
Resilience of Partial
k-tree Networks

Erick Mata-Montero

CIS-TR-89-09
October 20, 1989

Abstract

The resilience of a network is the expected number of pairs of nodes
that can communicate. Computing the resilience of a network has been
shown to be a #P-complete problem for planar networks and to take
O(n2

) time for n-node partial 2-tree networks . We present an O(n) time
algorithm to compute the resilience of partial 2-tree networks on n-nodes ,
and, for a fixed k, an 0(n2

) algorithm to compute the resilience of n-nod e
parti al k-tree networks given with an embedding in a k-tree.

Department of Computer and Information Science
University of Oregon

Resilience of Partial k-tree Networks

Erick Mata-Montero *
Department of Computer and Information Science
University of Oregon, Eugene, Oregon 97403, USA

September 25, 1989

Abstract

The resilience of a network is the expected number of pairs of nodes that can communicate.
Comp4ting the resilience of a network has been shown to be a #P-complete problem for planar
networks ·and to take O(n2) time for n-node partial 2-tree networks. We present an O(n) time
algorithm to compute the resilience of partial 2-tree networks on n-nodes , and , for a fixed k ,
an O(n2) .algorithm to compute the resilience of n-node partial k-tree networks given with an
embedding in a k-tree.

1 Introduction

Computer communication networks perform communication tasks in an environment in which
several kinds of failures may occur. Failures may arise at the software level (e.g. a routing
algorithm that does no~ detect an operational path, although one exists) and at the topological
level (e.g. natural catastrophes and component wear out). \i\'e use probabilistic graphs to model
networks in which only failures due to random component wear out may occur. A probabilistic
graph is a graph G = (V, E) such that each edge has an associated probability of operation. The
probability of operation of an edge e in Eis a fixed precision real number Pe such that O :s; Pe :s; 1.
Edges are in either operational (up) or failed (down) state and their failures are statistically
independent. A network is a probabilistic graph in which nodes represent communication sites
and edges represent bidirectional communication lines.

Given a communication task, the reliability of a network has typically been defined as the
probability that the network can perform such a task. For example, if the communication task
is a broadcast, the reliability of the network may be defined as the probability that the network
contains a spanning tree. If the communication task consists of sending information between two
specified sites, the reliability of the network may be defined as the probability that the network
contains a path between the two corresponding nodes. In the former example the reliability
measure is called the all-terminal reliability, in the latter the measure is called the two-terminal

•Research supported in part by the Office of Naval Research contract N00014-86-K-041 9.

1

reliability. These two measures, as well as others similarly defined (e.g. k-terminal reliability),
have been the subject of extensive research (see [6] for an excellent survey).

Most of the traditional reliability problems have turned out to be intractable. For instance ,
computing the all-terminal reliability of a network is a #P-complete problem [16]. On the other
hand, computing the two-terminal reliability of a network is a #P-complete problem even when
the network is planar, acyclic, with bounded degree nodes, and with all edges failing with the same
probability [15]. Whether the all-terminal reliability problem on planar graphs is #P-complete
or not is an open problem [6].

The resilience of a network is an alternative measure of the reliability of the network. In some
applications, the concern is not the probability that some collection of nodes remain connected
but that the expected number of pairs of nodes that can exchange information be "high." The
resilience of a network is the expected number of pairs of nodes that can communicate [7]. Com­
puting the resilience of a network is a #P-complete problem, even when the network is planar
(7].

The apparent intractability of the reliability problems has lead to the development of efficient
approximation algorithms and of exact algorithms for restricted classes of graphs (see [6] for a
comprehensive discussion). The class of partial k-trees has become the subject of a large body of
research for two main reasons. First, the class of partial k-trees contains several important classes
of graphs (e.g. series-parallel graphs and chordal graphs with bounded clique size, [5]). Secondly,
some important NP-complete graph problems have polynomial time solutions when restricted to
the class of partial k-trees [13]. For example, Arnborg and Proskurowski [3] prove that , for a fixed
k, the all-terminal and two-terminal reliability of partial k-tree networks with fail-safe nodes can
be computed in linear time (given a suitable embedding of the partial k-tree in a k-tree) . On
the other hand, Colbourn [7] proves that the resilience of a partial 2-tree network with fail-safe
nodes is computable in quadratic time.

This report is organized as follows. In section 2 we present some basic terminology. In section 3
we introduce the reduction paradigm defined in [3], and use it to develop an 0(n 2) time algorithm
to compute the resilience of partial k-tree networks (given a fixed k and an embedding in a k-tree).
Finally, in section 4 we present a linear time algorithm to compute the resilience of partial 2-trees .

2 Terminology

Except for a few explicitly defined concepts, we use the basic graph theoretic terminology in [12].
Throughout this paper we assume that all graphs are probabilistic. Let G = (V, E) be a graph.
A clique of G is a (not necessarily maximal) complete subgraph of G. A k-clique is a clique that
has exactly k nodes. A graph H = (VH,EH) is a partial graph of G, denoted H ~ G, if His a
spanning subgraph of G. The operational subgraph of G is the partial graph of G whose edges
are the operational edges in G. We use Pa[H] to denote the probability that the operational
subgraph of G is H. Clearly

Pa[H] = IT Pe X IT (1 - Pe)
eEEH eEE-EH

2

We extend the definition of Pa to the domain of sets of partial graphs of G in the natural
way. Let S be a set of partial graphs of G. Pa[S] denotes the probability that the operational
edges of G induce a graph in S. Therefore Pa[S] = EH es Pa[H].

Let H = (VH, EH) be a subgraph of G and u, v be two nodes in VH. We say that u is

connected to v via H (denoted u ~ v) iff there is a path, consisting of zero or more edges from

EH, that connects u to v. When H = G we prefer the notation u ,.__, v over u 2 v . We define
sets of partial graphs of H by stating connectivity conditions for nodes of H. For example, if

u, v are two distinguished nodes of H, u r!f v denotes the set of partial graphs of H such that u
is connected to v via H. So, Pa[u ,.__, v] is the probability that u and v can communicate (i.e.,
the 2-terminal reliability of G). A connectivity condition over a network G = (V, E) is a boolean

expression with terms of the form u !l v, where H is any subgraph of G, and u, v are nodes of
G. Let CC be a connectivity condition over G. It is easy to prove that if all connections (r-v) in

H
CC are of the form r-v, for a fixed H = (VH, EH), then Pa[CC] = PH[CC]. In such a case, edges
in E\EH are called:.irrelevant.

The set qf all connected components of a graph G = (V, E) define a partition 1r of V such
that each block in 1r contains the nodes of one connected component of G. We further extend the
function Pa so that Pa[1r] denotes the probability that the connected components of G correspond
to 1r.

The resilience Res(G) of a network G = (V, E) is the expected number of (unordered) pairs
of nodes of G that can communicate. Pairs of the form { u, u} are not counted. The resilience
problem consists of computing the resilience of a network. We can formulate Res(G) as

Res(G) = L Pa[H] x Pairs(H)
H<;,G

where Pairs(H) is the number of pairs { u, v} of nodes in V such that u ~ v and u f= v.
For any node x in V, let Ex(G) be the expected number of nodes y in G (including x) such

that y r-v x. Then

Ex(G) = L Pa[H] XL Connected(H,x,y)
H<;,G yEV

where

Connected(H,x,y) = { ~ "f H l Xr-vy
otherwise

Simple algebraic manipulation gives

Ex(G) = L Pa[xr-vy]
yEV

3

So we can express Res(G) in terms of Ex (G) as follows

Res(G) L Pa[H] x Pairs(H)

Therefore

H~G

1 L Pa[H] X 2 L L Connected(H, x, y)
HCG xEV yEV

- y#x

1 = 2 LL L Pa[H] x Connected(H,x,y)
xEV yEV HCG

y#x -

1

2 L I:Pa[x ~ y]
xEV yEV

y#x

Res(G) =

Colbourn [7) uses equation 1 to define an 0(n2) time algorithm to compute the resilience of a
partial 2-tree network. The key of the solution in [7) is a linear time algorithm to compute Ex(G).
The algorithms presented in the remainder of this paper also use equation 1 as the starting point
to compute the resilience of a network.

3 Resilience of Partial k-trees

Let k be a fixed positive integer. A graph is a k-tree iff it satisfies either of the following conditions:

(i) It is the complete graph on k nodes, J(k;

(ii) It has a node v of degree k with completely connected neighbors, and the graph obtained
by removing v and its incident edges is a k-tree.

The recursive definition above was first given by Beineke and Pippert [4] as a generalization
of the recursive definition of trees (1-trees). Since then, a large body of research has been devoted .
to the study the class of k-trees and other related classes of graphs (e.g., chordal graphs [11), and
partial k-trees [3]). A graph is a partial k-tree if it is a partial graph of a k-tree. We refer the
reader to [1, 2) for overviews of properties of partial k-trees and to [5, 13) for surveys of classes of
graphs related to the class of partial k-trees.

The reduction paradigm

Arnborg and Proskurowski [3] have defined an algorithm design methodology, a reduction pa,radigm,
for partial k-trees that leads to the development of efficient algorithms for a variety of NP-complete

4

problems restricted to partial k-trees. The reduction paradigm assumes that k is a fixed positive
integer, and that the input partial k-tree is given with a suitable embedding in a k-tree. For
the sake of simplicity we will discuss this reduction paradigm assuming that the input graph is a
k-tree rather than a partial k-tree given with an embedding in a k-tree.

The reduction paradigm in [3] uses a dynamic programming approach to compute the solution
to a problem X on a (partial) k-tree. First, we associate a state with each k-clique in the
graph. The state of each k-clique contains some local information that will be combined with the
information in other states to solve problem X. Once each k-clique has been assigned an initial
state, we proceed to eliminate n - k nodes of G in some convenient order v1 , ... , Vn-k · Each
time we eliminate one node v we destroy a nu1;1ber of k-cliques whose states contain valuable
information. So, before destroying those k-cliques we combine their states and save the result as
the state of a specific k-clique that is not destroyed by the removal of v. When the n - k nodes
have been removed from G we are left with a root R of G. The root R is a k-clique whose state
contains enough information to solve problem X on G. We need some notation to formalize these
ideas.

A perfect;elimination ordering (peo) of a graph G is an enumeration v1 , ... , Vn of the nodes of
G such that for each i (i = 1, ... , n), the higher numbered neighbors of Vi form a clique. Clearly,
we can always find a peo for a k-tree. Furthermore, we can guarantee that for any peo of a k-tree
the higher numbered neighbors of each of the first n - k nodes induce a k-clique. A node whose
neighborhood induces a k-clique is called a k-leaf

Algorithm 1 presents the reduction paradigm in detail. Let us suppose that we want to solve
problem X on a k-tree G. The first step of the algorithm, the initialization step, finds the first
n - k nodes of a peo and initializes the state of each k-clique in the graph G. The initial state of
each k-clique I(is computed by a function e(K). Each reduction step removes one of the n - k
nodes in the queue P EO. Upon removal of a node v, the algorithm performs two sub-steps. First
it "combines" the states. of k+ 1 k-cliques. We use f to denote the function that computes such
a combination of states. The result of applying / to the states of the k k-cliques that will be
destroyed and to the state of the neighborhood of v is called the "state" of](+(v) 1 . The second
sub-step combines the effect of the edges that connect v to its neighborhood (]((v)) and the state
of](+(v). Algorithm 1 represents this second combination of information as the computation of
g(state(J(+(v)),S(v)). The termination step extracts the solution to problem X from the state
of the root R and the effect of the edges in R.

The state information in each k-clique describes solutions to a problem (usually a generaliza­
tion of the original problem) restricted to the subgraph induced by the nodes in the k-clique and
by those removed nodes that the k-clique separates from from all non-removed nodes excluding
all edges between nodes in the k-clique. The specification of an algorithm that uses the reduction
paradigm described above consists of five main parts. First we define the information that is
maintained in the state of each k-clique. Then we specify how to compute e, f, g, and h in

1The "state" of K+(v) is ephemeral; we compute it once and immediately use it to update the state of K(v).
Once the state of K(v) has been updated, we destroy J(+(v) by removing the node v. So, state(K+(v)) is simply
an intermediate value that we calculate to update the state of K(v) . We believe that the metaphor of having a
state for](+ (v) is useful in understanding and analyzing the functions f and g for specific problems that use this
reduction paradigm.

5

Algorithm 1.

Algorithm 1

Reduction Paradigm
Input: G = (V, E), a k-tree (for a fixed k}.

1. Initialization step.

PED ~ empty queue.

Don - k times:

Let v be a k-leaf of G - PED.
Let K(v) be the {k-clique) neighborhood of v in G- PED.
Let J(+(v) be the (k+l)-clique induced by V(K(v)) U {v}.
For all nodes u in V(I((v)) do:

Let JC-'(v) be the k-clique induced by V(J(+(v)) \ {u}.
state(J(u(v)) ~ e(l(u(v))

Append v to PED.

state(R) ~ e(R).

2. Reduction steps.

For each node v in P EO, in order, do:

state(K+(v)) ~ f({state(Ku) I u E V(K+(v))}).

Let S(v) be the star graph induced by the edges {v,u}, Vu E V(K(v)).

state(K(v)) ~ g(state(J(+(v)),S(v)).

Remove v from G.

3. Termination step.

Solution ~ h(state(R), edges in R).

We need to formalize some concepts before presenting our reduction algorithm to compute
the resilience of partial k-tree networks. If I(is a k-clique, v (/. V(K) is a descendant of](in a
pea iff each higher numbered neighbor of v is either a node in V(I() or a descendant of J(. The
connected components of the subgraph induced by all descendants of I(are branches on I(.

Suppose that we have a pea defining a reduction process. We associate two subgraphs, B(K)
and B'(K), with each k-clique K. These two subgraphs change as we execute the reduction
process. We use B(K) to denote the removed branches on K, i.e., the subgraph induced by the
nodes in the branches on I(that have been (completely) removed. B'(K) denotes the subgraph
induced by the nodes in V(K U B(K)) without the edges between nodes in V(K). We call B'(K)
the shell of J(. The state of a k-clique J(describes solutions to problems restricted to the shell
B'(K). The following set of equations describes how B(K) and B'(K) change during the execution
of Algorithm 1. Notice that these equations also define B(J(+(v)) and B'(J(+(v)).

6

Dynamic definition of B(K) and B'(K) (annotations on Algorithm 1)

1. Initialization step.

B(K(v)) = (0,0)
B'(K(v)) = (V(K(v)),0)

2. Reduction steps.
Let 1(= K(v) ,](+ = J(+(v), J(u = Ku(v) , and S = S(v).

B(J(+) = LJ B(Ku).
uEV(l(+)

B'(K+) = u B'(I(U).
uEV(K+)

B(K) = subgraph induced by V(B(J(+)) U {v}.
B'(K) = B'(K+) u S.

3. Termination step.

B(R) = G-:-: R
B'(R:) = G without the edges in R

Figure 3.1(a) depicts a 3-tree in which x, y, and z are the nodes of a 3-clique](. After the
removal of v1 , v2 , and v3 , the removed branches B(K) is the shadowed subgraph in Figure 3.l(b)
and the shell B'(K) is the graph in Figure 3.l(c).

z z

X

~
(a) (b) (c)

Fig. 3.1 (a) A 3-tree (b) B(K) after three reductions (c) B'(K) after three reductions .

Algorithm for the resilience problem on partial k-trees

\Ve solve the resilience problem on partial k-trees in two steps. First we find an embedding of the
n-node partial k-tree in a k-tree. Then we reduce the input graph to a root n times. Algorithm
2 describes the general structure of our solution.

Step 1 of Algorithm 2 can be performed using the algorithm given in [1) and assigning prob­
ability O to the added edges. Step 3 is justified in section 2. We therefore focus our attention on
the body of the loop.

7

Given a k-tree G and a node x in V, we want to reduce G to R, a k-clique that contains x .
As a result of the reduction process, we want to be able to compute Ex(G) from the state of R.
The first goal is easy to meet because all k-trees have either zero or more than one k-leaves. So
we can always remove a k-leaf different from x. To achieve the second goal we need to define
the information that will be maintained in each k-clique, and the functions e, f, g , and h (cf. ,
Algorithm 1).

Algorithm 2

Resilience of Partial k-trees (for a fixed k)

Input: G' = (V, E'), a partial k-tree.

1. Find an embedding of G' in a k-tree G = (V, E).

2. For each node x in V do { Compute Ex(G)}

Initialize the state of each k-clique of G.

Reduce G to R, a k-clique that contains x.
Compute Ex(G) from the state of R.

3. Res(G) = ½ I:xEv(Ex(G) - 1).

Some notation is in order. Let W be a subset of nodes of G. The projection of the connected
components of G onto W (Proj(G, W)) is the partition of W defined by intersect ing each con­
nected component of G with W. Let us now consider H = (VH, EH), a graph such that VH ~ V .
We use II(H) to denote the set of all partitions of VH. For each partition 1r in II(H), PG(G , H , 1r)
denotes the set of partial graphs G' of G such that Proj(G', VH) = 1r. It is easy to verify that the
set of partial graphs of G can be partitioned into equivalence classes, each of which corresponds
to PG(G, H, 1r), for some partition 7r in II(H). Figure 3.2 illustrates the partition of the set of
partial graphs of a 2-tree into two equivalence classes.

The idea of partitioning the set of partial graphs of a graph with respect to a fixed set of nodes
is crucial in our algorithm to compute Res(G). Consider](, a k-clique of a partially reduced k-tree
G. Let 1r1 , ... , 1r q be an enumeration of all the partitions in II(K) 2 . We can partition the set of par­
tial graphs of the shell B'(K) into q equivalence classes: PG(B'(K), K, 1r1), ... , PG(B'(K), J.;, 1rq),
The state of the k-clique I(contains the following statistical information about each equivalence
class of partial graphs of the shell B'(K):

{s(1r,K),E(1r,K,C) I 1r is a partition in II(K) and CE 1r}

wheres(1r, K) denotes the probability that 1r is the projection onto](of the connected components
of a partial graph of B'(K). So

s(1r,K) = L PB'(I()[H] (2)
H E PG(B 1(I<),K,1r)

2 Notice that, for a fixed value of k, q is constant (although exponential ink).

8

On the other hand, we define E(1r, K, C) as

E(1r,K,C) = I: PB'(K)[H] x BN(H,C) (3)
H E PG(B'(K),K,1r)

where BN(H,C) is the number of branch nodes (nodes in B(K)) connected to C via H, i.e.,

BN(H, C) = l{Y E B(K) I y B z for some z E C}I. It is easy to verify that if the probability
s(1r,K) '# 0, then E(1r,K,C)/s(1r,K) is a conditional expected value, namely, the expected
number of nodes in B(K) that are connected to C, via H, given that 1r is the projection onto](
of the connected components of a partial graph H of B'(K).

Equations 2 and 3 also define the ephemeral state of the (k+ 1)-clique J(+ (v) in Algorithm 1.
The next four lemmata define the initialization, reduction, and termination steps of a quadratic
time algorithm for the resilience problem.

H

(a)

Partition n Graphs in PG(G,H,n)

{ {a,b}} I - !'-- 1----- I>- >
' ' ' '

{ {a} , {b} } - - ---- .,._.. - -' '

(b)

Fig. 3.2 (a) A 2-tree G. (b) Equivalence classes induced by partitions in II(H).

Lemma 3.1 (initialization)Let G be a k-tree, J(a k-clique of G, 1r a partition of K, and C a
block of 1r. Then

{i) s(1r,K) = { ~
(ii) E(1r,K,C)=0

if 1r consists of singletons only
otherwise

Proof: Immediate from the definition of s(1r, K) and E(1r, K, C) I

Let us now consider the reduction step. Let G be a (partially reduced) k-tree, and v beak-leaf
of G with neighborhood K(v). In the following we use J(to denote K(v),](+ to denote J(+(v),

9

and](u to denote Ku(v). Let the nodes of](+ be u1, ... , uk+t · The reduction step consists of
two parts. First we compute the state of](+ by combining the states of](u, for all u in V(J(+).
Then we update the state of](by considering the state of J(+ and the effect of the edges that
connect v to](.

We will introduce some additional notation. Let 7r be a partition. Following [3], we use 1r/u
to denote the partition obtained by removing u from its block in 7r and then removing the block
if it became empty. Moreover, for partitions 1r1 and 1r2 let their join (1r1 V 1r2) be the partition
obtained by replacing pairs of intersecting blocks by their union until a partition of the union
remains (e.g., {{a,b},{c},{d}} V {{a,d},{b,c}} = {{a,b,c,d,}}).

Let 1r+ be a partition of the nodes in J(+. We want to consider all possible ways of obtaining
7r + as the join of 7r u1 , ••• , 7r uk+ 1 , where 7r Ui is a partition of the nodes in J(u, (1 ~ i ~ k + l). To
that effect, we define the set T(1r+,](+) as follows:

k+l

T(1r+,J(+) = {(7rui, .. ,,7ruk+J I Vi= 1, ... ,k+l, 7rui E II(J(Ui) and V 7ru, = 1r+}
i=l

The following observation is useful in proving lemma 3.2.

Observation 3.1

(i) For each partition 1r+ in IT(K+) we can establish a one-to-one correspondence between partial
graphs in PG(B'(K+),](+, 1r+) and some (k + 1)-tuples (H1, ... , Hk+t) of graphs such that
Hi is a partial graph of the shell of J(u, , 1 ~ i ~ k + l. Formally, there is a bijection q> from
PG(B'(I(+),](+, 1r+) to

LJ PG(B'(](u1),J(u1,1ruJ X ... X PG(B'(J(uk+1),](uk+1,1ruk+1)
(1ru1 , ... ,1ruk+1)
in T(1r+,K+)

such that ef>(H) = (H1, ... , Hk+1) iff LJ71i1 Hi = H.

(ii) Given m finite sets X1, ... , Xm and m real functions ft, .. . , f m with domain X1, ... , Xm
respectively,

m m

II I: fi(x) =
(z1 , ... ,zm) i=l

in X1x ... XXm

Lemma 3.2 Let G be a (partially reduced) k-tree network. Let v be the next k-leaf of G to
be deleted according to some peo. Let J(be the neighborhood of v, and J(+ be the (k + 1)-clique
induced by V(K) U {v}. Let 1r+ be a pa,rtition in IT(K+) , and C be a block in 1r+. Then

k+t
IT s(7r u, ' J(u,)

(1ru1 , .. . ,1ruk+l) i=l
in T(1r+ ,K+)

10

k+Ik+l

(ii) E(1r+,](+, C) = L II s(1rui ,](ui) X L E(1rui ,](ui,D)

Proof:

(i) Using the definition of s(1r+,J(+) (equation 2) and observation 3.1 (i) we get

(1ru1 , .. . ,1ruk+l) . (~1 , ... ,Hk+,.1)
inT(1r+,K+) m.X1x . . . x.X1c+1

where Xj = PG(B'(J(Uj),J(uj,1ruJ , 1 ~ j ~ k + l.
Notice that the graphs H 1 , ... , H k+l are edge-disjoint. Besides , edge failures are statistically
independent and irrelevant edges can be ignored. So,

k+I

II PB'(I<ui)[Hi]
(1ru1 , .. . ,1ruk+1) (H1 , ... ,Hk+l) i=l
inT(1r+ ,K+) inX1x ... xX1c+ 1

The result follows by observation 3.1 (ii) .

(ii) Analogously, we can use the definition of E(1r+,](+, C) (equation 3), observation 3.1 (i) ,
the statistical independence of edge failures, and ignore irrelevant edges to obtain

k+l

E(1r+ , K+,c) = L L II PB'(J(t.lj)[Hj] x BN(H1 u ... u Hk+1,C)

But

. (1ru 1 , . . , ,1ru1c+1) (H1 , . .. ,H1c+1) j=l
in T(1r+ ,K+) in X 1 x ... XX1c+1

k+I
BN(H1 U ... U Hk+I,C) = L L BN(JhD)

i=l DC C
DE1ri

So, simple algebraic manipulation and observation 3.1 (ii) give the desired result. I

We now show how to update the state of](when v is removed. Let S be the star graph
induced by the the k edges that link v to J(. Let II'(S) denote the set of partitions of nodes in
S that have only singletons except for possibly the set containing node v. The set II'(S) models
the set of operational subgraphs of S. Edges of S that are operational may cause two or more
connected components of the operational subgraph of B'(K) to become connected. We update
the state of](by considering the join of pairs of partitions (1r1 , 1r2) such that 1r1 is a partition in
II(J(+). and 1r2 is a partition in II'(S). Let 1r be a partition of the nodes in](and

11

The following observation is useful in proving Lemma 3.3.

Observation 3.2 For each partition 1r in II(K) we can establish a one-to-one correspondence
between the partial graphs in PG(B'(K),K,1r) 3 and pairs (H1,H2) of graphs such that H1 is a
partial graph of the shell B'(K+), H2 is a partial graph of S, and H = H1 U H2. Formally, there
is a bijection 'ljJ such that

'ljJ : PG(B'(K), K, 1r) 1-+ u
(71'1 ,71'2)

in PP(1r,K)

and 'l/J(H) = (Hi, H2) iff H = H1 u lh . .

Lemma 3.3 Let G be a (partially reduced) k-tree. Let v be the next k-leaf of G to be deleted
according to some peo. Let](be the neighborhood of v, 1r be a partition in II(K) , and C be a
block in 1r. Then

(i) s(1r, K) =

(ii) E(1r, K, C) =
(1r1 ,1r2)EPP(1r ,K) DE,r1

D\{v}fC

!
s(1r1,K+)

where r(1r1,](+) =
0

if there is a block D E 1r1 such that
D \ { v} ~ C and v E D

otherwise

Proof: The proof follows from the definitions of s(1r, K), E(1r,](, C), the statistical independence
of edge failures, and Observation 3.2. We present the proof of (i) only.

(i) By equation 2
s(1r,K) =

Hin
PG(B'(K),K,1r)

and by observation 3.2

(,r1,1r2)in H1in H2in
PP(1r,K) PG(B'(K+),K+ ,1r1) PG(S,S,1r2)

(
(1r1,1r2)in H1in

PP(1r,K) PG(B'(K+),K+ ,1r1)

3 At this point, B'(K) denotes the shell of K after node v has been removed, i.e. , it includes v. K+ and B'(K+)
were computed before v was removed.

12

I

We can use lemmata 3.1, 3.2, and 3.3 to reduce any k-tree G to a k-clique R that contains a
specific node x. At this point, we want to compute Ex(G). Notice however that the state of R
contains information about the shell B'(R), i.e., we have not considered the effect of the edges
between nodes in R. Therefore, before computing Ex(G), we extend the statistics about B'(R)
to statistics about G. Let 1r be a partition in II(R), define

E'(1r,R,x) = L Pa[H] x N(H,x)
HEPG(G,R,1r)

where N(H, x) is the number of nodes yin G (including x) that are connected to x via H. We
can then state the following lemma.

Lemma 3.4 (termination) Let G be a k-tree and R be a root of G obtained by using the reduction
paradigm and lemmata 3.1-3.3 to G. Then

{i} For ech node x in V(R)
Ex(G) = L E'(1r,R,x)

1rEil(R)

(ii) For each partition 1r in II(R) and each node x in V(R)

E'(1r,R,x) = L PR[1r2] X (s(1r1,R) X ICI + L E(1r1,R,D))
(,rl ,1r2)

1r1,1r2Eil(R)
1r1 V1r2=1r

where C is the block of 1r that contains x.

Proof:

(i) Recall that we can partition the set of partial graphs of G into equivalence classes each of
which is characterized by a partition of the nodes in V(R). So,

Ex(G) = L Pa[H] XL Connected(H,x,y) (by def.)
Hc;;p yEG

= L L Pa[H] XL Connected(H,x,y)
1rEil(R) HE PG(G,R,1r) yEG

L E'(1r,R,x)
1r in Il(R)

(ii) It suffices to use the definition of E'(1r,R,x) and to observe that there is a one-to-one
correspondence between partial graphs in PG(G, R, 1r) and pairs of partial graphs in

U (1r
1

,,,.
2

) PG(B'(R),R,1r1) x PG(R,R,1r2)
1r1 ,1r2Eil(R)
1r1 V1r2=1r

13

I

Therefore, lemmata 3.1-3.4 and the reduction paradigm give us the following theorem.

Theorem 3.1 Let k be a positive integer number, G = (V, E) be a k-tree on n nodes, and x be a
node in V. The expected number of nodes that can communicate with x can be computed in 0(n)
time.

Proof: Correctness follows from lemmata 3.1-3.4. Timing can be verified as follows. Consider
Algorithm 3. Algorithm 3 is an implementation of Algorithm 1 that makes explicit the amount of
computation involved in the reduction paradigm. By lemmata 3.1-3.4 we know that the functions
e, f, g, and h can be computed in constant time. Let us consider the initialization step. The
amount of time spent in this step is proportional to the amount of time spent traversing adjacency
lists. It is easy to prove that a k-tree has exactly k x (k-1)/2 + (n - k) X k edges. In addition,
the adjacency list of each node is traversed only two times. So, the initialization step takes 0(n)
time. Clearly the synthesis step takes linear time, and the termination step takes constant time. I

Algorithm 3

Reduction Paradigm (detailed description)
Input: G = (V, E) , a k-tree (for a fixed k).

1. Initialization.
P EO +- empty list.

For all v in V do:

Traverse Adjacency_List(v) to determine degree(v).

If degree(v) = k then push v onto stack L.
Do n - k times:

v +- Pop(L).

Traverse Adjacency_List(v) to find K(v), the neighborhood of v in G.

J(+(v) +- (k+l)-clique induced by V(K(v)) U {v}.
S(v) +- star graph induced by the edges { v, u }, \/u E V(K(v)).
For all nodes u in]((v) do:

Ku(v) +- k-clique induced by V(](+(v)) \ { u }.

state(Ku(v)) +- initial information.

degree(u) +- degree(u) - 1.

If degree(u) = k then push u onto L.

Append v to P EO.

degree(v) +- 0.

state(R) +- e(R).

2. Synthesis.

For each v in P EO do:

state(J(+(v)) +- f({state(Ku) I u E J(+(v)}).

state(K(v)) +- g(state(K+(v)),S(v)).

14

3. Termination.

Solution +- h(state(R), edges in R).

We can combine equation 1 in section 2 and theorem 3.1 to obtain the following corollary.

Corollary 3.1 Given a fixed k, the resilience of a k-tree network G on n nodes can be computed
in 0(n 2) time.

Algorithm 2 describes how to compute the resilience of a partial k-tree G'. Arnborg, Corneil
and Proskurowski [1] give an O(nk+2) time algorithm to find an embedding of a partial k-tree in
a k-tree, for a fixed k . Therefore, we can compute Res(G') in O(nk+ 2

) time. However, fork::; 3

the embedding of a partial k-tree in a k-tree can be found in 0(n) time ([18], [14]). We can
therefore state the following corollary of theorem 3.1

Corollary 3.2 Let k be a fixed positive integer. The resilience of a partial k-tree on n nodes
can be computed in·. 0(nk+2) time. If the input includes an embedding in a k-tree, or k _:s; 3, the
resilience of the partial k-tree can be computed in 0(n 2

) time.

4 Resilience of partial 2-trees

A graph is a partial 2-tree iff it is a series-parallel graph [18]. Series-parallel graphs have been the
object of extensive research since they were first defined by Duffin [8, 10, 9). A graph is series­
parallel iff it can be transformed into a forrest via a sequence of series and parallel reductions. A
series reduction replaces a node v of degree two and its incident edges with and edge that links the
two neighbors of v. A parallel reduction replaces all edges between two nodes with a single edge.
Series-parallel graphs al~o correspond to the class of graphs that have no subgraph homeomorphic
to the complete graph on four nodes J(4[l8). The class of 2-tree graphs is the class of minimum
IFI graphs (minimum isolated failure immune graphs [10]).

The algorithm presented in this section differs from the one described in section 3 in the
following aspects. First of all, we use a slight modification of the reduction paradigm that simplifies
some intermediate computations. The modification consists of redefining the shell (B'(K)) of each
2-clique J(so that B'(K) includes the edge that connects the two nodes in K. This is the same
approach used in [col87]. The crucial difference between this algorithm and the one presented in
section 3 is that the state of each 2-clique (edge) contains some additional information. Thanks
to this extra information, we need to perform only one reduction on the input graph; thus, the
resulting algorithm runs in 0(n) time. We also introduce some new notation to facilitate the
understanding of the rather long expressions involved in the reduction steps.

Terminology

Let G = (11,E) be a 2-tree and e = {x,y} be and edge (2-clique) of G. Suppose we are applying
a reduction process on G. The shell of e is the subgraph induced by the nodes x, y, and by those
removed nodes that the 2-clique e separates from all non-removed nodes. Initially the shell of e

15

is e itself. When a node z with neighborhood { x, y} is removed (see Figure 4.1) we update the
shell of e to LU RUM, where

L = shell of { x,z} prior to the removal of node z.
R = shell of {y,z} prior to the removal of node z.
M = shell of { x,y} prior to the removal of node z.

z

Fig. 4.1 Removing node z.

We need a few more definitions before presenting the statistics that define the state of an edge.
Let e = {x, y} be and edge of G, and H be the shell of e. Moreover, let u1, ... , uz and v1 , ... , Vm be
two lists, not both empty, of nodes in H 4 • We use Et/::::::n (H) to denote the expected number of

H H
nodes t in H such that t ~ u1 , ... , t ~ u1 , and t rf vl, ... , t rf Vm. Simple algebraic manipulation
gives

E~1
1::."u~ (H) = L PH[t rv U1 I\ ... I\ t rv Uz I\ t rf V1 I\ ... I\ t rf Vm]

tEH

Also, let S~/::.-:::n (H) be the expected number of ordered pairs (s, t) of nodes in II such that
H H H H H

S rv t , S rv U1, ... , S rv Uz, and t rf vl, ... , t rf Vm. Thus

5u1 ... uz (H) = ~ Eu1 ... uzs(H)
v1 .,.Vm ~ v1 ... Vm

sEH

L L PH[s rv t I\ t rv U1 A ... At rv Uz I\ t rf V1 I\ ... I\ t rf Vm]

sEHtEH

- H
Finally, let S(H) be the expected number of ordered pairs (s, t) of nodes in H such that s rf t ,

H H but s rv X and t rv y Thus,

S(H) = L L PH[s rf t I\ s rv X I\ t rv y]
sEHtEH

4 Unless ambiguity arises , we use v E H to denote that node v is an element of V(H).

16

Algorithm for the resilience problem on partial 2-trees

Let. { x, y} be an edge of G and H be the shell of edge { x, y}. The following statistics define the
state of edge { x, y }:

l. Pn[x rv y], the probability that node x is connected to node y via H.

H H
2. E;(H), the expected number of nodes t in H such that t rv x but t rf y.

H H
3. EJ(H), the expected number of nodes tin H such that t rv y but t rf x.

4. ExY(JI) , the expected number of nodes t in H such that t !!, x and t !!, y.

H
5. Sx(H) , the expected number of pairs (s, t) of nodes in H such that s !!, t but t rf x.

6. Sy(H) , the e~pected number of pairs (s, t) of nodes in H such that s !!, t butt f y.

7. sx(JI), the expected number of pairs (s, t) of nodes in H such thats!!, t and t !!, x.

8. SY(JI), the expected number of pairs (s, t) of nodes in H such that s !!, t and t !!, y.

H
9. Sxy(ll) , the expected number of pairs (s, t) of nodes in H such that s !!, t but t rf x and

H
t rf y.

- H H H
10. SH, the expected number of pairs (s, t) of nodes in H such thats rf t buts rv x and t rv y.

It is easy to verify that the first four items above correspond to the statistics maintained in
each k-clique by the algorithm in section 3. The following observation guarantees that the values

Ex (H) (the expected number of nodes t in the graph H such that t !!, x) and s; (H) (the expected
H

number of pairs (s, t) of nodes in H such that s !!, t, t !!, x, and t rf y) can be computed from the
state of e. We use Observation 4.1 in lemmata 4.2,4.3, and 4.4.

Observation 4.1

(i) Ea(H) = LPn[t rv a]= LPn[t rv a I\ (t rv b Vt rf b)] = Eab(H) + Eg(H).
tEH tEH

(ii) Vs E JI E't 8 (H) + E~b(H) = I:Pn[t rv a I\ t rv s I\ t rf b] + LPH[t rv s I\ t rf a I\ t rf b]
tEH tEH

= Et(H).

(iii) St(H) = Sb(H) - Sab(H) (by (ii)).

17

The next four lemmata define the initialization, reduction, and termination steps of the linear
time algorithm for the resilience problem.

Lemma 4.1 (initialization) Let JI = e = { x, y} and Pe be the probability that e is operational.

Then

1. PH[x ~ y] = Pe·

2. E;(H) = 1 - Pe·

3. EJ(H) = 1 - Pe·

4. £XY(JI) = 2 X Pe·

5. Sx(H) = 1 - Pe•

6. Sy(H) = 1 - Pe•

7. sx(H) = 3 x Pe+ 1.

8. SY(JI) = 3 X Pe+ 1.

9. Sxy(H) = 0.

10. SH= 1- Pe•

Proof: Just use the definition of each statistics. For example,
SY(JI) = L £Ys(H) = L L PH[s ~ ti\ t ~ y] = 3 X Pe+ 1. I

sE{x,y} sE{x,y} tE{x,y}

The reduction step involves the analysis of multiple cases. In the discussion that follows let us
consider the scenario depicted in Figure 4.1. Let B = LUM with identified nodes x and y, and
C = BU }.,f with identified nodes x and y. For the sake of simplicity we first show how to compute
the statistics about B (lemma 4.2). Finally, we show how to combine the current information in
the state of { x, y} (statistics about M) with the statistics about B to get the updated state of
{x, y} (lemma 4.3). This is the same approach used in [7) to solve the resilience problem in O(n2)

time on partial 2-tree networks.

Lemma 4.2 Let G be a (partially reduced) 2-tree. Let z be a 2-leaf of G with neighbors x and y.

Let L and R be the shell of { x, z}, and {y, z}, respectively. Let B = L U R , with identified nodes
x and y. Then

1. PB[x ~ y] = PL[x ~ z] X PR[z ~ y]

2. E:(B) E:(L) + Exz(L) X PR[z rf y] + E;(R) x PL[x ~ z] - PL[z ~ x] x PR[z rf y]

3. E¾(B)

18 ·

4 EXY(B)

5_. .Sx(B)

G. Sy(B)

7. sx(B)

=

=

Exz(L) x PR[z f'.J y] + EYz(R) X PL[x f'.J z] - PL[z f'.J x] x PR[z f'.J y]

Sx(L) + 2 x E!(L) x Ez(R) + Sz(R) + sz(R) x PL[z rf x]-

2 x (E;(L) + E z(R) X PL[z rf x]) + PL[z rf x]

Sy(R) + 2 x E;(R) x EZ(L) + Sz(L) + sz(L) x PR[Z rf y]-

2 x (Ez(L) X PR[z rf y] + E;(R)) + PR[z rf y]

sx(L) + 2 x Ez(R) x £XZ(L) + sz(R) x PL[z rv x]-

2 x (Exz(L) + Ez(R) X PL[z rv x]) + PL[z rv x]

8. SY(B) = SY(R) + 2 x EZ(L) x £YZ(R) + s z(L) x PR[z rv y]-

2 x (EYz(R) + Ez(L) X PR[z rv y]) + PR[z rv y]

9. Sxy(B) = Sxz(L) + s;(L) x PR[z rf y] + 2 x E!(L) x E;(R) + Syz(R)+

s;(R) x PL[z rf x] - 2 x (E!(L) x PR[z rf y] + E;(R) x PL[z rf x])+

PL[z rf x] X PR[z rf y]

10. SB = SL X PR[z rv y] + Ex(L) X EJ(R) + E:(L) X EYz(R) + SR X PL[x rv z]­

(EJ(R) x PL[x rv z] + E:(L) X PR[z rv y]))

Proof:

1. We know that node z is an x-y separator in B; besides, edge failures are statistically inde­
pendent and irrelevant edges may be ignored. Thus

PB [X ,v y] = PB [X ,v z I\ z ,v y]

= PB[x f'.J z] X PB[z rv y]
= PL[x rv z] X PR[z rv y]

2. We prove 2, 3, and 4 using the same method. Notice first that we can enumerate the set
V(B) (without repetitions) by enumerating the sets V(L) , V(R), and then eliminating the
repeated elements (node z). So

L PB[t ,v XI\ t rf y]
tEB

L PB[t rv x I\ t rf y] + L PB[t rv x I\ t rf y] - PB[z rv x I\ z rf y]
tEL tER

Let us call the first, second, and third terms in the expression above TL, TR, and T{z} respec­
tively. We prove the result by first expressing TL, TR, and T{z} in terms of statistics for L
and R, and then, adding up the results. The following identities follow from the observation
that L and R are edge-disjoint, failures are statistically independent , and ind cvant edges

19

can be ignored.

TL = L PB[t l".J XI\ t ,f y]
tEL

= L(PL[t l".J x I\ t ,f z] + PL[t l".J x I\ t l".J z] x PR[z ,f y])
tEL

= E:(L) + Exz(L) x PR[z ,f y]

TR = L PB[t l".J XI\ t ,f y]
tER

= L PL[x l".J z] X PR[z l".J t I\ t ,f y]
tER

= PL[x l".J z] x E;(R)

T{z} = PL[z l".J x] X PR[z ,f y]

3. This case is symmetric to the previous one, here we obtain

E¾ (B) = L PB [t l".J y I\ t ,f X] + L PB [t l".J y I\ t rf X] - PB [z l".J y I\ z ,f X]

where

4. In this case

where

tEL tER

TL = E:(L) X PR[Y l".J z]

TR = E;(R) + EYz(R) x PL[z ,f x]

T{z} = PR[z l".J y] x PL[z ,f x]

EXY(B) = L)t r-.J XI\ t r-.J y] =TL+ TR - T{z}
tEB

TL = L PB[t l".J XI\ t l".J y]
tEL

= L PB [t £ X I\ t £ z I\ z ~ y]
tEL

= L PL[t l".J x I\ t l".J z] x PR[z l".J y]
tEL

= Exz(L) X PR[z l".J y]

20

TR L PB[t l'V X /\ t l'V y]
tER

L PB[t ~ z A z t X At~ y]
tER

L PR[t rv Z /\ t rv y] X PL[z rv x]
tER
EYz(R) X PL[z rv x]

T{z} PL[z l'V x] X PR[z l'V y]

5. To prove 5-10 we observe that we can sum over all pairs of nodes in V(B) x V(B) by
summing over all pairs in V(L) x V(L) , V(L) x V(R) , V(R) x V(L), and V(R) x V(R), and
then subtracting the repeated elements (notice that (z, z) occurs four times). It is easy to
verify that the repeated pairs are precisely the elements in {z} x V(B) U V(B) x {z}. So
we can write ·_

where TIJ denotes LL PB[s rv t I\ t ~ x], for any I, J subgraphs or sets of nodes of B.
sEI tEJ

Exhaustive case analysis and simple algebraic manipulation gives

TLL L L PL[s rv t I\ t ~ X]
sELtEL

Sx(L)

TLR LL PL[s ~ x I\ s l'V z] X PR[t rv z]
sEL tER

L PL[S ~ X I\ S rv Z] X Ez (R)
sEL

sER tER

LL PB[s rv t At~ z] +LL PB[s rv t I\ t rv z] X PL[z ~ x]
sER tER sER tER
Sz(R) + sz(R) x PL[z ~ x]

L L L PB [Z rv t I\ t ~ X]
tEL
E;(L)

TL{z}

21

R L
LPB[z "-' t I\ z rf x]
tER

Ez(R) x PL[z rf x]

TR{z }

PL[z rf x]

6. This is clearly a case symmetric to 5.

7. We know that sx(B) = LL PB[s "-' t I\ t "-' x]. So, breaking down the sum as in 5, and
sEB tEB

doing an exhaustive analysis of cases, we get

TLL LLPL[s"-'t/\t"-'x]
sEL tEL
sx(L)

TLR LL PR[t "-' z] X PL[z "-' s I\ s "-' x]
sELtER
Ez(R) X Exz(L)

TRL

sERtER

LL PR[s "-' t I\ s "-' z] X PL[z "-' x]
sERtER
sz(R) x PL[z "-' x]

T{ z} L L PL[z f'._J t I\ t f'._J X]
tEL
Exz(L)

TL{z}

T{z}R L PB[z !!:, t I\ z ZL"-' x]
tER

L PR[t "-' z] X PL[[z "-' x]
tER
Ez(R) x PL[[z "-' x]

TR{z}

22

8. This case is symmetric to 7 .

. 9. ·Proceeding in the same fashion as in 5 we obtain

TLR E;(L) x E;(R)

TRR = Syz(R) + s;(R) X PL[z ,f x]

L L R
T{z}L = L PB [X ,f t I\ t rv Z I\ Z ,f y]

tEL

= E!(L) x PR[z ,f y]

R R L
T{z}R = L PB[Y ,ft I\ t rv z I\ z ,f x]

tER

= E;(R) x PL[x ,f z]

10. We know that

s B = LL PB[s ,ft I\ s rv XI\ t rv y]
sEB tEB

So by exhaustive case analysis we obtain

where

L L L R LL PB[X rv t I\ S ,f t I\ S _rv Z I\ Z ,f
sELtEL

SL X PR[Z rv y]

~~ L R R L L R R
TLR = ~ ~(PB[X rv SI\ Z ,ft I\ t rv y] + PB[X rv SI\ S ,f Z I\ z ·rv t I\ i rv y])

sEL tER

L R R R = L L PB [X rv t I\ Z rv t I\ Z ,f S I\ S rv y]
sER tER

SR X PL[x rv z]

23

T{z}L = 0

L R R
T{z}R = L PB [X ~ z I\ t rf z I\ t ~ y]

tER

= PL[x ~ z] x E;(R)

TR{z} = 0

L L R
TL{z} = L PB [s ~ X I\ s rf z I\ z ~ y]

sEL

= E;(L) x PL[x ~ z]

T{z}{z} = o I

Lemma 4.2 guarantees that the statistics for B can be computed from the information in the
states of { x, z} and { z, y }. We now turn our attention to the computation of the statistics for
C = MUB.

Lemma 4.3 Let G be a (partially) reduced 2-tree. Let z be a 2-leaf of G with neighbors x and
y. Let L, R, and M be the shells of {x,z}, {y,z}, and {x,y}, respectively. Let B = LUR, with
identified nodes x and y, and C =MU B, with identified nodes x and y. Then

1. Pc[x ~ y]

2. E;(c) =
3. EJ(C) =
4. EXY(C) =

5. Sx(C) =

6. Sy(C) =

7. sx(c) =

= PM[x ~ y] + PM[x rf y] X PB[x ~ y]

E;(M) x PB[x rf y] + E;(B) X PM[x rf y] - Pc[x rf y]

E¼(M) X PB[x rf y] + E¼(B) X PM[x rf y] - Pc[x rf y]

ExY(M) + E;(M) x PB[x ~ y] + E¼(M) x PB[x ~ y] + ExY(B)+

E;(B) X PM[x ~ y] + EJ:(B) X PM[x ~ y] - 2 X Pc[x ~ y]

Sxy(M) + S¼(M) x PB[x rf y] + Sxy(B) + S¼(B) X PM[x rf y]+

2 x (E¼(M) x EJ(B) - EJ(C)) - Pc[x rf y]

Sxy(M) + s;(M) X PB[X rf y] + Sxy(B) + s;(B) X PM[X rf y]+

2 x (E;(M) x E;(B) - E;(c)) - Pc[x rf y]

sx(M) + S¼(M) X PB[Y ~ x] + SM X PB[X ~ y] + sx(B)+

S¼(B) X PM[Y ~ x] + SB X Pif[x ~ y]+

2 x (EX(M) x EX(B) + EXY(M) x E¼(B) + EXY(B) x E¼(B))-

2 x (Ex(C) + ExY(C)) - 3 x Pc[x ~ y] + 1

24

SY(M) + s;(M) X PB[X f'-.1 y] + SM X PB[x f'V y] + SY(B)+

s;(B) x PM[x"" y] + sB x PM[x "'y]+
2 x (EY(M) x EY(B) + EXY(M) x E;(B) + EXY (B) x E:(B))-

2 x (EY(C) + ExY(C)) - 3 X Pc[x"' y] + l
Sxy(M) + Sxy(B)

10. Sc = SM x PB[x rf y] + SB x PM[x rf y] + E;(M) x EJ(B) + E;(B)E¾(M)-

(EJ(C) + E;(C)) - Pc[x rf y]
Proof: We follow the approach used in the proof oflemma 4.2. To prove 1, observe that Mand
B are edge-disjoint, failures are statistically independent, and irrelevant edges can be ignored.
The proofs of 2, 3, and 4 exploit the fact that Ve= V(M) EB V(B) U {x, z }5 to break down sums
over nodes in C into sums over V(M) and V(B). Similarly, using the same notation as in the
proof of lemma 4.2, it is easy to verify that

So we can prove 5-10 using the identity above and doing an exhaustive analysis of cases. I

The following lemma defines how to compute Res(G) from the one-edge graph obtained after
applying lemmata 4.1-4.3 to G.

Lemma 4.4 (termination) Let G = (V, E) be a 2-tree on n nodes, and H a one-edge 2-tree
obtained by applying the reduction paradigm and lemmata 4.1-4.3 to G. Let x be a node in H.
Then

Proof:

Res(G)
1

2 x L (Et (G) - 1) (by equation 1 in section 2)
tEG

1
- x (L(Ext(G) + E;(G)) - n) (by Observation 4.l(i))
2

tEG

= ~ x (Sx(G) + Sx(G) - n) (by definition) I

The reduction paradigm together with lemmata 4.1-4.4 imply the following theorem.

Theorem 4.1 The resilience Res(G) of a partial 2-tree network on n nodes can be computed in
O(n) time.
Proof: Correctness follows from lemmata 4.1-4.4. The running time is linear because we can
find an embedding of a partial 2-tree in a 2-tree in linear time [18) and because we can reduce the

5 EB denotes the disjoint set union operation

25

embedding 2-tree in linear time using Algorithm 3 and lemmata 4.1-4.4. (see proof of theorem

3.1) I

5 Conclusions

We presented an 0(n 2) time algorithm for a general class of networks , namely the class of partial
k-tree networks (given a fixed k and an embedding of the input network in a k-tree network). We
also presented a linear time algorithm for partial 2-tree networks. Although we conjecture that
the resilience problem may be solvable in linear time for k-trees (or partial k-trees given with an
embedding in a k-tree), we do not think that our linear time algorithm for partial 2-tree networks
can be easily generalized to deal with k-tree networks. The extensive analysis of cases , even for
k = 3, suggests that a different approach would be more productive. We believe that further
analysis of the 0(n 2) time algorithm for k-tree networks would be a more fruitful line of attack.

This research was limited to networks with fail-safe nodes. In a forth comming technical
report we consider the resilience problem on partial 2-tree and k-tree networks with edge and node
failures. Preliminary results indicate that only minor modifications to the algorithms presented
here are needed to cope with the presence of node failures.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

[2] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM
J. Alg. Discr. Meth., 7:305-314, 1986.

[3) S. Arnborg and A. Proskurowski. Linear time algorithms for NP-Hard problems restricted
to partial k-trees. Discrete Appl. Math., 23:11-24, 1988.

[4) L. W. Beineke and R. E. Pippert. Properties and characterizations of k-trees. Mathematika,
18:141-151, 1971.

[5) H. L. Bodlaender. Classes of graphs with bounded tree-width. Technical Report RUU-CS-
86-22, Dept. of Computer Science, University of Utrecht , Utrecht , 1986.

[6] C. J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press, New
York, 1987.

[7) C. J. Colbourn. Network resilience. Networks, 8:404-409, 1987.

[8] R. J. Duffin. Topology of series-parallel networks. J. Math. Anal. Appl., 10:303-318, 1965.

[9] E. S. El-Mallah and C. J. Colbourn. Optimum communication spanning trees in series-parallel
graphs. SIAM J. Computing, 14:915-925, 1985.

26

[10] A. M. Farley and A. Proskurowski. Extremal graphs with no disconnecting independent set
of matchings. Technical Report CIS-TR-80-21, Dept. of Computer and Information Science,
·university of Oregon, 1980.

[11] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[12) F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[13] D.S. Johnson. The NP-completeness column: An ongoing guide. J. of Algorithms, 6:434-451,
1985.

[14] J. Matousek and R. Thomas. Algorithms finding tree-decompositions of graphs. Submitted
for publication, 1988.

[15] J. S. Provan. The complexity of reliability computations in planar and acyclical graphs.
SIAM Journal on Computing, 15:694-702, 1986.

[16) J. S. Provan and M. 0. Bell. The complexity of counting cuts and of computing that a graph
is connected. SIAM Journal on Computing, 12:777-788, 1983.

[17) D. Rose. Triangulated graphs and the elimination process. J. Math Anal. Appl., pages
597-609, 1970.

[18) J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimal IFI networks.
Networks, 1983:159-167, 1983.

27

