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THESIS ABSTRACT 

 

Holley May Flora 

Master of Science 

Department of Earth Sciences 

September 2019 

Title: A Genus-level Phylogenetic Analysis of Antilocapridae and Implications for the 

Evolution of Headgear Morphology and Paleoecology 

 

The shapes of artiodactyl headgear play key roles in interactions with their 

environment and each other. Consequently, headgear morphology can be used to predict 

behavior. For example, larger, recurved horns are typical of gregarious, large-bodied 

animals fighting for mates. Smaller spike-like horns are more characteristic of small-

bodied, paired mates from closed environments. Here, I report a genus-level cladistic 

analysis of the extinct family, Antilocapridae, testing prior hypotheses of evolutionary 

history and headgear evolution. I included 53 post-cranial, cranial, and headgear 

characters, expanding on previous analyses by developing 14 novel character traits. This 

phylogenetic analysis not only establishes ancestral headgear morphology of 

Antilocapridae but allows inferences of major social structure changes. These results 

confirm previous works inferred through comparison with artiodactyl families that 

antilocaprids evolved from small-bodied monogamous pairs to large-bodied gregarious 

herds.  Our findings show multiple originations of herding social behavior. 
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INTRODUCTION 

Headgear are an important feature shared by almost every member of the 

Ruminantia (Davis et al., 2011). Bony ossicones and other protuberances are found in 

many ruminant families, although the evolution of the different forms of headgear 

remains enigmatic. Within a phylogenetic framework the ruminant history may be 

uncovered. 

Past work on Bovidae and Cervidae, families within Ruminantia, have examined 

correlation between headgear shape and behavior (Caro et al, 2003; Jarman, 1974; 

Geist,1966; O’Gara,1990; Bubenik & Bubenik, 1990). There are five established 

categories from Jarman (1974) that illustrate bovid behavior in relation to horn shape and 

curvature. Here, I merge these five categories into three because there are fewer genera in 

Antilocapridae and less body size diversity than in the African bovids (Fig. ). Jarman’s 

(1974) category A, animals with shorter simple horns, includes species displaying sexual 

dimorphism in closed environments. An example of this category in extant bovid 

antelope would be the dik-dik. Dik-diks are small-bodied (< 20kg) antelope living in the 

African underbrush feeding and living in pairs. The males have short, spiked horns and 

do not use them for fighting, but display (Scheibe, 1999). In categories B and C, more 

curved and complex horns are found on animals that use them to fight and wrestle each 

other to the ground. This is typical of slightly larger (< 50kg) animals that live on the 

border of forested areas with feeding options of both grass from the plains and higher 

energy leaves from the forest. This category (previously B and C) can be sexually 

dimorphic in headgear, but most members of this category use their headgear in 

competition for resources, so females sport equivalent structures to males. The headgear 
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for these taxa is complex, branching in multiple places or curving medially. In categories 

D and E, large bodied (> 100kg) taxa with posteriorly recurved headgear, herds have a 

social structure where both males and females use headgear to ram each other in 

competition for resources and mates. 

For this analysis, fossil taxa (as referred to in Appendix A) are categorized into 

three behavioral categories (shown in Table 1): small-bodied with small, simple headgear 

living a closed forest environment (previously Jarman’s group A); medium sized with 

complex and branching headgear, living on the fringe of high nutrient localities and 

competing for resources (Jarman’s B/C); and large-bodied taxa with large, recurved 

headgear living in social groups in open environments (Jarman’s D/E). 

Table 1. Behavior Category Breakdown

 

TABLE 1. The categories of social structures for Antilocaprid behavior comparisons with 
their Bovid counterparts. 
 

 
Antilocaprid Behavior 
Categories 

Category 1 Category 2 Category 3 

African Antelope 
Categories  
(Jarman, 1974) 

A B, C D, E 

Average Weight < 20 kg < 50 kg >100 kg 

Headgear Morphology Small and simple. 
 

Complex. 
Medially pointed 
tines. 

Large and recurved. 
Dorsally directed. 

Feeding Style Closed, forested 
environments. 
High nutrient leaves. 

Outskirts of forests. 
High nutrient leaves 
and grasses. 

Open plains 
environments. 
Low nutrient grasses. 

Social Structure Sexually dimorphic 
headgear for display. 
Living in pairs. 

Competing for 
resources. 
Living in small 
groups. 

Both males and females 
have headgear. 
Socially competing for 
mates. 
Living in large herds. 
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Caro et al. (2003) defined the shape and social factors that determine these 

categories and mapped them onto a bovid phylogeny derived from parsimony. This study 

found selection for particular shapes in headgear, supporting a pattern in fighting and 

grouping behaviors. Other families within Artiodactyla with fewer extant taxa have yet to 

be analyzed similarly. With a single living species, Antilocapridae is one of those 

families, but it will make an optimal test case because of its rich fossil record. 

The family Antilocapridae originated in the Miocene of North America. While it 

had a peak diversity of six genera during the middle Miocene, only one species, 

Antilocapra americana, remains today (Jannis & Manning, 1998; Davis, 2007). The 

driving pressure for antilocaprids to diversify in headgear morphology, and for their 

recent decline, is unknown, but in this study I will address some hypotheses for the 

drivers of antilocaprid diversification. 

Antilocaprids have historically been diagnosed by their headgear morphology 

(Davis, 2007). Headgear morphology as a main source for diagnostic characters leads to 

several problems. For identifying taxa, headgear in many families vary within species and 

for individuals over time. The origination of headgear is not well understood and 

antilocaprid headgear less so, even as new genetic work begins to illuminate their 

development and deep homology in cervids and bovids (Wang et al. 2019). Artiodactyl 

headgear can be ossicones that are part of the skull’s bony structure, horns that are 

covered in keratin, or antlers that are shed annually. These structures also vary in shape 

and curvature. Artiodactyls use their headgear to interact with their environment and each 

other. Antilocaprid headgear are a unique structure that are neither ossicone nor horn nor 

antler as they have a bony horn core, but are covered by a sheath that is shed annually 
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(O’Gara, 1990). Today’s extant antilocaprid, Antilocapra americana, has a short blade-

like horn core with a pronged sheath. Extinct members of Antilocapridae have even more 

complex structures to their headgear with multiple horn cores and branching nodes. As I 

noted above, observations from living ruminants show that the shape and structure of 

headgear changes animals’ interactions with one another and their environment, so it is 

possible to infer how extinct fauna used them (Caro et al, 2003). However, a modern 

analogue is needed to determine past behavior of extinct antilocaprids and likely uses of 

these distinctive headgear morphologies to infer interspecies and environmental 

relationships. The Bovidae are a family closely related to Antilocapridae (Marcot, 2007) 

and will provide a good modern analog. As horned ruminants, bovids live in similar 

ecosystems to those reconstructed for ancient North America: both open and closed 

environments (Caro et al, 2003). 

The Antilocapridae are an ideal family for testing the evolutionary hypotheses 

developed from studies of bovids and cervids (Caro et al. 2003; Janis & Scott, 1987). 

Because it is an independent evolutionary lineage with similar starting conditions and a 

rich fossil record, I can build a phylogeny of the group that allows me to test how 

antilocaprid behavior has been related to headgear morphology through time and how the 

gregarious socializing and high-speed displays related to sexual selection seen in today’s 

species evolved. To answer these broader behavioral questions, I must also reconstruct 

the morphology and preferred environment of the ancestral antilocaprid so that I can 

properly analyze the direction of character changes on the phylogeny. In the past, 

relationships between antilocaprid taxa have only been hypothesized using an informal 
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process and never tested with a phylogenetic analysis (See Janis & Manning, 1998; 

Davis, 2007). 

Social behavior in the fossil record is often a mystery. Social systems, when 

observed, illuminate the functional and environmental adaptations of fauna. In the fossil 

record, we cannot observe these interactions, but must rely on trace fossils and modern 

analogues. However, with information about paleoecology many inferences can be made 

about behavior of extinct organisms. Extinct and extant fauna are limited by their skeletal 

morphology in how they can interact with each other and their environments (Benton, 

2010).  

The objective of this study is to look at the evolutionary history of headgear in 

Antilocapridae and use that headgear to infer behavior. With a phylogeny, it should be 

possible to answer whether Antilocapra americana survived because its headgear have a 

successful shape for intra- and inter-species interactions that took advantage of North 

America’s transition to open plains. I hypothesize that gregarious behavior like that seen 

in the extant Antilocapra evolved more than once in the family. I also hypothesize that 

this gregarious adaptation reflected in their headgear arose in answer to North America 

becoming an open plains environment and a herding social structure being more 

advantageous, as has been suggested for African antelope living in similar environments 

(Caro et al. 2003). 

This analysis is the first objective phylogenetic analysis of extinct antilocaprid 

genera. This will also be the first phylogenetic analysis of antilocaprids to focus on 

morphological character traits other than headgear diagnoses. Previous studies have 

hypothesized two subfamilies within Antilocapridae: “Merycodontinae” and 
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Antilocaprinae. With a phylogenetic framework I can begin to test evolutionary questions 

within Antilocapridae, like those concerning the conditions under which their headgear 

shapes diversified and the main evolutionary drivers of diversification. 

 
Institutional Abbreviations-AMNH, the American Museum of Natural History, New 

York; UCMP, University of California Museum of Paleontology, Berkeley; LACM, 

Natural History Museum of Los Angeles County, Los Angeles; CIT, California Institute 

of Technology; UNSM, the University of Nebraska State Museum, Lincoln; UOMNCH, 

the University of Oregon Museum of Natural and Cultural History. 

 

METHODS 

To create a phylogenetic framework without an existing phylogeny of 

Antilocapridae, I visited specimens at the AMNH, UCMP, LACM (including vertebrate 

paleontology collections from CIT), UNSM, and the UOMNCH. With pictures of fossil 

specimens to compare existing morphological traits of the family Antilocapridae, I scored 

antilocaprid genera as composites for each trait (listed in Appendix B). These trait scores 

(shown in Appendix C) were used to generate a phylogeny. 

I generated the Bayesian phylogeny with Beast2.0 (Bouckaert et al, 2014) using 

morph models 1.1.1 and sample ancestor 2.0.1. The evolutionary history of morphology 

is reconstructed within the family through reference to fossilized morphological features. 

The Bayesian method utilizes the preferred evolutionary model and is informed by the 

stratigraphic record as appearance data. These tip dates, or FADs, from Davis (2007) and 

Janis and Manning (1998) are prior bound limits for the origination of the family 

Antilocapridae and each genus. 
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Other parameters used include: the Gamma 4 shape parameter, the relaxed log 

normal clock for rate variation, the fossilized birth-death model for rate of speciation, a 

tree parameter of Rho 1.0 to estimate missing taxa, and the author (Goswami et al., 2007) 

recommendations of diversification and evolutionary parameters. The Gamma parameter 

assumes different evolutionary rates for portioned characters. Here, I assumed headgear 

traits would evolve at a different rate than non-headgear traits and partitioned them to 

allow this in the analysis. A Rho of 1.0 indicates that all living taxa are included in the 

analysis. Because there is only one extant antilocaprid to include, there are no missing 

extant taxa.  

The Bayesian analysis ran twice with 10,000 generations, sampling every 1,000 

generations. To confirm analyses, I combined them with Tracer as .log files. A burn-in of 

10% split the frequencies of these analyses. 

Posterior probability is the support metric for Bayesian analyses because the 

preferred evolutionary model depends on the likelihood of a tree displaying the character 

traits. Posterior probability is the percentage of the trees produced that share each branch 

node. These probabilities range from 0 to 1 for each node. 

To root a phylogeny of Antilocapridae, non-antilocaprid taxa were also included 

in this analysis (refer to taxon list in Appendix A or specimen list in Appendix D). The 

ingroup taxa include all nineteen extinct genera from the family Antilocapridae and the 

only extant genus, Antilocapra. The outgroup is made up of basal, exemplar genera from 

close artiodactyl families: Giraffidae, Cervidae, Bovidae, and Camelidae. The outgroup 

taxa were constrained to fall outside of Antilocapridae with the assumption that 

Antilocapridae is a monophyletic group. 
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To maintain consistency and avoid species-level complications, this phylogenetic 

analysis uses genus-level taxonomy as the species of Antilocapridae are in need of 

extensive systematic revision (Davis 2007). 

 In the fossil record, taxa are determined by their morphological features (Benton 

and Pearson, 2001). Features that that vary across specimens without ontogenetic degrees 

of change are informative traits. The character criteria here use explicit character states 

with parsimony-informative features. To inform evolutionary history of headgear traits, a 

comprehensive suite of non-headgear traits were also necessary for this phylogenetic 

analysis. 53 characters of headgear, cranial, dental, and postcranial features are included 

to create a robust phylogeny. These characters were chosen from existing diagnoses of 

antilocaprid genera and outgroup taxa (Davis, 2007 & Lister et al., 2005). Pre-existing 

diagnoses primarily relied on headgear morphology and 18 of the 53 characters refer to 

headgear (see Fig. 1). To add to the non-headgear traits, I developed 14 novel characters 

from observation while scoring material. 

Different explicit character states are scored from photographs taken of 

antilocaprid type specimens and identified material during my visits to collections at the 

AMNH, UCMP, LACM, UNSM, and the UOMNCH. The uninformative traits, those that 

apply to all the genera, do not say anything about the evolutionary relatedness within 

Antilocapridae and were left out of the analysis. 
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To test hypotheses about the ways the environment shaped the evolution of 

behavior in Antilocapridae, I have used the Bayesian phylogenetic framework of the taxa 

to reconstruct the evolution of behavioral groups. These groups, simplified from those 

defined by Jarman (1974) are: small-bodied with simple headgear, larger-bodied with 

complex headgear, and large-bodied with large recurved headgear. By tracing the 

character history in Mesquite (W. Maddison and D. Maddison, 2018) the most 

parsimonious state for each node is listed, showing the ancestral state for each character 

at the branch. Ancestral characters for hypothetical ancestral antilocaprids can be 

accessed in this way, allowing for inferences of morphological features of basal 

antilocaprids. In the same way, tracing character states allows for the traits that make up 

specific headgear morphologies to be highlighted and sorted into social categories. The 

 

 
 

FIGURE 1. Ottoceros skull LACM 1372 A-6235.51-1 showcasing headgear and 
cranial characters: 1(1), 2(2), 3(0), 4(1), 5(0), 6(1), 7(0), 9(1), 10(0), 11(0), 12(1), 
13(0), 14(1), 16(1), 17(2), 18(0), 23(0), 24(1), 41(1), 42(1), 43(1). 
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characters that exemplify headgear morphology for these categories include: length of 

shaft, number of nodes, and the shape of tines. Categories are designated by the majority 

of characters and likely body weight. The determined category is matched with the 

feeding style and social behavior of modern African bovids for an analogous comparison.  

 
RESULTS 

The results of this phylogenetic analysis (see Fig. 2) clarify pre-existing 

hypotheses about antilocaprid relationships. For the diagnoses in this systematic 

paleontology, I refer to the phylogenetic characters that are unambiguous 

synapomorphies of the clade or taxon. 

SYSTEMATIC PALEONTOLOGY 

Class Mammalia Linnaeus, 1758 
Order Artiodactyla Owen, 1848 

Family Antilocapridae Gray, 1866 
 

Definition: The clade including the common ancestor of Merriamoceros and Antilocapra 

and all of its descendants. 

Revised Diagnosis: These taxa are diagnosed by fused metapodials, complete distal 

metapodial keels, parallel-sided astragali, and smaller horns that are round in cross 

section and covered by skin or hair at the base of the horn core with exposed bony tines.
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Antilocapra
Stockoceros
Capromeryx

Ceratomeryx
Tetrameryx
Hayoceros

Hexobelomeryx
Hexameryx

Texoceros
Osbornoceros

Ilingoceros
Ottoceros
Sphenaphalos

Proantilocapra
Cosoryx

Merycodus

Merriamoceros

Ramoceros

Bison

Giraffa

Sus
Lama

Rangifer

Plioceros

2.0 my

Paracosoryx

FIGURE 2. The maximum clade credibility phylogeny constructed with two runs of 10,000 trees had a 10% burn in. The 10% 
burn in estimate gives a stable start for the tree. The node labels of posterior support range from 0.1 to 1. This phylogeny has been 
timescaled so that the thick bars represent appearance in the fossil record. Subfamilies Antilocaprinae and “Merycodontinae” are 
differentiated along the right edge by a dashed-dotted line and dashed line, respectively. Skull outlines from Davis, 2007 and 
PhyloPic silhouettes.  
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Discussion:  Previously, Antilocapridae was split into two subfamilies, 

“Merycodontinae” and Antilocaprinae (Matthew, 1909). Here, “merycodontine” genera 

(Merriamoceros, Paracosoryx, Cosoryx, Merycodus, and Ramoceros) do fall basally in 

Antilocapridae although not as one clade. Of these “merycodontine” taxa, Ramoceros, 

Merycodus and Cosoryx resolve as a monotypic clade where their tines are medially 

pointed. This could be redefined as tribe Ramocerotini, but for this phylogeny the 

“merycodontines” are considered enigmatic taxa and are unranked and the group 

“Merycodontinae” is considered paraphyletic.  The second subfamily, Antilocaprinae, is 

strongly resolved (0.69 posterior support) as a monophyletic clade of the remaining 

genera. Within the subfamily only one previously defined tribe remains. The highest 

support value, 1, is found at the base of the tree confirming the prior assumption that the 

ingroup Antilocapridae is a monophyletic clade. 

Genus Merriamoceros Frick, 1937 

Revised Diagnosis: Merriamoceros has dorsally directed headgear and a reduced 

trichotomy on its headgear with a wedge shaped horn core. The posterior tine is smaller 

than the anterior and both are shortened into the flared portion of the horn core in a 

palmate shape.  

Discussion: The most basal genus of Antilocapridae in this analysis is Merriamoceros. 

This is the first of the “Merycodontine” group. 

Genus Paracosoryx Frick, 1937 

Revised Diagnosis: Elongate shaft directed posteriodorsally. The anterior tine is smaller 

than the posterior and recurved. The premolars of Paracosoryx are basal with a small 

entosyle. 
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Discussion: Paracosoryx is the earliest antilocaprid to appear, but it is not the most basal 

in this phylogeny. 

Genus Merycodus Leidy, 1854 

Revised Diagnosis: Merycodus has equally sized tines that are equal in length relative to 

the core shaft.  

Genus Ramoceros Frick, 1937 

Revised Diagnosis: Ramoceros has hypsodont cheek teeth and an obtusely angled dentary 

relative the coronoid process. 

Discussion: A monophyletic node, Merycodus and Ramoceros differ from each other in 

directionality of core shaft, the ratio of the core shaft to tine length, and Ramoceros 

having tricotomously branching tines. 

Genus Cosoryx Leidy, 1869 

Revised Diagnosis: Cosoryx has posteriorly-directed headgear originating more 

postoribitally than supraobritally and slightly depressed into the skull. Cosoryx has 

reduced premolars, an anterior cingulid present, but no ectostylid on the cheek teeth. 

Cosoryx also has a longer diastema and a widely flared scapula. 

Discussion: Cosoryx diverges from Ramoceros and Merycodus by having fewer nodes 

than Ramoceros and equal-sized tines like Merycodus. This genus has been suggested as 

indeterminate (Frick, 1937) but has a support of 0.24 here. 

Subfamily Antilocaprinae Gray, 1866 
 
Definition: The clade including the common ancestor of Proantilocapra and Antilocapra 

and all of its descendants. 
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Revised Diagnosis: Branched, permanent keratinous pronghorns are the headgear of 

Antilocaprines. Blade-like headgear cross sections originating in the supraorbital with 

reduced tine tips, hypsodont teeth, an absent lacrimal fossa, a hollow auditory bulla and 

long, gracile limbs with elongated metapodials and a closed metatarsal gully characterize 

this subfamily. 

Discussion: Antilocaprinae have a distinctly different form to their headgear than the 

earlier antilocaprids (the paraphyletic group “Merycodontinae”). Beginning with 

Plioceros and Proantilocapra, antilocaprines have evidence that their headgear was 

covered with keratinous sheathes in life (Davis, 2007).  

Genus Plioceros Frick, 1937 

Revised Diagnosis: Plioceros has elongate pronghorn core shafts with blade-like tines 

and cross section. The anterior tine is smaller than the posterior and is angled outward. 

Genus Proantilocapra Barbour and Schultz, 1934 

Revised Diagnosis: Pronantilocapra has an ectostylid present but not a metastylid. The 

diastema of Proantilocara is short and the coronoid process angled more obtusely 

relative the dentary. Compared to its shortened and reduced tines, the pronghorn core 

shaft of Proantilocapra is elongate. 

Discussion: Within Antilocaprinae, a monophyletic clade containing Plioceros and 

Proantilocapra is the first to diverge. This clade is diagnosed from the other 

Antilocaprinae with the anterior-most tine smaller than the posterior tine and recurved. 

Their cheek teeth also have a small entostyle present. 
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Tribe Ilingocerotini Frick, 1937 

Definition: The common ancestor of Ilingoceros and Sphenophalos and all of its 

descendants. 

Revised Diagnosis: Large headgear with elongate pronghorn core shafts with reduced 

tines. The cross section of pronghorn cores is narrow and rectangular. The metastylid is 

present on cheek teeth. 

Discussion: This tribe includes Ilingoceros, Sphenophalos, and Ottoceros, all known 

from the Hemphillian of California, Oregon, and Nevada, suggesting its members were 

specialists for the opening, drying habitats of that region at that time. This tribe splits 

from the remaining Antilocaprines with 0.78 posterior support. 

Genus Ilingoceros Merriam, 1909 

Revised Diagnosis: The ratio of pronghorn core shaft to tine length in Ilingoceros is the 

longest for any antilocaprid. Tine tips directed outwardly from shaft. The horn core shaft 

is also twisted, resulting in a more rectangular to wedge shaped cross section. 

Genus Sphenophalos Merriam, 1909 

Revised Diagnosis: Pronghorn cores of Sphenophalos laterally compressed in cross 

section and outwardly directed. 

Genus Ottoceros Miller and Downs, 1974 

Revised Diagnosis: Compressed pronghorn core cross sections are wedge shaped and 

headgear originates on the skull surface. Premolars are not reduced in Ottoceros. 

Genus Osbornoceros Frick, 1937 

Revised Diagnosis: Osbornoceros has wedge-shaped pronghorn cores originating in the 

supraorbital as well as unreduced premolars and cheek teeth without a metastylid. 
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Discussion: Osbornoceros has the least supported node (0.1), suggesting caution about 

interpreting its position in the tree.  

Genus Texoceros Frick, 1937 

Revised Diagnosis: Texoceros has a partially fused metapodial gully and lacks parallel-

sided astragali. Short pronghorn core shafts, but not as reduced as seen in Stockoceros, 

and circular cross sections. 

Genus Hexameryx White, 1941 

Revised Diagnosis: Significantly shortened shaft in Hexameryx leaves the tines as the 

predominant morphology. The headgear has circular cross sections and tines covered 

with keratinous sheaths.  

Discussion: Hayoceros, Hexameryx, and Hexobelomeryx form a clade with 0.39 posterior 

probability support. The lack of support for this node is unsurprising because postcranial 

material is lacking from many identified specimens, leaving uncoded characters. 

Hexameryx and Hexobelmeryx couple with better posterior probability support (0.54), but 

all three genera are grouped by their large tines with anterior and posterior directionality.  

Genus Hexobelomeryx Furlong, 1941 

Revised Diagnosis: The anterior most tine is larger than the remaining two with little 

differentiation between tine directionality. Similar to Hexameryx, the core shafts are very 

short leaving the predominant morphology the three tines. 

Genus Hayoceros Frick, 1937 

Revised Diagnosis: Hayoceros has a short-shafted pronghorn core with elongate tines and 

a wedge-shaped cross section. These headgear structures are covered in a keratinous 
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sheath similar to that of Antilocapra with a recurved tine produced anteriorly with the 

sheath. 

Discussion: Hayoceros is one of the last antilocaprid genera to evolve, along with 

Stockoceros. 

Genus Tetrameryx Lull, 1921 

Revised Diagnosis: Tetrameryx has some of the longest tines in Antilocapridae. The 

asymmetry of a small anterior tine and larger posterior is exaggerated in Tetrameryx. 

Genus Ceratomeryx Gazin, 1935 

Revised Diagnosis: In Ceratomeryx, the posterior tine is smaller than the anterior. The 

posteriorly directed shaft originates in the supraorbital. 

Discussion: Ceratomeryx and Capromeryx are sister taxa with 0.93 posterior probability 

support for the node uniting them. Ceratomeryx was previously suggested to be closely 

related to Tetrameryx (Gazin, 1935), and here Tetrameryx is sister to the Ceratomeryx 

and Capromeryx node with a low (0.18) posterior probability support. 

Genus Capromeryx Matthew, 1902 

Revised Diagnosis: Capromeryx has a small, circular cross section and a smaller anterior 

tine than posterior. These tines are dorsally pointed. 

Genus Stockoceros Frick, 1937 

Revised Diagnosis: The headgear of Stockoceros has a short pronghorn core shaft with 

two distinct, elongate and narrow tines. Also covered in a keratinous sheath, these tines 

are equal in size and the pronghorn core is reduced at the tine tip. 

Discussion: Previous workers have recognized tribes Stockoceratini and Antilocaprini, 

but my analysis brings together genera previously placed in both tribes. In this 
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phylogeny, Antilocapra and Stockoceros are sister to each other, so I am not recognizing 

any tribes within Antilocaprinae except the Ilingocerotini. 

Genus Antilocapra Ord, 1818 

Revised Diagnosis: The headgear cross section of Antilocapra is bladelike, and because it 

is extant, it is known to have recurved tines of keratin. The anterior tine is smaller and the 

more recurved. An anterior cingulid is present on Antilocapra cheek teeth. 

Discussion: Antilocapra and Stockoceros have equant horn core shafts and tines. With 

more postcranial material catalogued for both of these taxa, they are also grouped by 

large, flared atlas vertebrae. 

Phylogenetic Trait Mapping 

 With tip dates and first appearance data included in the phylogeny, timing can be 

attributed to these characteristics. “Merycodontines”, with the majority of the basal 

plesiomorphic characters, originate 19 m.y.a. (Fig. 2). Multiple nodes, like those seen in 

Ramoceros, appear in the Barstovian (14 m.y.a.). Antilocaprinae and reduced tines 

covered by a keratinous sheath evolve at the same time. The more complex shapes 

exhibited in antilocaprids (twisted horn cores, larger headgear with elongate shafts) 

evolve at 9 m.y.a.. 

“Merycodontine” taxa survive as long as the earliest Antilocaprine taxa persist 

(Fig. 2) with a diversity of four genera alive at one time. Antilocaprinae had a greater 

peak diversity but not until after most “merycodontines” had gone extinct in the 

Clarendonian. The end of the Clarendonian is also one of the first of three stages where 

antilocaprid diversity dramatically decreases (Fig. 2). Losing the majority of 

“merycodontines” at one time left basal antilocaprines and Merycodus the only taxa 
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representing Antilocapridae. The Hemphillian and Rancholabrean are the other two 

NALMAs with extinction events for Antilocapride. The Hemphillian marks the end of 

the “merycodontine” taxa and the majority of antilocaprine diversity (Fig. 3). The loss of 

taxa in the Rancholabrean leaves only the extant Antilocapra in Antilocapridae. 

 When all headgear characters are compared and sorted into behavioral categories 

(Fig. 3), most “merycodontine” taxa are category 1 with small, simple headgear and 

outwardly directed shafts. The exceptions, Ramoceros and Merycodus, are in category 2 

for their medially pointed tines. Antilocaprinae has a greater diversity of social 

categories. Antilocaprinae originates in category 3 with the reduced tines and elongated 

shafts of Plioceros (Fig. 4). The later antilocaprines, appearing 9 m.y.a., exhibit category 

2 characters of complex headgear. Category 1 antilocaprines do appear in the Blancan 

(4.8 m.y.a.) after the “merycodontines” are extinct. These category 1 taxa and the 

category 3 Antilocapra and Stockoceros survive closest to the present. 

 Ancestral headgear characters determined by parsimony on this phylogeny are: 

1(1), 2(?), 3(0), 4(2), 5(?), 6(1), 7(?), 8(0), 9(2), 10(1), 11(0), 12(0), 13(0), 14(0), 15(?), 

16(?), 17(?), 18(?). An ancestral hypothetical ancestral antilocaprid would be 

reconstructed with headgear. This headgear would have a round cross-section, likely with 

a burr, and one unbranching tine dorsally directed. 

DISCUSSION 

This phylogeny illustrates a distinct change in headgear through time (Fig. 2). 

Ancestral headgear characteristics (small, simple branching headgear with a short shaft) 

place a hypothetical ancestral antilocaprid in the small-bodied, closed environment 

category (Fig. 2 & Fig. 3).  Basal antilocaprids, “merycodontines”, have short-shafted, 
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small headgear. Their headgear branches at one to three nodes into small, curving tines. 

The variability in “merycodontines”, other than number of nodes, is the directionality of 

the tines. The majority of this group fit in the small-bodied, closed environment category 

(Fig. 3). For the most derived of “merycodontines”, Ramoceros, tines are medially 

pointed, forming a cage-like space in between horn cores. The most basal of 

“merycodontines”, Merriamoceros, has a flared and palmate horn core supporting small 

tines directed dorsally. The more derived group, Antilocaprines, present more character 

states. Most headgear in this group have an equal, or larger-than-equal ratio of shaft-to-

tine length with reduced tine tips. Plioceros, one of the basal most Antilocaprines, has 

headgear very similar to the extant genus, Antilocapra. These genera have short, narrow 

shafts and reduced tines. Antilocapra then sports a keratinous sheath with one node and 

recurved tine tips. Plioceros has one node on its core, also covered by a keratinous 

sheath. Both these genera fit into the large-bodied, open plains environment category 

(Table 1 & Fig. 3). More complex structures are also present in antilocaprines, 

Ilingoceros and Osbornoceros show longer, twisted shafts. These shapes and numerous 

nodes on other Antilocaprine taxa place half of the taxa in the complex, forest outskirts 

category (Table 1 & Fig. 3). These major changes could imply the environment of the 

time would pressure headgear evolution, contrary to findings by Caro (2003) weakly 

linking headgear shape to environment.  
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FIGURE 3. Phylogeny of Antilocapridae genera and outgroups from Artiodactyla with social/behavioral categories mapped. 

Subfamilies Antilocaprinae and Merycodontinae are differentiated by the dashed lines alongside the present edge. Social 

categories shown here represent:1) small-bodied with simple dimorphic headgear, 2) mid-sized with complex headgear for 

resource competition, and 3) large with recurved headgear for social competition within herds. 
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Evolutionarily, this phylogeny confirms the paraphyletic group of 

“merycodontines” are basal to Antilocaprine taxa (Fig. 2), as has been suggested by 

previous workers (Janis & Manning, 1998; Davis, 2007). The “merycodontines” fall 

closer to the root of the phylogeny with staggered originations of genera between 19 and 

14 m.y.a.. “Merycodontines” are the longer lived of antilocaprids, surviving until 4.8 

m.y.a.. But overall, the subfamily Antilocaprinae makes up the majority of the 

phylogeny, and after 14 m.y.a., the entire diversity. Antilocaprines are also the more 

derived genera, splitting from the node shared with Cosoryx and Merycodus sometime 

before 17.5 m.y.a.. Antilocaprines Ceratomeryx and Capromeryx were the latest node in 

Antilocapridae to diverge, but other antilocaprines also evolved as sister taxa more 

recently. 

My results suggest gregarious behavior evolved in multiple branches in 

Antilocapridae (Fig. 4). Plioceros is the first to appear in this category 14 m.y.a.. 

Plioceros was followed into this category by Sphenaphalos and Texoceros, and then 

Ottoceros and Tetrameryx 9 and 6.8 m.y.a., respectively. Finally, Antilocapra and 

Stockoceros are labeled gregarious 5.8 and 1.9 m.y.a.. Tetrameryx and Stockoceros 

persisted through the Rancholabrean before leaving Antilocapra the only gregarious 

genus. These taxa are all large-bodied with large reduced tines and posteriorly directed 

shafts.  

The spread of grasslands in the Oligocene (Stromberg, 2005) likely contributed to 

the sharp decline in diversity and overall extinction of genera as closed-habitat 

ecosystems disappeared. Forest islands within North America allowed smaller taxa with 

less social herding tendencies to persist into the Hemphillian. These forested areas were 
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mosaics of shrubs and woodlands. Forested mosaics remained in North America through 

the late Miocene even though most ungulate faunas had adapted to grasses by the early 

Miocene. Open habitats began spreading at the end of the Oligocene, but did not make up 

the majority of environments until the early Miocene. Forests gave way to C3 grasses and 

then C4 grasses dominated the open ecosystems by invading floodplains 3 m.y.a. 

(Stömberg & McInerny, 2011). Plioceros, the earliest antilocaprid to display gregarious 

characteristics (Fig. 3), appeared 14 m.y.a., during the middle Miocene. Plioceros arose 

alongside grassland expansion. Stockoceros and Antilocapra originated during the 

takeover of C4 grasses. During this time, antilocaprids displayed all social categories 

(Fig. 3), but forested mosaics had not disappeared. When C3 plants expanded into open 

environments they did not overtake existing forest areas, and when C4 grasses replaced 

C3, they did not replace remaining forests (Edwards et al., 2010). More open grassland 

environments allowed for the gregarious antilocaprids to be more successful than those 

living in or alongside decreasing forest areas. Similar environmental hypotheses could be 

tested by comparing the evolutionary trends of other artiodactyl families’ headgear 

morphology during ecosystem change and determining the abiotic and biotic pressures 

for these trends. 

With the loss of “merycodontine” taxa, we see a some early antilocaprines filling 

the behavioral categories of early habitats (Fig. 3). These reversals from the initial taxa in 

behavioral category 2 back to category 1 may be showing niche replacement or habitat 

competition as genera turn over. Evolutionary change in antilocaprids might be driven by 

the abiotic factors of environmental change or biotic competition for habitat, resources, 
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and social status. These potential driving factors could be used to test the category 

reversals of early antilocaprines or to better choose analogues. 

Future Work 

Future analyses resolving species level antilocaprid relationships can better 

resolve the place of Antilocapridae within Artiodactyla and antilocaprid headgear within 

artiodactyl history. With more intensive character analysis and a closer inspection of 

specimens, a well-supported tree with further resolution could be brought to 

Antilocapridae at a species level. Future research includes rerunning this analysis 

omitting headgear characters to observe any differences in support. Omitting the 18 

headgear characters will develop a phylogeny whose relationships are determined by 

independently of the evolution of headgear, allowing an independent analysis of the 

evolution of headgear traits. Any differences in posterior support could highlight which 

headgear characters are morphologically important and suggest some drivers of 

evolutionary change. Comparing the inferred behavior of extinct taxa with modern 

African antelope diversity and niche use can further test this method. Similar analyses on 

ruminant families with more extant species will allow confirmation of social structures 

determined by the method. Modern African antelope have diverse extant species and a 

fossil record to test both morphologically and behaviorally where previously these 

antelope were only compared to modern cervids (Caro, 2003). 

If future work continues to place Antilocapridae as a basal member of 

Artiodactyla it would suggest an Asian origin for antilocaprids. As a family, 

Antilocapridae is already present in North America by the Miocene. A recorded split in 

the late Oligocene has yet to be recovered from the fossils of Asia (Davis, 2007). More 
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fossil antilocaprid collection can continue to fill in the evolutionary gap for the origins of 

Antilocapridae. 

Conclusions 

My analysis of the evolutionary history of Antilocapridae confirms prior 

hypotheses. The subfamilies within Antilocapridae are the small-bodied 

“merycodontines” with small, branching headgear and the larger-bodied antilocaprines 

with reduced tines and larger headgear. An ancestral antilocaprid is likely to have 

“merycodontine”-like headgear and be small-bodied. 

Morphologically, antilocaprid ancestral headgear traits included small, simple 

headgear and developed into larger, stockier and more complex structures before 

reducing and simplifying to today’s morphology. This simple ancestral antilocaprid 

headgear that is neither ossicone nor antler is potentially rooted in early Artiodactyla. 

Both bovid horns and cervid antlers share gene expression profiles, and ruminant 

headgear has most recently been shown to have a single origin within Pecora, a group 

originating in the Eocene (Wang et al, 2019). When considered in the light of my 

cladistic analysis, the first to include fossil antilocaprids, similar basal structures to those 

I propose for antilocapridae could be hypothesized in other early artiodactyls. 

Regenerative antlers appear in Cervidae during the Miocene, so an earlier intermediate 

structures comparable to that of antilocaprids is a likely ancestral headgear for 

Ruminantia. 
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APPENDICES 

APPENDIX A: LIST OF SPECIES 

Taxa: Paracosoryx wilsoni Frick, 1937 
Ramoceros ramosus Cope, 1874 
Merriamoceros coronathus Merriam, 1913 
Merycodus necatus  Leidy, 1854 
Cosoryx furcatus  Webb, 1969 
Proantilocapra platyocornea  Barbour and Schultz, 1934 
Osbornoceros osborni Frick, 1937 
Plioceros blicki Frick, 1937 
Ottoceros peacevalleyensis Miller and Downs, 1974 
Sphenophalos nevadanus Merriam, 1909 
Ilingoceros alexandrae  Merriam, 1909 
Texoceros guymonensis  Frick, 1937 
Antilocapra Americana Ord, 1818 
Hayoceros barbouri   Skinner, 1942 
Stockoceros conklingi  Stock, 1930 
Hexameryx simpsoni   White, 1941 
Hexobelomeryx fricki   Furlong, 1941 
Capromeryx furcifer   Matthew, 1902 
Ceratomeryx prenticei  Gazin, 1935 
Tetrameryx shuleri   Lull, 1921 

Giraffa camelopardalis Linnaeus, 1758 
Rangifer tarandus  Linnaeus, 1758 
Bison bison  Linnaeus, 1758 
Lama glama  Linnaeus, 1758 
Sus scrofa*  Linnaeus, 1758 

Ingroup: Exemplar species from each genus of extinct antilocaprid and the extant 
pronghorn, Antilocapra Americana that typify the genera. 
Ourgoup: Representative and basal genera from the next closest families in Artiodactyla 
*The Sus scrofa used here is S. scrofa domesticus which exhibits reduced dental
morphologies from the wild examples. Members of the subspecies S. scrofa domesticus

have a shortened tooth row with multiple cusps on each tooth more densely associated
than in the wild subspecies of S. scrofa.
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                         APPENDIX B: CHARACTER LIST 

The following are character descriptions: 

Headgear Characters 

1. 0- Headgear absent, 1- Headgear present

It is determined by the presence or absence of headgear. Type of headgear, size,

and shape do not change how this character is scored. This character is drawn

from the diagnoses of artiodactyl clades (Davis, 2007).

2. 0- Exposed bony headgear, 1- Skin- or hair-covered headgear, 2- Keratinous-

sheath-covered headgear

This character is unordered. In fossils, a keratinous sheath is inferred from the

grooves of past veins. This character is drawn from the diagnoses of artiodactyl

clades (Davis, 2007).

3. 0- Permanent headgear, 1- Headgear shed

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

In Antilocapridae, horn cores have been collected at varying stages of

completeness, but, horn cores are not found cleanly separated from the skull cap

as seen in cervid antler falls. With horn cores permanent in the extant

Antilocapra, this character mostly shows differences between extant genera and

is likely state 0 for fossil antilocaprids.
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4. 0- Horn cores bladelike with a narrow cross section, 1- Horn cores wedge-shaped

in cross section, 2- Horn cores round in cross section

The character is unordered. This character is drawn from the diagnoses of

artiodactyl clades (Davis, 2007).

5. 0- Headgear originates in the postorbital bone, 1- Headgear originates in the

supraorbital bone

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

6. 0- Headgear origination depressed into the skull, 1- Headgear origination above

the skull surface

Depressed originations are subtle but show a slight buckle at the base. In cross

section, state 0 is concavely dimpled at the skull surface surrounding the horn

core. State 1 has a smooth slope from the skull surface to the horn core shaft.

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

7. 0- No burr present on headgear, 1- Burr distinct from the horn shaft at the surface

of the skull, 2- Burr high on the horn shaft

This character is unordered. This character is drawn from the diagnoses of

artiodactyl clades, but may no longer be significant morphologically (Davis,

2007).

8. 0- One burr present, 1- Two burrs present, 2- Many burrs present
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This character is unordered. Number of burrs present can change over a lifetime 

with animal growth especially in structures that are regenerated annually 

(Bubenik and Bubenik, 1990). Injuries to the headgear can also add burrs. As 

such, this character can lend ontogentic distinction to specimens.  This is a novel 

character adopted for this analysis. 

9. 0- Outwardly-directed shaft from skull, 1- Posteriorly-directed/tilted shaft, 2-

Dorsally-directed shaft, 3- Anterolaterally-directed shaft

This character is unordered. The directionality of the shaft is considered

independently of the directionality of the tines. This character is drawn from the

diagnoses of artiodactyl clades (Davis, 2007).

10. 0- Short-shafted horns, 1- Ratio of base of the shaft length to shaft length above

the tines is equal, 2- Slender horns with an elongated shaft length

This character is ordered. This ratio is the comparison of the headgear shaft

length to tine length and where on the shaft tines originate. In specimens with

only one tine, I draw the shaft-tine boundary at the point of any change in

curvature. This character is drawn from the diagnoses of artiodactyl clades

(Davis, 2007).

11. 0-  “secondary” shaft or branch splitting posteriorly to form third tine not present

on headgear, 1- reduced “secondary” shaft present forming trichotomy horns, 2-
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long “secondary” shaft present, 3- two to three tines present on “secondary” shaft 

(Cervid-like) 

This character is unordered. Secondary shafts are differently proportioned from 

trichotomy horns but are similarly shaped (see Fig. 4). This character is drawn 

from the diagnoses of artiodactyl clades (Davis, 2007). 

FIGURE 4. Examples of different character states for trait #11 on Ramoceros and Alces. 

12. 0- Palmate horn absent, the headgear has clearly defined tines or tips; 1- Palmate

horn present, the horn material is broadened and tine tips obscured, usually

scoop- or shovel-shaped

The palmate horn can originate at the shaft of the headgear or the tine. The

palmate state is also shown in AMNH 21832 above. This character is drawn

from the diagnoses of artiodactyl clades (Davis, 2007).

13. 0- Horizontal platform or bar not protruding from shaft, 1- Horizontal platform

present extending from shaft, 2- Horizontal platform present with many small

tines extending perpendicularly

Ramoceros AMNH FM 
51303 trichotomy core, 
state 1; and an Alces 
AMNH 21832 antler, 
state 3. 
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This character is ordered. This character differs from #11 by being an 

independent shaft to support multiple tines. This character is drawn from the 

diagnoses of artiodactyl clades (Davis, 2007). 

14. 0- No nodes on headgear resulting in one unbranching tine, 1- One node per horn

giving a prong shape, 2- Two nodes resulting in a tiered prong and branch, 3-

Three nodes giving two tiers with two branches each and four tines

This character is ordered. This character is drawn from the diagnoses of

artiodactyl clades (Davis, 2007).

15. 0- Anterior tine smaller than the posterior tine, 1- Anterior tine equal to the

posterior, 2- Posterior tine smaller than anterior

This character is unordered. Tine length is considered independently of

curvature. This character is drawn from the diagnoses of artiodactyl clades

(Davis, 2007).

16. 0- Tines pronounced with a short shaft; 1- Ratio of shaft length to tine length

equal; 2- Tines elongated, longer than shaft length

This character is ordered. These ratios are describing the tine length in relation to

the headgear structure rather than the shaft descriptions of character 10. This

character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).
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17. 0- Tines dorsolaterally pointed or extended, 1- Tines anteriorly pointed, 2- Tines

posteriorly pointed, 3- Anterior tines point medially

This character is unordered. Tine directionality is independent of shaft direction.

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

18. 0- Tine tips reduced, 1- Tine tips widely flared at the ends, 2- Tine tips recurved

This character is unordered. Reduced tine tips are blunt and can be circular in

cross section. Widely flared tine tips thin as they expand at the edges, typically

bladelike. Recurved tine tips come to a point but also curve away from the

headgear shaft. This character is drawn from the diagnoses of artiodactyl clades

(Davis, 2007).

Dental Characters 

For all dental character descriptions, refer to Fig. 5. 

FIGURE 5. Dental nomenclature used for morphological traits, all dental characters refer 
to the dental nomenclature utilized by Bärmann & Rösner (2011). Figure 2 from 
Bärmann and Rösner (2011) used here with permission from the authors. 
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19. 0- Upper incisors absent, 1- Upper incisors present 

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007). 

 

20. 0- Lower canine not incisiform, 1- Lower canine incisiform 

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007). 

 

21. 0- Lower canine separated from incisors by a diastema, 1- Lower canine not 

separated from incisors by a diastema 

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007). 

 

22. 0- Upper canine absent, 1- Upper canine present 

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007). 

 

23. 0- Premolars not reduced, 1- Premolars reduced 

Reduced premolars are smaller in crown height. The difference in crown height 

from the molars seen in lateral view is the greatest distinction. This character is 

drawn from the diagnoses of artiodactyl clades (Davis, 2007). 

 

24. 0- Brachydont cheek teeth, 1- Hypsodont cheek teeth 

Hypsodonty is defined as having high crowned teeth with extended enamel. Most 

specimens observed were hypsodont, with few being difficult to distinguish from 

their placement within the skull. This character is drawn from the diagnoses of 

artiodactyl clades (Davis, 2007). 
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25. 0- Entostyle not present on check teeth, 1- Entostyle present

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

26. 0- Tiny loph (metaconule fold) present on m3, 1- Intermediate loph present on

m3, 2- Dentin lake present on m3

This character is ordered. The intermediate loph is more elongate. This is a novel

character adopted for this analysis.

27. 0- Ectostylid not present on cheek teeth, 1- Ectostylid present on check teeth

The ectostylid is the ridge the possible entostyle originates from. This character

is separate from #25 because the ectostylid can be present without the entostyle.

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

28. 0- Metastylid not present on cheek teeth, 1- Metastylid present on cheek teeth

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

29. 0-Anterior cingulid absent, 1- Anterior cingulid present within the occlusal

surface, 2- Anterior cingulid present on labial side of cheek teeth

This character is unordered. These features are likely homologuous and

originiate from the same point, but it is unclear if state 1 would precede state 2 or

vice versa. This is a novel character adopted for this analysis.
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30. 0- Lingual cuspules in upper premolars absent, 1- Lingual cuspules in upper

premolars present

This character is drawn from the diagnoses of artiodactyl clades (Lister et al.,

2005).

31. 0- Buccal cingulum in upper molars absent, 1- Buccal cingulum in upper molars

present

This character is drawn from the diagnoses of artiodactyl clades (Lister et al.,

2005).

32. 0- Outer cuspule ridge on M3 profile absent, 1- Outer cuspule ridge on M3

profile with a raised ridge present

This is a novel character adopted for this analysis.

33. 0- p4 not laterally angled/splayed, 1- p4 laterally angled/splayed

The angling of the p4 is typically from the base of the tooth and displays a wide

occlusal surface. This is a novel character adopted for this analysis.

34. 0- Diastema absent, 1- Short diastema present, 2- Long diastema present

This character is ordered. Here, a short diastema is one that is shorter than the

tooth row. This character is drawn from the diagnoses of artiodactyl clades

(Davis, 2007).
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35. 0- Ratio of length M3 compared to postcanine tooth row smaller than 1:2, 1-

Ratio of length of M3 compared to postcanine tooth row equal 1:1, 2- Ratio of

length of M3 compared to postcanine tooth row larger than 2:1

This character is ordered. Length of M3 is measured along the same axis as the

tooth row. Both are measured along the dentary, where the crown of the teeth

meets the gumline. This is a novel character adopted for this analysis.

36. 0- Angle of tooth row in dentary parallel to dentary in occlusal view, 1- Angle of

tooth row labially tilted in dentary, 2- Angle of tooth row lingually tilted in

occlusal view

This is an unordered character. This is a novel character adopted for this

analysis.

Cranial Characters 

37. 0-  Coronoid at a right angle relative to the dentary, 1- Coronoid at an obtuse

angle relative to the dentary

The angle for this character should be measured along the center of the coronoid

and dentary as viewed laterally. This is a novel character adopted for this

analysis.

38. 0- Articular surface of coronoid D-shaped, 1- Articular surface of coronoid

triangular, 2- Articular surface of coronoid rectangular
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This character is unordered. The articulated surface shape is similar to the cross 

section of the coronoid viewed occlusally. This is a novel character adopted for 

this analysis. 

39. 0- Coronoid and condyloid processes close together, 1- Coronoid and condyloid

processes separated

This character describes the coronoid and condyloid processes as viewed

laterally. When separated, the coronoid process extends posteriorly and leaves a

distance between the more proximal, shorter condyloid process (see Fig. 6).

When close together, the condyloid process is extended and originates higher up

the dentary, placing the coronoid and condyloid adjacent to each other. This is a

novel character adopted for this analysis.

FIGURE 6. Merycodus UNSM 83618 dentary displaying character state 1, 
separated processes. 
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40. 0- Fossa leading to the mental foramen absent from dentary, 1- Small fossa

leading to the mental foramen present in dentary

This fossa, when present, is in the dentary directly ventral to the postcanine tooth

row and dips laterally into the dentary. This is a novel character adopted for this

analysis.

41. 0- Lacrimal fossa absent, 1- Lacrimal fossa present

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

42. 0- Large auditory bullae absent, 1- Large auditory bullae present

The bullae, if present, are ovate in shape and formed with thin bone. Smaller

auditory structures are far refined in size and barely extend away from the skull.

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

43. 0- Postorbital bar absent, 1- Postorbital bar present

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

44. 0- Expanded/protruding nasals absent, 1- Expanded/protruding nasals present

The delicate nasals protrude anteriorly to the end of the skull in some

artiodactyls. In fossils, the scoring of this character can be dependent upon the

degree of preparation and preservation for a specimen. If the nasals are not

visible to score this character, the state is recorded as ?. When present, the thin

nasals are visible in cross section at the anterior most view of the nasal passage.
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This character is drawn from the diagnoses of artiodactyl clades (Lister et al., 

2005). 

Post-Cranial Characters 

45. 0- Elongated metapodials absent, 1- Elongated metapodials present

Elongate, gracile metapodials are slender and lightweight. Elongate metapodials

are gracile and disproportionately lengthened along the ventral-dorsal axis. This

character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

46. 0- No metapodial fusion, 1– Partial metapodial fusion, 2- Complete metapodial

fusion with a closed metatarsal gully

This character is ordered. Partial fusion here leaves only the gully unfused. This

character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

47. 0- Parallel-sided astragali absent, 1- Parallel-sided astragali present

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007).

48. 0- Ulna not reduced, 1- Ulna reduced

A reduced ulna is disproportionately slender on the distal end, tapering to a

point. The ulna is also slightly convexly curved from the olecranon process to the

radial head. This character is drawn from the diagnoses of artiodactyl clades

(Davis, 2007).
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49. 0- Side toes (digits II and IV) absent, 1- Side toes present 

This character is drawn from the diagnoses of artiodactyl clades (Davis, 2007). 

 

50. 0- Atlas narrow and bowtie-shaped, 1- Atlas wide and rectangular 

The shape of the atlas is as viewed dorso-ventrally. This is a novel character 

adopted for this analysis. 

 

51. 0- Atlas without transverse foramen, 1- Atlas splayed with fossa present in the 

transverse processes 

The splayed transverse processes of the atlas display a foramen within the process 

itself near the posterior arch. The foramen is oriented dorso-ventrally. This is a 

novel character adapted for this analysis. 

 

52. 0- Scapula narrow, 1- Scapula widely flared in a wedge shape 

This is a novel character adopted for this analysis. 

 

53. 0- Scapula without medial ridge, 1- Medial ridge protruding to proximal edge of 

scapula 

This ridge originates at the glenoid and radiates to the border (see Fig. 7). This is 

a novel character adopted for this analysis. 
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FIGURE 7. Scapula UNSM 6677-39 displaying character state 1. 

*Scoring material over multiple specimens, if uncertainty from variability is present a ? is
the representative score.  If two potential states are clear both are represented by ½.

Characters 1-7, 9-25, 27-28, 34, 41-43, 45-49 described in Davis, 2007. 
Characters 30-31, 44 described in Lister et al., 2005. 
Other characters utilized for these studies that are not listed here either were not included 
for lack of character state diversity or because fossil antilocaprids do not allow for 
scoring. 
Characters 8, 26, 29, 32-33, 35-40, 50-53 are novel characters produced for this study. 
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APPENDIX C: CHARACTER MATRIX 

Coded character matrix of 53 equally weighted morphological traits scored from specimens and photographs of 25 genera. 

Appendix 3. Character Matrix

Character # 1 2 3 4 5 6 7 8 9 1
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3
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40 4
1 

4
2 

4
3 

4
4 

4
5 

4
6 

4
7 

4
8 

4
9 

5
0 

5
1 

5
2 

5
3 

Antilocapra 1 2 0 0 1 0 0 ? 2 0 0 0 0 1 1 1 2 2 0 1 1 0 1 1 0 2 0 1 1 ? 0 1 0 2 0 0 1 ? ? ? ? 1 1 1 1 2 1 1 0 ? 1 0 0 

Capromeryx 1 2 0 2 1 1 0 ? 2 0 0 0 0 1 1 0 0 0 0 1 1 0 2 1 0 1 0 1 0 1 ? 1 1 1 0 0 ? ? ? 1 1 ? ? ? ? ? ? ? ? ? 0 0 0 

Ceratomeryx 1 2 0 2 1 0 0 ? 2 0 0 0 0 1 1 0 0 0 0 1 1 0 ? 1 ? 1 0 ? ? ? ? ? ? 1 ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? 

Cosoryx 1 1 ? 2 1 1 1 0 2 1 0 2 0 1 2 1 3 2 0 1 1 0 1 1 0 2 0 1 1 1 1 1 1 2 0 2 0 0 0 0 ? ? 1 ? 1 2 ? 1 0 1 1 1 0 

Hayoceros 1 2 0 1 0 1 ? ? 1 0 0 0 0 2 2 0 1 0 0 1 1 0 1 1 1 2 0 1 0 ? 1 1 1 1 1 0 ? ? ? 0 ? ? ? ? 1 ? 1 ? ? ? ? ? ? 

Hexameryx 1 2 0 2 0 1 ? ? 1 0 1 0 0 2 1 0 0 0 0 1 1 0 ? 1 ? 2 0 ? ? ? ? ? ? 1 ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Hexobelomeryx 1 2 0 2 0 1 ? ? 1 0 1 0 0 2 1 0 0 0 0 1 1 0 1 1 0 2 0 1 1 ? ? 1 0 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Ilingoceros 1 2 0 1 0 1 0 ? 1 2 0 0 0 1 1 2 2 0 0 1 1 0 0
/
1 

1 0 ? ? 1 0 ? ? 1 1 2 0 0 1 ? ? 0 1 1 ? ? ? ? ? ? ? ? ? 0 ? 

Merriamoceros 1 2 0 1 1 1 2 0 2 1 1 1 0 0 ? ? ? 1 0 1 1 0 0 1 ? ? ? ? ? ? ? 1 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 

Merycodus 1 1 ? 2 1 1 ? 0 2 1 0 0 0 2 3 1 3 2 0 1 1 0 0 0 0 2 1 1 0 ? ? 1 ? 1 0 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? 1 0 0 

Osbornoceros 1 2 0 1 1 1 1 0 1 0 0 0 0 2 ? ? 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 2 0 0 0 0 0 0 ? ? ? ? 1 2 1 ? 0 1 ? ? ? 

Ottoceros 1 2 0 1 0 1 0 ? 1 0 0 1 0 1 ? 1 2 0 0 1 1 0 0 1 ? ? ? 1 0 ? 1 1 ? ? ? ? ? ? ? ? 0 1 1 ? ? ? ? ? ? ? ? ? ? 

Coded character matrix of 53 equally weighted morphological traits scored from specimens and photographs of 25 genera.
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Appendix C. Continued 

Coded character matrix of 53 equally weighted morphological traits scored from specimens and photographs of 25 genera. 

Character # 1 2 3 4 5 6 7 8 9 1
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1
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1
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1 

4
2 

4
3 

4
4 

4
5 

4
6 

4
7 

4
8 

4
9 

5
0 

5
1 

5
2 

5
3 

Paracosoryx 1 1 ? 2 0 0 2 0 1 1 0 0 0 1 1 2 2 2 0 1 1 0 2 ? 1 2 1 1 2 1 1 1 0 2 0 0 ? ? ? 0 ? 0 1 ? ? ? ? 0 ? ? 1 0 0 

Plioceros 1 2 0 1 1 0 0 ? 2 1 0 0 0 1 0 1 2 2 0 1 1 0 0 1 1 2 0 1 0 ? 1 1 0 2 0 0 0 0 0 0 0 1 1 ? 1 2 1 1 0 0 1 0 ? 

Proantilocapra 1 2 0 1 1 0 0 ? 2 2 0 0 0 1 0 ? 2 2 0 1 1 0 0 1 1 2 1 0 0 ? 1 ? 0 1 0 ? 1 ? ? 0 ? ? 1 ? ? ? ? ? ? ? ? ? ? 

Ramoceros 1 1 ? 2 1 1 1 0 1 2 2 0 1 3 3 2 3 2 0 1 1 0 0 1 1 2 1 ? ? ? ? ? ? 1 ? ? 1 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? 0 ? 

Sphenaphalos 1 2 0 1 0 1 0 ? 1 2 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 ? ? 0
/
1 

0 2 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? 0 ? 

Stockoceros 1 2 0 2 0 1 0 ? 2 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 2 1 1 1 1 1 1 1 2 0 2 1 0 0 1 ? ? ? ? 1 2 1 ? 0 0 1 1 0 

Tetrameryx 1 2 0 2 0 1 0 ? 2 0 0 0 0 1 0 ? 0 0 0 1 1 0 1 1 0 0 0 1 1 ? 1 ? 1 1 0 0 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 

Texoceros 1 2 0 2 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 2 0 1 0 ? ? 1 0 2 0 0 ? ? ? ? ? ? ? ? 1 1 0 ? 0 1 1 ? ? 

Giraffa 1 1 0 2 0 1 1 0 1 0 0 0 0 0 ? ? ? 0 0 1 1 0 2 0 0 1 ? 0 0 ? 1 1 0 2 0 2 ? 0 ? ? ? ? 1 ? ? ? ? 1 ? ? ? 0 0 

Lama 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 1 ? 2 1 0 0 ? ? 1 0 1 ? 0 1 0 ? 1 1 1 1 ? 1 1 0 0 0 0 0 0 1 

Bison 1 2 0 2 0 1 0 ? 0
1

2 0 0 0 0 ? ? ? 2 0 1 1 0 0 1 1 1 1 1 2 0 1 1 0 2 0 0 1 0 1 0 ? 0 1 0 ? ? 1 0 ? ? ? 1 0 

Rangifer 1 0 1 2 0 1 1 1 2 2 0 1 1 3 0 2 3 1 0 1 1 0 0 1 1 2 1 ? ? ? ? ? ? 1 ? ? 1 ? ? ? ? ? 1 ? ? ? ? 0 ? ? ? 0 0 

Sus 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 1 1 0 0 0 0 0 0 ? ? 0 0 1 ? 2 ? 1 ? 0 1 0 0 0 0 0 0 1 1 0 0 1 0 
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APPENDIX D: SPECIMEN LIST 

All catalogued specimens observed in collections throughout the study. Type specimens 
are designated by *. 

Museum 
Abbreviation 

Specimen Number Genus Element 

AMNH FM 11094 Antilocapra Dentary 
AMNH FM 130201 Antilocapra Dentary 
AMNH FM 11094 Antilocapra Skull 
AMNH FM 5036 Antilocapra Limbs 
AMNH FM 2776 Antilocapra Post Crania 
UCMP 131828 Antilocapra Horn core 
UCMP 45196 Antilocapra Skull 
UNSM 50820 Antilocapra Skull 
UNSM 46612 Antilocapra Ramus 
AMNH Mamm 98229 Bison Skull 
AMNH Mamm 16309 Bison Skull 
AMNH Mamm 16312 Bison Skull 
AMNH Mamm 16340 Bison Dentary 
AMNH Mamm 16378 Bison Calcanea 
AMNH Mamm 16377 Bison Phalanges 
AMNH Mamm 19380 Bison Dentary 
AMNH FM 2771* Capromeryx Dentary 
AMNH FM 141303 Capromeryx Dentary 
UCMP 30337* Capromeryx Left dentary 
UCMP 26648 Capromeryx Skeleton 
UCMP 13046 Capromeryx Ramus 
UNSM 5438* Capromeryx Partial skull 
UNSM 5439 Capromeryx Horn core 
UNSM 88627 Capromeryx Ramus 
UNSM 21468 Capromeryx Lft M1 
UNSM 21450 Capromeryx Lft M3 
UNSM 21473 Capromeryx Ramus 
UNSM 88632 Capromeryx Astragalus 
UNSM 88634 Capromeryx Ungual 
AMNH FM 51483 Cosoryx Post crania 
AMNH FM 51055 Cosoryx Post crania 
AMNH FM 31154* Cosoryx Horn core 
AMNH FM 9475 Cosoryx Limb bones 
AMNH FM 30991 Cosoryx Dentary 
AMNH FM 137179 Cosoryx Horn core 
AMNH FM 51488 Cosoryx Dentary 
AMNH FM 51398 Cosoryx Dentary 
AMNH FM 32450 Cosoryx Limb bones 
AMNH *FM 32900 Cosoryx Horn core 
AMNH FM 32904 Cosoryx Partial skull 
AMNH FM 32902 Cosoryx Skull 
AMNH FM 32326 Cosoryx Skull 
AMNH FM 31511* Cosoryx Skull 
AMNH FM 31435* Cosoryx Horn core 
AMNH FM 51055 Cosoryx Skeleton 
UCMP 16463 Cosoryx Rt M1 
AMNH Mamm 81821 Giraffa Skull 
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Appendix D. Continued 

All catalogued specimens observed in collections throughout the study. Type specimens 
are designated by *. 

Museum 
Abbreviation 

Specimen Number Genus Element 

AMNH Mamm 81820 Giraffa Skull 
AMNH FM 95264* Hayoceros Horn core 
AMNH FM 25526* Hayoceros Horn core 
AMNH FM 2772 Hayoceros Dentary 
AMNH FM 25681 Hayoceros Dentary 
AMNH FM 25680 Hayoceros Dentary 
AMNH FM 25680 Hayoceros Dentary 
UNSM 2661 Hayoceros Horn core 
UNSM 88635 Hayoceros Lft M3 
UNSM 21445 Hayoceros Ramus 
UNSM 21458 Hayoceros Ramus 
UNSM 21447 Hayoceros Ramus 
UNSM 21453 Hayoceros Lft M3 
UNSM 21456 Hayoceros Rt M2 
UNSM 21452 Hayoceros Lft M2 
UNSM 88657 Hayoceros Metacarpus 
UNSM 88687 Hayoceros Calcaneum 
UNSM 88672 Hayoceros Astragalus 
UNSM 88692 Hayoceros Cubonavicular 
UNSM 88686 Hayoceros Phalanx 
UNSM 88679 Hayoceros Phalanx 
UNSM 88647 Hayoceros Humerus 
UNSM 88664 Hayoceros Tibia 
UNSM 88660 Hayoceros Acetabulum 
UNSM 88655 Hayoceros Ulna 
UNSM 88646 Hayoceros Scapula 
UNSM 88662 Hayoceros Tibia 
AMNH FM 103347 Hexameryx Horn core cast 
CIT 2791 Hexobelomeryx Dentary 
CIT 2784 Hexobelomeryx Ramus 
CIT 2792 Hexobelomeryx Dentary 
CIT 277 Hexobelomeryx Radii 
LACM 78604 Hexobelomeryx Metapodials 
LACM 78602 Hexobelomeryx Astragalus 
LACM 78572 Hexobelomeryx Rt p3 
LACM 78608 Hexobelomeryx Phalanges 
AMNH FM 32203 Ilingoceros Horn core 
UCMP 11893* Ilingoceros Horn core 
UCMP 11880* Ilingoceros Horn core 
UCMP 11882 Ilingoceros Frontal 
UCMP 11894 Ilingoceros Horn core 
UCMP 11892 Ilingoceros Scapula/horn core 
UCMP 13039 Ilingoceros Dentary cast 
LACM 14748 Ilingoceros Humerus 
LACM 147485 Ilingoceros Acetabulum 
LACM 147493 Ilingoceros Dentary 
LACM 147487 Ilingoceros Metapodial 
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Appendix D. Continued 

All catalogued specimens observed in collections throughout the study. Type specimens 
are designated by *. 

Museum 
Abbreviation 

Specimen Number Genus Element 

LACM 147490 Ilingoceros Calcaneum 
LACM 147495 Ilingoceros Tibia 
LACM 147494 Ilingoceros Humerus 
LACM 147488 Ilingoceros Phalanx 
LACM 147479 Ilingoceros Ulna 
LACM 147480 Ilingoceros Tibia 
LACM 147492 Ilinigoceros Tibia 
UCMP 31365 Illingoceros Horn core 
AMNH Mamm 80036 Lama Skull/post-crania 
AMNH Mamm 147879 Lama Skeleton 
AMNH Mamm 173571 Lama Skull 
AMNH Mamm 126571 Lama Skull 
UOMNCH 2015-1-3 Lama Skeleton 
AMNH FM 31177 Merriamoceros Horn core 
AMNH FM 51338 Merriamoceros Horn core 
AMNH FM 31025 Merriamoceros Partial skull 
AMNH FM 51915 Merriamoceros Ramus 
AMNH FM 31019 Merriamoceros Dentary 
UCMP 20052* Merriamoceros Horn core 
CIT 3002 Merriamoceros Horn core 
CIT 3003 Merriamoceros Horn core 
AMNH FM 51638 Merycodus Rt dentary 
AMNH FM 51108 Merycodus Partial skull 
AMNH FM 17339* Merycodus Skull 
AMNH FM 14102 Merycodus Lft dentary 
AMNH FM 51790* Merycodus Dentary 
AMNH FM 31179 Merycodus Horn cores 
AMNH FM 33121 Merycodus Horn Core 
UCMP 26795 Merycodus Post crania 
UCMP 12608* Merycodus Ramus 
UCMP 13197 Merycodus Cheek teeth 
UCMP 13178 Merycodus Rt m3 
UCMP 13136 Merycodus Horn core 
UCMP 13062 Merycodus Ramus 
UCMP 13255 Merycodus Limbs 
UCMP 32110 Merycodus Horn core 
UCMP 32109 Merycodus Dentary 
UCMP 31137 Merycodus Dentary 
UCMP 63900 Merycodus Dentary 
UCMP 29927 Merycodus Dentary 
UCMP 33139 Merycodus Metatarsal/carpal 
UCMP 29233 Merycodus Horn cores 
UCMP 29334 Merycodus Calcanea 
UCMP 57855 Merycodus Ramus 
UCMP 19805 Merycodus Dentary 
UCMP 31157 Merycodus Horn core 
UCMP 31150 Merycodus Tibia 
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Appendix D. Continued 

All catalogued specimens observed in collections throughout the study. Type specimens 
are designated by *. 

Museum 
Abbreviation 

Specimen Number Genus Element 

LACM 34825 Merycodus Horn core 
LACM 34827 Merycodus Horn core 
LACM 34830 Merycodus Horn cores 
LACM 34631 Merycodus Molar 
LACM 33385 Merycodus Tibia 
LACM 34220 Merycodus Cheek tooth 
LACM 34211 Merycodus Dentary 
LACM 34732 Merycodus Horn cores 
LACM 34784 Merycodus Tibia 
LACM 34772 Merycodus Calcaneum 
LACM 16390 Merycodus Dentary 
CIT 1264 Merycodus Ramus 
CIT 699 Merycodus Horn cores 
CIT 1259 Merycodus Dentary 
CIT 712 Merycodus Dentary 
UNSM 5036* Merycodus Skull 
UNSM 83618 Merycodus Dentary 
UNSM 83631 Merycodus Ramus 
UNSM 83632 Merycodus Dentary 
UNSM 83653 Merycodus M2 
UNSM 83851 Merycodus Horn core 
UNSM 83648 Merycodus p4 
UNSM 83660 Merycodus M3 
UNSM 83656 Merycodus Ramus 
UNSM 93417 Merycodus Skull 
UNSM 93402 Merycodus Dentary 
UNSM 87972 Merycodus Dentary 
UNSM 87918 Merycodus Skull 
UNSM 87899 Merycodus Skull 
AMNH FM 32985 Osbornoceros Dentary 
AMNH FM 32980* Osbornoceros Horn core 
AMNH FM 32983 Osbornoceros Ramus 
AMNH FM 32984 Osbornoceros Ramus 
AMNH FM 32991 Osbornoceros Tibia 
AMNH FM 53347 Osbornoceros Horn core 
LACM 1372* Ottoceros Skull 
AMNH FM 30991* Paracosoryx Rt ramus 
AMNH FM 137179 Paracosoryx Horn core cast 
AMNH FM 51018 Paracosoryx Ramus/post-crania 
AMNH FM 30988* Paracosoryx Left ramus 
AMNH FM 51013 Paracosoryx Skull 
AMNH FM 31577* Paracosoryx Right dentary 
AMNH FM 51012 Paracosoryx Skull 
AMNH FM 32856* Paracosoryx Horn core 
AMNH FM 33789 Paracosoryx Skeleton 
AMNH FM 32470* Paracosoryx Skull 
AMNH FM 32474 Paracosoryx Skull 
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Appendix D. Continued 

All catalogued specimens observed in collections throughout the study. Type specimens 
are designated by *. 

Museum 
Abbreviation 

Specimen Number Genus Element 

AMNH FM 31682* Plioceros Horn core 
AMNH FM 95547 Plioceros Horn core cast 
AMNH FM 52095 Plioceros Dentary 
AMNH FM 52147 Plioceros Skull 
AMNH FM 31570 Plioceros Ramus 
AMNH FM 32101* Plioceros Skull/post crania 
AMNH FM 31570* Plioceros Ramus 
UCMP 14489 Plioceros Dentary 
AMNH F:AM 99252 Proantilocapra Horn core cast 
AMNH FM 52147 Proantilocapra Skull 
UNSM 1095* Proantilocapra Partial skeleton 
AMNH FM 31348* Ramoceros Horn post 
AMNH FM 51303 Ramoceros Horn core 
AMNH FM 51342 Ramoceros Skull 
AMNH FM 31271* Ramoceros Horn post 
AMNH FM 51265 Ramoceros Skull 
AMNH FM 51278 Ramoceros Skull 
UNSM 83574 Ramoceros M3 
UNSM 83576 Ramoceros M2 
UNSM 83608 Ramoceros Astragali 
UNSM 54890 Ramoceros Tibae 
UNSM 83544 Ramoceros Horn core 
UNSM 83543 Ramoceros Horn core 
UNSM 54016 Ramoceros m2 
UNSM 83586 Ramoceros p4 
UNSM 83553 Ramoceros Ramus 
UNSM 83545 Ramoceros Metatarsals 
UNSM 83564 Ramoceros Cheek teeth 
UNSM 83560 Ramoceros m3 
AMNH Mamm 37408 Rangifer Skull 
AMNH Mamm 122669 Rangifer Skull 
AMNH Mamm 98151 Rangifer Skull 
AMNH Mamm 12047 Rangifer Dentary 
AMNH Mamm 122389 Rangifer Skull 
AMNH Mamm 14240 Rangifer Skull 
AMNH Mamm 14240 Rangifer Dentary 
AMNH Mamm 17585 Rangifer Skull 
AMNH FM 52046 Sphenophalos Dentary 
UCMP 11887* Sphenophalos Horn core 
UCMP 35624 Sphenophalos Tibia/astragalus 
UCMP 12537 Sphenophalos Horn core 
UCMP 12611 Sphenophalos Molar 
UCMP 35625 Sphenophalos Cheek teeth 
UCMP 70308 Sphenophalos Metatarsal 
CIT 399 Sphenophalos Skull cap 
LACM 6655 Sphenophalos Astragali 
LACM 6664 Sphenophalos Basioccipital 
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Appendix D. Continued 

 

All catalogued specimens observed in collections throughout the study. Type specimens 
are designated by *. 
 
 
 
 
 
 

Museum 
Abbreviation 

Specimen Number Genus Element 

LACM 6666 Sphenophalos Calcaneum 
LACM 90723 Sphenophalos Phalanx 
LACM 90716 Sphenophalos Calcaneum 
LACM 90715 Sphenophalos Rt calcaneum 
LACM 90712 Sphenophalos Astragali 
UNSM 2605* Sphenophalos Horn core 
UNSM 2605* Sphenophalos Horn core 
AMNH FM 11094 Stockoceros Limb bones 
AMNH FM 27018* Stockoceros Horn core/crania 
AMNH FM 22484 Stockoceros Skull 
AMNH FM 22490* Stockoceros Dentary 
AMNH FM 22488* Stockoceros Skull 
AMNH FM 11094 Stockoceros Crania 
AMNH FM 42523 Stockoceros Right metatarsals 
AMNH FM 42524 Stockoceros Left metatarsals 
AMNH FM 42745 Stockoceros Phalanges 
AMNH FM 42747 Stockoceros Unguals 
AMNH FM 42751 Stockoceros Calcanea/astragali 
AMNH FM 42778 Stockoceros Sacrum 
AMNH FM 42827 Stockoceros Caudals 
AMNH FM 42753 Stockoceros Axis 
AMNH FM 42752 Stockoceros Atlas 
LACM 154507 Stockoceros Limbs 
UNSM 39269* Stockoceros Horn core 
UOMNCH 2015-1-7 Sus Skeleton 
AMNH FM 13220* Tetrameryx Horn core cast 
UCMP 32872* Tetrameryx Horn core 
UCMP 38334 Tetrameryx Skull 
UCMP 38520 Tetrameryx Dentary 
LACM 174* Tetrameryx Horn core 
LACM 1010 Tetrameryx Pubis 
LACM 209 Tetrameryx Horn core 
UNSM 05435 Tetrameryx Dentary 
UNSM 05436 Tetrameryx Dentary 
AMNH FM 31312 Texoceros Dentary 
AMNH FM 31645 Texoceros Dentary 
AMNH FM 31765 Texoceros Dentary 
AMNH FM 31645 Texoceros Dentary 
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