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Abstract 

This paper describes an algorithm for the code generation of determinacy testing 
for nondeterminate flat concurrent logic programming languages. Languages such 
as Andorra and Pandora require that procedure invocations suspend if there is 
more than one candidate clause potentially satisfying the goal. The algorithm 
described has been developed specifically for a variant of flat Pandora based on 
FGHC , although the concepts are general. We have extended Kliger and Shapiro's 
decision-graph construction algorithm to compile "don't know" procedures which 
must suspend for nondeterminate goal invocation. The determinacy test is compiled 
into a decision graph quite different from those of committed-choice procedures , but 
we argue that in most cases , the same low space complexity is retained . 
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1 Introduction 

"Lotta old computer hacks spent their livea programming machines." 

Dogfight 

M. Swanwick and W. Gibson (5] 

This paper describes compilation techniques for the Andorra/Pandora family of par­

allel logic programming languages [1, 3, 4, 6, 11]. These languages share a common 

execution model wherein a goal invocation is suspended if it can potentially be satisfied 

by two or more clauses in a procedure definition. We call these "nondeterminate" goal 

invocations. If all goals suspend, causing deadlock, then one nondeterminate goal is 

selected and forced to execute, creating a choicepoint for potential backtracking. 

In this paper, we limit ourselves specifically to our own variation of "flat" Pandora 

based on Flat Guarded Horn Clauses (FGHC) [10]. The language we consider has 

flat guards, no synchronization operator, and implicit synchronization rules, all as in 

FGHC. However, the compilation techniques we developed are applicable to the entire 

Andorra/Pandora family. 

The techniques described are based on the decision-tree and decision-graph algo­

rithms developed by S. Kliger and E. Shapiro [8]. The algorithm we introduce is for 

generating the code for a determinism tester: the code that checks whether two or more 

clauses can potentially satisfy a goal invocation. Our tester is a decision graph that 

is built in quite a different manner than graphs for committed-choice languages, as for 

example done by S. Taylor [9]. 

2 Pandora: Definitions and Example 

In this section we introduce flat Pandora to put our later compilation techniques into 

clear perspective. Our flat Pandora programs consist of FGHC procedures categorized 

as either don't care or don't know procedures [3]. In a nutshell, a flat Pandora program 

executes like an FGHC program, i.e., concurrent fine-grain processes communicate to 

solve a problem. In addition, a don't-know goal can backtrack through its clauses in an 

attempt to satisfy its invocation. 

At the time of its execution, a don't-care goal is treated as in any committed-choice 

language. If any clause head and guard can satisfy a goal invocation, then the goal 

commits to that clause and reduces. If the head and guard of two or more clauses can 

satisfy a goal invocation, then any one of the clauses is chosen for commitment. If no 

clause head and guard can satisfy the goal invocation, but one or more can suspend, 

then the goal suspends. Otherwise if no clause head and guard can succeed or suspend, 

then the goal fails. Note that unlike a pure committed-choice language where goal 
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failure implies program failure, in Pandora goal failure causes backtracking. 

A don't-know goal is executed differently from a don't-care goal. If only one clause 

head and guard can satisfy the goal invocation, then the goal commits to that clause 

and reduces. However, if the head and guard of two or more clauses can succeed, then 

the goal suspends. If no clause head and guard can satisfy the goal invocation, but one 

or more can suspend, then the goal suspends as well. Otherwise if no clause head and 

guard can succeed or suspend, then the goal fails . 

In summary, don't-know goals act similar to goals in a committed-choice language 

with the exception that if more than one clause can commit then the goal suspends. We 

call this a "nondeterminate goal invocation," and the test to determine if one or more 

clauses can commit is called the determinism test. Flat Pandora execution proceeds 

much like that of FGHC, with nondeterminate don't-know goal invocations suspending. 

At any point in time, the group of suspended goals consists of don't-care and don't­

know goals. Unbound logical variables are "hooked" to these suspended goals, thus 

enabling resumption as in any committed-choice language implementation ( e.g., [7]). 

For don't-care goals , binding a hooked variable is the only method of resumption . 

Resumption causes the goal to be reconsidered for execution, although it does not 

guarantee reduction: the goal may suspend on another variable. For don't-know goals, 

it is also the case that binding a hooked variable will cause resumption, but it is not 

the only method. Certain suspended don't-know goals may not even have associated 

hooked variables because their procedure definitions are truly nondeterminate. In that 

case, the goals remain suspended until no executable goals remain, i.e., deadlock ensues. 

To break deadlock, any suspended don't-know goal is forced to reduce. The fact 

that the goal was suspended implies that two or more clauses can commit to this goal 

invocation. Forced reduction must choose a clause to commit , after creating a choice­

point for potential backtracking. The choicepoint will direct execution to alternative 

clauses. Any clause with a non-failing head and guard can be reduced ( as in Prolog). 

There is no distinction between input and output variables at this stage: the goal is 

unified with the clause heads until one is satisfied. Unlike don 't-care goal reduction, 

output bindings may be performed during head and guard unifications.1 However, 

certain guards cannot be forced to reduce with unbound inputs, e.g. , X>3 cannot be 

evaluated if X is unbound. These guards must suspend and another clause would be 

chosen. It could be the case that the "don't know" goal chosen to break the deadlock 

cannot reduce because of such tests. If this occurs, another goal must be chosen. 

Given an "incorrect" program, all suspended goals may be don't-care in which case 

1 As for all bindings, trailing must be performed if the variable to be bound is older than the current 

choicepoint. 

3 



deadlock is fatal. It can also be the case that although don't-know goals exist, none 

of them can be forced to reduce because of guards that require bound variables. This 

is another form of fatal deadlock. Given a "correct" program, forcing reduction of a 

"don't know" goal may issue new don't-care goals and/or create bindings that resume 

old don't-care goals. However, some don't-know goals may generate only nondetermi­

nate don't-know goal invocations and/or create bindings that do not resume old "don't 

care" goals. In this case , deadlock remains and another goal must be chosen for forced 

execution. In general, it is hoped and expected that the execution periods of determi­

nate reduction of don't-care goals are much longer than the periods required to break 

deadlocks. 

Choicepoints leading to multiple, independent OR-branches of the execution tree 

can potentially be searched in parallel, but this issue is orthogonal to the paper and 

will not be discussed. 

To illustrate the flat Pandora procedural semantics, a small example is presented. 

Consider the following code: 

:- dontknow a/3. 

a(1,1,1). 
a(2,1,1). 
a(2~2,1). 
a(2,2,2). 

b(1,A) 
b(2,A) 

A=yes. 
A=no. 

Procedure b/2 is assumed to be don't-care since it has no declaration. Suppose we 

make the following query: 

?- a(X,Y,Z), b(Y,A), Z=2. 

Assuming that the goals are evaluated in their sequential order, the sequence of actions 

executed is: a/3 is found to be nondeterminate and suspends, b/2 suspends, Z is bound 

to 2, a/3 resumes and is found to be determinate ( clause 4), X and Y are bound, b/2 is 

resumed, and A is bound to no. In contrast, consider the following query: 

?- a(X,Y,Z), b(Y,no), Z=1, X=2. 

One possible sequence of actions executed is: a/3 is found to be nondeterminate and 

suspends, b/2 suspends, Z is bound, a/3 resumes, found to be nondeterminate and sus­

pends again, X is bound, a/3 resumes, found to be nondeterminate and suspends a third 

time. Now deadlock ensues so a/3 is forced to reduce, Y is bound to 1, b/2 is resumed 

and fails, backtracking retries the execution of a/3, Y is bound to 2, b/2 is resumed 

and succeeds. These two examples sufficiently illustrate the execution mechanisms of 

flat Pandora to understand the rest of this paper. 
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3 Decision Graphs: Background 

The don't-care procedures in flat Pandora are compiled in a manner similar to the 

decision-graph algorithm given by Kliger and Shapiro for FCP [8]. Because we are 

restricting ourselves to FGHC, our notation can be made simpler than that of the FCP 

algorithm as we have no tell guards. We review the terminology and algorithm here as 

a foundation for our method of compiling don't-know procedures. 

A guarded Horn clause is of the form: 

where m and n are zero or positive integers. H is the clause head, Gi is a guard goal,2 

and Bi is a body goal. The commit operator 'I' divides the clause into a passive part 

(the guard) and active part (the body). The first step in the compilation process is to 

translate source clauses into canonical form. 

Definition: A simple term is either a constant , a variable, or a compound term in 

which the arguments are pairwise different variables. A complex term is a compound 

term in which there exists either a non-variable argument or two arguments with iden­

tical names. For example, f(X, Y) is a simple term and g(h(X)) is a complex term. D 

Definition: A complex term is flattened into a pair (F, S), where Fis a simple term 

and S is a constmint set. To flatten a complex term the following rules are applied 

with S initially empty. Each of k instances of a shared variable X is replaced by a 

unique variable {Zi+j I 1 ~ i ~ k} and S : = SU {Zj+l = Zj+2, Zj+i = Zj+3 , ••• } , 

for C(k,2) pairs.3 A constant argument o is replaced by a unique variable Zj, and 

S : = { Zj = o} U S. A complex argument is flattened into ( F', S') and replaced by a 

unique variable Zj, and S : = { Zj = F'} U S' U S . □ 

Definition: Given a clause C = "H : - G I B." then its normalized form is C' = 
"H' : - G' I B ." A complex term in HUG is flattened into a pair (F, S) and replaced 

by a unique variable Zi in C'. Furthermore G' : = { Zi = F} u S u G'. D 

Normalization is needed to simplify a clause into a trivial head and an extended 

guard containing constituent constraints. This form facilitates code generation of 

triples . Normalization however is not enough: we need to rename variables among 

the clauses belonging to the same procedure such that variables corresponding to the 

same depth within the same procedure argument have the same name. This character­

istic is necessary for indexing purposes , as is shown later. 

Definition: A simple term H = p(X1, X2, ... , Xn) is expanded, with respect to a set 

of constraints G, into a tree, tree(H), with n branches labeled 1, ... , n. For a variable 

2 more precisely, an "ask" guard . 
3 Index j is chosen to produce unique variables . 
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Xi and term T that appear in a constraint g = {Xi = T} E G or g = {T = Xi}, the 

subtree at root i is T expanded with respect to G \ {g }. Otherwise the subtree at root 

i is the leaf Xi. □ 

Definition: A normalized clause C = "H : - GI B ." is renamed into canonical form 

by expanding H with respect to G into tree(H). Each variable X in C is replaced by 

Zp where pis the label sequence from the root of tree(H) to the vertex corresponding 

to X. □ 

Using this sequence gives a complete ordering of all variables and retains identi­

cal names for corresponding variables among clauses. For instance, f(g(X, Y)) has 

normalized form f(A): - A= g(B, C) and canonical form f(Z1) :- Z1 = g(Z1 ,1, Z1,2). 

Definition: A canonical-form procedure consists of canonical-form clauses, each of 

the form < i, G > for clause number i with guard G. The head is not needed because 

it has been flattened away. The head arguments are always named Z1, Z2, ... , Zn for 

an arity-n procedure. The body is not listed because the algorithms we discuss in this 

paper do not deal with body compilation. D 

From this point on in the paper, all references to "procedures" and "clauses" im­

plicitly assume canonical forms. Both don't-care and don't-know procedures are syn­

tactically identical and are converted into canonical form. The goals in guard G consist 

of builtin predicates such as =/2, =f /2, > /2, var/1, otherwise, etc. We call these con­

straints or tests. For efficiency, we can represent G as a bit-vector corresponding to 

inclusion in the union of all guards of a procedure. This makes set operations on guards 

very fast. 

Definition: Variables within a clause are partially ordered on their label sequences: 

Zi,j, ... ,k ?.1/J Zi,j, ... ,k,l,m,.... In words, a variable is -ip-greater than or equal to another 

variable if their label sequences share the same prefix and the latter sequence is longer 

or equal. For example, Z1 ?.1/J Z1,2, whereas Z2 and Z1,2 have no ordering. □ 

Definition: The constraints within a canonical-form clause form a relation with 

respect to ?.1/J, defined as follows: 

□ 

For example, {Z1 = Z2} ?.1/J var(Z1,2), whereas both {Z1,2 = Z2} ?.1/J {Z1 = Z2,1} and 

{Z1 = Z2,i} ?.1/J {Z1,2 = Z2}. 
Definition: The residual of a clause C =< i, A> with respect to a constraint g is 

6 



denoted as R(C,g).4 

R( c' g) = { 0< i, A \ G > G = {g' E A I g => g'} f 0 
otherwise 

□ 

Definition: The otherwise-residual of a clause C =< i, A> with respect to a con-

straint set r is denoted as R0 ( C, r). 

Ro(C,f)={ 0. G={g.Ef,g'EAl(g=>g')v(,g=>g')}f0 
< z, A> otherwise 

□ 

Definition: The residual and otherwise-residual of a procedure, R(P, g) and R 0 (P, g ), 

are the union of all residuals corresponding to the clauses in P. □ 

4 Committed-Choice Compilation: Kliger's Method 

Kliger's algorithm [8] for compilation of don't-care (committed-choice) procedures is 

reviewed in this section (see Figure 1). The algorithm we discuss is slightly modified for 

FGHC execution, i.e., no tell guards. The code-generation function decision-graph(P, C) 

is passed procedure P and continuation C. The initial continuation is a suspend 

instruction that will be explained later. The resulting value of the function is an 

abstract code tree that can easily be flattened into a linear code sequence. To illustrate 

the algorithm, consider the following don't-care procedure: 

f (X,X) ·-
f (a, b) :- ... 

The final code graph produced is: 

{<1,{Z1=Z2}>,<2,{Z1=a,Z2=b}>} 
TO:val(Z1) 

/\ 
a/ \?? 
I \ 

{<2,{Z2=b}>} {<1,{Z1=Z2}>} 
T1:val(Z2) T2:Z1=Z2 

/\ /\ 
b/ \?? yes/ \?? 
I \ I \ 

{<2,{}>} {} {<1,{}>} {} 
commit(C2) go(T2) commit(C1) suspend 

•This (and the next) definition are due to Kliger . One may think of this residual as a don't-care 

residual ~de ( C, g) to be consistent with later terminology. 
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decision-graph( P, C) 
if (P = 0) then return(go(C)); 
if ( < i, 0 >E P) then 

else 

- any clause with empty guard can commit 
return( commit (i) ); 

if ( P = { < i, G >}) then 

else 

- we can generate code for a single clause 
return( attempt ( i, G) else go (C) ); 

- multiple clauses, none with empty guards 
- first choose indexing variable and collect constraints 
r : = index(P); 
if (f = {Zp = t 1 , ... ,Zp = tn}) then 

else 

- return the following code tree: 

Doth er 

{Vi E 1 ... n I Di : = decision-graph(~(P, Zp = ti) , Dother) } 
Dother : = decision-graph(~o(P, r),C); 

if (r = {Zp • Zq,-,(Zp • Zq)}) then 
- return the following code tree: 

Zp • Zq 

Dot her 

Dyea: = decision-graph(?R(P, Zp • Zq), Dother); 
Dno := decision-graph(~(P,-i(Zp • Zq)),Dother); 
Doth er : = decision-graph(~0 (P, Zp • Zq ), C); 

Figure 1: Decision Graph Construction Algorithm (Based on Kliger). 
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Each node is labeled with its residual P , followed by a set of constraints r , as returned 

by the indexer. Each leaf is either suspend, fail , go , or a code segment. A branch 

labeled '?? ' is an otherwise-residual branch , i.e. , the residual at its leaf is computed 

as R0 (P, r) . If r represents an "ask" test Zp • Zq then branches are labeled 'yes ' and 

'no ' with leaves computed as R(P, Zp • Zq ) and R(P, , (Zp • Zq) ) respectively. If r 
represents a switch test val( Zp ) then a branch is labeled with a ground value a and 

its leaf computed as R(P, Zp = a). 
For a single-clause residual , tree generation terminates with code committing to the 

clause. For an empty residual, tree generation terminates with a control transfer to the 

current continuation. 5 

Control follows the otherwise branches whenever a test fails or cannot be evaluated 

because of unbound variables. Note that failure will occur at the suspend instruction 

if the suspension stack is empty. For instance, if Z1 and Z2 are bound with different 

values, then the test at T2 will fail , taking the otherwise branch to the suspend, which 

will fail because of the empty suspension stack. 

The code space required by this example procedure is grossly estimated as three test 

nodes and four leaves . The actual code generated for each node will of course differ, 

but in general nodes require more instructions than simple leaves. We model suspend 

and fail as traps, i.e. , their code bodies are not expanded in-line. 

5 Determinism Testing 

This section introduces an algorithm to generate decision graphs for don't-know pro­

cedures in a nondeterminate concurrent logic programming language. Specifically we 

generate an abstract code graph for flat Pandora based on FGH C. The code graph 

can easily be flattened into a linear sequence of triples suitable for code generation. 

Qualitatively, the algorithm presented has space complexity comparable to Kliger 's 

method. The expected path length through the code obviously depends on how proce­

dure arguments are dynamically bound, but it also depends on the sophistication of the 

unspecified indexer at choosing critical constraints near the root , as in Kliger 's method. 

Similarly, the completeness of the algorithm, i.e. , the percentage of determinate invoca­

tions that commit immediately, is dependent on the strength of the unspecified guard 

inference mechanism. For the simplest inference mechanism over arbitrarily complex 

unifications, which is the common case, the code generated is complete. More discussion 

about completeness over other domains is given in Section 5.1. 

5 1n this example, the bottom right subtree is optimized by combining the 'no ' branch (terminating 

in a transfer to the suspend continuation) with the otherwise branch . 
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Definition: Given that A is the set of guard goals for clause i, then the don't-know 

residual of a clause C =< i, A> with respect to a constraint g is denoted as Rdk( C, g ). 

Let G = {g' E A I g ⇒ g'} and G' = {g' E A I g ⇒ ,g'}. 

R (C ) - { 
0 

dk 'g - < i, A \ G > 
G' :j: 0 
otherwise 

D 

This definition means that only if g disproves the clause, will the residual be empty. 

Otherwise the clause is retained, even if it is not implied by g. The essence of this in­

clusion is the construction of a full decision tree rather than a decision graph. However, 

using the code-sharing optimizations described later, effectively a graph is built. 

Definition: The unbound residual of a clause C =< i, A> with respect to a con­

straint g is denoted as Ru( C, g ). Let G = {g' E A I g ?.1/J g'}. 

D 

This definition means that the original clause C is retained except for those guards g' 

that test variables dependent on the unbound variables in g. The unbound residual of 

clause with respect to a constraint set r is defined similarly. 

We now describe the decision-graph construction algorithm for don't-know proce­

dure determinacy testing. The algorithm is outlined in Figures 2, 3, and 4. The algo­

rithm has two arguments: the input procedure .P and a residual table Table, which is 

initially empty. Unlike Kliger's algorithm, a continuation is no longer necessary. Code­

sharing optimization exploits the depth-first generation of code by using the residual 

table. This table is indexed by either a guard test, such as Z1=Z2, or a special key, 

leaf, for those entries which have a residual containing a single clause. 

When the algorithm is down to a leaf ( only a single clause is left in the resid­

ual,(1) ), the residual table is tested for a matching entry, using leaf as the search key. 

If a match is found (2), we can either generate a go(T) instruction or an execute(i,G) 

instruction.6 For code-size optimization, the go is better because the execute instruc­

tion includes code for checking the suspension stack and possibly forcing the bindings 

specified in G. Returning a go (T) instruction, however, maximally shares code. If no 

match is found, an execute(i ,G) instruction is returned (3). 

If multiple clauses are left in the residual, the indexer is invoked to select a test r 
from P to index on. We first check if the clauses all have empty guards. This situation 

is detected by the indexer returning r = 0 and a suspend instruction is returned ( 4 ). 

6 The exact semantics of execute is given in Section 5.3. For now it suffices to say that we commit 

to clause i. 
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decision-graph( P, Table ) 
if (P = 0) then return(fail ); 
if ( P = { < i , G >} ) then (1) 

else 

- we can generate code for a single clause 
if (3 [lea:f , P , T) E Table) then 

else 
return(go (T)) ; 

Table : = [leaf , P, Label] U Table ; 
return(Label: execute(i, G) ) ; 

- multiple clauses 
- first choose indexing variable and collect constraints 
r : = index(P) ; 

(2) 

(3) 

if (f = 0) then return( suspend) ; ( 4) 
if (3 [r , Q, T] E Table IP:::> Q) then (5) 

else 

- matching residual table entry so code sharing possible 
if (P = Q) then 

return(go(T)) ; (6) 
else 

- not exact match, so partial code sharing 
Table : = [f , P , Label] U Table ; 
return(share-node(P, Q, Label , r , Table)) ; 

- miss in residual table , so no code sharing 
Table : = [f , P, Label] U Table ; 
return(generate-node(P, r , Table)) ; 

(7) 

(8) 

Figure 2: Decision-Graph Algorithm for Don't-Know Procedures. 
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share-node(P, Q, Label , f , Table) 
if (f = {Zp = t 1 , ... , Zp = tn}) then 

,: = {gEf, <i ,A>EP\QlgEA} ; 
- thus -y = {Zp = t1, ... , Zp = tk} , where k < n 
- other values of Zp are covered at shared code Label 
- return the following code tree: 

val(Zp) 

go(Label) 

{Vi E 1 ... k I Di : = decision-graph(~dk(P, Zp = ti), Table) } 
else 

if (f = {Zp • Z 9 ,-,(Zp • Z9 )}) then 
, : = {g E r , < i, A >E P \ Q, g' E A I g' ⇒ g}; 
- thus -y is "ask" test 
- return the following code tree: · 

r 

D go(Label) 

D : = decision-graph(~dk(P, , ) , Table) ; 

Figure 3: Shared Node Generation for Don't-Know Procedure. 
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generate-node(?, r , Table ) 
if (r = {Zp = t 1 , ••• ,Zp = tn}) then 

else 

- return the following code tree : 

val(Zp) 

Dneither Dun bound 

{ \/ i E 1 . .. n I Di : = decision-graph(~dk(P, Zp = ti)) } 
Dneither : = decision-graph(~ 0 (P, r) , Table) ; 
Dunbound: = decision-graph(~u(P, r) , Table) ; 

if (f = {Zp • Zq , -,(Zp • Zq)}) then 
- return the following code tree: 

Zp • Zq 

Dunbound 

Dye$ : = decision-graph(~dk(P, Zp • Zq ) , Table); 
Dno : = decision-graph(~dk(P, -,(zp • Zq)) , Table) ; 
Dunbound : = decision-graph(~u(P, Zp • Zq) , Table) ; 

Figure 4: New Node Generation for Don't-Know Procedure. 

To check if code sharing is possible, the residual table is accessed with r, returning 

a set of residuals corresponding to nodes in the tree that have the same test (5). The 

residual P is compared with each candidate Q from the table until one is found such 

that P :) Q. If no such entry exists , then code cannot be shared and the function 

generate-node() is invoked ( (8) , see also Figure 4 ). If the stronger condition of 

equality exists, then the entire node can be shared with a simple control transfer and 

a go(T) instruction is returned (6). In the general case , part of the new node must 

be built with an ·otherwise-continuation transferring control to the shared node. The 

new node is then constructed by invoking the function share-node() ((7), see also 

Figure 3). 

As an example of this algorithm, consider the previous f /2 procedure, now declared 

as don't-know. Its code tree is given in Figure 5. The residuals are written above each 

node. Branches labeled '? ' are unbound-residual branches and branches labeled with 
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'neither' are otherwise-residual branches. Control follows the '?' branches whenever 

a test cannot be evaluated because of unbound variables. Control follows the neither 

branches whenever a test fails (for example, when a variable is bound, but none of the 

tests succeed). Control transfers with go represent code sharing. In this simple example, 

entire subtrees can be shared because the corresponding residuals are identical. Note 

that this code is complete in the sense that it is guaranteed to detect determinacy. 

5.1 Indexing 

The decision-graph generation mechanism, as defined in Kliger 's work and extended 

here, hinges on the indexer selecting a test either in the form of a switch on value, or 

builtin predicate, e.g., > /2. As will be obvious, the indexer plays an important part 

in this algorithm. Apart from the strength of its inference mechanism, it is important 

to note that the indexer should be fully determinate. This means that given the same 

set of residuals, the indexer should always return the same r, even if multiple, equally 

well-suited choices exist. If no choice is possible, which is the case when all guard goals 

are empty, the indexer returns 0. 
Our method is only as complete as is its inference mechanism in determining g ⇒ 

g' in the residual definitions. Shared variables cause problems because they transfer 

constraints indirectly. For example, {X = Y, Y = Z, Z = W} implies that X = W. Similarly, 

{X > Y, Y > Z} implies that X > Z. The first case can easily be handled during conversion 

to canonical form, as mentioned earlier. The latter case can be handled in a similar 

manner without significant code expansion, since sharing is not frequent. However, this 

method is limited, and does not easily operate across clauses. Furthermore, constraints 

involving both equalities and comparisons need a strong inference mechanism. Given 

the constraint g = {Z = O}, the indexer should be able to infer that "{Z > O} ⇒ 
,g," which is non-trivial. However, we are confident that complex sets of interacting 

constraints within the same procedure are rare in most logic programs . 

5.2 Optimizations 

To produce the minimal decision graph, thus achieving the maximum possible sharing, 

it is important to consider the following optimizations during or after the code graph 

generation. These optimizations are an extension to the sharing of code, which was 

discussed before. 

The first and simplest optimization, which can occur either during or after the actual 

code graph generation, is the case where a node has three branches, one of which is a 

continuation to the other branch. These two shared branches can then be collapsed into 

a single otherwise branch. These otherwise-residual branches are labeled '??' and are 
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{<1,{Z1=Z2}>, 
<2,{}>} 

T2:(Z1=Z2) 
/1\ 

/ I \ 
/ I \ 

/ I \ 
yes/ nol \? 

/ I \ 
/ I \ 

{<1,{}>, <2,{}> 
<2,{}>} execute(2,{}) 

suspend 

{<1,{Z1=Z2}>,<2,{Z1=a,Z2=b}>} 
val(Z1) 

/I\ 
/ I \ 

/ I \ 
/ I \ 

a/ neither\? 
/ I \ 

/ I \ 
{<1,{Z1=Z2}>, 

<2,{Z2=b}>} 
T1:val(Z2) 

/I\ 
/ I \ 

/ I \ 
/ I \ 

b/ neither\? 
/ I \ 

/ I \ 
{<1,{Z1=Z2}>} 
T6:execute(1, 

{Z1=Z2}) 

{<1,{}>, 
<2,{}>} 
suspend 

{<1,{Z1=Z2}>} 
go(T6) 

{<1,{Z1=Z2}>, 
<2,{}>} 

go(T2) 

{<1,{Z1=Z2}>, 
<2,{Z2=b}>} 

go(T1) 

Figure 5: Decision Graph for f /2 ( Compiler's Internal Code Tree). 
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treated as described for don't-care procedures. If the indexer returns r = { Z =ti}, the 

normal test would be val(Z); in this case, however, it is replaced by the test Z = t1, 

as illustrated below: 

val(Z) 
/1\ 

/ I \ ==> 
/ I \ 

/ I \ 
t1/ neither\? 
/ I \ 

T1 T2 go(T1) 

Z=t1 
I \ 

I \ 
no/ \?? 

I \ 
T2 T1 

A second optimization, which is a more general version of the previous one, can be 

applied when the residual contains multiple clauses, each with the same, non-empty, 

guard, thus R = { < Ci, G >, ... , <Ck, G >}, where G = {g1, 92, ... , 9m}. 7 The minimal 

code for this case would be: 

if (-,91 /\ -,92 /\ • · · /\ -,gm) 

then fail; 

else suspend; 

It is also possible to replace this entire node with a single suspend instruction, thus 

avoiding the test for G. The code size will be smaller, but this goes against our earlier 

prerequisite of "fast" failure, i.e., a failure should be detected as quickly as possible, 

instead of suspending. 

5.3 Suspensions 

Because suspension and resumption of goals are costly operations, it is necessary to 

perform them as efficiently as possible. In this section, we describe a possible and 

efficient implementation of this suspension mechanism, using a combination of an in­

telligent compile-time code generator and an efficient run-time implementation of this 

scheme. 

At compile time, when the code generator is down to a suspend leaf, the residuals 

have the form R = {<Ci, 0 >, < Cj, 0 >, ... ,<Ck, 0 > }. For each leaf we can now 

generate the WAM-like code: 

try Ci_H 
retry Cj_H 

trust Ck_H 

7The case for G = 0 is discussed in Section 5.3. 
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where Ci_H points to the head of clause i. A continuation in the goal record is set to 

point to the try instruction. This ensures that only the subset of clauses known to be 

candidates is executed when the goal is resumed. 

Another option is to generate a single sequence of try , retry , and trust instruc­

tions for all clauses , and to give all suspensions the same continuation C1_H, i.e. , the 

first clause of the procedure. This would obviate the need for individual try sequences , 

at the expense of execution redundancy. 

At run time , when a variable in a test is unbound , the variable is pushed onto the 

suspension stack. A continuation pointing to this suspended test can also be pushed 

onto the stack. Upon reaching a suspend instruction, the stack is popped , and each un­

bound variable is hooked to the goal. As an optimization, the associated continuations 

can be attached to each hook, so that resumption continues precisely at the relevant 

test. Using this optimization makes it possible to restart a resumed goal at exactly the 

point where the suspension took place, instead of restarting at the root of the graph , 

thus having to perform previous tests again. 

As previously mentioned, residuals with single clauses terminate as code leaves. If 

no code sharing is possible for residual~= { < Ci,G >},we generate execute(i,G). 

The exact semantics for this instruction is: 

if (suspension_stack_check == ok) 
then G; go(Ci_B); 
else go(Ci_H); 

where Ci_B points to the body of clause i, and Ci_H points to head of clause i, as 

discussed before. The test suspension_stack_check tests if there are any variables 

pushed on the suspension stack which are relevant to clause i, i.e., which occur in the 

canonical form of clause i. 

This scheme can be implemented efficiently with bit vectors. At compile time, when 

expanding each clause into its canonical form, the compiler generates a bit vector for 

each clause, where for each variable which occurs in the canonical form, the corre­

sponding bit in the vector is set. For example, if the head of clause i is f(g(X, Y)), the 

canonical form would be J(Z1) : - Z1 = g(Z1 ,1, Z1,2) and the bit vector would be set 

to Bi = [Z1 , Z1,1, Z1,2] = [100]. 
The original residual is extended to be a triplet, where the third part contains the 

bit vector Bi, as defined above. When a new residual is calculated, a new bit vector B: 

is calculated with the following rules: for all branches labeled with '? ' or '??', the bit 

vector is unaffected. For all other branches,8 the bits corresponding to the variables in 

r are zeroed. 
8 This corresponds to those branches for which f can be fully evaluated , implying that all variables 

in f are ground. 
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Z1=a 
/\ 

\?? no/ 
I 

go(T6) 
\ 

Z2=b 
/\ 

no/ 
I 

T6:execute(1,{Z1=Z2}) 

\?? 
\ 

Z1=Z2 
/\ 

no/ \?? 
I \ 

commit(2) suspend 

Figure 6: Decision Graph for f /2 (Representation of Final Code). 

When we are down to a leaf with a single residual < i, G, B >, the bit vector B is 

changed with respect to G. If all instances of a variable Z, which appear in the original 

residual for clause i, still appear in G at the leaf, then we have proven ( at compile 

time!) that Z cannot be on the suspension stack when we reach this leaf. Thus the bit 

for Z can be reset to O. 

When the entire compile-time bit vector B at a leaf is 0, and no shared nodes 

( targets of go instructions) appear on the path from the root to the leaf, then we can 

replace the execute instruction with the simpler code sequence "G; commit(i)." The 

semantics for the commit instruction is simply: "go(CLB)." The second condition can 

be removed by combining bit vectors at shared nodes, although we do not pursue this 

here. 

The final code graph for f /2 is shown in Figure 6. This graph represents the linear 

code generated from the previous compiler code graph. This polished graph need not 

be explicitly generated, but is implicitly used while generating the actual code. We 

show it here to illustrate the optimizations previously discussed. For example, only one 

of the execute instructions in Figure 5 can be converted to commit using the method 

outlined before. 

At run time, a single bit vector SS is used to represent the suspension stack. Each 

time a variable is pushed on the suspension stack, the corresponding bit is set in SS. 

The suspension_stack_check is then reduced to testing the logical AND of two bit 

vectors: 

it ((SS AND Bi)== 0) 
then G; go(Ci_B); 
else go(Ci_H); 
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6 Code Space Evaluation 

This section presents empirical measurements of code size generated by the previous 

algorithms. As an example of the benchmarks, the following cell/10 procedure is 

taken from an active-constraints program for solving N-Queens: 

:- dontknow cell/10. 

cell(I, J, J, I, I, I, begin, end, begin, end) C1. 
cell(_,_, _, _, _, He, He, Ve, Ve) C2. 

In the above clauses, C1 and C2 represent unspecified clause bodies. Procedure cell/10 

can be translated into a don't-care procedure with mutually exclusive claues, as first 

indicated by R. Bahgat [2]. 

cell(I,J,H,V,L,R,Lett1,Right1,Lett2,Right2) :- H\==J 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- V\==I 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- L\==I 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- R\==I 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- V\==L 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) :- L\==R 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,Left1,Right1,Left2,Right2) R\==V 
Left1=Right1, Left2=Right2, C2. 

cell(I,J,H,V,L,R,begin,end,Left,Right):­
H=J,V=I,L=I,R=I,Left=begin,Right=end, C1. 

cell(I,J,H,V,L,R,Left,Right,begin,end):-
H=J,V=I,L=I,R=I,Left=begin,Right=end, C1. 

Note the additional body goals added to force unification once the procedure has been 

found to be determinate. Although the number of clauses has increased as a function 

of the number of constraints, the resulting clauses each have only a small number of 

constraints. 

Table 1 gives measurements of compiled benchmark procedures (see Appendix A 

for source listings and Appendix B for the actual code graphs). The size measurement 

is written as number of tests and complex code leaves + number of continuations (i.e., 

fail, suspend, go, and commit). Three program sizes are given. Kliger represents 

the code size if compiled as a don't-care procedure. Such a program does not have 

the semantics of the next two don't-know versions, and is given simply as a baseline. 

Bahgat represents the code size if first hand-translated into a don't-care procedure 

with equivalent don't-know semantics, and then compiled. K&T represents directly 

compiling the don't-know procedures with our method. 
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procedure # Kliger Bahgat K&T 

name clauses size size size 

delete/3 2 1+2=3 - 2+4=6 

f/2 2 3+4=7 4+6=10 3+4=7 

a/3 4 6+10=16 4+7=11 9+10=19 

cell/5 2 3+5=8 5+7=12 5+4=9 

cell/10 2 13+14=27 11+12=23 16+11=27 

omerge/3 4 4+7=11 4+7=11 6+10=16 

Table 1: Empirical Measurements of Code Size. 

Consider f /2 as a simple example. \Vhen converted into a don't-care procedure 

and then translated into a decision graph , there are four trivial code leaves , i.e. , simple 

commits. We count these as control transfers. Directly compiling f /2 as a don't­

know procedure gives only two code leaves. Code leaves in don't-know procedures 

are considered complex execute sequences that check the suspension stack bit vector, 

unless it can be proven at compile time that one of the vectors is zero. In addition , if 

committing, extra guards must be executed ( these guards have been implicitly added 

to the new don't-care clauses in the translated version). 

Table 1 indicates that compiling into don't-know semantics requires a larger tree 

than for don't-care semantics because of the added power of rapidly detecting deter­

minism and forcing execution of unbound constraints. Depending on the procedure, 

the relative code size varies between our method and hand-translation. Although these 

examples are rather small, they allow us to determine the causes of why our method 

sometimes does not achieve the size of the hand-translation: 

• In some cases, hand-translation into don 't-care equivalents removes the need for 

some constraints. The effective action of testing for these constraints is done by 

body failure in the don't-care equivalent. An example of this are cell_/5 clauses 

3 and 4 given in the Appendix. 

• In direct-compilation of don't-know procedures, some code leaves are complex 

executes, whereas in don't-care procedures, all code leaves are trivial commits. 

• The method outlined generates "neither" branches causing "fast failure," whereas 

in Kliger's method failure is as slow as possible, propagating through all otherwise 

branches until the initial suspend continuation is reached. Thus our faster failure 

has a cost in additional nodes. 

To our knowledge, no algorithm has yet been found for Bahgat's method of don't­

know into don't-care translation [2]. The complexity of this hand-translation increases 
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dramatically with the number of clauses. We feel comfortable that our algorithm has 

approximately the same space complexity, at low compile-time cost. 

7 Conclusions 

This paper introduced a decision-graph construction algorithm for code generation of 

determinacy testing in nondeterminate flat concurrent logic programming languages. 

The code generated is complete over unification, i.e., determinacy is guaranteed to be 

detected no matter how complex the data structures and shared variables are. Com­

pleteness over other domains, such as arithmetic comparison, is the responsibility of a 

component of the system, the indexer, for which an algorithm has not yet been specified. 

Our algorithm is formulated in the context of committed-choice compilation tech­

niques given by Kliger and Shapiro [8]. For simple procedures, the two are shown to 

have comparable code-size complexity. Thus we have shown that complete determinacy 

testing over unification need not significantly increase code size. For more complex pro­

cedures the don't-know code size can be significantly larger than the don't-care code 

size. This size increase is due to all the interacting constraints that must be checked to 

detect determinacy. Comparing our algorithm to an elegant method of hand-translation 

from don't-know into don't-care code [2], the code size complexity is more equal. Our 

algorithm is however more general because it does not require that the clauses be 

mutually exclusive. 
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A Benchmarks: Source Code 

:- dontknow omerge/3, delete/3, a/3, f/2, cell/5. 

omerge ( D , Y, Z) : - C1. ¼ don't-care equivalent is same! 
omerge(X,[] ,Z) :- C2. 
omerge([XIXs],[YIYs],Z) X <= Y C3. 
omerge([XIXs],[YIYs],Z) ·- X > Y C4 . 

delete(X, [YIYs], Z) 
delete(X, [YIYs], Z) 

CL 
C2 . 

¼ no don't-care equivalent exists 

a(1,1,1) CL 
a(2,1,1) C2. 
a(2,2,1) C3. 
a(2,2,2) C4. 

a_(l,Y,Z) Y=l, Z=l, Cl. ¼ don't-care equivalent to a/3 
a_(2,1,Z) Z=1, C2. 
a_(X,2,1) X=1, C3. 
a_(X,Y,2) X=2, Y=2, C4. 

f(X,X) CL 
f(a,b) C2. 

f_(X,X) CL ¼ don't-care equivalent to f/2 
f_(X,Y) ·- X \== a X=Y, CL 
f_(X,Y) y \== b X=Y, CL 
f_(a,b) C2. 

cell(on, Val, Val,_, _) :- C1. 
cell(off, _, _, Chain, Chain) C2. 

cell_(on,A,B,_,_) :- A=B, C1. ¼ don't-care equivalent to cell/5 
cell_(off,_,_,C,D) :- C=D, C2. 
cell_(X,A,B,C,D) ·- C \== D I X=on, A=B, C1. 
cell_(X,A,B,C,D) :- A\== B I X=off, C=D, C2. 

23 



B Benchmarks: Code Graphs 

This appendix shows the actual code graphs for the benchmarks , listed in Appendix A. 

As Baghat 's don 't care equivalent of omerge/3 is the same as Kliger 's definition , there 

is only a single don 't-care graph for omerge/3. 

For all other benchmarks , we give the don't-care graph according to Kliger , the 

don 't-know/ care graph, using Bahgat 's translation method, and the don't-know graph , 

using our algorithm. 
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Don't-know procedure: 

delete(X,[YIYs],Z) :- C1. 
delete(X,[YIYs],Z) :- C2. 

{<C1 ,{22=[24125],23=25}>,<C2,{22=[24125]}>} 
val(Z2) 

{<C1 ,{23=25}>,<C2,{}>} 
23=25 

{} 
fail 

{<C1 ,{}> ,<C2,{}>} 
go(T1) 

{<C1 ,{}>,<C2,{}>} 
T1: suspend 

{<C2,{}>} {<C1 ,{}>,<C2,{}>} 
commit(C2) go(T1) 

final don't-know graph: 
delete(X,[YIYs],Z) :- C1. 
delete(X,[YIYs],Z) :- C2. 

Don't-care procedure: 

delete(X,[YIYs],Z) :- C1. 
delete(X,[YIYs],Z) :- C2. 

val(22) 

23=25 fa i I suspend 

commit(C2) suspend 

{<C1 ,{21 =[24125],23=25}>,<C2,{Z2=[Z4IZ5]}>} 
22='.'/2 

{<C1 ,{23=25}>,<C2,{}>} 
commit(C2) 

suspend 



don't care procedure: 

f(X,X} :- C1. 
f(a,b} :- C2. 

{<C1 ,{Z1 =Z2}>,<C2,{Z1 =a,22=b}>} 

{<C2,{Z2=b}>} 

~ 
y"' 

{<C2,{}>} {} 

V 21) 

commit(C2) go(T2) 

final don't-care graph: 
f(X,X) :- C1. 
f(a,b} :- C2. 

commit(C2) go(T2) 

val(Z1) 

{<C1 ,{Z1 =22}>} 

~ 
{<C1,{}>} {} 
commit(C1) suspend 

commit(C1) suspend 



don't-know/care procedure: 

f_(X,X) :- C1. 
f_(X,Y) :- X =\= a I X=Y, C1. 
f_(X,Y) :- Y =\= b I X=Y, C1. 
f_(a,b) :- C2. 

{<C4',{Z2=b}>} 
Z2=b 

C1' 
C2' 
C3' 
C4' 

{<C1 ',{Z1 =Z2}>, 
<C2',{Z1 =\=a}>, 
<C3',{Z2=\=b}>, 
<C4',{Z1 =a,Z2=b}>} 

Z1=a 

no 

{<C2',{}>} 
commit(C2') 

{<C1 ',{Z1 =Z2}>, 
<C3',{Z2=\=b}>} 

T4: Z2=b 

commit(C4') go(T1) T1: go(T4) 
{<C3',{}>} 
commit(C3') 

go(T2) T2:{<C1 ',{Z1 =Z2}>} 
Z1=Z2 

~ 
{<C1 ',{}>} go(T3) T3: suspend 
commit(C1 ') 

final don't-know/care graph: 

Z2 = b commit(C2') T4: Z2 = b 

commit(C4') go(T4) commit(C3') 

y~ 

commit(C1 ') suspend 



don't-know procedure: 
f(X,X) :- C1. 
f(a,b) :- C2. 

{<C1 ,{Z1 =Z2}>, <C2,{Z1 =a,Z2=b}>} 
val(Z1) 

{<C1 ,{Z1 =Z2}>,<C2,{Z2=b}>} 
T1 :val(Z2) 

{ <C1 ,{Z1 =Z2}>} 
go(TS); 

{<C1 ,{Z1 =Z2}>, <C2,{Z2=b}>} 
go(T1 ); 

b 

{ <C1 ,{Z1 =Z2}>,<C2,{}>} {<C1 ,{Z1 =Z2}>} 
TS: Z1=Z2; 

commit(C1 ); 

{ <C 1, {21 =22}>,<C2,{}>} 
go(T2); T2: Z1=Z2) 

{<C1 ,{}>,<C2,{}>} 
suspend; 

final don't-know graph: 
f(X,X) :- C1. 
f(a,b) :- C2. 

{<C2,{}>} 
commit(C2); 

go\ 
TS: Z1=Z2; 
commit(C1 ); 

commit(C2); 

{<C1 ,{}>,<C2,{}>} 
suspend; 

Z1=Z2 

suspend; 



Don't-care procedure: 

a(1,1,1) C1. 
a(2, 1 , 1) C2. 
a(2,2, 1) · C3. 
a(2,2,2) C4. 

{<C1 ,{Z2=1,Z3=1 }>} 
Z2=1 Y8A? 

{<C1 ,{Z1 =1,Z2=1,Z3=1 }>, 
<C2,{Z1 =2,Z2=1,Z3=1 }>, 
<C3,{Z1 =2,Z2=2,Z3=1 }>, 
<C4,{Z1 =2,Z2=2,Z3=2}>} 

val 1) 

{ <C2,{Z2=1,Z3=1 }>, 
<C3,{Z2=2,Z3=1 }>, 
<C4, {Z2=2,Z3=2} >} 

val(Z2) 

{<C1 ,{Z3=1 }>} suspend 
Z3=1 

~ 
{<C1 ,{}>} suspend 
commit(C1) 

{<C2,{Z3=1 }>} 
Z3=1 

7'\ 
{<C3,{Z3=1 }>, 
<C4,{Z3=2}>} 

val(Z3) 

{} 
suspend 

{ } 
suspend 

{<C2,{}>} 
commit(C2) 

suspend {<C3,{}>} {<C4,{}>} suspend 
commit(C3) commit(C4) 

final don't-care graph: 

val(Z1) 

y~ 

~ sus~nd ~ suspend 

commit(C1) suspend commit(C2) suspend commit(C3) commit(C4) suspend 



Don't-know/care procedure: 

a_{1,Y,2) :- Y=1, 2=1, C1. C1' 
a_{2, 1,2) :- 2=1, C2. C2' 
a_{X,2, 1) :- X=1, C3. C3' 
a_{X,Y,2) :- X=2, Y=2, C4. C4' 

{<C1 ',{Z1 =1 }>,<C2',{Z1 =2,Z2=1 }>, 
<C3',{Z2=2,Z3=1 }>,<C4',{Z3=2}>} 

val(Z1) 

{<C1 ',{}>} 
commit(C1 ') 

{<C2',{Z2=1 }>} 
22=1 yeA? 

{<C3',{Z2=2,Z3=1 }>,<C4,{Z3=2}>} 
T1: val(Z3) 

~ 
{<C2',{}>} go(T1) {<C3',{Z2=2}>} {<C4',{}>} suspend 
commit(C2') Z2=2 commit(C4') 

~ 
{<C3',{}>} suspend 
commit(C3') 

final don't-know/care graph: 

val(Z1) 

commit(C1 ') Z2=1 yeA? T1: val(Z3) 

~ 
commit(C2') go(T1) 22=2 commit(C4') suspend 

~ 
commit(C3') suspend 



Don't-know procedure: 

a(1,1,1) C1. 
a(2, 1, 1) ·- C2. 
a(2,2, 1) · C3. 
a(2,2,2) · C4. 

{<C1 ,{Z2=1,Z3=1 }>} 
Z2=1; Z3=1; commit(C1 ); 

{<C1 ,{Z1 =1,Z2=1,Z3=1 }>, 
<C2,{Z1 =2,Z2=1,Z3=1 }>, 
<C3,{Z1 =2,Z2=2,Z3=1 }>, 
<C4,{Z1 =2,Z2=2,Z3=2}>} 

val(Z1) 

2 

{ <C2,{Z2=1,Z3=1 }>, 
<C3,{Z2=2,Z3=1 }>, 
<C4,{Z2=2,Z3=2}>} 

T2: val(Z2) 

fail 

{<C2,{Z3=1}>} {<C3,{Z3=1}>, 
execute(C2,{Z3=1}) <C4,{Z3=2}>} 

fail {<C2,{Z3=1}>, 
<C3,{Z3=1 }>, 
<C4,{Z3=2}>} 

va~3) 

T4: val(Z3) 

{<C3,{}>} {<C4,{}>} fail 
execute(C3,{}) execute(C4,{}) 

I final don't-know graph: 

Z2=1; Z3=1; 
commit(C1 ); 

execute(C2,{Z3=1 }) T4: val(Z3) 

fail 

{<C3,{}>, 
<C4,{}>} 
suspend 

val(Z1) 

T2: val(Z2) 

fail 

suspend 

y "? 
{<C2,{}>, go(T4) 
<C3,{}>} 
suspend 

fail 

val(Z3) A? 
suspend go(T4) 

{<C1 ,{Z2=1,Z3=1}>, 
<C2,{Z2=1,Z3=1 }>, 
<C3,{Z2=2,Z3=1 }>, 
<C4, {Z2=2,Z3=2}>} 

1 "nn ! .. ~ 
{<C1 ,{Z3=1 }> , go(T2) 

<C2,{Z3=1 }>} 
val Z3) 

{<C1,{}>, fail {<C1,{}>, 
<C2,{}>} <C2,{}>} 
suspend suspend 

~ 
Z3=1 go(T2) 

no~ 

fail suspend 



Don't-care procedure: 

cell(on,X,X,_,_) :- C1. 
cell(off ,_,_,X,X) :- C2. 

{ <C1 ,{Z1 =On,Z2=Z3}>,<C2,{Z1 =Off,Z4=Z5}>} 
val(Z1) 

{<C1 ,{22=23}>} {<C2,{Z4=Z5}>} suspend 
22=Z3 Z4=Z5 

y~ YA 
{<C1 ,{}>} suspend {<C2,{}>} suspend 
commit(C1) commit(C2) 

Don't-know/care procedure: 

cell_(on,A,B,_,_) :- A=B, C1. C1' 
cell_(off,_,_,C,D) :- C=D, C2. C2' 
cell_(X,A,B,C,D) :- C=\=D I X=on, A=B, C1. C3' 
cell_(X,A,B,C,D) :- A=\=B I X=off, C=D, C2. C4' 

{<C1 ',{Z2=23}>} 
22=23 yA? 

{<C1 ',{Z1 =on,Z2=23}>, 
<C2',{Z1 =Off,Z4=Z5}>, 
<C3',{Z4=\=25}>, 
<C4',{22=\=Z3}>} 

val(Z1) 

{<C2',{24=25}>} 
22=23 yl\? 

{ <C3', {Z4=\=25}>, 
<C4',{Z2=\=23}>} 

T1:/'t~5-
ye/ \? 

commit(C 1 ') go(T1) · commit(C2') go(T1) commit(C3') { <C4', {Z2=\=Z3}>} 
22=\=23 

ve/'( 
commit( C4 ') suspend 



Don't-know procedure: 

cell(on,X,X,_,_) :- C1. 
cell(off ,_,_,X,X) :- C2. 

{<C1 ,{21 =On,22=23}>,<C2,{21 =Off,24=25}>} 
val(21) 

{ <C 1,{Z2=Z3}>} 
Z2=Z3; 
commit(C1 ); 

{ <C2,{Z4=Z5}>} fai I 
T2: execute(C2,{Z4=Z5}) 

{<C1 ,{Z2=Z3}>,<C2,{Z4=Z5}>} 
Z2=Z3 

{<C1 ,{}>,<C2,{Z4=Z5}>} {<C2,{Z4=Z5}>} {<C1 ,{}>,<C2,{Z4=Z5}>} 

{<C1 ,{}>,<C2,{}>} 
suspend 

final don't-know graph: 

cell(on,X,X,_,_) :- C1. 
cell(off,_,_,X,X) :- C2. 

TS: Z4=Z5 go{T2) go(T5) 

{<C1 ,{}> } 
execute(C1 ,{}) 

val(21) 

{<C1 ,{}>,<C2,{}>} 
suspend 

A? 
go(T2) 24=25 

~ 
execute(C1 ,{}) suspend 



cell/1 O don't-care procedure: 

{<C1 ,{21 =24,24=25,25=26,Z2=23,Z4=Z6, 
21 =26,25=21 ,Z7=a,28=b,29=a,Z1 O=b}>, 

<C2,{27=28,29=210}>} 
27=28 

~ 
29=210 {<C1 ,{21 =24,24=25,25=26,22=23,24=26, 

yes ~ ? ? 21 =26,25~Z1,Z7=a,28=b,Z9=a,Z1 O=b}>} 
/ "- T1. Z1=Z4 

commit(C2) go(T1) ~s A. ? ? 

Y/ ' Z4=Z5 suspend 

y~ 

Z5=Z6 suspend 

y~ 

22=23 suspend 

y~ 

Z4=Z6 suspend 

y~ . 
21=26 suspend ?As 

suspend 25=21 

su:n:a 
?As 

suspend Z8=b ?As 
suspend 29=a ?As 

suspend 210=b ?As 
suspend commit(C1) 



cell/1 O don't-know/care procedure: 

{<C1 ,{22=\=23}>,<C2,{21 =\=24}>,<C3,{25=\=21 }>, 
<C4,{26=\=21 }> ,<C5,{24=\=25}>,<C6,{25=\=26}>, 
<C7,{24=\=26}>,<C8,{27=a,28=b}>,<C9,{29=a,21 O=b}>} 

22=\=23 

~ 
commit(C1 )') 21 =\=24 

~ 
commit(C2') 25=\=21 

y~ 

commit(C3') 26=\=21 

y~ 

commit(C4') Z4=\=Z5 

~s 

?'As commit(C5') 

24=\=26 commit(C6') 

~s 

Z7=a commit(C7') 

Z8=b T1:Z9=a 

~ 
commit(C8') go(T1) ~ 210=a suspend 

~ 
commit(C9') suspend 



cell/10 don't-know procedure: 

{<C1 ,{21 =24,24=25,25=26,22=23,24=26 , 
21 =26,Z5=Z1 ,Z7=a,Z8=b,Z9=a,Z1 O=b}>, 

<C2,{27=Z8,29=Z10}>} 
Z7=a 

~ 
28=b go(T1) 

~ 
29=a go(T1) 

~ 
Z1 O=b go(T1) 

~ 
Z1 =Z4 go(T1) 

~ 
Z4=Z5 go(T1) 

~ 
25=Z6 go(T1) 

~ 
Z2=Z3 go(T1 ) 

~ 
Z4=26 go(T1 ) 

~ 
go(T1) 25=21 

~ 
go(T1 ) Z1 =26 

~ 
T1: execute(C2, Z7=Z8 

{Z7=Z8,Z9=Z10}) ~ 

execute(C1 ,{}) 29=Z10 

~ 
execute(C1 ,{}) suspend 



Don't-care procedure: 

omerge([XIXs],[YIYs],Z) :- X <= Y I C1. 
omerge([XIXs],[YIYs],Z) :- X> Y I C2. 
omerge(D,Y,Z) :- C3. 
omerge(X,[],Z) :- C4. 

{<C1 ,{Z1 =[Z41Z5],Z2=[Z61Z7],Z4<=Z6}>, 
<C2,{Z1 =[Z4!Z5],Z2=[Z61Z7],Z4>Z6}>, 
<C3,{Z1 =[]}>, <C4,{Z2=[]}>} 

{<C1 ,{Z2=[Z61Z7],Z4<=Z6}>, 
<C2,{Z2=[Z61Z7],Z4>Z6}>} 

va 2) 

{<C1 ,{Z4<=Z6}>, T1: go(T2) 
<C2,{Z4>Z6}>} 

Z4>Z6 

~ 
{<C2,{}>} {<C1,{}>} go(T1) 
commit(C2) commit(C1) 

I final don't-care graph: 

val(Z1) 

{<C3,{}>} 
commit(C3) 

{<C4,{Z2=[]}>} 

C A=:] 
ye/ \? 

{<C4,{}>} suspend 
commit(C4) 

val(Z2) commit(C3) 

~ 
Z4>Z6 T1 : go(T2) 

y~ 

commit(C4) suspend 

commit(C2) commit(C1) go(T1) 



Don't-know procedure: 

omerge([XIXs],[YIYs],Z) :- X <= Y I C1. 
omerge([XIXs],[YIYs],Z) :- X>Y I C2. 
omerge([],Y,Z) :- C3. 
omerge(X,O,Z) :- C4. 

{<C1 ,{Z1 =[Z4IZ5],Z2=[Z6IZ7],Z4<=Z6}>, 
<C2, {Z 1 =[Z4 IZ5] ,Z2=[Z6 IZ7] ,Z4>Z6}>, 
<C3,{Z1 =[]}>, <C4,{Z2=[]}>} 

{<C3,{}>, 
<C4,{Z2=[]}>} 
T1: val(Z2) 

{ <C3, {}>, { <C3,{}>} { <g:,{}>, 
<C4,{}>} execute(C3,{}) < ,{}>} 
suspend suspend 

val(Z1) 

{<C1 ,{Z2=[Z6IZ7],Z4<=Z6}>, 
<C2,{Z2=[Z6IZ7],Z4>Z6}>, 
<C4,{Z2=[]}>} 

val(Z2) 

{<C4,{Z2=[]}>} 
Z2=[]; 
commit(C4); 

{<C1 ,{Z4<=Z6}>, {<C4,{}>} fail {<C1 ,{}>, 
<C2,{}>, 
<C4,{}>} 
suspend 

<C2,{Z4>Z6}>} commit(C4) 
Z4>Z6 

{<C2,{}>} {<C1 ,{}>} {<C1 ,{}>, 
commit(C2) commit(C1) <C2,{}>} 

suspend 

I final don't-know graph: 

val(Z1) 

~ 
execute(C3,{}) suspend 

commit(C2) 

val(Z2) Z2=[]; 
commit(C4); 

Z4>Z6 commit(C4) fail 

commit(C1) suspend 

{<C1 ,{Z2=[Z6jZ7]}>, 
<C2,{Z2=[Z6IZ7]}>, 
<C3,{}>, <C4,{Z2=[]}>} 

' -'~? 

{<C1,{}>, go(T1) 
<C2,{}>} 
suspend 

val(Z2) 

'.'!~? 

suspend go(T1) 

suspend 




