
SCALABLE OBSERVATION, ANALYSIS, AND TUNING FOR PARALLEL

PORTABILITY IN HPC

by

CHAD WOOD

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2022

DISSERTATION APPROVAL PAGE

Student: Chad Wood

Title: Scalable Observation, Analysis, and Tuning for Parallel Portability in HPC

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Allen Malony Chair
Hank Childs Core Member
Boyana Norris Core Member
Stephanie Majewski Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded March 2022

ii

© 2022 Chad Wood
All rights reserved.

iii

DISSERTATION ABSTRACT

Chad Wood

Doctor of Philosophy

Department of Computer and Information Science

March 2022

Title: Scalable Observation, Analysis, and Tuning for Parallel Portability in HPC

It is desirable for general productivity that high-performance computing

applications be portable to new architectures, or can be optimized for new

workflows and input types, without the need for costly code interventions or

algorithmic re-writes. Parallel portability programming models provide the

potential for high performance and productivity, however they come with a

multitude of runtime parameters that can have significant impact on execution

performance. Selecting the optimal set of parameters, so that HPC applications

perform well in different system environments and on different input data sets, is

not trivial.

This dissertation maps out a vision for addressing this parallel portability

challenge, and then demonstrates this plan through an effective combination of

observability, analysis, and in situ machine learning techniques. A platform for

general-purpose observation in HPC contexts is investigated, along with support

for its use in human-in-the-loop performance understanding and analysis. The

dissertation culminates in a demonstration of lessons learned in order to provide

automated tuning of HPC applications utilizing parallel portability frameworks.

This dissertation includes previously published and co-authored material.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Chad Wood

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
Texas Christian University, Fort Worth, TX, USA

DEGREES AWARDED:

Master of Science, Computer and Information Science, 2018, University of
Oregon

Bachelor of Arts, Philosophy, 2014, Texas Christian University

AREAS OF SPECIAL INTEREST:

High-Performance Computing, Optimization, Observability, Online Tuning,
Systems Software, Programming Tools, Scientific Workflows, Event Systems,
Extreme-Scale Software Engineering, In Situ (Online) Programming Models

PROFESSIONAL EXPERIENCE:

Graduate Employee (2021): Teaching Assistant for three lab sections of
”Computer Organization,” University of Oregon, Eugene, OR

Graduate Employee (2020-2021): Teaching Assistant for two sections of
”C/C++ and Unix Systems,” University of Oregon, Eugene, OR

Research Internship (2020): Designed next generation of the Apollo
distributed tuning framework using in situ (online) techniques to
automatically discover and apply optimized tuning choices at runtime.
Developed initial implementation to enhance OpenMP and CUDA
performance for applications using the RAJA and Kokkos performance
portability frameworks. Lawrence Livermore National Laboratory,
Livermore, CA

v

Research Internship (2017-2018): Integrated online monitoring with Ascent
and Conduit visualization pipeline for understanding complex scientific
workflow performance data via projection over simulation geometry at
runtime. Lawrence Livermore National Laboratory, Livermore, CA

Research Internship (2016): Assisted with the design of ScrubJay semantic
annotation and query framework to enable deep learning on performance
data, recursively derived from sources with independent units and
epochs. Lawrence Livermore National Laboratory, Livermore, CA

Teaching Assistant (2012-2014): Computer Science Department Teaching
Assistant for five sections of ”Introduction to Computer Science.” Texas
Christian University, Fort Worth, TX

Military Service (2005-2010): Promoted to Non-Commissioned Officer rank
of Sergeant in Delta Co 2nd Battalion, 75th Ranger Regiment. Engaged
in three deployments to combat in support of Operation Iraqi Freedom,
participating in hundreds of airborne, helicopter, and ground assault
missions, concluding with an Honorable discharge from the Armed Forces
of the United States. 2/75 Ranger Regiment, Fort Lewis, WA

Vice President of Technology (2004-2005): VP of Technology and lead
developer of integrated operations, billing, auditing, and compliance
software. Responsible to understand and enforce compliance with
local, state, and federal legal requirements; vendor and product-specific
policies; industry best-practices; and service quality, business ethics, and
patient privacy standards. Developed a fully-integrated range of custom
business intelligence modules to support operations and accounting
tailored to payors including Medicare, Florida Medicaid, numerous HMO
and PPO carriers, and direct fee-for-service patients. All-Med Services,
Inc. Miami, FL

Developer, Systems Analyst (2003-2004): Developed medical equipment
provider management software covering areas of patient intake; clinical
assessment; billing and receivables including electronic claims files; ANSI,
JCAHO, and HIPPA compliance. Omni-Medical Management Systems,
Inc., Richmond, VA

GRANTS, AWARDS AND HONORS:

University of Oregon: Voted Best TA by the Computer and Information
Science Department for the 2020-2021 academic year.

Texas Christian University: Chancellor’s Leadership Program, Katheryne
McDorman Honors Scholar, Dean’s Scholarship, Wetzler Award for
Outstanding Achievement in Philosophy

vi

United States Army: Army Commendation Medal (2nd Award), Army
Achievement Medal (2nd Award), Army Good Conduct Medal, National
Defense Service Medal, Global War on Terrorism Service Medal, Iraq
Campaign Medal w/Campaign Star, Army Service Ribbon, Parachustist
Badge, Combat Infantryman Badge, Expert Infantryman Badge, granted
and held TS/SCI clearance in good standing for the duration of need.

PUBLICATIONS:

Wood, C., Georgakoudis, G., Beckingsale, D., Poliakoff, D., Gimenez, A.,
Huck, K., Malony, A., & Gamblin, T. (2021). Artemis: Automatic
Runtime Tuning of Parallel Execution Parameters Using Machine
Learning. In International Conference on High Performance Computing
(ISC21) (pp. 453-472). Springer.

Wood, C., Larsen, M., Gimenez, A., Huck, K., Harrison, C., Gamblin, T.,
& Malony, A. (2017). Projecting Performance Data Over Simulation
Geometry Using SOSflow and ALPINE. In Programming and
Performance Visualization Tools (VPA17) (pp. 201-218). Springer.

Wood, C., Sane, S., Ellsworth, D., Gimenez, A., Huck, K., Gamblin, T., &
Malony, A. (2016). A Scalable Observation System for Introspection and
In Situ Analytics. In 2016 5th workshop on extreme-scale programming
tools (ESPT16) (pp. 42-49). IEEE.

vii

ACKNOWLEDGEMENTS

We will encounter adversity many times during this life. Large challenges,

small ones. Some slow, quiet, or lonely difficulties; other times we find ourselves

overwhelmed in situations urgent, embarrassing, or scary. How we individually

respond to these experiences is important, but what so often will be decisive is how

our communities, familial, professional, and social, respond to us encountering that

adversity. I am grateful for the many people in each of my communities who have

been there for me over the years. You are too many to name, but I can say with

sincerity that the best parts of me were put in place and later protected by those

who I do mention here, and also by others who I haven’t. I’ve not forgotten, and I

am very grateful.

If you are going through a difficult time, remember that no feelings are final,

and better days will come. Your circumstances will change, as will your thoughts,

and you will not always feel the way you do in the middle of some troubles. Your

life is yet undiscovered, and worth experiencing to the fullest. You have a bright

future. I hope the reader might make some time after disengaging this text to seek

out and remind a few good people from your communities how much they matter.

Sharing a kind word and an ember of courage with a friend may mean more to you

both than you think.

I am grateful for my mother and father for the gift of life, for nurturing,

empowering, correcting, and lifting me up, as I’ve so often needed them to do. I

grew up with the blessing of my mother’s presence, her delightful intelligence so

generously shared, her love, wisdom, grace, and wit. There has been no finer role

model for being a man than my father, who has been a poet, a scholar, a successful

viii

entrepreneur, a clear-eyed and faithful visionary, whose great force of character is

paired with a matching tenderness. They both operate with complete confidence

in the deep enduring value of others around them. I am inspired by their zeal for

life and the joy they find in their work. My brothers are just as astonishing and

awesome, each of them. Mark, John, and Karl: I love you endlessly.

Allen Malony, my research supervisor, has done more than nearly anyone

to change my life for the better. Everything I have achieved here I owe to his

outstanding leadership and support, and his long-suffering faith in me. Over these

several years working together, he has never once doubted me or given up on

me, even during my lowest moments. Hank Childs and Boyana Norris also have

provided so much needed encouragement and good counsel over the years. It feels

special to be able to say, ”I could not have done this without my committee.”

I owe a world of gratitude to the legendary Todd Gamblin, for his generosity,

encouragement, patience, understanding, research opportunities, Python advice,

and all the excellent people he brought along to befriend and teach me, who have

done so much to elevate my work.

For all their inspiration and effort, I must thank a few more of my academic

friends and collaborators: Kevin Huck, Giorgis Georgakoudis, Matt Larsen,

Stephanie Brink, David Poliakoff, Alfredo Gimenez, David Beckingsale, Daniel

Ellsworth, Sudhanshu Sane, Jacob Lambert, and so many more.

Deep thanks to my Oregon crew: Mason, Wade, Alex, Tyler, Hugh, Jake,

Audrey, Chris, Josh, Jason, Joe, and of course Cooper and Annie. Much love to

Blake cat, the sweetest little lad, who is napping on my desk next to the keyboard

as I type this; and to babboo, from the beginning.

ix

To my mother, for teaching me to read.

x

TABLE OF CONTENTS

Chapter Page

I. GENERAL INTRODUCTION 1

1.1. Investigatory Approach . 1

1.2. Preliminaries . 2

1.3. Observability . 5

1.3.1. Application Source Instrumentation 6

1.3.2. Shared Library, Runtime, or Service Instrumentation 8

1.3.3. Runtimes and Services 11

1.3.4. Sampling and Tracing 14

1.3.5. Probing and Inference from Indirect Sources 16

1.4. Capturing and Using Data 20

1.4.1. Overview . 20

1.4.2. Representation and Meaning 21

1.4.2.1. Encoding the Data and Metadata 23

1.4.2.2. Encoding the Expertise 24

1.4.2.3. Time, Change, Identity, and Consistency 27

1.4.2.4. Combination and Unit Semantics 31

1.4.3. Patterns Within HPC 34

1.4.4. Exposing Data . 36

1.4.5. Exporting Data . 37

1.4.5.1. Logging . 38

1.4.5.2. Checkpoint 39

1.4.5.3. Cacheing 40

xi

Chapter Page

1.4.5.4. Polling and Pulling 42

1.4.5.5. Broadcast or Push 42

1.4.5.6. Hybrid Push/Pull 43

1.4.5.7. Publish/Subscribe 43

1.4.6. Introspection, Opacity, and Interface Standardization 44

1.4.7. Case Study: The CDC 6600 Mainframe 47

1.4.8. Observability: In Conclusion 51

1.5. Monitoring for HPC: Dedicated Frameworks 51

1.5.1. SuperMon . 52

1.5.2. MonALISA . 54

1.5.3. MRTG . 56

1.5.4. RRDTool . 58

1.5.5. Ganglia . 58

1.5.6. Nagios . 59

1.5.7. TACC stats . 60

1.5.8. ProMon . 61

1.5.9. SOS and SOSflow . 64

1.5.10. FogMon . 68

1.5.11. LDMS . 71

1.5.12. CluMon and ClOver 74

1.5.13. Additional Monitoring Solutions of Note 75

1.6. Monitoring for HPC: General Topics 76

1.6.1. Portability Frameworks as Monitoring Opportunities 76

1.6.1.1. Distributed Computing 77

1.6.2. Monitoring and Multiple Domains 80

xii

Chapter Page

1.6.3. Online Monitoring for Large and Complex Codes 83

1.7. Concluding Remarks . 83

II. A GENERAL FRAMEWORK FOR ONLINE MONITORING
IN HPC . 84

2.1. Introduction . 84

2.1.1. Scientific Workflows 85

2.1.2. Multiple Perspectives 85

2.1.3. Motivation . 87

2.2. Related Work . 87

2.3. SOS Architectural Model . 89

2.3.1. Components of the SOS Model 90

2.3.2. Core Features of SOS 90

2.4. Implementation . 92

2.4.1. Architecture Overview 93

2.4.2. Library: libsos . 94

2.4.3. Daemon: sosd listener 95

2.4.4. Database: sosd db 95

2.4.5. Analytics: sosa . 96

2.5. Results . 96

2.5.1. Evaluation Platform 96

2.5.2. Experiment Setup . 97

2.5.3. Evaluation of SOS Model 98

2.5.4. Evaluation of Latency 98

2.5.5. Results . 99

2.5.5.1. SOS Model Validation 100

2.5.5.2. Evaluation of Latency 100

xiii

Chapter Page

2.5.6. Discussion . 101

2.5.6.1. Aggregation Topology 102

2.5.6.2. Time Cost of Publish API 104

2.6. Conclusion . 106

III.MULTI-DOMAIN INSIGHTS USING AN OBSERVATION
SERVICE . 109

3.1. Introduction . 109

3.1.1. Research Contributions 110

3.2. Related Work . 111

3.3. SOSflow . 112

3.3.1. SOSflow Daemons . 113

3.3.1.1. In Situ . 115

3.3.1.2. Aggregation Targets 116

3.3.2. SOSflow Client Library 117

3.3.3. SOSflow Data . 118

3.4. ALPINE Ascent . 120

3.5. Experiments . 122

3.5.1. Evaluation Platform 122

3.5.2. Experiment Setup . 122

3.5.3. Overview of Processing Steps 124

3.5.4. Evaluation of Geometry Extraction 125

3.5.5. Evaluation of Overhead 126

3.6. Results . 126

3.6.1. Geometry Extraction and Performance Data Projection . . . 127

3.6.2. Overhead . 127

3.7. Conclusion . 128

xiv

Chapter Page

3.7.1. Future Work . 129

IV.PARALLEL PORTABILITY WITH ONLINE MACHINE
LEARNING . 131

4.1. Introduction . 131

4.2. Background . 134

4.3. Artemis: Design and Implementation 135

4.3.1. Design . 136

4.3.2. Training and Optimization 138

4.3.3. Validation and Retraining 140

4.3.4. Extending RAJA OpenMP execution 141

4.3.5. Enhancing Kokkos CUDA execution 143

4.3.6. Training Measurement 143

4.3.7. Training Model Analysis and Optimization 144

4.4. Experimentation Setup . 146

4.4.1. Comparators . 147

4.4.2. Applications . 148

4.4.3. Hardware and Software Platforms 149

4.4.4. Statistical Evaluation 149

4.5. Evaluation . 150

4.5.1. Instrumentation Overhead 150

4.5.2. Model Training and Evaluation Overhead 151

4.5.3. Speedup on Cleverleaf 151

4.5.4. Effectiveness of Cleverleaf Policy Selection 153

4.5.5. Strong scaling with different node counts 154

4.5.6. Speedup on LULESH 154

4.5.7. Speedup on Kokkos Kernels SpMV 155

xv

Chapter Page

4.6. Related Work . 156

4.7. Conclusion and Future Work 158

V. CONCLUSION . 160

REFERENCES CITED . 163

xvi

LIST OF FIGURES

Figure Page

1. Applications Coupled Together Into a Workflow 86

2. Complete History of Changing Values is Kept, Including Metadata . . . 93

3. Client/Daemon Socket Communication Protocol 94

4. SOSflow Observing Multiple Workflow Components on Cori 100

5. SOSflow Overhead as Percent Increase in Runtime 101

6. Average Latency for In Situ Database (128 nodes on Catalyst) 102

7. Average Latency for Aggregate Database (128 nodes on Catalyst) . . . 103

8. In Situ Latency (24 nodes on ACISS, 240 Applications) 105

9. Aggregate Latency (24 nodes on ACISS, 240 Applications) 106

10. SOSflow Socket Communication Cost 107

11. SOSflow Socket Communication Cost (Detail) 108

12. SOSflow’s lightweight daemon runs on each node. 114

13. Co-located analysis and visualization with aggregation. 117

14. SOSflow Collecting Simulation Geometry at Runtime 123

15. Projection of KRIPKE State Over Its Geometry 127

16. Projection of System Data Over KRIPKE Geometry 128

17. Filter execution (1-4ms) over 710 LULESH cycles. 129

18. Many Metrics Projected Over Changing LULESH Geometry 129

19. Artemis Parallel Region Processing Diagram 138

20. Artemis trains models and validates ongoing fitness. 141

21. Using Artemis in the RAJA forall execution pattern. 142

22. Cleverleaf Speedup Using Artemis 149

xvii

Figure Page

23. LULESH Speedup Using Artemis 150

24. Cleverleaf Execution Time Per Timestep 152

25. LULESH Execution Time Per Timestep 154

26. Kokkos Kernels SpMV Speedup Using Artemis 156

xviii

LIST OF TABLES

Table Page

1. The Tuning API of Artemis. 135

2. Artemis Experiment Applications and Their Configurations 147

xix

CHAPTER I

GENERAL INTRODUCTION

1.1 Investigatory Approach

What ultimately motivates this work is the desire to enable and improve

parallel portability for HPC software. By increasing the observability of systems,

providing mechanisms for information collection, sharing, analysis, and online

feedback, and ultimately by embedding machine learning into this infrastructure,

we have provided both a plan for achieving this goal generally, and an example of

this plan in action with concrete real-world success.

This dissertation is divided thematically into two halves, the first two

chapters covering the topic of scalable observation in depth, and the third and

fourth chapters investigating support for human analysis of codes at scale, and

online automated performance tuning, respectively.

These four chapters provide mutually-reinforcing coverage of relevant history

and of our own studies investigating these four central research questions:

– RQ1: What are the essential components of a practical in situ system for

online observation, analysis, and feedback?

– RQ2: Can online observation with in situ methods provide benefits to

application users and developers?

– RQ3: Is it feasible to conduct machine learning in situ in order to derive

performance benefits without a human in the loop?

– RQ4: Can systems be made both observable and responsive to tuning choices

without costly code interventions or algorithm rewrites?

1

Considering the basic preconditions for achieving parallel portability through

performance understanding and online adaptation, it became clear that any

capable system would need to have regular access to current and contextualized

performance information in order to make intelligent decisions and observe the

effects of those choices. We would need to start with the topic of observability.

We began by asking a pair of hypothetical questions: ”If we were able to

efficiently and quickly observe any bit of information in a system, what kind of

decisions would we be able to make? Would this capability change the way we

designed HPC software?” Imagining some of the possible answers, a more basic

question stood in the way, ”Has this capability existed before, and if so, what were

the limitations?”

The journey to answering our research questions must then begin with a

deep dive into observability, the nature of the information that is to be observed,

and what design features and trade/offs that have emerged through the history of

online monitoring for HPC.

1.2 Preliminaries

The general theme of this dissertation is that of gaining insights that

facilitate greater productivity in a high-performance computing context. This is why

we are interested in online monitoring, analysis, and feedback systems. We will be

considering both low-level and high-level aspects of insight and productivity. Note

that these terms are intentionally used loosely and relatively in this document,

merely to lend a rough sense of scope. The term low-level is taken to mean closer

to the machine or software engineering. We use high-level to indicate something

is closer to the application behavior, the science purpose of an application, or the

goals of human users or managers.

2

Insights might be gained by investigating something as low-level as hardware

counters and source code performance hotspots, or as high-level as application

data dependency graphs, simulation state, or human-in-the-loop evaluation of

scientific visualizations. Productivity also refers to a plurality of possible goals. It

can indicate low-level enhancements to the use of network resources, application

runtimes, communication slack, power utilization, machine temperatures, etc.

Productivity can just as well mean making improvements to the correctness of

scientific results, the quality and timeliness of reports and images, the speed at

which software can be developed and debugged, or the portability of source codes

and optimizations between various machines.

High-performance computing (HPC) refers to a specialized branch of

computing traditionally used to tackle problems too large to be effectively solved

using commodity computational resources. HPC architectures often couple powerful

integrated compute nodes together using a high-speed interconnect. The HPC

systems we are concerned with in our area of research almost exclusively run a

variant of the POSIX-compliant Linux operating systems. The operating system

of each compute node runs various services and specialized hardware drivers that

allow applications to take advantage the resources which are distributed across

several nodes. Such services usually include:

– Networking and shared memory region APIs: Allows for applications,

libraries, and services to communicate with each other. This communication

can take place within a single physical resources, or between processes

running on different devices.

– Batch Manager (ex. IBM®Job Step Manager [1] or the Slurm Workload

Manager [2]): Queues, allocates, launches, and manages user’s jobs in a

3

batch scheduling environment, breaking apart a parallel task into ranks and

establishing a shared runtime environment that may span one or more nodes.

– Network Filesystem (ex. Lustre [3] or IBM®’s General Parallel

Filesystem [4]): Provides a coherent filesystem view across many nodes in

parallel, where reads and write to the filesystem from multiple ranks are

eventually synchronized and available to all nodes within a parallel job’s

allocation.

– Message Passing Interface (MPI [5]): Allows ranks of applications to

communicate amongst themselves and coordinate their activity via point-

to-point messaging and safe synchronous collective data operations.

We will look at how these common HPC software resources, among others, can be

exploited for our monitoring, analysis, and feedback purposes.

This work explores an intersection of three different topics: monitoring,

analysis, and feedback. We use the term feedback to imply interacting with

applications and execution environments, based on analysis of monitored

information, potentially within the same job being monitored.

Modern HPC has introduced extreme scale parallelism, large and complex

codes, interactivity between coupled software components, and an unprecedented

velocity of data creation, consumption, and displacement. The introduction of

these changes has given rise to new computational models, performance paradigms,

design challenges, and research possibilities. These recent developments in HPC

have both created new roles for and also expanded the prior roles of monitoring,

analysis and feedback.

4

It is important to understanding the structure of this effort that we are

ultimately building towards the current state of the art where these three topics are

able (and desired) to be integrated. At times we will discuss monitoring, analysis,

or feedback as a standalone topic, but will attempt to explain why the coverage

is only partial in a those specific moments as a way of giving insight into the

computing landscape at the time of that prior work. Always bear in mind that

we are building to what exists in the present features of HPC research in this area.

1.3 Observability

Before something can be monitored, analyzed, or utilized online, it needs to

be observable.

Computation involves applying operations to a set of data inputs in order

to transform that data according to those operation’s stable rules, resulting in

reliable and reproducible output. The output produced by a piece of software

can be used to validate limited but crucial properties of that software, such as its

mathematical precision or the correctness of the computed results compared to a

trusted independent measure.

But what of the behavior of the software itself?

By the time an application has completed its work and generated its output,

information about the execution of an application that is not observed and stored

is lost. Observations such as the basic behavior of the software and the efficiency

of its algorithms, and the interactions of its internal components and external

execution environment. Information relevant to the performance of an application

may include a variety of data sources, both within and external to the application.

In order to make informed decisions regarding the behavior of an application, this

behavior needs to be observed, annotated, and stored for later use.

5

Observability is a critical first step into online monitoring, but it is worth

noting that points where something is made available for monitoring are often also

points were feedback from analysis can be applied.

The depth and significance of observation will vary based on the method,

completeness, and invasiveness of the techniques employed. Observability can be

achieved or enhanced by a variety of techniques, principally including:

– Application Source Instrumentation

– Shared Library, Runtime, or Service Instrumentation

– Sampling and Tracing

– Probing and Inferences from Indirect Sources

We will now discuss each of the preceding techniques in turn.

1.3.1 Application Source Instrumentation.

Instructions to capture observations, compiled directly into the

executable code of an application.

Software source code can be instrumented to self-report its progress from state

to state. Such instrumentation takes the form of function calls (or macros) that

are embedded in-line between normal application code. Once instrumentation is

in place, it is encountered and evaluated during the normal course of application

execution. This placement can be done by hand, embedding direct calls to some

annotation API, or it can be done programmatically by an automatic code

instrumentation tool. Hand-instrumentation is more invasive and labor-intensive

than tool-based instrumentation, requiring developer time and expertise. In

exchange for the extra work to emplace and maintain it, there are some added

6

benefits to using hand-instrumentation over tool-based solutions. By selectively

instrumenting specific code regions, a developer can minimize the cost of observing

a piece of software. Since no code can be observed without the computer doing

a little bit of extra work, doing too much of this extra work will mask off the

underlying application behaviors of interest. A developer can use their judgement

to skip the observation of areas that are not of interest, or that are executed

so frequently that the overhead of making observations would dominate any

application performance that could be observed.

Hand-instrumentation is also able to introduce high-level annotations to

the observed low-level execution features. High-level annotations are essentially

labels which identify the nature or purpose of the region of code being observed.

They allow for that data to be quickly individuated from other observations, to

allow for efficient categorization and analysis (to be discussed in later sections).

Developers do not always know what regions of their code are important, or the

code that is having the most significant impacts on the applications’ behavior

will change as the codebase evolves or new inputs are fed into the program. To

remedy this, it is useful to have a variety of mechanisms available to observe and

explore the performance of an application. Common instrumentation interfaces [6]

being embedded in codes show promise in this regard. They provide a point at

which many different performance tools can be attached and activated to provide

observation of the software, without needing to edit code or recompile applications.

When not in use, these instrumentation interfaces would not impose any significant

overhead. It will be interesting to see whether this idea gains broad support going

forward.

7

Because instrumentation involves inserting extra instructions into code,

regardless of the kind of instrumentation that is in place, it is sometimes desirable

to temporarily disable it. Instrumentation is typically disabled when code moves

from being actively developed and optimized into a ”production” scenario where

maximum efficiency is desired and introspection of application behavior is less

important. To this end, it is important for instrumentation to have an ”off switch”

of some kind. One option is to excise the instrumentation from the application

code at compile time, so that the source code remains instrumented, but those

blocks of instructions are skipped over by the compiler and do not appear in the

application binary at all. Recompilation can be costly, but will yield the most

efficient application binary. Another option is to disable code with a setting that

can be checked by a program in execution. This means leaving the instrumentation

in the code, but while the code is running, whenever some instrumentation is

encountered, first have it check to see if it has been disabled, and then if so skip

over the block of instrumentation code and resume normal execution. With this

method, it is important to be able to ”do nothing, quickly”, so that the impact of

the extant (disabled) instrumentation is minimized. This would be an appropriate

method to use if the instrumentation were not directly embedded in an application

code, but emplaced in the code of a shared library or service that an application

makes use of. When the application is recompiled, that library or service might not

be, so runtime enabling or disabling of instrumentation is required if a system is to

be observable in this way. We will now discuss that scenario.

1.3.2 Shared Library, Runtime, or Service Instrumentation.

Making observations within the code which is executed when an

application makes API calls to an external library or service, or when

8

a runtime platform is evaluating collections of instructions (code or

queries).

HPC software is often built up out of multiple libraries being interacted with

by the core logic of an application. When an application is launched by the

operating system, any libraries that it has been linked into will also be loaded

into memory and initialized. C and C++, for example, offer standard libraries

which provide many features essential to applications written in those languages,

from collections of optimized data structures to network and multithreading

routines. Higher-level libraries exist to provide domain-specific features, such as

SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure [7], an

implementation of optimized data structures and algorithms of general utility for

adaptive mesh refinement codes, common in physics simulations. In the absence of

direct application source code instrumentation, shared libraries can be good targets

for observing application behavior. Through calls into the API of that library,

execution will pass into the code compiled within it. Any instrumentation within

will then be executed.

As will be discussed in later sections, especially ”Exposing Data” (§ 1.4.4),

the information that is generated or observed by instrumentation needs to either be

made available for use, or stored to be used elsewhere or at another time. Control

flow through the execution of a program binary is typically fixed at compile time,

where the operating system will establish the basic execution environment and

protected memory, initialize the stack, and begin execution at the designated

starting function of a program, main in the C family of languages, for example.

This process does not automatically provide hooks for tools to be initialized

or optional accessory services to be started. In the case that memory needs to

9

be allocated for storage, or services need to be invoked that can capture and

operate on monitored information, the shared library instrumentation path offers

another useful engineering options: static singletons. This refers to a C++ language

convention where code objects can be can be marked as static and be executed

at program initialization, and through clever means cause the initialization of a

class that uses the singleton design pattern, where only one instance of an object is

allowed to exist. This combination of techniques allows a shared library to execute

some initialization routines at the beginning of a program, merely by being linked

into the program and loaded when that program starts.

Two common ways to instrument libraries by adding code are to pre-

load a surrogate (or wrapper) library, or provide customized header files that

implement some instrumentation. Wrapper library instrumentation can also be

achieved without needing to recompile an application. LD PRELOAD is a special

environment variable supported by the Linux operating system. When paths to

shared libraries are set into that variable, those libraries will also be loaded by

the operating system when an application is launched. This can be used to to

flexibly provide instrumentation around existing libraries without needing to access

their source or recompile them. The wrapper library should expose all of the same

function signatures to the invoking application, such that normal API calls to the

shared library will instead invoke the same function in the wrapper. On its first

invocation, the wrapper can then manually load the normal shared library and

populate a table of function pointers all of the normally-exposed functions within.

As the normal library’s functions are called and return back, the wrapper is able to

track these timings and perform any other desired instrumentation or monitoring-

layer interactions desired.

10

If recompilation of the application is not a burden, customized header

files are also an option, and can impose a slightly lower performance impact as

less runtime activity is required to resolve API calls. Customized header files will

require the calling application to be recompiled, and its source code or build scripts

updated to point to that custom header file. Within the header file, functions

can be implemented instead of merely defined, and these functions can embed

instrumentation around calls to the normal library. The header file technique

usually requires an API to be expressed in two layers, with a public-facing API

wrapping calls to an internal implementation API. This avoids the problem of

namespace collision, what occurs when an object has two different definitions

within the same callable scope, and the compiler does not know which of the two

is being referenced as it attempts to build or link the software.

A successful example of header file instrumentation in the real world is

provided by the MPI codebase. MPI’s public API calls all begin with MPI and

every such call jumps into a tiny wrapper function that immediately and only calls

its implementation function, which is prefixed PMPI and which provides the actual

implementation code. Developers can add code to the wrapper functions in that

header file, as a way of intercepting calls to the MPI routines.

Both of these technique are able to facilitate a variety of advanced

interactivity, such as making adjustments to the parameters being passed through

the wrapper into the normal library, or changing the behavior of the normal library

based on some performance observations or goals.

1.3.3 Runtimes and Services. Many HPC applications take

advantage of standardized libraries and packages designed to grant traditionally-

11

engineered software access to the unique advantages enabled by HPC hardware,

without requiring wholesale re-writes.

One such library is OpenMP [8], which presents a standard for annotating,

or ”decorating”, the parallel regions of a block of code, and then compiler

extensions which can intelligently and safely adapt the code according to

those notes for it to be automatically parallelized. The primary mechanism

for parallelizing codes that OpenMP uses is the spawning of multiple threads,

distribution of data between those threads, and the gathering of the results

produced in parallel back into a unified memory location for processing by the

serial portions of the program. In addition to the injection of inline codes, OpenMP

provided a flyweight runtime within the process, to manage the creation and

destruction of threads, or teams of threads, achieving safe management of the

memory regions those threads were operating over.

Automatic code generation, especially in this case where it profoundly

altered the characteristics of the code’s execution, introduced some complexity

to the various source-instrumentation-based means of observing codes, though

techniques were developed [9] to address this. Iterating over the years, as more

modern generations of the OpenMP frameworks were designed, a tools interface

named OMPT [10] was added to OpenMP to provide an organized and flexible

means of interacting with the OpenMP runtime and observing the application,

providing hooks into the normal semantics of the program as well as events

unique to the internal activity of the OpenMP runtime. One especially useful

feature of the OMPT interface is that tools can be enabled or disabled at runtime,

not requiring an application to be recompiled from source. For the many HPC

12

applications which make use of OpenMP, this interface can be a useful source of

information for online monitoring frameworks.

Elaborated further under ”Distributed Computing” (§ 1.6.1.1), the Message

Passing Interface (MPI) runtime can be an indispensible resource when monitoring

HPC applications. In addition to posessing a number of valuable datum related

to the execution of a single distributed task, the runtime is also potentially

managing many other processes distributed across the machine concurrently. MPI

is aware not only of some performance measures of the application, but of its own

configuration and performance. With higher-level permissions and a common

observational infrastructure, it is possible to observe complex interactions between

parallel jobs of parallel processes in situ and online [11], observations which by

necessity require shared service-level instrumentation and online monitoring.

Task-based runtimes or applications written using partitioned global address

space (PGAS) languages [12] [13], like HPX [14] or Charm++ [15], or even

distributed workflow managers such as Swift/T [16], can make it difficult to cleanly

separate out the workings of the runtime service layer from the program that the

service layer is facilitating the execution of. That is, a program can be broken up

into so many different asynchronous parts that traditional monitoring patterns do

not effectively capture coherent or developer-relevant performance data. The ratio

of monitoring overhead to the overall productive work performed by the application

can quickly become undesirable, especially if tasks are dispatched and retired at a

very fine-grain, and have short lifespans. Tools such as the Autonomic Performance

Environment for Exascale (APEX) [17] have been developed specifically to

address [18] many of these challenges, but it remains an open area of research.

13

Another way to observe processes in vivo is by stepping outside of their

execution environment entirely, and then turning around to look back in. This is

most often observed in cases of commercial ”cloud computing”, where a system

image is hosted by a virtual machine hypervisor, and applications are run within

that virtualized environment. Through extensions to the hypervisor agent, such

as with the ongoing work with Xen introspection extensions [19], the performance,

progress, or various other information can be observed from outside the runtime

instance with only relatively small increases in overhead compared to running

unobserved within the virtual machine. These increases in overhead would be

proportional to the overhead of monitoring the same application running natively

on physical hardware.

1.3.4 Sampling and Tracing.

Exploiting binary formats, memory layout conventions, and explicit

operating system APIs to apply instrumentation to a compiled

application without modifying its source code.

Sampling means inspecting the state of an application and reading the available

performance counters provided by the operating system. It is usually performed at

some regular interval of time, so inferences can be made about the activity that

transpired between those intervals, and the impact those activities had on the

sampled parameters. Sampling is by far the most efficient method for gathering

observations to use when monitoring an HPC system, and as such is favored for

online monitoring systems. Sampling can be done directly by a tool, by making

calls to the Linux operating system’s perf events API, reading counters from

the /proc/stats virtual filesystem furnished by the operating system kernel, or

14

through registering counters of interest and making inquiry into a pre-packaged

introspection tool like PAPI [20].

Tracing deviates from sampling in that every single action an application

takes has the opportunity to be counted as a significant event and measured,

though each action might not be of interest. In order to achieve the extremely

fine-grained analysis afforded by tracing, many additional instructions are inserted

around those of the application, able to capture and count the application’s

instructions and follow the control flow’s branching paths through the application

logic based on the input data and the evolving results of computation at runtime.

Traces often have orders of magnitude higher overhead to gather than

performance measures arrived at through sampling. Hand-annotated source

code has the added benefit (and developer overhead) of an expert identifying the

significant regions of an application, so that uninteresting information does not

need to be collected or analyzed. This lowers the overhead of performing a trace,

in both time spent gathering measurements, and by reducing the space required

to store any performance measurements. It also allows for code regions to be

intelligently named for quick identification, for cases where a person is utilizing a

monitoring system, and such insights can be exploited for code tuning, etc.

Tracing can be performed over specific domains of application events, such

as tracing only the I/O of an application, the loading and storing of regions of

system memory, or just generally serarching for latency [21]. One could choose to

trace only the interactions between an application and the operating system kernel,

or even to trace only the activity within the kernel.

While outside the scope of this survey, note that there are many types

and implementations of tracers [22] available to trace both kernel and user-space

15

activity, including ftrace [23] [24], perf [25], LTTng [26] [27], and some commercial

offerings such as Intel PT (”Processor Trace”), etc. Much of the lower level tracing

infrastructure, such as the Linux perf events subsystem, is available to be used

in other user-space tools like Valgrind [28] or PAPI [20] to provide aspects of their

overall performance information set, including data associated with branches and

traces.

1.3.5 Probing and Inference from Indirect Sources.

Combining multiple external sources and epochs of information to form

intuitions about the behavior of a system and its components.

There are a variety of questions an interested party may wish for their monitoring

system to answer that, while requiring online monitoring, are not well-suited to the

mechanics, scope, or frequency of events which are revealed by directly observing a

single application, or even a single instance of a complex workflow, as the source of

information. Some examples:

– On average, how long are jobs waiting in dispatch queues before being

launched, including as ratios of their actual and requested runtime?

– What portion of a job’s occupancy is spent waiting on shared resources to

become available (i.e. physical tape archives of large data sets that need to be

fetched and brought online by an automated robot)?

– How much do the power requirements of the entire facility deviate through

the day, and is there a correlation with specific jobs, or machine workloads, or

the exterior environment’s temperature and humidity?

– How often do the processors on the nodes slow their clock rate in order to

stay within their configured thermal envelope?

16

– What portion of the energy budget of the total machine (and its enclave

within the broader HPC facility) is spent on controlling temperature, vs. on

providing compute capability?

– Which applications, and at what allocation sizes, result in the greatest

amount of contention for shared resources like the network interconnect?

– When job occupancy is high and network congestion is low, but CPU or GPU

utilization is also low, what are the jobs that are running at that time, to

inspect for some bottleneck which is preventing codes from fully exploiting

the available hardware?

– How much do identical measurements vary across nodes, and how much do

identical measurements vary for each node across time?

– Are there any deviations from normal performance measures that can be

accurate predictors of pending hardware failure?

– How often are job walltime limits reached, and how often do jobs terminate

(successfully) without using some significant portion of the walltime that they

had requested?

– What are the most used system libraries, compiler versions, and versions of

applications?

– What are the most frequent causes of a program being terminated by the

operating system?

– What are the least-utilized components of the total machine architecture?

17

These are just a handful of such questions, by no means a comprehensive list.

What may stand out in that list is the frequency with which the word ”job”

appears.

Often some measure of interest will not be observable without increasing the

sample size beyond the one application or workflow that a user may have enabled

instrumentation for. Observations of multiple programs and also observations

of sources outside of the scope of applications are needed to answer most such

questions. Some of these observations can be accessed within its context using

open-source toolkits or system APIs, while other data points may get emitted

from a vendor’s proprietary drivers, and one must write tools to get access to

and appropriately contextualize this information. Moreover, all information needs

to be gathered continually, online, and retained over various epochs, in order to

be interrogated later on to yield answers not anticipated by the developer who

originally made some information observable in the first place.

Looking at online monitoring for HPC from a holistic perspective like

this allows for interesting questions to be asked and answered, but the necessary

software and sensor infrastructure gets complicated, invasive, and expensive, very

quickly.

Here we can see yet again that monitoring systems serve a variety of

purposes, and so their deployment and use will have a diversity of motivations.

An application developer is unlikely to be personally concerned with the thermal

consequences of using a high-speed solver library that activates additional circuitry

and causes more heat to be dumped by a compute core over the duration of their

job. The types of jobs which coorellate with an increased load on the cooling

infrastructure, and the peaks and valleys and averages of such thermal readings,

18

likely will be of interest to someone who is tasked with managing a machine,

budgeting for power, or maximizing the longevity of machine parts.

Gathering and making use of these data sets means taking on a wide array

of engineering and design challenges, many of which are discussed in the next

section and later areas. One such challenge has to do with the diversity of epochs

and frequencies of measurements, and the need to capture and compose information

efficiently. Thermal readings and power settings can be measured from a compute

core in tiny fractions of a second, whereas some facility-wide sensors may have

significant hystersis in reporting and only be updated every several minutes. This

means that short-lived events can be more difficult to make accurate judgements

about, for example. When composed against and considering their influence on

the longer timelines described by coarse-grained measurements like power draw

readings for a row of server racks, average ambient air temperature around a row of

servers, or the power draw of the HVAC system responsible for cooling the entire

building, etc., such short-lived events are difficult to render judgements about.

They are also typically not able to be efficiently stored in any detail over many jobs

or longer periods of time, to allow for sophisticated meta-analysis, though there are

some serious efforts to do just this, such as the Sonar [29] [30] project at Lawrence

Livermore National Laboratory.

When integrating observations made at different system layers and produced

by different development teams, the semantics of what is being reported can vary

widely, and must be carefully considered when composing data. One sensor might

be reporting absolute temperature in Kelvin, and another may be reporting the

delta between two temperatures in Farenheit. One must record units of measure

at some datum’s origin, or have a brokered ingestion of information into the

19

monitoring system, such that various sources are processed by bespoke aggregation

functions to be made available as normalized statistical metrics.

The complexities inherent to online monitoring systems quickly become

apparent, especially as the monitoring need grows beyond a single point of

measurement or is desired to fulfill more than a single purpose. From this

understanding, it becomes relevant to more deeply explore the topic of capturing

and using information.

1.4 Capturing and Using Data

Once an event or some state in an HPC system has been observed, it must

be represented in a stable format to be useful. Our practical research interest is

in the type of data that can be accumulated or streamed through algorithms to

discover and react to trends and patterns. This sort of data can usually be stored

for reference or data-mining as a member of a set of data that can span multiple

scales or epochs, being combinable to reveal facts beyond what is locally available

during the immediate execution of an isolated process.

1.4.1 Overview.

Representing, disclosing, aggregating, storing, and accessing observed

facts about processes, configurations, input data, activity, and the HPC

execution environment.

This section focuses on the mechanics of making and using data out of something

that has previously been rendered observable, in one or several of the ways outlined

in the prior section. In order to adequately characterize the sort of data we are

interested in, something will need to be said about each of the aspects listed here:

– Representation and Meaning

20

– Patterns Within HPC

– Exposing or Exporting Data

– Introspection, Opacity, and Interface Standardization

Still, it is worth pointing out that not all observations have the same complexity

or purpose. For example, some observations do not need to be retained or even

exported from a process to be useful. Those observations may be temporarily fixed

and used to inform a process-local or immediate decision-making process, and

then discarded or overwritten. Such transient observations still must be encoded

and accessible in a coherent format to be utilized – even by logic within the same

process. A discussion of the fullest life-cycle of data sets from observations will

also serve to inform the treatment of data sets with more limited purposes and

characterization requirements.

So what do we do, once something is observable?

1.4.2 Representation and Meaning. It is important in all journeys

to start off in the direction of one’s goal. Any eventual application of observations

will be counting on the observations being correct, consistent, and precise. Further,

information must include not only the measurements, but some standard notion

of interpreting the measurements. Mistakes or omissions here in this fundamental

consideration can invalidate or undermine the entire purpose of monitoring HPC

phenomena.

An engineering specification that only included the numeric component of

measurements for its dimensions might give a clue about the proportions of the

design in reference to itself, but would not be helpful to understand its overall

scale in relationship to its environment or other engineered objects. This would

21

lead to the design object being difficult or impossible to accurately reproduce, or

for people unfamiliar with it to have useful intuitions about its purpose or place

simply by looking at that partially-annotated specification. Perhaps the simplest

notion of a standard for interpreting measurements is the expression of units of

measure, noting what ”1” means in terms of units of length, volume, temperature,

chronological element, etc. Once the standard for one unit is expressed, all

measurements of that type can be scaled off of that unit. Time can pass in seconds,

or in milliseconds, or in days, or even be denoted by abstract and unscaled CPU

”ticks” within the context of a single architecture.

Units of measure can themselves be complex entities. Knowing that some

numerical representation refers to a temperature in Celsius may only tell you half

the story. A measurement may be referring to:

– an observation of an event or state at one point in time

– rate of change between two points in time

– result of a function relating multiple observations across time or domains

When considering an application for performance data like constructing

performance models using machine learning methods, it is worth noting that

some forms of machine learning are designed to function well over completely

opaque or unannotated data sets, such as deep learning using neural networks.

Typically the overall data set this type of learning is applied to has at least been

pre-filtered and organized into a regular structure by some domain expert to

contain distinctions of likely relevance presented in a consistent layout, to allow

for the learning algorithm to recognize and adapt to some notion of concepts or

categories within this unannotated data. There are always trade/offs to be made

22

regarding the selection of machine learning algorithms, such as speed, overhead,

accuracy, timeliness, consistency of input data layout, and the amount of data

needed to make good decisions. For now let us assume that information is needed

for purposes beyond training deep learning models, and so correct annotations will

have importance across a variety of purposes, and look at what is entailed by that

idea.

1.4.2.1 Encoding the Data and Metadata. The simplest things

can go unnoticed but be deeply important. One of these is the way in which

information is encoded. In addition to storing a value for the measurement of a

temperature, and having some way of knowing it refers to a change in temperature

for some epoch of time, it matters how that floating point value is encoded. For

example, floating point values can be stored in the condensed IEEE 754 formatting,

where there are special meanings for subsequences of bits in the byte words of a 16,

32, or 64-bit encoding. This format strikes a balanced trade/off between storage

and representational accuracy, and is how most floating point numbers are stored

and operated over from the perspective of a CPU. If the number were to be pulled

up in an ASCII text editor and reviewed by a human, it is unlikely that they would

be able to determine the precise floating point value with their manual review.

Numerical values can be projected out into a character string, which is much easier

for a human to understand, but consumes much more storage space, and cannot be

processed for mathematical operations by a CPU without converting back into the

IEEE 754 encoding, potentially decaying the accuracy in the process.

In addition to the encoding of observations, the formatting of multiple

observations bundled together is a significant factor in that information’s openness

to exploitation. Opaque file formats, or undocumented network protocols,

23

bearing messages or observations, can be difficult or impossible to exploit, if the

information has not been orchestrated into some consistent arrangement. There

do exist remedies for this, with formatting standards like CSV, YAML, XML, or

JSON. These standards make no assumption about the meaning or semantics of the

data they contain, but they do impose rules on how data generally will be encoded,

so that at a minimum the raw values can be parsed from the collection into its

individual components through consistent mechanisms.

There are higher-level standards which emerge from more fundamental

encoding standards, such as the Open Trace Format (OTF) [31] [32] [33], which

is purpose-built to store the performance measurements of HPC applications.

1.4.2.2 Encoding the Expertise. There are many kinds of expertise

in the HPC field. For our purposes, we will focus on three:

– Users

– Developers

– Optimizers

The users of HPC applications, especially in the scientific community, such as

the Dept. of Energy (DOE), are often domain experts. Users will have a deep

understanding of the purpose of an application, what it is that the software

system is helping them to explore, understand, or control. A user can also be

thought of as a stakeholder, or someone who approves funding for projects,

manages a budget that covers a machine, an entire premise, or who needs to

make decisions balancing the purpose of the software with the overhead and

mechanisms of building and maintaining that software. Developers need to

be experts in the mechanics of software architecture generally, from design to

24

deployment to long-term software integrations and standards. They understand

the process of designing codes, connecting components together, interpreting

compiler error messages, etc. Developers are sometimes also domain experts, and

users of codes, and they are usually motivated to write code that runs reasonably

optimally, though it is not as incentivized as correctness. Optimizers are developers

whose role is less about building software to meet the needs of a user, but about

maintaining the effectiveness of codes over time. This means porting codes to new

architectures, tuning adjustable parameters to best exploit the hardware to achieve

the computational task.

No person can perfectly prognosticate about future architectural evolution

and its specific optimizations for any given algorithm, so there is always a role for

personnel who specialize in the tasks of porting and tuning codes. Generally, it is a

fuzzy distinction, but it can be said that application developers are primarily rated

on their application running correctly, consistently, and are not primarily tasked

with maximizing the performance of codes, where the role of an optimizer of codes

is to facilitate maximum performance, as well as code lifespan through portability

to novel architectures.

The roles of user, developer, and optimizer will each have intersecting but

distinct domains of expertise. What people consider important, when it comes to

observations made about HPC systems and software, will be strongly influenced by

a person’s various responsibilities and their areas of expertise. Some examples of

motives:

Users or system stakeholders might be more interested in minimizing the

time their jobs sit in batch queues, or in the failure rate of parts, or in network

congestion or other metrics related to shared resources. They may want to know

25

things like machine temperature, or what versions of codes are being run the

most. Application developers might be interested in using local and remote system

state or application progress to make better decisions about task assignments or

dynamic simulation domain refinement within a simulation step. They may be

interested in using in situ runtime services to couple together workflows out of

legacy components that are not engineered by themselves to be coupled together

asynchrously, and concepts of direct in situ monitoring at the application level

come into play.

Optimizers can be interested in data at all sorts of levels of detail. They

may wish to observe the frequency with which a function is called during a run,

or its average evaluation time. They may wish to see how much time is spent in

application logic vs. in the system libraries the application makes use of, seeking

places where optimization can be found. They may need to observe the behaviors

of a complex workflow in situ and at scale, to find performance bottlenecks that

only emerge online, during the course of a run, and are not readily apparent

through offline static analysis or manual code review. Drilling into deep and

invasive observations, optimizers may need to record high-frequency samples

of measurements, pathtrace data to map the flow of execution, or correlate full

sets of application data with batteries of performance observations generated

when those inputs were being processed. This can be especially important when

porting codes to a novel architecture that may offer general compatibility with

the previous, but have significantly different resources types and capacities, such

that an optimizer must observe how the detailed internal components of a large

complex application are occupying the machine and how [in]efficiently it is running

as a whole. Discovering optimal compilation options is sometimes as significant

26

a contributor to performance gains as is learning the optimal runtime tuning

parameters.

Differences in expertise lead to different priorities and values, and this means

that every system will involve trade/offs in terms of implementation, integration,

runtime overhead and application perturbation, since there is no free lunch. This

justifies the important design priority for online systems that can be selectively

enabled and/or invasive, and that offer some general utility across multiple domains

of expertise.

1.4.2.3 Time, Change, Identity, and Consistency. The

continuous interactions of discrete elements, and the ability to reason about

observations of change over time, is central to the purpose of online monitoring

systems. A brief detour to discuss these concepts and terminology is warranted,

given their constant presence in background of this entire area of study. It is not

the purpose of this paper to give a thorough examination of these delicate and

important conceptual underpinnings. Rather it can be said that since we will make

use of the concepts mentioned in this section without completely justifying them,

we wish to be reasonably clear about what is understood.

Time is a fundamental dimension of analysis for the study of computational

performance. This is true in both obvious and subtle ways. One obvious way

time in itself is a factor is in the definition of the objective function that directs

performance tuning choices: When a region of code executes in less time, it

could be considered to be more optimal than code which takes longer to execute.

Normally the distinctions discussed here are implicit to the examination of code

performance or the design of systems that monitor and evaluate it. It is worth

taking a moment to pause and consider the subtler manner in which time is

27

fundamental to observability, because of the profound ramifications that it has on

short-term measurement obligations and the feasibility of long-term objectives.

For change (or similarity) to be observed, there must be something to

compare an immediate observation to. A subtle and contingent way then that

time is a fundamental consideration can emerge when one reflects on the semantic

nature of observed phenomena, and then also on the identity of phenomena as both

a type and a token. At this point in the discussion the level of detail or relevance to

performance is not significant, merely the formal precondition for consistency.

Synchronic consistency refers to the stability of meaning for phenomena

that are fixed within a single epoch, regardless of that epoch’s unit of measure.

These are coocurrent entities, that is to say, distinct observational artifacts that are

claims about states or events that were extant within an interval of measure. The

priority of synchronic consistency is the semantic load, or the meaning, of these

observations. Synchronically consistent datum that are denoted as being the same

type of event would connote a consistent meaning, or use a compatible scale of

measurements, etc.

Diachronic consistency on the other hand speaks to the sense that as

some phenomena are observed across epochs of time, the identity of the observed

thing, state, or event, is apparent and conserved. In order to establish this kind

of consistency, some provenance needs to be included as a component of the

observations. This requires the observed phenomena to endure long enough to be

named uniquely and be distinguishable from other similar entities. In simple terms:

The story that is being observed and recorded may be changing, but the character

that this story is about is the same character at every point in the story.

28

Consistency is generally assumed by designers and developers when working

within their own projects. That is to say, most observational systems both assume

and combine synchronic and diachronic consistency, because they were built for a

singular purpose or by a team driven by a shared motivation. As such, consistency

is often silently imported, and exists as a mere assumption. One reason to be aware

of these assumptions is that without attention, the assumptions can become false

assertions, and the observations then fail to reflect the truth or support comparison

with other observations thought to be of the same nature. No system of monitoring

can capture every aspect of everything that is true at every time, the system itself

would come to dominate its own observations and lead to a nonsensical infinite

regress. Trade/offs have to be made about the amount of specificity that is tracked

in a system in order to provide safeguards to ensure synchronic and diachronic

consistency. These specifiers, or meta-observations, should be chosen to maximize

their value in lending stability to the observed performance phenomena they are

correlated with, in order to justify the overhead of capturing and retaining them.

Meta-observations can be thought of as qualifiers that say things about

an observation, as well as the observed thing, helping to distinguish both the

reference and referent. Qualifiers help to establish and refine functional categories,

prevent contradictions, and give hand-holds to grasp and utilize the observations

for practical purposes. These qualifiers need something stable to be tagged to, and

this is the object of the consistency described in the above paragraphs. Here of

course we encounter a regress of rigors, where qualifiers need something attached

to in order to enunciate for that thing its stability of identity and meaning, and

yet the qualifiers themselves seem as though they would need qualifiers in order to

be stable in the meaning or identity they are capable of conferring. This regress

29

of observations and meta-data qualifiers is potentially infinite in theory, but in

practice is rarely deeper than one or two layers of abstraction, and so does not

emerge as problematic in most systems.

One way in which synchronic and diachronic consistency can be thought

of is in the language of ontology, in the differentiation of types and tokens. There

emerge many differences in the kinds of knowledge we might have, and the kinds

of claims that our systems of observation might make about the observed. Types

are used to enunciate what something is, while tokens are used to enunciate that

something is. The distinction between knowledge-of and knowledge-that is useful

for further unpacking the distinct between the synchronic and diachronic.

The establishing of types is a way of encoding knowledge synchronically.

We might know it is true that 2 + 2 = 4, but that does not tell us that ”4” exists

somewhere in the world, or that 4 of something exists or that something happened

4 times. For an easy to grasp example, let’s think of how one knows what a tiger

is. We can have some idea of what a tiger is, for example, being a big cat with

striped fur, without there needing to be a tiger nearby to point to as a means of

providing a more robust ostensive definition. In this sense, we can construct some

kinds of knowledge about what a tiger is by assembling other concepts productively

to establish a new type. This type of thing is a cat, it is a big cat, it is a striped

cat, etc. Types can be as simple or as specific as needed for practical purposes.

When once we observe something, we may identify it and wish to make

note of it. What we are identifying at that point is a token instance of that type

of thing. We can say that ”A tiger is over there drinking water, on the other side

of the river...” This form of tiger-knowledge entails an existential claim, that not

only does a tiger possibly exist, but that specific tiger exists, at a certain point

30

in time and space. Further, it should be mentioned explicitly here that one does

not need to know the type of a thing in order to know that the thing exists, but

in order to reason or communicate about that existential knowlege,some type

will necessarily be applied to it. When this happens, this observation of an un-

typed thing, observers will often reach for more general types and begin an ad-hoc

construction of compound type: ”Big stripey animal thing over there...” Particular

to our topic of performance observations within HPC, this automatic attribution

of types and identities to ”existential knowledge” can be a major factor in general

limiting our ability to utilized those observations for analysis, optimization, and

feedback.

Ending this pedantic excursion into the realm of the abstract, and returning

to the applied topic of online monitoring for HPC, this discussion of time, types,

and identities must remain incomplete. Hopefully the distinctions called out in

this section will lend some clarity to the reasoning that is done elsewhere in this

text, regarding the formal requirements for systems of observation. When an online

monitoring system makes observations, an essential aspect of what gets observed

and recorded must be these qualifiers that establish some stability in the type of

thing, and in the identity of things over time.

1.4.2.4 Combination and Unit Semantics.

Domains, complexity, incompatibility, and a brief look at one approach

to the challenge by the Scrubjay project.

As has been mentioned several times so far, there is a wide dissaray of data in the

HPC universe. Data can represent activity or state from differing domains, sourced

at different intervals, from various tools, encoded in unique formats, with varying

degrees of online accessibility. Development tools like TAU [34] or HPCToolkit [35]

31

will describe the application domain, where other technologies like Ravel [36] [37]

and Multipath Internet Protocol (MPIP) [38] can both describe and adapt activity

in the networking or interconnect domain. Other information can be drawn from

facility monitoring sensors, vendor introspection APIs for racks, power, and thermal

management, etc.

There are various Operational Data Analytics (ODA) platforms that

exist, some of which will be discussed later in ”Monitoring for HPC: Dedicated

Frameworks” (§ 1.5). For the most part, these integrated monitoring solutions are

targeted to serve the needs of users from a particular domain, such as machine

administrators, and do not offer value to users in other domains than that for

which the ODA was not designed. Having a specific purpose, these monitoring

solutions will often have built-in data processing routines, visualizations, logs,

and reports which apply aggregation, transformation, and presentation of a priori

designated domain-appropriate information.

It is interesting to conceive of a scenario where all monitored information

could be retained and made available for many kinds of online and offline purposes,

not limited in utility to a single domain, and where the set of data had not been

transformed or aggregated in ways that would restrict its ability to be used to

answer questions not anticipated at the time the system was deployed or metrics

were gathered. While the computational and data storage resources necessary

for such a system are themselves not trivial and would represent a significant

investment of time and capital to field in production, another concern emerges

regarding the dissaray of information. This is especially true when all of the data

is not being prepackaged for an ODA infrastructure.

32

Solving the challenge of complex combinations of units and data semantics

remains an open research area within HPC. A notworthy contribution to this topic

was made by the ScrubJay [39] project. Scrubjay provided a constellation of tools

to gather, store, annotate, and process queries over precisely the complex types of

data we’ve just described. Effectively, it decouples the collection, representation,

and semantics of data.

Scrubjay allows for data gathered from any source to be placed in a

wrapper which represents it in a common format that can be transported, stored,

and queried. Data is useless without meaning being ascribed to it, so Scrubjay

also provides a framework for applying semantics to the wrapped data. These

semantics are reusable, and can be applied automatically to all data arriving

from various sources, after they are first annotated manually by a user with

some system expertise. These stable semantics provide the basis for composable

derivation functions, which define rules for inferring information from or computing

relationships between various data sets. Because the number of derivations is

potentially vast, the final contribution of Scrubjay is a derivation engine that

navigates this space to efficiently find sequences of derivations that are appropriate

to resolve queries over the wrapped and semantically-annotated data.

When queries are processed over this data, results are constructed combining

both natural joins as well as interpolative joins, which are translations and

projections of compatible kinds of data into the semantic categories or units of

measure that a user has requesting in their query. When results are delivered,

the rules the derivation engine used when making any interpolative joins are also

presented, so that the derived results are open to verification and the resulting

data set is reprodicible even if additional data or semantics are added to the

33

system in the future which would cause the derivation engine to resolve the same

query differently. Unlike a traditional query where a user will specify tables and

columns of data, and apply specific join rules and aggregation clauses, Scrubjay

provides its own query format. In this novel format, a performance analyst needs

only identify a set of data sources, and then an expression of the measurements of

interest, specifying the dimensions of the domains, and the dimensions and units

of the measurements of interest. Scrubjay then determines whether this request

can be satisfied, and if so assembles the resulting data, allowing for it to be passed

through additional filtering stages which facilitate classic relational database query

semantics.

While the support requirements for the Scrubjay platform are non-trivial, as

it relies on a dedicated cluster of HPC servers to store and process continuously

streaming site-wide monitoring data, the approach and the tools provided by

Scrubjay represent a meaningful step forward in this open research area.

1.4.3 Patterns Within HPC.

Qualifiers and considerations common within HPC scenarios, such

as versioning, configuration of operating environments, hardware

variability, communication hysterysis, and undifferentiated noise in

observations, etc.

Application codes evolve over time, as well as the characteristics of the input data

that codes operate over. Underlying the application’s code, the operating system

code, its version and configuration, the versions of system libraries and vendor

drivers, the versions of linked libraries, and the general machine environment can

be significant to the performance of codes in execution. Performance observations

are often relevantly connected to various combinations of these factors, in addition

34

to direct choices made by application developers and resulting from the algorithms

they implement.

Furthermore, user priority level and permissions may have a direct

impact on the performance characteristics. Some users may have their codes run

transparently on assets that are shared between multiple users, and experience

wild performance fluctuations that are completely beyond their ability to influence.

Higher-priority users on a machine may delay or even evict lower-priority users,

leading to variability in observations that would require this condition to be known

in order for a user or automated system to make sense of.

Observations of software in highly-variable environments can make it

difficult to gain insights into the actual performance characteristics of the software.

If the code configuration or input set is always changing, it can be hard to know

the ground truth about general system performance. If the relative priority of

a user or utilization of shared resources are always in flux, it can mask-off the

behavior of particular versions of software. Without some ”stable middle” of

observations made about any given configuration, and a sequence of observations

showing that a centroid of observed values has shifted in one direction of another, it

is a challenge to know whether performance was gained or lost by any given change

to the system configuration or an application’s code.

When the density or distribution of noisey sets of observations are not

regular, a case can be made for simply throwing away the irregular or outlying

information and using what lies more towards the median. In such cases, using less

of what is observed can actually be beneficial to the cause of general performance

understanding. It is important to point out though that in order to detect that

there is noise, and that the noise is irregularly dense and centered around a stable

35

middle, all of the observations of some epoch under consideration will have to have

been made and analyzed. Just because some observation is later deemed to be the

result of noise doesn’t decrease the importance of it being either exported into a

monitoring system, or exposed to inspection.

On that point, let’s unpack what it means for something to be exposed or

exported.

1.4.4 Exposing Data. Observability, even in an online sense, does

not necessarily require information to be actively moving around within the

operating environment or monitoring system. It may be sufficient to the needs

of the online monitoring system that various components are available to be

interrogated as needed, that is, that relevant performance metrics are merely

exposed to a monitoring system.

Many sources of information in traditional HPC operating environments are

regular system components that exhibit this ”inspectability” property. A common

way for performance data to be gathered is to inspect the statistics of a running

process via operating system API calls, or by interrogating a filesystem abstraction

such as /proc/stats which makes this data available through the form of memory-

mapped files which are continuously updated with new statistics for processes.

In-memory logs and filesystem storage cannot be continuously populated

by performance observations, this could consume all available resources over a

long enough period of time. Because of the need to not burden the system with it

own introspection, information that is made continuously available via exposure

to inspectability is also often transient in nature. For example, the history of

values in /proc/stats is not retained forever, it is continuously updated in place,

obliterating the prior observations as new observations are made.

36

This update-in-place behavior imposes limitations to the types of

understanding that can be gained, such as preventing the chance to identify

that some average performance degradation was due to the interaction of two

independent processes both simultaneously bursting with abnormal amounts of

activity. Another point is that these systems usually do not retain performance

measurements for processes which are no longer actively running on the machine,

though they may be contributing in essential ways to the performance of processes

which are still running, such as the case of complex scientific workflows that

integrate the inputs and outputs of many independent processes, and where metrics

are reflecting the behavior of the workflow in its aggregate performance from

beginning to end.

While there may be counters and averages that track activity over arbitrary

spans of time, the precise update interval, event density, or general distribution

of events that are accounted for are not features that can be seen without this

exposed information being retained in some way.

1.4.5 Exporting Data. Given the simple and limited nature of

exposing information, in order to do more sophisticated things with data in our

monitoring system we must retain it, and this will involve exporting, or recording

and migrating that information between components of the system. This movement

of information can happen in a number of ways. Information could be copied

immediately, and in full, over to the receiving component. Or perhaps a lightweight

reference to that information might be dispatched, taking the form of an event

record or data pointer, to make some other element in the system aware that this

information now exists and may be consumed.

37

In cases of lightweight dispatch of event records or pointers to data, other

structures are implied, such as reference management, caching, or queing of records,

transaction management services, etc. so that the information those records point

to does not get ”garbage collected” and vanish unaccountably. There are trade/offs

here, like everywhere else, in the balance of retention policies for this information,

and the needs of the monitoring system to not consume too large a share of the

resources which are meant to be dedicated to productive computation.

Any time information is moved from one context to another, leaving the

boundaries of a process, a shared library, a tool, or a machine, it can be said to be

exported, for our purposes in describing this research area. Here are some of the

primary techniques or models for exporting information:

– logging

– checkpoint

– cacheing

– polling and pulling

– broadcast or push

– hybrid push/pull

– publish/subscribe

We will now discuss each of these techniques in turn.

1.4.5.1 Logging. Generally this method involves a ”fire and forget”

or write-only approach to recording information into a monitoring system. Sources

that generate data and spool it out into a log do not typically also read back from

38

that log. This allows the logging mechanism to be optimized for low-latency intake

of data, such that it does not pause the work of the application any longer than

necessary.

The mechanics of logging systems are able to be much simpler than some

of the alternatives below, which make this a popular choice for developers who do

not have sophisticated observational needs. Logs can be as simple as appending

output to an asymptotically growing file containing messages for a particular

session. Being relatively passive systems, logging mechanisms are typically enabled

(or disabled) via the use of environment variables or command-line options to

applications.

Some logging systems allow for ”levels” of logging to be enabled, so for

example one can see only critical messages at a certain level, or could see all

available log output at a different level. This log level control allows a user to

control the amount of overhead that the logging mechanism imposes at runtime.

1.4.5.2 Checkpoint. Long-running HPC applications that operate

over large datasets do not typically have enough time to continuously write

their intermediate results out to the stable long-term storage. This is due to the

relatively slower speed of I/O that addresses the long-term storage, in contrast

to the high speed system bus and volatile memory. In order to provide some

safeguards against losing all progress in the event of an application crash, or to be

able to rewind a simulation and advance down a different search path, applications

can choose to periodically write out their data at some user-defined intervals. These

snapshots of data are called checkpoints.

One technique used for the export and storage of performance observations

is to embed the performance measurements alongside the application data, and

39

amortize the cost of measurement and I/O into the cost of creating and storing the

checkpoints that the application is already producing. The Cheeta [40] codesign

framework provides an excellent example of this, where an overall job management

tool (Savanna) and a low-level performance monitoring tool (TAU) would emit

their metadata and measurements into the streaming I/O layer (ADIOS) used

by the application, embedding, contextualizing, and preserving performance

observations.

This technique achieves two things. Firstly, the amount of overhead and

additional I/O imposed by the performance metrics often dissapears into the large

volume of work done to create and store an application checkpoint. Secondly, it

provides a natural correlation between the productive work that an application

performed, and the measurements of the performance metrics as it did that work.

When ”replaying” the checkpoint data, a developer has at the same moment

a picture of the work performed, as well as the measurements of the execution

environment and how efficiently the code was able to produce that work. This

embedding of performance measures and metadata into an application’s output,

or into its checkpoint snapshots, gives a fair amount of additional provenance,

including the scale of the job and the machine it was run on, so insights could be

gained in future reviews by comparing similar jobs on the same or similar resources,

to observe the impact of code changes on application efficiency over time.

1.4.5.3 Cacheing. In some systems, information is generated

continually during an application’s execution, and it is not overwritten in place

but retained, and yet it is also not immediately exported fully into its final storage

location. In such cases, information needs to be exported into a cache of some kind.

40

There are diverse reasons for caching information at various stages of a

monitoring system. One simple and intuitive reason would be to avoid interrupting

communication that is being done by the applications that are being monitored.

Communications are typically orders of magnitude slower than computations.

Overhead can be lowered and performance improved in many cases by retaining

high-frequency events locally, and perhaps doing some compression, filtering, or

other operations on the data, prior to its re-export and further transmittal.

Cacheing systems can range in sophistication from something as simple as a

first-in-first-out (FIFO) queue, to complex event-processing layers with scriptable

behaviors allowing custom logic that can react to the contents of things being

stored in the cache. While it is not required, ideally all caching systems will have

some mechanism in place to alert the user and perform appropriate failsafe actions

in the event that the cache grows beyond some reasonable size.

A cache can be implemented as a variety of different data structures,

sometimes embedded within additional data structures. A ring buffer or unbouned

queue is just as valid a means for retaining cached observations as a hash table.

The data structure that is utilized should be selected based on the desired use-case

of the system. A good example of this can be found in the Caliper [41] performance

introspection tool. Caliper uses different data storage models depending on which

services a user has activated at runtime. This allows it to record information in a

manner optimized for low overhead, factoring in both the type of contextualization

that is needed for observations, and the granularity of observations being requested.

Nearly all online monitoring systems employ some form of cacheing or

another, especially if they offer support for network communication of observed

data. A monitoring system typically pools or stages information before writing it

41

out to disk into a log file, or sending it out over the network in a publish/subscribe

system. In such cases we’d describe it as using a cache, but generally the system

would be a logging system or a publish/subscribe system, as that reflects the

behavior of the system as a whole.

1.4.5.4 Polling and Pulling. When monitoring information is

retained, but frequency or volume of information, or the operating environment’s

sensitivity to overhead is high, it may make sense to use a pull -based model for

monitoring. In this context, pulling refers to the request and receipt of information

being exported from one context into another. This usually takes places via

interprocess communication methods, and can be within a single computing node,

or coordinated remotely across the interconnect between nodes.

Oftentimes as well, due to the simplicity of its design, a polling mechanism

is built-in that allows for remote processes to determine whether it is time to

pull information, or perhaps what information they would like to pull. In this

model, the monitoring system will provide a mechanism for remote components

to interrogate the sources of information to determine whether new information

exists, or the transmission of that information is warranted. Polling ranges in

sophistication from full complex query languages where results are computed

and returned, to simple call-and-response notifications where the polling message

essentially says, ”I’m ready, send what you have.”

What is distinctive about polling and pulling models is that communication

of the exported information is directed by the receiving end, and the sending side

operates passively, cacheing its information and servicing the remote requests for it.

1.4.5.5 Broadcast or Push. Both the broadcast and push models

are similar in that the sender of information is in charge of the content and

42

frequency of what is exported. A system can be said to be broadcasting if it is

indiscriminately dispatching information out to all other components of the system

that are capable of receiving it, regardless of the content of the message or the

capacity of the receiver to use it productively. This can be useful in cases where

network interconnects or on-node IPC can very efficiently duplicate information out

and provide it to multiple recipients within the same timeframe or with the same

resource consumption as it would take to deliver it to a single recipient.

1.4.5.6 Hybrid Push/Pull. Push/pull systems [42] allow for

disparate components to discover and engage with each other, but do not impose

a particular coordination scheme or global state to be maintained. Each side

of communication waits for incoming requests (or results from their previous

outbound requests). Both sides are also freely permitted to fire off messages or

push information out into the system at their own prerogative. This is useful

for observing parallel applications that have ranks or components that operate

independently of each other or that may finish out of synchronization with each

other.

1.4.5.7 Publish/Subscribe. Monitoring systems that provide a

publish/subscribe model are able to offer the finest-grain control over the movement

of information of all the models discussed so far. These systems provide brokering

services which connect receivers and senders together, and facilitate the orderly

exporting of information through the system. In addition to the movement of

monitoring information, these systems also must coordinate the state of the

publishers and subscriber agents themselves, in order to provide notice about

the availability and information sources, and the presence of information sinks

to transmit to. These systems can make powerful contributions to the orderly

43

operation on an online monitoring system at scale. Because of their capabilities,

they are can also be difficult to implement, and can require greater configuration to

effectively deploy.

1.4.6 Introspection, Opacity, and Interface Standardization.

A particularly lamentable fact about extant online monitoring systems is that

they generally have bespoke or opaque interfaces, protocols, and data formats.

Since the beginning of the discipline of computer science, one of the running jokes

amongst practicioners has been the sarcastic pronouncement, ”The great thing

about standards is that there are so many of them to choose from!” This applies

to numerous subdisciplines in computing, but online monitoring no less. When one

does not know that an information source exists, or when one does not know how

to properly interact with it, it may as well not exist except for the overhead that is

incurrent in its processing.

Many monitoring sources in HPC are produced for specific research

experiments as one-off accessories, or for the utility of a single integrated workflow,

or the operation of a specific physical compute resource. It can be difficult if

not impossible to exploit the capabilities of these masked-off sources to make

contributions to any more generalized online monitoring frameworks. Expert

knowledge and specially-targeted and tailored code would need to be written

in each instance of a deployed monitoring system in order to discover and then

tap into these otherwise-observable subjects for online monitoring. That kind

of knowledge and that amount of labor, for both initial implementation and for

project maintenance, is obviously prohibitive in comparison to the commonly

marginal value that can be discovered and extracted through online monitoring,

as the opportunities for large gains are assumed to be discovered and integrated

44

into the layer of the project-specific internal introspection that is already in place,

having the property of being opaque that is being discussed here.

It may not be the case though that the introspection capabilities internal to

a particular project or vendor-specific OS and hardware management were future-

proofed or able to fully capture and exploits the opportunities for optimization that

are available, where being integrated into a broader or more holistic monitoring

framework potentially could.

Oftentimes capabilities have been available but the desire to utilize these

abilities is newly emergent, and can be hamstrung by the lack of observability or

accessible control points. One solution to the challenge of introspection is the use of

generic performance annotation hooks, source-level instrumentation that is disabled

by default and imposes no overhead, but can be activated to yield a rich set of

information at runtime, with detailed contextualization. The PerfStubs [6] project

proposes an API and toolkit for this. PerfStubs is not tied to any specific tools, but

provides hooks for performance monitoring tools to tap into and observe programs

in execution. This means some tools can engage with it in sparse flyweight ways

that avoid the overhead of something like full callpath tracing and context tracking,

and take actions more suitable for always-on runtime monitoring or ocassional

auto-tuning.

Understanding application-level context, such has having explicitly identified

iteration boundaries, or having clearly defined divisions between communication

and computation phases, allows a generic annotation framework to go beyond

simple introspection tasks. Having performance-related annotations already baked

into application codes can render them into both sources of information and targets

of tuning within an online monitoring framework.

45

The more sophisticated the purpose-built or project-internal introspection

system is, the more capabilities it is able to provide for configuration and efficient

operation, there is an increasing likelihood that it is difficult to observe or interface

with. Very simple models like logging, for example, where observable surface-

area of noteworthy events are exported into plain-text log files with lightweight

structure such as having tab or comma-delimited data fields, are relatively trivial

to observe and integrate into a broader monitoring platform. More complex end-

to-end workflow management systems with support for internal logic and dynamic

behaviors and a robust online information flow implementing publish/subscribe

capabilities, can from the outside be entirely opaque and mask off the events and

status of internal components within the events and status of the management

systems’ data model and protocols.

It is unlikely that pure generality of observables will be achieved, given the

multitudes of design influences and priorities that factor into fielding and operating

even the simplest of HPC platforms in the modern era. Pure generality would

mean that such that all observables can be heirarchically integrated from multiple

perspectives, and with unrestricted visibility of any subsets of phenomena, and

phenomena have stable identities and productively-combinable semantics. This

would, of course, require incredible discipline and thoughtfulness in the design of

the first-order lowest-level components of the system. Interfaces between ascending

layers of integration would be required to conform to protocols that conserved

the observability of any desired element operated over or participating in the

computational task acting above it. There are many justifide reasons why data

and activity live mostly in unobservable enclaves owned and arbitrarily operated

over by so many processes. Not least among these reasons is efficient use of storage

46

resources, and a desire to maximize the proportion of computation that produces

output significant to users, compared to the amount of work done to facilitate that

productive work.

What we may clearly percieve here is how complicated the trade/offs

become, at multiple levels of understanding. There are broad and almost existential

trade/offs of purpose between the partially-overlapping motives of stakeholders,

developers, users, and optimizers of HPC systems. Then there are comparitavely

microscopic trade/offs with enormous downstream implications that are made at

the software and hardware design and integration levels of HPC. We can see then

that embedding capababilities and increasing the sophistication within one design

layer, or within a single component of a larger system, can have the consequence

of decreasing the visibility of that layer or component to outside observers. At

the same time, the activity observed by that introspection system will have high

enough overhead to export elsewhere that it becomes increasingly likely it will not

be considered worth the percieved benefits of doing so.

1.4.7 Case Study: The CDC 6600 Mainframe. HPC, or

”supercomputing”, has moved through several different eras from the single-core

mainframes of the 1950s, to vector machines, into the era of distributed memory,

heterogeneity, and extreme scales of devices. As time and technology progressed,

the innovations of prior eras were integrated into the newer designs, often combined

into unified components that were then multiplied in number and interconnected to

provide expanded compute capabilities. These growing numbers and increasing

reliance on complex communication patterns led to cyclical renewal to the

challenges of understanding and fully utilizing the available resources of those

machines. In addition to increasing performance of codes, having insight into the

47

state and behavior of these complex machines could also increase the performance

of developers and users. The easier some HPC resource is to understand, develop

for, and debug, the more productive work can be achieved with it.

One of the earliest commercially available mainframe machines was known

as the CDC 6600 produced by the by the Control Data Corporation [43].

Principally designed by Seymour Cray [44], one of the legendary early innovators of

HPC technology, the 6600 introduced a number of ideas which became fundamental

to nearly every HPC system which followed. We mention it here not only because

it was a conspicuously popular and important machine in the history of HPC

development, but because it also shows two major challenges which are still with

us today: Parallel complexity, and the trade off between opacity and operational

efficiency.

The 6600 was designed with multiple functional units which were able

to operate in parallel with each other, at the same time, reducing the gaps in

productive work that are the natural result of operations stalling as data or new

instructions get fetched from memory. In addition to a central processor (CP)

which executed the majority of user code, there was an instruction cache put in

place to facilitate pipelining, and a cohort of 10 different ”peripheral processors”

(PP). This queueing of instructions, and the processing of the different steps of

an instruction (i.e. loading, evaluating, branching, storing, etc.) simultaneously,

where new instructions can be introduced at the front end of the process as older

instructions are partway through being evaluated and eventually retired, is typically

referred to as pipelineing. Even naive implementations are capable of providing

significant speedups, and these will typically be bounded by the depth of the

execution pipeline and the frequency with which instructions cause unavoidable

48

delays in the handling of a stage of execution, preventing that stage from vacating

and the preceding stages from moving forward, delays which are known as stalls.

The 6600’s inclusion of an instruction cache was an early example of this pipelining

idea, which has grown into much richer and incredibly sophisticated forms in

modern HPC.

The overall performance of codes running on this hardware was in large part

a factor of how efficiently a developer could take advantage of the parallelism the

multiple PPs offered. At the time of the 6600’s development, operating systems

and compilers were also (relatively) new concepts, and were not able to provide

many of the modern advancements of automated optimization or parallization

of code regions. The complexity of how the CP and the parallel PP components

would cooperate to create a kind of pipelining, also created a novel burden for code

developers targeting that platform, to design their implementations of algorithms

around the optimal behaviors suitable for the 6600’s specific internal coordination

patterns. If a programmer did not take advantage of the parallelism on offer, the

machine was hardly able to do it for them, but a higher degree of expertise and

design overhead was thus introduced and imposed on HPC developers.

While the 6600 was not a true ”multiprocessor” system in the modern sense

of the term, it did support some forms of pure parallelism, where real work was

being done concurrently, and not merely seeming concurrent through time/sharing

techniques like context switching. The 10 PPs each operated independently of

each other and the CP. Their primary task was to load and store information from

the main memory of the 6600, freeing the CP to use its time more productively

to perform complex multi-step operations on that data once it had been fetched

from memory. The 0th PP was dedicated to running the operating system of the

49

entire mainframe, including the CP. The 9th PP was dedicated to running the user

terminal, managing the display and interactivity for users running programs and

evaluating the results. Activity for memory accesses, the PPs, and the CPs, was

coordinated by setting values for different states into registers. Importantly, these

private registers were not addressable by user code running on the machine.

Here we see one of the first instances of an intentional trade/off which

remains an interesting challenge all through HPC into the modern era: Exchanging

opacity for efficiency. Private registers effectively created a communication channel

for the operating system, nascent though it was at the time, to orchestrate the

behavior of the machine in support of user software demands, without needing to

impose the overhead of synchronization with the specific activity of user programs.

This did, however, mean that the state of the machine itself could not be easily

introspected on by any software that was running on it, leading to novel challenges

when searching for optimal use patterns, or debugging a code that was behaving

unexpectedly. Another way in which this opacity exchange could be seen was

in the physical presence of the machine itself. Unlike many of the machines

which preceded it, the 6600 did not have any integrated display panel of lights

to represent the values of the different registers. Normally these had been used

to inspect the machine state or to perform debugging, even if only for the initial

startup of the machine, after which printouts or a cathode-ray tube (CRT) display

could be used to check state.

It would not have been feasible for the 6600 to offer a lightbulb-array-based

”live look” into the state of the machine registers, as the physical layout of the

device was too dense, and the number of registers that would need to be displayed

was too great to be practical. So even this early on in the field of HPC, it was

50

understood that monitoring systems are not free, that there is a trade/off. By

choosing to forgo a physical monitoring system for the 6600, Seymour Cray was

able to lower the power requirements, reduce the operating temperature, and bring

the components of the computer closer together. The physical locality of resources

in HPC systems is significant, because at the cutting edge of design, having reduced

wire length translates directly into performance gains. This informs the physical

layout of the 6600, taking the form of a star-shape with the CP in the center of the

device, to be as close as possible on average to each of the PPs and memory banks.

The 6600 is one machine, but a representative example, showing the origins

to a couple of the enduring challenges for development and monitoring in HPC.

1.4.8 Observability: In Conclusion. Now having familiarized

ourselves with both practical and theoretical aspects of making online observations

in an HPC environment, we are equipped to proceed into the discussion of tools

and techniques with a richer understanding of the means and meaning underlying

what is being discussed.

1.5 Monitoring for HPC: Dedicated Frameworks

As should be apparent from the discussion so far, the topic of online

monitoring can take on many dimensions in the HPC context. Data sources may

be as diverse as the version numbers of software being run, XML files emitted by

proprietary commercial sensors and software that report the power of a building’s

HVAC systems every few minutes, or hundreds of temperature sensors scattered

around the server room with data being aggregated every few seconds, to in

situ (online) probes of scientific workflow components executing on massive

clusters, high-resolution performance data being captured and aggregated by the

millisecond.

51

The manner and means by which data sources, applications, tools, and

system services conspire to produce the general outcome of online monitoring are

as diverse as these examples. There are as many purposes for online monitoring as

there are individual contributors or consumers to the monitoring infrastructure or

the system that it is monitoring.

It is therefore worth making note of the basic fact: Online monitoring for

HPC is rarely the exclusive role of a single tool dedicated to monitoring a single

aspect of the HPC system. In Monitoring for HPC: General Topics (§ 1.6) we will

discuss some of the common challenges of HPC that are closely related to online

monitoring, analysis, and feedback, but are not necessarily centered on a particular

monitoring concept or tool.

For now, in this section, we’ll survey some of the past and present heavy-

hitters amongst purpose-built online monitoring systems [45].

1.5.1 SuperMon. SuperMon [46] is a set of tools for cluster

monitoring, engineered to be high-speed and to minimize overhead. Delivered

during the terascale era of HPC in the early 2000’s, one of SuperMon’s design goals

and achievements was to allow for low-impact monitoring high-frequency events,

making previously invisible behaviors of the cluster open to observation.

The system operated online, and could gather data from all nodes and

assemble it into a coherent single perspective of the cluster as a whole. SuperMon’s

developers described the state of the art as being extraordinarily primitive, being

little more than shell scripts that would periodically run the ping command to

test the responsiveness of nodes. If the ping attempt failed, or if a support notice

arrived from a user saying their job failed or they could not log into a node,

machine administrators would then direct their attention to manually determining

52

the cause of the failure. The monitoring sensors available to administrators were, in

the scenario they describe, limited to the server daemon that handled user logins,

and the daemon that would respond to ping commands. There were other solutions

which might have worked on their newly constructed Linux-based terascale cluster,

but that did not meet their design requirements for minimizing overhead and

application performance perturbation. One such tool they mention is rstatd for

”remote status” based on the SunRPC protocol. Again, it was deemed too slow,

and also at 20 years old did not offer sufficient flexibility to describe the dynamism

of events and hardware that were beginning to show up in HPC clusters. They

considered this inadequate for terascale computing, and set about to construct their

own solution.

The Supermon cluster monitoring system was built from three distinct parts:

– Linux kernel module to observe and emit performance data.

– mon: In situ data server to capture and cache data from the kernel module,

and to service requests for that data.

– Supermon: To compose samples from any number of nodes into a single set of

samples that represents the state of the cluster.

Supermon, like may monitoring systems, also utilized its own client-server protocol

to exchange information between the three components. Its developers used a

clever encoding of performance data into self-describing s-expressions, something

like modern-day XML, but designed originally as a part of the LISP programming

language in the 1950s. These recursively-defined self-describing packets in the

Supermon protocol were advances in utility and flexibility over the existing RPC

packets, which were strictly defined and packed into binary formats. S-expressions

53

could vary in size and content, and could be easily processed and composed into

various representations or aggregations as desired. They found that processing

packets of this nature, even in plain text, was faster than what was needed to

serialize and deserialize everything into rigidly defined structures, and had the

added benefit of not requiring the use of special RPC compilers or inspection tools.

This system represented a major step forward for online monitoring of

HPC clusters, being faster, more efficient, more flexible, and easier to use than the

immediately outdated RPC-based monitoring state of the art.

1.5.2 MonALISA. With grid computing, often teams would be

using computing systems that were connected over the internet, distributed across

a nation and even around the world. The number of constituent systems in a

computing grid, and the extreme heterogeneity of them, posed a challenge to

administrators and users who wished to be able to observe the system in aggregate.

Around 1998 the MonALISA project was born, looking to provide practical

solutions to this problem.

Monitoring Agents in A Large Integrated Services Architecture (MonALISA)

utilized forward-deployed ”station servers” positioned at each of the major

grid system locales. These station servers would run a variety of agent-based

services, forming a dynamic distributed services architecturem, capable of

deploying, starting, stopping, discovering, and utilizing arbitrary monitoring agents

online. This system was not overly concerned with maximizing throughput of

monitoring data, focusing rather on flexibility and self-organizing capabilities. It

was considered acceptable and also useful for an agent to capture individual or

summary measures of its grid location once a minute, and to aggregate on the

order of hundreds of station server’s data from around the world every several

54

minutes. By modern standards this is not impressive, but at the time this was

very useful, especially given the deep configurability and flexibility of the agent-

based system. MonALISA was also not concerned about overhead and performance

perturbation, since agents were running on their own server attached to the grid

facility’s network. In fact, much of the infrastructure of MonALISA was developed

in JAVA, rather than the traditional high-performance languages like FORTRAN,

C, and C++.

Much work was done in this project to facilitate the distributed nature

of grid computing, or to model this monitoring solution around the features of

distributed computing. Agents would place themselves in a common registry,

report changes in their availability, and report what information they were able

to provide. Monitoring clients could then subscribe to the information streams from

those agents, and this subscription would propagate through the system, and that

client would begin to receive streams of information from all active and available

agents of that type. The MonALISA framework was built to be resilient to the

vissictitudes of internet connectivity, and so all operations were asynchronous and

all interacting components were loosely-coupled. Individual sites, or entire enclaves

of sites, were capable of performing just as effectively in isolation as they would

when completely joined and online together.

This project also included a client which could project the monitoring data

over a global map, allowing for useful dashboard-style visualizations of a variety

of topics, for example: system availability, load balance, and data link saturations.

More than just collecting and presenting information, MonALISA could also be

used to optimize grid-based workflows, based on the types of agents deployed and

the sensitivity of an application to receiving directives and adjusting plans mid-

55

run. MonALISA interfaced with a variety of other on-site monitoring tools we will

discuss here, such as MRTG and Ganglia. Those interfaces is where MonALISA

gathered much of the actual site data that was ingested and shared by agents.

While we are in this survey mostly interested in the in situ (online) monitoring

that is closer to the nodes, applications, and facility sensors, the ability to step

out and up another layer and provide monitoring across vast distances, uniting

multiple clusters into an aggregated perspective, is a noteworthy achievement by

the MonALISA team. This project can serve as an example for how to think about

and even implement some of the technologies that are required to perform those

tasks.

1.5.3 MRTG. The Multi Router Traffic Grapher (MRTG) [47] [48]

first emerged as a single-purpose tool, designed to monitor the inbound and

outbound traffic on a internet gateway router. This perl script would read the

octet counters of the router every 5 minutes, and then generate a graph which

could be seen by visiting a web page hosted on the same server where the script

was running. After it became open source, people from all over the world began to

use it and make code contributions, even porting parts of it to C for performance

increases. MRTG quickly grew in sophistication, configurability, and monitoring

capability.

The main bottleneck slowing MRTG’s early adoption was the need for

an external client library to interface with routers over the Simple Network

Management Protocol (SNMP), since not all potential users had access to or the

ability to build such libraries. Eventually, a perl-based SNMP implementation was

integrated into MRTG and the project was then entirely self-contained and trivially

easy to configure and use. Being implemented in perl, it was also automatically

56

portable to every platform where perl code ran, which was just about everywhere.

Since it was simple, self-contained, useful for a variety of tasks, free, and open-

source, by the mid 1990s MRTG had become a very popular monitoring tool within

the IT world. Usability cannot be underestimated, when considering the value and

effectiveness of monitoring solutions.

Another way in which MRTG facilitated usability was by embracing a

functional opinion about monitoring data: that it is less important the less recent

it is. This allowed for a ”lossy data storage” paradigm in MRTG’s implementation,

which would allow MRTG to compress expiring data into rolling averages of the

prior measurement periods, preventing server storage from filling up with old

monitoring data if MRTG was left running for an arbitrary amount of time. While

also offering a boon to administrators who did not need to manually flush logs or

purge databases, it also dovetailed with the automatic activity graphs that MRTG

produced. By default it would offer a 5-minute resolution of the last 24 hours,

every 30 minutes for the last week, and average values for every 2 hours for the last

month. Two years worth of history are archived, but compressed further to where

entries represent the average value over two day periods. Having the monitoring

data constantly flatting and coarsening like this kept the service running smoothly,

and provided handy reports to summarize both immediate events in detail, and

longer-term trends from an overview perspective. Though only a simple approach,

it was very practical, and had the effect of making this monitoring solution useful

for both system administrators, and site resource managers who needed to keep an

eye on system utilization in order to make purchasing decisions about new systems

or increases in networking capacity.

57

1.5.4 RRDTool. The same creator of MRTG also produced a

toolkit for rapidly developing one’s own monitoring solutions, the Round Robin

Database Tool (RRDtool), which was released back in 1999. The core functionality

it provides is a time-series data model and a suite of utilities for accessing the

monitoring data repository. RRDTool is the central data storage solution running

beneath a number of popular monitoring solutions, such as Ganglia, Cacti,

Collectd, etc. One modern incarnation of this tool is the SE-RRDTool [49],

which extends the core features of RRD with the ability to provide semantic

enhancements, that is to say semantic annotations, to data sources. These

annotations improve the ability of tools to utilize information gathered within

the system, especially for automated learning systems that do not accomodate

”human in the loop” expert review of monitoring data. SE-RRDTool allows for the

expression of data ontologies for values that are captured in a monitoring service

that utilizes it, including units, quality of service metrics, system heirarchy such as

cloud entities, and other custom user-defined typings. In addition to marking up

the data, it also enhances queries, allowing for semantic-based retrieval of values

with a cursory support for automatically generating derived or projected values

based on the semantic rules built into user-defiend ontologies.

1.5.5 Ganglia. Ganglia [50] [51] is a popular distributed monitoring

solution that targets both clusters and Grid computing environments. The Grid

computing is especially supported by the heirarchical design of the Ganglia data

model and services. Its implementation uses XML for encoding its data, and the

previously discussed RRDTool for data storage and analysis / visualization. By

2004, Ganglia was in use at over 500 compute clusters worldwide.

58

Ganglia is built around a monitoring daemon that uses TCP/IP multicast

listen/announce protocols to monitor activity within a cluster, gathering a set

of built-in metrics as well as allowing plugins to capture arbitrary user-defined

metrics. It leans into the idea of federations of clusters very heavily, supporting this

through the ability to pull in collections of child data sources from various clusters

periodically, and aggregate this information into a unified data store.

Generally Ganglia has operating overhead below 0.1%, since it is focused on

coarse-grained sampling of metrics like hardware counters, temperatures, general

system activity, network traffic, etc., and does not need to engage with or interrupt

application processes, and its use of RRDTool for data management means it does

not need to retain large data sets indefinetly. Though it has local services that run

in situ, and it aggregates its information online, its focus on collecting samples

of metrics at a coarser-grain than the individual processes or components of a

workflow lends it more value to system administration types than to developers or

even users of HPC systems. As discussed above, Ganglia isn’t intended to be used

in all scenarios, and can be complemented or even potentially replaced for certain

production environments or user sets by other online metric collection services such

as LDMS.

1.5.6 Nagios. Nagios [52] [53] is another online monitoring tool with

a strong emphasis on monitoring of network devices and their service statuses,

to provide automatic notice to administrators when there are service failures or

capacity is being approached. Like Ganglia and many other services described

here, it has an in situ server that runs in the background local to the nodes of a

cluster. This service periodically probes the state of the machine and services, and

can fire off triggered behaviors depending on what is observed. Nagios offers a very

59

flexible plugin system, and over the years has gained hundreds of plugins and been

used as the core component of many different commercial monitoring solutions,

where the commercial product contributes their added value features in the form of

proprietary plugins which run on the basic Nagios software stack.

There are some limitations to Nagios, including being user-unfriendly to

configure (perhaps why it is often wrapped up into a commercial product), and

also not having its own data storage solution built in. However, despite these

limitations, it’s being lightweight and, when configured, a stable and reliable

system monitoring tool, and one that can be infinitely extended through plugins,

Nagios endures as a commonly available monitoring tool for making observations to

support the management of HPC clusters.

1.5.7 TACC stats. In 2013, Texas Advanced Computing Center

(TACC) fielded a set of sweeping updates and enhancements to the monitoring

solution for their Linux-based HPC clusters, though keeping the rather

straightforward name for their project: TACC stats [54]. The central premise to

TACC stats is that users and developers and adminstrators do not need to do

anything in order for it to be enabled and functioning. TACC stats is constantly

enabled and accumulates performance and utilization metrics for every single

job that runs on the cluster. It utilizes a variety of sources for information, from

the filesystem to the messaging services to the job scheduler, to operating system

performance introspection APIs. All metrics gathered into TACC stats are resolved

to the job and hardware device, so individual jobs and applications can be analysed

separately. Many kinds of metrics are gathered by this system, from core-level

CPU usage, socket-level memory usage, swapping and paging statistics, system

and block device counters, interprocess communication, interconnect fabric traffic,

60

memory controller cache, NUMA coherence agents, and the power control units on

servers. TACC stats is built to be modular, and can be extended to track arbitrary

additional data points based on user interest and data availability.

TACC stats is a fine example of what can be achieved with an always-on

monitoring solution. The overhead of collecting the monitioring data is simply

amortized into the operational overhead of the cluster itself. Because it has

records of every single job going back to 2013, long-term trends can be observed

in use patterns, so stakeholders can get clear and detailed reports about how

their machines are being used, and what users needs may be for the design and

purchase of future resources, or the targeting of talent and funding to support

the improvement of software packages which are seeing the most use. System

administrators are also able to take a more proactive approach to the detection

and diagnoses of hardware failures or configuration issues, since the system is

continuously collecting and integrating the monitoring data, and constantly

reviewing that data for anomalies or events which were able to be correlated with

problems that had previously been discovered and resolved.

1.5.8 ProMon. Observing that the vast majority of performance

tooling in HPC systems is targeted at heavyweight program introspection during

development, the ProMon [55] system was developed and fielded in 2015 to offer

another approach to online introspection in HPC. The defining design principle

for ProMon captured by it’s full name: Production Monitoring. Like TACC stats,

ProMon is aligned with the vision of always-on monitoring, so that developers,

administrators, and users do not need to take any additional actions in order to

have access to runtime introspection data, and the potential benefits that it might

enable.

61

ProMon’s developers are motivated like many in the online monitoring

community by the need for introspection into the runtime environment and into

long-running jobs on HPC systems. Remarkable increases in system scale and

heterogeniety, the integration of massive and complex software projects into

campaigns of scientific workflows operating over in situ data stores, and the

complex entailments of individual component failure or soft error accumulation over

a long run, all add increasing motivation to the case for online in situ monitoring

for HPC. The challenge then is to provide flexible low-overhead facilities to meet

this monitoring need, without negatively impacting system stability or software

usability. Only then will users and stakeholders of large and expensive HPC

systems be willing to broadly introduce online monitoring to their production

environment, and not only their development environment.

Since ProMon is a generic and programmable platform, it can be

configured in ways which will cause large amounts of performance perturbation

to applications. However, in realistic scenarios, its developers have claimed

less than 1% overhead by the deployment and use of ProMon in a production

environment. On the development side, the ProMon concept outlines how value

can be gained by doing more heavyweight profiling of applications, which can be

stored in performance databases and later integrated to enrich the more flyweight

measurements taken on the production side at runtime. Given the focus on online

monitoring in HPC, we will focus on the production aspects of the ProMon design.

On the production side, ProMon consists of several components: Analyzer, Injector,

Reporter, Parser, and FlowGrapher. Other components can be added, but these

are the essential core of ProMon. The Injector inserts monitoring probes into

applications using Dyninst [56] to perform binary instrumentation, using either

62

static or dynamic instrouemtnation. These probes collect and organize some local

data and then send them over to the Analyzer using TCP or UDP protocols.

The FlowGrapher is where users of ProMon can identify parts of their

applications that they are interested in monitoring, to drive the selection of targets

for the insertion of probes. Work on this component is ongoing, but it is able to

provide textual output identifying loops within codes which the user can then select

from by a numerical identifier. The Analyzer is a robust service capable of receiving

information from a variety of processes from different applications simultaneously.

Implemented as a daemon server, it also integrates the streaming probe data into

a data store with provenance that can be used to disambiguate similar types of

data, or data from different sources that was generated in parallel. The Analyzer

operates on single or dual-event types, where single events represent milestones

such as the end of a simulation step, and dual events reperesent beginning and end

times, or other forms of encoding events in terms of their duration of overlap with

other events.

Like the SuperMon system, ProMon utilizes its own plain-text data format

to exchange information in a simple to use self-describing format. ProMon’s format

is named the Production Monitoring Language (PML) and is compliant with the

XML standard to make it very easy to parse, and open the use of countless extant

libraries and commercial data processing tools. It comes bundled with a variety

of tags for annotating performance events in rich ways, and these tags can be

combined, embedded, or added to in order to extend the capabilities of ProMon

to suit an arbitrary array of use cases.

ProMon is an actively developed project and in its design and

implementation seems to be taking a very sensible and effective angle of attack on

63

the more difficult aspects of in situ (online) monitoring at scale and in production

HPC environments.

1.5.9 SOS and SOSflow. This author’s own research work falls

squarely within the domain of online monitoring for HPC, the initial contribution

being the Scalable Observation System (SOS) model for online characterization and

analysis of HPC applications, and its reference implementation in the SOSflow [57]

project. SOS and SOSflow are covered in much greater detail in the following

chapter, but it is worth providing a summary preview of that material here in

context with other monitoring solutions.

Three principles were core to the design and implementation of SOS when

it was introduced in 2016: First, that an effective monitoring system needs to be

deployed in situ and running online at the same time as and colocated with the

subjects that it is monitoring. Secondly, the system needed to provide the ability

for interactive exploration of monitoring data online, in order to support real-

time analysis of metrics, as well as feedback and code-steering. Finally, the system

needed to have a small footprint in terms of memory and CPU requirements, such

that it did not perturb the environment that it was monitoring.

This also meant that interactions with the SOS system would need to be

loosely-coupled and asynchronous, so that no steps in observing or communicating

information into and out from or through the SOS system would require an

application or operating environment to block and cease doing productive

work. By co-locating the observation system’s online processing and analysis of

measurements with the workflow components, SOS could improve the fidelity of

system performance data without requireing the costly delays of synchronization

or congestion of shared network and filesystem resources. While SOS had various

64

other motivating concepts and grew to enable a wider variety of purposes than

simple observation and online analysis, those are its core tenets.

SOS comprises several components:

– Information Producers: APIs for bringing information into SOS.

– Information Management: Online and optionally persistant databases and

caches.

– Introspection Support: Services to provide online access to the SOS databases

and high-speed caches.

– In Situ Analytics: Components to perform online analysis, including APIs to

additional languages condusive to analytics, such as Python.

– Feedback System: APIs for sending information to non-SOS entities, as

well as providing feedback to sources of data such that control loops can be

established for purposes such as code steering.

These components work together to provide SOS’s core features:

– Online: Observations are gathered and available at runtime to capture and

exploit features that may only emerge in that complex interactive moment,

and may not be discoverable during development or with offline single-

component analysis.

– Scalable: SOS is a distributed runtime platform, and as the scale of the

deployment increases, so too does the amount of available resources for

the operating of SOS adjacent a running HPC application. Because SOS

uses loosely-coupled asynchronous protocols for all of its interactions with

65

applications and within itself, communication bottlenecks can be avoided

by adjusting settings to perform analysis in situ rather than migrating

information online to centralized repositories which might become bottlenecks

at extreme scales.

– Global Information Space: Information gathered from numerous sources,

system layers, or actors within an execution environment, all are captured

and stored within a common context, both on-node and across the entire

allocation of nodes. This information is characterized by:

∗ Multiple Perspectives - Queries over the observed data in SOS can

isolate or aggregate the data in entirely arbitrary ways, so the system

can service both fine-grained analysis as well as high-level dashboard

views of the system state or an application’s progress. Workflows or

even campaigns can be observed in their entirety, and then individual

components of those workflows can be selected and introspected on in

greater detail.

∗ Time Alignment - All values captured in SOS are time-stamped so

that events which occured in chronological sequence but in different

parts of the system can later be aligned and correlated.

∗ Reusable Collection - Information gathered into SOS can be used for

multiple purposes and be correlated in various ways without having to

be gathered or transmitted multiple times.

∗ Unilateral Interactivity - Sources and sinks of information need

not coordinate with other workflow or SOS components about what to

publishj, they can submit information and rely on the SOS runtime to

66

decide how best to utilize it. The SOS framework will automatically

migrate information where it is needed, or resolve online queries in a

parallel distributed manner when that is superior to migrating all data

online for central analysis. SOS is also capable of managing the retention

of unused information, and allows users to control this selectively at

runtime, as well.

SOSflow was implemented as a multithreaded Linux daemon and client

library, both coded in the C language and designed to be nearly entirely self-

contained so to be easy to integrate into existing applications, workflows,

performance tools, or broader monitoring infrastructures. It is also coded at

that lower level and without other runtime service dependencies to maximize its

performance while minimizing its runtime footprint in the in situ environments it

is distributed across. SOS runs in user-space, and is invoked at the beginning of a

parallel job script, and brought down at the end of a user’s job, with the option of

exporting the database of observations to persistant storage for offline analysis.

Early versions of SOS were tested out to hundreds of nodes and the

overhead of the system even in early development phases was typically below 2%,

with the highest overhead as a percentage increase in walltime for jobs codeployed

with SOS being extremely short-lived processes, where the presence of SOS

increased the runtime by only 3%, likely to do with the distributed launching of

the SOS runtime daemon within the user’s allocation. The asynchronous and online

nature of SOS, and the efficiency of its internal communication protocols, is one

of its most robust aspects. While the distributed persistent data stores would

sometimes increase in queue depth for transactional commits of batches of data

during times of heavy traffic, queues would eventually drain out and the time

67

between a value being published into SOS and it being available for querying or

other uses would eventually fall back down to its initial baseline. Regardless of the

system load from codeployed simulation software or the volume of traffic being

processed into the persistent data stores on the backplane of the SOS runtime,

the velocity of data capture, the time cost of API calls made to SOS in the client

library, and the RTT for probe messages between the client and the daemon, all

remained constant and exteremely high in all experiments.

SOSflow is being actively developed and has found a variety of uses in

different experiments and projects in the years since its initial release. One such

experiment, an integration with the ALPINE (Ascent) project for online projection

of performance metrics into the domain of simulation geometry, will be discussed in

a later chapter, as it is a relevant example of the power of flexible online monitoring

tools designed for the modern in situ HPC paradigm.

1.5.10 FogMon. While we’ve primarily focused on leadership-class

massively parallel Linux clusters in our discussions of HPC, there is room here to

talk about some rather cutting-edge and monitoring technologies that are looking

ahead to possible futures and rather exotic dynamic computing topologies, though

these works to have immediate significance to classical HPC concerns.

One such monitoring tool that has recently been developed is FogMon [58],

a lightweight self-organizing distributued monitoring framework for Fog

infrastructures. Cloud computing has introduced utility computing as a cost-

effective way to ship software services to their final users by substantially reducing

the operational effort required by service providers. Over the same epoch, the

Internet of Things (IoT) has been constantly growing, from the rich compute and

sensor capabilities of cellular devices, to the embedding of wifi and low-power

68

general computational capability in nearly any device with a power cord or a

battery. The number of connected IoT devices has caused the amount of data being

generated to increase explosively, though it is noteworthy that these so-called edge

devices are often much more resource contrained than traditional HPC machines or

cloud servers. Consequently, deployments of IoT applications are typically broken

into two categories: IoT+Cloud where the majority of computing is offloaded to

cloud services, and IoT+Edge where data is processed locally on the device, and

dependence on availability of cloud resources is minimized. IoT+Cloud gains

the massive compute capacity of cloud resources, but can suffer latency, network

congestion, or even service unavailability, while IoT+Edge allows for immediate

interactivity, but can aggressively consume limited resources such as battery life

or storage space, and can impose a great deal of complexity on IoT application

developers to have safe and coordinated information synchronization between local

and cloud resources.

Addressing these constraints, the paradigm of Fog computing is beginning

to gain traction, where applications are split into microservices which can be, along

with the appropriate data, migrated and executed at the location or service layer

where it is most appropriate to. Fog-enabled designs make it possible to reduce

network traffic by processing and filtering IoT data before sending it to the cloud,

and to reduce application response times by suitibly placing latency-critical services

in proximity to the information consumer at the point of interactivity. In the

abstract, Fog computing relies on a common orchestration layer which delivers

a Monitoring, Analysis, Planning, and Execution loop that can theoretically

support the dynamic, adaptive life-cycle management of multi-service data-aware

Fog applications. FogMon is an actively developed research project which aims

69

to support that orchestration layer, with a strong emphasis on the monitoring

component, and a design that takes the Fog environment with resources contraints

and unstable connectivity as a first principle. In the FogMon paper cited above, the

authors provide a robust technical account of their research accomplishments and

experimental validation.

FogMon and projects like it have an interesting relationship with the

history of online monitoring in HPC. In one sense, Fog computing is only the

latest evolution of classic Grid computing, which also involved the loose coupling

of powerful HPC resources over relatively slow or unstable Internet connections,

and which also benefitted from and existence of an orchestration layer. For an

example see the MonALISA project mentioned above. The self-organizing agents

of MonALISA are almost entirely mappable onto the concepts inherent in the

resource-aware microservices envisioned by Fog computing. Obviously there are

differences, especially in terms of the complexity of the modern IoT and Cloud

computing infrastructure, and in the vast asymmetry in compute capability

between edge devices and Cloud servers compared to the more evenly distributed

compute capability at the nodes of a Grid computing platform. Still, there is a

clear line from Fog computing back to Grid computing, and perhaps developers in

the Fog space would be well-served by surveying the research done in that era.

Looking ahead, the Fog computing concepts are likely to begin to show

up in traditional HPC environments, especially at extreme scales. Gains made

in this field, especially by the development and validation of fundamental service

infrastructures designed for low-impact and extreme-scales, will have direct

implication for classical HPC compute topologies. Designing systems to be resilient

to component failure is an important paradigm when an individual job may be

70

distributed to so many hardware components in parallel that the likelihood of a

component failing during a job approaches 100% for jobs of non-trivial duration.

Further, in complex integrated in situ environments with many interacting parts

and irregular spikes in demand for shared resources, there is much to be gained

through thoughtfully engineering data processing systems with the discipline to

not rely on direct and synchronous communication for productivity and progress.

As the FogMon researches clearly are aware, the design and development of

these orchestration layers and loosely-coupled application paradigms is extremely

complex and sensitive task. There will be much more to say about these topics

in the coming years, and the type of online monitoring that is required by and

enabled by Fog computing is likely to be worth paying attention to for developers

and researches interested in online monitong for HPC.

1.5.11 LDMS. One of the most important online monitoring

frameworks for current petascale and future exascale HPC clusters is the

Lightweight Distributed Metric Service (LDMS) [59] [60] [61] [62]. This service

is widely deployed and in consistent use in both development and production

environments. LDMS was designed to attempt to bridge the gap between coarse-

grained system event monitoring, and fine-grained (function or message-level)

application profiling tools. Because of the higher cost of collecting fine-grained

performance profiling data, wrapping code and extracting detailed information at

a high frequency, often impinging on the performance of the code being observed,

profiling and application tuning have usually been deemed episodic activities and

not a part of normal or production executions. This does leave the vast amount

of time that applications are running on HPC clusters largely opaque to detailed

introspection, including understanding codes’ impact on overall system behavior

71

and other applications running concurrently but in different allocations. There are

inherent complexities to HPC machine architectures, both in hardware and in their

software. This is including the complex Cray architectures targeted by LDMS’s

developers, featuring deeply customized hardware and proprietary operating

system extensions and closed vendor-specific drivers. For such systems, ready-made

monitoring frameworks such as Ganglia (discussed below) were unable to meet even

the basic coarse-grained monitoring needs which were motivating the creation of

LDMS.

Sandia National Laboratory and the Open Grid Computing Group began a

collaboration on a set of HPC monitoring, analysis, and feedback tools to attempt

to begin to fill in this observational gap, and in 2014 began publishing on the

monitoring component of that project, which is LDMS.

LDMS is a distributed data collection, transport, and storage tool that is

highly configurable, consisting of samplers, aggregators, and storage components to

support a variety of formats. Samplers periodically sample data according to user-

defined frequencies, defining and exposing a metric set, and running independently

from any other deployed samplers. Memory allocated for a metric set is overwritten

by each successive sample, no history is retained within a sampler. Aggregators

pull data from samplers or other aggregators, again according to a user-defined

frequency. Distinct metric sets can be collected and aggregated at different

frequencies, but unlike samplers the aggregators cannot be altered once set without

restarting the aggregator. Because of the strict behavior constraints dealing with

both memory and sampling frequency, LDMS’ samplers and aggregators can be

very well-optimized to collect very high volumes and velocities of information with

low-latency and nearly zero impact on overall system performance. Further, due

72

to the engineering effort put into a low-level RDMA communication backplane

for LDMS, individual aggregators are able to collect from an enormous number

of distributed hosts, with initial experiments demonstrating successful aggreation

of more than 15,000:1 for RDMA over Cray’s Gemini transport. Storage can write

to a variety of formats, including MySQL, flat files, and a proprietary structured

file format called the Scalable Object Store (not to be confused with the ”Scalable

Observation System” mentioned above).

The base LDMS component is its multi-threaded server daemon ldmsd

which is run in either sampler or aggregator mode, and can support the storage

functionality when running in aggregator mode. The ldmsd server loads the

sampler and aggregators dynamically in response to commands from the owner

of the ldmsd process. All activity within ldmsd, including the activity of samplers

and aggregators and storage modules, is processed by a common worker thread

pool. In more recent iterations, LDMS has gained support for more sophisticated

in situ processing of sample data, including the ability to apply complex operators

to metric sets as they flow through various stages of aggregation, and including the

ability to interact with other services or storage systems at intermediate stages

of aggregation within the cluster. In order to retain its high-level of efficiency,

LDMS does not support many of the dynamic interactivity features of other online

monitoring solutions discussed here. It also does not support embedded or complex

self-describing data types, nor the capture of arbitrary string-based values, rather

LDMS samplers are only able to capture and encode numerica values in floating

point representation, a strict discipline which allows for some deep optimization to

its performance and to data movement.

73

LDMS is a rather straightforward project, employing simple designs to great

effect. It does only a few things, but it does them very effectively, and is able to

make larger or more sophisticated contributions through optional integrations

with other projects or tools, serving either as an information source or a sink

for them. This efficiency and simplicity has led to it being widely deployed in

production environments, which in turn has led to it seeing a lot of activity with

various tools seeking to exploit the fine-grained performance data it is capturing, or

participate in dispatching information into LDMS for other tools to have access

to it at runtime. LDMS will be playing a central role in online monitoring for

HPC for many more years to come, as it has earned long-range funding, has deep

developer buy-in, and offers multiple types of users or administrators a considerable

monitoring capability and value at nearly no cost.

1.5.12 CluMon and ClOver. Based on the CluMon cluster

monitoring project’s plugin architecture, the Cluster Overseer (ClOver) [63] tool

is designed to allow a high-level overview of the state of a cluster. ClOver came

about around 2009, and utilized the Intelligent Platform Management Interface

(IPMI) protocol, which by then was becoming a somewhat standard protocol

for online management of large computing systems. Extending the ”at a glance”

monitoring overview capability of CluMon, ClOver’s principle design goal was to

more completely decouple the operation of the monitoring infrastructure from some

of the legacy components that CluMon had employed, such as the PCP services

for monitoring, to facilitate genuine extensibility and realize the flexibility of the

plugin architecture model. It was also desired for ClOver to be able to provide its

monitoring features to a variety of outlets, including streaming databases or web-

based dashboards rather than a traditional desktop GUI client. The ClOver project

74

showed improved performance, flexibility, and ability to be integrated with a wider

array of components from its predecessor.

Where there are monitoring needs and available developers, there will soon

be a system implemented. These two projects in pairing are a good example of

what can sometimes happen in the HPC research space: When one project begins

to show its seams or has an unavoidable dependency that doesn’t translate well

into newer execution environments, rather than updating or extending the prior

work it is often more fruitful to simply recreate the project anew but with new

tools, techniques, and integrations. This type of perennial re-design and re-writing

of projects is far from inefficient in many cases, and can lead to better tools with

less baggage, and a more positive ongoing impact. Something to bear in mind

considering our favorite HPC projects and tools, as the pace of innovation in the

HPC world seems unlikely to slow down in the coming decades.

1.5.13 Additional Monitoring Solutions of Note. For continued

exploration of dedicated monitoring solutions, the following frameworks may be of

interest to the reader:

– Performance Co-Pilot (PCP) [64]

– PerSyst [65]

– LIKWID [66] [67]

– MPCDF [68]

– OpenNMS [69]

– Prometheus [70] [71] + Kubernetes [72]

– Pandora FMS [73]

75

– Telegraf [74] [75] + InfluxDB [76]

– Zabbix [77] [78] [79]

– collectd [80]

– Periscope [81]

– Ovis [82]

– XDMoD [83]

1.6 Monitoring for HPC: General Topics

As discussed in prior sections, online monitoring for HPC is rarely a simple

as deploying a single service and satisfying a single user or stakeholder’s interests.

Online monitoring for HPC represents a complex constellation of interests, tools,

techniques, challenges, and possibilities. Oftentimes what is desired from a system

will require understanding and leveraging a variety of perspectives, talents, and

technologies. These solutions can be esoteric and bespoke to individual HPC

deployments or teams, but over the years and across many sites and projects some

common themes emerge. Here we present a grab-bag of some of the more common

challenges (or scenarios that offer opportunities) related to the online monitoring,

analysis, and feedback dimensions of HPC.

All of this is to say that monitoring solutions are often deployed for one or

two specific purposes, and so a discussion of some of those purposes is an important

part of understanding the role of monitoring in HPC environments. In each case we

will look at a selection of representative solutions.

1.6.1 Portability Frameworks as Monitoring Opportunities.

Several underlying principles or themes are motivating this entire area of research

76

into Online Monitoring, Analysis, and Feedback for HPC. One of them is

productivity, and portability is a key contributor to productivity.

There have emerged many standards, toolkits, and techniques now to give

HPC developers a consistent API to address, with consistent behavior, that will

achieve the same effect portably on different systems, past, present, and as far as

can be anticipated into future of HPC architectures. Portability frameworks make

for good instrumentation targets for a variety of reasons, beyond their widespread

adoption. Typically they have well-documented semantics, the way in which they

are used is consistent across various projects, and in recent times they often offer

generic plugin-like interfaces for instrumentation or tools to connect to at runtime

and interact with applications. Let’s take a look at several of these solutions and

their relationship to monitoring in HPC.

1.6.1.1 Distributed Computing. Distributed computing refers to a

program running in parallel across several logical or physical compute resources,

where each of the ”ranks” of the program is isolated from the other and must

communicate via the computer network interfaces rather than by being able to

inspect each other’s memory directly. It is no simple feat to connect multiple

compute resources together in a way that enables software to run in multiple

locations, discover, and coordinate in parallel to solve tasks. One would need

to write networking code, become aware of load-balancing concerns, learn about

efficient transport algorithms, interact with low-level device drivers, and implement

all of this infrastructure quickly, bug-free, with security in mind, and then maintain

it along with the main HPC application one set off to implement in the first place.

Coordinating multiple distributed processes and meeting all of the above criteria

is a dauntingly complex task, and yet this represents a very common need within

77

HPC software. This has been the case for decades, and this has led in that time

to the development and widespread adoption of several important solutions for

distributed computing. Here are some of the mechanisms that have emerged over

the years to help HPC developers meet these common challenges with a high-degree

of productivity:

Message Passing Interface (MPI): Arguably one of the most influential

and essential pieces of software in HPC, no conversation could be complete without

discussing MPI [84]. With its roots going back into the late 1970s, MPI refers

severally to its abstract model for distributed computation, a community-driven

standard with official guides produced for each version, a fully-functional reference

implementation of the standard (MVAPICH [85]), any standards-compliant API

and library to link applications to, and a collection of runtime services deployed

over a cluster in order to launch and manage the interactions of processes using

MPI to send and receive messages.

In addition to MVAPICH, there are various alternative implementations

such as OpenMPI [86] or more recently ExaMPI [87]. These alternative

implementations are often able to provide compatibility with new or more

experimental features of MPI before they make their way into the standard

reference implementation. Vendor-specific implementations are also common,

as this allows the vendor to optimize the MPI runtime environment to fit and

exploit features of their chipsets or a cluster’s interconnect technology that may

be protected intellectual property. An example of this is Intel MPI, and they even

issued product-specific optimized MPI libraries like DCFA-MPI [88], tailored for

their Intel Xeon Phi architecture.

78

Three common techniques for monitoring and interacting with MPI

applications are through the use of the MPI Profiling Interface (PMPI, and more

recently QMPI), and via the MPI Tools Information Interface (MPI T). PMPI

works by allowing for any calls to MPI routines to be intercepted by a tool which

implements a wrapper function with the same signature, and then internally calls

the actual MPI routine. PMPI is rather rudimentary in its functionality, in that

it uses the linking phase of compilation to embed the tool into the application,

connecting the application to the tool’s implementation of certain API calls, and

then connecting any ”uninstrumented” MPI calls directly to the MPI library. This

has the benefit of being extremely efficient, as the entire interface step can be

compiled out of the application, as it is for any routines which are not intercepted

by a tool, in the event a tool is being included. A negative consequence of this

design is that, without some careful tool-to-tool coordination, only one tool at a

time can be observing MPI activity, since the linker will select only one library to

link any give MPI call to, at the exclusion of alternatives. Further, swapping from

one tool to another can in some cases require an application to be rebuilt entirely.

Any software which latches into MPI using PMPI in order to provide extended

functionality will then prevent other tools from successfully doing the same at

runtime, though often in a way that does not appear to fail to the tools which are

excluded, though their routines do not get called. Depending on the order in which

shared libraries are loaded and resolved by the host operating system, software with

multiple components making use of PMPI can have undefined behavior without

ever emitting errors a priori, which is deeply undesirable.

The QMPI [89] represents the most cutting edge enhancements to the classic

PMPI model, and it provides a more flexible remedy for multiple-tool integrations,

79

overcoming PMPI’s limits while adding additional features and enhancements.

QMPI allows for multiple tools to be registered, and for the wrapper routines of

those tools to be executed concurrently, when calls are made to the parts of the

MPI API the various tools have implemented hooks for.

Introduced in the MPI 3.1 standard[84], MPI T provides a general

purpose API and enumerated set of tags that tool writers can use to interrogate

any standards-compliant MPI runtimes and get consistently formatted and

representative metrics describing the system and job’s configuration or activity.

MPI T also provides a standard interface for providing hints or adjusting the

settings of the MPI runtime online, with varying degrees of control based on the

specific type of directive given and the state of the MPI application in execution.

These routines can be a great opportunity to perform direct monitoring, analysis,

and automated tuning feedback, as has been done recently using a module of

TAU [34] that engages with MPI T so that TAU coordinates a parameter sweep

for settings, observes and analyzes performance, and is able to optimize [90] MPI

runtime settings online. MPI T does not supplant the need for PMPI or QMPI,

in fact may of the routines that MPI T supports are implemented internally using

calls to PMPI or QMPI.

1.6.2 Monitoring and Multiple Domains. Oftentimes it is

beneficial, if not necessary, to combine observations of multiple layers or domains of

a system in order to understand the behavior of individual applications or system

components. When general end-to-end performance results for an application can

be influenced by factors outside of the selection of algorithms or quality of the

source code, it is especially useful to be able to observe beyond the source code

measurements and application behavior. In 2011, Schultz, et al. identified and

80

discussed [91] three high-level domains of analysis: Hardware, Application, and

Communication. These intuitive domains have some natural overlap, but a result

of their work was observing an increase in understanding of performance data when

observations from one domain could be overlayed or projected over observations

made in another.

LBNL’s NetLogger [92] monitoring tool from the late 1990s used source

instrumentation to capture and log performance measurements, and included

a suite of offline analysis scripts to assemble detailed graphs showing flow of

application data through a process, including measurement of time data moved

between processes over a network. Events within NetLogger refer to traces of the

processing of individual chunks of data. Flowing from their source-annotated origin

as a logical application event, timing data could be captured showing processing

through the hardware stages of loading into cache, being operated on, being

queued up, transmitted, and ultimately received for processing on the remote of a

distributed parallel system. Tracing chunks of application data rather than logging

flat application performance measurements on a per-code-block basis gave this tool

the power to reveal the complex interactions and emergent processing bottlenecks

which might occur, and express these observations in a way that was relevant and

actionable to the application user or developer. It also allowed for the performance

impacts with origins outside of the application to be revealed in terms of their

influence on the specific behaviors of the application, which can be a great help

when determining where to focus effort when attempting to improve application

performance.

Uniting observations from sources of information across multiple domains

can become a challenge in itself, with many factors impacting the feasibility of

81

the task and the overhead of the mechanisms engaged to provide a solution.

The Scalable Observation System (SOS) [57] was introduced in 2016 with the

notion of facilitating this kind of cross-domain online monitoring, engineered to be

optimized for interacting with HPC systems and applications without introducing

excessive overhead or blocking the progress of components which might interact

with the SOS runtime. Later in 2017, SOS was used along with the ALPINE [93]

in situ scientific visualization infrastructure to automatically capture and project

performance data over the geometry being simulated by the application. The SOS

and ALPINE integration captured a number of different performance observations,

aggregated them online, and allowed for the simulation to be observed in real-time

as the geometry evolved. Users could then select among the available performance

measurements and have that projected out over the geometry of the simulation.

This projection of hardware performance measures into the application domain

allowed for an application developer to observe the performance of their code not in

terms of individual code regions, but in terms of the complex behaviors that emerge

dynamically as a simulation progresses.

An application algorithm might begin to drift away from optimality in

certain conditions, and it is beneficial to easily identify those conditions, perhaps to

then design and introduce an updated behavior in the application that can perform

a test and then switch processing over to the most suitable algorithm. For example,

as two elements in a system approach each other and begin to influence each other

within the simulation, an approach like this could make visible as hotspots such

conditions as cache misses, mapped out over the surface of those elements. Markers

could be displayed over those elements in the full context of the scene, or animated

as the simulation progresses, indicating such things as an increased number of

82

messages between the two parallel application ranks each responsible for one of

the two elements.

While it is possible to discover many origins of performance issues through

direct analysis of tabulated measurements, or by using traditional performance

measurement tools [94], the ability to watch a simulation evolve online and

immediately see the relative performance disturbances in brightly-enunciated

graphical forms, paired to the phenomena which trigger the degradation of

performance, makes the task of finding and fixing input-dependent issues much

more straightforward.

1.6.3 Online Monitoring for Large and Complex Codes.

Tools that automatically pinpoint certain aspects of arbitrarily complex

software stacks through online monitoring, facilitating discovery and

correction of bugs or execution bottlenecks.

Diagnosing performance variation in an HPC environment, automatically, online, or

otherwise, is a significant challenge. Experiments [95] [96] show that it is a problem

that indeed can be solved, despite the numerous difficulties to overcome, and so the

great work ever continues. There are at present no one-size-fits-all solutions, and

solutions that are being designed and deployed [97] use parts of other solutions, or

take inspiration from many other projects.

1.7 Concluding Remarks

Online monitoring for HPC is a vast and complex field with many different

motivations and trade/offs. As long as HPC architectures are evolving, compute

loads are changing, and scales are growing, there will be a need for innovative ideas

and new research efforts.

83

CHAPTER II

A GENERAL FRAMEWORK FOR ONLINE MONITORING IN HPC

2.1 Introduction

Modern clusters for parallel computing are complex environments. High-

performance applications that run on modern clusters do so often with little

insight about their or the system’s behavior. This is not to say that information

is unavailable. After all, sophisticated parallel measurement systems can capture

performance and power data for characterization, analysis, and tuning purposes,

but the infrastructure for observation of these systems is not intended for general

use. Rather, it is specialized for certain types of performance information and

typically does not allow online processing. Other information sources of interest

might include the operating system (OS), network hardware, runtime services,

or the parallel application itself. Our general interest is in parallel application

monitoring: the observation, introspection, and possible adaptation of an

application during its execution.

Application monitoring has several requirements. It is important to have

a flexible means to gather information from different sources on each node —

primarily the application and system environment. Additionally, for the gathered

information to be processed online, analysis will need to be enabled in situ with the

application [98]. Query and control interfaces are required to facilitate an active

application feedback process. The analysis performed can be used to give feedback

to both the application, the operating environment, and performance tools. There

exists no general purpose infrastructure that can be programmed, configured, and

launched with the application to provide the integrated observation, introspection,

and adaptation support required.

84

This chapter presents the Scalable Observation System (SOS) for integrated

application monitoring. A working implementation of SOS is contributed as

a part of this research effort, SOSflow. The SOSflow platform demonstrates

all of the essential characteristics of the SOS model, showing the scalability

and flexibility inherent to SOS with its support for observation, introspection,

feedback, and control of scientific workflows. The SOS design employs a data model

with distributed information management and structured query and access. A

dynamic database architecture is used in SOS to support aggregation of streaming

observations from multiple sources. Interfaces are provided for in situ analytics

to acquire information and then send back results to application actuators and

performance tools. SOS launches with the application, runs along side it, and can

acquire its own resources for scalable data collection and processing.

2.1.1 Scientific Workflows. Scientific workflows feature two or

more components that are coupled together, operating over shared information to

produce a cumulative result. These components can be instantiated as lightweight

threads belonging to a single process, or they may execute concurrently as

independent processes. Components of workflows can be functionally isolated from

each other or synchronously coupled and co-dependent. Some workflows can be

run on a single node, while others are typically distributed across thousands of

nodes. Additionally, parts of workflows may even be dynamically instantiated

and terminated. The computational profile of a workflow can change between

invocations or even during the course of one execution.

2.1.2 Multiple Perspectives. Application state and events can

be sent to SOS from within the application at any point during its execution.

Developers can instrument their programs to be efficiently self-reporting the data

85

Figure 1. Applications Coupled Together Into a Workflow

that is relevant to their overall performance, such as progress through specific

phases of a simulation.

Application performance can be dramatically impacted by changes in the

state of the operating environment that is hosting it. The effects of contention for

shared resources by multiple concurrent tasks can be discovered when the events

of concurrent tasks are fixed into a common context for reasoning about their

individual and combined performance. SOS’s distributed in situ design is well-

suited for capturing perspective of the global state of a machine. By co-locating the

observation system with the workflow components that are observed, SOS improves

the fidelity of system performance data without requiring the costly delays of

synchronization or congesting the shared network and filesystem resources in use

by applications.

Many existing performance tools can provide useful observations at runtime

of applications, libraries, and the system context. The low-level timers, counters,

and machine-level data points provided by specialized performance tools can be a

valuable addition to the higher-level application and system data.

86

2.1.3 Motivation. Observing and reasoning about the performance of

workflows on exascale computational platforms presents new challenges. Exascale

systems will be capable of more than a billion billion calculations per second, a

factor of between 50 to 100 times faster than present day machines. The physical

scale and complexity of exascale machines is expected to grow by similar factors as

its computational speed, motivating a model that can scale to the same extent.

2.2 Related Work

Traditionally, HPC research into enhancing performance has been focused on

the low-level efficiency of one application, library, or a particular machine.

Tools like TAU [99] are able to bring HPC developers a closer look into to

their codes and hardware, gathering low-level performance data and aggregating it

for integrated analysis after an application concludes. Low-level metrics can help

identify performance bottlenecks, and are naturally suited for non-production or

offline episodic performance analysis of individual workflow components. Such

deep instrumentation is necessarily invasive and can dictate rather than capture

the observed performance of the instrumented application when the application is

running at scale or required to engage in significant amounts of interactivity. SOS

provides a model that can accept low-level information such as what TAU collects,

while also operating over light-weight higher-level information suitable for online

operation during production runs.

Focused on the needs of large scale data centers, Monalytics [100]

demonstrated the utility of combining monitoring and analytics to rapidly detect

and respond to complex events. SOS takes a similar approach but adopts a general

purpose data model, runtime adaptivity, application configurability, and support

87

for the integration of heterogenous components for such purposes as analytics or

visualization.

Falcon [101] proposed a model for online monitoring and steering of

large-scale parallel programs. Where Falcon depended on an application-specific

monitoring system that was tightly integrated with application steering logic and

data visualizations, SOS proposes a loosely-coupled infrastructure that does not

limit the nature or purpose of the information it processes.

WOWMON [102] presented a solution for online monitoring and analytics

of scientific workflows, but imposed several limitations and lacked generality,

particularly with respect to how it interfaced with workflow components, types

of data it could collect and use, and its server for data management and analytics.

Online distributed monitoring and aggregation of information is provided by

the DIMVHCM [103] model, but it principally services performance understanding

through visualization tools rather than the holistic workflow applications and

runtime environment. DIMVHCM provides only limited support for in situ query of

information.

Cluster monitoring systems like Ganglia [51] or Nagios [53] collect and

process data about the performance and health of cluster-wide resources, but do

not provide sufficient fidelity to capture the complex interplay between applications

competing for shared resources. In contrast, the Lightweight Distributed Metric

Service [59] (LDMS) captures system data continuously to obtain insight into

behavioral characteristics of individual applications with respect to their resource

utilization. However, neither of these frameworks can be configured with and used

directly by an application. Additionally, they do not allow for richly-annotated

88

information to be placed into the system from multiple concurrent data sources per

node.

LDMS uses a pull-based interaction model, where a daemon running on

nodes will observe and store a set of values at a regular interval. SOS has a

hybrid push-pull model that puts users in control of the frequency and amount

of information exchanged with the runtime. Further, LDMS is currently limited

to working with double-precision floating point values, while SOS allows for the

collection of many kinds of information including JSON objects and ”binary large

object” (BLOB) data.

TACC Stats [54] facilitates high-level datacenter-wide logging, historical

tracking, and exploration of execution statistics for applications. It offers only

minimal runtime interactivity and programmability.

The related work mentioned here, and many other performance monitoring

tools, are well-implemented, tested, maintained, and regularly used in production

and for performance research studies. However, each have deficiencies that render

them unsuitable for a scalable, general-purpose, online performance analysis

framework.

2.3 SOS Architectural Model

Multi-component complex scientific workflows provide a focus for the general

challenge of distributed online monitoring. Information from a wide variety of

sources is relevent to the characterization and optimization of a workflow.

In order to gather run-time information and operate on it, SOS needs to be

active in the same environment as the workflow components. This online operation

is capable of collecting data from multiple sources and efficiently servicing requests

for it. Information captured is distinct and tagged with metadata to enable

89

classification and automated reasoning. SOS aggregates necessary information

together online to enable high-level reasoning over the entire monitored workflow.

2.3.1 Components of the SOS Model. The SOS Model consists of

the following components:

– Information Producers : SOS APIs for getting information from different

sources to SOS.

– Information Management : SOS online information databases/repositiories.

– Introspection Support : Online access to the information databases.

– In Situ Analytics : Components to perform the online analysis of the

information.

– Feedback System : SOS APIs for sending feedback information to non-SOS

entities.

2.3.2 Core Features of SOS.

– Online : It is necessary to obtain observations at run time to capture

features of workflows that emerge from the interactions of the workflow as

a whole. Relevant features will emerge given a program’s interactions with its

problem set, configuration parameters, and execution platform.

– Scalable : SOS targets running at exascale on the next generation of HPC

hardware. SOS is a distributed runtime platform, with an agent present on

each node, using a small fraction of the node’s resources. Observation and

introspection work is distributed across the observed application’s resources

proportionally. Performance data aggegation can run concurrently with the

workflow.

90

Node-level SOS agents transfer information off-node using the high-

performance communication infrastructure of the host cluster. SOS supports

scalable numbers and topologies of physical aggregation points in order to

provide timely runtime query access to the global information space.

– Global Information Space : Information gathered from applications, tools,

and the operating system is captured and stored into a common context, both

on-node and across the entire allocation of nodes. Information in this global

space is characterized by —

∗ Multiple Perspectives - The different perspectives into the

performance space of the workflow can be queried to include parts of

multiple perspectives, helping to contextualize what is seen from one

perspective with what was happening in another.

∗ Time Alignment - All values captured in SOS are time-stamped, so

that events which occured in the same chonological sequence in different

parts of the system can be aligned and correlated.

∗ Reusable Collection - Information gathered into SOS can be used for

multiple purposes and be correlated in various ways without having to

be gathered multiple times.

∗ Unilateral Publish - Sources of information need not coordinate with

other workflow or SOS components about what to publish, they can

submit information and rely on the SOS runtime to decide how best to

utilize it. The SOS framework will automatically migrate information

where it is needed for analysis while managing the retention of unused

information efficiently.

91

2.4 Implementation

The SOSflow library and daemon codes are programmed in C99 and have

minimal external dependencies:

– Message Passing Interface (MPI)

– pthreads

– SQLite

SOSflow’s core routines allow it to:

– Facilitate online capture of data from many sources.

– Annotate the gathered data with context and meaning.

– Store the captured data on-node in a way that can be searched with dynamic

queries in real-time as well as being suitable for aggregation and long-term

archival.

SOSflow is divided into several components, central among them:

– libsos - Library of common routines for interacting with sosd daemons and

SOS data structures.

– sosd listener - Daemon process running on each node.

– sosd db - Daemon process running on dedicated resources that stores data

aggregated from one or more in situ daemons.

– sosa - Analytics framework for online query of SOS data.

92

2.4.1 Architecture Overview. Data in SOSflow is stored in a

“publication handle” (pub) object. This object organizes all of the application

context information and value-specific metadata, as well as managing the history of

updates to a value pending transmission to a sosd listener, called value snapshots.

Every value that is passed through the SOSflow API is preserved and eventually

stored in a searchable database, along with any updated metadata such as its

timestamp tuples. Prior value snapshots are queued and transmitted along with

the most recent update to that value.

Figure 2. Complete History of Changing Values is Kept, Including Metadata

SOSflow utilizes different information transport methods and communication

patterns where appropriate [42]. Communication between client applications and

their on-node daemon takes place over a TCP socket connection. Messages read

from the socket are immediately placed in the daemon’s asynchronous queues to

be processed by a worker thread. The socket is then ready for the next queued

message to be received. Messages are first enqueued for storage into an on-node

database. The same message is re-enqueued for transmission to an off-node

93

Figure 3. Client/Daemon Socket Communication Protocol

data aggregation target. The SOSflow runtime uses MPI and the high-speed

interconnect network of the HPC machine when transmitting information off-node.

SOSflow does not participate in the MPI communicator[s] of the applications that

it is monitoring, so no special integration programming is required of application

developers who already use MPI or sockets in their code.

2.4.2 Library: libsos. Applications that make direct use of SOSflow

through its API are called clients. Clients must link in the libsos library which

provides them with all of the data structures and routines essential for interacting

with the SOSflow runtime platform. The library routines are thread-safe, and

no process-wide state is maintained within the library, allowing application

components to interact with SOSflow independent of each other.

The primary interaction between a client and SOSflow is through the pub.

When a client initializes its SOSflow instance, it communicates with the daemon

and obtains a set of global unique ID (GUID) tags. Clients pack values into a

pub and they are automatically assigned a GUID. When the client publishes that

handle, all values are transmitted to the SOSflow on-node daemon, including the

complete history of each value’s updates from the last to the present publish call.

94

All communication functions in the SOSflow client library are handled

transparently. Users need only interact with a simple API to define and store

values that they can then publish to the daemon as appropriate. The protocols

and the codes of the client library are designed to be fast and minimize resource

usage, though they will buffer values for the user if they choose to hold them and

only transmit to the daemon at intervals.

Communications with the sosd listener are always initiated by the clients,

such as when they explicitly publish their pub. SOSflow clients can voluntarily

spawn a light-weight background thread that periodically checks with their local

daemon to see if any feedback has been sent for them. This loosely-coupled

interactivity allows for run-time feedback to happen independent of an application’s

schedule for transmitting its information to SOSflow.

2.4.3 Daemon: sosd listener. The sosd daemon is itself an MPI

application, and it is launched as a background process in the user space at the

start of a job script, before the scientific workflow begins. The daemons first go

through a coordination phase where they each participate in an MPI Allreduce()

with all other daemon ranks in order to share their role (DAEMON, DB, or

ANALYTICS) and the name of the host they are running on. During the

coordination phase, listener daemons select the sosd db aggregate database that

they will target for automatic asynchronous transfer of the data they capture. After

initialization, SOSflow does not perform any further collective communications.

2.4.4 Database: sosd db. The open-source SQLite database engine

is used by sosd db for the on-node database. SQLite databases are persistent,

lightweight, fast, and flexible, suitable to receive streams of tuple data with very

95

low overhead. SOSflow provides a simple API for interacting with its database to

streamline access both on and off-node.

At the time of this writing, SQLite technology is also used for the aggregate

databases, though work is ongoing to provide alternatives for aggregation, starting

with an interface to the Cassandra database.

2.4.5 Analytics: sosa. SOSflow analytics modules are independent

programs that are launched and operate alongside the SOSflow run-time. The

primary role of the analytics modules is to query the database and produce

functional output such as real-time visualizations of performance metrics, feedback

to facilitate optimizations, or global resource bound calculation and policy

enforcement. The modules can be deployed in a distributed fashion to run on

the nodes where the applications are executing, or they can be deployed on

dedicated resources and coupled with the aggregate databases for fast queries of

the global state. Analytics modules have the ability to make use of the high-speed

interconnect of the HPC machine in order to share data amongst themselves.

SOSflow provides an API for client applications to register a callback

function with a named trigger handle. Those triggers can be fired off by analytics

modules, and arbitrary data structures can be passed to the triggered functions.

Triggers may be fired for a specific single process on one node, or for an entire

node, or an entire scientific workflow. This capability facilitates the use of SOSflow

as a general-purpose observation, introspection, feedback, and control platform.

2.5 Results

2.5.1 Evaluation Platform. All results were obtained by either

interrogating a daemon directly through the SOS Probe Tool to inspect its state,

or by running queries against the SOSflow databases.

96

2.5.2 Experiment Setup. The experiments performed had the

following purposes:

– Validation : Demonstrate that the SOSflow model works for a general case.

– Exploration : Study the latency and overhead of SOSflow’s current research

implementation.

The SOSflow implementation is general-purpose and we did not need to tailor it to

the deployment environment. The same SOSflow code base was used for each of the

experiments. The study was conducted on three machines, the details of which are

given below —

1. ACISS : The University of Oregon’s 128-node compute cluster. Each node

has 72 GB of memory and 2x Intel X5650 2.66 GHz 6-core CPUs, providing

12 cores per node. Each node is connected together with a 10GigE ethernet

switch.

2. Cori : A Cray XC40 supercomputer at the National Energy Research

Scientific Computing Center (NERSC). Nodes are equipped with 128 GB

of memory and 2x Intel Xeon E5-2698v3 2.30 GHz 16-core CPUs. Cori nodes

are connected by a Cray Aries network with Dragonfly topology, that has

5.625 TB/s global bandwidth.

3. Catalyst : A Cray CS300 supercomputer at Lawrence Livermore National

Laboratory (LLNL). Each of the 324 nodes is outfitted with 128 GB of

memory and 2x Intel Xeon E5-2695v2 2.40 GHz 12-core CPUs. Catalyst

nodes transport data to each other using a QLogic InfiniBand QDR

interconnect.

97

We simulated workflows using the following —

1. LULESH with TAU : An SOSflow-enabled branch of the Tuning and

Analysis Utilities program (TAUflow) was created as a part of the SOSflow

development work. On Cori, TAUflow was used to instrument the Livermore

Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) code.

During the execution of LULESH, a thread in TAUflow would periodically

awaken and submit all of TAU’s observed performance metrics into the

SOSflow system.

2. Synthetic Workflow : Synthetic parallel MPI applications were developed

that create example workloads for the SOSflow system by publishing values

through the API at configurable sizes and rates of injection.

2.5.3 Evaluation of SOS Model. This experiment was performed

to validate the SOS Model and demonstrate its applicability for the general case of

workflow observation. The Cori supercomputer was used to execute a LULESH +

TAUflow simulation. Power and memory usage metrics were collected and stored

in SOSflow for each node. During the execution of the workflow, a visualization

application was launched from outside of the job allocation which connected to

SOSflow’s online database and was able to query and display graphs of the metrics

that SOSflow had gathered.

The LULESH job was run both with and without the presence of SOSflow

(all other settings being equal) in order to validate the ability of SOSflow to meet

its design goals while being minimally invasive.

2.5.4 Evaluation of Latency. Experiments were performed to study

the latency of data moving through SOSflow. When a value is published from a

98

client into SOSflow, it enters an asynchronous queue scheme for both database

injection and off-node transport to an aggregation target. Latency in this context

refers to the amount of time that a value spends in these queues before becoming

available for query by analytics modules. To study latency we ran experiments on

both ACISS and Catalyst.

Tests run on ACISS were deployed with the Torque job scheduler as

MPICH2 MPI applications at scales ranging from 3 to 24 nodes, serving 10

Synthetic Workflow processes per node in all cases. The ACISS battery of runs

were tuned as stress tests to ensure that the sosd daemons could operate under

reasonably heavy loads. In the 24-node ACISS experiment (Figure 9), SOSflow

clients published 72,000,000 double-precision floats with associated metadata during

a 90 second window containing three rounds of extremely dense API calls.

Latency tests were performed on LLNL’s Catalyst machine at various scales

up to 128 nodes, with 8 data sources contributing concurrently on each node in

each case. Catalyst’s tests measured the latency introduced by sweeping across

three different parameters:

– Count of unique values per publish

– Number of publish operations per iteration

– Delay between calls to the publish API

Unlike the ACISS experiments, the Catalyst tests did not attempt to flood the

system with data, but rather aimed to observe how slight adjustments in size and

rates of value injection would impact the latency of those values.

2.5.5 Results.

99

2.5.5.1 SOS Model Validation. SOSflow was able to efficiently

process detailed performance information from multiple sources on each node.

During the LULESH run, SOSflow’s online database successfully serviced queries

on-line, and the results were plotted as an animated live view of the performance

of the workflow. The cost of using SOSflow was calculated simply as the increase

Figure 4. On-line Workflow Performance Visualization Using SOSflow on Cori. Live
View of 512 Processes From Three Perspectives: OS, LULESH, TAU

in walltime for LULESH + SOSflow, expressed as a percentage of the walltime of

LULESH by itself. The results of these runs are shown in Figure 5.

2.5.5.2 Evaluation of Latency. The on-node (Figure 6) and

aggregate (Figure 7) results from the largest 128-node runs are presented here.

Results from smaller runs are omitted for space, as they show nothing new: “Time

100

Figure 5. Percent Increase in LULESH Running Time When SOSflow is Used

in flight” queue latency at smaller scales linearly approached the injection latency

figures for a single (on-node) database.

In the 128-node runs, across all configurations, the mean latency observed

was 0.3 seconds (and a maximum of 0.7 seconds) for a value, and its full

complement of metadata and timestamps, to migrate from one of 1,024 processes

to the off-node aggregate data store, passing through multiple asynchronous queues

and messaging systems on 128 nodes.

The in situ and aggregate results in Figures 6 and Figure 7 are promising,

given the research version of SOSflow being profiled is not optimized. Exploring the

optimal configuration and utilization of SOSflow is left to future research effort.

2.5.6 Discussion. Many of the behavioral characteristics of SOSflow

are the product of its internal parameters and the configuration of its runtime

deployment, rather than products of its data model and algorithms. For now,

the effort was made to select reasonable default SOSflow configuration parameters

101

Figure 6. Average Latency for In Situ Database (128 nodes on Catalyst)

and typical/non-priviledged cluster queues and topologies. Because of the general

novelty of the architecture, the results presented here could be considered the

performance baseline for SOSflow to improve on as the research matures.

Expanding on the direct experimental results, here are some additional

experiences and observations about the behavior of SOSflow: —

2.5.6.1 Aggregation Topology. The current version of SOSflow is

configured at launch with a set number of aggregator databases. The validation

tests on ACISS used 3 sosd db instances to divide up the workload, while the

TAUflow + LULESH experiments on Cori used a single aggregator. The parameter

sweeps run on the LLNL Catalyst machine were done with four sosd db aggregation

102

Figure 7. Average Latency for Aggregate Database (128 nodes on Catalyst)

targets at 128 nodes. Tests on ACISS and Catalyst were exploring the latency of

data movement through SOSflow, and so both configurations featured dedicated

nodes for sosd db aggregators to avoid contention with other on-node work. The

Cori runs captured a real application’s behavior, and was primarily intended to

demonstrate the fitness of SOSflow for capturing the performance of a scientific

workflow along with meaningful context. Instances of aggregators can be spawned,

as many as needed, in order to support the quantity of data being injected from a

global perspective. All data sent to SOSflow is tagged with a GUID. This allows for

shards of the global information space to be concatenated after the run concludes

without collision of identities wiping out distinct references.

103

The data handling design trade-offs made for SOSflow do not prioritize

the minimization of latency, but focus rather on gracefully handling spikes in

traffic by growing (and then shrinking) the space inside the asynchronous message

queues. After a value is passed to SOSflow, it is guaranteed to find its way into

the queryable data stores, and there are timestamps attached to it that capture

the moment it was packaged into a publication handle in the client library, the

moment it was published to the daemon, and even the moment it was finally

spooled out into the database. Once it is in the database, it is trivial to correlate

values together based on the moment of their creation, no matter how long the

value was sequestered in the asynchronous queues.

During the ACISS stress-tests, values were injected into the SOSflow system

faster than they could be spooled from the queues into the database. While every

value will eventually be processed and injected into the data store, some values

wound up having to wait longer than others as the queue depth increased. The

asynchronous queues have thread-sequential FIFO ordering, but because the

MPI messages are queued up based on their arrival time, and a batch is handled

completely before the next is processed, there is no real-time interleaving of

database value injections, they are injected in batches. Near the bottom of the pile

of MPI messages, the latency continually increases until that batch is injected. This

accounts for the observed saw-tooth pattern of increasing latency seen in Figure 9,

which is not seen in Figure 8.

2.5.6.2 Time Cost of Publish API. As an accessory to the study

of value latency, the length of time that a client application will block inside of

an SOSflow API routine was also evaluated. In situ interactions between libsos

routines and the daemon are nearly constant time operations regardless of the

104

Figure 8. In Situ Latency (24 nodes on ACISS, 240 Applications)

daemon’s workload. Care was taken in the daemon’s programming to prioritize

rate of message ingestion over immediacy of message processing so that SOSflow

API calls would not incur onerous delays for application and tool developers.

The constancy of message processing speed is shown in figures 10 and 11, where

the round trip time (RTT) of a probe message between a client and the daemon

(blue) is projected over a graph of the number of new messages arriving in a sample

window (red).

This information was gathered by sending 9000+ probe messages over a

15 minute window, with a single sosd listener rank processing an average of 724

client messages a second in total, arriving from four different processes on an 8-

way Xeon node. The messages from SOS clients contained more than 14.7 GB

of data, averaging to 338kB per message. Though there are a few spikes in the

probe message RTT visible in Figure 10, they are likely not related to SOSflow

at all, as Figure 11 reveals in detail. The RTT holds steady during low and high

105

Figure 9. Aggregate Latency (24 nodes on ACISS, 240 Applications)

volume of traffic from the other in situ client processes. The mean RTT for the

probe messages was 0.003 seconds, and the maximum RTT was 0.07 seconds.

These results show that the cost of making SOSflow API calls is relatively

low, and holds constant under changing sosd listener workload.

2.6 Conclusion

The SOS Model presented is online, scalable and supports a global

information space. SOS enables online in situ characterization and analysis of

complex high-performance computing applications. SOSflow is contributed as

an implementation of SOS. SOSflow provides a flexible research platform for

investigating the properties of existing and future scientific workflows, supporting

both current and future scales of execution. Experimental results demonstrated

that SOSflow is capable of observation, introspection, feedback and control of

complex scientific workflows, and that it has desirable scaling properties.

As part of future development, we aim to continue refining and expanding

the core SOSflow libraries and the SOS model. The SOSflow codes can be

106

Figure 10. SOSflow Socket Communication Cost, Projected Over Message Count

optimized for memory use and data latency. Mechanisms can be added for

throttling of data flow to increase reliability in resource-constrained cases.

Subsequent work will map out best-fit metrics for dedicating in situ resources

to monitoring platforms for the major extant and proposed compute clusters.

Additionally, we plan on exploring options for deployment and integration

with existing HPC monitoring and analytics codes at LLNL and other national

laboratories.

107

Figure 11. SOSflow Socket Communication Cost (Detail)

108

CHAPTER III

MULTI-DOMAIN INSIGHTS USING AN OBSERVATION SERVICE

3.1 Introduction

Projecting application and performance data onto the scientific domain

allows for the behavior of a code to be perceived in terms of the organization

of the work it is doing, rather than the organization of its source code. This

perspective can be especially helpful [91] for domain scientists developing aspects

of a simulation primarily for its scientific utility, though it can also be useful for

any HPC developer engaged with the general maintenance requirements of a large

and complicated codebase [104].

There have been practical challenges to providing these opportunities for

insight. Extracting the spatial descriptions from an application traditionally has

relied on hand-instrumenting codes to couple a simulation’s geometry with some

explicitly defined performance metrics. Performance tool wrappers and direct

source-instrumentation need to be configurable so that users can disable their

invasive presence during large production runs. Because it involves changes to the

source code of an application, enabling or disabling the manual instrumentation of

a code often involves full recompilation of a software stack. Insights gained by the

domain projection are limited to what was selected a priori for contextualization

with geometry.

Without an efficient runtime service providing an integrated context for

multiple sources of performance information, it is difficult to combine performance

observations across several components during a run. Further limiting the value

of the entire exercise, performance data collected outside of a runtime service

must wait to be correlated and projected over a simulation’s geometry during

109

post-mortem analysis. Projections that are produced offline cannot be used for

application steering, online parameter tuning, or other runtime interactions that

include a human in the feedback loop. Scalability for offline projections also

becomes a concern, as the potentially large amount of performance data and

simulation geometry produced and operated over in a massively parallel cluster now

must be integrated and rendered either from a single point or within an entirely

different allocation.

The overhead of manually instrumenting large complex codes to extract

meaningful geometries for use in performance analysis, combined with the limited

value of offline correlation of a fixed number of metrics, naturally limited the usage

of scientific domain projections for gaining HPC workflow performance insights.

3.1.1 Research Contributions. This paper describes the use of

SOSflow [57] and ALPINE to overcome many prior limitations to projecting

performance into the scientific domain. The methods used to produce our results

can be implemented in other frameworks, though SOSflow and ALPINE, discussed

in detail in later sections, are generalized and intentionally engineered to deliver

solutions of the type presented here. This research effort achieved the following:

– Eliminate the need to manually capture geometry for performance data

projections of ALPINE-enabled workflows

– Provide online observation of performance data projected over evolving

geometries and metrics

– Facilitate interactive selection of one or many performance metrics and

rendering parameters, adding dynamism to projections

– Enable simultaneous online projections from a common data source

110

– In situ performance visualization architecture supporting both current and

future-scale systems

3.2 Related Work

Husain and Gimenez’s work on Mitos [105] and MemAxes [106] is motivated

similarly to ours. Mitos provides an integration API for combining information

from multiple sources into a coherent memoized set for analysis and visualization,

and MemAxes projects correlated information across domains to explore the origins

of observed performance. SOSflow is being used in our research as an integration

API, but takes a different optimization path by providing a general-purpose in situ

(online) runtime.

Caliper by Boehme et al. [41] extracts performance data during execution

in ways that serve a variety of uses, in much the same way our efforts here are

oriented. Caliper’s flexible data aggregation [107] model can be used to filter

metrics in situ, allowing for tractable volumes of performance data to be made

available for projections. Both ALPINE and Caliper provide direct services to

users, also serving as integration points for user-configurable services at run time.

Caliper is capable of deep introspection on the behavior of a program in execution,

yet is able to be easily disabled for production runs that require no introspection

and want to minimize instrumentation overhead. ALPINE allows for visualization

filters to be compiled separately from a user’s application and then introduced

into, or removed from, an HPC code’s visualization pipeline with a simple edit to

that workflow’s ALPINE configuration file. More tools like Caliper and ALPINE,

featuring well-defined integration points, are essential for the wider availability of

cross-domain performance understanding. SOSflow does not collect source-level

performance metrics directly, but rather brings that data from tools like Caliper

111

into a holistic online context with information from other libraries, performance

tools, and perspectives.

BoxFish [108] also demonstrated the value of visualizing projections

when interpreting performance data, adding a useful hierarchical data model for

combining visualizations and interacting with data.

SOSflow’s flexible model for multi-source online data collection and analysis

provides performance exploration opportunities using both new and existing HPC

tools.

3.3 SOSflow

SOSflow provides a lightweight, scalable, and programmable framework

for observation, introspection, feedback, and control of HPC applications. The

Scalable Observation System (SOS) performance model used by SOSflow allows

a broad set of in situ (online) capabilities including remote method invocation,

data analysis, and visualization. SOSflow can couple together multiple sources of

data, such as application components and operating environment measures, with

multiple software libraries and performance tools. These features combined to

efficiently create holistic views of workflow performance at runtime, uniting node-

local and distributed resources and perspectives. SOSflow can be used for a variety

of purposes:

– Aggregation of application and performance data at runtime

– Providing holistic view of multi-component distributed scientific workflows

– Coordinating in situ operations with global analytics

– Synthesizing application and system metrics with scientific data for deeper

performance understanding

112

– Extending the functionality of existing HPC codes using in situ resources

– Resource management, load balancing, online performance tuning, etc.

To better understand the role played by SOSflow, it is useful to examine its

architecture. SOSflow is composed of four major components:

– sosd : Daemons

– libsos : Client Library

– pub/sql : Data

– sosa : Analytics & Feedback

These components work together to provide extensive runtime capabilities to

developers, administrators, and application end-users. SOSflow runs within a user’s

allocation, and does not require elevated privileges for any of its features.

3.3.1 SOSflow Daemons. Online functionality of SOSflow is

enabled by the presence of a user-space daemon. This daemon operates completely

independently from any applications, and does not connect into or utilize any

application data channels for SOSflow communications. The SOSflow daemons are

launched from within a job script, before the user’s applications are initialized.

These daemons discover and communicate amongst each other across node

boundaries within a user’s allocation. When crossing node boundaries, SOSflow

uses the machine’s high-speed communication fabric. Inter-node communication

may use either MPI or EVPath as needed, allowing for flexibility when

configuring its deployment to various HPC environments.

The traditional deployment of SOSflow will have a single daemon instance

running in situ for each node that a user’s applications will be executing on

113

Figure 12. SOSflow’s lightweight daemon runs on each node.

(Figure 12). This daemon is called the listener. Additional resources can be

allocated in support of the SOSflow runtime as-needed to support scaling and to

minimize perturbation of application performance. One or more nodes are usually

added to the user’s allocation to host SOSflow aggregator daemons that combine

the information that is being collected from the in situ daemons. These aggregator

daemons are useful for providing holistic unified views at runtime, especially in

service to online analytics modules. Because they have more work to do than the

in situ listener daemons, and also are a useful place to host analytics modules, it

is advisable to place aggregation targets on their own dedicated node[s], co-located

with online analytics codes.

114

3.3.1.1 In Situ. Data coming from SOSflow clients moves into the

in situ daemon across a light-weight local socket connection. Any software that

connects in to the SOSflow runtime can be thought of as a client. Clients connect

only to the daemon that is running on their same node. No client connections

are made across node boundaries, and no special permissions are required to use

SOSflow, as the system considers the SOSflow runtime to be merely another part of

a user’s workflow.

The in situ listener daemon offers the complete functionality of the SOSflow

runtime, including online query and delivery of results, feedback, or application

steering messages. At startup, the daemon creates an in-memory data store with a

file-based mirror in a user-defined location. Listeners asynchronously store all data

that they receive into this store. The file-based mirror is ideal for offline analysis

and archival. The local data store can be queried and updated via the SOSflow

API, with all information moving over the daemon’s socket, avoiding dependence

on filesystem synchronization or centralized metadata services.

Providing the full spectrum of data collected on node to clients and

analytics modules on node allows for distributed online analytics processing.

Analytics modules running in situ can observe a manageable data set, and then

exchange small intermediate results amongst themselves in order to compute a final

global view. SOSflow also supports running analytics at the aggregation points

for direct query and analysis of global or enclave data, though it is potentially

less scalable to perform centrally than in a distributed fashion, depending on the

amount of data being processed by the system.

SOSflow’s internal data processing utilizes unbounded asynchronous

queues for all messaging, aggregation, and data storage. Pervasive design around

115

asynchronous data movement allows for the SOSflow runtime to efficiently handle

requests from clients and messaging between off-node daemons without incurring

synchronization delays. Asynchronous in situ design allows the SOSflow runtime

to scale out beyond the practical limits imposed by globally synchronous data

movement patterns.

3.3.1.2 Aggregation Targets. A global perspective on application

and system performance is often useful. SOSflow automatically migrates

information it is given into one or more aggregation targets. This movement of

information is transparent to users of SOS, requiring no additional work on their

part. Aggregation targets are fully-functional instances of the SOSflow daemon,

except that their principle data sources are distributed listener daemons rather

than node-local clients. The aggregated data contains identical information as the

in situ data stores, it just has more of it, and it is assembled into one location.

The aggregate daemons are useful for performing online analysis or information

visualization that needs to include information from multiple nodes (Figure 13).

SOSflow is not a publish-subscribe system in the traditional sense, but

uses a more scalable push-and-pull model. Everything sent into the system will

automatically migrate to aggregation points unless it is explicitly tagged as being

node-only. Requests for information from SOSflow are ad hoc and the scope of the

request is constrained by the location where the request is targeted: in situ queries

are resolved against the in situ database, aggregate queries are resolved against

the aggregate database. If tagged node-only information is potentially useful for

offline analysis or archival, the in situ data stores can be collected at the end of a

job script, and their contents can be filtered for that node-only information, which

can be simply concatenated together with the aggregate database[s] into a complete

116

Figure 13. Co-located analysis and visualization with aggregation.

image of all data. Each value published to SOSflow is tagged with a globally

unique identifier (GUID). This allows SOSflow data from multiple sources to be

mixed together while preserving its provenance and preventing data duplication or

namespace collision.

3.3.2 SOSflow Client Library. Clients can directly interface with

the SOSflow runtime system by calling a library of functions (libsos) through a

standardized API. Applications can also transparently become clients of SOS

by utilizing libraries and performance tools which interact with SOSflow on

their behalf. All communication between the SOSflow library and daemon are

transparent to users. Users do not need to write any socket code or introduce any

state or additional complexity to their own code.

117

Information sent through the libsos API is copied into internal data

structures, and can be freed or destroyed by the user after the SOSflow API

function returns. Data provided to the API is published up to the in situ

daemon with an explicit API call, allowing developers to control the frequency

of interactions with the runtime environment. It also allows the user to register

callback functions that can be triggered and provided data by user-defined analytics

function, creating an end-to-end system for both monitoring as well as feedback

and control.

To maximize compatibility with extant HPC applications, the SOSflow client

library is currently implemented in C99. The use of C99 allows the library to be

linked in with a wide variety of HPC application codes, performance tools, and

operating environments. There are various custom object types employed by the

SOSflow API, and these custom types can add a layer of complexity when binding

the full API to a language other than C or C++. SOSflow provides a solution to

this challenge by offering a ”Simple SOS” (ssos) wrapper around the full client

library, exposing an API that uses no custom types. The ssos wrapper was used

to build a native Python module for SOSflow. Users can directly interact with

the SOSflow runtime environment from within Python scripts, acting both as

a source for data, and also a consumer of online query results. HPC developers

can capitalize on the ease of development provided by Python, using SOSflow to

observe and react online to information from complex legacy applications and

data models without requiring that those applications be redesigned to internally

support online interactivity.

3.3.3 SOSflow Data. The primary concept around which SOSflow

organizes information is the ”publication handle” (pub). Pubs provide a private

118

namespace where many types and quantities of information can be stored as a

key/value pair. SOSflow automatically annotates values with a variety of metadata,

including a GUID, timestamps, origin application, node id, etc. This metadata

is available in the persistent data store for online query and analysis. SOSflow’s

metadata is useful for a variety of purposes:

– Performance analysis

– Provenance of captured values for detection of source-specific patterns of

behavior, failing hardware, etc.

– Interpolating values contributed from multiple source applications or nodes

– Re-examining data after it has been gathered, but organizing the data by

metrics other than those originally used when it was gathered

A complete history of changes to every value is retained within the daemon’s

persistent data store.This allows for the changing state of an application or its

environment to be explored at arbitrary points in its evolution. When a key is re-

used to store some new information that has not yet been transmitted to the in situ

daemon, the client library enqueues it up as a snapshot of that value, preserving

all associated metadata alongside the historical value. The next time the client

publishes to the daemon, current new values and all enqueued historical values are

transmitted.

SOSflow is built on a model of a global information space. Aggregate

data stores are guaranteed to provide eventual consistency with the data stores

of the in situ daemons that are targeting them. SOSflow’s use of continuous but

asynchronous movement of information through the runtime system does not allow

for strict quality-of-service guarantees about the timeliness of information being

119

available for analysis. This design constraint reflects the reality of future-scale HPC

architectures and the need to eliminate dependence on synchronous behavior to

correlate context. SOSflow conserves contextual metadata when values are added

inside the client library. This metadata is used during aggregation and query

resolution to compose the asynchronously-transported data according to its original

synchronous creation. The vicissitudes of asynchronous data migration strategies at

scale become entirely transparent to the user.

SOSflow does not require the use of a domain-specific language when

pushing values into its API. Pubs are self-defining through use: When a new key

is used to pack a value into a pub, the schema is automatically updated to reflect

the name and the type of that value. When the schema of a pub changes, the

changes are automatically announced to the in situ daemon the next time the

client publishes data to it. Once processed and injected into SOSflow’s data store,

values and their metadata are accessible via standardized SQL queries. SOSflow’s

online resolution of SQL queries provides a high-degree of programmability and

online adaptivity to users. SQL views are built into the data store that mask off

the internal schemas and provide results organized intuitively for grouping by

application rank, node, time series, etc.

SOSflow uses the ALPINE in situ visualization infrastructure described

below to collect simulation geometry that it correlates with performance data.

3.4 ALPINE Ascent

ALPINE is a project that aims to build an in situ visualization

infrastructure and analysis targeting leading edge supercomputers. ALPINE is

part of the U.S. Department of Energy’s Exascale Computing Project (ECP) [109],

and the ALPINE effort is supported by multiple institutions. The goal of ALPINE

120

is two fold. First, create a hybrid-parallel library (i.e., both distributed-memory

and shared-memory parallel) that can be included in other visualization tools such

as ParaView [110] and VisIt [111] thus creating an ecosystem where new hybrid-

parallel algorithms are easily deployed into downstream tools. Second, create a

flyweight in situ infrastructure that directly leverages the hybrid-parallel library.

In this work, we directly interface with the ALPINE in situ infrastructure called

Ascent [93].

Ascent is the descendant of Strawman [112], and Ascent is tightly-coupled

with simulations, i.e. it shares the same node resources as the simulation. While

Strawman’s goal was to bootstrap in situ visualization research, the ALPINE

Ascent in situ infrastructure is intended for production. Ascent includes include

three physics proxy-applications out of the box to immediately provide the

infrastructure and algorithms a representative set of mesh data to consume.

Ascent is already integrated into several physics simulations to perform traditional

visualization and analysis, and we chose to embed an SOSflow client into Ascent

to eliminate the need for additional manual integration of SOSflow with Ascent-

equipped simulations. Ascent uses the Conduit [113] data exchange library to

marshal mesh data from simulations into Ascent. Conduit provides a flexible

hierarchical model for describing mesh data, using a simple set of conventions for

describing meshes including structured, unstructured, and higher order element

meshes [114]. Once the simulation describes the mesh data, it publishes the data

into Ascent for visualization purposes. Ascent relays the mesh data to SOSflow

in the manner described below. In addition to the mesh data, we can easily add

performance data that is associated with each MPI rank. Coupling the performance

data with the mesh geometry provides a natural way to generate an aggregate data

121

set to visualize the performance data mapped to the spatial region each MPI rank

is responsible for.

Ascent includes Flow, a simple dataflow library based on the Python

dataflow library within VisIt, to control the execution of visualization filters. The

input to Flow is the simulation mesh data, and Ascent adds visualization filters

(e.g., contours and thresholding) to create visualizations. Everything within Flow

is a filter that can have multiple inputs and a single output of generic types. The

flexibility of Flow allows for user defined filters, compiled outside of Ascent, to

be easily inserted into the dataflow, and when the dataflow network executes,

custom filters have access to all of the simulation mesh data published to Ascent.

We leverage the flexibility of Flow to create an SOSflow filter that is inserted

at runtime. The SOSflow filter uses the data published by the simulation to

extract the spatial extents being operated over by each MPI rank along, with

any performance data provided. Next, we publish that data to SOSflow, and then

Ascent’s visualization filters execute as usual.

3.5 Experiments

3.5.1 Evaluation Platform. All results were obtained by running

online queries against the SOSflow runtime’s aggregation targets (Figure 13) using

SOSflow’s built-in Python API. The results of these queries were used to create

Vtk [115] geometry files. These files were used as input for the VisIt visualization

tool, which we invoked from within the allocation to interactively explore the

performance projections.

3.5.2 Experiment Setup. The experiments performed had the

following purposes:

122

– Validation : Demonstrate the coupling of SOSflow with ALPINE and its

ability to extract geometry from simulations transparently.

– Introspection : Examine the overhead incurred by including the SOSflow

geometry extraction filter in an ALPINE Ascent visualization pipeline.

ALPINE’s Ascent library was used to build a filter module outfitted with SOSflow,

and this filter was used for online geometry extraction (Figure 14). ALPINE’s

JSON configuration file describing the connectivity of the in situ visualization

pipeline was modified to insert the SOSflow-equipped geometry extraction filter.

The SOSflow implementation used to conduct these experiments is general-purpose

Figure 14. SOSflow collects runtime information to project over simulation
geometry.

123

and was not tailored to the specific deployment environment or the simulations

observed. The study was conducted on two machines, the details of which are

included here —

1. Quartz : A 2,634-node Penguin supercomputer at Lawrence Livermore

National Laboratory (LLNL). Intel Xeon E5-2695 processors provide 36

cores/node. Each node offers 128 GB of memory and nodes are connected

via Intel OmniPath.

2. Catalyst : A Cray CS300 supercomputer at LLNL. Each of the 324 nodes

is outfitted with 128 GB of memory and 2x Intel Xeon E5-2695v2 2.40 GHz

12-core CPUs. Catalyst nodes transport data to each other using a QLogic

InfiniBand QDR interconnect.

The following simulated workflows were used —

1. KRIPKE [116] : A 3D deterministic neutron transport proxy application

that implements a distributed-memory parallel sweep solver over a rectilinear

mesh. At any given simulation cycle, there are simultaneous sweeps along a

set of discrete directions to calculate angular fluxes. This results in a MPI

communication pattern where ranks receive asynchronous requests from other

ranks for each discrete direction.

2. LULESH [117] : A 3D Lagrangian shock hydrodynamics proxy application

that models Sedov blast test problem over a curvilinear mesh. As the

simulation progresses, hexahedral elements deform to more accurately capture

the problem state.

3.5.3 Overview of Processing Steps. The SOSflow runtime

provided a modular filter for the ALPINE in situ visualization framework. This

124

filter was enabled for the simulation workflow at runtime to allow for the capture

of evolving geometric details as the simulation progressed. The SOSflow runtime

daemon automatically contextualized the geometry it received alongside the

changing application performance metrics. SOSflow’s API for Python was used

to extract both geometry information and correlated performance metrics from

the SOSflow runtime. This data set was used to generate sequences of input files

to the VisIt scientific data visualization tool corresponding to the cycle of a the

distributed simulation.

Each input file contained the geometric extents of every simulation rank,

the portion of the simulated space that each part of the application was working

within. Alongside that volumetric descriptions for that cycle, SOSflow integrated

attribute dictionaries of all plottable numeric values it was provided during that

cycle, grouped by simulation rank. Performance metrics could then be interactively

selected and combined in VisIt with customizable plots, presenting an application

rank’s state and activity incident to its simulation effort, projected over the

relevant spatial extent.

3.5.4 Evaluation of Geometry Extraction. Our experiments

were validated by comparing aggregated data to data manually captured at the

source during test runs. Furthermore, geometry aggregated by ALPINE’s Ascent

SOSflow filter was rendered and visually compared with other visualizations of

the simulation. Projections were inspected to observe the simulation’s expected

deforming of geometry (LULESH) or algorithm-dependent workload imbalances

(KRIPKE). Performance metrics can be correlated in SQL queries to the correct

geometric regions by various redundant means such as pub handle GUID, origin

PID or MPI rank, simulation cycle, host node name, SOSflow publish frame, and

125

value creation timestamps. Aggregated performance metrics projected over the

simulation regions were compared to metrics reported locally, and required to be

identical for each region and simulation cycle.

3.5.5 Evaluation of Overhead. Millisecond-resolution timers were

added to the per-cycle execute method of the SOSflow Alpine geometry extraction

filter. Each rank tracked the amount of time it spent extracting its geometry,

packing the geometry into an SOSflow pub handle, and transmitting it to the

runtime daemon. Every cycle’s individual time cost was computed and transmitted

to SOSflow, as well as a running total of the time that Alpine had spent in the

SOSflow filter. From a region outside the timers, the timer values were packed into

the same SOSflow publication handle used for the geometric data. Timer values

were transmitted at the end of the following cycle, alongside that cycle’s geometry.

The additional transmission cost of these two timer values once per simulation cycle

had no perceivable impact on the performance they were measuring.

3.6 Results

Geometry was successfully extracted (Figures 15, 16, 17, and 18) with

minimal overhead from simulations run at a variety of scales from 2 to 33 nodes.

The side-by-side introspection of the behavior of KRIPKE (Figure 15) are a good

example of the value this system provides to developers. The amount of work loops

and the backlog of requests for computation are correlated negatively, with ranks

operating in the center of the simulation space getting through less loops of work

per cycle, since they are required to service data requests in more directions than

the ranks simulating the corners regions. The directionality of energy waves moving

through he simulated space can also be observed, with more work piling up where

multiple waves are converging. A developer can quickly assess the behavior of their

126

Figure 15. Loops (left) and maximum backlog (right) from one cycle of 512
KRIPKE ranks distributed to 32 nodes.

distributed algorithm by checking for hot-spots and workload imbalances in the

space being simulated.

3.6.1 Geometry Extraction and Performance Data Projection.

Aggregated simulation geometry was a precise match with the geometry manually

recorded within applications, across all runs. After aggregation and performance

data projection, geometry from all simulation ranks combined to create a

contiguous space without gaps or overlapping regions, representative of the

simulated space subdivided by MPI rank.

3.6.2 Overhead. The inclusion of the ALPINE Ascent filter module

for SOSflow had no observable impact on overall application execution time, being

significantly less than variance observed between experimental runs both with and

127

without the filter. The filter module is executed at the end of each simulation

cycle, from the first iteration through to the simulation conclusion. Manual

instrumentation was added to the SOSflow filter to measure the time spent inside

the filter’s execute method, where all simulation geometry and performance metrics

were gathered for our study.

When gathering only the simulation geometry, filter execution never

exceeded 2ms per simulation cycle. We collected performance information for our

projections by reading from the /proc/[pid] files of each rank. These readings

were made from within the SOSflow filter, and published to SOSflow alongside

the collected geometry. Collecting 31 system metrics and application counters

added additional overhead, but the filter time but did not exceed 4ms for any of

the projections shown in this chapter. The filter’s execution time was logged as a

performance metric alongside the other in situ performance data, and is visualized

for LULESH in Figure 17.

3.7 Conclusion

Services from both SOSflow and ALPINE were successfully integrated

to provide a scalable in situ (online) geometry extraction and performance data

projection capability.

Figure 16. Cumulative user CPU ticks during 440 cycles of 512 KRIPKE ranks on
32 nodes.

128

Figure 17. Filter execution (1-4ms) over 710 LULESH cycles.

Figure 18. Many metrics can be projected from one run. Here we see (top to
bottom) user CPU ticks, system CPU ticks, and bytes read during 710 cycles of
512 LULESH ranks distributed across 32 nodes.

3.7.1 Future Work. Workflows that use the ALPINE framework

but have complex irregular meshes, feature overlapping ”halo regions”, or that

operate over non-continuous regions of space within a single process, may require

129

additional effort to extract geometry from, depending on the organization of spatial

descriptions they employ. ALPINE uses the Vtk-m [118] library for its operations

over simulation mesh data. The addition of a general convex hull algorithm to Vtk-

m will simplify the task of uniformly describing any spatial extent[s] being operated

on by a process using ALPINE for its visualization pipeline.

The VisIt UI can be extended to support additional interactivity with the

SOSflow runtime. UI elements to submit custom SQL queries to SOSflow would

enhance the online data exploration utility of VisIt. SOSflow’s interactive code

steering mechanisms allow for feedback messages and payloads to be delivered to

subscribing applications at runtime. With some basic additions to the VisIt UI,

these mechanisms could be triggered by a VisIt user based on what they observe

in the performance projections, sending feedback to targeted workflow components

from within the VisIt UI.

While the geometry capture and performance data projection in this initial

work has a scalable in situ design, the final rendering of the performance data

into an image takes place on a single node. Future iterations of this performance

visualization work will explore the use of in situ visualization techniques currently

employed to render scientific data from simulations [119]. These emerging in situ

rendering technologies will allow for live views of performance data projected over

simulation geometry at the furthest extreme scales to which our simulations are

being pressed.

130

CHAPTER IV

PARALLEL PORTABILITY WITH ONLINE MACHINE LEARNING

4.1 Introduction

HPC software can contain tens to thousands of parallel code regions, each of

which may have independent performance tuning parameters. Optimal choices for

these tuning parameters can be specific to a target system architecture, the set of

input data to be processed, or the overall shared state of the machine during a job’s

execution. There are costs associated with discovering and maintaining optimal

choices, in a developer’s time to manually adjust settings and rebuild projects, or

the compute time to explore the space of possible configurations to find optimal

settings automatically.

The goal of performance portability in HPC is for applications to operate

optimally across a range of current and future systems without the need for costly

code interventions in each new deployment. Given large job scales, increasing

software complexity, platform diversity, and hardware performance variability,

a performance portability is a challenging problem – with the same inputs, code

performance is observed to change between invocations on the same machine and,

worse, can be variable even during execution.

Recent work has turned to machine learning techniques to train classification

models on code and execution feature vectors that then can be used to make

dynamic tuning selection for each kernel of interest [120]. For instance, the

Apollo [121] work demonstrated the use of offline machine learning methods to

optimize the selection of RAJA [122] kernels at runtime. The RAJA programming

methodology provides abstractions that allow code regions to be implemented once

but compiled for a variety of architectures, with several execution policies capable

131

of being selected at runtime. Apollo’s offline training approach built statistical

classifiers that directly selected values for tuning parameters. The classification

model could then be embedded in RAJA programs to provide a dynamic, low-

overhead, data-driven auto-tuning framework. The decision to do offline training

was a trade-off Apollo made to avoid costly online search for autotuning.

Offline machine learning methods are not sufficient for guiding online

optimizations that deliver general performance portability. There are several

reasons for this to be the case:

1. Without knowing what the user is actually doing, combinatorial exploration

of all possible settings is difficult to exhaust, even with a decent sampling

strategy. A great many different models need to be represented by whatever

ends up being deployed, hopefully providing optimal recommendations for

every unique combination of architectures, configurations, input decks, and so

on.

2. In order to cover all scenarios, the expense of training and re-training will

grow. The entire campaign of parameter testing would need to be done with

any new code deployment, significant modification, change in configuration,

use of new input deck, or increase in job scale. Certainly, moving to a new

platform or modification of an existing platform could trigger a new training

study. Ideally, the testing should happen at the full scale and duration that

the job was intended to be run at once its model was in use, but this is a

costly proposition. Ultimately, this suggests that offline training is unable to

fully capture enough for model fitness to be reliable over time.

132

3. Once trained offline, static models are unable to adapt to changes between

application invocations or simulation steps in a workflow. Such changes can

make even very good models go stale over time. Furthermore, the potential

dynamic variations in the execution environment can expose gaps in the

model due to the fact that they never occurred during training.

To further motivate the need for online methods, we note the paradigmatic

shift in HPC underway in the move to extreme scales and cloud-based computing.

Applications are increasingly being developed and deployed where it is accepted

as a given that there will be dynamism in their runtime environment. Even within

tightly-controlled on-site dedicated clusters, novel in situ resources and services are

being deployed in support of classic block-synchronous applications, decreasing

the emphasis on their synchronous behavior to maximally saturate available

computation and I/O resources.

Our current research is motivated by the need to address tuning challenges

presented by these performance complexities and realities of new in situ

development models: the scale of jobs, asynchronous data movement, and dynamic

performance characteristics of modern hardware. Instead of working against

the general nature of the problem, we propose to embrace it and investigate the

productive outcomes of adopting modern (online) training techniques. In the spirit

of prior work, we created the Artemis continuous tuning framework to analyze code

kernels online during application execution. Artemis trains new kernel performance

models in situ, deploying and evaluating them at runtime, observing each model’s

recommendations during execution to rate its ongoing fitness.

Our primary research contributions are:

133

– We present Artemis, an online framework that dynamically tunes the

execution of parallel regions by training optimizing models.

– We provide an implementation of a RAJA parallel execution policy that uses

Artemis to optimize the execution of forall and collapse loop pattern.

– We extend Kokkos to use Artemis for tuning CUDA execution on GPUs.

– We evaluate Artemis using three HPC proxy applications: LULESH,

Cleverleaf, and Kokkos Kernels SpMV. Results show that Artemis has

overhead of less than 9%, and model training and evaluation overhead is in

the order of hundreds of microseconds. Artemis selects the optimal policy

8̃5% of the time, and can provide up to 47% speedup.

4.2 Background

Parallel programming frameworks have emerged to address the performance

portability challenge by providing a “write once, run anywhere” methodology where

alternate versions of a code section (called kernels) can be generated to target

architectural tuning parameters. In this manner, the programming methodology

decouples the specification of a kernel’s parallelism from the parameters that

govern policies for how to execute the work in different forms. The tuning of the

policy choices and execution variants can be done without changing the high-level

program.

Parallel frameworks such as RAJA[123] and Kokkos[124][125] use lightweight

syntax and standard C++ features for portability and ease of integration into

production applications. Related prior work on Apollo[121] focused on developing

an autotuning extension for RAJA for input-dependent parameters where the best

kernel execution policy depends on information known only at application runtime.

134

However, Apollo’s methodology required executions under all runtime scenarios

to create an offline static training database, leading to many of the limitations

discussed in the introduction. Thus, it is interesting to pursue a new question: is

it possible to train a classification model online and apply it during application

execution? Of course, this question immediately raises several concerns, mainly

having to do with how training data is generated, the overhead of measurement,

and the complexity costs of machine learning algorithms.

4.3 Artemis: Design and Implementation

Artemis is at once a methodology for in situ, ML-based performance auto-

tuning and an architecture and operational framework for its implementation. The

following captures these aspects as we describe how Artemis actually works. In a

nutshell, it is the observation of an application’s execution of its tunable parallel

code regions, extracting features and performance data with different execution

policies, coupled with the training of ML models online to select optimized

execution policies per-region and feature set.

Table 1. The Tuning API of Artemis.

Function Description

void Artemis::init() Initializes Artemis

Artemis::Region *Artemis::create region(Creates a tunable region
int num policies) and returns its pointer

void Artemis::Region::begin(vector<float> features) Marks beginning
execution of a tunable region

int Artemis::Region::getPolicyIndex() Retuns the index of the
execution policy for the region

void Artemis::Region::end() Marks ending execution
of a tunable region

void Artemis::processMeasurements() Triggers Artemis tuning

135

4.3.1 Design. Without loss of generality, Artemis thinks of

applications being iterative where a sequence of steps are conducted during which

parallel regions are being executed. At the end of those steps, the application ends.

If the a parallel region is to be tuned, it must be provide the different

execution policy variants it can choose between, and then Artemis must be invoked

for that region. In the case of the reference implementations presented here, this

can be largely automated.

The user of Artemis need not be thought of as the ultimate end-user of an

application, but more likely the developer implementing a performance portability

framework such as RAJA or Kokkos within some application. By design, our

embedding of an Artemis interface into the portability framework layer enables all

parallel regions of an application to be automatically decorated with the necessary

Artemis API calls, and furnished with a set of common execution policies that

come pre-packaged, and may be integrated into any application making use of

that performance portability framework. Artemis is designed to be extensible and

programmable, so expert users are always going to be able to provide their own

execution policy variants, or make use of the Artemis API directly without the

benefits of a performance portability layer managing it.

In the common case where an application is making use of performance

portability framework as described above, all an end-user will need to do to is to

select to enable Artemis functionality at build time, and then at run time they

could opt to enable the Artemis tuning capabilities for any given session, which

would then exploit the built-in policies that are bundled with the framework.

Essentially, this is the end of involvement for the Artemis user.

136

Within a step, each parallel region executed is done so for a particular policy

as determined by the policy model. Artemis controls how the policy model behaves.

It could either be controlled to test out different policies during training, thereby

allowing performance measurements to be obtained for analysis, or it could select a

particular policy determined by the auto-tuned model evaluation. Each application

step represents an opportunity for parallel region training or re-training. Within

a step, each encounter with an Artemis-guided parallel region allows that region’s

model to make an optimized policy selection based on immediately-observed local

features.

Artemis instruments parallel regions to collect data on their execution

and tune them. Marking the beginning of region execution, the user additionally

provides a set of features that characterize the execution and a set of execution

policies that are selectable for the execution of this region. After the call marking

the beginning of a region, the user calls the Artemis API function that returns

the policy to use when executing the region. The region proceeds to execute

a refactored variant of itself that corresponds to that policy selection. Finally,

the instrumented region calls the Artemis API to mark the end of its execution,

and Artemis makes note of the features and performance measurements. Region

execution time is the primary measurement of interest, but it is possible to capture

other performance data for analysis.

Artemis is implemented as a runtime library that merges with the

application to provide region performance/metadata measurement/analysis, ML

model training, and auto-tuning optimization. It presently targets parallel MPI

programs that use RAJA or Kokkos for on-node parallelization.

137

4.3.2 Training and Optimization. The set of user-provided features

and policies for each region are the input data to Artemis for ML training and

optimization. During training, Artemis explores among the available policies and

in particular measures their execution times, which is the optimization target

we selected for our experimental evaluation. Artemis keeps per-region records

of the feature set, policy, and measured execution time as tuples of (feature set,

policy, execution time) to compile the training data and create an optimizing policy

selection model. Whenever a region is executed multiple times per step, if different

features are captured or policies are explored, each unique combination will have

executions times recorded for use in model development.

Parallel Regioni

Modeli

Explore policies to
gather data for

collective training

In situ features are
used to select an
optimal policy

Training Evaluation

Execute body of parallel region

Track performance data by
feature and policy

Figure 19. For each parallel code region, Artemis can explore policies to generate
training data, or apply in situ observations to a previously-trained model to use the
recommended policy.

138

By design, Artemis exposes an API call to the user to invoke optimization

on-demand. Artemis expects the user to invoke the optimization API function

after a sensible amount of computation has executed, permitting Artemis to have

collected a representative set of measurement records. This can be different for

different applications, and depends somewhat on the number of optimization

points to be explored when searching the space of available policies. If models are

initially trained from an inadequate set of measurements inputs, such that their

fitness is insufficient to make reasonably accurate predictions of the measures for

an iteration, Artemis will place the deviating regions into a training mode again

to gather data on additional policies, so that future models for that region, within

the run, will be more robustly informed. Programs with iterative algorithms should

typically invoke optimization every time step of execution. When the user invokes

the API, Artemis performs the following steps:

1. For every instrumented region it goes through the measurement records and

finds the policy with the fastest measured execution for each feature set to

enunciate the optimal pairs of each unique (feature set, policy) combination

for this region;

2. In case of multi-process execution, Artemis communicates per-process best

policy data between all executing processes to build a unified pool of these

pairs and implement collective training,

3. From those feature set and policy pairs, it creates the training data to feed to

the classification ML model, where the feature set is the feature input to the

model and policy is the response;

139

4. Artemis feeds those data to train the ML model and derive an optimizing

policy classifier for each region, that takes as input a feature set and produces

as output the optimized selection policy.

When later executions of the instrumented regions query Artemis for the

policy to execute, the trained model provides the optimizing policy index. Note

that even after training an optimized policy selection model, Artemis continues to

collect execution time data for optimized regions to monitor execution and trigger

re-training, which we discuss next.

4.3.3 Validation and Retraining. As shown in Figure 20,

Artemis includes a regression model to trigger re-training, anticipating that time-

dependent or data-dependent behavior may change the execution profiles of regions,

thus rendering previous optimizing models sub-optimal. Specifically, Artemis

creates a regression model to predict execution time given the measurement

records. The input features to train this regression model are the features set by

instrumentation, including the policy selection, and the response outputs are the

measured execution times.

At every invocation of the optimization API call by the user, Artemis

compares the measured execution time per region, feature set, and policy to the

predicted execution time provided by the regression model. When the measured

time exceeds the predicted time over a threshold, Artemis discards the optimizing

model and reverts the region to a training regime, trying out different execution

policies on region execution to collect new data for training an optimized model.

On a later invocation of the optimization API call, Artemis creates the new

optimizing classification model and the new regression model for a new cycle of

optimization and monitoring.

140

Step Boundary

Modeli

Fit DecisionTree
and RegressionTree

models

Training Evaluation

 Validate model
fitness with

RegressionTree

Dispatch models to
regions for evaluation

 If not fit, dispatch
 training command

Figure 20. Artemis trains models and validates ongoing fitness.

4.3.4 Extending RAJA OpenMP execution. The RAJA [122]

programming model was extended to enable Artemis optimization by defining an

auto-tuned execution policy for parallel loop programming patterns implemented

with OpenMP. Interestingly, much of region instrumentation is hidden by the end-

user of RAJA since instrumentation happens inside the RAJA header library. The

only refactoring required for a RAJA program is to make on-demand calls to the

optimization API of Artemis and use the Artemis-recommended execution policy

when defining parallel kernels through the RAJA templated API.

Specifically, we create an Artemis tuning policy for the forall programming

pattern, which defines a parallel loop region, and for the Collapse kernel pattern,

which collapses 2-level and 3-level nested to a single parallel loop, fusing the nested

iteration spaces. For this implementation, we choose the forall and Collapse

patterns since they are frequently used in applications. Artemis can integrate

with other parallel patterns of RAJA, such as scans, OpenMP offloading, and

141

template <typename Iterable, typename Func>

RAJA_INLINE void forall_impl (artemis_exec &,

Iterable &&iter,

Func &&loop_body) {

static Artemis::Region *region = nullptr;

if (region == nullptr)

region = Artemis::create_region(num_policies=2);

region->begin({ distance(begin(iter), end(iter)) });

int policy = region->getPolicyIndex();

switch(policy) {

case 0: {

#pragma omp parallel

{ RAJA_EXTRACT_BED_IT(iter);

#pragma omp for

for (decltype(distance_it) i = 0; i < distance_it; ++i)

loop_body(begin_it[i]);

} } break;

case 1: {

RAJA_EXTRACT_BED_IT(iter);

for (decltype(distance_it) i = 0; i < distance_it; ++i)

loop_body(begin_it[i]);

} break; };

region->end();

}

Figure 21. Using Artemis in the RAJA forall execution pattern.

CUDA, which is work-in-progress. The Artemis policy used in our evaluation

framework tunes execution by choosing between two policies: either OpenMP

or sequential. The choice for those two policies is motivated by prior work [121]

concluding that varying additional OpenMP parameters (number of threads, loop

scheduling policy) results in sub-optimal tuning. Nevertheless, Artemis is general

to tune for additional OpenMP parameters, which can be abstracted as different

execution policies to input to the Artemis API. Artemis instrumentation is within

the implementation of those patterns, in the RAJA header library.

142

Listing 21 shows a code excerpt for the instrumentation of the forall

implementation with Artemis, redacting implementation details for RAJA closure

privatization, for brevity of presentation. Note, the code for the Collapse kernel

is similar. The forall implementation instruments the region execution with

a call to region->begin() providing the number of iterations as the single

feature in the feature set. For the Collapse implementation, the feature set

consists of the iterations of all loop levels, creating a vector of features. Next, the

implementation calls region->getPolicyIndex() which returns an index selecting

the execution policy variant; 0 indicates executing with OpenMP and 1 indicates

executing the region sequentially. This policy index is the input to the following

switch-case statement that selects the execution variant. Lasty, there is a call to

region->end() to marks the end of region execution.

This pattern of API use is general, and serves as a model for other interfaces

and ports of Artemis, such as it’s integration with the tuning API of the Kokkos

portability framework.

4.3.5 Enhancing Kokkos CUDA execution. Besides RAJA

OpenMP execution, we integrate Artemis to tune CUDA kernel execution within

Kokkos [124]. Specifically, our experiment tuned parameters for the execution

of an SpMV kernel computation in CUDA, including the team size, which is the

outer level of parallelism of thread blocks, the vector size, which is the inner level of

parallelism of numbers of threads and the number of rows of computation assigned

to each thread.

4.3.6 Training Measurement. Initially, when Artemis first

encounters an instrumented region, it deploys a round-robin strategy to collect

training data. This strategy cycles through the set of provided policies, which

143

contains the OpenMP execution policy and the sequential policy in our RAJA

implementation, or policies representing combinations of the various kernel launch

parameters in the Kokkos integration. When searching, Artemis returns a policy

index to explore a particular execution variant. In our implementation, round-robin

advances the policy selection index for each region and each set of unique features

independently. While searching the space of available policies, the Artemis runtime

library records the unique feature set and the measured execution time for each

instrumented region.

When Artemis is being used in an MPI application, it is capable of collective

training, whereby training datasets across the processes are analyzed together.

At the end of an application step, every process issues a collective allgather

operation to share their training datasets and gather the training datasets of every

other process. Each process combines them to create a unified training dataset

per region, informed by the rank-offset parallel round-robin searches, to find the

best explored policy that minimizes execution time across both the local and peer

training data.

4.3.7 Training Model Analysis and Optimization. Artemis

processes the metrics gathered during training to construct the matrix of

features to use in model construction. This includes the feature set, the

performance responses, and the optimal policies. A Random Forest Classifier

(RFC) model is trained per region, implemented using the OpenCV machine

learning library. Artemis evaluates this RFC model in later invocations of

region->getPolicyIndex() of a trained region, to return the optimized

execution policy using as input the feature set provided in the arguments of the

region->begin(features) call. We choose RFC modeling because it has fast

144

evaluation times of of O(m log n) complexity for m decision trees of n depth in the

forest. Fast evaluation is important for reducing the overhead during execution

since region->getPolicyIndex() is called with every region’s execution. For

experimentation, we set the depth to 2 levels and the forest size to 10 trees, which

has shown to be effective for optimization.

Artemis uses the same measurement data to train a per-region Random

Forest Regression (RFR) model that predicts expected execution time. Artemis

uses this regression model to detect time-dependent or data-dependent divergence

in the execution of a region that invalidates a previously trained RFC optimizing

model, indicating that re-training is needed. In the implementation, RFR models

train with regression accuracy of 1e−6, hence micro-second resolution for predicting

time, and implement a forest size of 50 trees. RFR evaluation is off the critical

path, hence affords the largest forest size, since it is called only on invocations

of Artemis::processMeasurements(). For time regression analysis, Artemis

compares the profiled execution time with the predicted one for all the region’s

feature sets. If the measured time for a feature set is greater than the predicted

one given a threshold, then the model is considered diverging. This threshold limits

re-trains due to transient perturbations when measuring execution time. We have

experimentally found that this threshold value of 2× filters out needless re-trains

for the applications under test. Nonetheless, the threshold value is configurable

and also re-training can be turned completely off, through environment variables.

If the execution of an application region is pathological, such that execution

time continuously diverges with the same features, then this region is ineligible

for tuning and should be omitted or re-training should be turned off. This is

a challenging scenario to naively automate, and future work involves exploring

145

strategies to effectively manage regions that do not have stable performance profiles

even when features or loop inputs are held constant.

Artemis counts all diverging feature sets in a region. If they are found

to be more than a threshold, more than half feature sets in a region for our

implementation, Artemis deems the RFC model invalid and sets up the round-robin

search strategy to re-train an optimized model for that region.

Artemis is generalized to support heterogeneous execution, where an

application deploys to a cluster of heterogeneous machines, or for cases where a

heterogeneous workload is specified on the same regions. Differences in machine

architectures can be captured as a feature that describes the machine type, e.g.,

CPU or GPU micro-architecture. Differences in a heterogeneous workload, for the

same code region, can be captured as a feature describing the condition causing it,

e.g., the MPI rank or an application-designated parameter.

4.4 Experimentation Setup

The Artemis framework is intended to target environments where

performance portability is important. When evaluating Artemis we want to

compare its benefits to standard configurations of application and systems that

they run on. On the one hand, Artemis is optimizing an application’s execution on

a machine from some point of reference. If that starts with an already optimized

version, there is little likely to be gained. Thus, choosing a ”default” version of

the application with standard settings is more appropriate to gauge improvement.

On the other hand, Artemis is optimizing an application across machines, where

different architecture component (e.g., CPU, memory) could lead to different code

variants being selected. The application code needs to be developed in such a

way that making selection of those code variants is possible without completely

146

Table 2. Applications and Their Configurations

Application Inputs Nodes

LULESH -r 100 -c 1 or 2 or 4 or 8 -i 100 1
Cleverleaf Domain: (500,500), triple point calculation, 1, 2, 4, 8

4 refinement levels, 25 timesteps,
max patch size: 100×100 or 200×200,

400×400 or -1×-1(no limit)
Kokkos Kernels SpMV Domain: 100M to 600M non-zero values 1

team size: 1-1024, vector size: 1-32
rows per thread: 1-4096

rewriting the application. This is the reason for working with RAJA and Kokkos

for the experiments discussed below.

4.4.1 Comparators. The applications used in our study are

developed with either RAJA or Kokkos, and we focus our attention on the parallel

regions impacted by those portability frameworks. We define the baseline in

performance comparison to be, for OpenMP, execution with the RAJA OpenMP

execution policy using the same thread count for all regions, or in the CUDA

case, the expert-tuned and hard-coded settings within the Kokkos Kernels suite.

This is the default mode of executing these parallel applications. To quantify the

instrumentation overhead of Artemis, we create a version of Artemis with this

baseline that always selects the fixed default policy when guiding execution of a

region, but does not perform any of the collection of performance measurements

or online training. We call this the Artemis-OpenMP or Artemis-Expert Heuristic

version. Lastly, we denote as Artemis the configuration where Artemis dynamically

optimizes execution, using online profiling and machine learning for optimized

policy selection and regression monitoring.

147

4.4.2 Applications. We chose three HPC proxy-applications to

perform our experiments: LULESH [117, 126] and Cleverleaf [127, 128] for

OpenMP, and Kokkos Kernels SpMV [129] for CUDA.

Table 2 shows details of the application inputs used and execution

configurations. LULESH is configurable to create regions of different computational

cost, to mimic multi-material calculation. Cleverleaf uses adaptive mesh

refinement to create a range of problem subdomains, called patches, with varying

computational cost. Thus, both data-dependent and input-dependent settings can

create regions of different computation. Kokkos Kernels SpMV computes a sparse

matrix vector product for very large matrices, allowing for a configurable count of

non-zero values.

In the OpenMP codes, Artemis dynamically optimizes each parallel region

by selecting OpenMP execution policies only when there is enough work to justify

the overhead of parallel execution, otherwise it will elect for sequential execution.

LULESH inputs create heterogeneous computation by using a large count of

regions (100) that emulate different materials, changing the computational cost

of various region subsets by 1, 2, 4, or 8 times the base cost – LULESH adjusts the

cost of 45% of the regions to be this multiple and 5% of regions to be 10× this

multiple. For Cleverleaf, heterogeneous computation is created by changing the

maximum patch size permitted during refinement, ranging from from 100×100,

200×200, 400×400, up to an unlimited maximum by selecting -1×-1. The RAJA

LULESH implementation does not support distributed execution with MPI, thus

our experiments are single node. Cleverleaf provides support for MPI execution,

so we performed experiments on multiple nodes to show Artemis’s response to

Cleverleaf’s strong scaling properties. Kokkos Kernels SpMV experiments used

148

100x100 200x200 400x400 -1x-1
Maximum patch size

0.0

0.5

1.0

Sp
ee

du
p

ov
er

 R

AJ
A-

Op
en

M
P

ba
se

lin
e

0.98 0.99 0.98 0.94
1.06 1.08 1.06

0.84

Artemis-OpenMP Artemis

(a) 1 node

100x100 200x200 400x400 -1x-1
Maximum patch size

0.00

0.25

0.50

0.75

1.00

Sp
ee

du
p

ov
er

 R

AJ
A-

Op
en

M
P

ba
se

lin
e

0.96 0.97 0.95 0.95
1.12 1.11 1.03

0.89

(b) 2 nodes

100x100 200x200 400x400 -1x-1
Maximum patch size

0.00

0.25

0.50

0.75

1.00

Sp
ee

du
p

ov
er

 R

AJ
A-

Op
en

M
P

ba
se

lin
e

0.95 0.95 0.94 0.93
1.17 1.18

1.04
0.87

(c) 4 nodes

100x100 200x200 400x400 -1x-1
Maximum patch size

0.0

0.5

1.0

Sp
ee

du
p

ov
er

 R

AJ
A-

Op
en

M
P

ba
se

lin
e

0.94 0.95 0.94 0.93

1.21 1.20
1.07

0.89

(d) 8 nodes

Figure 22. Cleverleaf, speedup of Artemis-OpenMP and Artemis over the baseline.

Artemis to explore and select policies representing combinations of Kokkos settings

and CUDA kernel launch parameters, across a variety of problem sizes.

4.4.3 Hardware and Software Platforms. Experiments were run

on nodes featuring dual-socket Intel Xeon E5-2695v4 processors for 36 cores and

128GB of RAM per node and the TOSS3 software stack. We compiled applications

and Artemis using GCC version 8.1.0 and MVAPICH2 version 2.3 for MPI support.

Artemis used the OpenCV machine learning library version 4.3.0. For Kokkos

CUDA we targeted the NVIDIA V100 (Volta) on an IBM Power9 architecture,

using CUDA version 10.

4.4.4 Statistical Evaluation. For each OpenMP proxy application

and configuration we performed 10 independent measurements. Unless otherwise

noted, measurement counts the total application execution time end-to-end.

Confidence intervals shown correspond to a 95% confidence level, calculated using

Bootstrapping to avoid assumptions on the sampled population’s distribution.

149

1 2 4 8
Cost

0.0

0.5

1.0

1.5

Sp
ee

du
p

ov
er

 R

AJ
A-

Op
en

M
P

ba
se

lin
e

0.91 0.92 0.93 0.95
1.17 1.24 1.33

1.48Artemis-OpenMP Artemis

Figure 23. LULESH, speedup over the baseline of RAJA-OpenMP execution.

4.5 Evaluation

Here we provide results and detailed analysis of tuning for OpenMP with

RAJA, as well as summary results from applying Artemis to tune Kokkos settings

and CUDA kernel launch parameters.

For evaluating the performance of Artemis with OpenMP, we compute

the speedup over the baseline of RAJA-OpenMP execution for both Artemis-

OpenMP, which always selects OpenMP execution, and the optimizing Artemis,

which dynamically chooses between OpenMP or sequential execution for a region,

using the machine learning methods we described. Artemis-OpenMP exposes the

instrumentation overhead of Artemis, hence the expected slowdown compared

to non-instrumented RAJA-OpenMP execution. Figure 22 shows results for

Cleverleaf, and Figure 23 shows results for LULESH. Values on bars show the mean

speedup (or slowdown) compared to RAJA-OpenMP execution.

4.5.1 Instrumentation Overhead. Observing the slowdown of

Artemis-OpenMP, the overhead of instrumentation is modest, cumulatively less

than 9% across both applications and tested configurations of input and node

numbers. This shows that Artemis does not overburden execution and given tuning

opportunities, it should recuperate the overhead and provide speedup over non-

instrumented RAJA-OpenMP execution.

150

4.5.2 Model Training and Evaluation Overhead. The average

training time for LULESH is 310 microseconds, while for Cleverleaf is 150

microseconds, which is minimal contrasted with the timescale of execution of

regions, as we show in later measurements, so Artemis recovers this overhead,

effectively tuning and speeding up execution. Moreover, model training (or re-

training) is infrequently done as trained models persist during execution. By

contrast, model evaluation happens at every execution of a tunable region.

Its overhead depends on the forest size and tree depth of the trees in the

evaluated forest. Given the limits in forest size (10) and tree depth (2) set in our

implementation, see section 4.3, we measure the time overhead for evaluating the

maximum possible forest configuration to be less than 10 microseconds.

4.5.3 Speedup on Cleverleaf. For Cleverleaf, varying the maximum

patch size changes the number and size of computational regions. A smaller size

means more regions, hence more parallelism, but also finer-grain decomposition

of the computation domain. So, there is greater disparity between regions that

lack enough work, hence sequential policy is fastest, and regions with enough

parallel work, for which OpenMP execution is fastest. Note, the special value

−1 × −1 means there is no maximum set and Cleverleaf by default prioritizes

decomposing in larger regions. Figure 22 shows results for all node configurations,

demonstrating that Artemis consistently speeds up execution for the smaller patch

sizes of 100× 100 and 200× 200, no less than 8%, executing with one node, and up

to 21%, executing on 8 nodes. For the larger patch size of 400× 400, execution with

Artemis is on par with RAJA-OpenMP, successfully recuperating the overhead with

marginal gains, within measurement error. For the unlimited patch size of −1×−1,

Artemis results in a net slowdown, also compared with Artemis-OpenMP, since

151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Step

0.5

1.0

1.5

Ex
ec

ut
io

n
tim

e
(s

)

RAJA-OpenMP
Artemis-OpenMP

Artemis

(a) Patch size 100× 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Step

0.5

1.0

1.5

Ex
ec

ut
io

n
tim

e
(s

)

(b) Patch size 200× 200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Step

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
tim

e
(s

)

(c) Patch size 400× 400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Step

0.5

1.0

Ex
ec

ut
io

n
tim

e
(s

)

(d) Patch size −1×−1

Figure 24. Execution time per timestep for Cleverleaf on 8 nodes, varying the
maximum patch size. Regridding operation performed after every 10 steps.

there is lack of optimization opportunity, and the training and monitoring overhead

inflated execution time.

For further analysis, we show results comparing execution times per

timestep for different execution modes. Figure 24 shows results when executing

with 8 nodes. Results for other node counts are similar, thus we omit them for

brevity. Note that Cleverleaf performs a re-gridding operation [130] every 10

timesteps that re-shuffles domain decomposition to reduce computation error, thus

the spikes in execution time in the 10th and 20th timesteps.

Observing results, Artemis inflates execution time for the first timestep

across all patch sizes, since this step includes training for bootstrapping tunable

regions. For most of the rest of timesteps, Artemis reduces execution time, by as

much as 40% for the least patch size of 100×100, compared to the default execution

with RAJA-OpenMP. Artemis tuning potential lessens the larger the patch size,

since larger regions favor OpenMP execution. Nevertheless, observing Figure 24d

for the largest patch size selection, Artemis correctly selects OpenMP execution

152

and any performance lost is due to the initial training overhead. Notably, Cleverleaf

execution with 8 nodes has second to sub-second timesteps, and Artemis is fast

enough to optimize execution even at this short time scale. Expectedly, Artemis-

OpenMP has slightly higher execution time per timestep compared to RAJA-

OpenMP, reflecting instrumentation overhead as seen by the speedup results.

4.5.4 Effectiveness of Cleverleaf Policy Selection. Cleverleaf

instantiates a multitude of regions and each region executes with multiple different

feature sets, corresponding to different patch sizes from decomposing the domain

and load balancing. So, to highlight Artemis effectiveness we fix the patch size to

100 × 100, which presents the most optimization potential, and pick one region to

plot the average execution time of each feature set for the top-20 most frequently

executed ones, contrasting OpenMP only execution vs. sequential execution

vs. Artemis execution with dynamic policy selection. The region comprises of

feature sets corresponding to 2d collapsed loops, so there are two values describing

(outer,inner) loop iterations. Depending on the feature set size, OpenMP or

sequential is the best. For example, feature set (3,201) executes faster with

OpenMP and feature set (55, 2) executes faster sequentially. Observing execution

times measured for Artemis, policy recommendations converge to the optimal

policy for the majority of feature sets for which the performance difference between

the sequential and OpenMP policy selection is more than 20%. Artemis selects the

optimal policy in 10 of the 15 such regions.

Further, we find positive results for the accuracy of Artemis in selecting

optimal policies. For the initial timestep, Artemis has low accuracy, ranging from

10% to 20%, due to training, without any discernible trend among different patch

sizes. However, accuracy significantly improves after this initial, training step to a

153

(a) Cost 1 (b) Cost 2

(c) Cost 4 (d) Cost 8

Figure 25. Execution time per timestep for LULESH, showing different execution
modes on one node, varying the cost of computational regions.

range of 85% to 95%, showing Artemis is effective in selecting the optimal policy

most of the time.

4.5.5 Strong scaling with different node counts. Figures 22a–22d

show results for increasing node counts. Following the discussion on smaller patch

sizes that present optimization opportunities for Artemis, increasing the number

of nodes also boosts the speedup achieved by Artemis. Cleverleaf distributes

computational regions among different MPI ranks and executes bulk-synchronous,

advancing the simulation time step after all MPI ranks have finished processing.

Artemis dynamically optimizes execution per rank, thus it reduces execution time

on the critical path, with multiplicative effect on the overall execution.

4.5.6 Speedup on LULESH. Figure 23 shows results for LULESH

on a single node due to the limitation of the RAJA version of LULESH supporting

only single node execution. For this experiment, the number of regions is kept

constant (100) and the cost of computation varies between 1× (default) and 8×,

as explained in section 4.4. Similarly to Cleverleaf, the instrumentation overhead

154

of Artemis, shown by observing the slowdown of Artemis-OpenMP, is within 9% of

non-instrumented execution of RAJA-OpenMP.

Regarding speedup of Artemis, it is consistently faster than RAJA-OpenMP.

Artemis improves execution time even for the default setting of cost 1× by 16%.

Expectedly, increasing the cost creates more computational disparity between

LULESH computational regions, thus Artemis achieves higher speedup. For the

highest cost value we experiment with, a cost of 8×, Artemis achieves significant

speedup of 47% over the RAJA-OpenMP baseline.

For more detailed results, Figure 25 shows execution time per timestep for

all execution modes varying the cost of computational regions. Observations are

similar to Cleverleaf, the first timestep under Artemis is slower due to training

while the rest of the timesteps execute faster than RAJA-OpenMP. Artemis speeds

up the execution of timestep up to 50% compared to RAJA-OpenMP, increasingly

so as the cost input increases. Different than Cleverleaf, the resolution of the

execution time of LULESH is much more fine-grain, in the range of hundreds of

milliseconds. Nonetheless, Artemis effectively optimizes execution even at this time

scale, showing that training effectively optimizes policy selection and overcomes any

instrumentation overhead.

4.5.7 Speedup on Kokkos Kernels SpMV. Figure 26 shows the

results of our integration with Kokkos, tuning the parallel team size, vector size,

and number of rows assigned to each thread. The x-axis shows scaling the number

of non-zero elements y-axis plots the average execution time for 1500 SpMV kernel

invocations. Expert Heuristic is the existing, hardcoded tuning strategy set by the

expert kernel developer, setting those parameters based on the input data and

expert knowledge. This heuristic function settles on 1 row per thread, a vector

155

100 200 300 400 500 600
Number of Non-Zero Values (millions)

0

20

40

60

80

100

120
Av

er
ag

e
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Expert Heuristic
Artemis-Expert Heuristic
Artemis

Figure 26. Artemis improves performance of the Kokkos SpMV kernel up to 16.8%
compared to the hardcoded expert heuristic.

length of 2, and a team size of 256 for inputs shown. Artemis-Expert Heuristic

exposes the instrumentation overhead of Artemis, by foregoing tuning, instead

executing with the same settings of the expert heuristic. The performance of

Artemis-Expert Heuristic is on par with execution of Expert Heuristic without

Artemis intervening, thus instrumentation overhead is minimal. Artemis shows

the performance improvement when tuning is enabled. Kokkos provides a range of

664 selectable policies to Artemis for tuning, with parameters team size ranging

from 1–1024, vector size from 1–32, and number of rows per thread from 1–4096.

Results show that Artemis succesfully navigates the tuning space, and provides

increasingly faster performance as the problem size increases, for a maximum of

16.8% performance improvement on the largest input of 600M non-zero elements.

4.6 Related Work

Existing tuning frameworks are either application-specific [131] [132],

programming-model-specific [133] [134], hardware-specific [135] [136], or feature

the need for offline training [137] [121], and thus have limited scope. By design,

156

Artemis is a general framework that gives an API to tune at any of those levels,

and we show its generality by integrating Artemis with the RAJA programming

model, tuning a variety of HPC proxy applications and kernels. The closest to our

work is the Apollo paper by Beckingsale et al.[121], with the important distinction

that, rather than exhaustive offline tuning, the Artemis framework performs the

search space exploration at runtime.

Empirical techniques directly measure all the possible variants and select

the fastest. Established projects like the ATLAS [135] [138] and FFTW [136]

libraries apply this technique with great success, but it requires the up front

cost of finding the best code variant choices for each system. ATF [139] [140]

presents a generic extensible framework for automated tuning, independent of

programming language or domain. Oski [131] performs runtime tuning, optimizing

over sparse linear algebra kernels. Orio [141] and OpenTuner [133] are able to

facilitate general purpose kernel tuning using empirical techniques to select the

best performing configurations for production. ActiveHarmony [142] uses parallel

search strategies to perform online tuning, though sweeping large parameter spaces

can take significant amounts of time.

Using some form of a model to predict the performance of the code,

analytical examples make tuning decisions based on model output. Similarly to

Artemis, AutoTuneTMP [134] makes use of C++ template metaprogramming

to abstract-away the tuning mechanisms of kernels and facilitate performance

portability. It constrains the search space for online training using parameterized

kernel definitions. Unlike Artemis’s use of RAJA policies that are compiled in

alongside the application, AutoTuneTMP uses JIT compilation and dynamic

linking at runtime to produce kernel variants, a mechanism which could impose

157

non-trivial overhead in a large large class of HPC codes in production settings.

Mira [143] uses static performance analysis to generate and explore performance

models offline. Mira’s abstract performance models allow it to avoid some of the

limitations to offline learning.

A statistical model is built by applying machine learning techniques, and

this model is used to make tuning decisions. Sreenivasan et al. [137] demonstrated

performance gains using an OpenMP autotuner framework that performs offline

tuning using a random forest statistical model of the reduced search space to

eliminate exhaustive tuning. HiPerBOt [144] presents an active learning framework

that uses Bayesian techniques to maintain optimal outcomes while collapsing the

required number of samples for learning.

Other work [145, 146, 147] has looked into auto-tuning the number

of OpenMP threads in multi-program execution. Those approaches look at

architectural metrics, such as Instructions-Per-Cycle and memory stalls, to

dynamically throttle thread allocation when contention occurs.

4.7 Conclusion and Future Work

We have presented Artemis, a novel framework that optimizes performance

by tuning an application’s parallel computational regions online. Artemis provides

a powerful API to integrate online tuning in existing applications, by defining

tunable regions and execution variants. Artemis automatically adapts to data-

dependent or time-dependent changes in execution using decision tree and

regression models. We integrated Artemis with RAJA and Kokkos and evaluated

online tuning performance on HPC proxy applications: Cleverleaf and LULESH,

and a CUDA SpMV kernel. Results show that Artemis is up to 47% faster and its

operating overhead is minimal.

158

Future work on the Artemis project includes:

1. Using Artemis for tuning of additional GPU-offloaded compute kernels with

heterogeneous memory hierarchies.

2. Tuning additional parallel execution parameters such as loop tiling and

nesting.

3. Expanding experimentation to large applications by extending the Artemis

codebase and integration with RAJA, Kokkos, and lower level parallel

programming models, such as OpenMP, CUDA, and HIP.

159

CHAPTER V

CONCLUSION

The field of HPC is wildly diverse and always in motion. There will never be

a single one-size-fits-all solution to the challenges of optimally executing massively

parallel software at extreme scales. But as we have shown in this overall work, hope

is not lost! There are excellent opportunities to develop and field tools and service

layers that will dramatically enhance both application performance, and efforts to

generalize and future-proof the fitness of existing large and costly HPC software

projects.

Let us revisit our four research questions now, and reflect on the answers we

have found for them.

– RQ1: What are the essential components of a practical in situ system for

online observation, analysis, and feedback?

– RQ2: Can online observation with in situ methods provide benefits to

application users and developers?

– RQ3: Is it feasible to conduct machine learning in situ in order to derive

performance benefits without a human in the loop?

– RQ4: Can systems be made both observable and responsive to tuning choices

without costly code interventions or algorithm rewrites?

In Chapter I we unpacked the nature and means of accessing the

information necessary to make accurate, germane, timely decisions about

application performance. Along the way, various historical and current systems

were described, along with discussion of their context, leading into a deeper dive

160

into a general model of observation which we proposed and demonstrated in

Chapter II. The SOS model described there is a kind of reasonable minimum set

of properties for future systems to consider. Taken together, both of these chapters

serve to provide a robust answer to RQ1 and indicate the opportunity for RQ2 to

be answered in the affirmative.

If engineering a monitoring solution for some novel HPC environment that

has yet to be fielded, each of the features proposed for SOS should be considered

and accounted for as early as possible, in order to maximize the flexibility and

performance of that observational layer. As we showed in our results, with some

thoughtful engineering, such an observational layer can exist with overhead that

essentially dissolves into the noise endogenous to large-scale system performance

measures. With mature engineering effort beyond the scope or length of a graduate

research inquiry, these first-light results could move from being serviceable to being

truly impressive. Once arbitrary information from system measures and application

state can be obtained and utilized at runtime, the imagination is the limit when it

comes to types of expert analysis or automated tuning one wishes to facilitate. Our

next two investigations demonstrate this with compelling results.

Chapter III shows how the high-level SOS model meets real world

environments and codes in practice, and how it is able to facilitate a dynamic

online aggregation of general application data in addition to system performance

measures, without disrupting the performance of the application or environment

being observed. Further, it is able to coordinate the projection of performance

measures over the application domain, including driving the online rendering of

3D images, allowing an observer to have an intuitive representation of the behavior

161

of their algorithms when their code is actually running on the machine. This allows

us to answer RQ2 with a decisive, “yes.”

Taking that feature gain in a different direction, Chapter IV dives into the

solutions for both RQ3 and RQ4. Setting to one side the already-demonstrated

generalized observation layer, this investigation focused instead on whether or not

classic machine learning techniques could be brought to bear using in situ (online)

data availability, whether it could be made performant enough to not consume any

gains it discovered, once the training and model processing overhead was factored

in. As it turns out, the system was able to greatly exceed its overhead and both

discover opportunities for, and sustainably deliver, performance gains from input-

dependent and configuration-dependent deployments of previously well-optimized

codes. The mechanism by which this capability was fielded provides another

affirmative outcome: The parallel portability frameworks being widely adopted

within the HPC community can be an extremely low-impact and flexible point of

engagement for the kind of scalable observation, analysis, and tuning models we

advocate for generally in this work.

This is a fast-moving and exciting area of research, with many different

execution scales, data access patterns, and unique target architectures. Our

intuitions, approach, and demonstrations consistently yielded positive results and

should encourage further effort to be applied to the development of more robust

integrated general infrastructures for in situ (online) monitoring, and the adoption

of programming models like RAJA and Kokkos that support dynamic adaptivity

for HPC codes. Code that can automatically and portably behave optimally

provides benefits both immediately, and in the future.

162

REFERENCES CITED

[1] D. G. Solt, J. Hursey, A. Lauria, D. Guo, and X. Guo, “Scalable, fault-tolerant
job step management for high performance systems,” IBM Journal of
Research and Development, 2019.

[2] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for
resource management,” in Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 2003, pp. 44–60.

[3] P. Braam, “The lustre storage architecture,” arXiv preprint arXiv:1903.01955,
2019.

[4] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for large
computing clusters.” in FAST, vol. 2, no. 19, 2002.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the mpi message passing interface standard,” Parallel
computing, vol. 22, no. 6, pp. 789–828, 1996.

[6] D. Boehme, K. Huck, J. Madsen, and J. Weidendorfer, “The case for a common
instrumentation interface for hpc codes,” in 2019 IEEE/ACM International
Workshop on Programming and Performance Visualization Tools (ProTools).
IEEE, 2019, pp. 33–39.

[7] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. Elliott, “Large
scale parallel structured amr calculations using the samrai framework,” in
Proceedings of the 2001 ACM/IEEE conference on Supercomputing, 2001,
pp. 6–6.

[8] L. Dagum and R. Menon, “Openmp: an industry standard api for
shared-memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[9] B. Mohr, A. D. Malony, S. Shende, F. Wolf et al., “Towards a performance tool
interface for openmp: An approach based on directive rewriting,” in
Proceedings of the Third Workshop on OpenMP (EWOMP’01), 2001.

[10] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “Ompt: An openmp tools
application programming interface for performance analysis,” in
International Workshop on OpenMP. Springer, 2013, pp. 171–185.

163

[11] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the
neighborhood: performance degradation due to nearby jobs,” in SC’13:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2013, pp. 1–12.

[12] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. Hilfinger, P. Husbands et al., “Productivity and
performance using partitioned global address space languages,” in
Proceedings of the 2007 international workshop on Parallel symbolic
computation, 2007, pp. 24–32.

[13] M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and W. De Meuter,
“Partitioned global address space languages,” ACM Computing Surveys
(CSUR), vol. 47, no. 4, pp. 1–27, 2015.

[14] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx: A task
based programming model in a global address space,” in Proceedings of the
8th International Conference on Partitioned Global Address Space
Programming Models, 2014, pp. 1–11.

[15] L. V. Kale and S. Krishnan, “Charm++ a portable concurrent object oriented
system based on c++,” in Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and applications, 1993, pp.
91–108.

[16] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T.
Foster, “Swift/t: Large-scale application composition via
distributed-memory dataflow processing,” in 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing. IEEE,
2013, pp. 95–102.

[17] K. A. H. PI, A. D. Malony, and M. M. A. Haque, “Apex/hpx integration
specification for phylanx,” 2019.

[18] M. A. H. Monil, B. Wagle, K. Huck, and H. Kaiser, “Adaptive auto-tuning in
hpx using apex.”

[19] B. Taubmann and H. P. Reiser, “Towards hypervisor support for enhancing the
performance of virtual machine introspection,” in IFIP International
Conference on Distributed Applications and Interoperable Systems.
Springer, 2020, pp. 41–54.

[20] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface to
hardware performance counters,” in Proceedings of the department of defense
HPCMP users group conference, vol. 710, 1999.

164

[21] S. Rostedt, “Finding origins of latencies using ftrace,” Proc. RT Linux WS,
2009.

[22] M. Gebai and M. R. Dagenais, “Survey and analysis of kernel and userspace
tracers on linux: Design, implementation, and overhead,” ACM Computing
Surveys (CSUR), vol. 51, no. 2, pp. 1–33, 2018.

[23] T. Bird, “Measuring function duration with ftrace,” in Proceedings of the Linux
Symposium. Citeseer, 2009, pp. 47–54.

[24] D. Fukui, M. Shimaoka, H. Mikami, D. Hillenbrand, H. Yamamoto, K. Kimura,
and H. Kasahara, “Annotatable systrace: an extended linux ftrace for
tracing a parallelized program,” in Proceedings of the 2nd International
Workshop on Software Engineering for Parallel Systems, 2015, pp. 21–25.

[25] A. Nagai, “Introduce new branch tracer ‘perf branch’,” Linux Technology
Center, Yokohama Research Lab, Hitachi Ltd., Copyright, 2011.

[26] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais, “Combined tracing of the
kernel and applications with lttng,” in Proceedings of the 2009 linux
symposium. Citeseer, 2009, pp. 87–93.

[27] D. Couturier and M. R. Dagenais, “Lttng clust: a system-wide unified cpu and
gpu tracing tool for opencl applications,” Advances in Software Engineering,
vol. 2015, 2015.

[28] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100,
2007.

[29] S. Lammel, F. Zahn, and H. Fröning, “Sonar: Automated communication
characterization for hpc applications,” in International Conference on High
Performance Computing. Springer, 2016, pp. 98–114.

[30] A. A. Gimenez and U. N. N. S. Administration, “Sonar,” 11 2018. [Online].
Available: https://www.osti.gov//servlets/purl/1493001

[31] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introducing the
open trace format (otf),” in International Conference on Computational
Science. Springer, 2006, pp. 526–533.

[32] A. D. Malony and W. E. Nagel, “The open trace format (otf) and open tracing
for hpc,” in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006, pp. 24–es.

165

https://www.osti.gov//servlets/purl/1493001

[33] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf,
“Open trace format 2: The next generation of scalable trace formats and
support libraries.” in PARCO, vol. 22, 2011, pp. 481–490.

[34] S. Shende, A. Malony, G. Allen, J. Carver, S. Choi, T. Crick, and M. Crusoe,
“Using tau for performance evaluation of scientific software,” in Workshop on
Sustainable Software for Science: Practice and Experiences, no. 1686, 2016.

[35] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent, “Hpctoolkit: Tools for performance analysis of optimized
parallel programs,” Concurrency and Computation: Practice and Experience,
vol. 22, no. 6, pp. 685–701, 2010.

[36] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, “Ravel: A
database-defined network,” in Proceedings of the Symposium on SDN
Research, 2016, pp. 1–7.

[37] L. Riliskis, J. Hong, and P. Levis, “Ravel: Programming iot applications as
distributed models, views, and controllers,” in Proceedings of the 2015
International Workshop on Internet of Things towards Applications, 2015,
pp. 1–6.

[38] L. Sun, G. Tian, G. Zhu, Y. Liu, H. Shi, and D. Dai, “Multipath ip routing on
end devices: Motivation, design, and performance,” in 2018 IFIP networking
conference (IFIP networking) and workshops. IEEE, 2018, pp. 1–9.

[39] A. Giménez, T. Gamblin, A. Bhatele, C. Wood, K. Shoga, A. Marathe, P.-T.
Bremer, B. Hamann, and M. Schulz, “Scrubjay: deriving knowledge from the
disarray of hpc performance data,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[40] K. Mehta, B. Allen, M. Wolf, J. Logan, E. Suchyta, J. Choi, K. Takahashi,
I. Yakushin, T. Munson, I. Foster et al., “A codesign framework for online
data analysis and reduction,” in 2019 IEEE/ACM Workflows in Support of
Large-Scale Science (WORKS). IEEE, 2019, pp. 11–20.

[41] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance introspection
for hpc software stacks,” in High Performance Computing, Networking,
Storage and Analysis, SC16: International Conference for. IEEE, 2016, pp.
550–560.

[42] O. Aaziz, J. Cook, and H. Sharifi, “Push me pull you: Integrating opposing data
transport modes for efficient hpc application monitoring,” in 2015 IEEE
International Conference on Cluster Computing. IEEE, 2015, pp. 674–681.

166

[43] J. E. Thornton, “The cdc 6600 project,” Annals of the History of Computing,
vol. 2, no. 4, pp. 338–348, 1980.

[44] C. J. Murray, The supermen: the story of Seymour Cray and the technical
wizards behind the supercomputer. John Wiley & Sons, Inc., 1997.

[45] R. Izadpanah, B. A. Allan, D. Dechev, and J. Brandt, “Production application
performance data streaming for system monitoring,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS),
vol. 4, no. 2, pp. 1–25, 2019.

[46] M. J. Sottile and R. G. Minnich, “Supermon: A high-speed cluster monitoring
system,” in Proceedings. IEEE International Conference on Cluster
Computing. IEEE, 2002, pp. 39–46.

[47] T. Oetiker and D. Rand, “Mrtg: The multi router traffic grapher.” in LISA,
vol. 98, 1998, pp. 141–148.

[48] T. Oetiker, “Monitoring your it gear: the mrtg story,” IT professional, vol. 3,
no. 6, pp. 44–48, 2001.

[49] S. Zhang, I.-L. Yen, and F. B. Bastani, “Toward semantic enhancement of
monitoring data repository,” in 2016 IEEE Tenth International Conference
on Semantic Computing (ICSC). IEEE, 2016, pp. 140–147.

[50] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler, “Wide area cluster
monitoring with ganglia,” in null. IEEE, 2003, p. 289.

[51] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[52] S. Mongkolluksamee, P. Pongpaibool, and C. Issariyapat, “Strengths and
limitations of nagios as a network monitoring solution,” in Proceedings of the
7th International Joint Conference on Computer Science and Software
Engineering (JCSSE 2010). Bangkok, Thailand, 2010, pp. 96–101.

[53] G. Katsaros, R. Kübert, and G. Gallizo, “Building a service-oriented monitoring
framework with rest and nagios,” in 2011 IEEE International Conference on
Services Computing. IEEE, 2011, pp. 426–431.

[54] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani, S. M. Gallo,
M. D. Jones, and A. K. Patra, “Comprehensive resource use monitoring for
hpc systems with tacc stats,” in 2014 First International Workshop on HPC
User Support Tools. IEEE, 2014, pp. 13–21.

167

[55] H. Sharifi, O. Aaziz, and J. Cook, “Monitoring hpc applications in the
production environment,” in Proceedings of the 2nd Workshop on Parallel
Programming for Analytics Applications, 2015, pp. 39–47.

[56] W. R. Williams, X. Meng, B. Welton, and B. P. Miller, “Dyninst and mrnet:
Foundational infrastructure for parallel tools,” in Tools for High
Performance Computing 2015. Springer, 2016, pp. 1–16.

[57] C. Wood, S. Sane, D. Ellsworth, A. Gimenez, K. Huck, T. Gamblin, and
A. Malony, “A scalable observation system for introspection and in situ
analytics,” in Proceedings of the 5th Workshop on Extreme-Scale
Programming Tools. IEEE Press, 2016, pp. 42–49.

[58] S. Forti, M. Gaglianese, and A. Brogi, “Lightweight self-organising distributed
monitoring of fog infrastructures,” Future Generation Computer Systems,
vol. 114, pp. 605–618.

[59] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile,
S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight distributed
metric service: a scalable infrastructure for continuous monitoring of large
scale computing systems and applications,” in SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2014, pp. 154–165.

[60] A. Agelastos, B. Allan, J. Brandt, A. Gentile, S. Lefantzi, S. Monk, J. Ogden,
M. Rajan, and J. Stevenson, “Toward rapid understanding of production hpc
applications and systems,” in 2015 IEEE International Conference on
Cluster Computing. IEEE, 2015, pp. 464–473.

[61] S. Feldman, D. Zhang, D. Dechev, and J. Brandt, “Extending ldms to enable
performance monitoring in multi-core applications,” in 2015 IEEE
International Conference on Cluster Computing. IEEE, 2015, pp. 717–720.

[62] R. Izadpanah, N. Naksinehaboon, J. Brandt, A. Gentile, and D. Dechev,
“Integrating low-latency analysis into hpc system monitoring,” in Proceedings
of the 47th International Conference on Parallel Processing, 2018, pp. 1–10.

[63] D. Montaldo, E. Mocskos, and D. F. Slezak, “Clover: Efficient monitoring of hpc
clusters,” 2009.

[64] (2020) Performance co-pilot: System-wide monitoring. [Online]. Available:
https://pcp.io

[65] C. Guillen, W. Hesse, and M. Brehm, “The persyst monitoring tool,” in
European Conference on Parallel Processing. Springer, 2014, pp. 363–374.

168

https://pcp.io

[66] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in 2010
39th International Conference on Parallel Processing Workshops. IEEE,
2010, pp. 207–216.

[67] T. Röhl, J. Eitzinger, G. Hager, and G. Wellein, “Likwid monitoring stack: A
flexible framework enabling job specific performance monitoring for the
masses,” in 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2017, pp. 781–784.

[68] L. Stanisic and K. Reuter, “Mpcdf hpc performance monitoring system:
Enabling insight via job-specific analysis,” in European Conference on
Parallel Processing. Springer, 2019, pp. 613–625.

[69] B. Shihada, “Conceptual & concrete architectures of open network management
system (opennms),” 2002.

[70] N. Sukhija and E. Bautista, “Towards a framework for monitoring and analyzing
high performance computing environments using kubernetes and
prometheus,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and
Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019,
pp. 257–262.

[71] N. Sukhija, E. Bautista, O. James, D. Gens, S. Deng, Y. Lam, T. Quan, and
B. Lalli, “Event management and monitoring framework for hpc
environments using servicenow and prometheus,” in Proceedings of the 12th
International Conference on Management of Digital EcoSystems, 2020, pp.
149–156.

[72] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui, “Modelling performance
& resource management in kubernetes,” in Proceedings of the 9th
International Conference on Utility and Cloud Computing, 2016, pp.
257–262.

[73] S. Patarin and M. Makpangou, “Pandora: A flexible network monitoring
platform,” 1999.

[74] N. Chan, “A resource utilization analytics platform using grafana and telegraf
for the savio supercluster,” in Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (learning), 2019, pp.
1–6.

169

[75] P. Rattanatamrong, Y. Boonpalit, S. Suwanjinda, A. Mangmeesap, K. Subraties,
V. Daneshmand, S. Smallen, and J. Haga, “Overhead study of telegraf as a
real-time monitoring agent,” in 2020 17th International Joint Conference on
Computer Science and Software Engineering (JCSSE). IEEE, 2020, pp.
42–46.

[76] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases and
influxdb,” Studienarbeit, Université Libre de Bruxelles, 2017.

[77] Zabbix distributed monitoring solution. [Online]. Available:
https://www.zabbix.com

[78] E. Simmonds and J. Harrington, “Scf/fef evaluation of nagios and zabbix
monitoring systems,” SCF/FEF, pp. 1–9, 2009.

[79] T. Wang, J. Xu, W. Zhang, Z. Gu, and H. Zhong, “Self-adaptive cloud
monitoring with online anomaly detection,” Future Generation Computer
Systems, vol. 80, pp. 89–101, 2018.

[80] “collectd: The system statistics collection daemon,” 2020. [Online]. Available:
https://collectd.org

[81] S. Benedict, V. Petkov, and M. Gerndt, “Periscope: An online-based distributed
performance analysis tool,” in Tools for High Performance Computing 2009.
Springer, 2010, pp. 1–16.

[82] J. R. Mayo, F. X. Chen, P. P. Pebay, M. H. Wong, D. Thompson, A. C. Gentile,
D. C. Roe, V. De Sapio, and J. M. Brandt, “Understanding large scale hpc
systems through scalable monitoring and analysis.” Sandia National
Laboratories, Tech. Rep., 2010.

[83] J. P. White, M. Innus, R. L. Deleon, M. D. Jones, and T. R. Furlani,
“Monitoring and analysis of power consumption on hpc clusters using
xdmod,” in Practice and Experience in Advanced Research Computing, 2020,
pp. 112–119.

[84] “Mpi 3.1 report,” Jun 2015. [Online]. Available:
https://www.mpi-forum.org/docs/mpi-3.1

[85] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The mvapich
project: Transforming research into high-performance mpi library for hpc
community,” Journal of Computational Science, p. 101208, 2020.

[86] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open mpi: A flexible high
performance mpi,” in International Conference on Parallel Processing and
Applied Mathematics. Springer, 2005, pp. 228–239.

170

https://www.zabbix.com
https://collectd.org
https://www.mpi-forum.org/docs/mpi-3.1

[87] D. Schafer, I. Laguna, and K. Mohror, “Exampi: A modern design and
implementation to accelerate message passing interface innovation,” in High
Performance Computing: 6th Latin American Conference, CARLA 2019,
Turrialba, Costa Rica, September 25–27, 2019, Revised Selected Papers, vol.
1087. Springer Nature, 2020, p. 153.

[88] M. Si, Y. Ishikawa, and M. Tatagi, “Direct mpi library for intel xeon phi
co-processors,” in 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum. IEEE, 2013, pp.
816–824.

[89] B. Elis, D. Yang, O. Pearce, K. Mohror, and M. Schulz, “Qmpi: a next
generation mpi profiling interface for modern hpc platforms,” Parallel
Computing, p. 102635, 2020.

[90] S. Ramesh, A. Mahéo, S. Shende, A. D. Malony, H. Subramoni, A. Ruhela, and
D. K. D. Panda, “Mpi performance engineering with the mpi tool interface:
the integration of mvapich and tau,” Parallel Computing, vol. 77, pp. 19–37,
2018.

[91] M. Schulz, J. A. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci,
“Interpreting performance data across intuitive domains,” in Parallel
Processing (ICPP), 2011 International Conference on. IEEE, 2011, pp.
206–215.

[92] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter, “The
netlogger methodology for high performance distributed systems
performance analysis,” 12 1999.

[93] M. Larsen, J. Aherns, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and
C. Harrison, “The alpine in situ infrastructure: Ascending from the ashes of
strawman,” in Proceedings of the In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization Workshop, ser. ISAV2017. New
York, NY, USA: ACM, 2017.

[94] C. Xie and W. Xu, “Performance visualization for tau instrumented scientific
workflows,” Brookhaven National Lab.(BNL), Upton, NY (United States),
Tech. Rep., 2018.

[95] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele, and
A. K. Coskun, “Diagnosing performance variations in hpc applications using
machine learning,” in International Supercomputing Conference. Springer,
2017, pp. 355–373.

171

[96] A. Morrow, E. Baseman, and S. Blanchard, “Ranking anomalous high
performance computing sensor data using unsupervised clustering,” in 2016
International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 2016, pp. 629–632.

[97] S. Sanchez, A. Bonnie, G. Van Heule, C. Robinson, A. DeConinck, K. Kelly,
Q. Snead, and J. Brandt, “Design and implementation of a scalable hpc
monitoring system,” in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2016, pp. 1721–1725.

[98] G. da Cunha Rodrigues, G. Lessa dos Santos, V. Tavares Guimaraes,
L. Zambenedetti Granville, and L. M. Rockenbach Tarouco, “An architecture
to evaluate scalability, adaptability and accuracy in cloud monitoring
systems,” in Information Networking (ICOIN), 2014 International
Conference on. IEEE, 2014, pp. 46–51.

[99] K. A. Huck, A. D. Malony, S. Shende, and A. Morris, “Taug: Runtime global
performance data access using mpi,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Springer, 2006, pp. 313–321.

[100] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf,
“Monalytics: online monitoring and analytics for managing large scale data
centers,” in Proceedings of the 7th international conference on Autonomic
computing. ACM, 2010, pp. 141–150.

[101] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter, and
N. Mallavarupu, “Falcon: On-line monitoring and steering of large-scale
parallel programs,” in Frontiers of Massively Parallel Computation, 1995.
Proceedings. Frontiers’ 95., Fifth Symposium on the. IEEE, 1995, pp.
422–429.

[102] X. Zhang, H. Abbasi, K. Huck, and A. D. Malony, “Wowmon: A machine
learning-based profiler for self-adaptive instrumentation of scientific
workflows,” Procedia Computer Science, vol. 80, pp. 1507–1518, 2016.

[103] R. K. Tesser and P. O. A. Navaux, “Dimvhcm: An on-line distributed
monitoring data collection model,” in Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro International
Conference on. IEEE, 2012, pp. 37–41.

[104] M. Schulz, A. Bhatele, D. Böhme, P.-T. Bremer, T. Gamblin, A. Gimenez, and
K. Isaacs, “A flexible data model to support multi-domain performance
analysis,” in Tools for High Performance Computing 2014. Springer, 2015,
pp. 211–229.

172

[105] B. Husain, A. Giménez, J. A. Levine, T. Gamblin, and P.-T. Bremer, “Relating
memory performance data to application domain data using an integration
api,” in Proceedings of the 2nd Workshop on Visual Performance Analysis.
ACM, 2015, p. 5.

[106] A. Giménez, T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P.-T. Bremer, and
B. Hamann, “Memaxes: visualization and analytics for characterizing
complex memory performance behaviors,” IEEE transactions on
visualization and computer graphics, vol. 24, no. 7, pp. 2180–2193, 2017.

[107] D. Böhme, D. Beckingsdale, and M. Schulz, “Flexible data aggregation for
performance profiling,” IEEE Cluster, 2017.

[108] K. E. Isaacs, A. G. Landge, T. Gamblin, P.-T. Bremer, V. Pascucci, and
B. Hamann, “Exploring performance data with boxfish,” in High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:. IEEE, 2012, pp. 1380–1381.

[109] P. Messina, “The exascale computing project,” Computing in Science &
Engineering, vol. 19, no. 3, pp. 63–67, 2017.

[110] J. Ahrens, B. Geveci, and C. Law, “Paraview: An end-user tool for large data
visualization,” The Visualization Handbook, vol. 717, 2005.

[111] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing and
Analyzing Very Large Data,” in High Performance Visualization—Enabling
Extreme-Scale Scientific Insight. CRC Press/Francis–Taylor Group, Oct.
2012, pp. 357–372.

[112] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison,
“Strawman: A batch in situ visualization and analysis infrastructure for
multi-physics simulation codes,” in Proceedings of the First Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
ser. ISAV2015. New York, NY, USA: ACM, 2015, pp. 30–35. [Online].
Available: http://doi.acm.org/10.1145/2828612.2828625

[113] L. L. N. Laboratory. (2017) Conduit: Simplified data exchange for hpc
simulations. [Online]. Available: https://software.llnl.gov/conduit/

[114] ——. (2017) Conduit: Simplified data exchange for hpc simulations - conduit
blueprint. [Online]. Available:
https://software.llnl.gov/conduit/blueprint.html

173

http://doi.acm.org/10.1145/2828612.2828625
https://software.llnl.gov/conduit/
https://software.llnl.gov/conduit/blueprint.html

[115] W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit: an
object-oriented approach to 3D graphics. Kitware, 2004.

[116] A. Kunen, T. Bailey, and P. Brown, “Kripke-a massively parallel transport
mini-app,” Lawrence Livermore National Laboratory (LLNL), Livermore,
CA, Tech. Rep., 2015.

[117] “Hydrodynamics Challenge Problem, Lawrence Livermore National
Laboratory,” Lawrence Livermore National Laboratory, Tech. Rep.
LLNL-TR-490254.

[118] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire, J. Kress,
H. Schroots, K.-L. Ma, H. Childs et al., “Vtk-m: Accelerating the
visualization toolkit for massively threaded architectures,” IEEE computer
graphics and applications, vol. 36, no. 3, pp. 48–58, 2016.

[119] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith, and H. Childs,
“Performance modeling of in situ rendering,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, p. 24.

[120] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,
B. Norris, and R. Vuduc, “Autotuning in high-performance computing
applications,” Proceedings of the IEEE, vol. 106, no. 11, pp. 2068–2083, 2018.

[121] D. A. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo: Reusable
Models for Fast, Dynamic Tuning of Input-Dependent Code,” in 31st IEEE
International Parallel & Distributed Processing Symposium, 2017, pp.
307–316.

[122] D. A. Beckingsale, R. D. Hornung, T. R. W. Scogland, and A. Vargas,
“Performance Portable C++ Programming with RAJA,” in Proceedings of
the 24th Symposium on Principles and Practice of Parallel Programming,
2019, pp. 455–456.

[123] R. D. Hornung and J. A. Keasler, “The RAJA Portability Layer: Overview and
Status,” Lawrence Livermore National Lab, Tech. Rep., 2014.

[124] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,”
Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp.
3202–3216, 2014.

[125] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portability
across manycore architectures,” in 2013 Extreme Scaling Workshop (xsw
2013). IEEE, 2013, pp. 18–24.

174

[126] I. Karlin, J. A. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-641973,
August 2013.

[127] D. A. Beckingsale, “Towards scalable adaptive mesh refinement on future
parallel architectures,” Ph.D. dissertation, University of Warwick, 2015.

[128] D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, and S. A. Jarvis, “Resident
Block-Structured Adaptive Mesh Refinement on Thousands of Graphics
Processing Units,” in 44th International Conference on Parallel Processing,
2015, pp. 61–70.

[129] S. Rajamanickam, “Kokkos kernels: Performance portable kernels for
sparse/dense linear algebra graph and machine learning kernels.” Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep.,
2020.

[130] D. Beckingsale, W. Gaudin, A. Herdman, and S. Jarvis, “Resident
block-structured adaptive mesh refinement on thousands of graphics
processing units,” in 2015 44th International Conference on Parallel
Processing. IEEE, 2015, pp. 61–70.

[131] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library of automatically
tuned sparse matrix kernels,” in Journal of Physics: Conference Series,
vol. 16, no. 1. IOP Publishing, 2005, p. 521.

[132] M. A. S. Bari, N. Chaimov, A. M. Malik, K. A. Huck, B. Chapman, A. D.
Malony, and O. Sarood, “Arcs: Adaptive runtime configuration selection for
power-constrained openmp applications,” in 2016 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2016, pp. 461–470.

[133] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M.
O’Reilly, and S. Amarasinghe, “Opentuner: An extensible framework for
program autotuning,” in Proceedings of the 23rd international conference on
Parallel architectures and compilation, 2014, pp. 303–316.

[134] D. Pfander, M. Brunn, and D. Pflüger, “Autotunetmp: Auto-tuning in c++
with runtime template metaprogramming,” in 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2018, pp. 1123–1132.

[135] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, “Atlas: An
infrastructure for global computing,” in Proceedings of the 7th workshop on
ACM SIGOPS European workshop: Systems support for worldwide
applications, 1996, pp. 165–172.

175

[136] M. Frigo and S. G. Johnson, “Fftw: An adaptive software architecture for the
fft,” in Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 3.
IEEE, 1998, pp. 1381–1384.

[137] V. Sreenivasan, R. Javali, M. Hall, P. Balaprakash, T. R. Scogland, and B. R.
de Supinski, “A Framework for Enabling OpenMP Autotuning,” in
International Workshop on OpenMP. Springer, 2019, pp. 50–60.

[138] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the atlas project,” Parallel computing, vol. 27,
no. 1-2, pp. 3–35, 2001.

[139] A. Rasch, M. Haidl, and S. Gorlatch, “Atf: A generic auto-tuning framework,”
in 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference on
Smart City; IEEE 3rd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 2017, pp. 64–71.

[140] A. Rasch and S. Gorlatch, “Atf: A generic directive-based auto-tuning
framework,” Concurrency and Computation: Practice and Experience,
vol. 31, no. 5, p. e4423, 2019.

[141] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using orio,” in 2009 IEEE International Symposium on
Parallel & Distributed Processing. IEEE, 2009, pp. 1–11.

[142] J. Hollingsworth and A. Tiwari, “End-to-end auto-tuning with active
harmony,” Performance Tuning of Scientific Applications, pp. 217–238, 2010.

[143] K. Meng and B. Norris, “Mira: A framework for static performance analysis,”
in 2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2017, pp. 103–113.

[144] H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning parameter choices in hpc
applications using bayesian optimization,” 2020.

[145] T. Creech, A. Kotha, and R. Barua, “Efficient multiprogramming for
multicores with scaf,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013, pp. 334–345.

[146] T. Creech and R. Barua, “Transparently space sharing a multicore among
multiple processes,” ACM Trans. Parallel Comput., vol. 3, no. 3, Nov. 2016.
[Online]. Available: https://doi.org/10.1145/3001910

176

https://doi.org/10.1145/3001910

[147] G. Georgakoudis, H. Vandierendonck, P. Thoman, B. R. D. Supinski,
T. Fahringer, and D. S. Nikolopoulos, “Scalo: Scalability-aware parallelism
orchestration for multi-threaded workloads,” ACM Trans. Archit. Code
Optim., vol. 14, no. 4, Dec. 2017. [Online]. Available:
https://doi.org/10.1145/3158643

177

https://doi.org/10.1145/3158643

	 General Introduction
	Investigatory Approach
	Preliminaries
	Observability
	Application Source Instrumentation
	Shared Library, Runtime, or Service Instrumentation
	Runtimes and Services
	Sampling and Tracing
	Probing and Inference from Indirect Sources

	Capturing and Using Data
	Overview
	Representation and Meaning
	Encoding the Data and Metadata
	Encoding the Expertise
	Time, Change, Identity, and Consistency
	Combination and Unit Semantics

	Patterns Within HPC
	Exposing Data
	Exporting Data
	Logging
	Checkpoint
	Cacheing
	Polling and Pulling
	Broadcast or Push
	Hybrid Push/Pull
	Publish/Subscribe

	Introspection, Opacity, and Interface Standardization
	Case Study: The CDC 6600 Mainframe
	Observability: In Conclusion

	Monitoring for HPC: Dedicated Frameworks
	SuperMon
	MonALISA
	MRTG
	RRDTool
	Ganglia
	Nagios
	TACC stats
	ProMon
	SOS and SOSflow
	FogMon
	LDMS
	CluMon and ClOver
	Additional Monitoring Solutions of Note

	Monitoring for HPC: General Topics
	Portability Frameworks as Monitoring Opportunities
	Distributed Computing

	Monitoring and Multiple Domains
	Online Monitoring for Large and Complex Codes

	Concluding Remarks

	 A General Framework for Online Monitoring in HPC
	Introduction
	Scientific Workflows
	Multiple Perspectives
	Motivation

	Related Work
	SOS Architectural Model
	Components of the SOS Model
	Core Features of SOS

	Implementation
	Architecture Overview
	Library: libsos
	Daemon: sosd_listener
	Database: sosd_db
	Analytics: sosa

	Results
	Evaluation Platform
	Experiment Setup
	Evaluation of SOS Model
	Evaluation of Latency
	Results
	SOS Model Validation
	Evaluation of Latency

	Discussion
	Aggregation Topology
	Time Cost of Publish API

	Conclusion

	 Multi-Domain Insights Using an Observation Service
	Introduction
	Research Contributions

	Related Work
	SOSflow
	SOSflow Daemons
	In Situ
	Aggregation Targets

	SOSflow Client Library
	SOSflow Data

	ALPINE Ascent
	Experiments
	Evaluation Platform
	Experiment Setup
	Overview of Processing Steps
	Evaluation of Geometry Extraction
	Evaluation of Overhead

	Results
	Geometry Extraction and Performance Data Projection
	Overhead

	Conclusion
	Future Work

	 Parallel Portability With Online Machine Learning
	Introduction
	Background
	Artemis: Design and Implementation
	Design
	Training and Optimization
	Validation and Retraining
	Extending RAJA OpenMP execution
	Enhancing Kokkos CUDA execution
	Training Measurement
	Training Model Analysis and Optimization

	Experimentation Setup
	Comparators
	Applications
	Hardware and Software Platforms
	Statistical Evaluation

	Evaluation
	Instrumentation Overhead
	Model Training and Evaluation Overhead
	Speedup on Cleverleaf
	Effectiveness of Cleverleaf Policy Selection
	Strong scaling with different node counts
	Speedup on LULESH
	Speedup on Kokkos Kernels SpMV

	Related Work
	Conclusion and Future Work

	 Conclusion
	REFERENCES CITED

