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DISSERTATION ABSTRACT 
 
Hideko Teruya 
 
Doctor of Philosophy 
 
Department of Linguistics 
 
September 2018 
 
Title: Deciding to Look: Revisiting the Link between Lexical Activations and Eye 

Movements in the Visual World Paradigm in Japanese 
 
 

All current theories of spoken word recognition (e.g., Allopenna et al., 1998; 

McClelland & Elman, 1986; Norris, 1994) suggest that any part of a target word triggers 

activation of candidate words. Visual world paradigm studies have relied on the linking 

hypothesis that the probability of looking at the referent of a word directly tracks the 

word’s level of activation (e.g., Allopenna et al., 1998). 

However, how much information is needed to trigger a saccade to a visual 

representation of the word’s referent? To address this question, the present study 

manipulated the number and location of shared segments between the target and 

competitor words. Experimental evidence is provided by two visual world paradigm 

experiments on Japanese, using natural and synthesized speech. In both experiments, 

cohort competitor pictures were not fixated more than unrelated distractor pictures unless 

the cohort competitor shares the initial CVC with the target. Bayesian analyses provide 

strong support for the null hypothesis that shorter overlap does not affect eye movements. 

The results suggest that a listener needs to accumulate enough evidence for a word before 

a saccade is generated. 
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The human data were validated by an interactive computational model (TRACE: 

McClelland & Elman, 1986). The model was adapted to Japanese language to examine 

whether the TRACE model predicts competitor effects that fit human data. The model 

predicted that there should be effects when words share any amount with a target which 

confirms the current theory. However, the model did not fit the human data unless there 

is longer overlap between words. This indicates that eye movements are not as closely 

tied to fixation probabilities of lexical representations as previously believed. 

The present study suggests that looking at a referent of a word is a decision, made 

when the word’s activation exceeds a context-specific threshold. Subthreshold activations 

do not drive saccades. The present study conclude that decision-making processes need to 

be incorporated in models linking word activation to eye movements. 

This dissertation includes unpublished co-author material. 
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CHAPTER I 

INTRODUCTION 

 

The visual world paradigm that is the focus of the present study involves looking 

at an array of visual stimuli while listening to a particular acoustic stimulus. The 

paradigm is thought to be useful as a window on spoken word recognition because eye 

movements are thought to directly track lexical activation (e.g., Allopenna, Magnuson, & 

Tanenhaus, 1998). All current theories of spoken word recognition (e.g., Allopenna et al., 

1998; McClelland & Elman, 1986; Norris, 1994) suggest that any part of a target word 

triggers activation of candidate words. Visual world paradigm studies have relied on the 

linking hypothesis that the probability of looking at the referent of a word directly tracks 

the word’s level of activation (e.g., Allopenna et al., 1998; McClelland & Elman, 1986; 

Norris, 1994). This assumption seems to be taken granted by everyone in the field. 

The present study asks whether the lexical activation of spoken word recognition 

(e.g. TRACE: McClelland & Elman, 1986) is indeed directly reflected in fixation 

probabilities. The alternative linking hypothesis I consider is that a minimum amount of 

support for a word is necessary for the eye to be drawn to the word’s referent. Rather than 

lexical activations being directly / faithfully mapped onto saccades, I argue that eyes may 

not move until the listener has accumulated enough evidence for a particular word being 

present in the speech signal. To address this question, the present study manipulated the 

number and location of shared segments between the target and competitor words to 

investigate how much information is needed to trigger a saccade to a visual 

representation of the word’s referent. Experimental evidence for the alternative linking 
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hypothesis is provided by two visual world paradigm experiments on Japanese, using 

natural and synthesized speech. 

Previous work on the visual world paradigm has linked eye movement 

probabilities to lexical activations in an interactive activation model of spoken word 

recognition (TRACE: McClelland & Elman, 1986). The present study also simulates the 

link between lexical activations in TRACE and eye movement probabilities but revises 

the assumptions about this mapping. To this end, I developed a methodology for 

evaluating TRACE predictions for eye movements quantitatively, given a particular 

linking hypothesis, and used it to provide evidence for the alternative linking hypothesis 

that the mapping is mediated by a decision-making process. Because the present study 

examined word recognition in Japanese, the model was adapted to Japanese phonology 

and lexicon. 

The present study suggests that looking at a referent of a word is a (unconscious) 

decision by a listener, made when the word’s activation exceeds a context-specific 

threshold by accumulating evidence. That threshold may differ based on many different 

factors, including the participant’s ability to see the alternative response choices without 

moving their eyes, the motoric effort that an eye movement will involve given the 

distance that needs to be traveled to look at a picture, and the probability that the eye will 

need to be moved again. Subthreshold activations do not drive saccades. That is, if one is 

not certain enough that a word is present in the signal, the eyes will not move to a picture 

of its referent. The present study suggests that linking eye movement data to word 

activations may require modeling the process of making a decision to make a saccade on 

the basis of accumulating evidence (e.g., Usher & McClelland, 2001). 
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 The following sub-sections in this chapter describe the background of the present 

study topic as well as laying out motivations for the study based on issues and concerns 

regarding current theories and previous studies. 

 

1.1. Spoken Word Recognition in the Eye Movement Studies 

Word recognition is thought to be (largely) incremental (Allopenna et al., 1998; 

Arnold, Tomaschek, Sering, Lopez, & Baayen, 2017; Balling & Baayen, 2008; Cutler & 

Otake, 2002; Dahan, 2010; McClelland & Elman, 1986; Norris, 1994). This means 

that activation is cascading into a word representation and even the associated semantics 

as soon as there is any evidence for the word in the signal. In order to recognize a spoken 

word, a listener may use various acoustic cues present in the signal as well as contextual 

cues influencing which word one is more likely to be hearing. Incremental processing 

means that the listener utilizes individual cues to access words as soon as they become 

available, without waiting to integrate them into larger and potentially less ambiguous 

compounds. For example, as soon as a listener hears /bə/ in ‘banana,’ he or she starts 

accessing the meanings of words that begin with /bə/, without waiting until the end of the 

word. All current theories of spoken word recognition agree that incoming acoustic 

information activates a cohort of word candidates in the mental lexicon (e.g., Gaskell & 

Marslen-Wilson, 1997; Marslen-Wilson & Zwitserlood, 1989; McClelland & Elman, 

1986; Norris, 1994; Norris & McQueen, 2008), though they vary in the extent to which 

detailed acoustic information is thought to be maintained for later re-interpretation (e.g., 

Bushong & Jaeger, 2017; Gwilliams, Linzen, Poeppel, & Marantz, 2018). While only one 

word eventually wins the competition for recognition, and is consciously identified as the 

target word, other words are activated along with it (e.g., Dahan & Gaskell, 2007; 
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Frauenfelder, Scholten, & Content, 2001; Marslen-Wilson, 1987) and may even continue 

to retain some residual activation after the target word is recognized (Kapatsinski, 2012; 

Kleinschmidt & Jaeger, 2015; Radeau, Morais, & Segui, 1995) 

The paradigm is thought to be useful as a window on spoken word recognition 

because eye movements are thought to directly track lexical activation (e.g., Allopenna et 

al., 1998). While other behavioral data provide convergent evidence for incremental 

processing of spoken words and cascading activation of semantics from phonetics / 

phonology (e.g., Grosjean, 1980 for gating; Revill, Aslin, Tanenhaus, & Bavelier, 2008 

for fMRI), the visual world paradigm has an important advantage in allowing the 

researcher to investigate lexical competition as it unfolds in real time. In a typical visual 

world experiment, a spoken target word is presented as the speaker is watching a display 

containing a depiction of the word’s referent (picture) alongside the referents of other, 

similar-sounding words. Looks to depictions of the words’ referents are thought to reflect 

activation of the words’ semantic representations (Allopenna et al., 1998). In this way, 

we can use eye movements as a proxy for the activation levels of the words in real time 

and track changes in activation levels as the spoken word unfolds.  

In the classic experiments by (Allopenna et al., 1998) as shown in Figure 1.1 

below, a target word’s semantic representation (e.g., the concept of a ‘beaker’) was 

activated from the beginning of the corresponding acoustic signal and its activation 

gradually increased throughout the time course of word recognition. Along with the 

target word activation, a cohort competitor (e.g., ‘beetle’) was also activated at the 

beginning of the word as strongly as the target, but its activation gradually decreased later 

on. Furthermore, the target word not only activated a cohort candidate, but also activated 
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a word that shared the last part with the target word (a rhyme competitor). The rhyme 

effect (e.g., looks to a picture of a ‘speaker’) was observed somewhat later than the 

cohort effect and was much weaker than the cohort effect. 

 

 

Figure 1.1. An example trial of the full competitor condition from Allopenna et al. 
(1998;428) 

 

Activation of rhyme competitors following activation of cohort competitors does 

not necessarily contradict incremental processing. The listener may well use the onset 

information to activate a set of compatible words but continue to maintain uncertainty 

regarding the onset. Since perception is fallible, this behavior is rational (Kleinschmidt & 

Jaeger, 2015; Salasoo & Pisoni, 1985): one does not wish to erroneously rule out the 

possibility of having heard the word ‘beaker’ on the basis of erroneously misperceiving 

the initial [sp] as a [b] in a noisy environment. In fact, detailed acoustic information can 

be maintained and continues to be available for re-interpretation long after the word has 

ended (Bushong & Jaeger, 2017; Goldinger, 1996; Gwilliams et al., 2018; Palmeri, 

Goldinger, & Pisoni, 1993).  
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Maintenance of detailed acoustic information for indefinite periods of time does 

not contradict the use of this information to activate semantic representations as it 

becomes available. It does suggest that the listener may not decide what the word is 

immediately, although it is also compatible with the position that all such decisions are 

provisional and subject to revision (Gwilliams et al., 2018). In either case, the theoretical 

decision regarding the identity of the word is in principle separate from the decision I am 

interested in for the purposes of the current dissertation – the decision to move one’s eyes 

to the referent of a word. The presence of looks to cohort competitors in the eye tracking 

record (e.g., Allopenna et al., 1998) indicates that eyes move to referents of words that 

the speaker can decide to move their eyes to the referent of a word that they then decide 

is not present in the speech signal. That is, the threshold I am interested in is generally 

lower than the threshold for consciously deciding that the word is present in the speech 

signal.  

 

1.2. The TRACE Model and the Linking Hypothesis 

The TRACE model is an interactive activation model. The model consists of three 

layers of units, including a feature level, a phoneme level, and a word level. Input, for 

example the /k/ in kasa ‘umbrella,’ is first represented on the feature level with feature 

values (e.g., strength levels for voiceless, sonorant, etc.), and the feature values activate 

phonemes that share them (e.g., /k/ and /g/ would be activated by a certain level of 

[sonorant]) and inhibit those that do not. The activated phonemes activate candidate 

words that contain them (e.g., kasa ‘umbrella,’ kame ‘turtle,’ gomi ‘garbage.’ etc.) and 

inhibit those that do not. The activated words feed activation back to the phoneme level, 
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activating the phonemes they contain and inhibiting those they do not. Words also 

compete with each other via lateral inhibitory connections, as do phonemes. In other 

words, at the phoneme and word levels, there is inhibition within a level and bidirectional 

flow of activation and inhibition between levels. Since multiple features can be present 

simultaneously, features do not compete with each other for recognition, and top-down 

feedback does not affect feature activations, preventing hallucinations based on top-down 

input. The TRACE model proposes that any part of a target word activates other 

candidate words (McClelland & Elman, 1986).  

Note that eye movements are not modeled by TRACE. The model simply exhibits 

the timecourse of lexical activations during recognition of a spoken word. A linking 

hypothesis is therefore required to lexical activations to eye movement probabilities. In 

this thesis, I am not arguing for or against the spoken word recognition model. There is 

extensive evidence for interactive activation at both neural and behavioral levels (e.g., 

Gow & Olson, 2015). Instead, I suggest that the standard linking hypothesis that 

transforms lexical activations directly into fixation probabilities using the Luce Choice 

Rule (Allopenna et al., 1998) is overly simple and needs to be reconsidered.  

When coupled with the standard linking hypothesis, TRACE tends to predict that 

any amount of overlap with the target should increase the likelihood of fixating the 

referent of a word. Hypothetically if lexical activation and fixation probabilities are 

directly or faithfully linked, hearing the /ka/ in /kame/ may lead the listener to fixate a 

picture of a referent of any word starting with /ka/ more than a distractor picture. The 

direct link between TRACE activations and fixation probabilities is explicitly defended 

as the standard linking hypothesis for spoken word recognition in the visual world by 
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Allopenna et al. (1998) as well as by Tanenhaus, Magnuson, Dahan, & Chambers (2000). 

Figure 1.2 demonstrates an example trial of the full competitor condition predicted by 

TRACE with the standard linking hypothesis and those observed in human data by 

Allopenna et al. (1998). TRACE achieves an excellent fit to their human eye tracking 

data, providing evidence for the standard linking hypothesis. 

 

   

Figure 1.2. An example trial of the full competitor condition from Allopenna et al. 
(1998). TRACE model is on left (from p.425) and human data is on right (from p.428). 

 

However, previous studies have tended to use a small set of target and competitor 

words and have not shown that any amount of segmental overlap is sufficient to observe 

lexical competition in the visual world paradigm. Table 1.1 is a summary of the 

characteristics of cohort stimuli and procedures of previous visual world studies that have 

provided evidence for cohort effects. The table indicates that studies have tended to 

examine monosyllabic or disyllabic words that shared several initial segments with a 

target. The cohort effect has been observed in both mono- and disyllabic words, although 

Simmons & Magnuson (2018) have recently reported that it was larger in monosyllables 
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in their study. Since the studies did not directly manipulate the amount of overlap among 

words, it is unclear that any amount of overlap is sufficient to drive a saccade. 

 

Table 1.1. Summary of stimulus characteristics and procedures in previous literature. 
Number of target-competitor sets having a certain number of syllables or a segmental 
overlap of a certain length shown in parentheses.  
 

Study # of 
segments 
overlap 

# of 
syllables 

# of 
trials for 
each 
condition 

# of 
competitors 
in a trial 

Pre-
training 
using 
picture 
naming 

Repetition 
of trials 

Langua
ge 

Allopenna 
et al. 
(1998) 

2 (1) 
3 (4) 
4 (4) 

2 (8) 6 1 or 2 Yes Yes English 

Dahan et 
al. (2001a) 

2 (8) 
3 (8) 
4 (1) 

1 (2) 
2 (14) 
3 (1) 

17 1 No No English 

Dahan et 
al. 
(2001b) 

2 (12) 
3 (3)  

1 (15) 15 1 Yes No English 

Dahan & 
Gaskell 
(2007) 

2 (16) 
3 (10) 
4 (2) 

1 (23) 
2 (3) 
3 (2) 

28 1 Unknown No Dutch 

McMurray 
et al. 
(2010) 

2 (18) 
3 (17) 
4 (5) 
5 (1) 

1 (21) 
2 (20) 

41 2 No No English 

Mirman et 
al. (2011) 

1 (1) 
2 (5) 
3 (4) 
4 (1) 

2 (11) 11 1 No No English 

Note: A diphthong was counted as two segments 
 

A plausible alternative hypothesis is therefore that some minimum amount of 

overlap with the target, as a proxy for amount of evidence from the acoustic signal, is 

required for activation of a competitor to be sufficient to draw an eye movement. The 

present study is intended to evaluate this alternative hypothesis by systematically varying 
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the amount of segmental overlap between the target word and its competitors, whether 

these competitors share the beginning or the end with the target.  

Because the standard linking hypothesis for the visual world paradigm directly 

connects eye movements to activation levels of words in the TRACE model (McClelland 

& Elman, 1986), the present study likewise utilizes the TRACE model to estimate the 

amount of support that alternative lexical candidates have at a given timepoint. While 

other models of spoken word recognition exist (e.g., Goldinger, 1998; Luce & Pisoni, 

1998; Norris & McQueen, 2008), TRACE is the only one that is freely available. It also 

has the important advantage of generating real-time trajectories of activations that can in 

principle be mapped rather directly onto the trajectories of fixation probabilities 

(Allopenna et al., 1998). This enables the modeler to determine whether the differences in 

the extent and timecourse of competition between words differing in the location and 

extent of segmental of overlap mirror those predicted by the model. Furthermore, 

TRACE’s interactive nature is consistent with neuroscientific findings on the presence of 

extensive top-down connections to early sensory processing areas (Bonte, Parviainen, 

Hytönen, & Salmelin, 2006; Eagleman, 2001; Gow & Olson, 2015; McClelland, Mirman, 

& Holt, 2006). The present study develops a rigorous model comparison approach that 

seeks to determine whether the between-condition differences in fixations predicted by 

lexical competition in TRACE are reflected in the eye movement record of human 

participants. 

 

1.3. Pre-activation of Words in Visual World Studies 
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Importantly, lexical activation comes both from the signal and from top-down 

expectations (e.g., Benichov, Cox, Tun, & Wingfield, 2012; Broadbent, 1967; 

Goldiamond & Hawkins, 1958; Howes, 1957; Morton, 1964; Nittrouer & Boothroyd, 

1990), which are captured by resting activation levels of lexical nodes in TRACE and 

other activation-based spoken word recognition models (Luce & Pisoni, 1998; 

McClelland & Elman, 1986; Morton, 1969). Previous studies have raised resting 

activation levels of both targets and competitors (not distractors) through pre-training on 

the small set of experimental materials before the experiment and repeating stimuli 

during the experiment. Typically, participants were asked to study the experimental 

words before the eye tracking experiment began to ensure the participants know the 

intended names for the pictures used in the experiment (e.g., Allopenna et al., 1998; 

Dahan, Magnuson, Tanenhaus, & Hogan, 2001b; Dahan & Tanenhaus, 2004). In addition, 

the words and picture sets were repeated throughout the experiment. By doing so, 

previous studies likely increased the likelihood that a limited amount of evidence in the 

signal would produce lexical activation observable in the eye movement proportions, 

increasing both cohort and rhyme effects (Huettig, Olivers, & Hartsuiker, 2011).  

Pre-exposure and / or repetition are expected to increase top-down activation of 

previously encountered words (e.g., Goldiamond & Hawkins, 1958; Scarborough, 

Cortese, & Scarborough, 1977). This top-down activation in turn could increase cohort 

and rhyme effects – that is, magnify the differences between the competitors and 

distractors while minimizing the difference between the competitors and the target. Top-

down expectations have been argued to help recognition the most for stimuli that have 

some bottom-up support but are not strongly supported by the signal (Broadbent, 1967; 
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Norris, Cutler, McQueen, & Butterfield, 2006; Norris & McQueen, 2008; Plaut & Booth, 

2000).  In particular, Plaut and Booth (2000) have argued that sigmoid node activation 

functions in connectionist models like TRACE predict their finding that bottom-up 

priming effects are significantly larger for words of an intermediate level of resting 

activation. Norris (2006) and Norris and McQueen (2008) have argued that top-down 

expectations should not override clear bottom-up evidence for or against a certain 

stimulus being present in the signal, in order to avoid hallucinations. 

Given this reasoning, pre-exposure is expected to have relatively little influence 

on the activation level of the target word, which is strongly supported by the acoustic 

signal, and the distractors, which have essentially no bottom-up support, but could 

significantly boost cohort and rhyme competitors, which have limited bottom-up support, 

increasing cohort and rhyme effects. Pre-exposure and repetition are therefore best to 

avoid if we are to identify words whose activation is too low despite bottom-up support 

for a saccade to the referent to be triggered. The experiment was therefore designed to 

reduce exposure to experimental words and pictures as much as possible. 

Although word recognition is incremental, some minimum level of lexical 

activation may be required to trigger a saccade to the word’s referent. When the words 

are not pre-activated by top-down expectations, the activation necessary to drive a 

saccade must come from the signal, and therefore a word may require more support from 

the signal to trigger a saccade to its referent. If this expectation is upheld, and a 

substantial amount of signal support (e.g., several initial segments) is required to drive a 

saccade in the present experiments, then the linking hypothesis of a continuous mapping 

between activation levels and eye movement probabilities may need to be reconsidered. 
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1.4. Effect of Rhyme Competitors 

Initial overlap between input spoken word and listeners’ stored lexical 

representation strongly affects spoken word processing (e.g., Gaskell & Marslen-Wilson, 

1997; Marslen-Wilson & Zwitserlood, 1989; McClelland & Elman, 1986; Norris, 1994; 

Norris & McQueen, 2008). However, although the activation of competitors with initial 

mismatch, the rhyme effect, was observed in natural data as well as in TRACE using a 

variety of methodological approaches to spoken word processing, the effect appears to be 

very sensitive to the type of task and the type of stimulus words examined. Some studies 

have found the rhyme effect while some have not.  

For example, priming studies have observed priming between rhyme competitors 

but only with extensive overlap. Connine, Blasko, and Titone (1993) showed priming of a 

non-word whose initial segment was one or two phonological features away from the 

prime. This indicates that although the first incoming input may be weighted heavily 

(cohort effect) for word processing later information may still be helpful. However, the 

effect disappeared when words differed by more than a few features of the initial segment 

(Connine et al., 1993; Marslen-Wilson & Zwitserlood, 1989) and no priming was found 

when the words were shorter (i.e., monosyllable words: ‘buns’ and ‘guns’) (e.g., Gow, 

2001). 

In visual world eye tracking studies, Allopenna et al. (1998) found the rhyme 

effect between disyllabic words differing by more than a few features of a single 

segment: ‘beaker-speaker,’ ‘carrot-parrot,’ ‘candle-handle,’ pickle-nickel,’ ‘casket-

basket,’ ‘paddle-saddle,’ ‘dollar-collar,’ ‘sandal-candle’. Simmons and Magnuson (2018) 

found a stronger rhyme effect in disyllables compared to monosyllables. Conversely, the 
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effect of a cohort overlap in a certain number of segments was weaker in disyllables than 

monosyllables. Overall, these findings are consistent with the proposal that words are 

activated to the extent that they overlap with the target word (Kapatsinski, 2005; 

Simmons & Magnuson, 2018): a CVC monosyllabic rhyme neighbor shares 2/3 of its 

segments with the target, while a disyllable may share as much as 4/5. Conversely, a 

single-segment cohort competitor shares 1/3 with a CVC target but only 1/5 of a CVCVC 

one. These results are also predicted by the TRACE model, for a different reason: longer 

words face more competition than shorter words early on but yet receive more distinctive 

bottom-up input later in processing (Simmons & Magnuson, 2018). However, other 

inconsistencies remain. For example, Mirman, Yee, Blumstein, & Magnuson (2011) 

found a small rhyme effect for young college participants as a control group; however 

there seemed to be no effect for older participants (67 years old). Malins and Joanisse 

(2010) found no rhyme effect in Mandarin monosyllable words (e.g., chuang2 vs. 

huang2). 

As observed by previous studies, the effect appears to be very sensitive to the type 

of task and the type of stimulus words examined. 

 

1.5. No Mora Effect in Japanese Word Processing 

Given the phonological structure of Japanese, a mora-timed language, one might 

expect the cohort effect to emerge in Japanese only when the competitor shares at least 

the initial CV (mora) with the target (e.g., Hayes, 1989; Labrune, 2012; Otake, Hatano, 

Cutler, & Mehler, 1993; Port, Dalby, & O’Dell, 1987; Vance, 1987). A single mora (light 

syllable) is constructed similarly to an English syllable that contains one nucleus (e.g., /e/ 



 

15 

 

‘picture,’ /ke/ ‘hair,’/gjo/ ‘fish’). As in English, and other weight-sensitive languages, 

heavy syllables are two moras, while light syllables are one mora. For example, /ki.te/ 

‘come here’ consists of two moras, but the geminate version, /kit.te/ ‘stamp,’ consists of 

three moras, because the first syllable is heavy and contains two moras. ‘Mosquito’ /ka/ is 

a single mora (a light syllable), but a nasal coda, /kaN/ ‘can’, adds a mora. Similarly, 

having a diphthong, /kai/ ‘sea shell’ is two moras. ‘Blood’ /tɕi/ is a single mora (light 

syllable), but having double vowels, /tɕii/ ‘status,’ is considered as two moras (e.g., 

Hayes, 1989; Port et al., 1987; Vance, 1987). Mora timing suggests that moras tend 

towards isochrony in production (Port et al., 1987), though the existence of a tendency 

towards moraic isochrony has been highly controversial (e.g., Beckman, 1992; Grabe & 

Low, 2002).  

Whereas in English moras are thought to be constituents of the rhyme, so that 

onsets are non-moraic, belonging to no mora, the moraic isochrony hypothesis proposes 

that Japanese moras span onset-nucleus boundaries (e.g., Grabe & Low, 2002). Under 

this assumption, light syllables cannot be segmented any further, while heavy syllables 

are segmented between the nucleus and the coda, as in /ta.n/. Monitoring studies have 

provided support for this idea (e.g., Cutler & Otake, 1994; McQueen, Otake, & Cutler, 

2001; Otake et al., 1993; Port et al., 1987). Otake et al. (1993) presented words such as 

/taniɕi/ and /tanɕi/, differing in whether /n/ is a separate mora as in /ta.n.ɕi/, or only part 

of a mora as in /ta.ni.ɕi/, and asked participants to detect either /ta/ or /tan/ in spoken 

Japanese words. Participants detected /ta/ equally easily in both word types but had 

difficulty detecting /tan/ when the /n/ formed the first part of a mora, as in /ta.ni.ɕi/. Note 

that these results cannot be due to syllable boundaries because the /ta/ in /tanɕi/ is not a 



 

16 

 

syllable but easy to detect. Similarly, McQueen et al. (2001) suggested that words were 

easier to detect when their boundaries aligned with mora boundaries as opposed to falling 

inside a mora. 

From these observations, one might think that the rhythmic unit, mora, can be a 

structural unit for spoken word recognition (i.e., word recognition in Japanese could 

proceed mora by mora). However, Cutler and Otake (2002) as well as Otake, Sakamoto, 

and Konomi (2004) argue that moras do not play a role in spoken word recognition (see 

also Content, Meunier, Kearns, & Frauenfelder, 2001 for the syllable in French). Cutler 

and Otake's (2002) argument is based on a study in which they presented a spoken non-

word that was altered from a real word (e.g., panorama) by replacing a C, a V, or a CV 

(e.g., panorema, panozama, panozema) and asked a participant to change the non-word 

back into the real word (e.g., panorama). They found that words in which a single 

phoneme (C or V) was replaced, a part of the mora, were modified faster and more 

accurately than words in which the entire mora was replaced (CV). This suggests that 

moras are segmented into smaller units, and has been taken to imply that a word is not 

recognized mora by mora in Japanese. Nonetheless, this question remains somewhat open 

because monitoring and word modification studies are metalinguistic tasks whose 

relevance to spoken word recognition is uncertain. 

The target and cohort competitors in the present study always have CVCV 

structure. Therefore, the initial CV constitutes a mora, as does the second CV. If Japanese 

spoken words are segmented into moras and recognized mora by mora, so that submoraic 

overlap is insufficient to drive lexical activation, then the cohort effect should be 

observed when the cohort competitor shares at least the initial CV with the target, but 
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should not increase in magnitude when the two words overlap in an additional consonant 

(CVC overlap), which forms only part of the second mora, mirroring the monitoring 

results by Otake et al. (1993). In contrast, if the mora plays no special role, then the 

cohort effect should either continuously track the amount of evidence for a word in the 

speech signal, approximated here by segmental or acoustic overlap – according to the 

standard linking hypothesis – or should increase with segmental overlap once overlap is 

above a certain threshold. In either case, if any cohort effects at all are observed in the 

present study, non-moraic recognition would lead me to expect a difference between two-

segment and three-segment overlap so that three-segment overlap produces a stronger 

cohort effect. Moraic recognition would predict no benefit from three segment cohort 

overlap compared to two segment overlap. 

From the present theoretical perspective, one would not expect spoken word 

recognition in Japanese to proceed mora by mora  – in TRACE, activation continuously 

cascades from acoustic features to lexical nodes and does not rely on recognition of 

sublexical units like segments or moras (e.g., McMurray, Tanenhaus, & Aslin, 2002). 

However, the issue remains empirically unsettled in Japanese, as previous studies arguing 

for or against moraic word recognition have not directly examined spoken word 

recognition using online measures. 

 

1.6. Current Dissertation 

The current dissertation directly investigates the segmental overlap required for 

word activation to be reflected in the eye movement record using natural speech stimuli. 

To accomplish this goal, the present study took advantage of the simple syllable structure 
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of Japanese, which allows the experimenter to construct a relatively large number of 

competitor pairs varying in amount and location of overlap but sharing mora structure 

and other characteristics. In addition for enabling the construction of a relatively large 

number of comparable stimulus sets, Japanese has been underexamined in prior work on 

online spoken word recognition. As discussed above, previous studies of spoken word 

recognition in Japanese have employed metalinguistic tasks. In contrast, most previous 

studies using the visual world paradigm examined Indo-European languages. Therefore, a 

study of Japanese spoken word recognition extends the literature and helps ensure that 

the results are generalizable across languages and contribute to a general understanding 

of spoken word recognition as a whole.  

Experiments reported in this dissertation examine competitor words that share the 

following amounts with a target word: the initial C, the initial CV, the initial CVC, the 

final CV and the final VCV. All current theories of spoken word recognition (e.g., 

Allopenna et al., 1998; McClelland & Elman, 1986; Norris, 1994) suggest that overlap 

with any part of a target word can increase activation levels of candidate words. The 

question I address is whether these activations are indeed directly / faithfully reflected in 

eye movements (fixation probabilities). If any amount of overlap results in detectable 

activation, then competitors will always be fixated more than unrelated distractors. 

Furthermore, competitors that overlap with the target in more segments will be fixated at 

a higher rate than those that overlap in fewer segments. Note, however, that – given the 

relative paucity of studies observing the rhyme effect – this expectation is weaker for the 

rhyme effect than for the cohort effect. The present study examines the role of initial 

segments in spoken word recognition by manipulating whether the cohort competitor 
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overlaps with the target by the initial C, the initial CV, or the initial CVC. If the link 

between activations and eye movements is not as faithful as suggested by the standard 

linking hypothesis, then a candidate word can be activated by initial overlap without this 

overlap driving eye movements. 

The alternative linking hypothesis I propose is that a minimum amount of support 

for a word is necessary for the eye to be drawn to the word’s referent. Below that 

threshold (i.e., not enough support for a word), increases in activation do not affect 

fixation probabilities. Note that the cut-off point of the threshold for decision making 

whether a listener moves his / her eyes or not may change based on many different 

contextual factors (e.g., the physical or psychological state of the listener, types of tasks 

and stimuli, cost of response, etc.). In order to develop a complete theory of decision-

making on spoken word recognition, one would need to examine every possible 

contextual factor that influences decision making. The present study is the first to show 

the evidence for a word needs to exceed a threshold to trigger an eye movement. 

However, the present study does not wish to argue that the amount of evidence observed 

to be sufficient in the present study would also be the same in any other language or 

context. Rather, I suggest that moving one’s eyes to a picture is a decision that needs to 

be explicitly modeled in future work. 

The proposal that eye movements are influenced, from the earliest point in 

processing, by a large number of contextual factors undoubtedly complicates the 

interpretation of visual world data. However, it brings the linking hypothesis for spoken 

word recognition in the visual world into conformity with what I take to be the take-home 

message of visual world research, i.e. that processing is task-specific, situated and 
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interactive. For example, Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy (1995) have 

shown that the decisions of what the speaker means are immediately and continuously 

influenced by the visual scene the listener is looking at. Brown-Schmidt & Tanenhaus 

(2008) have shown that cohort competitors can be eliminated by top-down information 

coming from interlocutors and the shared visual world. Given this general conclusion of 

visual world studies, it is somewhat surprising that eye movement probabilities would 

ever directly reflect one source of information – the lexical activation of a word. The 

present dissertation can therefore be seen as an argument for feedback in research 

strategy: the conclusions of previous visual world studies suggest that processing is 

situated and interactive. It is time for the linking hypothesis connecting lexical activations 

to eye movements to reflect this. 

 

1.7. Plan of the Dissertation 

Chapter 2 presents the results of natural spoken word recognition experiment in 

Japanese. This experiment provides preliminary empirical support for the hypothesis that 

a competitor word will be fixated more than a distractor picture only after enough 

evidence of the input word has accumulated. Note that the unique prediction of this 

linking hypothesis, not shared with the standard linking hypothesis, is that there should 

be no difference in looks between a competitor picture and a distractor picture then the 

competitor-target overlap is below the required minimum. Supporting the alternative 

linking hypothesis therefore crucially requires obtaining support for a statistical null 

hypothesis: a difference in overlap does not affect eye movements (under certain 

conditions). It therefore requires a Bayesian approach to data analysis, which can 
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distinguish between lack of evidence against the null and evidence in favor of the null 

(Kruschke, 2008; Wagenmakers, 2007). The approach, adopted from Wagenmakers 

(2007), is detailed in Chapter 2 and used throughout the dissertation.1 

 Chapter 3 examines the influence of coarticulation on spoken word recognition. 

The spoken words from Experiment 1 in Chapter 2 were synthesized using diphone 

synthesis to eliminate long distance coarticulation (V-to-V coarticulation in CVCV 

words). With respect to the linking hypotheses referenced above, if any amount of 

overlap with the acoustic signal leads to detectable word activation, we should expect 

increased looks to cohort competitors in this experiment compared to Experiment 1 now 

that the beginning of the target word contains no coarticulatory cues to its end, which 

distinguishes it from the cohort competitors. If instead listeners wait to move their eyes 

until they have accumulated enough evidence for a word being present in the acoustic 

signal, then we should expect fewer looks at the target and cohort competitor early on 

than that in Experiment 1, because the absence of the coarticulatory cues and the relative 

degradedness of synthesized speech provides these words with less support.  

 Chapter 4 examines whether the TRACE model of spoken word recognition can 

explain the human data (both synthesis and natural). The linking hypothesis for the visual 

world paradigm proposed by Allopenna et al. (1998) suggests that fixation probabilities 

directly track TRACE activation levels. However, no studies have yet systematically 

tested the assumption that activations of words are always reflected in saccades. A few 

studies have successfully demonstrated that TRACE activation trajectories provide a 

                                                 
1 Note that, as argued by Kruschke, the decision to adopt a Bayesian approach to data analysis does not 
imply endorsing a Bayesian approach to cognition. Bayesian data analysis allows for rational inference 
from the observed data. Whether humans decision-making is rational in this way is an open question that is 
beyond the scope of this dissertation. 
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good match to fixation probabilities in natural data when the competitor words shared 

several segments with the target word (e.g., Allopenna et al., 1998; Dahan & Gaskell, 

2007; Dahan, Magnuson, Tanenhaus, et al., 2001a). However, it is unclear whether this is 

also true when the overlap is more limited, and whether TRACE would make the same 

predictions in Japanese. 

To this aim, in Chapter 4, I develop a methodology to assess whether between-

condition differences in trajectories predicted by TRACE are supported by the human 

data by comparing them to a baseline model that retains the average temporal dynamics 

of the TRACE activation curves while eliminating the between-condition differences. 

The TRACE trajectories are approximated using Generalized Additive Models (Wood, 

2003) that include condition as a predictor and do an excellent job at reproducing the 

trajectories. The baseline model is then derived by simply eliminating the condition 

predictor, generating one curve to fit TRACE predictions from both conditions under 

comparison. The baseline model is then compared to the full TRACE model using the 

BIC approximation to the Bayes Factor (Wagenmakers, 2007), which allows me to 

distinguish between evidence for the full TRACE model, evidence in favor of the 

baseline model and lack of definitive evidence for either model.  

In addition, Chapter 4 argues that in order to evaluate the predictions of TRACE 

for another language (i.e., Japanese); it is necessary to modify the segment specifications 

of TRACE to fit the phonetics of that language. The process of developing a language-

appropriate acoustic feature specification in TRACE is illustrated for Japanese in Chapter 

4 where I develop descriptions for the complete set of Japanese phonemes. My hope is 
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that this procedure can be replicated in other languages, opening them up to 

computational modeling of real-time dynamics of spoken word recognition. 

Chapter 5 explores parameter manipulation in the TRACE model to examine what 

plausible parameter changes could achieve a better fit to the human data and describe the 

difference between synthesized and natural speech, where synthesized speech is less clear 

than natural speech and has no long-distance co-articulation.  
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CHAPTER II 
  

EXPERIMENT 1: NATURAL SPEECH STIMULI 

 

The work presented in this chapter is also reported in a co-authored 

article invited for resubmission to the journal Language, Cognition and Neuroscience 

 

2.1. Introduction 

Experiment 1 examines how much segmental overlap is needed to trigger a 

saccade to a visual representation of the word’s referent in response to natural speech. 

Experimental stimuli systematically vary the length and location of segmental overlap 

between the target word and its competitors. 

All current theories of spoken word recognition (e.g., Allopenna et al., 1998; 

McClelland & Elman, 1986; Norris, 1994) suggest that overlap with any part of a target 

word triggers activation of candidate words. The question I address is about linking 

hypothesis whether these activations are directly reflected in eye movements (fixation 

probabilities). If any amount of overlap results in detectable activation, then competitors 

will always be fixated more than unrelated distractors. Furthermore, competitors that 

overlap with the target in more segments will be fixated at a higher rate than those that 

overlap in fewer segments. 

Previous eye tracking studies have shown that a target word triggers activation of 

cohort candidate words when those words share a few phonemes with the target word 

(e.g., Allopenna et al., 1998; Dahan & Gaskell, 2007; Dahan et al., 2001a; 2001b). 

However, it is unclear how much overlap is needed for a cohort effect to be observed. 
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Given that previous research has not manipulated the extent of overlap, it is possible that 

two or even three segments are needed, as well as that even a single initial consonant is 

sufficient. Similarly, it is unclear how much final overlap is enough to observe the rhyme 

effect. Previous priming and visual world eye tracking studies have shown that words 

differing from the target word by the initial onset compete with it (e.g., Allopenna et al., 

1998; Connine et al., 1993; Simmons & Magnuson, 2018). However, it is unclear 

whether competition might occur between words that differ by more than the initial onset.  

To address this question, the present study manipulated the number and location 

of shared segments between the target and competitor words and conducted Bayesian 

analyses that allowed us to investigate whether a particular amount of evidence for the 

presence of a form in the acoustic signal increases the probability of fixating the referent 

of the form. The advantage of these analyses for the present purposes is their ability to 

provide evidence for the null hypothesis – in this case, the hypothesis that consistency 

with the acoustic signal does not affect saccades when that consistency is below a certain 

threshold. In other words, the evidence for a word needs to exceed a threshold to drive a 

saccade to the word’s referent. 

Because the alternative linking hypothesis I intend to evaluate proposes that some 

minimum amount of activation is necessary for the listener to implicitly decide to fixate 

the referent of a word, I attempted to minimize signal-external sources of stimulus 

activation in this experiment. In previous studies, participants were often asked to study 

the stimulus pictures before the experiment and the same picture trial set was repeatedly 

used during the experiment (Allopenna et al., 1998; Dahan et al., 2001b). While this 

procedure is effective in ensuring that the participants know the words that the pictures 
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are intended to correspond to, it raises significant concerns with linking fixation 

proportions to TRACE activation levels, as repetition effects are not incorporated into the 

TRACE models of the task.  

 Another design choice motivated by the alternative linking hypothesis is that 

participants in the present study were required to look at the fixation cross at the 

beginning of each trial. This is not a unique feature of this experiment (see also 

Allopenna et al., 1998; Dahan et al., 2001b; McMurray, Samelson, Lee, & Bruce 

Tomblin, 2010; Mirman et al., 2011) as it is commonly used to ensure that looking at any 

one referent requires a saccade – and therefore a decision to move one’s eyes that can be 

time-aligned with some event in the acoustic signal. Without having a fixation cross, one 

can look at a picture at 25% chance among four pictures and simply there is 50% of 

chance that a participant has already fixated at a target picture or a competitor picture at 

onset of a target word. Studies that do not require participants to look at the fixation cross 

at the beginning of a trial commonly discard all trials in which the participant happens to 

already be looking at the target and the competitor, resulting in a significant data loss of 

25% of trials (e.g., Huettig & Altmann, 2011 for two pictures on the screen). Dahan et al. 

(2001b) only discarded trials in which the target picture was fixated at the target onset 

and then continued to be fixated (4.7%). It could be problematic to include about 36% of 

trials on which participants already fixated the target or a competitor at target onset. For 

the present purposes, requiring looks to the fixation cross has the additional advantage of 

making looks to referents relatively costly: the participant will have to move their eyes 

back to the fixation point after clicking on a referent. This design therefore makes 

continuing staring at the fixation cross the behavior with the lowest motor cost, which is 
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sometimes observed in our participants (leading to exclusion of such participants from 

the experiment). Indeed, the high incidence of this behavior in a pilot experiment led me 

to move the pictures further apart, so they are more difficult to perceive with peripheral 

vision. The relatively high separation between the pictures makes the saccades even more 

costly. When saccades are costly, the lexical activation level necessary to drive a saccade 

to the referent may be higher, resulting in a greater likelihood of detecting that activation 

of a word can be insufficient to drive a saccade to its referent. While the present 

experiment focuses on the influence of degree of bottom-up support / phonological 

overlap with the target on eye movements, the alternative linking hypothesis proposed in 

the present study claims that saccades are decisions2, and that the costs3 and benefits of a 

saccade can therefore have a strong influence on eye movement behavior, which opens 

up a new area for research on eye movements in the visual world (see also Meier & Blair, 

2013, whose participants sample the visual features in a search task in a way that 

minimizes the number of saccades).  

 

2.2. Methods 

 

2.2.1. Participants 

Thirty one native speakers of Japanese, all students at the University of Oregon, 

participated in this experiment. They were either paid or earned course credit for their 

participation. All of them reported normal hearing and eyesight. Most of the participants 
                                                 
2 The present study does not define the ‘decision making’ as a conscious decision. Rather eye movement 
decisions are unconsciously made by a listener when s/he accumulates enough evidence that a word is 
present in the signal. 
 
3 Moving eyes is less costly than moving the hand to a picture. However, it is still more costly than doing 
nothing.  
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were Japanese college students (M = 21 years old) who came to the States for a study 

abroad program for a few terms to study English (24 out of 30 subjects). Since the study 

abroad program is set to a few terms, most of the subjects had lived in the States less than 

a year at the time of the experiment (1-6 months = 18 subjects, 7-12 months = 8 subjects, 

12-24 months = 1 subject, longer than 24 months = 3 subjects).  

 

2.2.2. Stimuli 

Experiment 1 contained a total of 137 trials consisting of 59 critical trials, 59 

control trials, 16 filler trials, and three practice trials. Each trial featured a set of four 

colored pictures depicting the referents of a target word, a competitor word, and two 

unrelated words (see Figure 2.1 below) on critical trials, or four unrelated words on filler 

trials. 

 

 

                                                      

 

 

                                                              

 

  
Figure 2.1. Example of a critical trial in Experiment 1 and 2. The target word refers to 
negi “a green onion”, the competitor word refers to neko “a cat”, the two unrelated words 
refer to batsu “a cross” and kasa “an umbrella”. 
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Pictures were selected from Google Japan image website to ensure Japanese participants’ 

familiarity with the objects. For the visual stimuli, colored pictures were used. Colors and 

shapes of the four pictures in a trial set differed from one another to avoid visual 

similarities that may drive saccades to pictures related to the target visually (Dahan & 

Tanenhaus, 2005; Huettig & Altmann, 2011; Huettig & McQueen, 2007). The 

experiment was pilot-tested by native Japanese speakers and ambiguous pictures were 

replaced with less ambiguous ones. 

Table 2.1 displays five phonological conditions differing in the number and 

location of shared segments between the target word and the competitor word. Target 

words in critical trials mostly consisted of two mora CVCV words but the filler trials 

contained 1, 2, or 3 mora words. All critical target words were consonant-initial but filler 

and control target words occasionally began with a vowel to avoid restricting the 

participants’ expectations to consonant-initial words. Cohort 1 condition comprised 11 

trials. Each trial contained a target word and a cohort competitor word that shared the 

initial consonant with the target word (C _ _ _) and also contained two unrelated words 

that were phonologically and semantically unrelated to either the target or the competitor. 

Cohort 2 condition had 12 trials. In this condition, the target word and the competitor 

word shared the initial mora (CV_ _). Cohort 3 condition was comprised of 9 trials. In 

this condition, the target word shared the initial three segments (CVC _) with the 

competitor, which means that the two words mismatched only in the final segment. 

Rhyme 2 condition contained 12 trials, and a target word shared the final mora with the 

competitor (_ _ CV). In other words, they differed by the initial mora. Rhyme 3 condition 
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had 11 trials, and each target word shared the final three segments with its competitor (_ 

VCV), which means that they differed only by the initial segment. 

 
Table 2.1. Conditions varying locations of phonological sharing (See Appendix A for the 
complete sets). 
 

Conditions Target Competitor Unrelated Unrelated Average 
audio 
duration 

Cohort 1 (11 sets) kumo 
‘spider’ 

kata 
‘shoulder’ 

batsu 
‘x-mark’ 

hari 
‘needle’ 

489 ms 

Cohort 2 (12 sets) nasu 
‘eggplant’ 

nabe 
‘pot’ 

kumo 
‘cloud’ 

tsuru 
‘crane’ 

460 ms 

Cohort 3 (9 sets) kamo 
‘duck’ 

kame 
‘turtle’ 

roba 
‘donkey’ 

fugu 
‘puffer 
fish’ 

458 ms 

Rhyme 2 (12 sets) negi 
‘green 
onion’ 

yagi 
‘goat’ 

hato 
‘pigeon’ 

kasa 
‘umbrella’ 

449 ms 

Rhyme 3 (11 sets) futa 
‘lid’ 

buta 
‘pig’ 

hana 
‘flower’ 

maru 
‘circle’ 

453 ms 

 

As Table 2.2 below shows, there was one more critical condition that differed 

from the ones just mentioned. In this Cohort & Rhyme Mixed condition, two competitor 

pictures were present on the same trial. A trial included the target, the unrelated distractor 

and two competitor words; a Cohort 1 competitor (e.g., hebi and hone) and a Rhyme 3 

competitor (e.g., hebi and ebi). Previous studies including off-line and on-line studies 

show the rhyme effect for words differ by an initial phoneme (e.g., Allopenna et al., 

1998; Connine et al., 1993; McMurray et al., 2010). A competitor word shared the final 

three segments with a target word, but the initial segment was deleted (e.g., hebi and ebi). 

Even in the case of deletion, the rhyme effect may be observed since the portion of 

overlap still remains as words in the Rhyme 3 condition that differ by the initial 

phoneme. On the contrary, if the initial segment plays an important role on recognition, 
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we may not observe the rhyme effect for the mis-matching rhyme words, but instead 

observe a cohort effect for a word matches the initial segment with a target word. 

 

Table 2.2. Conditions varying locations of phonological sharing and having two 
competitors. 
 

 Target Competitor 1 
Cohort 1 

Competitor 2 
Rhyme 3 

Unrelated Average audio 
duration 

Cohort & Rhyme 
(4 sets) 

hebi 
‘snake’ 

hone 
‘bone’ 

ebi 
‘shrimp’ 

saru 
‘monkey’ 

451 ms 

 

The experiment also contained 8 filler trials for which all of the four words were 

unrelated to one another phonologically and semantically (e.g., ka ‘mosquito’, niji 

‘rainbow’, hata ‘flag’, & tamago ‘egg’). These trials involved a shorter target word in the 

critical trials or a longer target word in the control. 

The six critical conditions and one unrelated filler (base) condition added up to a 

total of 67 trials. These same picture sets were used on control trials. On the control trials, 

the target word was chosen from one of the two unrelated words on the critical trial. This 

made the target word unrelated to any of the other three words. For instance, the critical 

trial for the example Cohort 1 condition illustrated in Table 2.1 used kumo ‘spider’ as the 

target word. For the corresponding control trial, the same picture set was used but one of 

the unrelated pictures, hari ‘needle’, became the target word. The participants therefore 

were exposed to the same picture set twice, first while hearing a critical target word (e.g., 

kumo ‘spider’) and then while hearing an unrelated target word (e.g., hari ‘needle’).  

Critical trials were administered first to avoid pre-exposing participants to the stimulus 

sets.  
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In total, participants were exposed to the same trial set twice in the entire 

experiment. Participants did encounter the same picture more than twice throughout the 

experiment. For example, a picture of a bear kuma was used for two different trials in 

Cohort 1 and Rhyme 2. The experiment contained a total of 141 pictures. 122 pictures 

appeared twice in the critical trials and also twice in the control trials, since the picture 

sets on the critical trials were identical to the control trials. 16 pictures only appeared 

once in the critical trials and the control trials. Three pictures appeared three times in both 

trial types. The repeated usage of pictures was necessary to increase the number of word / 

picture pairs in order to create 67 critical trials within one experiment. Though 

participants saw each picture multiple times, they heard the name of each picture at most 

once (if that picture depicted the referent of a target word).  

Four words in each trial set typically had the same pitch accent (52 / 67 trials). 

The Japanese stimulus words were recorded by a female Japanese native speaker who 

was born and raised in the Tokyo area. The words were presented at the 70dB level. Each 

word was presented in isolation rather than in a carrier phrase since the carrier phrase 

creates anticipatory coarticulation providing cues to identify a word before a target word 

would become available. 

The initial phonemes of the experimental words included variety of consonants 

(e.g., 2 nasals, 5 stops, 2 fricatives, 2 liquids in Cohort 1 condition). They were 

distributed similarly within a condition to avoid having too many of the same initial 

consonant within a condition. Note that there are more stops than other initial consonants 

in Japanese, which yielded more stop-initial words within a condition (see Appendix A 

for the complete stimulus sets). In addition, overlap in vowels was minimized across 
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words in a trial. For example, one of the Cohort 1 trials consisted of mame ‘bean,’ mikan 

‘tangerine,’hooki ‘bloom,’ and tsuri ‘fishing,’ the vowel that is shared at the same 

location across words is only /i/ in hooki ‘bloom’ and tsuri ‘fishing’ which are both 

unrelated words. Because the experiment contained many conditions, and the aim was to 

maximize lexical diversity in the stimulus set rather than restricting the stimuli to a 

handful of perfectly matched word sets, it was impossible to strictly control word 

frequency, phonological similarity, semantic similarity (e.g., knife & cutting board), 

semantic categorical similarity (e.g., animals, tools), pitch accent similarity, shape and 

color similarity, initial consonant similarity and vowel similarity in each trial. Instead, 

statistical control for individual characteristics of words was attempted using the random 

effect of word, accompanied by visual examination of the by-word random intercepts to 

search for outliers. 

 

2.2.3. Procedure 

Participants were tested individually in a quiet room. A participant was seated in 

front of a computer screen; an eye tracking device and a computer mouse were located in 

front of the screen. First, participants were guided to put their chin and forehead onto the 

headrest. The experimenter then calibrated the eye tracker (EyeLink 1000) using a 9-

point calibration procedure focusing on the participant’s right eye. After appropriate 

adjustment and calibration, participants were instructed to listen to isolated words 

through the headphones they wore and then click on a picture on the screen which 

matched the word they heard. To ensure that participants were in a Japanese language 

processing mode, all instructions were presented in Japanese, and the experiment was 
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conducted by the first author, a native Japanese speaker (cf. Canseco-Gonzalez et al., 

2010). There were three blocks in the experiment: practice trials, critical trials, and 

control trials in sequential order. The trials and locations of pictures in each block were 

randomized. On each trial, the set of the four pictures appeared for 1000 ms; then a red 

fixation cross was presented at the center of the screen along with the four pictures. Once 

the participant had fixated the red cross, a target word was played through the 

headphones. The participants did not study any of the pictures prior to experiment. There 

was no time limit for the participants to select the picture. The eye position was recorded, 

and the identity of the interest area it fell into identified, by EyeLink every millisecond. 

Whereas several studies have ensured that the participants name pictures in the 

intended way by pre-training the participants on the intended names of the pictures, it 

was considered important, given the aims of the present study, to avoid pre-training in 

order to reduce the likelihood of exaggerating lexical competition effects. For this reason, 

the present study ensured that participants named the pictures in the intended way by 

asking them to name the pictures (one by one) after the experiment was completed. 

Previous studies without pre-training have not asked participants how they named the 

pictures; therefore experimenters never knew if pictures in their experiment were named 

as experimenters intended (Dahan & Gaskell, 2007; Dahan et al., 2001a; Dahan et al., 

2001b; McMurray et al., 2010; Mirman et al., 2011). Though some of these studies 

normed the experimental pictures using a different group of subjects (Dahan & Gaskell, 

2007; Dahan et al., 2001a; Mirman et al., 2011), and saw 90% between-subject 

agreement in naming, it is impossible to know for sure whether the actual experimental 

participants would name the pictures in the intended way and therefore whether the 
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competitor words were indeed overlapping with the target as much or as little as 

intended. Given the focus on amount of overlap in this study, it was felt that name 

agreement is crucial. 

 

2.2.4. Data Processing 

Trials were excluded from data analysis when participants named pictures 

differently than expected, and the difference affected phonological similarity relations in 

a trial. For example, naming a picture of a boot buutsu as a shoe kutsu changed the 

phonological similarity relations of a trial in which the word buutsu was intended to be a 

cohort competitor of the target word buta ‘pig’ ineligible to be included in the analysis. In 

such a case, the trial was excluded. However, not all of the different namings affected the 

phonological similarity relations of a trial. For example, naming a picture of a killer 

whale shachi as a dolphin iruka did not affect the phonological similarity relations of a 

trial on which the target word was hato ‘pigeon’ and the competitor was hebi ‘snake’ 

because both shachi and iruka were unrelated to both the target and the competitor and 

were therefore appropriate as distractors. On average, two trials per participant had to be 

excluded on this basis. One participant was excluded from data analysis due to a high 

number of unexpected picture names (43 / 141 words). Table 2.3 is a summary of trial 

exclusion in the experiment. As mentioned above, one subject was excluded from the 

analysis which yielded 134 trials (3.23%). 69 trials (1.66%) were excluded due to 

unintended picture namings. 269 trials (6.48%) were excluded due to absence of looks to 

target pictures during the window of audio onset to the mouse click. After these 
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exclusions, 88.64% of the trials (3682 / 4154) remained. Note that there were no 

recognition errors (clicks on an incorrect picture). 

 

Table 2.3. Summary of trial exclusions. 
 

 Excluded subjects Excluded 
trials due to 
wrong 
naming 

Excluded trials 
due to absence of 
looks to target 
pictures in the 
analysis window 

Total # of included 
trials in the 
experiment 

Number of 
trials 

134 (1 subject) 69 269 3682 

% 3.23 % 1.66 % 6.48 % 88.64 % 

 

2.2.5. Analysis 

The data for each trial was aggregated in 20 ms intervals. The dependent variable 

was then the proportion of time within each interval spent fixating a particular picture. 

Data were analyzed using growth curve analysis (Mirman, 2014; Mirman, Dixon, & 

Magnuson, 2008). The model consisted of a fixed effect of Picture Type (Competitor vs. 

Distractor) interacting with time represented as a weighted sum of fourth-order 

orthogonal polynomials (centered time, time2, time3 and time4), random intercepts for 

Items (trials) and Subjects and random slopes for Picture Type by Subject. Time window 

for the analysis is from 200 ms to 1000 ms in 20 ms time interval. 200 ms  is usually 

considered to be the minimal time required for planning a saccade (Matin, Shao, & Boff, 

1993, though cf. Altmann (2011). Fixation proportion of target pictures reached 

maximum at 1000 ms after target onset on average. Average time to click a target picture 

was 1242 ms for Experiment 1 (and 1630 ms for Experiment 2). 

The competitor item is related to the target whereas the distractor is not. The 

crucial effects of interest are therefore the difference between looks to the competitor and 
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the distractor and its interactions with time on critical trials. If looks to a competitor 

significantly outnumber looks to the distractor in a particular time interval, evidence that 

the competitor indeed competes with the target for recognition during that time period is 

obtained. The present study refers to significant evidence for competition between cohort 

competitors as the ‘cohort effect’ and significant evidence for competition between 

rhyme competitors as the ‘rhyme effect’. 

The alternative linking hypothesis crucially predicts null cohort effects for small 

amounts of overlap between the target and the competitor. To quantify evidence for the 

null hypothesis (no effect), a Bayesian hypothesis test was performed. The test estimates 

the Bayes Factor for the alternative hypothesis H1 (a non-zero effect of a predictor) and 

the null hypothesis H0 (no effect) by comparing the BIC (Bayesian Information Criterion) 

values of a model that includes the predictor and one that excludes it (Wagenmakers, 

2007). For the analysis, looks to Competitor pictures and Distractor pictures of a certain 

type (e.g., Cohort 1) were examined. The model embodying the alternative hypothesis 

included the predictor Picture Type (Competitor or Distractor) while that embodying the 

null hypothesis did not. Supporting the null hypothesis means that it is more probable 

than not, given the data, that looks to a picture are unaffected by whether the name of the 

picture is phonologically similar to the target word presented on a trial; i.e., whether there 

is evidence for the name in the acoustic signal. As shown by Wagenmakers (2007), there 

is a direct relationship between the BIC difference between two models and the Bayes 

Factor, under the assumption that the two models are equally probable a priori, which 

allows us to use the probability of the data given a model instead of the probability of the 

model given the data. In the current case, the two models are nested such that there is a 
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null model (H0) and an alternative model (H1), which differs from it by the addition of a 

parameter. The BIC difference between the two models (∆BIC��) is then the BIC of the 

null model subtracted from the BIC of the alternative model. According to Wagenmakers 

(2007), the relationship between the BIC difference and the Bayes Factor is as follows, 

where D is the observed human data, and BF is the Bayes Factor, 

 

����  ≈  
Pr��� (�|��)

Pr���(�|��)
= exp(∆BIC�� /2)  

 

The estimated BF value was then converted into the posterior probability of H0 (see 

below) given the experimental data (D):  

����� (��|�) =  
����

���� + 1
 

 

The posterior probability of H0 was interpreted using the heuristic degree of evidence cut-

offs provided by Raftery (1995) (Table 2.4). 

 

Table 2.4. Explanation of posterior probability by Raftery. 
 

Bayes Factor BF01 Pr (H0 | D) Evidence 

1 – 3 .50 - .75 weak 
3 – 20 .75 - .95 positive 
20 -150 .95 - .99 strong 
> 150 > .99 very strong 

 

2.3. Results 
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Figure 2.2 demonstrates raw data, mean fixation proportions for each picture type 

(Target, Competitor, & Distractor) averaged across subjects and trials in a specific 

condition.  

 

 

 

Figure 2.2. Fixation proportion of targets, competitors, and distractors for each condition. 

 

Visual inspection of the plots suggests that there may not be a competitor effect except in 

the Cohort 3 condition and perhaps the Cohort 2 condition. Competitor pictures were 

fixated more than distractor pictures for those two conditions while both competitor 

pictures and distractor pictures were fixated equally for the other conditions. In addition, 

looks to referents of targets and non-targets diverged early, as soon as 200 ms after word 

onset. This divergence appeared to occur earlier in the Cohort 1 (100 ms) condition than 

Average  
audio offset 

Average  
audio offset 



 

40 

 

in the Cohort 2 (200 ms) condition, and even earlier in the Rhyme 2 (50 ms) condition, 

where the competitor did not share the beginning with the target word, indicating that the 

cohort-target overlap may influence looks to the target. However, the target quickly 

diverged from both the unrelated distractors and the related competitors, except in the 

Cohort 3 condition. 

The growth curve analysis indicated that there was no significant difference in 

looks between the competitor picture and the distractor picture in the Cohort 1 condition 

(sharing the initial single segment, e.g., kumo ‘spider’ and kata ‘shoulder’) (Estimate = -

.035, SE = .163, p = .829) and the Cohort 2 condition (sharing initial two segments, e.g., 

nasu ‘eggplant’ and nabe ‘pot’) (Estimate = -.230, SE = .216, p = .285). The posterior 

probability of the null hypothesis for both the Cohort 1 and Cohort 2 conditions was close 

to .99, which constitutes very strong evidence for the null hypothesis (no effect). This 

indicates that sharing the initial one or two segments with the target did not increase the 

likelihood of fixating the referent of a word in the present experiment. 

This is also true for the Rhyme conditions and the Cohort and Rhyme Mixed 

condition. There was no significant difference in looks between competitor pictures and 

distractor pictures for the Rhyme 2 condition (e.g., negi ‘green onion’ and yagi ‘goat’) 

(Estimate = .228, SE = .141, p = .107) or the Rhyme 3 conditions (e.g., futa ‘lid’ and buta 

‘pig’) (Estimate = -.035, SE = .183, p = .847). Subjects fixated the referent of an 

unrelated word as frequently as the referent of a word that shared a few segments with the 

target. This means that sharing the final 2 or even 3 segments with the target did not 

generate enough activation to draw an eye movement to the competitor. 
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There was also no significant difference in looks between competitor pictures and 

distractor pictures in the Cohort and Rhyme Mixed condition, where the cohort 

competitor (Cohort 1) and the rhyme competitor (Rhyme 3) were present on the same 

trial (e.g., hebi, ‘snake,’ hone ‘bone,’ and ebi ‘shrimp’) (Cohort: Estimate = .254, SE 

= .343, p = .459, Rhyme: Estimate = .189, SE = .340, p = .578). The Bayes Factor 

analysis very strongly supports the null hypothesis (no competitor effects) for the mixed 

condition (posterior probability of the null hypothesis >.99). As in the Cohort 1 and the 

Rhyme 3 conditions (with only one competitor), the data in the Cohort 1 & Rhyme 3 

Mixed condition strongly suggest that the name of a picture sharing the initial one 

segment or the final three segments with the presented word did not influence eye 

movements to the picture. 

However, three initial segments appeared to provide sufficient lexical activation: 

there was a cohort effect in the Cohort 3 condition. When the competitor shared the initial 

three segments with the target (e.g., kamo ‘duck’ and kame ‘turtle’), the competitor 

picture was fixated significantly more than the distractor picture (Estimate = -.901, SE 

= .209, p < .001), suggesting that words sharing three initial segments competed each 

other for recognition. In addition, a significant difference in the quadratic time term 

indicated a greater curvature in the trajectory of looks to the cohort picture that was not 

there in looks to the distractor picture (Estimate = .791, SE = .079, p < .001). 

Figure 2.3 illustrates the very early divergence between target and other pictures.  

Figure 2.3 shows the mean time (in milliseconds) spent fixating each picture for each 20 

ms time interval in the 200-400 ms time window for all the conditions except Cohort 3, 

where the looks indicate equal consideration of the target and cohort competitors early 
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on. Looks to target pictures quickly diverged from looks to the competitor pictures and 

the distractor pictures (around 200 ms). There was a significant difference in looking 

proportions between the target picture and the competitor picture (Estimate = -1.331, SE 

= .249, p < .001) as well as between the target picture and the distractor picture (Estimate 

= -1.285, SE = .223, p < .001). This indicates that the target quickly diverged from both 

the unrelated distractors and the related competitors, except in the Cohort 3 condition. 

 

Figure 2.3. Mean time spent fixating targets (solid line), competitors (dashed line), and 

distractors (dotted line) in each 20 ms time interval for the 200-400 ms time window. 

 

2.4. Discussion 

Previous research has suggested that spoken words are processed incrementally, 

with lexical representations and even the associated semantics activated as the spoken 

form of the word is being perceived, with only a constant 200 ms delay for programming 

eye movements (e.g., Matin et al., 1993). In theory, overlap with any part of a target word 
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can lead to activation of a candidate word during processing (e.g., Allopenna et al., 1998; 

McClelland & Elman, 1986; Norris, 1994), even when the shared parts are not initial. 

Furthermore, these activations are thought to be directly reflected in eye movements to 

pictures of referents 200 ms later (Allopenna et al., 1998; Tanenhaus et al., 2000). Thus, 

some studies have reported effects for ‘sub’ vs. ‘bus’ (Toscano, Anderson, & McMurray, 

2013) or rhyme sharing (Allopenna et al., 1998; Dahan et al., 2001a; 2001b; Simmons & 

Magnuson, 2018). Experiment 1 asked whether any amount of bottom-up information is 

sufficient to trigger a saccade to a visual representation of the word’s referent when top-

down activation of competitors is minimized. In addition, it asked how immediately a 

saccade occurs. Previous studies did not control the amount of overlap and have not 

systematically explored how much segmental overlap is necessary to observe lexical 

competition in the visual world paradigm. Experiment 1 was intended to fill this gap by 

systematically varying the amount of segmental overlap between the target word and its 

competitors, as well as whether these competitors share the beginning or the end with the 

target. Experiment 1 found that looks to a picture boosted when the name of the picture 

shared the three initial segments (the initial CVC) with the presented word. However, 

final overlap had no effect, and neither did shorter initial overlap. The results suggest 

either that: 1) lexical semantic representations are activated by Japanese listeners only 

after three segments of a spoken disyllabic word are perceived, which appears unlikely, 

or 2) relatively strong activation is required to drive an eye movement in the present task. 

The results provide no evidence for an influence of the mora on spoken word recognition: 

participants’ eye movements were affected by overlap in the initial three segments of a 

CVC but not in the initial two segments, CV, with a significant difference in the looks to 
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the competitor in the two conditions. Mora-by-mora recognition would instead predict 

that there should be a significant effect of CV (one-mora) overlap with no additional 

effect of additional submoraic segmental overlap in the Cohort 3 condition (Cutler & 

Otake, 2002). The present results are therefore inconsistent with mora-by-mora 

recognition, and no additional phonological units (e.g., mora) therefore appear to be 

necessary to include in the TRACE model for Japanese. 

The results of the present experiment are in fact not inconsistent with the classic 

study by Allopenna et al. (1998), which first documented lexical competition in spoken 

word recognition using the visual world paradigm. Seven of the 8 stimuli presented by 

Allopenna et al. (1998) to their participants, except for the famous beaker-beetle example, 

involved overlap in three or more initial segments. Likewise, most stimuli in Dahan, 

Tanenhaus, & Chambers (2002) involve substantial initial overlap involving more than 

two segments. Cohort effects in Dahan et al. (2001a), Creel, Aslin, and Tanenhaus (2008), 

and Canseco-Gonzalez et al. (2010) are somewhat more problematic because most of 

their stimuli showed two-segment overlap. However, as noted above, the procedures 

adopted in previous work have involved pre-exposing participants to the words included 

in the experiment, which may have increased the extent of lexical competition compared 

to the present experiment. 

Amount of shared information can be counted as length or proportion of overlap. 

Thus, we could consider one-segment overlap in the present study as an instance of 25% 

cohort overlap. One might argue that proportion of overlap may matter more than the 

number of shared segments (Kapatsinski, 2005; Simmons & Magnuson, 2018). For 

example, the proportion of overlap differs between monosyllabic words and disyllabic 
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words when two phonemes overlap. The proportion of overlap can be 66% for CVC 

words like ‘cat’ and ‘cap’ and only 40-50% for words for CVC(V)C words like ‘beaker’ 

and ‘beetle’ though for both cases, two phonemes are shared. Greater overlap could 

therefore show a stronger cohort effect because it results in a greater relatedness 

proportion. However, both the present study and the study by Allopenna et al. (1998) 

examined disyllabic words with 50% overlap (Cohort 2 condition in the present study). 

Yet, the present study did not exhibit the cohort effect that was observed in Allopenna et 

al.’s study. The stimulus words in their study consisted of five to six segments and shared 

two to three segments whereas the words in the present study consisted of four segments 

and shared two segments, thus exhibiting greater proportion of overlap. Thus ‘how much’ 

bottom-up information is needed to activate candidate words enough to evince an eye 

movement is likely affected by other factors such as the amount of top-down activation in 

the experiment. As the present experiment minimized top-down activation of lexical 

candidates, it is unsurprising from the interactive activation perspective of models like 

TRACE that the cohort effects are weaker than in Allopenna et al.’s study, which used 

pre-training and repetition of words throughout the experiment.  

At first glance, lack of overlap effects in conditions other than Cohort 3 appears 

inconsistent with theories claiming that any part of a target word can activate multiple 

candidate words during processing (e.g., TRACE; McClelland & Elman, 1986). A small 

or non-initial part of the target word (Cohort 1 & 2, Rhyme 2 & 3, and Mixed competitor) 

did not seem to activate candidate words in Experiment 1. However, several eye tracking 

studies using the visual world paradigm demonstrated a cohort effect as well as a rhyme 

effect, suggesting that both word-initial and non-initial acoustics activate the words that 
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contain them (Allopenna et al., 1998). Furthermore, there are good theoretical reasons for 

spoken word recognition to work this way. Given that any part of a spoken word can be 

obscured by noise, misperceived or mispronounced, word recognition needs to be robust 

enough to recognize the word using any set of partial cues (Salasoo & Pisoni, 1985). 

Furthermore, given that words vary in length and duration, and there are few clear 

acoustic cues to word boundaries in continuous speech, the listener cannot in general wait 

until they hear a certain number of segments from such a boundary before they start 

entertaining lexical hypotheses (McClelland & Elman, 1986; Norris & McQueen, 2008). 

The results of the present study can be reconciled with these theoretical considerations, as 

embodied by the TRACE model, and with the results of previous studies as long as a 

certain level of activation is necessary to drive a saccade to the referent of a word. Pre-

exposure to and repeated presentation of the words in previous studies may have served 

to increase their activation levels enough to drive saccades to their referents with a lower 

degree of bottom-up support from the signal (i.e., lower overlap with the presented target 

word). The present study does not conclude that listeners will always need three initial 

segments of a word to decide to look at a picture of its referent. Rather, it proposes that 

the listener needs to accumulate evidence for a word before a saccade is generated, i.e., 

there is a threshold below which the word’s activation is not high enough to drive a 

saccade and will not be reflected in the eye tracking record.  

As in previous studies, looks to referents of targets and non-targets diverged early, 

as soon as 200 ms after word onset. This divergence appeared to occur earlier in the 

Cohort 1 (100 ms) condition than in the Cohort 2 (200 ms) condition, and even earlier in 

the Rhyme 2 (50 ms) condition, where the competitor does not share the beginning with 
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the target word, indicating that the cohort-target overlap does influence looks to the target. 

However, the target quickly diverged from both the unrelated distractors and the related 

competitors, except in the Cohort 3 condition (Figure 2.2). That is, participants’ 

willingness to fixate any signal-consistent referent was consistently affected by the 

presence of more than one such referent on screen, but words corresponding to some 

referents were not activated enough to draw eye movements to themselves. They merely 

decreased the likelihood of a saccade from the fixation cross to the target referent.  

Most researchers in the visual world paradigm have assumed that 200 ms is the 

minimum time necessary to plan a saccade and that therefore effects observed 200 ms 

after stimulus onset reflect processing of the very beginning of the auditory stimulus (e.g. 

Allopenna et al., 1998; Tanenhaus et al., 2000); but cf. Altmann (2011). The divergence 

between the looks to the target and looks to other stimuli therefore appears to be driven 

by the very beginning of the word. Yet, signal support for three initial segments appears 

to be necessary to drive a saccade to a referent in the present experiment. One may 

therefore wonder how looks can be driven by the identity of the initial CVC, when that 

CVC has only started to be articulated. 

The likely explanation for the early divergence between target and competitors in 

the Cohort 1 and 2 conditions is coarticulation. Because of coarticulation inherent to 

natural speech, the beginning of a CVCV stimulus will provide information about its end 

and, in particular, the second consonant. Therefore, the listener may perceive the identity 

of the initial three segments of the target from the very beginning of the target stimulus, 

resulting in immediate suppression of looks to cohort competitors that do not share the 

second consonant with the target, and are therefore inconsistent with the speech signal. It 
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is known from previous studies that listeners do utilize coarticulatory information in word 

recognition, and that this information can drive saccades in the visual world paradigm 

(Beddor, McGowan, Boland, Coetzee, & Brasher, 2013; Dahan et al., 2001b; Salverda, 

Kleinschmidt, & Tanenhaus, 2014; Tobin, Cho, Jennett, & Magnuson, 2010). Given these 

observations, listeners may not need to hear the initial 3 segments (e.g., /kam/) to trigger 

an eye movement to the visual representation of an auditory word (e.g., kame). Rather, 

listeners may be actually making an eye movement upon hearing the initial 1 or 2 

segments (e.g., /k/ or /ka/), as long as the initial 1 or 2 segments provide coarticulatory 

information identifying the following segment of the word (e.g., /kam/). This would still 

suggest that the signal needs to provide evidence for multiple segments to trigger a 

saccade to the word’s referent. The early divergence (200 ms) between looks to the target 

and the others (Figure 2.3, page 42) would, however, be explained by coarticulation. One 

could also argue that looks to the target were suppressed by uncertainty regarding its 

identity caused by the presence of competitors. Even though the activation of competitors 

was insufficient to drive a saccade to their referents, it could have inhibited, and therefore 

suppressed saccades to, the target.  

To reduce coarticulation effects, Experiment 2 replicated the present experiment 

using auditory stimuli produced with a diphone synthesizer (MBROLA, Dutoit, Pagel, 

Pierret, Bataille, & Vrecken, 1996). The diphone synthesizer limits coarticulation to 

adjacent segments. This means that listeners in Experiment 2 will NOT receive 

information about the second consonant from the very beginning of the auditory stimulus. 

If a CVC match is necessary for a Japanese listener to look at the referent of a word in the 
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present experiment, looks to both targets and Cohort 3 competitors should be delayed (i.e., 

later than 200 ms) in synthesized speech.  

Furthermore, if the acoustic signal needs to provide information consistent with the 

initial CVC of a word to drive saccades to its referent, participants in Experiment 2, just 

like participants in Experiment 1, should continue to fixate Cohort 1 and Cohort 2 

competitors with the same probability as unrelated distractors, despite the beginning of 

the synthesized stimuli providing no disambiguating information that would allow the 

listener to rule these lexical candidates out.  

On the other hand, because synthesized speech does not match the listeners’ stored 

representations of spoken words as well as natural speech does, there may be increased 

uncertainty about the speech signal. If eye movements are truly “promiscuous” 

(Tanenhaus et al., 2000), and the listener looks at the referents of all words that are 

consistent with the signal, one might expect this uncertainty to lead to increased looks to 

non-target referents. In particular, looks to cohort competitors may have been suppressed 

in the Cohort 1 and 2 conditions of Experiment 1 by the presence of early coarticulatory 

information about the end of the target word (e.g., the second consonant in CVCV). That 

is, listeners may have looked at all referents consistent with the signal, but the signal was 

not consistent with cohort competitors early on due to the presence of coarticulatory 

information. If participants are able to recognize the target word early on, the target word 

may not be confusable with a competitor word that shares the initial segments with the 

target. If looks to the Cohort 1 and Cohort 2 competitors fail to occur in Experiment 1 

because they are suppressed by coarticulatory information about the end of the word, 

participants may look at Cohort 1 and Cohort 2 competitors when the acoustic signal in 
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the initial CV transition is as consistent with these competitors as with the target. The 

absence of coarticulatory information about the end of the target word in Experiment 2 

should then increase looks to Cohort 1 and Cohort 2 competitors, allowing cohort effects 

to emerge with shorter overlap. If, on the other hand, the signal needs to provide 

information identifying the initial CVC of a Japanese word to drive a saccade to the 

referent of that word, then we should not observe Cohort 1 and Cohort 2 effects in 

Experiment 2, replicating the results of Experiment 1. 

  



 

51 

 

CHAPTER III 

EXPERIMENT 2: SYNTHESIZED SPEECH STIMULI 

 

The work presented in this chapter is also reported in a co-authored 

article invited for resubmission to the journal Language, Cognition and Neuroscience 

 

3.1. Introduction 

As discussed above, Experiment 2 examines word recognition in speech 

synthesized using diphone concatenation, to evaluate whether elimination of long-

distance coarticulation would affect looks to competitors and, if so, whether it would 

increase or decrease looks to cohort competitors compared to natural speech. Synthesized 

speech increases ambiguity in the acoustic signal, which could have two consequences. If 

listeners look at everything that is consistent with the signal – i.e., eye movements are 

maximally promiscuous – then there should be more looks to cohort competitors in 

synthesized speech compared to natural speech. In synthesized speech, the beginning of 

the stimuli provides no information that favors the target over the cohort competitors, 

which therefore predicts that the listener should be equally likely to look at both. 

However, the alternative linking hypothesis suggests that that equal likelihood should be 

near zero: participants should continue looking at the fixation cross until there is enough 

evidence for a particular word being present in the acoustic signal. Given the results of 

Experiment 1, enough evidence in the present population and task – with its costs and 

benefits and lack of repetition – means enough to identify the second consonant in a 

CVCV. Since the information about the second consonant is delayed by diphone 
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synthesis, we also expect that looks to the target will diverge from looks to unrelated 

distractors (and insufficiently related competitors) later than in Experiment 1. Previous 

work using synthesized speech has provided evidence consistent with this prediction 

(Farris-Trimble, McMurray, Cigrand, & Tomblin, 2014; McMurray, Farris-Trimble, & 

Rigler, 2017). However, this work examined speech produced using a cochlear implant 

simulator, which produces highly degraded spectra, drastically reducing segment 

discriminability, but does not affect coarticulation. The present study instead reduces 

coarticulation while leaving non-coarticulatory spectral cues to segments largely intact. 

 

3.2. Methods 

 

3.2.1. Participants 

Thirty seven Japanese students at the University of Oregon, native speakers of 

Japanese, participated in this experiment. They were either paid or earned course credit 

for their participation. All of them reported normal hearing and eyesight. The participants 

did not take part in Experiment 1. As in Experiment 1, most of the participants were 

Japanese college students (M = 21 years old) who came to the States for a study abroad 

program for a few terms to study English (20 out of 35 subjects). Most of the subjects had 

lived in the States less than six months at the time of the experiment (1-6 months = 26 

subjects, 7-12 months = 6 subjects, longer than 24 months = 4 subjects). 

 

3.2.2. Stimuli 
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The words, pictures, and phonological conditions were identical to Experiment 1 

except the audio was resynthesized from the natural speech audio used in Experiment 1. 

Synthesis was performed to reduce a long-distance coarticulation, vowel-to-vowel (V-to-

V) coarticulation, in CVCV because that coarticulation may help listener to anticipate the 

end of the target word early. Synthesis was performed using a diphone synthesizer, 

MBROLA (Dutoit et al., 1996). Because diphone synthesis blends diphones (i.e., C-V-C-

V), it removes long distance coarticulation (i.e., there is no coarticulation between the 

first V and the second V or the first C and the second C; the cues to the second consonant 

first emerge during the second half of the first vowel). The input to MBROLA included 

the duration of each segment in each word from Experiment 1 and the word’s pitch 

contour, with points measured in increments comprising 5% of each segment’s duration. 

The ‘jp 2’ voice (a female speaker of Japanese that the program listed) was used. To fine-

tune the audio for naturalness, pitch was then manually adjusted by the author. Ten ms of 

silence was added before and after a word. The naturalness of resynthesized words was 

rated by 11 native listeners of Japanese. Each listener rated words on a percentage scale, 

100% representing the audio being as similar as possible to natural speech. The 

naturalness of resynthesized speech was 74% on average, indicating that synthesized 

speech is somewhat degraded relative to natural speech. However, word recognition 

accuracy in the eye tracking study was 100%, indicating that enough cues are eventually 

provided by synthesized speech for all words to be accurately identified and the 

competitors to be successfully ruled out. 

 

3.2.3. Procedure 
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Procedure was identical to Experiment 1. 

 

3.3.4. Data Processing and Analysis 

The criteria for discarding trials were the same as Experiment 1. Table 3.1 is a 

summary of trial exclusion in the experiment. Ninety five trials (1.92%) were excluded 

due to unintended picture names and two participants (268 trials, 1.92%) were excluded 

due to a technical problem with the eye tracker, which failed to record fixations for half 

of these participants’ trials. 241 trials (4.86%) were excluded due to absence of looks to 

target during the window of audio onset to the mouse clicking. After these exclusions, 

87.84% of the trials (4355 / 4958) remained. The statistical analysis was the same as in 

Experiment 1. 

 

Table 3.1. Summary of trial exclusions. 
 

 Excluded subjects Excluded 
trials due to 
unintended 
picture 
naming 

Excluded trials 
due to absence of 
looks to target 
pictures in the 
analysis window 

Total # of included trials 
in the experiment 

Number 
of trials 

268 (2 subjects) 95 241 4355 

% 5.41 1.92 4.86 87.84 

 

3.3. Results 

Figure 3.1 demonstrates raw fixation proportion data for each picture type (Target, 

Competitor, & Distractor) averaged across subjects and trials in a specific condition. The 

patterns of fixation proportions appear largely similar to those in natural speech data 

except for the Cohort & Rhyme Mixed condition where the rhyme pictures were fixated 

more than in natural speech. 
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Figure 3.1. Fixation proportion of targets, competitors, and distractors for each condition. 

 

Growth curve analysis demonstrated that, as in Experiment 1, there was no cohort 

effect in the Cohort 1 condition (Estimate = .481, SE = .277, p = .082) and the Cohort 2 

condition (Estimate = -.21, SE = .333, p = .529). As in Experiment 1, Bayesian analysis 

indicates very strong evidence for the absence of a cohort effect in the Cohort 1 and 2 

conditions (posterior probability of the null hypothesis >.99). 

As in Experiment 1, there was a cohort effect in the Cohort 3 condition (initial 

three segments shared). Competitor pictures were fixated significantly more than 

distractor pictures (Estimate = -.893, SE = .232, p < .001), indicating that words sharing 

the initial three segments with the target were activated enough to drive saccades to their 

Average  
audio offset 

Average  
audio offset 
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referents. In addition, a significant difference in the quadratic time term indicates there 

was a difference in the timecourse of looks between distractors and Cohort 3 competitors 

(Estimate = .965, SE = .074, p < .001). 

As for the Rhyme 2 & 3 conditions, there was no significant difference in 

fixations between competitor pictures and distractor pictures for Rhyme 2 (e.g., negi and 

yagi) (Estimate = .038, SE = .147, p = .796) and Rhyme 3 (e.g., futa and buta) (Estimate 

= -.007, SE = .156, p = .963) conditions. The Bayes factor analysis also provide very 

strong evidence for the absence of an effect of final overlap (posterior probability of the 

null hypothesis >.99). Subjects fixated the referent of an unrelated word as frequently as 

the referent of a word that shared a few segments with the target. 

There are a few differences between Experiments 1 and 2. First, as expected, the 

probability of looking to the signal-consistent referents diverged from the probability of 

looking at signal-inconsistent referents later when the listener is presented with 

synthesized speech. Second, there was a rhyme effect in Experiment 2, but only in the 

Cohort & Rhyme Mixed condition. 

As noted above, later divergence was expected between looks to the target and 

looks to other referents in synthesized speech. In Experiment 1, looks to target pictures 

diverged from looks to other pictures around 200 ms after target onset (Figure 2.3, page 

42) whereas in Experiment 2 the divergence occurred around 400 ms (Figure 3.2 below). 

Figure 3.2 on the left (Experiment 2) illustrates the mean time (in milliseconds) spent 

fixating each picture for each 20 ms time interval in the 200-400 ms time window for all 

conditions except Cohort 3. In response to synthesized speech, looks to target pictures did 

not diverge from looks to competitor and distractor pictures until ~400 ms after stimulus 
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onset (left panel), although they quickly diverged from looks to other pictures in natural 

speech (right panel). Unlike in Experiment 1, there was no significant difference in looks 

between the target picture and the competitor picture (Estimate = -.204, SE = .249, p 

= .41) as well as between the target picture and the distractor picture (Estimate = -.026, 

SE = .192, p = .89) in the 200-400 ms time interval in the current experiment (left panel). 

The Bayesian hypothesis tests provided very strong evidence for the absence of an effect 

of Picture Type (posterior probability of the null hypothesis >.99). All the pictures were 

fixated equally often in the 200-400ms time window. 

 

 

Figure 3.2. Mean time spent fixating targets (solid line), competitors (dashed line), and 

distractors (dotted line) in each 20 ms time interval for the 200-400 ms time window. 

 

 Furthermore, there was a significant difference in looks to target pictures for the 

200-400ms time window between natural speech and synthesized speech (Estimate = -

1.153, SE = 0.571, p < 0.05). Figure 3.3 shows that target pictures were looked at 

significantly more in natural speech than in synthesized speech, implying that there was 

an early divergence in natural speech and late divergence in synthesized speech. Diphone 



 

58 

 

synthesis eliminated coarticulatory cues to the second consonant (CVCV) from the first 

consonant (CVCV) and the first half of the first vowel (CVCV). As a result, saccades to 

referents whose names contained that second consonant were delayed by about the same 

time. This result is consistent with the speech signal driving participants’ looks to a 

picture in both experiments only if the speech signal provided evidence for the initial 

three segments of the picture’s name. 

 

 

Figure 3.3. Mean time spent fixating targets in natural speech (solid line) and in 

synthesized speech (dashed line) in each 20 ms time interval for the 200-400 ms time 

window. 

 

In addition, there was also a delay in the reduction of looks to the competitor in 

the Cohort 3 condition for synthesized speech (See Figure 3.1, page 55). The difference 

concerns the timepoint at which looks to cohort competitors and targets begin to diverge. 

For natural speech, both the target word and the competitor word were fixated equally 

until ~500 ms after target onset, at which point looks to cohort competitors started to 
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decline (Figure 2.2, page 39). However, for synthesized speech, both words were fixated 

until ~600 ms (Figure 3.1, page 55). The realization point (600 ms) is about 140 ms after 

the target word offset. The divergence between the target and the Cohort 3 competitor is 

driven by cues to the final vowel of the target (CVCV). When these cues are delayed in 

synthesized speech, the divergence is delayed as well. 

Figure 3.4 below shows a comparison between natural speech and synthesized 

speech for looks to competitor pictures in the Cohort 3 condition from 200 ms to 800 ms. 

As just discussed, the peak of the looks to the competitor for natural speech is at about 

500 ms after target onset while the peak for synthesized speech is at about 600 ms. 

 

 
Figure 3.4. Mean time spent fixating competitors for natural speech (solid line) and 
synthesized speech (dashed line) in each 20 ms time interval. 

 

Significant effects on the quadratic term between the natural speech and the synthesized 

speech indicates that there was a steeper peak in response to natural speech (Estimate = -

.43, SE = .12, p < .001). This result can be attributed to the greater clarity of natural 

speech, which means that both the cues that favor the cohort competitor and the target 

over the unrelated distractor and those that favor the target over the cohort competitor are 
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clearer in natural speech. The clear cues that distinguish the cohort competitor from the 

distractor may result in greater listener confidence that the cohort competitor is present 

until the cues that distinguish it from the target are perceived. The greater clarity of the 

lat(t)er cues then produces greater listener confidence that the cohort competitor is absent 

from the signal, resulting in a steeper rise and fall of looks to the cohort referent.  

Another difference between the experiments was that there was a rhyme effect 

when two competitors were present in the same trial (Cohort & Rhyme Mixed) in 

Experiment 2 (synthesized speech). The difference in response patterns between 

Experiments 1 and 2 can be observed if one compares the rhyme curves in Figures 2.2 

and 3.1. For the Cohort & Rhyme Mixed condition (e.g., hebi, hone, and ebi) in 

Experiment 2, cohort pictures were fixated equally as distractor pictures (Estimate = -

.166, SE = .238, p = .486) as was seen in Experiment 1. However, rhyme pictures were 

fixated significantly more than distractor pictures (Estimate = .729, SE = .327, p = .026), 

suggesting that words sharing three final segments competed each other for recognition. 

The quadratic time term indicating a greater curvature in the trajectory of looks to the 

rhyme picture that was not there in looks to the distractor picture (Estimate = -.790, SE 

= .118, p < .001). Unlike in Experiment 1, there was a rhyme effect in Experiment 2 for 

the mixed condition. 

 

3.4. Discussion 

The results of Experiment 2 largely paralleled the findings with natural speech. In 

particular, both speech types produced a cohort effect only for the Cohort 3 condition (3 

segment sharing). In Experiment 2, the beginning of the speech signal contains no 
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coarticulatory cues that would allow the listener to distinguish the target from Cohort 1 

and Cohort 2 competitors. The listener nonetheless does not look at these competitors any 

more than at unrelated distractors. One-segment and two-segment overlap is apparently 

not enough to drive a saccade in the present experiments. The lack of looks to Cohort 1 

and 2 competitors in Experiment 2 indicates that this absence of looks is not caused by 

coarticulatory cues to the end of the word allowing the listener to quickly rule out these 

competitors as inconsistent with the speech signal. Participants don’t look at these cohort 

competitors even when the speech signal contains no cues to rule them out. Instead of 

looking at the referents of all words consistent with the signal, participants look only at 

referents of words for which the signal provide substantial evidence. 

The target words in the present experiment contain points of disambiguation that 

separate them from Cohort 1, Cohort 2, and Cohort 3 competitors. These points of 

disambiguation are delayed by the absence of coarticulation in Experiment 2. Because of 

this, it was expected the trajectory of looks to the Cohort 3 competitor and target to 

diverge from looks to distractors later in Experiment 2 compared to Experiment 1. This 

expectation was confirmed by the timecourse analyses: the likelihood of looks to signal-

consistent pictures increased beyond that of looks to signal-inconsistent pictures diverged 

about 200 ms later in response to synthesized speech compared to natural speech. 

Furthermore, looks to the target also diverged from looks to the Cohort 3 competitors 

later in synthesized speech compared to natural speech. 

A somewhat unexpected difference between the two experiments was the 

presence of a rhyme effect in the Cohort & Rhyme Mixed condition in Experiment 2 

(synthesized speech). In this condition, the rhyme competitor is missing the initial 
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segment of the target (e.g., hebi vs. ebi). Notably, there was no rhyme effect in the 

Rhyme 3 condition where the target and the competitor differed in the identity of the 

initial segment (e.g., futa vs. buta).4 The likely explanation for these differential effects is 

that the presence of the initial consonants ([h], [k], or [s]) in the Cohort & Rhyme Mixed 

condition relies on detecting a period of high-frequency aperiodic noise corresponding to 

a fricative or the release of a voiceless stop, a sound that is acoustically hard to integrate 

with the following speech (Remez, Rubin, Berns, Pardo, & Lang, 1994). In the visual 

world paradigm, Galle (2014) has shown that the impact of an initial fricative in the 

acoustic signal is significantly delayed compared to the impact of other cues, even ones 

that follow the fricative in the speech stream. In relatively unnatural synthesized speech, 

which makes speech sound less like speech, this integration may be especially likely to 

be delayed, making words like hebi temporarily homophonous with words like ebi. 

McQueen & Huettig (2012) and Brouwer & Bradlow (2011) have previously 

shown that signal degradation increases the strength of rhyme effects in the visual world 

paradigm, comparing high-overlap cohort stimuli and rhyme stimuli differing from the 

target by the initial consonant. Their rhyme stimuli were of the futa / buta type and not of 

the hebi / ebi type and therefore would not be expected to elicit the rhyme effect based on 

the data here. However, the type of degradation used in these experiments (replacing or 

obscuring speech with noise) was different from the type used here. Whereas the present 

noise may have led participants to have integration difficulties, replacing or obscuring 

sounds with noise may lead listeners to instead increase the estimated likelihood of 

misperceiving or missing a consonant, including an onset, increasing rhyme effects 

                                                 
4 Note that the first vowels in the stimuli are all fully voiced, meaning that the vowels are not reduced 
vowels or voiceless vowels even though Japanese phonology allows for reduction and devoicing in this 
environment. This ensures that the target and the competitor differ only in the initial consonant. 
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across the board. Exposure to reduced forms may similarly decrease the degree of overlap 

the listener required for a saccade (Brouwer, Mitterer, & Huettig, 2012). The human data 

suggest that a listener needs to accumulate enough evidence for a saccade rather than 

saccades mapping directly to lexical activation levels. The following chapter presents a 

computational investigation of whether the TRACE model of spoken word recognition 

can account for the human data (for both synthesized and natural speech) when equipped 

with the standard linking hypothesis.   
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CHAPTER IV 

EXPERIMENT 3: COMPUTATIONAL SIMULATION  

(TRACE MODEL) 

 

4.1. Introduction 

All current models of spoken word recognition suggest that any part of a target 

word activates candidate words (e.g., Allopenna et al., 1998; Luce & Pisoni, 1998; 

McClelland & Elman, 1986; Norris, 1994; Salasoo & Pisoni, 1985). The standard linking 

hypothesis for the visual world paradigm appears to suggest that these activation 

differences – standardly modeled using TRACE – should be directly reflected in fixation 

probabilities (Allopenna et al., 1998; Tanenhaus et al., 2000). Sharing some parts of 

target words in the present study seemed to be insufficient to either an eye movement or 

an increase in lexical activation. However, I have not yet shown that TRACE activations 

do indeed reflect segmental overlap differences manipulated in Experiments 1-2. It is 

therefore possible that the phonetics or lexical statistics of Japanese lead TRACE not to 

predict that competitor activation should exceed distractor activation in the Cohort 1, 2, 

and Rhyme conditions of the present experiments, even though TRACE predicts such 

effects for comparable English stimuli examined by Allopenna et al. (1998). 

No studies have parametrically varied overlap between candidate words, or 

systematically examined TRACE’s sensitivity to overlap. The spoken word recognition 

data based on natural speech stimuli (Experiment 1) and synthesized speech stimuli 

(Experiment 2) were therefore compared to the predictions of the TRACE model 
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(McClelland & Elman, 1986), to evaluate the model’s ability to predict the patterns in the 

data.  

Experiment 3 asks the following questions: 1) Does the TRACE model predict 

competitor effects in all conditions? 2) Do the predicted competitor effects in the TRACE 

model match those observed in the human data? I intend to show that the results of the 

behavioral studies reported above can be reconciled with TRACE and with the results of 

previous studies if we assume that a certain level of activation is necessary to drive a 

saccade to the referent of a word. 

The model consists of three layers of units, including a feature level, a phoneme 

level, and a word level. Input, for example the /k/ in kasa ‘umbrella’ is first represented 

on the feature level with feature values (e.g., strength levels for voiceless, sonorant, etc.), 

and the feature values activate phonemes that share them (e.g., /k/ and /g/ would be 

activated by a certain level of [sonorant]) and inhibit those that do not. The activated 

phonemes activate candidate words that contain them (e.g., kasa ‘umbrella,’ kame ‘turtle,’ 

gomi ‘garbage’. etc.) and inhibit those that do not. The activated words feed activation 

back to the phoneme level, activating the phonemes they contain and inhibiting those 

they do not. Words also compete with each other via lateral inhibitory connections, as do 

phonemes. In other words, at the phoneme and word levels, there is inhibition within a 

level and bidirectional flow of activation and inhibition between levels. Since multiple 

features can be present simultaneously, features do not compete with each other for 

recognition, and top-down feedback does not affect feature activations, preventing 

hallucinations based on top-down input. The architecture of the model is described 

further in the method section. 
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4.2. Methods 

 

4.2.1. Stimuli 

 Stimulus words and trials used for the TRACE simulation are identical to those 

presented to human participants in Experiment 1 (natural speech) and Experiment 2 

(synthesized speech). 

  

4.2.2. Procedure 

The simulation was conducted using the software jTRACE  (Strauss, Harris, & 

Magnuson, 2007), which is available online from the Computational Cognitive 

Neuroscience of Language Lab at the University of Connecticut 

(https://magnuson.psy.uconn.edu/jtrace/). Like the original TRACE, jTRACE contains 14 

phonemes as follows: /b, p, d, t, g, k, s, ʃ, ɹ, l, ɒ, u, i, ʌ/ and /-/ a silence, which has no 

featural overlap with any of the 14 phonemes. In order to test Japanese words, the 

phonemes in jTRACE were revised to include 24 consonants and 5 vowels as shown in 

Table 4.1. Previous studies limited lexica to the words that can be represented with 

phonemes similar to the existing phonemes in jTRACE (e.g., Dahan et al., 2001a; Dahan 

et al., 2001b; Marslen-Wilson & Warren, 1994) or used only words that can be found in 

the existing jTRACE lexica (e.g., McMurray et al., 2010; Mirman et al., 2011), except for 

a recent Mandarin simulation that modified the phonemes for the Mandarin phonemic 

inventory (Shuai & Malins, 2017). TRACE has not been previously applied to Japanese. 

The present study is therefore the first extension of the TRACE model to Japanese 
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spoken word recognition, which required adding new phonemes and modifying featural 

descriptions of some existing phonemes. 

 

Table 4.1. The Japanese phonemic inventory incorporated into TRACE in the present 
study. 
 
Consonants 

 Bilabial Dental5 Alveolar Alveolo-
palatal 

Palatal Velar Uvular Glottal 

Plosive p   b t   d    k   g   
Nasal     m     n        ŋ     N  
Tap       ɾ      
Fricative ɸ  s   z ɕ   ʑ ç   h 
Approximant         j     w   
Affricate   ts   dz tɕ   dʑ     

 
Vowels 

 Front Central Back 

Close i  ɯ 
Close-mid e  o 
Open-mid    
Open   ɑ 

Note: These phonemes were used to transcribe the experimental words in the present 
study. A few phonemes that appear in Japanese words (e.g., /ɲ ɣ β /) were not used 
because the stimulus words did not contain these phonemes. 
 

Phoneme feature specifications were also revised to better match the acoustics of 

Japanese. TRACE uses acoustic features definitionally similar to those proposed by 

Jakobson, Fant, & Halle (1951), including sonority, anteriority, height, diffusion, 

acuteness, voicing and burst amplitude6. The Mandarin TRACE-T model (Shuai & 

Malins, 2017) contained roundness, place of articulation, manner of articulation, tongue 

                                                 
5 /t/, /d/, and /n/ in Japanese  are considered dental (IPA handbook) or more front than the alveolar English 
coronals (Vance, 1987) 
 
6 The definition of the Burst feature provided by McClelland and Elman (1986) was as follows: “The 
amplitude of the burst of noise that occurs at the beginning of word initial stops, was included to provide an 
additional basis for distinguishing the stop consonants, which otherwise differed from each other on only 
one or two dimensions.” (McClelland and Elman, 1986: p.14)  
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height, tongue position, voicing and tone. Because the features are supposed to be 

variable acoustic representations, TRACE represents each feature as a scale of multiple 

values, which allows in-between ambiguous segments to be represented. Thus the 

strength of each feature ranges from level 1 to level 8, level 1 being the weakest level and 

level 8 being the strongest level of the feature. Note that level 9 was assigned only to a 

silence /-/. For example, sonority ranges between low vowels (8) and stops (1). At each 

level of strength (1-8), feature values in particular segments vary between from 0 to 1. 

This representation allows TRACE to represent each segment’s feature value as a 

distribution over several possible feature values that is intended to reflect the way in 

which acoustic realizations of the segment vary (see Appendix B for complete charts for 

TRACE: McClelland & Elman, 1986; see Appendix C for jTRACE: Strauss et al., 2007; 

and the present study in Appendix D). For instance, Table 4.2 below displays the features 

of /t/. On the sonority dimension (Son.), the highest value (1.0) at the strength level of 1 

indicates weakest sonority. This is appropriate for Japanese but would not be appropriate 

for English where /t/ is commonly reduced to a much more sonorous approximant (as in 

some realizations of ‘butter’), which would mean that an English /t/ would be represented 

by values spread over a wide range of sonority levels. This example shows that simply 

reusing English feature specifications in applying TRACE to Japanese would be 

inappropriate. The major modification for Japanese was to include /ɾ/, which can be 

transcribed as [ɾ ɹ ɽ ʀ l d] depending on its location in a word and the type of an adjacent 

vowel, and pronunciations can vary across individuals (e.g., Labrune, 2014). Therefore, 

the values of features for /ɾ/ were spread widely to account for the variation. The values 

were determined by referring to TRACE (McClelland & Elman, 1986) and jTRACE 
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(Strauss et al., 2007) feature and segment definitions, which are based on  phonological 

features by Jakobson et al. (1951), as well as to Japanese phonological features (Matsui, 

2017; Vance, 1987).  

 

Table 4.2. Phoneme feature dimensions for /t/. 

 

Level Sonority Anterior Height Diffuseness Acuteness Voiced Burst 

1 1.0   1.0    

2      1.0  

3        

4        

5       0.2 

6       1.0 

7  1.0   1.0   

8        

 

In TRACE, an input word excites features first. For example, /t/ in /toɾa/ has 

values for each feature as shown in Table 4.3. When these values are detected in the 

signal, corresponding phoneme(s) will be activated. In this case, both /t/ and /d/ will be 

activated to some extent at the phoneme level, then activating words that contain /t/ and 

/d/ such as /tana/, /toɾa/, and /take/.  

 

Table 4.3. Phoneme feature dimensions and values for /t/ and /d/. 
 

 Sonority Anterior Height Diffusion Acuteness Voiced Burst 

t 1 (1.0) 7 (1.0) 0 1 (1.0) 7 (1.0) 2 (1.0) 5 (0.2) 
6 (1.0) 

d 1 (1.0) 7 (1.0) 0 1 (1.0) 7 (1.0) 7 (1.0) 5 (1.0) 
6 (0.2) 
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 Several parameters (e.g., word layer inhibition, feature decay, etc.) can be 

manipulated in the simulation to account for differences between participants or tasks. In 

the present study, one experiment used natural speech while the other used synthesized 

speech, which is relatively degraded. To account for this degradation, we can turn up the 

input noise parameter (which slows lexical activation) in hopes of accounting for 1) the 

slower recognition of the target and 2) the presence of the rhyme effect in the Mixed 

competitor condition in synthesized speech. However, default parameter settings were 

used for the analysis in this chapter for two reasons. First, parameter changes compared 

to previous simulations need to be theoretically motivated by the way in which the 

present experiments objectively differ from previous spoken word recognition 

experiments in the visual world paradigm. Otherwise, any data pattern could be captured 

by TRACE with parameter tweaks (see also Norris & McQueen, 2008). For example, 

McMurray et al. (2010) show that some parameter value combinations in TRACE can 

actually reverse cohort effects so that related stimuli are activated less than unrelated 

ones, a result that makes little theoretical sense. For most parameters, there is no 

convincing reason to expect the settings to differ between this experiment and its 

predecessors, making it questionable to tweak them to fit the data. Second, as shown later 

in Chapter 5, manipulation of the parameters plausibly affected by the current 

experimental design do not explain the task differences (natural and synthesized speech). 

Further investigations and explanations of parameter manipulation are addressed in the 

next chapter. 

  

4.2.3. Data Processing, Analysis and Results 
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This section illustrates the procedure of TRACE simulation on a Japanese spoken 

word and demonstrates the issues that arise in the statistical analysis of this data and their 

solutions. 

An input word (e.g., /taki/ ‘waterfall’) is fed into TRACE sequentially, segment 

by segment from beginning to end (‘left to right’). Each segment is converted into the 

corresponding acoustic features, whose activations rise and fall over the duration of the 

segment as shown below. Figure 4.1 below is an example input feature distribution of 

/taki/ over its time course.  

 

Figure 4.1. Example input feature distribution of /taki/ in time course. 

 

X-axis represents time since input word onset (0 to 42 cycle time). Y-axis is blocked by 

seven features where each feature block represents strength levels (9 to 1 from bottom to 

up). Each phoneme corresponds to 11 cycles of time and a silence, /-/, is added at the 

beginning and at the end of a word. For example, the first and the last 11-cycle represent 
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a silence which has a strength level of 9 for every feature. The dashed line, activation of 

feature, sits on the bottom (level 9) for each feature block. Adjacent phonemes overlap by 

five cycles. TRACE therefore exhibits local coarticulation analogous to that produced by 

the diphone synthesizer in Experiment 2, but no long-distance coarticulation. The 

duration of overlap (coarticulation) is identical for any combination of phonemes unlike 

the duration of phonemes and coarticulation differ in natural speech. Figure 4.1 

demonstrates coarticulation in the word, /taki/. The initial five time cycles of /t/ overlap 

with the last five time cycles of silence and the last five time cycles of /t/ overlap with the 

initial five time cycles of the following phoneme, /a/.  

In order to compare the TRACE model and the human data in real time, cycle 

time was rescaled to match real time in milliseconds. Average duration of stimuli words, 

460 ms, was divided by the average number of cycles in a word, 42.4 cycles, which 

yielded one time cycle being 10.8 ms. 

The simulations provided trajectories of activation levels of each word over time. 

Activations, a, for each item i were then transformed into response strengths, S, following 

(Allopenna et al., 1998) and (Dahan et al., 2001a). The free parameter k determines the 

extent to which this transformation increases the differences between activations. It was 

set to 7 following Allopenna et al. (1998) and Dahan et al. (2001a).  

 

�� =  ����  (Allopenna et al. 1998, p.424) 

 

The response strengths (S) were converted into response probabilities (L) by using the 

Luce choice rule (Luce, 1959), shown in the equation below. The Luce choice rule 
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ensures that the entire probability mass is divided between the j possible response options. 

That is, the response probabilities range from 0 to 1. For example, at the beginning of a 

target word, the probability of looking at a picture is ¼ for each of the four pictures on 

the screen.  

 

�� =  
��

∑ ��
  (Allopenna et al. 1998, p.424) 

 

However, the current experimental task (as well as that in Allopenna et al., 1998) 

required a participant to look at the fixation point (at center of the display) before s/he 

can look at any pictures. This yielded probabilities of looking at each picture close to zero 

at the beginning of the trial in human data before the listener made a saccade to a referent, 

since they were looking at something else rather than a picture of one of the four objects. 

To deal with this issue, Allopenna et al. rescaled looking probabilities by ∆�, which is a 

free parameter fit to the human data. To calculate ∆�, the maximum activation at each 

time slice was divided by the maximum activation across all time slices of the same trial. 

Then, ∆� was multiplied by the looking probability derived from TRACE activations via 

the Luce Choice Rule above, Li to generate expected Response (R) (here, fixation) 

Proportions.  

 

∆�=  
��� (��,�)

��� (��)
  (Allopenna et al., 1998, p.424) 

�(��) =  ∆��� (Allopenna et al., 1998, p.425) 
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This rescaling means that the speaker has some probability of moving eyes away from the 

fixation point at any given time. This probability is based on how strongly activated the 

most likely lexical candidate is at that point in time. Once the decision to move the eyes is 

made, the speaker then decides where to move them, which is based on how strongly 

each of the candidates is activated. That is, the probability mass allocated to the decision 

to move is divided between the possible locations one can decide to move to. This is 

somewhat unintuitive: the speaker decides to move based on how activated one candidate 

is even when the decision is to move to a depiction of another candidate. It would be 

more consistent to replace the maximum function above with the average or the sum of 

activations so that the decision to move is based on all the candidates pulling one away 

from the fixation cross. However, we retain the max function here for comparability with 

Allopenna et al. (1998) and following work in this paradigm. 

 Figure 4.2 (next page) depicts curves for the TRACE-predicted fixation 

probabilities for each picture type in each condition. For Cohort conditions, Response 

(fixation) probabilities for cohort competitor pictures become higher as the numbers of 

shared phonemes increases. This is also observed for Rhyme conditions although the 

difference between the conditions seems to be slight. For the Mixed competitor condition, 

the probability of the cohort fixation is higher than for rhyme or distractor pictures and 

the rhyme effect is not predicted even though the rhyme competitor shares most with the 

target word. The trajectory of the probability of looking at a target picture diverges from 

those for distractors around 200 ms for TRACE data, which is similar to the figure for 

natural speech (Figure 2.3, page 42). The divergence starts later in synthesized speech 

(400 ms) than in TRACE (200 ms). This is somewhat surprising given that the degree of 
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coarticulation in TRACE mirrors the degree of coarticulation in synthesized speech in the 

present study and suggests that synthesized speech may be causing participants to delay 

commitment to an eye movement decision.  

 

   

   

Figure 4.2. Growth curve results of TRACE data for each condition. 

 

While previous studies have largely limited themselves to the type of qualitative 

visual analysis described so far (Dahan et al., 2001b; Shuai & Malins, 2017), this is 

insufficient to determine whether the predictions of TRACE match human data. In 

particular, Figure 4.2 shows small but reliable Cohort effects within TRACE. However, it 

is not clear whether these predicted effects are large enough to be detectable in the human 

Average  
target offset 

Average  
target offset 
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data. In other words, to evaluate the predictions of TRACE it is important to know 

whether the predicted differences between conditions are distinguishable from lack of 

condition differences (null hypothesis). 

Two types of quantitative comparison between the TRACE model and the human 

data were for this purpose. The first analysis examined the fit of the TRACE model to the 

human speech data (Natural & Synthesized) within a single condition (e.g., Cohort 1, 

Cohort 2, etc.) while the second analysis examined the fit between conditions (e.g., 

Cohort 1 vs. Cohort 2).  

For these analyses, generalized additive models (GAMs; fit using the gam 

function in the mgcv package; Wood, 2007; in R) were used to summarize the curves 

generated by a TRACE model. GAM is a recent alternative to polynomial models for 

curve-fitting (here, fitting the trajectory of fixation proportions as a non-linear function of 

time). Although polynomial growth curve models have the advantage of providing the 

modeler with interpretable parameters, which motivated the choice to apply them to the 

human data in Chapters 2 and 3, GAM models tend to produce better fits and better 

extrapolation performance than polynomial models (e.g., Baayen, van Rij, de Cat, & 

Wood, 2018; Wieling, Nerbonne, & Baayen, 2011). This was also the case here: the fits 

to the TRACE curves generated by GAM were markedly better than polynomial growth 

curve fits. In the analyses reported in this chapter, a statistical model was developed to be 

intended to stand in for TRACE in model comparisons. This model must fit TRACE 

curves very well if it is to represent it.  

Bayes Factor comparisons were then used to compare a GAM model with the 

condition effect predicted by TRACE and a near-identical GAM model missing the effect 
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of condition. This approach retains the overall timecourse predictions from the TRACE 

model in both GAM models, focusing solely on whether the condition differences (such 

as the one between a competitor and a distractor, or a Cohort 1 competitor vs. Cohort 2 

competitor) are as predicted by TRACE or not. I now describe the analytic approach step 

by step, while identifying the issues that arise in the analysis and the proposed solutions 

for these issues. 

The first step is to build a GAM model of the TRACE-predicted fixation 

trajectories. This involves predicting the dependent variable Fixation Proportion based on 

the independent variable (Picture Type, competitor(s) vs. distractor, for within-condition 

analysis and Competitor Type for between-condition analyses of competitor fixations). 

Because fixation proportions change over time in complex non-linear ways, and the 

trajectory of change is different across the levels of the independent variable, a smooth 

for time within each level of the predictor variable was also included. This (alternative) 

model (H1) 7 allows for a difference in the overall level or in change over time of 

Fixation Proportion across Picture types or Competitor types. A comparable null model 

(H0) is fit to the TRACE predictions by omitting the independent variable (Picture Type 

of Competitor Type). This model fits a single smooth for time, which means that it 

retains the overall trajectory of fixation proportions predicted by TRACE across 

conditions, by pooling the data across conditions and fitting a single non-linear function 

of time to the resulting fixation proportions. In other words, the null model therefore 

retains the overall timecourse predictions of TRACE while removing the predicted effect 

of condition. 

                                                 
7 H1 <- gam (Fixation Proportion ~ s (Time, by = Picture Type) + Picture Type, data = TRACE data) 
  H0 <- gam (Fixation Proportion ~ s (Time), data = TRACE data) 
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Example figures of H1 and H0 model fits to the TRACE predictions in the Cohort 

1 condition are shown in Figure 4.3 below. The thicker lines (both solid & dashed) 

represent the GAM model fit while the thinner lines represent the raw data of TRACE 

predictions, averaged across trials. As seen in the figure, GAM provides an excellent fit 

to the Fixation Proportion curves, which means that its predictions can stand in for 

TRACE predictions in fitting the human data for the H1 model.8 

 

           H1                                                          H0 

      
 
Figure 4.3. Plot of the GAM fits to TRACE predictions for the Cohort 1 condition (left = 
H1, which includes the effect of AOI, and right = H0, which excludes it) 
 

The second step is to generate predictions from the H1 and H0 models for human 

data, using the predict() function in R9. Since the TRACE model was trained on the same 

                                                 
8 Spurious wiggliness is still present in the GAM fit where the TRACE curves are smooth at the edges of 
the graph, reflecting the bump-like thin-plate regression smooth basis function used in this version of GAM 
(Wood, 2003). However, this wiggliness accounts for very little variance and is greatly reduced compared 
to polynomial growth curve fits. 
 
9
 H1.prediction <- predict (H1, newdata = human data) 

  H0.prediction <- predict (H0, newdata = human data) 
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items, these predictions are intended to capture some item variability, and the H1 model 

is intended to capture the condition effect.  

Thirdly, new GAM models were fit to human data by combining the predicted 

values from TRACE models (H1 & H0) with the random effects of Subject and Item.10 

The random effects are necessary to produce a reasonable fit to the human data, as 

suggested by Farris-Trimble & McMurray's (2013) finding that there are sizeable and 

stable individual differences in eye movement behavior in the visual world paradigm. In 

this initial analysis, I also followed recent work in the Baayen and Milin labs (e.g., Milin, 

Feldman, Ramscar, Hendrix, & Baayen, 2017) in allowing the GAM model to fit non-

linear interactions between TRACE activations and time, because the predicted fixation 

trajectories in TRACE do not have quite the shape observed in human data. For example, 

the figure below shows that the fixation probability curves in human data are quite 

skewed, and so not quite go down to zero in the way that TRACE curves do. These shape 

differences could be due to extraneous reasons like the assumption that all segments are 

equally long and equally coarticulated, and hence were thought to be worth abstracting 

away from. However, the better fit to human data associated with a GAM link between 

TRACE predictions and fixation proportions comes at a significant cost, as we will see 

later. Figure 4.4 (next page) exhibits the outputs of the new models (thick smooth lines) 

and the human raw data averaged across subjects and items for the Cohort 1 condition 

(thin lines). In the H1 model, the difference in looks between competitors and distractors 

                                                 
10 newdata.H1 <- gam (Fixation Proportion ~ te (H1.prediction, Time) + s (SUBJECT, bs="re")  
                         + s (ITEM, bs = ”re”), data = human data)  
    newdata.H0 <- gam (Fixation Proportion ~ te (H0.prediction, Time) + s (SUBJECT, bs="re"),  
                         + s (ITEM, bs=”re”), data = human data) 
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is very slight while there was no difference in looks between the two pictures in the H0 

model, which represents the null hypothesis.  

 

H1              H0 

      
 
Figure 4.4. Plots of the GAM models of human data as a function of TRACE predictions 
for the Cohort 1 condition (left = H1 and right = H0). 
 

These models are then compared using the BIC approximation to the Bayes 

Factor (Wagenmakers, 2007) to determine whether the predictions of H1 or H0 provide a 

better fit to the human data. Support for H1 means that the human data evidence the 

condition difference predicted by TRACE, while support for H0 means that human data 

provide evidence against the predicted condition difference. It is also possible for the 

model comparison to be inconclusive, in which case the human data are insufficient to 

distinguish between the two hypotheses. For example, in the graph above, the predictions 

of H1 and H0 are nearly identical because 1) both retain the overall timecourse 

predictions of TRACE and the random subject and item effects, and 2) the difference 
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between looks to distractor and competitor in TRACE was expected to be small. The data 

should therefore be inconclusive regarding whether H1 and H0 are supported. 

Table 4.4 describes the results of the model comparisons within each condition 

(Cohort 1, Cohort 2, Rhyme etc.) for natural speech stimuli.  

 

Table 4.4. BIC differences between H1 and H0 models and evidence strength of the 
model in natural speech for each condition type. 
 

Condition Cohort 1 Cohort 2 Cohort 3 Rhyme 2 Rhyme 3 Mixed11 

BIC 
differences 

2 48 286 5 0 38 

Evidence for 
H1 or H0 

Neither H1 H1 H0 Neither H0 

posterior 
probability of 
H1 or H0 

0.25 (H0) 1 (H1) 1 (H1) 0.93 (H0) 0.44 (H0) 1 (H0) 

 

For example, the difference of BIC values between H1 and H0 models is five in the 

Rhyme 2 condition and the H0 model is supported, meaning that the BIC value of the H0 

model is smaller than that of the H1 model. The H0 model was supported for the Rhyme 

2 and the Mixed competitor conditions, which means that human data were better 

described by a model that says there is no competitor / distractor difference (in proportion 

of looks or proportion and time-course or time-course depending on H0) than by the 

model that says the difference between distractor and competitor is the same as in 

TRACE. In other words, there is a difference in fixation proportion between rhyme 

pictures and distractor pictures in the TRACE rhyme 2 condition (H1), which generates 

predictions that are distinct from those of the corresponding H0; however human data are 

more consistent with H0. Likewise, the difference in activations between the rhyme 

                                                 
11 The analysis includes Fixation Proportion of Cohort, Rhyme and Distraction. 
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competitors and unrelated distractors in the Mixed condition in TRACE had no effect in 

natural speech data.  

H1 model was supported for the Cohort 2 and Cohort 3 conditions, meaning that 

human data were better described by a model that says the difference between competitor 

and distractor is the same as in TRACE than by a model that says there is no difference. 

In other words, the difference in fixation proportion trajectories between distractor and 

competitor pictures in the Cohort 3 condition is more consistent with the difference 

predicted by TRACE than with no difference: both TRACE and human data have a big 

difference in fixation proportion trajectories between the pictures (cohort effect). TRACE 

therefore successfully explained the human data. The subtle differences in BIC values 

between H1 and H0 models for the Cohort 1 and Rhyme 3 conditions are inconclusive. 

This inconclusiveness is largely due to absence of observable effects of relatedness in 

TRACE predictions for these conditions, making H0 and H1’s predictions for the human 

data near identical. 

 Table 4.5 suggests support for either H1 or H0 in each condition of the study 

utilizing synthesized speech stimuli. 

 

Table 4.5. BIC differences between H1 and H0 models and evidence strength of the 
model in synthesized speech. 
 

Condition Cohort 1 Cohort 2 Cohort 3 Rhyme 2 Rhyme 3 Mixed 
BIC 
differences 

73 16 219 32 9 2 

Evidence for 
H1 or H0 

H0 H0 H1 H0 H1 Neither 

posterior 
probability of 
H1 or H0 

1 (H0) 0.99 (H0) 1 (H1) 0.99 (H0) 0.99 (H1) 0.80 (H0) 
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The H0 model was supported for Cohort 1, Cohort 2, and Rhyme 2, which indicates 

failures of TRACE predictions, while the H1 model was supported for Cohort 3 and 

Rhyme 3, indicating support for TRACE predictions. The model comparison was 

inconclusive for the Mixed competitor condition. 

 Table 4.6 shows the results of model comparisons for the differences between 

conditions for both speech types. The results were the same across speech types in that 

H0 was supported for the comparisons between the Rhyme 2 and the Rhyme 3 conditions, 

which means TRACE failed to predict the absence of differences between these  

conditions in human data, while H1 was supported for the comparisons between the 

Cohort 2 and the Cohort 3 conditions, indicating that TRACE succeeded in predicting the 

differences between these conditions. The model comparisons for the Cohort 1 vs. Cohort 

2 conditions were inconclusive.  

 

Table 4.6. Results of between conditions for both speech types. 
 

Speech Types Natural speech Synthesized speech 

Condition 1C vs. 2C 2C vs. 3C 2R vs. 3R 1C vs. 2C 2C vs. 3C 2R vs. 3R 

BIC 
differences 

1 32 65 1 112 50 

Evidence for 
H1 or H0 

Neither H1 H0 Neither H1 H0 

posterior 
probability of 
H1 or H0 

0.6 (H0) 1 (H1) 1 (H0) 0.64 (H0) 1 (H1) 1 (H0) 

 

 The analyses reported above provided some evidence that TRACE predicts 

certain effects of overlap that are absent from human data. When the Bayesian model 

comparisons are conclusively favoring H0, the human data suggest that a zero effect of 

overlap is more probable than the effect predicted by TRACE. Above, this holds for 
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several comparisons between unrelated distractors and phonological competitors that 

overlap with the target in synthesized speech. In particular, both final (rhyme) overlap 

and initial (cohort) overlap in 1 or 2 segments is more likely to have no effect on eye 

movements than to have the effect predicted by TRACE. In contrast, initial or final 

overlap in 3 segments does have the effect predicted by TRACE. Together, these results 

suggest that overlap in fewer than 3 segments is insufficient to drive a saccade in the 

synthesized speech data. In contrast, overlap in 2 initial segments does appear to be 

sufficient to increase the probability of a saccade in response to natural speech, while the 

results for final overlap are inconclusive. 

The condition comparisons show that evidence for 3 initial segments of a word is 

more likely to produce a saccade to the word’s referent than evidence for 2 initial 

segments with both types of stimuli (natural and synthesized), although in synthesized 

speech there is evidence that 2 segments are insufficient to increase saccade probability 

over 0 segments whereas in natural speech 2-segment overlap does appear to be sufficient 

to increase fixation probabilities.  

Caution is warranted, however, in interpreting these results. As noted above, the 

GAM models of human data allowed for a non-linear tensor product interaction between 

TRACE predictions and time, which results in an excellent fit to human fixation 

trajectories. This has become a standard approach in recent psycholinguistic work. For 

example, Milin et al. (2017) argue for a discriminative model of word learning by using 

lexical activations from this model as input to a GAM model of word recognition data. 

The GAM using model activations achieves a better fit than a GAM using measures like 

word frequency. However, this kind of argumentation is problematic because the GAM 



 

85 

 

model allows the predicted values to have any kind of relationship to the observed values; 

even a non-monotonic one (see also Kapatsinski, 2017, for a similar critique of random-

forest analyses). Allowing the GAM model to treat observed values as any kind of 

smooth function of predicted values means that a model may also be favored simply to 

the extent that its predictions are variable across datapoints because the predicted 

differences between datapoints can then be rescaled arbitrarily by the GAM model. In 

this way, the greater variability of the predictions of the H1 model, which has an 

additional predictor, may make it unduly favored in model comparisons (see Figure 4.5 

below). Although the curvature patters of fixation proportion for each picture type are 

almost identical between the models, the more complex model, H1, was disfavored 

because it contained an additional predictor. 

 

     H1     H0 

       
 

Figure 4.5. Example outputs for the models that demonstrated similar curves, but H0 was 
favored for the Rhyme 3 condition (left = H1 and right = H0). 
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Because H1 and H0 predictions are rescaled by GAM for each model comparison, 

the H1 and H0 models’ predictions can also have a different relationship to the data in 

different condition comparisons. This can introduce inconsistencies into the results. For 

example, the model comparisons in synthesized speech provide strong support for H1 

over H0 in the comparison of the Rhyme 3 competitor to the corresponding distractor, 

and strong H0 support for the comparison of the Rhyme 2 competitor over distractor, and 

yet H0 is supported over H1 for the difference between the Rhyme 2 and Rhyme 3 

conditions. For these reasons, I would like to advocate against fitting smooths to model 

predictions in comparing those predictions to observed data. Thus, in the models below I 

use H1 and H0 predictions as simple linear predictors in GAM. 

Second, the above model comparisons treated the H1 and H0 models as equally 

complex because both have the same number of predictors once applied to human data. 

However, the H1 model of the TRACE trajectories is in fact more complex, which gives 

it greater flexibility in accounting for human data. As shown in the figure above, it 

produces two distinct values for each time point, whereas H0 produces only 1. We would 

like to capture the fact that the H1 model’s predictions for human data result from a 

model with one extra parameter, by punishing it for the extra complexity in BIC 

calculations. To accomplish this, H1 model’s predictions were residualized12 on H0 

model’s predictions.  

 

                                                 
12 Residuals <- lm (H1.predict ~ H0.predict, data=Natural data) $ residuals 
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The residuals were then entered as an additional predictor of human data unique to the 

H1 model13. The shared variance between the H0 and H1 models is then attributed to H0. 

Therefore the H1 model must earn its keep by showing that the variance that is unique to 

it is predictive of human data. The H0 model14 lacks the additional predictor. The 

differences in fit between the two approaches are illustrated below.  

 

H1             H0 

    
 

Figure 4.6. Example fits of the model in which observed values are a smooth non-linear 

function of TRACE predictions (on the left) and the revised model, in which observed 

values are a linear function of the predictions (on the right). 

 

                                                 
13 newdata.H1 <- gam (Fixation Proportion ~ H0.predict + 
                  Residuals.H1 + 
        s (Time) + 
                  s (H0.predict, SUBJECT, bs = "re") + 
                  s (H0.predict, ITEM, bs = "re") + 
                  s (SUBJECT, bs = "re") + 
                  s (ITEM, bs = "re"), data= human data) 
 
14 newdata.H0 <- gam (Fixation Proportion ~H0.predict + 
                  s (Time) + 
                  s (H0.predict, SUBJECT, bs="re") + 
                  s (H0.predict, ITEM, bs = "re") + 
                  s (SUBJECT, bs="re") + 
                  s (ITEM, bs = "re"), data = human data) 
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The left panel in Figure 4.6 above is the fit of the H1 model in the original 

analysis, which I argue to be too excellent due to the reshaping of model predictions with 

GAM, while the right panel is the H1 model in the alternative analysis, which does not 

allow GAM to reshape model predictions. Although the output on the right panel is not 

fitting the human data as well as the model on the left, it provides a fairer evaluation of 

the underlying TRACE model. 

The revised analysis yielded the ultimate model comparison results for within-

condition comparisons, as shown in Table 4.7 for natural speech stimuli. Between-

condition comparisons still suffer from a separate issue addressed later. The H0 model 

was supported for Cohort 1, Rhyme 3 and Mixed conditions, in which the human data 

were more consistent with the absence of a phonological overlap effect on fixations than 

with the effect predicted by TRACE. The H1 model was supported for Cohort 2 and 

Cohort 3 conditions, where the effect of overlap was more consistent with the predictions 

of TRACE than with zero difference. The Cohort 3 condition in human data has a 

significant cohort effect (fixation proportion difference between competitor and 

distractor) while the cohort effect was not significant in the Cohort 2 condition. However, 

the present results show that the Cohort 2 data are in fact more consistent with a small 

non-zero effect similar to the one predicted by TRACE than with zero effect predicted by 

the null hypothesis. This difference in analysis outcomes is further discussed at the end of 

this chapter. Finally, there was little difference in BIC values between the models for the 

Rhyme 2 condition; therefore the results of model comparison are inconclusive. The 

observed effect is in between the (small) rhyme effect predicted by TRACE in this 

condition and zero effect.  
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Table 4.7. BIC differences between H1 and H0 models and evidence strength of the 
model in natural speech.  
 

Condition Cohort 1 Cohort 2 Cohort 3 Rhyme 2 Rhyme 3 Mixed 

BIC 
differences 

5 37 179 2 9 10 

Evidence for 
H1 or H0 

H0 H1 H1 Neither H0 H0 

posterior 
probability of 
H0 

0.93 (H0) 1 (H1) 1 (H1) 0.25 (H0) 0.98 (H0) 0.99 (H0) 

 

 In synthesized speech (Table 4.8 below), H0 was supported for Cohort 1, Cohort 

2, and Rhyme 3 conditions, which is consistent with the analyses of human data that also 

showed no effect of overlap. H1 was supported for Cohort 3 and Rhyme 2, and the model 

comparison was inconclusive for the Mixed condition.  

 

 

Table 4.8. BIC differences between H1 and H0 models and evidence strength of the 

model in synthesized speech.  

 

Condition Cohort 1 Cohort 2 Cohort 3 Rhyme 2 Rhyme 3 Mixed 

BIC 

differences 

9 9 36 6 7 0 

Evidence for 

H1 or H0 

H0 H0 H1 H1 H0 Neither 

posterior 

probability of 

H1 or H0 

0.99 (H0) 0.99 (H0) 1 (H1) 0.97 (H1) 0.97 (H0) 0.49 (H0) 

 

 The results of model comparisons for the effect of conditions are shown below 

(Table 4.9). The H1 model was supported for the comparison between the Cohort 2 and 3 

conditions for natural speech. As predicted by TRACE, participants looked at the 

competitor more when the competitor overlapped with the target in three segments than 



 

90 

 

when it overlapped in only two. The H0 model was supported for the comparison 

between the Cohort 1 and 2 conditions and the comparison between the Rhyme 2 and 3 

conditions for natural speech, indicating no effect of cohort short-overlap and rhyme 

overlap. However, the comparisons for any condition types are inconclusive for 

synthesized speech. These results are subject to a pernicious analytical issue that I discuss 

next. 

 

Table 4.9. Results of between conditions for both speech types. 
 

Speech types Natural speech Synthesized speech 
Condition 1C vs. 2C 2C vs. 3C 2R vs. 3R 1C vs. 2C 2C vs. 3C 2R vs. 3R 

BIC 
differences 

14 36 9 1 2 1 

Evidence for 
H1 or H0 

H0 H1 H0 Neither Neither Neither 

posterior 
probability of 
H1 or H0 

0.99 (H0) 1 (H1) 0.98 (H0) 0.43 (H0) 0.75 (H0) 0.66 (H0) 

 

 Barth and Kapatsinski (2018) reported Monte Carlo simulations showing that fit 

(e.g., log-likelihood) comparisons between mixed-effects models can be misleading. In 

particular, they show that randomly reordering the values of a real predictor can result in 

a model with the same fit as the original model, as long as different levels of the original 

predictor are associated with different levels of a random-effects predictor and the 

random-effects predictor does have some effect. In that case, the random-effects predictor 

can ‘step up’ to capture the variance that was really generated by the fixed-effects 

predictor. In the present data, different conditions have different items, and Item is a 

random-effects predictor in the GAM model. As a result, the H0 model can attribute 

whatever between-condition variance it can’t capture to the random effect of Item.  
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A clear example of this phenomenon is shown in Figure 4.7. The left panel shows 

the fit of the H1 model for the comparison between Cohort 2 and Cohort 3 conditions, 

whereas the right panel is the H0 model. Although the H0 model is supposed to be a null 

hypothesis that says there is no difference in looks between the conditions, H0 model 

does in fact predict a difference in looks between conditions. In other words, even though 

the H0 model excluded the fixed effect of Condition, the random effect of Item captured 

the difference between the conditions, producing separate predicted value curves for the 

Cohort 3 and Cohort 2 conditions. As argued by Barth and Kapatsinski (2018), these 

results indicate that mixed-effects models should be compared on their generalization 

performance on withheld levels of the random effect(s), e.g., using a cross-validation 

analysis. 

 

H1            H0 

       
 

Figure 4.7. Example plots of models that captured the Cohort Type effect in H0 model 

(left = H1 and right = H0). 
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 Table 4.10 illustrates the types of t-tests (BIC comparison) that were performed 

for between conditions analysis (1C vs. 2C, 2C vs. 3C, & 2R vs. 3R) in both speech types 

(natural & synthesized). 

 

Table 4.10. Summary of BIC comparisons. 
 

Analysis Analysis 
type 

Model 
Type 

Testing 
data type 

Random effect 
of Item in 
TRACE model 

Random 
effect of Item 
in the final 
model 

Analysis A 1. H1FYY H1 Familiar Yes Yes 
2. H0FYY H0 Familiar Yes Yes 

Analysis B 3. H1NYN H1 New Yes No 
4. H0NYN H0 New Yes No 

Analysis C 5. H1FNN H1 Familiar No No 
6. H0FNN H0 Familiar No No 

Analysis D 7. H1NNN H1 New No No 
8. H0NNN H0 New No No 

For example, H1FYY means that H1 (model) with F(amiliar  item), Y(es for the random 
effect of Item in TRACE model), Y(es for the random effect of Item in the final model). 
 

The new analysis was performed using a cross-validation analysis using the following 

steps; 1) split the data into training and testing, 2) build predictive models (H0 and H1) 

based on the training data, 3) apply the predictive model to the testing data, and 4) 

compare BIC values of models to determine the more likely model given the test data. 

Whereas previous analysis used the same items for fitting and testing the models, the new 

analysis randomly extracted 60% of the TRACE data from both conditions as training 

data for GAM models with the random effect of Item (H1 and H0). Similarly to the 

previous analysis, the TRACE prediction models were then applied to the test human data. 

In contrast to previous analyses, the human data came either from the same items as the 

training data (Analysis A: familiar items) or from the 40% of items that were not selected 
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for training the model (Analysis B: new items). Analysis A is similar to the previous 

analysis that used the same items are used throughout the analysis with random Item 

effects, which creates a problem due to random Item effects capturing the fixed effect of 

Condition. In contrast, Analysis B is a cross-validation analysis because it contains 

different items between training and testing data so that random Item effects cannot 

capture the effect of Condition. Each analysis was repeated 100 times and BIC values of 

H1 and H0 were collected each time. Analyses C and D were performed using the same 

procedure as Analysis A and B except that the models lacked the random effect of Item. 

Even if a model is to be tested on new items, a random effect of item can be useful in 

training the model because inclusion of a real random effect helps estimate the 

coefficients for correlated fixed effects (e.g., Barth & Kapatsinski, 2018). However, as 

shown by Baayen, Vasishth, Kliegl, & Bates (2017), inclusion of non-significant random 

effects in a GAMM model can lead to mis-estimation of fixed effects. The analyses seek 

to answer the following questions: 1) was the GAMM model with a random effect of 

Item (Analysis A: Analysis types 1 & 2) performing better than the model without 

random effects (Analysis B: Analysis types 3 & 4)? And if so, 2) was it only overfitting 

and so only doing better on familiar items (Analysis types 1, 2, 5,& 6) or was it also 

doing better on new items (Analysis types 3, 4, 7, & 8), therefore helping to accurately 

estimate fixed effects? 

 For each analysis below, residuals of the two models were compared using a t-test 

to determine whether the models with a random effect of item resulted in models with 

significantly smaller residuals, i.e., a better fit to the data. Every test turned to be non-

significant. Having the random effect of Item did not improve any model. There is 
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therefore no reason to include the random effect of Item (Baayen et al., 2017). Thus, the 

random effect of Item was excluded from the final analysis. 

Figure 4.8 shows that the difference between conditions (Cohort 2 and 3) in the 

final Analysis (D) is captured only by the H1 model and not by the H0 model, meaning 

that there is a difference in looks between 2C and 3C in the H1 model while there is no 

difference between 2C and 3C in the H0 model. 

 

 H1     H0 

      
 

Figure 4.8. Example plots of models that eliminated the Cohort Type effect in H0 model 

(left = H1 and right = H0). 

 

 Due to the random effect of Item in the previous analyses capturing condition 

differences in the null model, condition comparisons were often inconclusive. As Table 

4.11 shows, the results without Item effects provided evidence for the H0 model in the 

comparison between Cohort 1 and 2 for both speech types. Human data were not 
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explained by the difference between Cohort 1 and 2 in TRACE predictions, i.e., the 

bigger cohort effect in the Cohort 2 condition in TRACE. 

Table 4.11 below is results of the final Bayesian analysis between condition for 

both speech types (natural and synthesized speech). The H1 model was supported for the 

comparison between the Cohort 2 and 3 conditions for both speech types. As predicted by 

TRACE, participants looked at the competitor more when the competitor overlapped with 

the target in three segments than when it overlapped in only two. There was a difference 

across speech types for the comparison between the Rhyme 2 and 3 conditions. The H0 

model was supported for natural speech, indicating no effect of rhyme overlap, but the 

comparison was inconclusive for synthesized speech. 

 

 

Table 4.11. Results of the final Bayesian analysis between conditions for both speech 

types. 

 

Speech types Natural speech Synthesized speech 

Condition 1C vs. 2C 2C vs. 3C 2R vs. 3R 1C vs. 2C 2C vs. 3C 2R vs. 3R 

BIC 

differences 

8 132 9 9 61 2 

Evidence for 

H1 or H0 

H0 H1 H0 H0 H1 Neither 

posterior 

probability of 

H1 or H0 

0.98 (H0) 1 (H1) 0.99 (H0) 0.99 (H0) 1 (H1) 0.27 (H0) 

 

Figure 4.9 shows raw data between condition for natural speech, synthesized 

speech and TRACE as reference for the Cohort between-conditions. Whereas TRACE 

predicts a bigger cohort effect when the cohort competitor overlaps with the target in 2 
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segments, this is not observed in the human data, which are more consistent with no 

effect of segmental overlap than with the difference predicted by TRACE.15 

 

Cohort 1-2 

Natural          Synthesis        TRACE 

   
 

Cohort 2-3 

Natural          Synthesis        TRACE 

   
 
Figure 4.9. Plots of raw data in fixation proportion of competitor pictures across all items. 
The top row is plots of a comparison between Cohort 1 & 2, the middle row is plots for 
between Cohort 2 & 3 conditions. 

                                                 
15 Note that the within-condition analysis in the Cohort 2 condition in natural speech suggested that the 
cohort effect (difference between competitor and distractor) was explained the model. However, the result 
of between conditions analysis suggest that looks to the competitor pictures between the conditions are the 
same. Preference for the H1 model in the Cohort 2 condition may therefore be due to the paucity of looks to 
the distractor in that condition rather than to increased looks to the competitor. 
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Figure 4.10 shows raw data between condition for natural speech, synthesized 

speech and TRACE for rhyme conditions. It appears to be slight or no difference between 

conditions for the human data and TRACE. 

 

Rhyme 2-3 
Natural          Synthesis        TRACE 

     
 
Figure 4.10. Plots of raw data in fixation proportion of competitor pictures across all 
items for rhyme conditions. 

 

 In summary, the TRACE model coupled with the standard linking hypothesis for 

the visual world paradigm (Allopenna et al., 1998) predicted that there should be 

sometimes subtle but detectable effects of both initial and final phonological overlap so 

that participants look at competitors more when they share two segments with the target 

than when they share only one, and more when they share three than when they share two. 

However, whereas the predicted difference between 2 and 3 segment initial overlap is 

observed in human data, the data suggest that the activation difference between 1 and 2 

segment initial overlap does not affect fixations. There are also no detectable effects of 

initial overlap in a single segment. In addition, TRACE predicted a single-segment cohort 

overlap effect in the Mixed competitor condition but human eye movements showed a 



 

98 

 

three-segment rhyme overlap effect instead, though only when presented with 

synthesized speech. Overall, this pattern of results is consistent with the proposal that a 

minimal amount of lexical activation is necessary to drive a saccade to the referent of a 

word. In the present population of participants exposed to the present task, that minimal 

amount corresponds to bottom-up evidence for three segments of the word one might 

consider fixating.  

 
4.3. Discussion 

Previous work on spoken word recognition in the visual world has provided 

convincing demonstrations that listeners exhibit both cohort and rhyme effects, leading to 

the proposal that any part of a target word can activate multiple candidate words during 

processing and that the activations will be reflected directly in probabilities of looking at 

pictures of the words’ referents (e.g., Allopenna et al., 1998). The present work has tested 

the limits of this proposal, investigating whether even the initial phoneme or two would 

trigger activations of possible competitor words. Behavioral data described in the 

preceding chapters suggested that this is not the case. In this chapter, I confirmed that 

TRACE, coupled with the standard linking hypothesis, would indeed predict that two 

initial phonemes would be sufficient to result in lexical activation that would be 

noticeable in the eye movement record with the present Japanese stimuli. TRACE 

predictions that overlap will influence eye movements were then compared with the null 

hypothesis that there is no effect of overlap on eye movements using Bayesian analyses, 

which allow the modeler to distinguish between lack of evidence against the null and 

evidence for the null (Wagenmakers, 2007). 
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Generally speaking, TRACE predictions were accurate for cases when target-

competitor overlap had a significant effect in the behavioral human data, because there 

was a numerical competitor effect for all conditions in TRACE. Even so, the predicted 

rhyme effect was very slight in the Rhyme 2 condition and the Mixed competitor 

condition in TRACE. Previous literature on spoken word recognition with offline tasks 

provided evidence of rhyme effect if the words only differed by a few features of the 

initial phoneme (Connine et al., 1993). Visual world eye tracking studies found the rhyme 

effect even though the initial phonemes were more than one phoneme feature away 

(Allopenna et al., 1998; Mirman et al., 2011). However, no studies observed the rhyme 

effect with words that differ by more than a word onset. In that respect, the TRACE 

prediction of near-zero rhyme effect with two-phoneme overlap and two-phoneme 

difference appears accurate, and is supported by the present study. However, the absence 

of a significant rhyme effect in the Rhyme 3 condition and the presence of a significant 

rhyme effect in the mixed condition in synthesized speech were not predicted by TRACE. 

TRACE predicted a rhyme effect for the Rhyme 3 condition (e.g., nasu & basu) but not 

in the Mixed condition (e.g., kame & ame). TRACE in the present study favored 

competitor words that differ by initial phoneme than competitor words that deleted the 

initial phoneme from the target word. This appears to be the opposite of human data. As 

discussed on Chapter 3, the rhyme effect in the Mixed condition (with deletion 

neighbors) may be due to late integration of initial fricatives into the word percept (Galle, 

2014), which is not incorporated into the incremental input processing at the feature level 

in TRACE.  
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In summary, this chapter investigated the behavior of the TRACE model and 

confirmed that it predicts robust cohort effects and somewhat less robust rhyme effects. 

However, the behavior of the model appeared to diverge in systematic ways from that of 

human participants. In particular, cohort effects are less robust in human participants in 

the present study when the cohort competitor shares only one or two segments with the 

target. This lack of sensitivity to low amounts of overlap is the crucial evidence that 

looking at a visual representation of a word’s referent is a decision, made only when the 

word’s activation exceeds a context-specific threshold. Subthreshold activations do not 

drive saccades. The following chapter explores the parameter manipulation of the 

TRACE model to examine what plausible parameter changes could achieve a better fit to 

the human data and describe the difference between speech types.  
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CHAPTER V 

EXPERIMENT 4: PARAMETER MANIPULATION 

OF THE TRACE MODEL 

 

5.1. Introduction 

As noted earlier, the present study did not manipulate most of the parameters one 

might consider to be affecting word recognition, with the exception of the contrast 

between synthesized and natural speech, where synthesized speech is less clear than 

natural speech and has no long-distance co-articulation. There are other manipulations 

one could do in order to examine the effects of task manipulations on TRACE predictions 

and human behavior. For example, one could ask participants to perform a secondary task 

during word recognition to reduce word activation. The TRACE simulations reported 

above are based on default parameter settings because unmotivated parameter 

manipulation provides TRACE with virtually unlimited flexibility to fit any data pattern 

(McMurray et al., 2010; Norris & McQueen, 2008). However, it is worthwhile to 

examine what plausible parameter changes could achieve a better fit to the human data 

and describe the difference between speech types in the Mixed condition, where a rhyme 

effect is observed only in the synthesized speech condition.  

There are apparent visual differences in plots between TRACE predictions and 

human data, as follows: 1) there are fewer Cohort fixations in the Cohort 1 & 2 

conditions in human data than in TRACE data (Figure 5.1 for the Cohort 2 condition); 
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      Natural       Synthesis   TRACE 

       
 

Figure 5.1. An illustration of the cohort effects across speech types (Cohort 2). 

 

2) there is a rhyme effect in the Mixed condition in synthesized speech data that is absent 

from both natural speech data and TRACE (Figure 5.2); 

 

      Natural       Synthesis   TRACE 

     
 

Figure 5.2. An illustration of the divergence difference across speech types (Rhyme 2). 

 

3) there is a slower divergence of looks to target pictures from other pictures in the 

synthesized speech data (about 400 ms) than in natural speech data and in TRACE about 

200 ms (Figure 5.3). 

 

 

Average  
audio offset 

Average  
audio offset 
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      Natural       Synthesis   TRACE 

     
 

Figure 5.3. Rhyme effect in the Mixed condition by speech types. 

 

5.2. Methods 

 

5.2.1. Parameters 

There are 40 parameters in jTRACE that can be manipulated. However for both 

practical and theoretical reasons and based on investigation of previous studies 

(McMurray et al., 2010; Mirman et al., 2011), six parameters were chosen for 

investigation. These parameters were selected to possibly account for the failure of the 

model (no effect for the Cohort 1 & 2 conditions), stimulus difference (natural & 

synthesis), the rhyme effect for synthesized speech, and divergence time difference 

between speech types.  

The input noise parameter adds noise to the acoustic (featural) input. Synthesized 

speech used in the present study did not contain actual noise. However, synthesized 

speech could be perceived less clearly than natural speech, which could lead to delayed 

recognition and increased rhyme effects (Farris-Trimble et al., 2014; McMurray et al., 

2017). As discussed in Chapter 3 in reporting on the synthesized speech experiment, less 

Average  
audio offset 
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clearly spoken word may increase rhyme effects in the Mixed condition in synthesized 

speech. In fact, Mirman et al. (2011) found increasing rhyme effects in TRACE as values 

of input noise increased and decreasing cohort effect as input noise increased. In addition, 

inaccurate perception in input may cause a delay of activation which could be a source of 

later divergence of target fixation in synthesized speech (Farris-Trimble et al., 2014; 

McMurray et al., 2017). 

The attention parameter controls quickness of response to input. In TRACE, when 

attention to the auditory signal decreases, the rise in activation based on bottom-up 

perceptual input also slows (Mirman et al., 2011). Slower activation of the input may be a 

cause of later divergence of looks to the target and cohort competitors from looks to 

unrelated distractors in synthesized speech data.  

The rest.w parameter is responsible for the degree to which resting activation (i.e., 

top-down expectations) influences the activation of a candidate word. Resting activations 

that are greater than 0 reduce competition (interaction), which reduces cohort/rhyme 

effect (Mirman et al., 2011). A greater reliance on top-down expectations in humans may 

account for the reduced competitor effects in human data compared to TRACE. 

The gamma.w parameter specifies the speed of deactivation of word competitors 

which is controlled by the strength of inhibition between words. This does not appear to 

affect the rhyme effect (e.g., Mirman et al., 2011), possibly because the rhyme is not 

deactivated until late during word recognition. When inhibition of word candidates 

decreases, the cohort effect increases. On the other hand, when inhibition of word 

candidates increases, the cohort effect decreases (e.g., McMurray et al., 2010; Mirman et 

al., 2011). The value of this parameter may be higher when speech is degraded because 
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the listener should take perceptual evidence against a word with a grain of salt when it is 

unreliable (e.g., Gwilliams et al., 2018). 

The aLPHA[fp] (Alpha_fp in the present paper) parameter handles the phoneme 

activation rate from feature input. When activation of phonological representations from 

features decreases, fixation of target and cohort pictures is reduced and activation of the 

word become slower (McMurray et al., 2010). The lower clarity of synthesized speech 

may cause participants to rely more on bottom-up processing than top-down processing, 

reducing top-down activation flow.  

The aLPHA[pw] (Alpha_pw) parameter is similar to aLPHA[fp] in relation to 

activation of words from phonemes. When activation of word representations from 

phonemes decreases, fixations of target and cohort pictures are reduced and activation of 

the word becomes slower. (McMurray et al., 2010). Table 5.1 below summarizes 

parameter manipulation. 

 

Table 5.1. Summary of parameter manipulation. 

 

Parameter 
(jTRACE) 

Parameter 
explanation 

Predicted outcome Default 
value 

Tested 
values 

Input 
Noise 

Added noise 
over input 
(lower 
perceptual 
fidelity) 

- Cohort effects decrease and 
Rhyme effects increase as values 
increase 
- Slower divergence of looks to 
target picture from looks to other 
pictures 
- The parameter may be higher for 
synthesized speech 

0 0 
0.3 
0.6 
0.9 
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(Table 5.1. continued.) 

Parameter 
(jTRACE) 

Parameter 
explanation 

Predicted outcome Default 
value 

Tested 
values 

Attention Responsivene
ss to input 

- Slower activation of input with 
decreasing values 
- Slower divergence of looks to 
target picture from other pictures as 
values decrease 
- The parameter may be lower for 
synthesized speech 

1.0 0.4 
0.8 
1.0 
1.2 

rest.w Resting 
activation of 
word 
candidates 

- Decreased Cohort & Rhyme 
effects as values increase 
- The parameter may be higher in 
synthesized speech 

-0.01 -0.025 
-0.0175 
-0.01 
-0.0025 
0.005 

gamma.w Deactivation 
of word 
competitors 

-Decreasing cohort effects as values 
increase 
- The parameter may be lower for 
synthesized speech 

0.03 0.01 
0.02 
0.03 
0.04 
0.05 

aLPHA 
[fp] 

phoneme 
activation rate 
from feature 

- Reduced fixations to target and 
cohort pictures as values decrease 
- Slower activation of words as 
values decrease 
- The parameter may be lower for 
synthesized speech 

0.02 0.0025 
0.0075 
0.01 
0.02 
0.035 

aLPHA 
[pw] 

word 
activation rate 
from 
phoneme 

- Reduced fixations to target and 
cohort pictures as values decrease 
- Slower activation of words as 
values decrease 
- The parameter may be lower for 
synthesized speech 

0.05 0.01 
0.03 
0.05 
0.07 

 

5.2.2. Data Processing and Analysis 

Predictions of the TRACE model with a particular set of parameter settings were 

compared to the human data from each condition. Unfortunately, because the space of 

possible parameter settings is so large, and jTRACE requires rerunning the model 

manually for each item for every combination of settings, it was only feasible to 

manipulate the parameters one by one. That is, all parameter values not mentioned below 
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remain at their default values. While this means that it should be possible to find a better 

combination of parameter settings by changing multiple parameters from their default 

values, the aim here is simply to show how the changes in the parameters influence the 

behavior of the model rather than to find an optimal combination of parameter settings.16  

Since part of what the present study aims to explain is the time point at which 

looks to the target diverge from looks to unrelated words, Target fixation were included 

in this analysis. The prediction model17 was applied to the human data to obtain predicted 

values of Fixation Proportion in order to evaluate the model fit.18 Then the root mean 

square errors (RMSE) were calculated to evaluate the model fit for each parameter setting. 

The fit to all data obtained from participants presented within a particular condition 

within a particular speech type is evaluated.19 While it appears impossible for participants 

to set parameters of their mental models to different values between conditions, as trials 

from different conditions are all part of the same randomly ordered block, results are 

reported separately for each condition to show what would be required for TRACE to 

capture the results observed in that condition. Parameter settings that hold across 

                                                 
16 Prior work on parameter settings in TRACE (Mirman et al., 2011) has limited itself to examining 
TRACE predictions for three items. The present study selected one trial that was closest to the average 
within a condition based on random effects in the human data analyses in Chapters 2-3, which resulted in 
manually running a single simulation 126 times (1 trial x 6 conditions x 21 manipulations); with 3 items, 
378 simulations would be required. 
 
17 Prediction model <- gam (Fixation Proportion ~ s (Time, by=Picture Type)  + Picture Type  +  s(Time), 
data=TRACE) 
 
18 Prediction values <- predict (Prediction model, newdata=Natural data) 
 
19 One could instead evaluate the model fit separately for each picture type. For example, examining 
fixation proportions of Target pictures to see which parameter settings result in the best model fit. However, 
this would allow different parameter settings to explain looks to different picture types. For example, 
Input_Noise may be heavily involved in fitting fixations to Target pictures, whereas Alpha_pw may explain 
looks to competitor pictures. This kind of result would be difficult to interpret psychologically. 
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conditions within a speech type can then be interpreted as the settings that speech type 

may effect in the participants exposed to it. 

 

5.2.3. Results 

 Tables 5.2 below shows the parameters whose settings are most important to 

change to improve the fit to the natural speech data and Table 5.3 shows the results for 

the synthesized speech data (see Appendix E & F for a complete ranking table with 

RMSE values within each condition for each speech type). For both speech types, the 

same parameters are involved in improving fit to human data, which are Alpha_pw, 

Alpha_fp, Attention and Input_Noise in order. Decreasing values of these parameters 

produced a better fit of the models, except for the Input noise parameter whose value 

needs to be increased from the default to add noise. 

 

Table 5.2. Parameter settings that result in the five best fits in natural speech data. For 

each setting, all other parameters are set to default values. 

 

 Cohort 1 Cohort 2 Cohort 3 

Parameters 

and their 

values 

1.Input_Noise 0.6 

1.Alpha_pw 0.01 

2.Alpha_fp 0.0075 

2.Input_Noise 0.3 

2.Input_Noise 0.9 
 

1.Alpha_fp 0.0075 

1.Attention 0.4 

1.Alpha_pw 0.01 

1.Alpha_fp 0.01 

1.Input_Noise 0.9 
 

1.Alpha_pw 0.01 

2.Attention 0.4 

3.Alpha_fp 0.0075 

4.Alpha_fp 0.0025 

5.Alpha_fp 0.01 
 

  

 Rhyme 2 Rhyme 3 Mixed 

Parameters 

and their 

values 

1.Alpha_fp 0.0075 

2.Alpha_fp 0.01 

2.Attention 0.4 

3.Alpha_pw 0.01 

3.Alpha_pw 0.03 
 

1.Alpha_fp 0.0075 

2.Input_Noise 0.6 

2.Alpha_pw 0.01 

3.Attention 0.4 

4.Alpha_fp 0.01 
 

1.Alpha_pw 0.01 

2.Alpha_fp 0.0025 

3.Alpha_fp 0.0075 

4.Alpha_fp 0.01 

4.Attention 0.4 
 

Note: the number specified to the left of the parameter name represents the rank of the 

best fit in each condition. Some parameters ranked equally. 
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Table 5.3. The best five parameter settings for synthesized speech data. 

 

 Cohort 1 Cohort 2 Cohort 3 

Parameters 

and their 

values 

1.Alpha_pw 0.01 

1.Input_Noise 0.9 

2.Input_Noise 0.6 

2.Alpha_fp 0.0025 

3.Alpha_fp 0.0075 
 

1.Alpha_pw 0.01 

2.Alpha_fp 0.0025 

3.Alpha_fp 0.0075 

3.Attention 0.4 

4.Input_Noise 0.9 
 

1.Alpha_pw 0.01 

2.Alpha_fp 0.0025 

3.Attention 0.4 

4.Alpha_fp 0.0075 

5.Alpha_fp 0.01 
 

 

 Rhyme 2 Rhyme 3 Mixed 

Parameters 

and their 

values 

1.Alpha_pw 0.01 

2.Alpha_fp 0.0075 

3.Alpha_fp 0.0025 

3.Attention 0.4 

3.Alpha_fp 0.01 
 

1.Alpha_pw 0.01 

2.Alpha_fp 0.0025 

3.Input_Noise 0.6 

3.Attention 0.4 

4.Alpha_fp 0.0075 
 

1.Attention 0.4 

2.Input_Noise 0.6 

2.Alpha_fp 0.01 

2.Alpha_fp 0.0075 

2.Alpha_pw 0.03 
 

Note: the number specified to the left of the parameter name represents the rank of the 

best fit in each condition. Some parameters ranked equally. 

 

Decreasing bottom-up activation flow to word / phoneme representation from lower 

levels can explain slower increases in fixation proportion observed in the human data. 

Divergence of looks to target from other pictures becomes later in time course with 

parameter manipulation. Alpha_pw and Alpha_fp were expected to be higher values in 

natural speech to account for earlier divergence of looks to the target compared to 

synthesized speech. However, this was not the case. Setting the parameters to lower 

values captured the late divergence for synthesized speech but also improved fit to the 

natural speech data, which actually had an earlier divergence. 

 Reducing Alpha_pw to 0.01 (Default is 0.05) produced the best fit to human data 

with both speech types. In addition, reducing Alpha_fp to 0.0075 (Default is 0.02) 

produced the best fit to natural speech data.  However, there is some evidence that noise 

appears to be greater in synthesized speech: increasing noise shows up in the top five 

ranking of parameter changes slightly more often in synthesized speech (for 4 conditions) 
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than in natural speech (for 3 conditions). It appears that a high setting of the Input_Noise 

parameter describes synthesized speech better than other parameters, which suggests that 

the Input_Noise parameter may be responsible for the difference between the speech 

types.  

However, it is not clear that this is sufficient: different types of speech 

degradation are likely to change spoken word recognition in different ways. In particular, 

I have argued that diphone synthesized speech may make fricatives and stop bursts harder 

to integrate with the rest of the speech signal. This is quite different from spectral 

degradation (noise vocoding) examined by Farris-Trimble and colleagues (Farris-Trimble 

et al., 2014), which appears to be a better fit to the noise parameter. In fact, visual 

inspection of plots (Figure 5.4 below) of predicted fixation proportions suggests that the 

optimized settings of Input_Noise (0.9, right panel) or Alpha_pw (0.01, left panel) did 

not capture the human data well, i.e., the thick lines, the model predictions, did not track 

the thin lines. In particular, setting the input noise parameter to a high level produces a 

poor fit to the trajectory of looks to the target and generally underestimates competition 

between the target and other lexical candidates. 

It cannot therefore be concluded that the Input_Noise parameter was responsible 

for the slower divergence of looks to signal-consistent and inconsistent referents and the 

stronger rhyme effect in the Mixed condition in synthesized speech. Reduced attention to 

the bottom-up input is also somewhat consistent with the effects of synthesized speech. 

However, neither parameter manipulation captures the difference between the rhyme 

effects in the Mixed condition in natural vs. synthesized speech, providing some 

additional support for the proposal that this difference could be due to the difficulty of 
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integrating a diphone synthesized fricative or stop into the speech stream. As stream 

segregation is not modeled by TRACE, it has little hope of capturing this difference. 

 

Alpha_pw 0.01       Noise_Input 0.9 

    
Figure 5.4. The best parameter setting, Alpha_pw 0.01, in the left panel and the second 

best setting, Input_Noise 0.9, in the right panel for the Cohort 2 condition in synthesized 

speech. 

 

In addition, the competitor effects in Cohort 2 and 3 conditions are weaker in 

human behavioral data than in TRACE. The fit of TRACE was expected to be improved 

in this respect by the parameter manipulations, but this was not the case. As argued 

earlier, the weakness of the cohort effects may be due to participants imposing a 

threshold on activations so that when activation is too low, the eyes do not move. For 

some participants, even three segments may not be enough, resulting in eye movements 

that go directly to the target referent despite lexical competition 

In summary, reducing the Alpha_pw parameter and the Alpha_fp parameter 

generated the best model fit for both speech types. However, it did not explain the 

difference between synthesized and natural speech because the same setting of this 
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parameter was optimal for both speech types. Likewise, the Input_Noise parameter did 

not explain the difference between the speech types. Moreover, no parameter setting 

captured the rhyme effect in the Cohort and Rhyme Mixed condition for synthesized 

speech, which was missing in natural speech and TRACE. 

 

5.3. Discussion 

 TRACE predictions could potentially be improved by changing parameter settings 

from their default values, which could also help explain task / stimulus set differences. 

Mirman et al. (2011) and McMurray et al. (2010) investigated whether parameter setting 

differences in TRACE can explain the effects of language deficits on spoken word 

recognition. In the study of McMurray et al. (2010), items presented to participants in the 

experiment and those in the TRACE simulation differed. Nonetheless, TRACE captured 

the qualitative patterns in human data, which has led the cuthors to conclude that it 

provides a plausible account of individual differences.  

Parameter manipulations of lexical decay, lexical activation rate (Alpha_pw), and 

generalized slowing (Alpha_fp & Alpha_pw) had the greatest role in explaining the 

individual differences in human data in McMurray et al. (2010) for specific language / 

cognitive impaired participants. Interestingly, the same parameters, except lexical decay, 

also improved the fit between TRACE and human data in the present study the most. 

These results therefore support the possibility that these parameters may vary across 

studies. While one needs to be careful with making strong conclusions in favor of a 

model this complex based on its ability to fit the human data under some combination of 
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parameter settings, the fact that the same few parameters appear to be controlling 

differences in human behavior across studies is encouraging.  

Input_Noise and Attention parameters in the present study were expected to 

explain the slower divergence of looks to target and an increase of the rhyme effect in the 

Mixed condition in synthesized speech. Instead decreasing bottom-up activation flow to 

words and phoneme representations (Alpha_pw & Alpha_fp) provided the best fit to 

human data. The parameter manipulations slowed the activations of words. Because 

looks to each picture rise more slowly in human data than in TRACE, parameters that can 

slow down the rise in activation improve the fit more than other parameters. However, 

fixations to each picture may rise more slowly in human data than in TRACE because of 

averaging over individuals: some people may rapidly look at pictures while other people 

take longer to respond, and some may fixate a picture for longer than others. Therefore, 

after averaging all the subjects’ trials, the curves of fixation rise and fall more slowly than 

in TRACE (see also Gallistel, Fairhurst, & Balsam, 2004, for averaging artifacts in 

modeling learning curves). If the slow rise and fall of fixations in averaged human data is 

indeed an averaging artifact, then alpha parameters can capture but perhaps not explain 

the curve shapes.  

While it is possible that the slower activation and persistence of fixation in the 

human data may be due to word activation rate from phoneme (Alpha_pw), no 

parameters seemed to explain the experimental manipulation in the present study (speech 

type). One condition had normal (natural) speech while the other had no long-distance 

coarticulation and slight degradation of auditory cues due to synthesis. The effects of 

diphone synthesis appeared to be similar to those previously observed with cochlear 
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implant simulations (Farris-Trimble et al., 2014; McMurray et al., 2017), despite the 

much lower level of spectral degradation in the present study. The effect of speech type 

was not explained by the parameter manipulations: the same parameter settings 

demonstrated the best fit for both speech types. No parameter specifically improved the 

ability of the model to fit the larger rhyme effect in the Mixed competitor condition in 

synthesized speech and the later divergence of looks to signal-consistent and inconsistent 

lexical candidates in synthesized speech. I now discuss the findings of the dissertation in 

the context of previous work on spoken word recognition in the visual world. 
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CHAPTER VI 

GENERAL DISCUSSION 

 

Numerous studies suggest that the initial sound(s) of a word activate multiple 

candidate lexical representations (e.g., Allopenna et al., 1998; Gaskell & Marslen-Wilson, 

1997; McClelland & Elman, 1986). In theory, any part of a target word can activate 

multiple candidate words during processing (e.g., Allopenna et al., 1998; McClelland & 

Elman, 1986; Norris, 1994). Several eye tracking studies using the visual world paradigm 

demonstrated a cohort effect as well as a rhyme effect, suggesting that both word-initial 

and non-initial acoustics activate the words that contain them (Allopenna et al., 1998). 

Furthermore, these have been used to be consistent with the TRACE model of spoken 

word recognition, which proposes continuous, bidirectional activation flow between 

words and sublexical units (McClelland & Elman, 1986). TRACE is usually described as 

predicting both cohort and rhyme effects, though the presence of the rhyme effect is 

crucially dependent on the rhyme competitor not being strongly inhibited by the target 

(e.g., McMurray et al., 2010). However, the fit of TRACE to human data has not often 

been analyzed in quantitative detail in prior work, leaving open the question of whether 

the cohort and rhyme effects are predicted by TRACE precisely when they are exhibited 

by humans. The present study has developed a methodology for evaluating TRACE 

predictions quantitatively. 

Allopenna et al. (1998) and Tanenhaus et al. (2000) link fixation probabilities at a 

point in time directly to activation levels of all lexical representations given the signal 

experienced until that point. In this formulation, saccades can be triggered by any amount 
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of overlap and distractors (without overlap) should always be fixated less than 

competitors (with overlap). Thus, for example, experiencing [k…] should drive the 

listener to divide his / her visual attention among the referents of all and only [k]-initial 

words present on the screen. They should not fixate the referents of other words (e.g., 

distractors), unless they are activated by top-down contextual information or have a high 

a priori probability / resting activation level. Because the competitors on critical trials are 

distractors on control trials in the present experiment and there was no pre-experiment 

exposure, the top-down influences and priors are controlled between critical and control 

trials. This means that, if the linking hypothesis proposed by Allopenna et al. (1998) 

holds, distractors should therefore always be fixated less than competitors on critical 

trials.  

An alternative hypothesis proposed here is that consistency with the acoustic 

signal does not affect saccades when that consistency is below a certain threshold. In 

other words, the evidence for a word needs to exceed a threshold to drive a saccade to the 

word’s referent. Since supporting this hypothesis means supporting the null, we 

conducted Bayesian analyses (Wagenmakers, 2007) that allowed us to investigate 

whether a particular amount of evidence for the presence of a form in the acoustic signal 

is more consistent with the effect predicted by TRACE or with the absence of an effect.  

The present experiments provided evidence that the extent of overlap between the 

presented word and a lexical representation matters in the way predicted by TRACE 

when the overlapping parts are long but not when they are short (i.e., when the 

competitor word and the target shared the initial segment or the initial two segments). 

These results indicate that eye movements are not as closely tied to fixation probabilities 
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of lexical representations as previously believed. Specifically, the present results are not 

consistent with the Allopenna et al. (1998) proposal except when the target overlaps with 

the competitor in three initial segments.  

Note that the present study cannot be generalized as claiming that three initial 

segments will always constitute the minimum amount of overlap necessary to drive a 

saccade to the word’s referent because the threshold will change based on many other 

contextual factors (see also Brown-Schmidt & Tanenhaus, 2008). We return to this issue 

later in this discussion. 

While TRACE failed to explain the human data in the study, it successfully 

explained human data in several previous visual world studies (e.g., Allopenna et al., 

1998; Dahan et al., 2001a; McMurray et al., 2010; McMurray, Tanenhaus, & Aslin, 2009; 

Mirman et al., 2011). The major reason for this difference in conclusions appears to be 

that previous studies investigated TRACE predictions for human data that exhibited a 

difference between looks to related competitors and unrelated distractors. However, most 

of the competitor conditions in the present study did not exhibit this competitor-distractor 

difference. TRACE was unable to predict this lack of differences because the model is 

based on the assumption that any part of a target word can activate multiple candidate 

words. Predictions of TRACE appeared to be robust to plausible manipulations of 

parameter settings. While this appears to be a failure of TRACE, the conclusion to take 

from this work is not, in my view, that spoken word recognition is not characterized by 

continuous activation of competing words. Rather, the failure should be traced back to 

the overly simple linking hypothesis that transforms lexical activations directly into 

fixation probabilities using the Luce Choice Rule (Allopenna et al., 1998). Rather, 



 

118 

 

moving one’s eyes to a picture is a decision that needs to be explicitly modeled in future 

work. 

Participants in the present study appear reluctant to fixate a picture unless the 

acoustic signal provides evidence for the initial CVC of the picture’s name. As a result, 

participants look at pictures of unrelated distractors as much as they look at pictures of 

cohort competitors when the cohort competitor shares only the initial C or CV with the 

target word. In the case of natural speech stimuli, information about the initial CVC is 

likely present from the very beginning of the stimulus, allowing for early saccades to 

target pictures and cohort competitors sharing the initial CVC with the target. In the case 

of speech produced by diphone synthesis, the first consonant and initial half of the first 

vowel do not provide any information about the second consonant of the CVC. 

Consequently, looks to the target and cohort competitor do not start increasing above the 

level of looks to the distractor until 200 ms after the middle of the first vowel, ~400 ms 

after stimulus onset. This is a significant delay relative to previous studies, where looks to 

cohort competitors and targets begin to diverge from looks to distractors approximately 

200 ms after stimulus onset (Allopenna et al., 1998; Dahan et al., 2001a; Dahan et al., 

2001b; Tanenhaus et al., 2000) or even sooner (Altmann, 2011). The divergence between 

target and competitors occurs earlier in the natural speech stimuli than in the synthesized 

speech stimuli. This is likely explained by coarticulation. Synthesized speech eliminated 

long-distance coarticulation and perhaps also reduced coarticulation between adjacent 

segments comparing to natural speech. The stronger coarticulation in natural speech 

provides information about the end of a target word, in particular, the second consonant. 

This helps the listener perceive the identity of the initial three segments of the target from 
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the very beginning of the target word. The following results can be explained by 

coarticulation: 1) very early divergence of looks to the target from looks to unrelated 

distractors in natural speech than in synthesized speech – well before the three initial 

segments apparently necessary to fixate a word’s referent are perceived; and 2) earlier 

divergence between the target and distractors in the Cohort 1 condition compared to the 

Cohort 2 condition in natural speech stimuli. The later divergence in synthesized speech 

supports the coarticulation explanation for these natural speech effects. 

 When stimuli and procedures used in previous studies are examined in sufficient 

detail, most of the results are consistent with three initial segments being necessary for a 

word to be activated enough to drive a saccade to its referent. Most target-cohort 

competitor pairs used in previous studies exhibiting cohort effects in spoken word 

recognition have involved at least that much overlap (including all but one of the stimuli 

in Allopenna et al., 1998, which were often reused in follow-up studies). As previous 

studies did not examine how the magnitude of cohort effects varied across stimuli, it is 

not clear whether stimuli featuring extensive overlap were responsible for these effects. 

Furthermore, in a typical visual world study, participants study pictures and their 

intended names shortly before an experiment. Participants who are trained in this way 

may be ready to activate candidate words based on very little information coming from 

the signal, resulting in activating cohort competitors sharing only the initial CV with the 

target (e.g., Dahan et al., 2001b). Making the experience more realistic by introducing 

noise and / or variability in word form realization may also make participants more 

lenient with respect to the level of support a word must receive from the signal to be 

plausibly present in the signal (Brouwer & Bradlow, 2011; Brouwer et al., 2012; 
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McQueen & Huettig, 2012). The present study did not pre-expose participants to the 

stimuli, minimized repetition of trials as well as the words and pictures that comprise 

them, and provided participants with a relatively clear signal. In some ways, then, we 

may have led the participants to rely on the signal for driving saccade decisions more 

than they would in many other situations. Evidence for such expectation-driven effects in 

visual world studies is provided by the finding that pre-activation from a predictive 

context can cause the listener to fixate a word’s referent earlier than they otherwise would 

(e.g., Altmann & Kamide, 1999; Arai, van Gompel, & Scheepers, 2007) as well as by the 

existence of word frequency effects in the paradigm (Magnuson, Dixon, Tanenhaus, & 

Aslin, 2007; Magnuson, Tanenhaus, Aslin, & Dahan, 2003). While no studies have 

directly explored the effects of pre-exposure, some have raised the possibility that pre-

exposure to the pictures may increase the activation of competitors (Huettig et al., 2011). 

If this is indeed the case for pictures, pre-exposure to the words is also potentially 

problematic in the same way. Uncontroversially, activation of a word is a function of the 

resting activation level, which is boosted by a recent experience with the word, and the 

support the word is receiving from the acoustic signal (e.g., Allopenna et al., 1998; 

McClelland & Elman, 1986; Norris & McQueen, 2008). In the absence of pre-exposure 

to the words, the acoustic signal may need to provide a substantial degree of support to 

the word for the listener to generate a saccade to a depiction of the word’s referent.  

Note that the present study does not claim that there is something special about 

the initial CVC. Specifically, the study does not claim that the initial CVC acts as a 

discrete ‘unit of lexical access’ in Japanese. Phonological analyses of Japanese posit no 

role for the initial CVC: it comprises the initial mora plus the onset of the following one, 
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and is therefore larger than a mora (CV) but smaller than two morae (CVCV). It is thus 

an a priori implausible unit of recognition (see also Cutler & Otake, 2002). Furthermore, 

current models of spoken word recognition show that segmentation into discrete 

sublexical units is unnecessary (e.g., Arnold et al., 2017; Baayen, Shaoul, Willits, & 

Ramscar, 2016; Cutler & Otake, 2002; Goldinger & Azuma, 2003; McMurray et al., 

2002). The amount of overlap necessary to activate a word to a level sufficient to drive a 

saccade to a depiction of its referent will likely vary across experiments as a function of 

many factors, including how reliable the acoustic signal is perceived to be (Huettig & 

McQueen, 2009), variability in the acoustic realizations of a word (Brouwer et al., 2012), 

and contextual information regarding the word’s identity (Altmann & Kamide, 1999). 

The present study does not conclude that listeners will always need three initial 

segments of a word to decide to look at a picture of its referent. Rather, it proposes that 

the listener needs to accumulate evidence for a word before a saccade is generated, i.e., 

there is a threshold below which the word’s activation is not high enough to drive a 

saccade and will not be reflected in the eye tracking record. The existence of such a 

threshold is strongly supported by Bayesian analyses: an initial C or CV does not 

influence eye movements of the participants in the present study. The threshold itself may 

vary with the demands and payoffs of the task, individual differences between speakers, 

and characteristics of the auditory and visual stimuli used in the experiment. The impact 

of all these factors on the threshold deserves careful consideration and modeling. At the 

end of the day, making a saccade to a word’s referent requires making a decision. 

Linking hypotheses connecting spoken word recognition to eye movements in the visual 

world paradigm cannot assume that eye movements will always faithfully reflect 
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continuous differences in activation levels and ought to incorporate models of making 

decisions based on accumulating evidence (e.g., Mazurek, Roitman, Ditterich, & Shadlen, 

2003; Ratcliff & McKoon, 2008; Usher & McClelland, 2001) as well as the costs and 

benefits associated with moving vs. staying put (Meier & Blair, 2013). 
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APPENDICES 

APPENDIX A 

CRITICAL TRIAL STIMULUS SETS 

The word frequencies were obtained from the Balanced Corpus of Contemporary Written 

Japanese (BCCWJ) (Maekawa et al., 2014). Freq. represents word frequency per million 

words. Note that the average word frequency was combined between the Unrelated 1 and 

Unrelated 2 words. 

 

Cohort 1 

  Target Freq. Competitor Freq. Unrelated 1 Freq. Unrelated 2 Freq. 

1 mame 

‘bean’ 

9.8 mikaN 

‘tangerine’ 

8.2 hooki 

‘bloom’ 

3.2 tsɯɾi 

‘fishing’ 

12.5 

2 nabe 

‘pot’ 

29.1 netto 

‘net’ 

30.1 tsɯɾɯ 

‘crane’ 

5.7 kaki 

‘persimmon’ 

4.5 

3 baɾa 

‘rose’ 

20.2 bɯɯtsɯ 

‘boot’ 

6.9 tokee 

‘clock’ 

25.2 ɯsagi 

‘rabbit’ 

14.6 

4 bɯdoo 

‘grape’ 

7.1 batta 

‘grasshopper’ 

1.7 hooki 

‘bloom’ 

3.2 kani 

‘crab’ 

8.2 

5 kɯbi 

‘neck’ 

115.0 kago 

‘basket’ 

10.5 zoo 

‘elephant’ 

11.1 saiɸɯ 

‘wallet’ 

13.1 

6 kɯmo 

‘spider’ 

7.1 kata 

‘shoulder’ 

82.8 batsɯ 

‘x-mark’ 

4.1 haɾi 

‘needle’ 

17.0 

7 kame 

‘turtle’ 

10.4 kiŋgjo 

‘goldfish’ 

5.6 netto 

‘net’ 

30.1 hoN 

‘book’ 

164.0 

8 hato 

‘pigeon’ 

5.9 hebi 

‘snake’ 

15.0 ɕatɕi 

‘killer whale’ 

0.9 kiŋgjo 

‘goldfish’ 

5.6 

9 ɕita 

‘tongue’ 

28.5 ɕoojɯ 

‘soy sauce’ 

22.8 kani 

‘crab’ 

8.2 ɯde 

‘arm’ 

79.2 

10 ɾokkaa 

‘locker’ 

2.6 ɾiboN 

‘ribon’ 

12.6 mado 

‘window’ 

77.6 jagi 

‘goat’ 

4.3 

11 ɾoba 

‘donkey’ 

3.4 ɾemoN 

‘lemon’ 

7.4 hanabi 

‘firework’ 

9.6 batto 

‘bat’ 

6.1 

Average Freq. 21.74  18.51   23.09  

 

  

       



 

124 

 

Cohort 2 

  Target Freq. Competitor Freq. Unrelated 1 Freq. Unrelated 2 Freq. 

12 nasɯ 

‘eggplant’ 

9.0 nabe 

‘pot’ 

29.1 kɯmo 

‘cloud’ 

38.2 tsɯɾɯ 

‘crane’ 

5.7 

13 negi 

‘green 

onion’ 

10.6 neko 

‘cat’ 

64.8 kasa 

‘umbrella’ 

13.8 batsɯ 

‘x-mark’ 

4.1 

14 neko 

‘cat’ 

64.8 neʑi 

‘screw’ 

5.1 gamɯ 

‘gum’ 

2.7 kata 

‘shoulder’ 

82.8 

15 taki 

‘waterfall’ 

14.5 tana 

‘shelf’ 

15.1 ɯsagi 

‘rabbit’ 

14.6 ɾiŋgo 

‘apple’ 

19.5 

16 bɯta 

‘pig’ 

13.4 bɯɯtsɯ 

‘boot’ 

6.9 sake 

‘sake’ 

72.6 kagi 

‘key’ 

41.4 

17 kaba 

‘hippopot

amus’ 

0.7 kaki 

‘oyster’ 

4.5 ito 

‘thread’ 

24.9 tɕizɯ 

‘map’ 

30.6 

18 kɯtsɯ 

‘shoe’ 

37.9 kɯtɕi 

‘mouth’ 

220.1 tamago 

‘egg’ 

46.0 aɾi 

‘ant’ 

5.0 

19 tsɯki 

‘moon’ 

82.3 tsɯme 

‘nail’ 

21.3 saiɸɯ 

‘wallet’ 

13.1 ɾakko 

‘sea otter’ 

0.9 

20 haɕi 

‘bridge’ 

29.9 hane 

‘feather’ 

14.4 booɾɯ 

‘ball’ 

46.7 ika 

‘squid’ 

11.1 

21 ɸɯne 

‘ship’ 

72.0 ɸɯgɯ 

‘puffer fish’ 

3.4 ame 

‘rain’ 

95.1 tako 

‘octopus’ 

8.0 

22 ɾibon 

‘ribon’ 

12.6 ɾisɯ 

‘squirrel’ 

2.7 tako 

‘octopus’ 

8.0 neʑi 

‘screw’ 

5.1 

23 ɾemoN 

‘lemon’ 

7.4 ɾetasɯ 

‘lettuce’ 

4.8 naiɸɯ 

‘knife’ 

15.4 hanabi 

‘firework’ 

9.6 

Average Freq. 29.59  32.68   25.62  

 

 

Cohort 3 

  Target Freq. Competitor Freq. Unrelated 1 Freq. Unrelated 2 Freq. 

24 toɾi 

‘bird’ 

36.8 toɾa 

‘tiger’ 

9.5 same 

‘shark’ 

4.8 ɕika 

‘deer’ 

7.2 

25 hako 

‘box’ 

31.0 haka 

‘grave’ 

20.8 otɕa 

‘tea’ 

33.9 noɾi 

‘glue’ 

6.3 

26 hane 

‘feather’ 

14.4 hana 

‘nose’ 

49.5 kiɾiN 

‘giraffe’ 

3.2 sɯika 

‘watermelon’ 

7.5 

27 kamo 

‘duck’ 

6.0 kame 

‘turtle’ 

10.4 ɾoba 

‘donkey’ 

3.4 ɸɯgɯ 

‘puffer fish’ 

3.4 

28 kɯma 

‘bear’ 

16.4 kɯmo 

‘spider’ 

7.1 wani 

‘alligator’ 

2.5 saɾɯ 

‘monkey’ 

14.5 
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29 soɾa 

‘sky’ 

88.7 soɾi 

‘sled’ 

3.2 kamo 

‘duck’ 

6.0 wani 

‘alligator’ 

2.5 

30 take 

‘bamboo’ 

11.7 taki 

‘waterfall’ 

14.5 çiza 

‘knee’ 

42.6 ɕoojɯ 

‘soy sauce’ 

22.8 

31 kago 

‘basket’ 

10.5 kagi 

‘key’ 

41.4 hatɕi 

‘bee’ 

6.3 tsɯme 

‘nail’ 

21.3 

32 kɯmo 

‘cloud’ 

38.2 kɯma 

‘bear’ 

16.4 batto 

‘bat’ 

6.1 paN 

‘bread’ 

33.0 

Average Freq. 28.19  19.20   12.63  

 

 

Rhyme 2 

  Target Freq. Competitor Freq. Unrelated 1 Freq. Unrelated 2 Freq. 

33 semi 

‘cicada’ 

5.9 kami 

‘paper’ 

38.6 booɾɯ 

‘ball’ 

46.7 hana 

‘flower’ 

167.8 

34 toɾa 

‘tiger’ 

9.5 saɾa 

‘plate’ 

22.8 aɾi 

‘ant’ 

5.0 kami 

‘hair’ 

61.6 

35 kaki 

‘persimmon’ 

5.5 tsɯki 

‘moon’ 

82.3 çige 

‘mustache’ 

13.8 inɯ 

‘dog’ 

86.7 

36 kɯtɕi 

‘mouth’ 

220.1 hatɕi 

‘pot’ 

8.5 inɯ 

‘dog’ 

86.7 tokee 

‘clock’ 

25.2 

37 gomi 

‘garbage’ 

34.5 kami 

‘hair’ 

61.6 ebi 

‘shrimp’ 

12.3 çiza 

‘knee’ 

42.6 

38 hata 

‘flag’ 

10.9 ɕita 

‘tongue’ 

28.5 bɯdoo 

‘grape’ 

7.1 kiɾiN 

‘giraffe’ 

3.2 

39 negi 

‘green 

onion’ 

10.6 jagi 

‘goat’ 

4.3 hato 

‘pigeon’ 

5.9 kasa 

‘umbrella’ 

13.8 

40 hone 

‘bone’ 

35.5 jane 

‘roof’ 

25.5 tɕizɯ 

‘map’ 

30.6 ɾetasɯ 

‘lettuce’ 

4.8 

41 jane 

‘roof’ 

25.5 ɸɯne 

‘ship’ 

72.0 kaba 

‘hippopota

mus’ 

0.7 naiɸɯ 

‘knife’ 

15.4 

42 ɾisɯ 

‘squirrel’ 

2.7 basɯ 

‘bus’ 

42.5 haɾi 

‘needle’ 

17.0 gamɯ 

‘gum’ 

2.7 

43 mimi 

‘ear’ 

104.6 semi 

‘cicade’ 

5.9 ɸɯta 

‘lid’ 

25.7 kawa 

‘river’ 

8.7 

44 jɯki 

‘snow’ 

70.2 waki 

‘armpit’ 

28.9 taɾɯ 

‘barrel’ 

2.0 momo 

‘peach’ 

15.3 

Average Freq. 44.63  35.12   29.82  
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Rhyme 3 

  Target Freq. Competitor Freq. Unrelated 1 Freq. Unrelated 2 Freq. 

45 naɕi 

‘pear’ 

5.3 haɕi 

‘bridge’ 

29.9 kɯtsɯ 

‘shoe’ 

37.9 zoo 

‘elephant’ 

11.1 

46 basɯ 

‘bus’ 

42.5 nasɯ 

‘eggplant’ 

9.0 ɾokkaa 

‘locker’ 

2.6 ɕatɕi 

‘killer whale’ 

0.9 

47 niʑi 

‘rainbow’ 

6.7 çiʑi 

‘elbow’ 

10.3 ɾakko 

‘sea otter’ 

0.9 otɕa 

‘tea’ 

33.9 

48 taɾɯ 

‘barrel’ 

2.0 maɾɯ 

‘circle’ 

19.0 ɯɕi 

‘cow’ 

22.9 çige 

‘mustache’ 

13.8 

49 tana 

‘shelf’ 

15.1 hana 

‘nose’ 

49.5 itɕigo 

‘strawberry’ 

9.3 booɕi 

‘hat’ 

20.6 

50 kɯɾi 

‘chestnut’  

7.5 tsɯɾi 

‘fishing’ 

12.5 ɕika 

‘deer’ 

7.2 isɯ 

‘chair’ 

47.9 

51 ɸɯta 

‘lid’ 

25.7 bɯta 

‘pig’ 

13.4 hana 

‘flower’ 

167.8 maɾɯ 

‘circle’ 

19.0 

52 same 

‘shark’ 

4.8 mame 

‘bean’ 

9.8 tokee 

‘clock’ 

25.2 hatɕi 

‘bee’ 

6.3 

53 saɾa 

‘plate’ 

22.8 baɾa 

‘rose’ 

20.2 ika 

‘squid’ 

11.1 mikaN 

‘tangerine’ 

8.2 

54 jɯbi 

‘finger’ 

69.6 kɯbi 

‘neck’ 

115.0 momo 

‘peach’ 

15.3 sake 

‘sake’ 

72.6 

55 waki 

‘armpit’ 

28.9 kaki 

‘persimmon’ 

5.5 isɯ 

‘chair’ 

47.9 ɯma 

‘horse’ 

66.7 

Average Freq. 20.99  26.74   30.61  

 

 

Unrelated 

  Target Freq. Competitor Freq. Unrelated 1 Freq. Unrelated 2 Freq. 

56 ka 

‘mosquito’ 

8.4 niʑi 

‘rainbow’ 

6.7 hata 

‘flag’ 

10.9 tamago 

‘egg’ 

46.0 

57 tsɯkɯe 

‘desk’ 

34.7 kaki 

‘persimmon’ 

5.5 ɸɯde 

‘brush’ 

13.6 çiʑi 

‘elbow’ 

10.3 

58 ki 

‘tree’ 

147.2 hoN 

‘book’ 

164.0 ɯde 

‘arm’ 

79.2 itɕigo 

‘strawberry’ 

9.3 

59 ɸɯe 

‘whistle’ 

6.2 hako 

‘box’ 

31.0 tombo 

‘dragonfly’ 

4.4 aɕi 

‘leg’ 

164.9 

60 kome 

‘rice’ 

14.7 ha 

‘tooth’ 

45.1 aɕi 

‘leg’ 

164.9 ɸɯde 

‘brush’ 

13.6 

61 ito 

‘thread’ 

24.9 kami 

‘paper’ 

38.6 booɕi 

‘hat’ 

20.6 haka 

‘grave’ 

20.8 
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62 mado 

‘window’ 

77.6 soɾa 

‘sky’ 

88.7 jɯbi 

‘finger’ 

69.6 kaeɾɯ 

‘flog’ 

6.6 

63 sɯzɯ 

‘whistle’ 

5.3 hatɕi 

‘pot’ 

8.5 kɯɾi 

‘chestnut’ 

7.5 tombo 

‘dragonfly’ 

4.4 

Average Freq. 39.88  22.61   40.41  

 

 

Cohort & Rhyme 

  Target Freq. Cohort Freq. Rhyme Freq. Unrelated Freq. 

64 hebi 

‘snake’ 

15.0 hone 

‘bone’ 

35.5 ebi 

‘shrimp’ 

12.3 saɾɯ 

‘monkey’ 

14.5 

65 kɯɕi 

‘chestnut’ 

3.4 kawa 

‘river’ 

8.7 ɯɕi 

‘cow’ 

22.9 ɾiŋgo 

‘apple’ 

19.5 

66 soɾi 

‘slid’ 

3.2 sɯika 

‘watermelon’ 

7.5 oɾi 

‘cage’ 

4.3 take 

‘bamboo’ 

11.7 

67 kame 

‘turtle’ 

10.4 kɯɕi 

‘comb’ 

3.4 ame 

‘rain’ 

95.1 sɯzɯ 

‘bell’ 

5.3 

Average Freq. 8.00  13.78  33.65  12.75 
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APPENDIX B 

PHONEME FEATURE SPECIFICATIONS 

(TRACE) 

Phoneme feature specification and values in TRACE (McClelland & Elman, 1986) (1 = 

very low, 8 = very high) 

 

 Consonantal Vocalic Diffuseness Acuteness Voiced Power Burst 

1 ɒ, i, u, ʌ p/b 
t/d 
k/g 

ɹ ɒ, ʌ p, t, k 
s, ʃ 

  

2   k/g 
l 
ɒ 

p/b 
ɹ 
u 

   

3 l, ɹ   k/g   g 
 

4  s, ʃ  ʃ 
l 

 p/b 
t/d 
k/g 

k 

5 s, ʃ  ʌ    d 
 

6   ʃ 
u 

  s, ʃ t 

7  l, ɹ p/b 
t/d 
s 

t/d b, d, g l, ɹ 
ʌ 

b 

8 p/b 
t/d 
k/g 

ɒ, i, u, 
ʌ 

i s 
i 

l, ɹ 
ɒ, i, u, 
ʌ 

ɒ, i, u p 
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APPENDIX C 

PHONEME FEATURE SPECIFICATIONS 

(jTRACE) 

 

Phoneme feature specification and values in jTRACE (Strauss et al., 2007) (1 = very low, 

8 = very high). Note: the phonemes that are not specified a value in a parenthesis 

represent the value of 1. Cons. = Consonantal, Voc = Vocalic, Diff = Diffuseness, Voi = 

Voicing, Pow = Power, & Bur. = Burst. The strength levels 1 to 8 may be reversed in 

jTRACE (1 = very high, 8 = very low). 

 

 

 Cons. Voc. Diff. Acuteness Voi. Pow. Bur. 

1 i l, r 

ɒ, i, 

u, ʌ 

 s  i        ɒ, i, u, 

ʌ 

p 

b(0.2) 

ɒ, i, 

u 

2 p/b 

t/d 

s 

b, d, 

g 

ɒ, i, 

u, ʌ 

s(0.3) 

t/d     

 i(0.3) 

 

 l, ɹ p(0.2) 

b 

l, ɹ 

3 ʃ 

u 

  s(0.1) ʃ(0.1) i(0.1)   t 

d(0.2) 

s, ʃ 

4 ʌ  s, ʃ  ʃ(0.3)  k/g(0.1)  t(0.2) 

d 

 

5   l, ɹ  ʃ u(0.1) k/g(0.3) s, ʃ k 

g(0.2) 

p/b 

t/d 

k/g 

6     ʃ (0.3) u(0.3) 

ɒ, 

ʌ(0.1) 

k/g  k(0.2) 

g 

 

7 k/g 

l 

ɹ(0.5) 

  p/b ʃ (0.1) u 

ɒ, 

ʌ(0.3) 

k/g(0.3)    

8 ɒ 

l(0.5) 

ɹ 

p, t, 

k 

s, ʃ 

p/b 

t/d 

k/g 

  u(0.3) 

ɒ, ʌ 

k/g(0.1) p/b 

t/d 

k/g 
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APPENDIX D 

PHONEME FEATURE SPECIFICATIONS 

(PRESENT STUDY) 

 

Phoneme feature specification and values in the TRACE simulation in the present study 

(1 = very low, 8 = very high). Note: the phonemes that are not specified a value in a 

parenthesis represent the value of 1. 

 

 Sonority Anterior Height Diffuseness Voiced Power 

1 

L 

O 

W 

p/b 

t/d 

k/g 

h a, N p/b 

t/d 

k/g 

s, ts, ɕ, tɕ, ç, 

h, ɸ 

tɕ(0.2) 

dɕ 

2 s, h, ç, ɸ, ɕ/ʑ N, o ŋ ɾ p/t/k ts(0.2) 

dz 

tɕ 

dɕ(0.2) 

3 m, n, ŋ, N ŋ, w, a 

k/g(0.1) 

ɾ(0.1) 

k/g(0.1) 

 

ɸ, h  k(0.2), 

g 

ts 

dz(0.2) 

4 ɾ ɯ 

k/g(0.3) 

ɾ(0.2) 

k/g(0.3) 

e, o 

 

ç  k,  

g(0.2) 

5 j, w 

ɾ(0.5) 

ç, e 

k/g 

ɾ(0.3) 

k/g 

 

s, ts/dz, 

ɕ/ʑ, tɕ/dʑ 

 

 t(0.2) 

d 

6 i, ɯ i, j 

k/g(0.3) 

ɾ(0.5) 

k/g(0.3) 

 

m/n/ŋ/N dz, dʑ, ʑ t,  

d(0.2) 

7 e, o t, d, n, ts, dz 

ɾ 

k/g(0.1) 

 

j, w b/d/g 

ɾ 

p(0.2) 

b 

8 

H 

I 

G 

H 

a p, b, m, ɸ i, j 

ɯ, w 

ɕ/ʑ,  

tɕ/dʑ 

ç, ɾ 

a/i/ɯ/e/o a/i/ɯ/e/o 

m/n/ŋ/N 

j, w 

p,  

b(0.2) 
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 Acuteness 

1 

L 

O 

W 

  h k/g(0.1)  a/o/ɯ/w/ɸ(0.1) N(0.5) 

2  ɕ/ʑ/tɕ/dʑ(0.1) p, b, m k/g(0.3) ŋ(0.5) a/o/ɯ/w/ɸ(0.3) N 

3  ɕ/ʑ/tɕ/dʑ(0.3) ɾ(0.5) k/g ŋ a/o/ɯ/w/ɸ  

4  ɕ/ʑ/tɕ/dʑ ɾ k/g(0.3)  e(0.5) i/j/ç(0.1) 

5  ɕ/ʑ/tɕ/dʑ(0.3)  k/g(0.1)  e i/j/ç(0.3) 

6 s/ts/dz(0.1) ɕ/ʑ/tɕ/dʑ(0.1)     i/j/ç 

7 s/ts/dz(0.3)  t, d, n     

8 

H 

I 

G 

H 

s/ts/dz       
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APPENDIX E 

RMSE FOR EACH CONDITION 

(NATURAL SPEECH) 

Cohort 1: Natural Speech 

Speech_Type Condition Parameter Value RMSE 

1 Natural 1C Input_Noise 0.6 0.278275 

2 Natural 1C Alpha_pw 0.01 0.279562 

3 Natural 1C Alpha_fp 0.0075 0.281567 

4 Natural 1C Input_Noise 0.3 0.283662 

5 Natural 1C Input_Noise 0.9 0.283828 

6 Natural 1C Attention 0.4 0.286839 

7 Natural 1C Alpha_fp 0.01 0.287192 

8 Natural 1C Alpha_pw 0.03 0.292937 

9 Natural 1C Alpha_fp 0.0025 0.299916 

10 Natural 1C Gamma.w 0.04 0.303377 

11 Natural 1C Gamma.w 0.05 0.303771 

12 Natural 1C Attention 0.8 0.304899 

13 Natural 1C Input_Noise 0 Default 0.306326 

14 Natural 1C Attention 1 Default 0.306326 

15 Natural 1C Gamma.w 0.03 Default 0.306326 

16 Natural 1C Alpha_fp 0.02 Default 0.306326 

17 Natural 1C Alpha_pw 0.05 Default 0.306326 

18 Natural 1C Rest.w -0.01 Default 0.306327 

19 Natural 1C Rest.w 0.005 0.308121 

20 Natural 1C Rest.w -0.0025 0.308285 

21 Natural 1C Attention 1.2 0.30859 

22 Natural 1C Rest.w -0.0175 0.308879 

23 Natural 1C Rest.w -0.025 0.309176 

24 Natural 1C Gamma.w 0.02 0.312967 

25 Natural 1C Alpha_pw 0.07 0.315228 

26 Natural 1C Gamma.w 0.01 0.317234 

27 Natural 1C Alpha_fp 0.035 0.325507 
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Cohort 2: Natural Speech 

Speech_Type Condition Parameter Value RMSE 

1 Natural 2C Alpha_fp 0.0075 0.272534 

2 Natural 2C Attention 0.4 0.273224 

3 Natural 2C Alpha_pw 0.01 0.275124 

4 Natural 2C Alpha_fp 0.01 0.276343 

5 Natural 2C Input_Noise 0.9 0.277489 

6 Natural 2C Alpha_pw 0.03 0.280186 

7 Natural 2C Input_Noise 0.6 0.28071 

8 Natural 2C Input_Noise 0.3 0.290166 

9 Natural 2C Attention 0.8 0.290286 

10 Natural 2C Rest.w -0.01 Default 0.292535 

11 Natural 2C Input_Noise 0 Default 0.292535 

12 Natural 2C Attention 1 Default 0.292535 

13 Natural 2C Gamma.w 0.03 Default 0.292535 

14 Natural 2C Alpha_fp 0.02 Default 0.292535 

15 Natural 2C Alpha_pw 0.05 Default 0.292535 

16 Natural 2C Rest.w -0.0025 0.295573 

17 Natural 2C Rest.w 0.005 0.295655 

18 Natural 2C Attention 1.2 0.295801 

19 Natural 2C Rest.w -0.0175 0.295992 

20 Natural 2C Gamma.w 0.01 0.296005 

21 Natural 2C Rest.w -0.025 0.296175 

22 Natural 2C Gamma.w 0.04 0.296988 

23 Natural 2C Gamma.w 0.05 0.298771 

24 Natural 2C Gamma.w 0.02 0.300412 

25 Natural 2C Alpha_fp 0.0025 0.301936 

26 Natural 2C Alpha_pw 0.07 0.302755 

27 Natural 2C Alpha_fp 0.035 0.30488 

 

Cohort 3: Natural Speech 

Speech_Type Condition Parameter Value RMSE 

1 Natural 3C Alpha_pw 0.01 0.303672 

2 Natural 3C Attention 0.4 0.30871 

3 Natural 3C Alpha_fp 0.0075 0.311656 

4 Natural 3C Alpha_fp 0.0025 0.31571 

5 Natural 3C Alpha_fp 0.01 0.3191 

6 Natural 3C Alpha_pw 0.03 0.321868 

7 Natural 3C Input_Noise 0.6 0.32724 

8 Natural 3C Gamma.w 0.01 0.32759 

9 Natural 3C Attention 0.8 0.334012 
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10 Natural 3C Input_Noise 0.3 0.339003 

11 Natural 3C Rest.w -0.01 Default 0.339048 

12 Natural 3C Input_Noise 0 Default 0.339048 

13 Natural 3C Attention 1 Default 0.339048 

14 Natural 3C Gamma.w 0.03 Default 0.339048 

15 Natural 3C Alpha_fp 0.02 Default 0.339048 

16 Natural 3C Alpha_pw 0.05 Default 0.339048 

17 Natural 3C Gamma.w 0.04 0.341107 

18 Natural 3C Gamma.w 0.05 0.342174 

19 Natural 3C Rest.w -0.0025 0.342182 

20 Natural 3C Attention 1.2 0.342223 

21 Natural 3C Rest.w -0.0175 0.342302 

22 Natural 3C Rest.w -0.025 0.342366 

23 Natural 3C Rest.w 0.005 0.345318 

24 Natural 3C Gamma.w 0.02 0.345383 

25 Natural 3C Alpha_fp 0.035 0.351836 

26 Natural 3C Input_Noise 0.9 0.417075 

 

 

Rhyme 2: Natural Speech 

Speech_Type Condition Parameter Value RMSE 

1 Natural 2R Alpha_fp 0.0075 0.267594 

2 Natural 2R Alpha_fp 0.01 0.269494 

3 Natural 2R Attention 0.4 0.269945 

4 Natural 2R Alpha_pw 0.01 0.271117 

5 Natural 2R Alpha_pw 0.03 0.272007 

6 Natural 2R Input_Noise 0.6 0.274793 

7 Natural 2R Gamma.w 0.05 0.277714 

8 Natural 2R Gamma.w 0.04 0.277834 

9 Natural 2R Input_Noise 0.3 0.278603 

10 Natural 2R Attention 0.8 0.278943 

11 Natural 2R Rest.w -0.01 Default 0.279723 

12 Natural 2R Input_Noise 0 Default 0.279728 

13 Natural 2R Attention 1 Default 0.279728 

14 Natural 2R Gamma.w 0.03 Default 0.279728 

15 Natural 2R Alpha_fp 0.02 Default 0.279728 

16 Natural 2R Alpha_pw 0.05 Default 0.279728 

17 Natural 2R Attention 1.2 0.280588 

18 Natural 2R Rest.w 0.005 0.280704 

19 Natural 2R Rest.w -0.025 0.281429 

20 Natural 2R Rest.w -0.0025 0.281429 

21 Natural 2R Input_Noise 0.9 0.284031 
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22 Natural 2R Alpha_pw 0.07 0.287924 

23 Natural 2R Gamma.w 0.02 0.290337 

24 Natural 2R Alpha_fp 0.035 0.29782 

25 Natural 2R Gamma.w 0.01 0.298532 

26 Natural 2R Alpha_fp 0.0025 0.300733 

 

Rhyme 3: Natural Speech 

Speech_Type Condition Parameter Value RMSE 

1 Natural 3R Alpha_fp 0.0075 0.276516 

2 Natural 3R Input_Noise 0.6 0.278039 

3 Natural 3R Alpha_pw 0.01 0.278126 

4 Natural 3R Attention 0.4 0.281415 

5 Natural 3R Alpha_fp 0.01 0.282047 

6 Natural 3R Input_Noise 0.3 0.283726 

7 Natural 3R Alpha_pw 0.03 0.284359 

8 Natural 3R Attention 0.8 0.287788 

9 Natural 3R Input_Noise 0 Default 0.293606 

10 Natural 3R Attention 1 Default 0.293606 

11 Natural 3R Gamma.w 0.03 Default 0.293606 

12 Natural 3R Alpha_fp 0.02 Default 0.293606 

13 Natural 3R Alpha_pw 0.05 Default 0.293606 

14 Natural 3R Rest.w -0.01 Default 0.293606 

15 Natural 3R Rest.w -0.0025 0.298672 

16 Natural 3R Attention 1.2 0.29871 

17 Natural 3R Rest.w -0.0175 0.298816 

18 Natural 3R Rest.w -0.025 0.298948 

19 Natural 3R Alpha_fp 0.0025 0.299363 

20 Natural 3R Rest.w 0.005 0.300214 

21 Natural 3R Gamma.w 0.04 0.300487 

22 Natural 3R Gamma.w 0.01 0.301327 

23 Natural 3R Gamma.w 0.05 0.302249 

24 Natural 3R Gamma.w 0.02 0.305183 

25 Natural 3R Alpha_pw 0.07 0.308412 

26 Natural 3R Alpha_fp 0.035 0.312789 

27 Natural 3R Input_Noise 0.9 0.374872 
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Cohort & Rhyme Mixed: Natural Speech 

 Speech_Type Condition Parameter Value                    RMSE 

1 Natural Mix Alpha_pw 0.01 0.308799 

2 Natural Mix Alpha_fp 0.0025 0.313205 

3 Natural Mix Alpha_fp 0.0075 0.320116 

4 Natural Mix Alpha_fp 0.01 0.32524 

5 Natural Mix Attention 0.4 0.326825 

6 Natural Mix Alpha_pw 0.03 0.330265 

7 Natural Mix Input_Noise 0.6 0.332067 

8 Natural Mix Gamma.w 0.05 0.332902 

9 Natural Mix Input_Noise 0.3 0.333388 

10 Natural Mix Gamma.w 0.04 0.336025 

11 Natural Mix Rest.w 0.005 0.336629 

12 Natural Mix Attention 0.8 0.336765 

13 Natural Mix Input_Noise 0 Default    0.3373974 

14 Natural Mix Attention 1 Default    0.3373974 

15 Natural Mix Gamma.w 0.03 Default    0.3373974 

16 Natural Mix Alpha_fp 0.02 Default    0.3373974 

17 Natural Mix Alpha_pw 0.05 Default    0.3373974 

18 Natural Mix Rest.w -0.01 Default    0.3373974 

19 Natural Mix Rest.w -0.003 0.337864 

20 Natural Mix Attention 1.2 0.338269 

21 Natural Mix Rest.w -0.018 0.338701 

22 Natural Mix Rest.w -0.025 0.339066 

23 Natural Mix Alpha_pw 0.07 0.343892 

24 Natural Mix Gamma.w 0.02 0.35091 

25 Natural Mix Input_Noise 0.9 0.352198 

26 Natural Mix Alpha_fp 0.035 0.353774 

27 Natural Mix Gamma.w 0.01 0.358957 
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APPENDIX F 

RMSE FOR EACH CONDITION 

(SYNTHESIZED SPEECH) 

Cohort 1: Synthesized Speech 

Speech_Type Condition Parameter Value RMSE 

1 Synthesis 1C Alpha_pw 0.01 0.285844 

2 Synthesis 1C Input_Noise 0.9 0.28685 

3 Synthesis 1C Input_Noise 0.6 0.292877 

4 Synthesis 1C Alpha_fp 0.0025 0.296276 

5 Synthesis 1C Alpha_fp 0.0075 0.305261 

6 Synthesis 1C Input_Noise 0.3 0.306565 

7 Synthesis 1C Attention 0.4 0.31184 

8 Synthesis 1C Alpha_fp 0.01 0.314386 

9 Synthesis 1C Alpha_pw 0.03 0.322198 

10 Synthesis 1C Gamma.w 0.05 0.33531 

11 Synthesis 1C Gamma.w 0.04 0.33531 

12 Synthesis 1C Attention 0.8 0.336578 

13 Synthesis 1C Rest.w -0.01 Default 0.338462 

14 Synthesis 1C Input_Noise 0 Default 0.338462 

15 Synthesis 1C Attention 1 Default 0.338462 

16 Synthesis 1C Gamma.w 0.03 Default 0.338462 

17 Synthesis 1C Alpha_fp 0.02 Default 0.338462 

18 Synthesis 1C Alpha_pw 0.05 Default 0.338462 

19 Synthesis 1C Rest.w 0.005 0.341086 

20 Synthesis 1C Rest.w -0.0025 0.341152 

21 Synthesis 1C Attention 1.2 0.341474 

22 Synthesis 1C Rest.w -0.0175 0.341775 

23 Synthesis 1C Rest.w -0.025 0.34208 

24 Synthesis 1C Gamma.w 0.02 0.345806 

25 Synthesis 1C Alpha_pw 0.07 0.348086 

26 Synthesis 1C Gamma.w 0.01 0.350756 

27 Synthesis 1C Alpha_fp 0.035 0.359871 
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Cohort 2: Synthesized Speech 

Speech_Type Condition Parameter Value RMSE 

1 Synthesis 2C Alpha_pw 0.01 0.290921 

2 Synthesis 2C Alpha_fp 0.0025 0.300695 

3 Synthesis 2C Alpha_fp 0.0075 0.309671 

4 Synthesis 2C Attention 0.4 0.311033 

5 Synthesis 2C Input_Noise 0.9 0.312765 

6 Synthesis 2C Alpha_fp 0.01 0.319024 

7 Synthesis 2C Input_Noise 0.6 0.32454 

8 Synthesis 2C Alpha_pw 0.03 0.325754 

9 Synthesis 2C Input_Noise 0.3 0.339063 

10 Synthesis 2C Attention 0.8 0.339895 

11 Synthesis 2C Rest.w -0.01 Default 0.342478 

12 Synthesis 2C Input_Noise 0 Default 0.342478 

13 Synthesis 2C Attention 1 Default 0.342478 

14 Synthesis 2C Gamma.w 0.03 Default 0.342478 

15 Synthesis 2C Alpha_fp 0.02 Default 0.342478 

16 Synthesis 2C Alpha_pw 0.05 Default 0.342478 

17 Synthesis 2C Rest.w -0.0025 0.346042 

18 Synthesis 2C Rest.w 0.005 0.346122 

19 Synthesis 2C Attention 1.2 0.346256 

20 Synthesis 2C Rest.w -0.0175 0.346419 

21 Synthesis 2C Gamma.w 0.01 0.34654 

22 Synthesis 2C Rest.w -0.025 0.346571 

23 Synthesis 2C Gamma.w 0.04 0.347311 

24 Synthesis 2C Gamma.w 0.05 0.349212 

25 Synthesis 2C Gamma.w 0.02 0.351388 

26 Synthesis 2C Alpha_pw 0.07 0.353918 

27 Synthesis 2C Alpha_fp 0.035 0.356643 

 

 
Cohort 3: Synthesized Speech 

Speech_Type Condition Parameter Value RMSE 

1 Synthesis 3C Alpha_pw 0.01 0.309632 

2 Synthesis 3C Alpha_fp 0.0025 0.312697 

3 Synthesis 3C Attention 0.4 0.327746 

4 Synthesis 3C Alpha_fp 0.0075 0.337965 

5 Synthesis 3C Alpha_fp 0.01 0.348917 

6 Synthesis 3C Alpha_pw 0.03 0.35319 

7 Synthesis 3C Gamma.w 0.01 0.35377 

8 Synthesis 3C Input_Noise 0.6 0.359299 
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9 Synthesis 3C Attention 0.8 0.368288 

10 Synthesis 3C Rest.w -0.01 Default 0.373372 

11 Synthesis 3C Input_Noise 0 Default 0.373372 

12 Synthesis 3C Attention 1 Default 0.373372 

13 Synthesis 3C Gamma.w 0.03 Default 0.373372 

14 Synthesis 3C Alpha_fp 0.02 Default 0.373372 

15 Synthesis 3C Alpha_pw 0.05 Default 0.373372 

16 Synthesis 3C Input_Noise 0.3 0.373908 

17 Synthesis 3C Gamma.w 0.04 0.375539 

18 Synthesis 3C Gamma.w 0.05 0.376481 

19 Synthesis 3C Rest.w -0.0025 0.376598 

20 Synthesis 3C Attention 1.2 0.376652 

21 Synthesis 3C Rest.w -0.0175 0.376747 

22 Synthesis 3C Rest.w -0.025 0.376818 

23 Synthesis 3C Rest.w 0.005 0.379985 

24 Synthesis 3C Gamma.w 0.02 0.380503 

25 Synthesis 3C Alpha_fp 0.035 0.387489 

26 Synthesis 3C Input_Noise 0.9 0.401669 

 

 
Rhyme 2: Synthesized Speech 

Speech_Type Condition Parameter Value RMSE 

1 Synthesis 2R Alpha_pw 0.01 0.287074 

2 Synthesis 2R Alpha_fp 0.0075 0.299364 

3 Synthesis 2R Alpha_fp 0.0025 0.302308 

4 Synthesis 2R Attention 0.4 0.304078 

5 Synthesis 2R Alpha_fp 0.01 0.305034 

6 Synthesis 2R Alpha_pw 0.03 0.310508 

7 Synthesis 2R Input_Noise 0.6 0.314768 

8 Synthesis 2R Input_Noise 0.9 0.315906 

9 Synthesis 2R Input_Noise 0.3 0.318776 

10 Synthesis 2R Gamma.w 0.04 0.319256 

11 Synthesis 2R Gamma.w 0.05 0.319404 

12 Synthesis 2R Attention 0.8 0.320165 

13 Synthesis 2R Input_Noise 0 Default 0.320435 

14 Synthesis 2R Attention 1 Default 0.320435 

15 Synthesis 2R Gamma.w 0.03 Default 0.320435 

16 Synthesis 2R Alpha_fp 0.02 Default 0.320435 

17 Synthesis 2R Alpha_pw 0.05 Default 0.320435 

18 Synthesis 2R Rest.w -0.01 Default 0.320436 

19 Synthesis 2R Attention 1.2 0.321627 

20 Synthesis 2R Rest.w 0.005 0.321744 
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21 Synthesis 2R Rest.w -0.025 0.32263 

22 Synthesis 2R Rest.w -0.0025 0.32263 

23 Synthesis 2R Alpha_pw 0.07 0.329801 

24 Synthesis 2R Gamma.w 0.02 0.334255 

25 Synthesis 2R Alpha_fp 0.035 0.342261 

26 Synthesis 2R Gamma.w 0.01 0.343175 

 

 
Rhyme 3: Synthesized Speech 

Speech_Type Condition Parameter Value RMSE 

1 Synthesis 3R Alpha_pw 0.01 0.282339 

2 Synthesis 3R Alpha_fp 0.0025 0.290771 

3 Synthesis 3R Input_Noise 0.6 0.295724 

4 Synthesis 3R Attention 0.4 0.296773 

5 Synthesis 3R Alpha_fp 0.0075 0.308164 

6 Synthesis 3R Alpha_fp 0.01 0.318537 

7 Synthesis 3R Input_Noise 0.3 0.321288 

8 Synthesis 3R Alpha_pw 0.03 0.322388 

9 Synthesis 3R Attention 0.8 0.326763 

10 Synthesis 3R Input_Noise 0 Default 0.334838 

11 Synthesis 3R Attention 1 Default 0.334838 

12 Synthesis 3R Gamma.w 0.03 Default 0.334838 

13 Synthesis 3R Alpha_fp 0.02 Default 0.334838 

14 Synthesis 3R Alpha_pw 0.05 Default 0.334838 

15 Synthesis 3R Rest.w -0.01 Default 0.334838 

16 Synthesis 3R Gamma.w 0.01 0.337569 

17 Synthesis 3R Rest.w -0.0025 0.341363 

18 Synthesis 3R Attention 1.2 0.341367 

19 Synthesis 3R Rest.w -0.0175 0.341451 

20 Synthesis 3R Rest.w -0.025 0.341561 

21 Synthesis 3R Rest.w 0.005 0.343347 

22 Synthesis 3R Gamma.w 0.04 0.343389 

23 Synthesis 3R Gamma.w 0.05 0.345273 

24 Synthesis 3R Gamma.w 0.02 0.348696 

25 Synthesis 3R Alpha_pw 0.07 0.352387 

26 Synthesis 3R Alpha_fp 0.035 0.357547 

27 Synthesis 3R Input_Noise 0.9 0.363778 
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Cohort & Rhyme Mixed: Synthesized Speech 

 Speech_Type Condition Parameter Value                  RMSE 

1 Synthesis Mix Attention 0.4 0.288699 

2 Synthesis Mix Input_Noise 0.6 0.291236 

3 Synthesis Mix Alpha_fp 0.01 0.291263 

4 Synthesis Mix Alpha_fp 0.0075 0.291687 

5 Synthesis Mix Alpha_pw 0.03 0.29195 

6 Synthesis Mix Input_Noise 0.3 0.292184 

7 Synthesis Mix Attention 0.8 0.293387 

8 Synthesis Mix Rest.w 0.005 0.293676 

9 Synthesis Mix Input_Noise 0 Default  0.2938751 

10 Synthesis Mix Attention 1 Default  0.2938751 

11 Synthesis Mix Gamma.w 0.03 Default  0.2938751 

12 Synthesis Mix Alpha_fp 0.02 Default  0.2938751 

13 Synthesis Mix Alpha_pw 0.05 Default  0.2938751 

14 Synthesis Mix Rest.w -0.01 Default  0.2938751 

15 Synthesis Mix Gamma.w 0.05 0.294217 

16 Synthesis Mix Rest.w -0.0025 0.294218 

17 Synthesis Mix Gamma.w 0.04 0.29434 

18 Synthesis Mix Attention 1.2 0.294436 

19 Synthesis Mix Rest.w -0.0175 0.294672 

20 Synthesis Mix Rest.w -0.025 0.294889 

21 Synthesis Mix Alpha_pw 0.01 0.294903 

22 Synthesis Mix Alpha_pw 0.07 0.29696 

23 Synthesis Mix Gamma.w 0.02 0.300729 

24 Synthesis Mix Alpha_fp 0.035 0.302528 

25 Synthesis Mix Gamma.w 0.01 0.305587 

26 Synthesis Mix Alpha_fp 0.0025 0.308483 

27 Synthesis Mix Input_Noise 0.9 0.341121 
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