
A Determinacy Testing Algorithm
for Nondeterminate Flat Concurrent

Logic Programming Languages

E. Tick - University of Oregon
M . Korsloot - Delft University of Technology

CIS-TR-90-18
November 1990

Abstract

This paper describes an algorithm for the code generation of determinacy testing
for nondeterminate flat concurrent logic programming languages. Languages such
as Andorra and Pandora require that procedure invocations suspend if there is
more than one candidate clause potentially satisfying the goal. The algorithm
described has been developed specifically for a variant of flat Pandora based on
FGHC , although the concepts are general. We have extended Kliger and Shapiro's
decision-graph construction algorithm to compile "don't know" procedures which
must suspend for nondeterminate goal invocation. The determinacy test is compiled
into a decision graph quite different from those of committed-choice procedures , but
we argue that in most cases , the same low space complexity is retained .

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

UNIVERSITY OF OREGON

Contents

1 Introduction

2 Pandora: Definitions and Example

3 Decision Graphs: Background

4 Committed-Choice Compilation: Kliger's Method

5 Determinism Testing

5.1 Indexing

5.2 Optimizations .

5.3 Suspensions . .

6 Code Space Evaluation

7 Conclusions

8 Acknowledgements

A Benchmarks: Source Code

B Benchmarks: Code Graphs

List of Figures

1 Decision Graph Construction Algorithm (Based on Kliger).

2 Decision-Graph Algorithm for Don't-Know Procedures.

3 Shared Node Generation for Don't-Know Procedure. ..
4 New Node Generation for Don't-Know Procedure. ...
5 Decision Graph for f /2 (Compiler's Internal Code Tree). . .

6 Decision Graph for f /2 (Representation of Final Code). ..

List of Tables

1 Empirical Measurements of Code Size.

1

2

2

5

7

9

14

14

16

19

21

21

23

24

8

11

12

13

15

18

20

1 Introduction

"Lotta old computer hacks spent their livea programming machines."

Dogfight

M. Swanwick and W. Gibson (5]

This paper describes compilation techniques for the Andorra/Pandora family of par­

allel logic programming languages [1, 3, 4, 6, 11]. These languages share a common

execution model wherein a goal invocation is suspended if it can potentially be satisfied

by two or more clauses in a procedure definition. We call these "nondeterminate" goal

invocations. If all goals suspend, causing deadlock, then one nondeterminate goal is

selected and forced to execute, creating a choicepoint for potential backtracking.

In this paper, we limit ourselves specifically to our own variation of "flat" Pandora

based on Flat Guarded Horn Clauses (FGHC) [10]. The language we consider has

flat guards, no synchronization operator, and implicit synchronization rules, all as in

FGHC. However, the compilation techniques we developed are applicable to the entire

Andorra/Pandora family.

The techniques described are based on the decision-tree and decision-graph algo­

rithms developed by S. Kliger and E. Shapiro [8]. The algorithm we introduce is for

generating the code for a determinism tester: the code that checks whether two or more

clauses can potentially satisfy a goal invocation. Our tester is a decision graph that

is built in quite a different manner than graphs for committed-choice languages, as for

example done by S. Taylor [9].

2 Pandora: Definitions and Example

In this section we introduce flat Pandora to put our later compilation techniques into

clear perspective. Our flat Pandora programs consist of FGHC procedures categorized

as either don't care or don't know procedures [3]. In a nutshell, a flat Pandora program

executes like an FGHC program, i.e., concurrent fine-grain processes communicate to

solve a problem. In addition, a don't-know goal can backtrack through its clauses in an

attempt to satisfy its invocation.

At the time of its execution, a don't-care goal is treated as in any committed-choice

language. If any clause head and guard can satisfy a goal invocation, then the goal

commits to that clause and reduces. If the head and guard of two or more clauses can

satisfy a goal invocation, then any one of the clauses is chosen for commitment. If no

clause head and guard can satisfy the goal invocation, but one or more can suspend,

then the goal suspends. Otherwise if no clause head and guard can succeed or suspend,

then the goal fails. Note that unlike a pure committed-choice language where goal

2

failure implies program failure, in Pandora goal failure causes backtracking.

A don't-know goal is executed differently from a don't-care goal. If only one clause

head and guard can satisfy the goal invocation, then the goal commits to that clause

and reduces. However, if the head and guard of two or more clauses can succeed, then

the goal suspends. If no clause head and guard can satisfy the goal invocation, but one

or more can suspend, then the goal suspends as well. Otherwise if no clause head and

guard can succeed or suspend, then the goal fails .

In summary, don't-know goals act similar to goals in a committed-choice language

with the exception that if more than one clause can commit then the goal suspends. We

call this a "nondeterminate goal invocation," and the test to determine if one or more

clauses can commit is called the determinism test. Flat Pandora execution proceeds

much like that of FGHC, with nondeterminate don't-know goal invocations suspending.

At any point in time, the group of suspended goals consists of don't-care and don't­

know goals. Unbound logical variables are "hooked" to these suspended goals, thus

enabling resumption as in any committed-choice language implementation (e.g., [7]).

For don't-care goals , binding a hooked variable is the only method of resumption .

Resumption causes the goal to be reconsidered for execution, although it does not

guarantee reduction: the goal may suspend on another variable. For don't-know goals,

it is also the case that binding a hooked variable will cause resumption, but it is not

the only method. Certain suspended don't-know goals may not even have associated

hooked variables because their procedure definitions are truly nondeterminate. In that

case, the goals remain suspended until no executable goals remain, i.e., deadlock ensues.

To break deadlock, any suspended don't-know goal is forced to reduce. The fact

that the goal was suspended implies that two or more clauses can commit to this goal

invocation. Forced reduction must choose a clause to commit , after creating a choice­

point for potential backtracking. The choicepoint will direct execution to alternative

clauses. Any clause with a non-failing head and guard can be reduced (as in Prolog).

There is no distinction between input and output variables at this stage: the goal is

unified with the clause heads until one is satisfied. Unlike don 't-care goal reduction,

output bindings may be performed during head and guard unifications.1 However,

certain guards cannot be forced to reduce with unbound inputs, e.g. , X>3 cannot be

evaluated if X is unbound. These guards must suspend and another clause would be

chosen. It could be the case that the "don't know" goal chosen to break the deadlock

cannot reduce because of such tests. If this occurs, another goal must be chosen.

Given an "incorrect" program, all suspended goals may be don't-care in which case

1 As for all bindings, trailing must be performed if the variable to be bound is older than the current

choicepoint.

3

deadlock is fatal. It can also be the case that although don't-know goals exist, none

of them can be forced to reduce because of guards that require bound variables. This

is another form of fatal deadlock. Given a "correct" program, forcing reduction of a

"don't know" goal may issue new don't-care goals and/or create bindings that resume

old don't-care goals. However, some don't-know goals may generate only nondetermi­

nate don't-know goal invocations and/or create bindings that do not resume old "don't

care" goals. In this case , deadlock remains and another goal must be chosen for forced

execution. In general, it is hoped and expected that the execution periods of determi­

nate reduction of don't-care goals are much longer than the periods required to break

deadlocks.

Choicepoints leading to multiple, independent OR-branches of the execution tree

can potentially be searched in parallel, but this issue is orthogonal to the paper and

will not be discussed.

To illustrate the flat Pandora procedural semantics, a small example is presented.

Consider the following code:

:- dontknow a/3.

a(1,1,1).
a(2,1,1).
a(2~2,1).
a(2,2,2).

b(1,A)
b(2,A)

A=yes.
A=no.

Procedure b/2 is assumed to be don't-care since it has no declaration. Suppose we

make the following query:

?- a(X,Y,Z), b(Y,A), Z=2.

Assuming that the goals are evaluated in their sequential order, the sequence of actions

executed is: a/3 is found to be nondeterminate and suspends, b/2 suspends, Z is bound

to 2, a/3 resumes and is found to be determinate (clause 4), X and Y are bound, b/2 is

resumed, and A is bound to no. In contrast, consider the following query:

?- a(X,Y,Z), b(Y,no), Z=1, X=2.

One possible sequence of actions executed is: a/3 is found to be nondeterminate and

suspends, b/2 suspends, Z is bound, a/3 resumes, found to be nondeterminate and sus­

pends again, X is bound, a/3 resumes, found to be nondeterminate and suspends a third

time. Now deadlock ensues so a/3 is forced to reduce, Y is bound to 1, b/2 is resumed

and fails, backtracking retries the execution of a/3, Y is bound to 2, b/2 is resumed

and succeeds. These two examples sufficiently illustrate the execution mechanisms of

flat Pandora to understand the rest of this paper.

4

3 Decision Graphs: Background

The don't-care procedures in flat Pandora are compiled in a manner similar to the

decision-graph algorithm given by Kliger and Shapiro for FCP [8]. Because we are

restricting ourselves to FGHC, our notation can be made simpler than that of the FCP

algorithm as we have no tell guards. We review the terminology and algorithm here as

a foundation for our method of compiling don't-know procedures.

A guarded Horn clause is of the form:

where m and n are zero or positive integers. H is the clause head, Gi is a guard goal,2

and Bi is a body goal. The commit operator 'I' divides the clause into a passive part

(the guard) and active part (the body). The first step in the compilation process is to

translate source clauses into canonical form.

Definition: A simple term is either a constant , a variable, or a compound term in

which the arguments are pairwise different variables. A complex term is a compound

term in which there exists either a non-variable argument or two arguments with iden­

tical names. For example, f(X, Y) is a simple term and g(h(X)) is a complex term. D

Definition: A complex term is flattened into a pair (F, S), where Fis a simple term

and S is a constmint set. To flatten a complex term the following rules are applied

with S initially empty. Each of k instances of a shared variable X is replaced by a

unique variable {Zi+j I 1 ~ i ~ k} and S : = SU {Zj+l = Zj+2, Zj+i = Zj+3 , ••• } ,

for C(k,2) pairs.3 A constant argument o is replaced by a unique variable Zj, and

S : = { Zj = o} U S. A complex argument is flattened into (F', S') and replaced by a

unique variable Zj, and S : = { Zj = F'} U S' U S . □

Definition: Given a clause C = "H : - G I B." then its normalized form is C' =
"H' : - G' I B ." A complex term in HUG is flattened into a pair (F, S) and replaced

by a unique variable Zi in C'. Furthermore G' : = { Zi = F} u S u G'. D

Normalization is needed to simplify a clause into a trivial head and an extended

guard containing constituent constraints. This form facilitates code generation of

triples . Normalization however is not enough: we need to rename variables among

the clauses belonging to the same procedure such that variables corresponding to the

same depth within the same procedure argument have the same name. This character­

istic is necessary for indexing purposes , as is shown later.

Definition: A simple term H = p(X1, X2, ... , Xn) is expanded, with respect to a set

of constraints G, into a tree, tree(H), with n branches labeled 1, ... , n. For a variable

2 more precisely, an "ask" guard .
3 Index j is chosen to produce unique variables .

5

Xi and term T that appear in a constraint g = {Xi = T} E G or g = {T = Xi}, the

subtree at root i is T expanded with respect to G \ {g }. Otherwise the subtree at root

i is the leaf Xi. □

Definition: A normalized clause C = "H : - GI B ." is renamed into canonical form

by expanding H with respect to G into tree(H). Each variable X in C is replaced by

Zp where pis the label sequence from the root of tree(H) to the vertex corresponding

to X. □

Using this sequence gives a complete ordering of all variables and retains identi­

cal names for corresponding variables among clauses. For instance, f(g(X, Y)) has

normalized form f(A): - A= g(B, C) and canonical form f(Z1) :- Z1 = g(Z1 ,1, Z1,2).

Definition: A canonical-form procedure consists of canonical-form clauses, each of

the form < i, G > for clause number i with guard G. The head is not needed because

it has been flattened away. The head arguments are always named Z1, Z2, ... , Zn for

an arity-n procedure. The body is not listed because the algorithms we discuss in this

paper do not deal with body compilation. D

From this point on in the paper, all references to "procedures" and "clauses" im­

plicitly assume canonical forms. Both don't-care and don't-know procedures are syn­

tactically identical and are converted into canonical form. The goals in guard G consist

of builtin predicates such as =/2, =f /2, > /2, var/1, otherwise, etc. We call these con­

straints or tests. For efficiency, we can represent G as a bit-vector corresponding to

inclusion in the union of all guards of a procedure. This makes set operations on guards

very fast.

Definition: Variables within a clause are partially ordered on their label sequences:

Zi,j, ... ,k ?.1/J Zi,j, ... ,k,l,m,.... In words, a variable is -ip-greater than or equal to another

variable if their label sequences share the same prefix and the latter sequence is longer

or equal. For example, Z1 ?.1/J Z1,2, whereas Z2 and Z1,2 have no ordering. □

Definition: The constraints within a canonical-form clause form a relation with

respect to ?.1/J, defined as follows:

□

For example, {Z1 = Z2} ?.1/J var(Z1,2), whereas both {Z1,2 = Z2} ?.1/J {Z1 = Z2,1} and

{Z1 = Z2,i} ?.1/J {Z1,2 = Z2}.
Definition: The residual of a clause C =< i, A> with respect to a constraint g is

6

denoted as R(C,g).4

R(c' g) = { 0< i, A \ G > G = {g' E A I g => g'} f 0
otherwise

□

Definition: The otherwise-residual of a clause C =< i, A> with respect to a con-

straint set r is denoted as R0 (C, r).

Ro(C,f)={ 0. G={g.Ef,g'EAl(g=>g')v(,g=>g')}f0
< z, A> otherwise

□

Definition: The residual and otherwise-residual of a procedure, R(P, g) and R 0 (P, g),

are the union of all residuals corresponding to the clauses in P. □

4 Committed-Choice Compilation: Kliger's Method

Kliger's algorithm [8] for compilation of don't-care (committed-choice) procedures is

reviewed in this section (see Figure 1). The algorithm we discuss is slightly modified for

FGHC execution, i.e., no tell guards. The code-generation function decision-graph(P, C)

is passed procedure P and continuation C. The initial continuation is a suspend

instruction that will be explained later. The resulting value of the function is an

abstract code tree that can easily be flattened into a linear code sequence. To illustrate

the algorithm, consider the following don't-care procedure:

f (X,X) ·-
f (a, b) :- ...

The final code graph produced is:

{<1,{Z1=Z2}>,<2,{Z1=a,Z2=b}>}
TO:val(Z1)

/\
a/ \??
I \

{<2,{Z2=b}>} {<1,{Z1=Z2}>}
T1:val(Z2) T2:Z1=Z2

/\ /\
b/ \?? yes/ \??
I \ I \

{<2,{}>} {} {<1,{}>} {}
commit(C2) go(T2) commit(C1) suspend

•This (and the next) definition are due to Kliger . One may think of this residual as a don't-care

residual ~de (C, g) to be consistent with later terminology.

7

decision-graph(P, C)
if (P = 0) then return(go(C));
if (< i, 0 >E P) then

else

- any clause with empty guard can commit
return(commit (i));

if (P = { < i, G >}) then

else

- we can generate code for a single clause
return(attempt (i, G) else go (C));

- multiple clauses, none with empty guards
- first choose indexing variable and collect constraints
r : = index(P);
if (f = {Zp = t 1 , ... ,Zp = tn}) then

else

- return the following code tree:

Doth er

{Vi E 1 ... n I Di : = decision-graph(~(P, Zp = ti) , Dother) }
Dother : = decision-graph(~o(P, r),C);

if (r = {Zp • Zq,-,(Zp • Zq)}) then
- return the following code tree:

Zp • Zq

Dot her

Dyea: = decision-graph(?R(P, Zp • Zq), Dother);
Dno := decision-graph(~(P,-i(Zp • Zq)),Dother);
Doth er : = decision-graph(~0 (P, Zp • Zq), C);

Figure 1: Decision Graph Construction Algorithm (Based on Kliger).

8

Each node is labeled with its residual P , followed by a set of constraints r , as returned

by the indexer. Each leaf is either suspend, fail , go , or a code segment. A branch

labeled '?? ' is an otherwise-residual branch , i.e. , the residual at its leaf is computed

as R0 (P, r) . If r represents an "ask" test Zp • Zq then branches are labeled 'yes ' and

'no ' with leaves computed as R(P, Zp • Zq) and R(P, , (Zp • Zq)) respectively. If r
represents a switch test val(Zp) then a branch is labeled with a ground value a and

its leaf computed as R(P, Zp = a).
For a single-clause residual , tree generation terminates with code committing to the

clause. For an empty residual, tree generation terminates with a control transfer to the

current continuation. 5

Control follows the otherwise branches whenever a test fails or cannot be evaluated

because of unbound variables. Note that failure will occur at the suspend instruction

if the suspension stack is empty. For instance, if Z1 and Z2 are bound with different

values, then the test at T2 will fail , taking the otherwise branch to the suspend, which

will fail because of the empty suspension stack.

The code space required by this example procedure is grossly estimated as three test

nodes and four leaves . The actual code generated for each node will of course differ,

but in general nodes require more instructions than simple leaves. We model suspend

and fail as traps, i.e. , their code bodies are not expanded in-line.

5 Determinism Testing

This section introduces an algorithm to generate decision graphs for don't-know pro­

cedures in a nondeterminate concurrent logic programming language. Specifically we

generate an abstract code graph for flat Pandora based on FGH C. The code graph

can easily be flattened into a linear sequence of triples suitable for code generation.

Qualitatively, the algorithm presented has space complexity comparable to Kliger 's

method. The expected path length through the code obviously depends on how proce­

dure arguments are dynamically bound, but it also depends on the sophistication of the

unspecified indexer at choosing critical constraints near the root , as in Kliger 's method.

Similarly, the completeness of the algorithm, i.e. , the percentage of determinate invoca­

tions that commit immediately, is dependent on the strength of the unspecified guard

inference mechanism. For the simplest inference mechanism over arbitrarily complex

unifications, which is the common case, the code generated is complete. More discussion

about completeness over other domains is given in Section 5.1.

5 1n this example, the bottom right subtree is optimized by combining the 'no ' branch (terminating

in a transfer to the suspend continuation) with the otherwise branch .

9

Definition: Given that A is the set of guard goals for clause i, then the don't-know

residual of a clause C =< i, A> with respect to a constraint g is denoted as Rdk(C, g).

Let G = {g' E A I g ⇒ g'} and G' = {g' E A I g ⇒ ,g'}.

R (C) - {
0

dk 'g - < i, A \ G >
G' :j: 0
otherwise

D

This definition means that only if g disproves the clause, will the residual be empty.

Otherwise the clause is retained, even if it is not implied by g. The essence of this in­

clusion is the construction of a full decision tree rather than a decision graph. However,

using the code-sharing optimizations described later, effectively a graph is built.

Definition: The unbound residual of a clause C =< i, A> with respect to a con­

straint g is denoted as Ru(C, g). Let G = {g' E A I g ?.1/J g'}.

D

This definition means that the original clause C is retained except for those guards g'

that test variables dependent on the unbound variables in g. The unbound residual of

clause with respect to a constraint set r is defined similarly.

We now describe the decision-graph construction algorithm for don't-know proce­

dure determinacy testing. The algorithm is outlined in Figures 2, 3, and 4. The algo­

rithm has two arguments: the input procedure .P and a residual table Table, which is

initially empty. Unlike Kliger's algorithm, a continuation is no longer necessary. Code­

sharing optimization exploits the depth-first generation of code by using the residual

table. This table is indexed by either a guard test, such as Z1=Z2, or a special key,

leaf, for those entries which have a residual containing a single clause.

When the algorithm is down to a leaf (only a single clause is left in the resid­

ual,(1)), the residual table is tested for a matching entry, using leaf as the search key.

If a match is found (2), we can either generate a go(T) instruction or an execute(i,G)

instruction.6 For code-size optimization, the go is better because the execute instruc­

tion includes code for checking the suspension stack and possibly forcing the bindings

specified in G. Returning a go (T) instruction, however, maximally shares code. If no

match is found, an execute(i ,G) instruction is returned (3).

If multiple clauses are left in the residual, the indexer is invoked to select a test r
from P to index on. We first check if the clauses all have empty guards. This situation

is detected by the indexer returning r = 0 and a suspend instruction is returned (4).

6 The exact semantics of execute is given in Section 5.3. For now it suffices to say that we commit

to clause i.

10

decision-graph(P, Table)
if (P = 0) then return(fail);
if (P = { < i , G >}) then (1)

else

- we can generate code for a single clause
if (3 [lea:f , P , T) E Table) then

else
return(go (T)) ;

Table : = [leaf , P, Label] U Table ;
return(Label: execute(i, G)) ;

- multiple clauses
- first choose indexing variable and collect constraints
r : = index(P) ;

(2)

(3)

if (f = 0) then return(suspend) ; (4)
if (3 [r , Q, T] E Table IP:::> Q) then (5)

else

- matching residual table entry so code sharing possible
if (P = Q) then

return(go(T)) ; (6)
else

- not exact match, so partial code sharing
Table : = [f , P , Label] U Table ;
return(share-node(P, Q, Label , r , Table)) ;

- miss in residual table , so no code sharing
Table : = [f , P, Label] U Table ;
return(generate-node(P, r , Table)) ;

(7)

(8)

Figure 2: Decision-Graph Algorithm for Don't-Know Procedures.

11

share-node(P, Q, Label , f , Table)
if (f = {Zp = t 1 , ... , Zp = tn}) then

,: = {gEf, <i ,A>EP\QlgEA} ;
- thus -y = {Zp = t1, ... , Zp = tk} , where k < n
- other values of Zp are covered at shared code Label
- return the following code tree:

val(Zp)

go(Label)

{Vi E 1 ... k I Di : = decision-graph(~dk(P, Zp = ti), Table) }
else

if (f = {Zp • Z 9 ,-,(Zp • Z9)}) then
, : = {g E r , < i, A >E P \ Q, g' E A I g' ⇒ g};
- thus -y is "ask" test
- return the following code tree: ·

r

D go(Label)

D : = decision-graph(~dk(P, ,) , Table) ;

Figure 3: Shared Node Generation for Don't-Know Procedure.

12

generate-node(?, r , Table)
if (r = {Zp = t 1 , ••• ,Zp = tn}) then

else

- return the following code tree :

val(Zp)

Dneither Dun bound

{ \/ i E 1 . .. n I Di : = decision-graph(~dk(P, Zp = ti)) }
Dneither : = decision-graph(~ 0 (P, r) , Table) ;
Dunbound: = decision-graph(~u(P, r) , Table) ;

if (f = {Zp • Zq , -,(Zp • Zq)}) then
- return the following code tree:

Zp • Zq

Dunbound

Dye$: = decision-graph(~dk(P, Zp • Zq) , Table);
Dno : = decision-graph(~dk(P, -,(zp • Zq)) , Table) ;
Dunbound : = decision-graph(~u(P, Zp • Zq) , Table) ;

Figure 4: New Node Generation for Don't-Know Procedure.

To check if code sharing is possible, the residual table is accessed with r, returning

a set of residuals corresponding to nodes in the tree that have the same test (5). The

residual P is compared with each candidate Q from the table until one is found such

that P :) Q. If no such entry exists , then code cannot be shared and the function

generate-node() is invoked ((8) , see also Figure 4). If the stronger condition of

equality exists, then the entire node can be shared with a simple control transfer and

a go(T) instruction is returned (6). In the general case , part of the new node must

be built with an ·otherwise-continuation transferring control to the shared node. The

new node is then constructed by invoking the function share-node() ((7), see also

Figure 3).

As an example of this algorithm, consider the previous f /2 procedure, now declared

as don't-know. Its code tree is given in Figure 5. The residuals are written above each

node. Branches labeled '? ' are unbound-residual branches and branches labeled with

13

'neither' are otherwise-residual branches. Control follows the '?' branches whenever

a test cannot be evaluated because of unbound variables. Control follows the neither

branches whenever a test fails (for example, when a variable is bound, but none of the

tests succeed). Control transfers with go represent code sharing. In this simple example,

entire subtrees can be shared because the corresponding residuals are identical. Note

that this code is complete in the sense that it is guaranteed to detect determinacy.

5.1 Indexing

The decision-graph generation mechanism, as defined in Kliger 's work and extended

here, hinges on the indexer selecting a test either in the form of a switch on value, or

builtin predicate, e.g., > /2. As will be obvious, the indexer plays an important part

in this algorithm. Apart from the strength of its inference mechanism, it is important

to note that the indexer should be fully determinate. This means that given the same

set of residuals, the indexer should always return the same r, even if multiple, equally

well-suited choices exist. If no choice is possible, which is the case when all guard goals

are empty, the indexer returns 0.
Our method is only as complete as is its inference mechanism in determining g ⇒

g' in the residual definitions. Shared variables cause problems because they transfer

constraints indirectly. For example, {X = Y, Y = Z, Z = W} implies that X = W. Similarly,

{X > Y, Y > Z} implies that X > Z. The first case can easily be handled during conversion

to canonical form, as mentioned earlier. The latter case can be handled in a similar

manner without significant code expansion, since sharing is not frequent. However, this

method is limited, and does not easily operate across clauses. Furthermore, constraints

involving both equalities and comparisons need a strong inference mechanism. Given

the constraint g = {Z = O}, the indexer should be able to infer that "{Z > O} ⇒
,g," which is non-trivial. However, we are confident that complex sets of interacting

constraints within the same procedure are rare in most logic programs .

5.2 Optimizations

To produce the minimal decision graph, thus achieving the maximum possible sharing,

it is important to consider the following optimizations during or after the code graph

generation. These optimizations are an extension to the sharing of code, which was

discussed before.

The first and simplest optimization, which can occur either during or after the actual

code graph generation, is the case where a node has three branches, one of which is a

continuation to the other branch. These two shared branches can then be collapsed into

a single otherwise branch. These otherwise-residual branches are labeled '??' and are

14

{<1,{Z1=Z2}>,
<2,{}>}

T2:(Z1=Z2)
/1\

/ I \
/ I \

/ I \
yes/ nol \?

/ I \
/ I \

{<1,{}>, <2,{}>
<2,{}>} execute(2,{})

suspend

{<1,{Z1=Z2}>,<2,{Z1=a,Z2=b}>}
val(Z1)

/I\
/ I \

/ I \
/ I \

a/ neither\?
/ I \

/ I \
{<1,{Z1=Z2}>,

<2,{Z2=b}>}
T1:val(Z2)

/I\
/ I \

/ I \
/ I \

b/ neither\?
/ I \

/ I \
{<1,{Z1=Z2}>}
T6:execute(1,

{Z1=Z2})

{<1,{}>,
<2,{}>}
suspend

{<1,{Z1=Z2}>}
go(T6)

{<1,{Z1=Z2}>,
<2,{}>}

go(T2)

{<1,{Z1=Z2}>,
<2,{Z2=b}>}

go(T1)

Figure 5: Decision Graph for f /2 (Compiler's Internal Code Tree).

15

treated as described for don't-care procedures. If the indexer returns r = { Z =ti}, the

normal test would be val(Z); in this case, however, it is replaced by the test Z = t1,

as illustrated below:

val(Z)
/1\

/ I \ ==>
/ I \

/ I \
t1/ neither\?
/ I \

T1 T2 go(T1)

Z=t1
I \

I \
no/ \??

I \
T2 T1

A second optimization, which is a more general version of the previous one, can be

applied when the residual contains multiple clauses, each with the same, non-empty,

guard, thus R = { < Ci, G >, ... , <Ck, G >}, where G = {g1, 92, ... , 9m}. 7 The minimal

code for this case would be:

if (-,91 /\ -,92 /\ • · · /\ -,gm)

then fail;

else suspend;

It is also possible to replace this entire node with a single suspend instruction, thus

avoiding the test for G. The code size will be smaller, but this goes against our earlier

prerequisite of "fast" failure, i.e., a failure should be detected as quickly as possible,

instead of suspending.

5.3 Suspensions

Because suspension and resumption of goals are costly operations, it is necessary to

perform them as efficiently as possible. In this section, we describe a possible and

efficient implementation of this suspension mechanism, using a combination of an in­

telligent compile-time code generator and an efficient run-time implementation of this

scheme.

At compile time, when the code generator is down to a suspend leaf, the residuals

have the form R = {<Ci, 0 >, < Cj, 0 >, ... ,<Ck, 0 > }. For each leaf we can now

generate the WAM-like code:

try Ci_H
retry Cj_H

trust Ck_H

7The case for G = 0 is discussed in Section 5.3.

16

where Ci_H points to the head of clause i. A continuation in the goal record is set to

point to the try instruction. This ensures that only the subset of clauses known to be

candidates is executed when the goal is resumed.

Another option is to generate a single sequence of try , retry , and trust instruc­

tions for all clauses , and to give all suspensions the same continuation C1_H, i.e. , the

first clause of the procedure. This would obviate the need for individual try sequences ,

at the expense of execution redundancy.

At run time , when a variable in a test is unbound , the variable is pushed onto the

suspension stack. A continuation pointing to this suspended test can also be pushed

onto the stack. Upon reaching a suspend instruction, the stack is popped , and each un­

bound variable is hooked to the goal. As an optimization, the associated continuations

can be attached to each hook, so that resumption continues precisely at the relevant

test. Using this optimization makes it possible to restart a resumed goal at exactly the

point where the suspension took place, instead of restarting at the root of the graph ,

thus having to perform previous tests again.

As previously mentioned, residuals with single clauses terminate as code leaves. If

no code sharing is possible for residual~= { < Ci,G >},we generate execute(i,G).

The exact semantics for this instruction is:

if (suspension_stack_check == ok)
then G; go(Ci_B);
else go(Ci_H);

where Ci_B points to the body of clause i, and Ci_H points to head of clause i, as

discussed before. The test suspension_stack_check tests if there are any variables

pushed on the suspension stack which are relevant to clause i, i.e., which occur in the

canonical form of clause i.

This scheme can be implemented efficiently with bit vectors. At compile time, when

expanding each clause into its canonical form, the compiler generates a bit vector for

each clause, where for each variable which occurs in the canonical form, the corre­

sponding bit in the vector is set. For example, if the head of clause i is f(g(X, Y)), the

canonical form would be J(Z1) : - Z1 = g(Z1 ,1, Z1,2) and the bit vector would be set

to Bi = [Z1 , Z1,1, Z1,2] = [100].
The original residual is extended to be a triplet, where the third part contains the

bit vector Bi, as defined above. When a new residual is calculated, a new bit vector B:

is calculated with the following rules: for all branches labeled with '? ' or '??', the bit

vector is unaffected. For all other branches,8 the bits corresponding to the variables in

r are zeroed.
8 This corresponds to those branches for which f can be fully evaluated , implying that all variables

in f are ground.

17

Z1=a
/\

\?? no/
I

go(T6)
\

Z2=b
/\

no/
I

T6:execute(1,{Z1=Z2})

\??
\

Z1=Z2
/\

no/ \??
I \

commit(2) suspend

Figure 6: Decision Graph for f /2 (Representation of Final Code).

When we are down to a leaf with a single residual < i, G, B >, the bit vector B is

changed with respect to G. If all instances of a variable Z, which appear in the original

residual for clause i, still appear in G at the leaf, then we have proven (at compile

time!) that Z cannot be on the suspension stack when we reach this leaf. Thus the bit

for Z can be reset to O.

When the entire compile-time bit vector B at a leaf is 0, and no shared nodes

(targets of go instructions) appear on the path from the root to the leaf, then we can

replace the execute instruction with the simpler code sequence "G; commit(i)." The

semantics for the commit instruction is simply: "go(CLB)." The second condition can

be removed by combining bit vectors at shared nodes, although we do not pursue this

here.

The final code graph for f /2 is shown in Figure 6. This graph represents the linear

code generated from the previous compiler code graph. This polished graph need not

be explicitly generated, but is implicitly used while generating the actual code. We

show it here to illustrate the optimizations previously discussed. For example, only one

of the execute instructions in Figure 5 can be converted to commit using the method

outlined before.

At run time, a single bit vector SS is used to represent the suspension stack. Each

time a variable is pushed on the suspension stack, the corresponding bit is set in SS.

The suspension_stack_check is then reduced to testing the logical AND of two bit

vectors:

it ((SS AND Bi)== 0)
then G; go(Ci_B);
else go(Ci_H);

18

6 Code Space Evaluation

This section presents empirical measurements of code size generated by the previous

algorithms. As an example of the benchmarks, the following cell/10 procedure is

taken from an active-constraints program for solving N-Queens:

:- dontknow cell/10.

cell(I, J, J, I, I, I, begin, end, begin, end) C1.
cell(_,_, _, _, _, He, He, Ve, Ve) C2.

In the above clauses, C1 and C2 represent unspecified clause bodies. Procedure cell/10

can be translated into a don't-care procedure with mutually exclusive claues, as first

indicated by R. Bahgat [2].

cell(I,J,H,V,L,R,Lett1,Right1,Lett2,Right2) :- H\==J
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- V\==I
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- L\==I
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- R\==I
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- V\==L
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- L\==R
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) R\==V
Left1=Right1, Left2=Right2, C2.

cell(I,J,H,V,L,R,begin,end,Left,Right):­
H=J,V=I,L=I,R=I,Left=begin,Right=end, C1.

cell(I,J,H,V,L,R,Left,Right,begin,end):-
H=J,V=I,L=I,R=I,Left=begin,Right=end, C1.

Note the additional body goals added to force unification once the procedure has been

found to be determinate. Although the number of clauses has increased as a function

of the number of constraints, the resulting clauses each have only a small number of

constraints.

Table 1 gives measurements of compiled benchmark procedures (see Appendix A

for source listings and Appendix B for the actual code graphs). The size measurement

is written as number of tests and complex code leaves + number of continuations (i.e.,

fail, suspend, go, and commit). Three program sizes are given. Kliger represents

the code size if compiled as a don't-care procedure. Such a program does not have

the semantics of the next two don't-know versions, and is given simply as a baseline.

Bahgat represents the code size if first hand-translated into a don't-care procedure

with equivalent don't-know semantics, and then compiled. K&T represents directly

compiling the don't-know procedures with our method.

19

procedure # Kliger Bahgat K&T

name clauses size size size

delete/3 2 1+2=3 - 2+4=6

f/2 2 3+4=7 4+6=10 3+4=7

a/3 4 6+10=16 4+7=11 9+10=19

cell/5 2 3+5=8 5+7=12 5+4=9

cell/10 2 13+14=27 11+12=23 16+11=27

omerge/3 4 4+7=11 4+7=11 6+10=16

Table 1: Empirical Measurements of Code Size.

Consider f /2 as a simple example. \Vhen converted into a don't-care procedure

and then translated into a decision graph , there are four trivial code leaves , i.e. , simple

commits. We count these as control transfers. Directly compiling f /2 as a don't­

know procedure gives only two code leaves. Code leaves in don't-know procedures

are considered complex execute sequences that check the suspension stack bit vector,

unless it can be proven at compile time that one of the vectors is zero. In addition , if

committing, extra guards must be executed (these guards have been implicitly added

to the new don't-care clauses in the translated version).

Table 1 indicates that compiling into don't-know semantics requires a larger tree

than for don't-care semantics because of the added power of rapidly detecting deter­

minism and forcing execution of unbound constraints. Depending on the procedure,

the relative code size varies between our method and hand-translation. Although these

examples are rather small, they allow us to determine the causes of why our method

sometimes does not achieve the size of the hand-translation:

• In some cases, hand-translation into don 't-care equivalents removes the need for

some constraints. The effective action of testing for these constraints is done by

body failure in the don't-care equivalent. An example of this are cell_/5 clauses

3 and 4 given in the Appendix.

• In direct-compilation of don't-know procedures, some code leaves are complex

executes, whereas in don't-care procedures, all code leaves are trivial commits.

• The method outlined generates "neither" branches causing "fast failure," whereas

in Kliger's method failure is as slow as possible, propagating through all otherwise

branches until the initial suspend continuation is reached. Thus our faster failure

has a cost in additional nodes.

To our knowledge, no algorithm has yet been found for Bahgat's method of don't­

know into don't-care translation [2]. The complexity of this hand-translation increases

20

dramatically with the number of clauses. We feel comfortable that our algorithm has

approximately the same space complexity, at low compile-time cost.

7 Conclusions

This paper introduced a decision-graph construction algorithm for code generation of

determinacy testing in nondeterminate flat concurrent logic programming languages.

The code generated is complete over unification, i.e., determinacy is guaranteed to be

detected no matter how complex the data structures and shared variables are. Com­

pleteness over other domains, such as arithmetic comparison, is the responsibility of a

component of the system, the indexer, for which an algorithm has not yet been specified.

Our algorithm is formulated in the context of committed-choice compilation tech­

niques given by Kliger and Shapiro [8]. For simple procedures, the two are shown to

have comparable code-size complexity. Thus we have shown that complete determinacy

testing over unification need not significantly increase code size. For more complex pro­

cedures the don't-know code size can be significantly larger than the don't-care code

size. This size increase is due to all the interacting constraints that must be checked to

detect determinacy. Comparing our algorithm to an elegant method of hand-translation

from don't-know into don't-care code [2], the code size complexity is more equal. Our

algorithm is however more general because it does not require that the clauses be

mutually exclusive.

8 Acknowledgements

M. Korsloot was supported by a grant from the Delft University of Technology. E. Tick

was supported by an NSF Presidential Young Investigator Award.

21

References

[1] R. Bahgat. The Pandora Abstract Machine. Technical Report DOC 90/1, Impe­

rial College, Department of Computing, January 1990.

[2] R. Bahgat. Pandora: Non-deterministic Parallel Logic Programming. PhD thesis,

Imperial College, Department of Computing, 1991. Draft.

[3] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Program­

ming. In Sixth International Conference on Logic Programming, pages 4 71-486.

Lisbon, 1,UT Press, June 1989 .

.
[4] V. S. Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog Sys-

tem that Transparently Exploits both And- and Or-Parallelism. Technical report,

University of Bristol, September 1990.

[5] W. Gibson. Burning Chrome. Grafton Books, 1988.

[6] S. Haridi and P. Brand. Andorra Prolog-An Integration of Prolog and Committed

Choice Languages. In International Conference on Fifth Generation Computer

Systems, pages 745-754, Tokyo, November 1988. ICOT.

[7] Y. Kimura and T. Chikayama. An Abstract KLl Machine and its Instruction Set.

In International Symposium on Logic Programming, pages 468-477. San Francisco,

IEEE Computer Society, August 1987.

[8] S. Kliger and E. Shapiro. From Decision Trees to Decision Graphs. In North

American Conference on Logic Programming. Austin, MIT Press, October 1990.

[9] S. Taylor. Parallel Logic Progmmming Techniques. Prentice Hall, Englewood

Cliffs, NJ, 1989.

[10] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog:

Collected Papers, volume 1, pages 140-156. MIT Press, Cambridge MA, 1987.

[11] R. Yang and V. S. Costa. Andorra-I: A System Integrating Dependent And­

Parallelism and Or-parallelism. Technical Report TR-90-03, University of Bristol,

March 1990.

22

A Benchmarks: Source Code

:- dontknow omerge/3, delete/3, a/3, f/2, cell/5.

omerge (D , Y, Z) : - C1. ¼ don't-care equivalent is same!
omerge(X,[] ,Z) :- C2.
omerge([XIXs],[YIYs],Z) X <= Y C3.
omerge([XIXs],[YIYs],Z) ·- X > Y C4 .

delete(X, [YIYs], Z)
delete(X, [YIYs], Z)

CL
C2 .

¼ no don't-care equivalent exists

a(1,1,1) CL
a(2,1,1) C2.
a(2,2,1) C3.
a(2,2,2) C4.

a_(l,Y,Z) Y=l, Z=l, Cl. ¼ don't-care equivalent to a/3
a_(2,1,Z) Z=1, C2.
a_(X,2,1) X=1, C3.
a_(X,Y,2) X=2, Y=2, C4.

f(X,X) CL
f(a,b) C2.

f_(X,X) CL ¼ don't-care equivalent to f/2
f_(X,Y) ·- X \== a X=Y, CL
f_(X,Y) y \== b X=Y, CL
f_(a,b) C2.

cell(on, Val, Val,_, _) :- C1.
cell(off, _, _, Chain, Chain) C2.

cell_(on,A,B,_,_) :- A=B, C1. ¼ don't-care equivalent to cell/5
cell_(off,_,_,C,D) :- C=D, C2.
cell_(X,A,B,C,D) ·- C \== D I X=on, A=B, C1.
cell_(X,A,B,C,D) :- A\== B I X=off, C=D, C2.

23

B Benchmarks: Code Graphs

This appendix shows the actual code graphs for the benchmarks , listed in Appendix A.

As Baghat 's don 't care equivalent of omerge/3 is the same as Kliger 's definition , there

is only a single don 't-care graph for omerge/3.

For all other benchmarks , we give the don't-care graph according to Kliger , the

don 't-know/ care graph, using Bahgat 's translation method, and the don't-know graph ,

using our algorithm.

24

Don't-know procedure:

delete(X,[YIYs],Z) :- C1.
delete(X,[YIYs],Z) :- C2.

{<C1 ,{22=[24125],23=25}>,<C2,{22=[24125]}>}
val(Z2)

{<C1 ,{23=25}>,<C2,{}>}
23=25

{}
fail

{<C1 ,{}> ,<C2,{}>}
go(T1)

{<C1 ,{}>,<C2,{}>}
T1: suspend

{<C2,{}>} {<C1 ,{}>,<C2,{}>}
commit(C2) go(T1)

final don't-know graph:
delete(X,[YIYs],Z) :- C1.
delete(X,[YIYs],Z) :- C2.

Don't-care procedure:

delete(X,[YIYs],Z) :- C1.
delete(X,[YIYs],Z) :- C2.

val(22)

23=25 fa i I suspend

commit(C2) suspend

{<C1 ,{21 =[24125],23=25}>,<C2,{Z2=[Z4IZ5]}>}
22='.'/2

{<C1 ,{23=25}>,<C2,{}>}
commit(C2)

suspend

don't care procedure:

f(X,X} :- C1.
f(a,b} :- C2.

{<C1 ,{Z1 =Z2}>,<C2,{Z1 =a,22=b}>}

{<C2,{Z2=b}>}

~
y"'

{<C2,{}>} {}

V 21)

commit(C2) go(T2)

final don't-care graph:
f(X,X) :- C1.
f(a,b} :- C2.

commit(C2) go(T2)

val(Z1)

{<C1 ,{Z1 =22}>}

~
{<C1,{}>} {}
commit(C1) suspend

commit(C1) suspend

don't-know/care procedure:

f_(X,X) :- C1.
f_(X,Y) :- X =\= a I X=Y, C1.
f_(X,Y) :- Y =\= b I X=Y, C1.
f_(a,b) :- C2.

{<C4',{Z2=b}>}
Z2=b

C1'
C2'
C3'
C4'

{<C1 ',{Z1 =Z2}>,
<C2',{Z1 =\=a}>,
<C3',{Z2=\=b}>,
<C4',{Z1 =a,Z2=b}>}

Z1=a

no

{<C2',{}>}
commit(C2')

{<C1 ',{Z1 =Z2}>,
<C3',{Z2=\=b}>}

T4: Z2=b

commit(C4') go(T1) T1: go(T4)
{<C3',{}>}
commit(C3')

go(T2) T2:{<C1 ',{Z1 =Z2}>}
Z1=Z2

~
{<C1 ',{}>} go(T3) T3: suspend
commit(C1 ')

final don't-know/care graph:

Z2 = b commit(C2') T4: Z2 = b

commit(C4') go(T4) commit(C3')

y~

commit(C1 ') suspend

don't-know procedure:
f(X,X) :- C1.
f(a,b) :- C2.

{<C1 ,{Z1 =Z2}>, <C2,{Z1 =a,Z2=b}>}
val(Z1)

{<C1 ,{Z1 =Z2}>,<C2,{Z2=b}>}
T1 :val(Z2)

{ <C1 ,{Z1 =Z2}>}
go(TS);

{<C1 ,{Z1 =Z2}>, <C2,{Z2=b}>}
go(T1);

b

{ <C1 ,{Z1 =Z2}>,<C2,{}>} {<C1 ,{Z1 =Z2}>}
TS: Z1=Z2;

commit(C1);

{ <C 1, {21 =22}>,<C2,{}>}
go(T2); T2: Z1=Z2)

{<C1 ,{}>,<C2,{}>}
suspend;

final don't-know graph:
f(X,X) :- C1.
f(a,b) :- C2.

{<C2,{}>}
commit(C2);

go\
TS: Z1=Z2;
commit(C1);

commit(C2);

{<C1 ,{}>,<C2,{}>}
suspend;

Z1=Z2

suspend;

Don't-care procedure:

a(1,1,1) C1.
a(2, 1 , 1) C2.
a(2,2, 1) · C3.
a(2,2,2) C4.

{<C1 ,{Z2=1,Z3=1 }>}
Z2=1 Y8A?

{<C1 ,{Z1 =1,Z2=1,Z3=1 }>,
<C2,{Z1 =2,Z2=1,Z3=1 }>,
<C3,{Z1 =2,Z2=2,Z3=1 }>,
<C4,{Z1 =2,Z2=2,Z3=2}>}

val 1)

{ <C2,{Z2=1,Z3=1 }>,
<C3,{Z2=2,Z3=1 }>,
<C4, {Z2=2,Z3=2} >}

val(Z2)

{<C1 ,{Z3=1 }>} suspend
Z3=1

~
{<C1 ,{}>} suspend
commit(C1)

{<C2,{Z3=1 }>}
Z3=1

7'\
{<C3,{Z3=1 }>,
<C4,{Z3=2}>}

val(Z3)

{}
suspend

{ }
suspend

{<C2,{}>}
commit(C2)

suspend {<C3,{}>} {<C4,{}>} suspend
commit(C3) commit(C4)

final don't-care graph:

val(Z1)

y~

~ sus~nd ~ suspend

commit(C1) suspend commit(C2) suspend commit(C3) commit(C4) suspend

Don't-know/care procedure:

a_{1,Y,2) :- Y=1, 2=1, C1. C1'
a_{2, 1,2) :- 2=1, C2. C2'
a_{X,2, 1) :- X=1, C3. C3'
a_{X,Y,2) :- X=2, Y=2, C4. C4'

{<C1 ',{Z1 =1 }>,<C2',{Z1 =2,Z2=1 }>,
<C3',{Z2=2,Z3=1 }>,<C4',{Z3=2}>}

val(Z1)

{<C1 ',{}>}
commit(C1 ')

{<C2',{Z2=1 }>}
22=1 yeA?

{<C3',{Z2=2,Z3=1 }>,<C4,{Z3=2}>}
T1: val(Z3)

~
{<C2',{}>} go(T1) {<C3',{Z2=2}>} {<C4',{}>} suspend
commit(C2') Z2=2 commit(C4')

~
{<C3',{}>} suspend
commit(C3')

final don't-know/care graph:

val(Z1)

commit(C1 ') Z2=1 yeA? T1: val(Z3)

~
commit(C2') go(T1) 22=2 commit(C4') suspend

~
commit(C3') suspend

Don't-know procedure:

a(1,1,1) C1.
a(2, 1, 1) ·- C2.
a(2,2, 1) · C3.
a(2,2,2) · C4.

{<C1 ,{Z2=1,Z3=1 }>}
Z2=1; Z3=1; commit(C1);

{<C1 ,{Z1 =1,Z2=1,Z3=1 }>,
<C2,{Z1 =2,Z2=1,Z3=1 }>,
<C3,{Z1 =2,Z2=2,Z3=1 }>,
<C4,{Z1 =2,Z2=2,Z3=2}>}

val(Z1)

2

{ <C2,{Z2=1,Z3=1 }>,
<C3,{Z2=2,Z3=1 }>,
<C4,{Z2=2,Z3=2}>}

T2: val(Z2)

fail

{<C2,{Z3=1}>} {<C3,{Z3=1}>,
execute(C2,{Z3=1}) <C4,{Z3=2}>}

fail {<C2,{Z3=1}>,
<C3,{Z3=1 }>,
<C4,{Z3=2}>}

va~3)

T4: val(Z3)

{<C3,{}>} {<C4,{}>} fail
execute(C3,{}) execute(C4,{})

I final don't-know graph:

Z2=1; Z3=1;
commit(C1);

execute(C2,{Z3=1 }) T4: val(Z3)

fail

{<C3,{}>,
<C4,{}>}
suspend

val(Z1)

T2: val(Z2)

fail

suspend

y "?
{<C2,{}>, go(T4)
<C3,{}>}
suspend

fail

val(Z3) A?
suspend go(T4)

{<C1 ,{Z2=1,Z3=1}>,
<C2,{Z2=1,Z3=1 }>,
<C3,{Z2=2,Z3=1 }>,
<C4, {Z2=2,Z3=2}>}

1 "nn ! .. ~
{<C1 ,{Z3=1 }> , go(T2)

<C2,{Z3=1 }>}
val Z3)

{<C1,{}>, fail {<C1,{}>,
<C2,{}>} <C2,{}>}
suspend suspend

~
Z3=1 go(T2)

no~

fail suspend

Don't-care procedure:

cell(on,X,X,_,_) :- C1.
cell(off ,_,_,X,X) :- C2.

{ <C1 ,{Z1 =On,Z2=Z3}>,<C2,{Z1 =Off,Z4=Z5}>}
val(Z1)

{<C1 ,{22=23}>} {<C2,{Z4=Z5}>} suspend
22=Z3 Z4=Z5

y~ YA
{<C1 ,{}>} suspend {<C2,{}>} suspend
commit(C1) commit(C2)

Don't-know/care procedure:

cell_(on,A,B,_,_) :- A=B, C1. C1'
cell_(off,_,_,C,D) :- C=D, C2. C2'
cell_(X,A,B,C,D) :- C=\=D I X=on, A=B, C1. C3'
cell_(X,A,B,C,D) :- A=\=B I X=off, C=D, C2. C4'

{<C1 ',{Z2=23}>}
22=23 yA?

{<C1 ',{Z1 =on,Z2=23}>,
<C2',{Z1 =Off,Z4=Z5}>,
<C3',{Z4=\=25}>,
<C4',{22=\=Z3}>}

val(Z1)

{<C2',{24=25}>}
22=23 yl\?

{ <C3', {Z4=\=25}>,
<C4',{Z2=\=23}>}

T1:/'t~5-
ye/ \?

commit(C 1 ') go(T1) · commit(C2') go(T1) commit(C3') { <C4', {Z2=\=Z3}>}
22=\=23

ve/'(
commit(C4 ') suspend

Don't-know procedure:

cell(on,X,X,_,_) :- C1.
cell(off ,_,_,X,X) :- C2.

{<C1 ,{21 =On,22=23}>,<C2,{21 =Off,24=25}>}
val(21)

{ <C 1,{Z2=Z3}>}
Z2=Z3;
commit(C1);

{ <C2,{Z4=Z5}>} fai I
T2: execute(C2,{Z4=Z5})

{<C1 ,{Z2=Z3}>,<C2,{Z4=Z5}>}
Z2=Z3

{<C1 ,{}>,<C2,{Z4=Z5}>} {<C2,{Z4=Z5}>} {<C1 ,{}>,<C2,{Z4=Z5}>}

{<C1 ,{}>,<C2,{}>}
suspend

final don't-know graph:

cell(on,X,X,_,_) :- C1.
cell(off,_,_,X,X) :- C2.

TS: Z4=Z5 go{T2) go(T5)

{<C1 ,{}> }
execute(C1 ,{})

val(21)

{<C1 ,{}>,<C2,{}>}
suspend

A?
go(T2) 24=25

~
execute(C1 ,{}) suspend

cell/1 O don't-care procedure:

{<C1 ,{21 =24,24=25,25=26,Z2=23,Z4=Z6,
21 =26,25=21 ,Z7=a,28=b,29=a,Z1 O=b}>,

<C2,{27=28,29=210}>}
27=28

~
29=210 {<C1 ,{21 =24,24=25,25=26,22=23,24=26,

yes ~ ? ? 21 =26,25~Z1,Z7=a,28=b,Z9=a,Z1 O=b}>}
/ "- T1. Z1=Z4

commit(C2) go(T1) ~s A. ? ?

Y/ ' Z4=Z5 suspend

y~

Z5=Z6 suspend

y~

22=23 suspend

y~

Z4=Z6 suspend

y~ .
21=26 suspend ?As

suspend 25=21

su:n:a
?As

suspend Z8=b ?As
suspend 29=a ?As

suspend 210=b ?As
suspend commit(C1)

cell/1 O don't-know/care procedure:

{<C1 ,{22=\=23}>,<C2,{21 =\=24}>,<C3,{25=\=21 }>,
<C4,{26=\=21 }> ,<C5,{24=\=25}>,<C6,{25=\=26}>,
<C7,{24=\=26}>,<C8,{27=a,28=b}>,<C9,{29=a,21 O=b}>}

22=\=23

~
commit(C1)') 21 =\=24

~
commit(C2') 25=\=21

y~

commit(C3') 26=\=21

y~

commit(C4') Z4=\=Z5

~s

?'As commit(C5')

24=\=26 commit(C6')

~s

Z7=a commit(C7')

Z8=b T1:Z9=a

~
commit(C8') go(T1) ~ 210=a suspend

~
commit(C9') suspend

cell/10 don't-know procedure:

{<C1 ,{21 =24,24=25,25=26,22=23,24=26 ,
21 =26,Z5=Z1 ,Z7=a,Z8=b,Z9=a,Z1 O=b}>,

<C2,{27=Z8,29=Z10}>}
Z7=a

~
28=b go(T1)

~
29=a go(T1)

~
Z1 O=b go(T1)

~
Z1 =Z4 go(T1)

~
Z4=Z5 go(T1)

~
25=Z6 go(T1)

~
Z2=Z3 go(T1)

~
Z4=26 go(T1)

~
go(T1) 25=21

~
go(T1) Z1 =26

~
T1: execute(C2, Z7=Z8

{Z7=Z8,Z9=Z10}) ~

execute(C1 ,{}) 29=Z10

~
execute(C1 ,{}) suspend

Don't-care procedure:

omerge([XIXs],[YIYs],Z) :- X <= Y I C1.
omerge([XIXs],[YIYs],Z) :- X> Y I C2.
omerge(D,Y,Z) :- C3.
omerge(X,[],Z) :- C4.

{<C1 ,{Z1 =[Z41Z5],Z2=[Z61Z7],Z4<=Z6}>,
<C2,{Z1 =[Z4!Z5],Z2=[Z61Z7],Z4>Z6}>,
<C3,{Z1 =[]}>, <C4,{Z2=[]}>}

{<C1 ,{Z2=[Z61Z7],Z4<=Z6}>,
<C2,{Z2=[Z61Z7],Z4>Z6}>}

va 2)

{<C1 ,{Z4<=Z6}>, T1: go(T2)
<C2,{Z4>Z6}>}

Z4>Z6

~
{<C2,{}>} {<C1,{}>} go(T1)
commit(C2) commit(C1)

I final don't-care graph:

val(Z1)

{<C3,{}>}
commit(C3)

{<C4,{Z2=[]}>}

C A=:]
ye/ \?

{<C4,{}>} suspend
commit(C4)

val(Z2) commit(C3)

~
Z4>Z6 T1 : go(T2)

y~

commit(C4) suspend

commit(C2) commit(C1) go(T1)

Don't-know procedure:

omerge([XIXs],[YIYs],Z) :- X <= Y I C1.
omerge([XIXs],[YIYs],Z) :- X>Y I C2.
omerge([],Y,Z) :- C3.
omerge(X,O,Z) :- C4.

{<C1 ,{Z1 =[Z4IZ5],Z2=[Z6IZ7],Z4<=Z6}>,
<C2, {Z 1 =[Z4 IZ5] ,Z2=[Z6 IZ7] ,Z4>Z6}>,
<C3,{Z1 =[]}>, <C4,{Z2=[]}>}

{<C3,{}>,
<C4,{Z2=[]}>}
T1: val(Z2)

{ <C3, {}>, { <C3,{}>} { <g:,{}>,
<C4,{}>} execute(C3,{}) < ,{}>}
suspend suspend

val(Z1)

{<C1 ,{Z2=[Z6IZ7],Z4<=Z6}>,
<C2,{Z2=[Z6IZ7],Z4>Z6}>,
<C4,{Z2=[]}>}

val(Z2)

{<C4,{Z2=[]}>}
Z2=[];
commit(C4);

{<C1 ,{Z4<=Z6}>, {<C4,{}>} fail {<C1 ,{}>,
<C2,{}>,
<C4,{}>}
suspend

<C2,{Z4>Z6}>} commit(C4)
Z4>Z6

{<C2,{}>} {<C1 ,{}>} {<C1 ,{}>,
commit(C2) commit(C1) <C2,{}>}

suspend

I final don't-know graph:

val(Z1)

~
execute(C3,{}) suspend

commit(C2)

val(Z2) Z2=[];
commit(C4);

Z4>Z6 commit(C4) fail

commit(C1) suspend

{<C1 ,{Z2=[Z6jZ7]}>,
<C2,{Z2=[Z6IZ7]}>,
<C3,{}>, <C4,{Z2=[]}>}

' -'~?

{<C1,{}>, go(T1)
<C2,{}>}
suspend

val(Z2)

'.'!~?

suspend go(T1)

suspend

