators in its introduced range, likely a mechanism of both 

its low surface pH (3.8 ± 0.2 [x̅ ± 1 SD]; Morris et al. 2009) and chemical defenses 

(Bullard and Whitlatch 2009), which have been reported for several other didemnids 

(Lindquist et al. 1992) and Didemnum species (Pisut and Pawlik 2002). Despite these 

defenses, some littorine snails (Valentine et al. 2007b; Carman 2009), chitons (Kleeman 

2009), and green urchins (Epelbaum et al. 2009b) have been observed feeding on D. 

vexillum colonies. And while Forrest et al. (2013) provide compelling evidence that 

native benthic predation is key in preventing the spread of D. vexillum from 

anthropogenic habitat to adjacent natural habitats in New Zealand, the overall potential 

for predators to interfere with its establishment is limited (Epelbaum et al. 2009b). 
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Ultimately, its D. vexillum’s abilities to compete for space, alter habitat complexity, and 

grow on numerous natural and artificial substrates—from the undersides of boats and 

marinas to cobble or over other organisms in the fouling community—that makes it such 

a pervasive invader (Daniel and Therriault 2007; Osman and Whitlatch 2007). 

The plasticity of growth of D. vexillum also strongly aids in its success as an 

invader. Colonies may form lobular tendrils in low-current waters, or encrusting mats 

under stronger current conditions (Fig. 2a, b). It is thought that the tendril formation 

enhances the likelihood of asexual reproduction via fragmentation (Reinhardt et al. 

2012). These fragments can remain suspended for up to 30 days, and settle and attach as  

new sister colonies (Lambert 2005; Bullard et al. 2007; Stefaniak et al. 2009; Morris and 

Carman 2012). With regards to sexual reproduction, D. vexillum is like all didemnids in 

that it is hermaphroditic and ovoviviparous. McKenzie et al. (2017) describe D. 

vexillum’s sexual reproduction in great detail. Briefly, sperm are released through the 

common cloacal opening of a colony, then enter the oral siphon of another zooid and 

fertilize the eggs therein; larvae brood within the tunic of the zooid for several weeks and 

are then released, again through the common cloacal apertures (Lambert 2009; Fletcher 

and Forrest 2011; McKenzie et al. 2017), and eventually settle in shaded areas (Millar 

1971; Monniot et al. 1991; Fletcher and Forrest 2011). Larval recruitment is dependent 

on local environmental conditions, but occurs at temperatures of 14-20ºC (Valentine 

2009). Salinities of 26-30‰ and temperatures of 14-18ºC are most conducive to growth 

(Gittenberger 2007; Bullard and Whitlatch 2009).  

Initial reports suggested that D. vexillum hitchhiked on oyster shells and spat and 

spread from Japan as early as the 1960s (McKenzie et al. 2017). Lambert (2009) later 



 
7 

 
Figure 2. Didemnum vexillum in A) tendril (Moss Landing, CA, 2013) and B) encrusting 
formations (Sandwich, MA, 2006). Photo credits: Joshua Lord and Dann Blackwood, 
respectively. 

rejected this hypothesis due to a lack of reports indicating its sudden appearance before 

the 1970s, instead suggesting that fouled ship hulls and sea chests were the primary 

vectors of introduction, with secondary spread via recreational boating. D. vexillum has 

since established itself globally (Table 2). Due to the short-lived nature of the planktonic 

tadpole larvae of ascidians, it is unlikely that ballast water transport is a significant 

vector—though the possibility of larvae settling inside the hull, forming reproductive 

adult colonies, and releasing larvae at the port of destination should not be ruled out 

entirely. It is more probable that D. vexillum spreads as a result of rafting upon colonized 

macroalgae or eelgrass fronds (Carman and Grunden 2010; Fletcher et al. 2013c; Carman 

et al. 2014), unregulated recreational boating (Clarke Murray et al. 2011; Roche et al. 

2015), fouled aquaculture gear (Coutts and Forrest 2007; Denny 2008), or via a ‘stepping 

stone’ network of closely spaced artificial substrates (López-Legentil et al. 2015). 

Botrylloides violaceus: Biology and Ecology 

 Botrylloides violaceus is too believed to be endemic to Japan (Oka 1927; Berrill 

1950), though its native range is considered as Siberia to Southern China. Saito et al. 

(1981) updated the description of B. violaceus following confusion in discerning several 

A B 
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Botrylloides spp. from one another. B. violaceus zooids are larger (2-4 mm) than those of 

Didemnum vexillum, and are distributed around a common cloacal aperture in elongated, 

irregular and ovular double rows (Fig. 3a). The monochrome colonies vary greatly in 

hue—from bright orange to maroon, purple, yellow, or cream (Saito et al. 1981; Lambert 

and Lambert 2003; Fig. 3b)—and the color may be light-dependent (Berrill 1947). Its 

zooids share a common vascular system and cloacal cavity, which maximizes zooid 

density (Taneda and Watanabe 1992). Four large and small branchial tentacles surround 

the zooids’ oral siphons in alternation, and their testis lobes form a rosette (Fig. 4, need to 

draw). B. violaceus colonies are generally encrusting, but can also form thick lobes and 

projections. More comprehensive morphological descriptions are available in Saito et al. 

(1981), Carver et al. (2006), and Dorning (2017a). Their tunic is fragile, and easily torn. 

 The whole-body regeneration abilities of B. violaceus and related botryllid 

ascidians have been studied and described at length (e.g., Rinkevich et al. 1995; 

Voskoboynik et al. 2007; Brown et al. 2009). Extraordinarily, Botrylloides leachi can 

regenerate from as little as a small fragment of a blood vessel with several totipotent stem 

cells (Rinkevich et al. 1995). B. violaceus primarily reproduces asexually via lateral 

budding, during which a parent zooid is absorbed and replaced by new buds (Berrill 

1947). Less frequently, asexual reproduction occurs via fragmentation and reattachment 

(Epelbaum et al. 2009c; Bock et al. 2011); a sophisticated genetic allorecognition system 

determines whether two colonies may fuse together (Rinkevich 2005). B. violaceus is 

viviparous and hermaphroditic, and five days after ovulating, the mother zooids 

disintegrate (Mukai et al. 1987). The larvae that are released from sexual reproduction are 

2-3 mm in length, and possess 24-32 ampullae (Saito et al. 1981). Asexual reproduction 
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Figure 3. Botrylloides violaceus A) colonies (Sandwich, MA, 2006) and B) color 
variants. Photo credits: Dann Blackwood and Adrienne Pappal, respectively.  

occurs during the spring and summer, whereas sexual reproduction generally occurs from 

June through September; hibernation occurs through the winter (Stachowicz et al. 2002; 

Epelbaum et al. 2009a; Dijkstra et al. 2011).  

 B. violaceus’ tolerance to a variety of environmental conditions is consistent with 

its cosmopolitan distribution (Carver et al. 2006). Specifically, B. violaceus can survive 

conditions of 5-25ºC and 14-38‰ and grow at 15-25ºC and 20-38‰, though it performs 

best at 20-25ºC and 26-38‰ (Epelbaum et al. 2009a; Dorning 2017b; Lord 2017); 

further, Dijkstra et al. (2008) report that B. violaceus is not tolerant of tidal salinity 

fluctuations that regularly include salinities below 15‰. In their regeneration study, 

Brown et al. (2009) also found that colonies maintained at 11ºC developed at a slower 

rate than those at 16ºC. The doubling time of B. violaceus decreased nearly three-fold 

when the temperature at which it was held increased from 15 to 25ºC (Yamaguchi 1975). 

Perhaps most notable is B. violaceus’ high survival in waters polluted with heavy metals 

and sewage (Lambert and Lambert 2003). These tolerances increase its competitive 

advantage, especially in an increasingly human-influenced world. 

A B 
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Figure 4. Botrylloides violaceus illustration showing A) colony surface and B) individual 
zooid anatomy. 

As with other colonial ascidians, B. violaceus outcompetes native and non-native 

assemblages for space (Dijkstra and Harris 2009; Gittenberger and Moons 2011; 

Simkanin et al. 2013). Like D. vexillum, B. violaceus colonies prefer an inverted or 

vertical orientations, as a horizontal upward position leaves them susceptible to detrital 

settlement and smothering (Yamaguchi 1975). Predators have been observed consuming 

B. violaceus in controlled laboratory studies (Yamaguchi 1975; Osman and Whitlatch 

2004; Epelbaum et al. 2009b), though predation alone has a limited ability to suppress 

fouling populations of B. violaceus. Simkanin et al. (2013) reported that the native 

predators on rocky shores prevented its infiltration from nearby floating docks into the 
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natural habitat. The authors also note, however, that increased propagule pressure or 

decreased health of the rocky reef community could eventually lead to a B. violaceus 

colonization of the site. The global distribution of B. violaceus is similar to that of D. 

vexillum (Table 2), likely because its vectors of introduction also include recreational 

boating (Berman et al. 1992; Lambert and Lambert 2003), the hulls of slow-moving 

commercial ships and barges (Carver et al. 2006), rafting on eelgrass (Locke et al. 2007), 

crustaceans (Bernier et al. 2009), or other floating debris, and bivalve aquaculture 

transfers (Bullard and Carman 2009). It is this last transfer method that most concerns the 

present work.  

Shellfish Aquaculture and Invasive Colonial Tunicates  

 Aquaculture is an increasingly critical mechanism for meeting the growing 

demand for food by a global population projected to reach 9.7 billion by 2050 (United 

Nations 2015), particularly in developing maritime nations. For the first time in 2014, 

farmed fish for human consumption surpassed that of wild-caught (FAO 2016)—though 

this estimate may be biased by substantial underreported fisheries catch data (Pauly and 

Zeller 2017). Nevertheless, both the capture and aquacultural production of bivalve 

shellfish in the United States specifically has increased rapidly over the past half century 

from ~31,000 metric tons in 1950 to ~141,000 metric tons in 2010 (Campbell 2011; 

Campbell and Pauly 2013; Sea Around Us 2016). In 2013, sales of molluscs produced by 

aquaculture in the United States reached 329 million USD, to which Oregon and 

Washington combined contributed 160 million USD, or nearly half (USDA 2014). In 

addition to their economic worth, farmed bivalves provide numerous ecosystem services, 

including biogeochemical benthic-pelagic coupling (Newell 2004), water filtration 
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Table 2. First observations of D. vexillum and B. violaceus in countries outside of their native ranges to date, from where they 
have since continued to spread. 

 Didemnum vexillum Botrylloides violaceus 
Country Year first 

observed 
Site of first observation Citation Year first 

observed 
Site of first observation Citation 

Australia NA NA NA 2003 Moreton Bay, Queensland Kott 2003 

New Zealand 2001 near Tauranga and 
Whangamata Harbours 

Kott 2002; Kleeman 
2009; Lambert 2009 

NA NA NA 

Netherlands 1991 Dutch Delta Ates 1998; 
Gittenberger 2007; 
Stefaniak et al. 2009 

1999 Oosterschelde Gittenberger 2007 

Belgium NA NA NA 1999 Zeebrugge (Vanreusel et al.)  
France 1968*, 1998 maybe Glénan archipelago, 

confirmed port of Le Havre 
Lafargue 1968; 
McKenzie et al. 2017 

NA NA NA 

Ireland 2005 Malahide Estuary Minchin and Sides 
2006 

2005-06** Malahide and Carlingford 
marinas 

Minchin 2007 

United Kingdom 2008 Holyhead Harbour, north 
Wales 

Griffith et al. 2009 2004 Gosport, Southampton, 
Hamble, Poole, Exmouth 
& Queen Anne's Battery 
in Plymouth 

Arenas et al. 2006 

Spain 2008 Santander, Baiona, Maoña, 
Corme-Porto, Gijón 

El Nagar et al. 2010 2010-13** Ria de Arosa, Galicia Noreña et al. 2014 

Italy 2012 Venitian Lagoon Tagliapietra et al. 
2012 

1990s** Venitian Lagoon Zaniolo et al. 1998 

Canada East Coast: 
2012; West 
Coast: 2003 

Parrsboro, Nova Scotia; 
Okeover Inlet, British 
Columbia 

Daniel and Therriault 
2007; Therriault and 
Herborg 2008; Moore 
et al. 2014 

East Coast: 
2001 West 
Coast: 1992 

Lunenburg and Mahone 
Bay, Nova Scotia; French 
Creek on Vancouver 
Island 

Carver et al. 2006; 
Cohen 2011 

United States East Coast: 
1988*, 2000; 
West Coast: 
1993 

Damariscotta River, ME; San 
Francisco, CA 

Bullard et al. 2007 East Coast: 
1992; West 
Coast: 
1945†,1970s** 

east coast: Great Bay 
Estuary, Gulf of Maine; 
west coast: Southern 
California, San Francisco 
Bay, Willapa Bay, Puget 
Sound 

Van Name 1945; Fay 
and Vallee 1979; 
Berman et al. 1992 

Mexico 2004-2005** San Quintin Bay Rodriguez and Ibarra-
Obando 2008 

1994-2000** Ensenada, Baja California Lambert and 
Lambert 2003 

*potential, but unconfirmed first occurrence; **specific year not specified in publication; † misidentified as another Botrylloides spp.; NA = no recorded presence
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(Coen et al. 2007), habitat creation, and refugia from predators (Grabowski and Peterson 

2007). Considering the collapse of 85% of oyster reefs globally (Beck et al. 2011), the 

aquaculture of oysters and other filter-feeding bivalves may damper the loss of these 

services. 

Shellfish aquaculture has been of significant cultural importance to Native 

Americans for millennia (Waselkov 1987; Cannon 2000), and recent research highlights 

the sustainability of their subsistence practices (Lepofsky and Caldwell 2013; Rick et al. 

2016). In the 18th and 19th centuries, however, European colonizers overharvested the 

native oysters Crassostrea virginica and Ostrea lurida on the east and west coasts of the  

United States, respectively (Baker 1995; Kirby 2004). After the O. lurida populations 

declined, the colonizers transplanted C. virginica and later the Pacific oyster (Crassostrea 

gigas) to West Coast estuaries (MacKenzie et al. 1997). C. gigas is now the most 

commonly farmed bivalve in the region; the mussels Mytilus spp. and several clam 

species are also farmed. Numerous pressures now pose threat to shellfish aquaculture, 

including: ocean acidification (Gazeau et al. 2010; Barton et al. 2012), disease (Lafferty 

et al. 2015), harmful algal blooms (Shumway 1990), eutrophication (Dumbauld et al. 

2009), and invasive species—including colonial ascidians.  

As epibionts and fouling organisms, invasive colonial tunicates pose a growing 

threat to the shellfish aquaculture industry because they smother bivalves and cover the 

gear used to grow them (Switzer et al. 2011). The added weight can destroy the gear, 

including cages and nets or lines, as well as the crop contained therein or on. Revenue 

loss may also result from increased production and processing costs or stock mortality; 

broadly, conservative estimates price biofouling control at 5-10% of all production costs 
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(Fitridge et al. 2012). Didemnum vexillum specifically was estimated to cost 807,000 

USD in damages to the green-lipped mussel industry in New Zealand (Sinner and Coutts 

2003)—at least in part because it reduces the density of smaller, more recently seeded 

and therefore more vulnerable, mussels (Fletcher et al. 2013b). Further, D. vexillum 

deterred larval settlement of the bay scallop Argopecten irradians irradians, which 

Morris et al. (2009) believed to be a harbinger for the commercially grown scallop 

Placopecten magellanicus in Georges Bank. Auker (2010) suggested that D. vexillum 

inhibits Mytilus edulis growth by covering their lip margins and siphons, thereby 

interrupting their ability to filter feed, and Zajac et al. (1989) posited that Botrylloides sp. 

depleted food from its surrounding community, thereby negatively impacting its survival. 

Anecdotal evidence intimates, however, that Botrylloides violaceus does not decrease the 

meat yield of the mussels it fouls (Carver et al. 2006). These contradictory findings may 

reflect the fact that the actual filtering capacity for colonial tunicates is challenging to 

measure and remains largely undetermined for numerous species (Daniel and Therriault 

2007), or that the impacts are dependent on both the specific members in the epibiont-

basibiont relationship, as well as their geographic location.  

Many invasive species exhibit rapid adaptation to local climate conditions (Sakai 

et al. 2001). A population of B. violaceus from eastern North America, for example, 

experienced 50% mortality at ~28ºC, compared to a 50% mortality at ~25.5ºC for a 

population from western North America, which the authors contributed to local 

adaptation to climate change  (Sorte et al. 2011). In general, climate change is anticipated 

to favor invasive species (Stachowicz et al. 2002), including B. violaceus, whose thermal 

reproduction barriers are projected to soon disappear (Dijkstra et al. 2017). Conversely, 
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Lord (2017) predicts that D. vexillum may be a less potent invader under warming 

conditions, owing largely to it being a cooler-water species. Climate change is 

geographically variable, as are the biotic responses and adaptations it elicits. Therefore, 

to elucidate the current extent of the invasion and predict the future threats invasive 

colonial tunicates may pose to shellfish aquaculture, it is critical that the tunicate 

population dynamics and impacts on the specific bivalves being grown be investigated on 

a regional scale.  

The remaining chapters of this thesis seek to fulfill these objectives in Oregon. 

The first study (Chapter II) describes the seasonal variation of a D. vexillum population at 

an oyster farm in Winchester Bay, Oregon from May 2011-2016. In Chapter III, I 

examine whether B. violaceus1 has any impact on the growth, condition index, or 

macromolecular organic composition of C. gigas and Mytilus trossulus. While there is 

currently no mussel aquaculture in Oregon, a robust industry exists in Washington state’s 

Puget Sound, as well as British Columbia. Some bivalve growers in the Pacific 

Northwest claim that, while invasive colonial tunicates are a nuisance because of the 

extra labor their fouling induces, they do not impact the quality of the shellfish itself 

(Gordon King of Taylor Shellfish Farms, pers. comm.). To my knowledge, this claim has 

not been tested empirically in the Pacific Northwest.  

                                                
1 Originally, I intended to use D. vexillum as the model organism for both chapters. The 
D. vexillum population in the Charleston Boat Basin, however, has dwindled (pers. obs.), 
and was concerned with propagating it further with my field experiment. Because D. 
vexillum is also particularly challenging to work with in a laboratory setting, I opted to 
use B. violaceus, whose Charleston Boat Basin population is thriving.  
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CHAPTER II 

SEASONAL DYNAMICS OF A DIDEMNUM VEXILLUM POPULATION IN  
 

OREGON: A FIVE-YEAR SUMMARY 
 

I gratefully acknowledge the SCUBA divers on the US Forest Service dive team that 

helped collect the field survey data used in this chapter. This work would not have been 

possible without Umpqua Aquaculture’s cooperative efforts and support. While I 

analyzed these data and wrote this chapter alone, Drs. Edward Davis and Alan Shanks 

provided valuable guidance with statistical analyses and data visualization. Drs. Bruce 

Hanson, Steven Rumrill, and Aaron Galloway are my manuscript collaborators and co-

authors; for their project planning, acquisition and sharing of data, and critical feedback 

of the manuscript I am thankful.  

Introduction 

Invasive species have dramatically altered the structure and function of several 

marine ecosystems, particularly coastal and estuarine habitats (Grosholz 2002). The 

effects of invasive species in the United States cost an estimated 120 billion USD per 

year (Pimentel et al. 2005); preventing and mitigating these effects are priorities of the 

National Oceanographic and Atmospheric Administration (NOAA; Daley and Scavia 

2008). In a time where most aspects of global change are anticipated to favor invasive 

species (Dukes and Mooney 1999), understanding the biology of invasive species is of 

primary concern. 

 The colonial tunicate Didemnum vexillum Kott (2002) was first recorded on the 

United States West Coast in San Francisco Bay in 1993 (Bullard et al. 2007). D. vexillum 

is native to Japan (Stefaniak et al. 2012), but has become a global invader, plaguing 
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shellfish aquaculture in New Zealand (Fletcher et al. 2013b), the Northwest Atlantic 

(Carman et al. 2010; Sephton et al. 2011), the Northeast Pacific (Switzer et al. 2011), and 

the Mediterranean (Ordóñez et al. 2015). A fouling organism, D. vexillum is of particular 

concern for shellfish aquaculture, as it can smother crop and gear (Fig. 5a, b), depress 

growth rates (Fletcher et al. 2013b), and deter larval settlement (Morris 2009). 

Conservative estimates put the global cost of biofouling control to the aquaculture 

industry at 1.5-3 billion USD annually (Fitridge et al. 2012). In New Zealand, D. vexillum 

specifically caused 807,000 USD in damages to the green mussel (Perna canaliculus) 

aquaculture industry (Sinner and Coutts 2003).  

 

Figure 5. Didemnum vexillum colonies A) forming tendrils and encrusting mussels in 
New Zealand and B) fouling aquaculture gear in British Columbia. Photo credits: Paul 
Barter and Gordon King, respectively. 

D. vexillum is an ecosystem engineer (Wallentinus and Nyberg 2007), and can fill 

diverse niches because it can survive in a wide range of environmental conditions. For 

example, it is found in temperatures from -2 to 24ºC (Valentine 2009), a wide range of 

salinities (10-36‰; Bullard 2009; Gröner et al. 2011), depths (0-81m; Valentine et al. 

2007), habitats (estuarine to outer coast; Bullard 2009), and settlement substrates, 

A B 
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including artificial structures (Daley and Scavia 2008), loose cobble (Valentine et al. 

2007b), eelgrass (Carman and Grunden 2010), and over healthy established benthic 

invertebrate communities (Bullard and Whitlatch 2009). During the winter, D. vexillum 

colonies exhibit regression, but not complete death (Valentine et al. 2007b). In other 

studies, this regression pattern has been strongly correlated to seasonal fluctuations in 

temperature (Gröner et al. 2011) and salinity (Fletcher et al. 2013a), but resistance to 

these fluctuations varies across populations (Valentine 2009; Fletcher and Forrest 2011; 

Gröner et al. 2011). 

There are two known populations of D. vexillum in Oregon: one in the Charleston 

Marina, and one in Winchester Bay. Both populations were first observed in 2010 

(Rumrill et al. 2014), and oysters are farmed at the latter site. D. vexillum may have 

arrived to Winchester Bay by way of oyster transfers, on which numerous invasive 

species are known to hitchhike (Mineur et al. 2007), and to the Charleston Marina via 

recreational boating, one of the current most common vectors of aquatic invasive species 

(Clarke Murray et al. 2011; Roche et al. 2015). To our knowledge, there is currently no 

published research about the extent or ecology of D. vexillum in Oregon. Addressing and 

assessing the risks of invasive species is a key conservation issue outlined in the Oregon 

Conservation Strategy (Oregon Department of Fish and Wildlife 2016), and D. vexillum 

is listed as one of the state’s top 100 most dangerous invasive species (Oregon Invasive 

Species Council 2016). Furthermore, state officials recently rated D. vexillum as ‘High 

Risk,’ with a factor score of 12.5 out of 15. One of the concerns raised in this risk 

assessment was that D. vexillum would soon generate sufficient propagule pressure to 



 
19 

colonize new sites, as many of the diverse conditions and habitats in which D. vexillum 

can survive also exist in Oregon (Rumrill et al. 2014).  

The objective of this study is to characterize the seasonal variation and general 

extent of the D. vexillum invasion in its primary Oregon foothold—Winchester Bay. We 

hypothesized that, in congruence with other studies, D. vexillum cover would be greater 

in fall than in spring, and that this cover is directly correlated with salinity (Gröner et al., 

2011) and temperature (Valentine 2009; Fletcher and Forrest 2011; Fletcher et al. 2013a). 

To test these hypotheses, divers performed subtidal surveys of Winchester Bay D. 

vexillum cover biannually from 2011 to 2016. To our knowledge, this study is both the 

first to analyze D. vexillum in Oregon, and spans the longest monitoring period of an in 

situ D. vexillum population to date. 

Methods 

Monitoring occurred in the South Jetty ‘Triangle’ at the mouth of the Umpqua 

River in Winchester Bay, OR (43°39'54.5"N 124°12'40.3"W; Fig. 6), where the Umpqua 

Aquaculture company operates its longline oyster farm. The lines are attached to floats, 

allowing for constant submersion regardless of tidal fluctuation (Fig. 7). A United States 

Forest Service SCUBA team performed subtidal Triangle surveys biannually in May and 

October from 2011-2016. Due to periodic lapses in funding, divers did not perform 

surveys in May 2015 and October 2016. During each survey, divers followed vertical 

subtidal oyster culture lines (May 2011, n = 11; October 2011, n = 14; May 2012, n = 14; 

October 2012, n = 12; May 2013, n = 20; October 2013, n = 17; May 2014, n = 22; 

October 2014, n = 17; October 2015, n = 23; May 2016, n = 18) from the bottom to the 

surface, along which they counted and measured Didemnum vexillum colonies. The 
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divers randomly chose new lines to observe each survey. We used an in situ diver-based 

survey approach so as to minimize disturbance to the gear and product owned by 

Umpqua Aquaculture.  

 
Figure 6. Map of South Jetty “Triangle” study area at the interface of the Umpqua River 
and Pacific Ocean in Winchester Bay, OR. Dark grey represents inlayed map area. Figure 
rendered in QGIS (QGIS Development Team 2018). 
 

To account for the multi-dimensional structure of the oyster clumps and the D. 

vexillum colonies encrusting them, the divers measured along the vertical contours of the 

clumps, rather than following a linear path. Here, we define ‘colony size’ as the measured 

distance of continuous D. vexillum on an oyster line, and ‘colony abundance’ as the 

number of these continuums. Note, however, that it is probable that within such a 

measurement that genetically different colonies exist, as D. vexillum colonies have the 

ability to fuse and form chimeric colonies (Smith et al. 2012; Rinkevich and Fidler 2014). 

While surveying, the divers measured each line and colony to the nearest centimeter. 
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They recorded the depths at which the D. vexillum cover began and ended, as well as 

some other intermittent depths, from their dive computers. 

 

 
 
Figure 7. Longline subtidal oyster farm infrastructure. 

 Unfortunately, there is not a continuous water quality monitoring asset within the 

Triangle itself, which is situated at the mouth of an estuary and the outfall of the Umpqua 

River, a moderately large river that drains 12,103 km2 of western Oregon (Fig. 6; Wallick 

et al. 2011). Moreover, the jetty walls of the Triangle are expected to limit the complete 

exchange of water and salinity of the water within the Triangle during every tidal cycle. 

Therefore, to account for longer-term water overturn and evaluate the relationship 

between D. vexillum cover and salinity, we used the Umpqua River output over a longer 

time frame—the 15-day average prior to the survey date—as a proxy for salinity (USGS 

Station #14321000; U.S. Geological Survey 2018). HOBO® (Onset Computer 

Corporation, Massachussets) probes collected temperature and salinity data from January 

2012 to January 2013 in the Triangle. These data were inversely related to Umpqua River 
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output during the same time frame, and we thus found the 15-day average output as a 

sufficient salinity proxy. Further, the temperature fluctuations recorded in the Triangle 

during the HOBO® probe deployment period were comparable to the sea surface 

temperatures recorded further offshore at NOAA Buoy 139 (National Data Buoy Center 

2017) within the same period (Rumrill et al. 2014); therefore, we used the NOAA data to 

calculate the 15-day average temperature recorded prior to the survey date, and used 

these values for the analyses below as a proxy for temperature within the Triangle. 

We used RStudio (v. 1.1.414; RStudio Team 2018) for all statistical analyses. 

First, we performed two-sample t-tests to compare the fall and spring averages of total 

length of line covered (m), proportion of line covered (%), colony abundance, and pre-

survey 15-day average Umpqua River discharge (m3s-1) and offshore sea surface 

temperature (ºC; Table 3). We then visualized total line covered and proportion of line 

covered, and abundance over time, as well as vertical colony distribution using the depth 

and cover distance data in point and whisker plots. Several of the variables I sought to fit 

to a linear model (survey means of: length of line covered [m; n = 10], proportion of line 

covered [%; n = 10], and colony length [m; n = 10]) were not normally distributed, nor 

were their residuals. Therefore, I used R package “TeachingDemos” to Box-Cox 

transform the data: 

f(y)	=	(y"-1)/ λ    (Box and Cox 1964) 

where y is the dependent variable and λ is the transformation parameter that best 

normalizes the dependent variable’s distribution. I regressed these normalized data 

against the salinity and temperature proxies, as well as season, and summarized these 

results with plots and summary tables.  
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Results 
 
Seasonal trends 

 The overall average Didemnum vexillum colony abundances between spring and 

fall were not significantly different (p = 0.8). However, there were significant differences 

between the overall spring and fall averages for: length of line covered (m; p = 0.0009), 

proportion of line covered (%; p = 0.03, Umpqua River discharge (m3s-1; p = 0.008), and 

sea surface temperature (ºC; p = 0.05; Table 3). 

Table 3. Two-sample t-tests between average seasonal measurements.  

 spring # fall # t df p 
length of line covered (m) 
 

proportion of line covered (%) 
 

abundance (colonies per line) 
 

pre-survey 15-day average 
Umpqua River discharge (m3s-1)  
 

pre-survey 15-day average sea 
surface temperature (ºC)  

3.85 
 

18.9 
 

6.74 
 

 

292 
 
 

 

11.4 

6.12 
 

26.6 
 

6.51 
 

 

41.1 
 

 

14.3 

3.41 
 

2.18 
 

0.309 
 
 

4.70 
 
 
 

2.38 

135 
 

161 
 

150 
 
 

4 
 

 
4 

0.0009* 
 

0.03* 
 

0.8 
 
 

0.02* 
 
 
 

0.05* 

*p-values significant at the α <0.05 level 
 

Across the biannual surveys conducted, the measured average D. vexillum cover 

per oyster longline (m) was lowest in May 2011 (4.02 ± 1.57 [mean ± SE]) and greatest 

in October 2012 (12.9 ± 1.89; Fig. 8a). D. vexillum cover was generally greater in fall 

than spring (Table 3). However, the differences in cover across consecutive surveys were 

only significant between May 2012, October 2012, and May 2013 (3.58 ± 0.81, 12.9 ± 

1.89, and 3.98 ± 0.76 m, respectively) and May and October 2014 (4.16 ± 0.69 and 6.77 

± 1.01 m; note that we did not conduct a survey in May 2015). Cover in the spring 

returned to statistically similar levels each year from May 2011 to May 2016 (4.08 ± 0.88 

m). Conversely, fall cover was more sporadic, with cover nearly tripling between October 
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2011 (3.85 ± 1.06 m) and 2012, followed by significantly less cover in October 2013 

(5.56 ± 0.95 m), 2014, and 2015 (3.90 ±0.71 m; Fig. 8a).  

The mean D. vexillum percent cover per line followed a similar pattern to the 

cover data. Lines were proportionally more covered in the fall than the spring, with one 

notable exception: percent cover decreased, though not significantly, from May 2011 

(25.9 ± 10.0%) to October 2011 (16.0 ± 4.2%; Fig. 8b). In May 2012, the percent cover 

was lowest measured across all surveys (13.3 ± 2.6%), followed by the greatest—and 

significantly different—percent cover measured in October 2012 (52.8 ± 8.0%). The May 

2013 and 2014 surveys (17.4 ± 3.1 and 16.7 ± 2.5%, respectively) both had lower 

proportional cover than their successive October 2013 and 2014 surveys (25.3 ± 4.1 and 

28.9 ± 4.1 %, respectively); percent cover did not differ between the October 2015 and 

May 2016 surveys (18.5 ± 3.3 and 17.4 ± 3.4 %, respectively). As with cover, percent 

cover did not differ between the five spring surveys, though it did for the five fall surveys 

(Fig. 8a, b). 

The average D. vexillum abundance ranged from a minimum of 2.29 ± 0.58 

colonies per line in October 2011 to a maximum of 10.9 ± 1.80 colonies per line in May 

2014 (Fig. 8c). The minimum was not significantly different from the abundance during 

the May 2011 survey (3.09 ± 0.79 colonies per line), and the maximum did not differ 

from the abundance measured in October 2014’s survey (8.41 ± 0.87 colonies per line). 

However, abundance did increase from October 2011 to May 2012 (7.50 ± 0.84 colonies 

per line), as well as from May 2013 to October 2013 (4.90 ± 0.79 and 7.29 ± 1.01 

colonies per line, respectively), and October 2013 to May 2014. Abundance did not 

change between October 2015 and May 2016 (6.04 ± 0.80 and 5.81 ± 1.00 colonies per 
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line, respectively), but did decrease between October 2012 (8.50 ± 1.20 colonies per line) 

and May 2013 (Fig. 8c). 

D. vexillum did not grow well toward the surface-oriented portions of the 

longlines. The mean cover of D. vexillum colonies at 0-2.5 m depth did not exceed 20%, 

with the exception of the October 2012 survey, in which cover exceeded 20% as shallow 

as 0.5-1.0 m (Fig. 9). Similarly, mean colony cover generally did not exceed 20% at 

depths past 7.5 m (but see fall 2012, where cover was 12.3 ± 12.3% at 7.5-8.0 m depth). 

On average, D. vexillum covered the greatest proportion of line between 5.0-5.5 m depth 

in both the spring (40.9 ± 17.7%) and fall (42.1 ± 15.9%). Broadly, the colonies covered 

the greatest proportion of line between ~4.5-6.5 m depth. The shapes of the distributions 

were considerably more normal in the fall surveys compared to those in the spring; the 

centers of these distributions are depicted in Fig. 8b. 

The percent cover of D. vexillum colonies on the lines peaked at depths of 5.0-5.5 

m in spring 2011 (49.3 ± 9.6%), 5.5-6.0 m in fall 2011 (27.1 ± 8.8%), and 5.5-6.0 m in 

spring 2012 (37.9 ± 9.3%). In fall 2012, maximum percent cover occurred at 5.0-5.5 m   

depth (54.9 ± 7.1%), but percent cover also exceeded 50% at a range of depths (1.5-6.0 

m). Further, in spring 2013 D. vexillum covered the greatest proportion of line at depths 

of 5.5-6.0 m (43.5 ± 7.8%), while it peaked at 5.0-5.5 m in fall 2013 (48.0 ± 5.86 m), and 

4.5-5.0 m in spring 2014 (37.6 ± 5.15 m). In similarity to the fall 2012 survey, in fall 

2014 maximum percent cover occurred at 5.0-5.5 m depth (54.6 ± 6.7%), but neared or 

exceeded 50% at depths of 3.0-6.0 m. Maximum percent cover occurred at the deepest 

point in the fall 2015 survey (6.5-7.0 m; 36.3 ± 4.8%). Finally, percent cover peaked at 

depths of 5.5-6.0 m in spring 2016 (45.7 ± 9.9%; Fig. 9).
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Figure 8. Mean D. vexillum A) total cover (m), B) percent cover (%), and C) colony abundance per oyster longline for biannual 
Triangle surveys conducted from May 2011 to May 2016. Space between points is proportional to time between surveys. No survey 
occurred in May 2015. Error bars are ± 1 SE (propagated). 
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Figure 8. Seasonal survey profile of percent D. vexillum colony cover distributed along 
subtidal oyster longlines. Points represent 0.5 m sections of line (e.g., a point at 6.25 is 
the mean percent cover at 6-6.5 m depth). No survey occurred in spring 2015 or fall 
2016. Error bars are ± 1 SE (spring and fall means propagated). 

 
Linear regression models 

Optimal normalization factors (λ), as well as kurtosis and skewness values for 

transformed data are reported in Table 4.  

Table 4. Box-Cox transformation factors (λ) for tested dependent variables, and 
skewness and kurtosis values of the normalized values. 

  λ skewness kurtosis 
length of line covered (m) 
 

proportion of line covered (%) 

-5 
 

-1.5 

0.151 
 

0.081 

2.13 
 

2.01 

 

We did not use a linear regression analysis on the overall abundance of D. 

vexillum colonies because they were not significantly different between the fall and 

spring. Umpqua River discharge predicted variance in the dependent variables of average 

D. vexillum cover per line (r2
 = 0.412), though it was not a good predictor of variance in 
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percent D. vexillum cover per line (r2
 = 0.147; Fig. 10a-b). The slope from the length of 

line covered versus Umpqua River discharge model was significantly different than 0 (p 

= 0.046; Fig. 10a), but the slopes for the other two models were not (ppercent cover = 0.274; 

Fig. 10b). Sea surface temperature did not predict the variance in cover per line or 

percent cover per line (r2
cover = 0.081; r2

percent cover = 0.001), nor were the slopes from these 

linear regression models significant (pcover = 0.427; ppercent cover = 0.939; Table 5). No 

multiple linear regression combination of discharge, temperature, and season yielded a 

model with a significant slope or could explain the variances of cover, percent cover, or 

colony length (Table 5). There were no significant serial correlations within any of these 

models. 

Table 5. Summary of simple and multiple linear regression statistics for A) Box-Cox 
transformed cover (m), B) Box-Cox transformed percent cover (%), and C) Box-Cox 
transformed colony length (m).  

 F df r2 p 
A) cover     
river discharge§ 
temperature† 
river discharge + temperature 
river discharge + season 
temperature + season  
river discharge + temperature + season 
 
B) percent cover 
river discharge§ 

5.60 
0.701 
2.68 
1.73 
1.49 
1.62 

 
 

1.38 

1,8 
1,8 
2,7 
2,7 
2,7 
3,6 

 
 

1,8 

0.412 
0.081 
0.272 
0.196 
0.099 
0.171 

 
 

0.147 

0.046* 
0.427 
0.137 
0.259 
0.289 
0.282 

 
 

0.274 
temperature† 
river discharge + temperature 
river discharge + season 
temperature + season  
river discharge + temperature + season 

0.006 
0.988 
0.805 
1.38 

0.906 

1,8 
2,7 
2,7 
2,7 
3,6 

0.001 
-0.003 
-0.045 
0.078 
-0.032 

0.939 
0.419 
0.485 
0.312 
0.492 

*p-values significant at the α <0.05 level; §prior 15-day average Umpqua River discharge 
(m3s-1), †prior 15-day average temperature (ºC) recorded at NOAA Buoy 1
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Figure 9. Linear regression models of the prior 15-day average Umpqua River discharge 
(m3s-1, a proxy for salinity) and average A) total D. vex cover per line (m; λ = -5.00; r2

 = 
0.412; p = 0.046) and B) percent D. vex cover per line (%; λ = -1.50; r2

 = 0.147; p = 
0.274Grey area represents regression 95% confidence interval. Each point is a seasonal 
survey average. Dependent variable values are Box-Cox normalized, where f(y) = (y λ – 
1) / λ.  

 
Discussion 

 Subtidal survey data of Didemnum vexillum on oyster longlines in Winchester 

Bay, OR, revealed a population with erratic fluctuations in all parameters measured. 

Average D. vexillum colony cover per line (m), percent cover per line (%), and 

abundance per line as measured in biannual surveys from May 2011 to May 2016 (Fig. 

8a-c) were variable. Our analyses showed that this variation is seasonal, and that the 

average colony cover per line, percent cover per line, and size are all significantly greater 

in the fall than the spring (Table 1). Percent colony cover was greatest at depths of ~4.5-

6.5 m depth (Fig. 9). The mean Umpqua River discharge (m3s-1) and sea surface 

temperature (ºC) of the 15 days prior to each survey—the respective proxies for salinity 

and temperature trends within the Triangle in absentia of those data—were also 

significantly different between fall and spring. Discharge was significantly greater in the 

A B 
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spring (meaning that salinity was lower), while temperature was significantly lower. 

Based on this evidence, we found no support for our a priori null hypothesis that D. 

vexillum colony cover is the same across seasons. Notably, the abundance of colonies did 

not differ between fall and spring (Table 1), demonstrating that this Oregon D. vexillum 

population experiences seasonal regression in size but not total colony death. This finding 

aligns with what has been reported for a population in New England’s Georges Bank 

(Valentine et al. 2007b).  

Because we found that there is a weak, but significant (r2
 = 0.412; p = 0.046), 

linear relationship between freshwater output (salinity) and the transformed mean D. 

vexillum cover per line (m; Fig. 10a), salinity is likely one of the key environmental 

factors driving D. vexillum’s regression between fall and spring. Salinity is a well-

established control for D. vexillum and other colonial ascidians in the literature (Brunetti 

et al. 1980; Valentine et al. 2007b; Bullard and Whitlatch 2009; Epelbaum et al. 2009a; 

Gröner et al. 2011). Conversely, we found no relationship between salinity and other 

measurements of D. vexillum growth (e.g., percent cover; Fig. 10b), nor did temperature 

explain any variation in of D. vexillum cover as measured (Table 5). Multiple linear 

regression models combining the Umpqua River discharge, sea surface temperature, and 

season were also unsuccessful in explaining the variances in mean D. vexillum cover and 

percent cover.  

It is possible that the available proxies for salinity and temperature in this analysis 

were tenuous on account of how the Triangle survey area could potentially limit water 

exchange. Further, sea surface temperature data may not be a good metric for organisms 

that exhibit a clear depth preference; vertical temperature profiles of the water column 
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through time would be more appropriate. Since D. vexillum salinity-driven mortality has 

been shown to be duration-dependent, not intensity-dependent (Gröner et al. 2011), the 

time frame for which I evaluated freshwater discharge may have been too long or too 

short, and could in part explain the lack of a clear relationship. It is also possible that 

another environmental factor that we did not account for (e.g., food quality and 

availability, ocean hydrodynamics; Bates 2005) more strongly describes the observed 

trends in D. vexillum cover. For example, Grosberg (1988) demonstrated that food 

availability directly impacted egg production rates in another colonial tunicate, Botryllus 

schlosseri. The growth rate of B. schlosseri is lower in the laboratory than the field, 

which previous studies attribute to the frequency of food delivery and diversity of food 

types (Brunetti and Copello 1978; Chadwick-Furman and Weissman 1995). Food 

therefore may too explain D. vexillum’s population dynamics, especially considering the 

substantial impact coastal upwelling has on nutrient availability to Oregon’s coastal 

habitats (Barth et al. 2007). 

Despite the lack of a strong linear correlation between salinity and mean D. 

vexillum percent cover and colony length, the survey profiles of D. vexillum’s mean 

proportional distribution along subtidal oyster longlines (Fig. 9) lend additional evidence 

of growth being salinity-driven. Tidal fluctuation and freshwater input induce a stratified 

water column in estuarine and near-coast habitats (Simpson et al. 1990), wherein a 

horizontal gradient of fresher water forms at the water’s surface. The general lack of D. 

vexillum cover in the upper portions of the water column indicates its aversion to less 

saline conditions. While D. vexillum observed during the October 2012 survey exhibited 

growth near the top of the water column, there were other surveys for which the mean 15-
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day pre-survey Umpqua River output was lower (e.g., October 2014 and 2015). The 

profiles of the October 2014 and 2015 surveys follow a general trend where percent cover 

is concentrated within a narrower, deeper band—indicating growth near the surface in 

October 2012 was the anomaly. While the findings presented here do not match clear 

descriptions of salinity- and temperature-driven fluctuations of growth in D. vexillum and 

other colonial tunicates (McCarthy et al. 2007; Valentine 2009; Fletcher et al. 2013a), it 

is known that D. vexillum exhibits measurable interregional and interpopulation variation 

in behavior and sensitivity to environmental conditions. Such variation is apparent across 

seasons within the present dataset. Indeed, it is likely that the population widely 

fluctuates within the months between the surveys—particularly between late June and 

October, when environmental factors are most favorable to D. vexillum reproduction and 

population growth. The methods performed in these surveys only capture a snapshot of 

the population through time. Only more frequent sampling would elucidate the nuances 

of this population’s growth and recession; these ten survey snapshots nevertheless 

provide valuable insight to this D. vexillum population.  

Despite finding that the D. vexillum population varied significantly throughout the 

duration of this study, perhaps our most interesting finding is that both cover per line and 

percent cover in May 2016 did not differ from than that of May 201l. This observation is 

critical because it shows that the threat of D. vexillum’s invasion in the Triangle may not 

be as severe relative to what has been reported and forecasted for other systems. To date, 

most literature on the invasion ecology of D. vexillum has emphasized the extensive 

threats the species poses to quickly taking over nearshore ecosystems and aquaculture 

operations (e.g., Bullard et al. 2007; Daley and Scavia 2008). However, the fact that we 
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found no net growth of D. vexillum colonies during the study period at this site in Oregon 

does not mean it does not pose a future risk. The existing colonies maintain the potential 

to spread and grow, should a future environmental condition trigger a significant 

outbreak from this population’s current foothold. In addition, our time series also 

identified that there were significantly fewer, but larger, colonies in May 2011 compared 

to May 2016’s more abundant, but smaller colonies (Fig. 8c, d). As of July 2017, D. 

vexillum still exists in the Triangle (pers. obs.), though it had receded from the jetty rocks 

it reportedly colonized in earlier surveys (Rumrill et al. 2014). This finding, however, 

may also reflect some variability in the divers’ execution of measuring and counting 

colonies, as a different team performed each survey.  

The broad population decline between October 2012 and May 2016 in Winchester 

Bay parallels that of the recent decline in Oregon’s second known D. vexillum population 

in Charleston, 36 km south of the Triangle. Divers conducted D. vexillum 

presence/absence surveys of the Charleston Marina within the same general time frame of 

this study. Upon encountering D. vexillum in the Charleston Marina, divers removed the 

colonies and dropped them into the soft sediment substrate. They did not attempt such 

eradication methods in the Triangle, as doing so could have adversely impacted Umpqua 

Aquaculture’s apparatus. During the most recent survey in January 2017, the divers found 

relatively few colonies (pers. obs.). Since that survey, this author and other scientists 

located at the Oregon Institute of Marine Biology have yet to find D. vexillum colonies in 

the Charleston Marina. With caution, we can state that some confluence of environmental 

variables unfavorable to D. vexillum and manual removal of found colonies via SCUBA 

seem to have, at the very least, resulted in significant progress toward eradication, or at 
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least ecologically significant slowing of Oregon’s D. vexillum population in Charleston 

Harbor.  

Curiously, populations of D. vexillum on the North American west coast are now 

retained within protected harbors or other artificial structures. This observation contrasts 

the east coast, where D. vexillum has carpeted 50-90% of a 230 km2 area of the Georges 

Bank benthos (Valentine et al. 2007b). There are numerous reasons for which this 

dichotomy may occur, including localized genetic adaptations to tolerate extreme 

temperature (Grosholz 2001) and salinity (Renborg et al. 2014), or large-scale 

oceanographic phenomena (e.g., coastal upwelling, which drives temperature and nutrient 

availability). Predation on D. vexillum may also play a role, but this interaction is still 

poorly studied. Simkanin et al. (2013) showed that the predation of another invasive 

colonial tunicate, Botrylloides violaceus, by native predators limits its spread from 

marinas to nearby rocky reefs in British Columbia. Further, Forrest and colleagues (2013) 

provided compelling evidence for predatory biotic resistance to D. vexillum’s 

establishment in cobble habitats of New Zeland. However, D. vexillum is chemically 

adapted to resist predation, and another experiment proved its control via predation 

unsuccessful (Carman 2009). As D. vexillum has exhibited high reproductive plasticity 

elsewhere (Ordóñez et al. 2015) and environmental conditions on the west coast allow for 

year-round survival and—potentially—reproduction, it is possible that west coast D. 

vexillum populations may eventually establish reproductively viable populations in more 

natural habitats. Moreover, D. vexillum’s demonstrated ability to raft on eelgrass blades 

(Carman et al. 2014) and reproduce while fragmented in suspension (Morris and Carman 

2012), justifies prioritizing its regular monitoring in Oregon and along the west coast.  
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Conclusions 

The present study is: 1) the first to report seasonal trends and fluctuations of a D. 

vexillum population in Oregon; and 2) the longest-term survey of a D. vexillum 

population in the literature to date. We found that the population of D. vexillum in the 

Triangle exhibited extensive fluctuation in colony cover from May 2011 to May 2016, 

especially between fall and spring, and that this fluctuation can be in part explained by 

the mean Umpqua River discharge rate for the 15 days preceding the survey. These data 

do not affirm other studies’ findings that temperature is significantly related to D. 

vexillum growth. It remains unclear what other environmental factors primarily drive the 

trends observed here. We have documented an ultimately net zero change in D. vexillum 

cover in the Triangle between the first and last surveys in a 5-year period. 

Given that changes in freshwater output significantly impacted D. vexillum cover, 

warm winters with low snowpack—a current (February 2018) occurrence in Oregon— 

may forecast a pulse of D. vexillum growth in the Triangle. As climate change continues 

its warming encroach and such winters become more frequent (Mote et al. 2005; Sproles 

et al. 2013), environmental conditions may tilt favorably toward D. vexillum in Oregon 

and globally. A significant expansion of this ascidian’s populations may be costly to 

aquaculture operations, as well as their products. While others have studied how D. 

vexillum impacts other bivalves it fouls, such impacts have yet to be explored for the 

Pacific oysters grown in the Triangle, Crassostrea gigas. We recommend continued 

monitoring of the two D. vexillum populations in Oregon, as well as determining 

empirically what—if any—impact its increased fouling may have on the condition of the 

oysters ultimately produced. 
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CHAPTER III 

EFFECTS OF BOTRYLLOIDES VIOLACEUS BIOFOULING ON CRASSOSTREA 
 

GIGAS AND MYTILUS TROSSULUS IN OREGON AND WASHINGTON 
 

Introduction 

 Epibiotic relationships are established when one living organism, the epibiont, 

settles on and colonizes another living substrate, the host basibiont. Epibiosis, while 

highly variable, is predominantly facultative and opportunistic (Wahl and Mark 1999). 

Basibionts suffer numerous consequences from epibiotic relationships, including 

increased weight, decreased buoyancy and mobility, and a direct competition for 

nutrients and oxygen with the epibiont (Wahl 1989; Ferguson et al. 2013). An epibiont 

may, however, serve a mutualistic role by protecting its basibiont (Vance 1978; Wahl et 

al. 1997)—be it from predation through camouflage (Laudien and Wahl 2004), or 

desiccation via insulation (Penhale and Smith 1977). Though the adverse effects 

frequently overshadow the positive (Harder 2008), the ecological costs for a basibiont are 

dependent on the context and intensity of the relationship with its epibiont.  

 Biofouling occurs when an organism colonizes a living or dead solid substrate 

(Wahl 1989). Fouling organisms present a unique problem to marine aquaculture 

operations, as they often impact both the infrastructure and the consumable product. 

Bivalves grown using subtidal longline methods—including the oyster Crassostrea gigas 

(Thunberg 1793) and the mussel Mytilus trossulus (Gould 1850)—are archetype 

basibionts because they are sessile and possess a shell whose surface area is large relative 

to prospective colonizers (Wahl and Mark 1999). In 2010, over 12.3 million tons of 

bivalves were raised in aquaculture globally (Pauly and Zeller 2016). In 2013, over 101 



 37 

million dollars’ (USD) worth of mussels and oysters were produced in Oregon and 

Washington alone, accounting for nearly 31% of all mollusc sales in the United States 

that year (USDA 2014). These organisms are clearly both critical to the coastal Pacific 

Northwest economy, as well as potentially vulnerable to the impacts of biofouling. 

Invasive colonial tunicates are among the most pervasive biofouling agents in 

aquaculture (Carver et al. 2006; Bullard and Carman 2009; Watson et al. 2009). 

Botrylloides violaceus (Oka 1927), endemic to Japan (Berrill 1950), is one such tunicate. 

The first confirmed appearance of B. violaceus on the United States West Coast occurred 

in the 1970s (Fay and Vallee 1979; Berman et al. 1992), though it may have been sighted 

and misidentified as another Botrylloides spp. as early as 1945 (Van Name 1945). Now, 

B. violaceus is a cosmopolitan organism, and has infiltrated shellfish aquaculture 

operations along the east coast (Ramsay et al. 2008; Carman et al. 2010; Arens et al. 

2011) and west coast (Carver et al. 2006; pers. obs.) of North America. B. violaceus can 

overgrow or otherwise outcompete native benthic organisms for space, posing threat to 

the community’s assemblage and diversity (Dijkstra et al. 2007a; Dijkstra and Harris 

2009). Other studies have suggested that Botrylloides spp. may outcompete resident filter 

feeders for food (Zajac et al. 1989), though the filtering capacity of colonial ascidians is 

highly variable and difficult to determine. Though anecdotal remarks suggest that B. 

violaceus has no direct impact on the growth of cultured mussels (Carver et al. 2006), no 

empirical evidence of such exists in the literature to date.  

While the ecological consequences to B. violaceus’s biofouling are unknown, 

shellfish growers in Washington and Oregon do indicate that invasive ascidians are a 

nuisance due to the extra labor costs incurred by needing to clean the final products 
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before sending them to market (Gordon King and Sharon Chudy, pers. comm.). 

Approximately 77% of the aforementioned 101 million USD of revenue from mussel and 

oyster aquaculture in Oregon and Washington is attributed to production costs 

(Washington Sea Grant 2015), and conservative estimates put the expense of biofouling 

at 5-10% of production costs (Fitridge et al. 2012).  

The objective of this study is to determine what, if any, impact B. violaceus has 

on the growth, condition index, and organic composition of the meat of two bivalves 

commonly grown using longline aquaculture methods. I hypothesized that B. violaceus 

would significantly slow the growth, deplete the condition, and alter the organic 

composition of the meat of its basibionts C. gigas and M. trossulus. To test these 

hypotheses, I deployed experimental lines of C. gigas and M. trossulus with varying 

levels of fouling cover in the Inner Boat Basin of the Charleston Marina. After four 

months, I evaluated the effects of fouling on the individual using several morphometric 

measurements. Though mussels are not currently actively farmed in Oregon, the location 

of the present study, they are grown in Washington; therefore, results of this investigation 

are of regional relevance to shellfish growers in the Pacific Northwest who are concerned 

with both the economic and potential ecological effects of B. violaceus overgrowth. 

Methods  

Study Site 

This experiment occurred on boat slips I-81 and I-83 in the Inner Boat Basin 

(IBB) of the Charleston Marina in Oregon (Figure 11, 43°20'47.3"N 124°19'39.4"W). I 

selected these docks because Botrylloides violaceus is well-known to grow there 

profusely, including on live Mytilus trossulus mussels (pers. obs.). Further, I chose an 
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area away from recreational crabbing hotspots to avoid the lines being pulled up or 

tampered with by a curious crabbers. These docks are near the mouth of the Coos 

Estuary, but a large sand and rock breakwater protects them from strong tidal currents 

and wave action during storms (Marshall et al. 2006). The fouling community in the 

Charleston Marina is diverse, a result of high traffic from recreational and commercial 

boats.  

Specimen Collection 

  For the sake of time and simplicity, I chose bivalve individuals that would reach 

market size by the end of the four-month experiment rather than seeking bivalves of 

multiple size classes. Qualman Oyster Farms, located in the South Slough Estuary (Fig. 

11; 43°20'07.9"N 124°19'08.0"W), grew and supplied the Crassostrea gigas (hereafter 

‘oysters’; n = 135, 44.0 ± 7.56 mm [x̅ ± SD]) used in this study. Qualman Oyster Farms 

uses intertidal stake oyster aquaculture methods to grow oysters from spat to market. 

Presently, Mytillus spp. are not cultured for commercial sale in the Coos Estuary, so are 

not available as sub-adults locally, but are commonly raised in California and 

Washington; I therefore collected M. trossulus (hereafter ‘mussels’; n = 150, 45.0 ± 2.83 

mm [x̅ ± SD]) from boat slip I-85 in the IBB. I cleaned the live, single mussels and 

oysters of epibionts and stored them in an aerated raw water flow-through sea table at the 

Oregon Institute of Marine Biology (OIMB) in Charleston, OR for a week prior to 

deployment. While mussels and oysters grown in a longline setting are traditionally 

grown in clumps, this experimental design removed the potential interaction of 

intraspecifics—thereby isolating the bivalve-B. violaceus relationship.  
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Figure 10. Map of study area in the Charleston Marina, Oregon, depicting � initial 
mussel collection site and experimental line deployment and � initial oyster collection 
site, Qualman Oyster Farms. Figure rendered in QGIS (QGIS Development Team 2018). 

Experimental Setup 

Oysters 

 On 13 September 2017, I randomly sorted the oysters into groups (n =15 groups, 

n = 9 individuals per group). Using a VWR® digital caliper and E-Series Balance, I 

measured the length (mm), width (mm), and wet weight (g), respectively, of each 

individual and ensured equal variances of these measurements across groups. Next, I used 

Splash Zone® 2-Part Epoxy Compound to attach the oysters (n = 9) to 50 cm pieces of 

0.635 cm-diameter PVC pipe (n =15). Recording the placement of oysters on the pipe 

(Fig. 12a) allowed me to track each individual through the experiment’s entirety. After 

the epoxy cured overnight in the sea table, I randomly assigned each oyster-seeded pipe 

one of three treatments (n = 5 replicates per treatment): “control,” in which I regularly 
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removed epibionts; “ambient,” in which fouling was left unchecked; and “Botrylloides,” 

in which I seeded the oysters with B. violaceus colonies. I used Gorilla® Super Glue Gel 

to facilitate initial colony attachment of colonies to the treatment oysters. The tunicate 

colonies established their own attachment to the treatment oysters in approximately 48 

hours. 

 

Figure 11. Photos of oyster lines with A) ambient and B) Botrylloides fouling treatments 
and plastic mesh cages on the side. Oysters were positioned and numbered on each line as 
shown in A).  

To deploy the oyster lines, on 15 September 2017 I tied a piece of line to a brick 

to act as a weight, then threaded the line through the PVC pipe. I bolted all 15 lines to 

dock I-81 in the Inner Boat Basin of the Charleston Marina (Fig. 11, 43°20'47.3"N 

124°19'39.4"W) so that each line was hung 60cm away from its neighbor and the oysters 

were submerged 2.5m in the water column (Fig. 13). Every two weeks, I checked the 

“Botrylloides” treatment oysters to ensure they were still fouled. If the B. violaceus 

colonies had receded (Fig. 13B), I attached new colonies freshly transplanted from 
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nearby boat slips. The objective of this methodology was to ensure a ‘worst case 

scenario’ fouling response. I measured the length (mm) and width (mm) of each 

individual approximately every 30 days for 120 days. After the first 30 days oyster 

mortality was low, but some had been preyed upon, so I applied predator exclusion cages 

to the lines. On 13 January 2018, I collected the oysters from the lines and put them an 

aerated flow-through sea table filled with 5µm-filtered sea water for 48 hours to allow 

them to clear their gut contents before processing.   

Mussels 

I collected the mussels on 25 August 2017, then randomly sorted them into 15 

groups (n = 10 individuals per group) and measured them as aforementioned. Again using 

Gorilla® Super Glue Gel, I encouraged mussel attachment to similarly-sized PVC pipes 

by gluing their byssal threads to the pipe. Because mussels can migrate—albeit limited—

over their position on the pipe, I did not track individuals through the entirety of the 

experiment. During the first attempt at this procedure I labelled each individual mussel 

using a tag and glue (Betterbee® queen bee marking kit and Kiss® nail glue), which 

would have allowed the identification of individuals even if they moved on the pipe. 

Unfortunately, within 50 days of initial deployment (27 August – 10 October 2017), the 

majority of the mussels perished from predation, prompting a swift reboot during which I 

did not have sufficient time to tag the new mussels. After I attached the new mussels to 

the pipes, I assigned each one of the three treatments and attached B. violaceus colonies 

to the “Botrylloides” treatment as stated above. 
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Figure 12. Schematic of field experiment. Lines are spaced 0.6 m apart and the cages are 
2.5 m deep in the water column. 

 Following the oyster deployment procedure, on 16 October 2017, I again hung the 

mussel lines on slip I-83—this time, with predator exclusion cages to prevent mortality 

(Fig. 13). Whenever I checked on the oyster lines to ensure B. violaceus colony cover, I 

also checked the mussel lines for the “Botrylloides” treatment. I measured the length 

(mm) of the mussels at 33, 83, and 121 days post-deployment. The notable break from 

the oyster procedure in measurement frequency is a response to the low growth observed 

in the first 33 days; I anticipated that taking measurements less frequently would be a 

more efficient use of time. At the time of each measurement, I noted the mussel mortality 

per line. On 18 March 2018 I retrieved the mussels from the IBB and allowed them to 
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clear their guts for 48 hours in an aerated, 5µm-filtered flow-through sea table at OIMB 

prior to processing.  

Bivalve Processing 

 The majority of this procedure applies to both oysters and mussels, though note 

that I processed them on different dates (15 January and 20 March 2018, respectively). I 

cleaned individual bivalves of any epibionts, then recorded its length, width (and in the 

case of mussels, thickness), and wet weight of each. I opened the two valves and 

excavated the soft tissue from the shell and carefully separated it into two parts: gut and 

gonad, and other tissue (mantle, adductor muscle, foot, and gills. I gently dabbed the 

bivalve tissue samples with a Kimwipe® to remove excess water and recorded the mass 

of both parts before placing them into labeled 20mL glass scintillation vials. After 

freezing the samples at -80ºC for a minimum of four hours, I dried them in a Labconco® 

2.5-L FreeZone freeze drier at -50ºC for at least 48 hours. I recorded the dry weight (g) of 

the divided tissue using a VWR® A-Series Balance, homogenized the respective parts 

into a fine powder using a stainless steel mortar and pestle, and then returned the powder 

to the scintillation vials in the -80ºC freezer until analysis for organic content. Finally, I 

recorded the dry mass (g) of the empty shells. Doing so allowed me to calculate the 

condition indices of both the mussels and the oysters: 

Mussel Condition Index	=	 wet soft tissue weight	(g)
wet soft tissue weight	(g)	+	shell weight	(g)    (Cartier et al. 2004) 

Oyster Condition Index =	 total dry tissue weight (g)
internal shell cavity volume (ml)

×100       (Hopkins 1949) 

I determined the internal shell cavity volume of an oyster by subtracting its dry shell 

weight from its live and intact wet weight (where the oyster meat and liquors density is 

1g cm-3; Lawrence and Scott 1982). 
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Organic Composition Analyses 

Ash Free Dry Weight 

 To determine the proximal content of the bivalve tissues, I recorded the mass (g) 

of a small aluminum weigh boat, added approximately ~20g of freeze dried and 

homogenized tissue to the boat, and recorded their combined mass. I prepared three 

replicates for each tissue type (n = 4; mussel gut and gonad, mussel other tissue, oyster 

gut and gonad, and oyster other tissue) within each treatment group (n = 3; control, 

ambient, Botrylloides) for a total of 36 samples. I cooked the samples in a muffle furnace 

at 450ºC for four hours. Once the samples cooled for 24 hours to room temperature, I 

recorded the ash free dry weight (AFDW) of the material remaining in the weigh boat 

and calculated the percent organic content: 

% Organic Content	=	 dry sample weight	(g)- AFDW	(g)
dry sample weight (g) ×100%  

Carbohydrate 

 I adapted DuBois et al.’s (1956) protocol for colorimetric carbohydrate analysis 

for this experiment. Briefly, I used D-glycogen for a carbohydrate standard. From a 

0.10mg ml-1 stock solution of D-glycogen, with which I prepared a five standard dilution 

series ranging from 20-200µg ml-1. To prepare the samples, I weighed out ~7 and ~15mg 

of freeze dried, homogenized oyster and mussel tissue, respectively. I added each tissue 

aliquot to a 15mL test tube, then digested the tissue with 5mL of a 5% trichloroacetic 

acid solution in a 60ºC water bath for 60 minutes. After the digests cooled to room 

temperature, I homogenized them with a vortex. I transferred a respective 200µL, 500µL, 

and 2mL of the oyster tissue digest, mussel tissue digest, and standard to separate 10mL 

test tubes. Then, I added 0.5mL of a 5% phenol solution and 5mL of concentrated 
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sulfuric acid. Once cool, I carefully vortexed the test tubes, distributed the solutions into 

disposable acrylic cuvettes, and measured the absorbency at 490nm with a Spectronic® 

20 GenesysTM spectrophotometer. I tested all samples in triplicate. Using the linear 

equation derived from the standard curve, I determined the mass (mg) and proportion (mg 

of carbohydrate : mg of original sample digested; %) of carbohydrate (mg) in the sample.  

Protein 

 I analyzed protein content using a modification of Bradford (1976). Briefly, I 

transferred ~10mg of freeze dried and homogenized tissue to a 10mL test tube, then 

added 5mL of 1N NaOH to each sample. I vortexed each test tube before allowing the 

samples to digest for 24 hours. The next day, I reconstituted bovine albumin serum 

(BSA) with a 0.15M NaCl solution to a concentration of 0.5mg BSA ml-1. With that stock 

I prepared a six-sample dilution series ranging from 5-30µg ml-1, using 0.15M NaCl 

solution as the solvent. I transferred a 100µL aliquot of each standard solution into three 

10mL test tubes each, to which I added 1mL of filtered Bradford reagent dye; I repeated 

this step for the sample digests, but instead used a 20µL aliquot rather than 100µL. After 

allowing the aliquot-dye solution to incubate for 5-45 minutes, I used the same 

spectrophotometer the measure the absorbency of the samples at 595nm. I determined the 

mass (mg) and proportion (mg of protein : mg of original sample digested; %) of protein 

in the sample from the standard curve’s linear equation.  

Lipid 

 I analyzed total lipid using a protocol modified from Heissenberger et al. (2010). 

For each sample, I placed ~20mg of freeze dried tissue into a 10mL centrifuge tube, 

added 3mL of a 2 CHCl3 : 1 MeOH solution, and sealed the mixture with N2 gas. 
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Following a short vortex, I sonicated the samples in an ice bath for ten minutes, added 

0.75mL of a 0.9% NaCl solution, sealed the solution under N2 and vortexed it again, then 

placed it in a centrifuge at 3000rpm for five minutes. To transfer the bottom CHCl3 lipid 

extract layer into an 8mL scintillation vial, I used a double Pasteur pipette technique. I 

added an additional 2mL of CHCl3 to the centrifuge tube and repeated the vortex, 

sonication, centrifuge, and double pipette steps. Once the lipid extract layer in the 

scintillation vial evaporated down to 1.5mL under N2 gas, I transferred 1mL of it to a 

fresh 10mL centrifuge tube and finished extracting the fatty acids for future analysis. 

Using simple gravimetry, I determined the mass of the lipids in the extract: I transferred 

80µL of the extract into two tins pre-weighed on a Mettler Toledo XPR2U microbalance, 

allowed the liquid to evaporate overnight, and re-weighed the tins. The difference in 

weight was total lipid weight (mg), with which I could calculate the proportion (%) of 

lipids in the original sample tissue. I tested n = 5 organisms each from the control and 

Botrylloides fouling treatments.  

Statistical Analyses 

 I used RStudio (v. 1.1.414; RStudio Team 2018) for all statistical analyses. Using 

simple point and whisker plots, I visualized bivalve size by treatment and mussel 

mortality over the four-month study period. To observe the condition indices in more 

detail, I plotted them as box and whisker plots—where the whiskers are the interquartile 

range (IQR). I also used point and whisker plots to depict the proportions of total 

carbohydrates, proteins, and lipids in the 1) gut and gonad and 2) other tissue for oysters 

and mussels across treatments. Coupled with the knowledge of those masses relative to 

the total tissue dry mass, I calculated the overall nutrient (i.e., carbohydrate, protein, and 



 48 

lipid) composition of both bivalves. I used a nested ANOVA design to evaluate whether 

or not fouling treatment explained any variance in the above observations, where line 

number (1-15) was nested inside each of the three fouling treatments. In some cases, 

bivalve mortality and subsequent low subreplicate abundance (< 5) on some lines 

rendered them unusable as a replicate within the nested design. Thus, for the oyster 

nested ANOVA analyses I had n = 4, 5, and 4 line replicates for treatments control, 

ambient, Botrylloides, respectively; following the same respective order, I used n = 4, 4, 

and 5 line replicates for the mussel nested ANOVAs. The data did not violate the 

assumptions of these analyses and thus did not require any transformation. 

Results 
 
Bivalve Growth and Condition 

 At each checkpoint, B. violaceus covered 50% or more of the Botrylloides-fouled 

bivalves, and this coverage was generally concentrated around the ventral portions of the 

shells. The fouling treatment (control, ambient, Botrylloides) did not significantly 

influence the final lengths (mm; p = 0.285) or masses (g; p = 0.741) of the oysters 

(Crassostrea gigas), nor did it explain the individual oysters’ change in length (p = 

0.612) or wet weight (p = 0.646; Table 6). Likewise, the fouling treatment did not 

significantly impact the end lengths or wet weights of the mussels (Mytilus trossulus; p = 

0.085 and 0.076, respectively). Because I did not track the mussel to the individual, I was 

not able to report their change in length and wet weight. While the mean oyster length 

increased by nearly 30mm—and significantly—over the course of the experiment (Fig. 

14a), the mussels did not increase their length significantly (Fig. 14b). Moreover, the 

oysters and mussels fouled ambiently or with Botrylloides were not significantly different 
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in length compared to their respective controls at any day on which I took measurements 

(Fig. 14a, b).  

Table 6. Summary of nested ANOVAs, where four or five replicate lines are nested 
inside of one of three fouling treatments for both A) C. gigas and B) M. trossulus.  

 F df p 
A) Crassostrea gigas    
change in length (mm) 
change in mass (g) 
end length (mm) 
end wet weight (g) 
Hopkin’s condition index (g mL-1*100)  
carbohydrate (%) – divided tissue† 
carbohydrate (%) – whole tissue 
protein (%) – divided tissue 
protein (%) – whole 
lipid (%) – divided tissue 
lipid (%) – whole  
 
B) Mytilus trossulus 

0.515 
0.457 
1.43 

0.309 
1.36 
14.0 

0.294 
16.6 
1.07 
19.0 

0.020 

2,10 
2,10 
2,10 
2,10 
2,10 
5,62 
2,10 
5,62 
2,10 
3,8 
1,8 

 

0.612 
0.646 
0.285 
0.741 
0.301 

<0.001* 
0.752 

<0.001* 
0.378 

<0.001* 
0.892 

end length (mm) 
end wet weight (g) 
condition index  
carbohydrate (%) – divided tissue† 
carbohydrate (%) – whole  
protein (%) – divided tissue 
protein (%) – whole 
lipid (%) – divided tissue 
lipid (%) – whole 

3.20 
3.38 

0.214 
1.29 
1.11 
4.15 

0.075 
10.8 
2.53 

2,10 
2,10 
2,10 
5,70 
2,12 
5,70 
2,12 
3,9 
1,8 

0.085 
0.076 
0.811 
0.277 
0.360 

0.002* 
0.930 

0.002* 
0.150 

         *p-values significant at the α <0.05 level; † “gut and gonad” and “other tissue” 
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Figure 13. Lengths (mm) of A) C. gigas and B) M. trossulus throughout the experiment. 
Error bars are ± 1 SE (propagated). 

 There was also no apparent effect of fouling treatment on oyster and mussel 

condition indices (nested ANOVAs p = 0.301 and 0.811, respectively; Table 6). The 

Botrylloides-fouled oysters’ Hopkin’s condition index (g mL-1*100) was slightly lower 

than that of oysters in the control treatment group (interquartile range [IQR] = 5.81-6.31 

and 6.42-6.73, respectively), though not significantly (Fig. 15a). And though the median 

Botrylloides-treated mussels’ condition index was slightly higher than that of the other 

treatments, their IQR fell within the control mussels’ IQR (Fig. 15b). 

A B 
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Figure 14. Condition indices for A) C. gigas and B) M. trossulus by fouling treatment. 
Middle bar of each box corresponds to median; upper and lower box limits represent the 
first and third quartiles, respectively, while the whiskers indicate IQR and single points 
are outliers. 
 
 Approximately half of all mussels in the Botrylloides and control fouling 

treatments survived the experiment (0.52 ± .04 and 0.54 ± 0.07 proportion survivorship, 

respectively), while the ambient fouling lines experienced significantly less mortality 

(0.64 ± 0.02 proportion survivorship). Survivorship was not otherwise significantly 

different between treatments at days 33 and 83, and mortality was greatest between days 

83 and 121 (Fig. 16). Predation was not—at least visibly—the cause of mortality (i.e., no 

shells were crushed or pried open). No oysters died after the addition of the predator 

exclusion cages. 

A B 



 52 

 

Figure 15. Survivorship of mussels by fouling treatment throughout the study. Error bars 
are ± 1 SE. 

Bivalve Tissue Composition 

 Organic materials composed 86.6 ± 0.78% of the total oyster tissue mass and 91.9 

± 0.27% (mean ± SD) of the total mussel tissue mass. The sum of the organic constituents 

accounted for ~40% and ~60% of the organic tissue mass for oysters and mussels, 

respectively. The carbohydrate content of oyster gut and gonad tissue was approximately 

double than that of the rest of its soft tissue (~10 and ~5% by mass, respectively; Fig. 

17a). Though these measurements were significantly different (p < 0.001), fouling 

treatment had no effect on the proximal composition of each tissue type. Similarly, 

treatment had no effect on lipids within the two tissue types, though oyster gut and gonad 

contained significantly more lipids by mass (~15%) than its other tissues (~10%; p < 

0.001; Fig. 17a). Fouling treatment did, however, impact the protein composition of 
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Figure 16. Proportional composition of carbohydrates, proteins, and lipids (% of dry mass) for A) C. gigas and B) M. trossulus 
separated into ‘gut and gonad’ and ‘other’ tissues. Combined, whole-body tissue compositions reported in C). Letters are nested 
ANOVA post-hoc Tukey labels of significance for values within the same nutrient assay, or between the dashed lines, and are not 
repeated within plots for convenience—e.g., in A) ‘A’ and ‘B’ are significantly different from each other, though are not to be directly 
compared with ‘G’ and ‘H’, which are also significantly different from each other. Error bars are ± 1 SE. 

 

A B C 
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‘other’ oyster tissue: the control treatment had a significantly greater protein composition 

(26.5 ± 2.6%) than the ambient (23.2 ± 3.1%) or Botrylloides (23.5 ± 2.4%) treatments. 

The control oysters’ gut and gonad protein composition was slightly less than that the 

latter two values (20.8 ± 4.1%), and slightly greater than the gut and gonad tissue of 

ambiently- (19.0 ± 2.4%) and Botrylloides-fouled (19.3 ± 2.8%) oysters—though it was 

not significantly different from either of these two groups (Fig. 17a). 

 A different pattern emerged for mussels. The carbohydrate content proportion by 

mass was not significantly different between their gut and gonad tissue and the rest of 

their soft tissues (p = 0.277; Fig. 17b). While the nested ANOVA did reveal a significant 

difference within the mussel protein proportions (Table 6), fouling treatment had no 

effect (Fig. 17b). Further, the ‘other’ tissue from mussels in the Botrylloides treatment 

group contained a significantly greater proportion of lipids (14.6 ± 0.9%) than the control 

group (9.5 ± 0.6%). No significant difference occurred in the lipid content of mussel gut 

and gonad tissue (Fig. 17b). 

  Overall, mussels and oysters contained approximately the same proportion of 

carbohydrates (~5-7%) and lipids (~10-12%) by mass (Fig. 17c). Mussels did, however, 

contain proportionally twice as much protein as oysters (~40 and ~22%, respectively). 

Fouling treatment did not significantly impact the proportional content of carbohydrates 

(p = 0.752), proteins (p = 0.378), or lipids (p = 0.892) in oysters nor mussels (p = 0.360 

0.930, and 0.150, respectively; Fig. 17c). 

Discussion 

 During the independent four-month study periods, the epibiont Botrylloides 

violaceus did not significantly inhibit the growth (measured by length [mm] and mass 
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[g]) of the oysters (Crassostrea gigas) and mussels (Mytilus trossulus) it fouled (Table 6; 

Fig. 14a, b); this invasive colonial tunicate did not depress the condition indices or alter 

the organic nutrient composition of the overall tissue of these bivalves, either (Fig. 15a, 

b; Fig. 17c). These findings refuted my a priori hypotheses. Therefore, despite the 

recognized threat that B. violaceus and other associated invasive colonial tunicates (e.g., 

Didemnum vexillum) pose to global shellfish aquaculture operations (Carver et al. 2006; 

Daniel and Therriault 2007; Valentine et al. 2007b; Fitridge et al. 2012), there remains a 

dearth of empirical evidence for the notion that B. violaceus directly impacts shellfish 

productivity. Rather, the data in the present study support mussel and oyster growers’ 

observations—the threat of colonial tunicate biofouling is primarily to production costs, 

not the bivalves themselves.  

A mass mortality event occurred in the first mussel experiment attempt in August 

2017, which caused me to reset the experiment. This mortality was likely due to sea stars 

and crabs capitalizing on what was quite literally low-hanging fruit, evidenced by 

frequent personal observations of those organisms preying on the IBB fouling 

community, as well as crushed shells and the disappearance of shells from the lines 

altogether. Notably, I observed that the Botrylloides-fouled treatment lines incurred less 

predation than the control and ambient treatment lines. I did not quantify this observation 

at the time, but it does provide anecdotal support for the idea that B. violaceus, as an 

epibiont, may deter predator from consuming the organisms it fouls (Laudien and Wahl 

2004; Epelbaum et al. 2009b). This observation may warrant further study designed to 

quantify whether B. violaceus fouling acts as a predation deterrent.   
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Adding exclusion cages proved successful in preventing predation in both mussels 

during the second experimental attempt and oysters. The mussels still incurred 

considerable mortality—though this mortality was not due to fouling treatment, as the 

control and Botrylloides treatment groups’ survivorships were not significantly different 

at the end of the mussel experiment (Fig. 16). The low mussel survivorship is 

nevertheless perplexing, as M. trossulus grows abundantly elsewhere in the IBB, 

including on the dock slips at which the experiment took place. It is possible that in a 

longer study period the difference in control- and Botrylloides-treated mussel 

survivorship may become more pronounced, given that after 121 days the ambient 

treatment group survivorship was significantly greater than the other two treatments (Fig. 

16).   

The bivalves that did survive the four months in the IBB did not exhibit 

significantly different growths by treatment (Fig. 14a, b). At the field experiment’s 

terminus, the oysters had nearly reached the market size of ~76mm (Calvo et al. 1999). 

The C. gigas growth rate (~30mm over four months) was comparable to what has been 

reported in the literature for this organism globally (Cotter et al. 2010), as was its 

condition index (Brown and Hartwick 1988; Fig. 14a; Fig. 15a). Conversely, the mussels 

did not exhibit significant growth, falling ~5mm short of reaching their ~55-60mm 

market size (Mallet and Carver 1995; Fig. 15b). The condition indices of M. trossulus in 

the present study were slightly lower (~0.1; Fig. 15b) than the condition indices of M. 

trossulus in Atlantic Canada (Hellou and Law 2003; Cartier et al. 2004). My mussels did, 

however, grow at a comparable rate to M. trossulus of the same starting size class 

(~45mm) from Nova Scotia (~38µm/day; Mallet and Carver 1995). Unfortunately, few 
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comparable adult M. trossulus and C. gigas growth and condition index data are available 

on the North American West Coast for direct regional comparison. Regardless, the 

similarities between the mussel and oyster aquaculture data that are available and the data 

presented here suggest that this experimental design successfully mimicked longline 

aquaculture enough for the results to be applicable on a larger scale.     

B. violaceus did not significantly impact the condition indices of its bivalve 

basibionts; this finding is concurrent with Fletcher et al.'s (2013b) conclusion that D. 

vexillum had no impact on the condition index or growth of farmed Perna canaliculus. 

Those authors did report, though, that D. vexillum decreased the density of P. canaliculus 

via displacement. Indeed, this pattern might suggest that these bivalves, who commonly 

fill the intraspecific ecological role of both epibiont and basibiont (and sometimes 

concurrently), are in fact well-adapted to dealing with epibiosis. On the other hand, my 

findings contradict those of Auker (2010), who showed that D. vexillum negatively 

influenced several M. edulis parameters, including growth and condition index. It is thus 

unlikely that B. violaceus inhibited C. gigas’ and M. trossulus’ feeding in the way that 

Auker (2010) suggested D. vexillum did to M. edulis. The organic nutrient composition 

data support this inference. 

The overall mussel protein, carbohydrate, and lipid content (% by dry mass) 

values I observed were comparable to those published for M. trossulus collected during 

the same time of year at Yaquina Bay, OR (Kreeger 1993). There were again no regional 

organic composition data with which I could compare my oyster observations, but they 

aligned with the organic nutrient composition of other published profiles of C. gigas 

(e.g., Dridi et al. 2007; Pogoda et al. 2013). Importantly, fouling treatment did not 
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significantly impact the overall nutritional content of the mussels and oysters grown 

during this experiment (Fig. 17c). Fouling did depress the protein content (% by dry 

mass) of oyster ‘other’ tissue; but, because there was no significant difference between 

the ambient and Botrylloides fouling treatments, this impact cannot be attributed to B. 

violaceus alone (Fig. 17a). Somewhat counterintuitively, the ‘other’ tissue from 

Botyrlloides-fouled mussels had a significantly higher lipid content than the control (Fig. 

17b). While not impossible that B. violaceus provided some trophic benefit to its mussel 

basibiont, a more likely explanation for this finding is the low sample size for this assay 

(n = 5). Future analyses of the fatty acid data from the extractions I performed on these 

samples may tease out the nuances of this finding.  

Notably, in the aforementioned C. gigas and M. trossulus growth, condition 

index, and tissue organic composition literature, the authors consistently found significant 

differences in these parameters across seasons (Cotter et al. 2010; Mallet and Carver 

1995; Hellou and Law 2003; Cartier et al. 2004; Kreeger 1993; Dridi et al. 2007; Pogoda 

et al. 2013). Coupling those observations with the knowledge that B. violaceus also 

exhibits significant seasonal fluctuations in growth (Carver et al. 2006; Dorning 2017b) 

begs the question: does B. violaceus have negative impacts on the M. trossulus and C. 

gigas at any point throughout the year? The present study offers only a snapshot into the 

impacts of B. violaceus on these basibionts; a year-long field experiment with multiple 

bivalve class sizes would aid in a more comprehensive evaluation of these invasive 

tunicate-commercial bivalve relationships.    
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Conclusions 

 This study contributes the following to the literature: 1) the first empirical data 

demonstrating that the invasive colonial tunicate B. violaceus has no impact on the 

growth, condition, or organic composition of the oyster C. gigas and the mussel M. 

trossulus grown in a longline aquaculture-like setting; and 2) to my knowledge, 

documentation of the protein, carbohydrate, and lipid content of C. gigas in Oregon for 

the first time, and of M. trossulus in Oregon for the first time since 1993. I report the 

former findings with cautious optimism, as the scope of this project was narrow—

focusing only on one size class of both oysters and mussels. These data affirm the 

observations of mussel and oyster growers who claim that B. violaceus and other invasive 

colonial tunicates do not impact the bivalves directly, but are rather a threat to the 

aquaculture operations’ infrastructure. I recommend that invasive tunicate-bivalve 

epibiont-basibiont relationships continue to be investigated, especially considering the 

erratic fluctuations some invasive tunicate populations exhibit (Chapter II, this thesis), 

and that many aspects of continued global change are predicted to favor invasive species.  
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