
Mapping Divide-and-Conquer 
Algorithms to 

Parallel Architectures 

V. Lo, S. V. Rajopadhye, 
S. Gupta, 

D. Keldsen, 
M. Mohamed, 

J. Telle 
CIS-TR-89-19 

January 19, 1990 

Abstract 

In this paper, we identify the binomial tree as an ideal computation 
structure for parallel divide-and-conquer algorithms. We show its supe­
riority to the classic full binary tree structure with respect to speedup 
and efficiency. We also present elegant and efficient algorithms for map­
ping the binomial tree to two interconnection networks commonly used in 
multicomputers, namely the hypercube and the two-dimensional mesh. 
Our mappings are optimal with respect to both average dilation and 
link contention. We discuss the practical implications of these results for 
message-passing architectures using store-and-forward routing vs. those 
using wormhole routing. 

Department of Computer and Information Science 
University of Oregon 



Mapping Divide-and-Conquer Algorithms 
to Parallel Architectures* 

V. Lo, S. V. Rajopadhye, 
S. Gupta, 

D. Keldsen, 
M. Mohamed, 

J. Telle 
Dept. of Computer Science 

University of Oregon 
Eugene, OR 97403-1202 

lo@cs.uoregon.edu 

October 20, 1989 

Abstract 

In this paper, we identify the binomial tree as an ideal computation structure for parallel 
divide-and-conquer algorithms. \Ve show its superiority to the classic full binary tree structure 
with respect to speedup and efficiency. We also present elegant and efficient algorithms for 
mapping the binomial tree to two interconnection networks commonly used in multicomputers, 
namely the hypercube and the two-dim~nsional mesh. Our mappings are optimal with respect to 
both average dilation and link contention. We discuss the practical implications of these results 
for message-passing architectures using store-and-forward routing vs. those using wormhole 
routing. 

•This research was supported by a grant from the Oregon Advanced Computing Institute (OACIS). OACIS is a 
consortium of academic, industrial, and government agencies in the state of Oregon. 



1 Introduction 

The problem of mapping parallel algorithms to parallel architectures involves the assignment of 
tasks in the parallel computation to processors and the routing of messages through the underlying 
communication network. This problem has been found to be NP-hard for a variety of models of 
parallel computations and for a spectrum of optimality criteria, including minimization of total 
interprocessor communication, minimization of response time, and several load balancing metrics. 
As a result, research in the area of mapping algorithms has focused on the design of subopti­
mal heuristics and the development of efficient optimal solutions for restricted types of parallel 
computations. 

In this paper, we identify the binomial tree as an ideal computation structure for parallel divide­
and-conquer algorithms. We show its superiority to the classic full binary tree structure with respect 
to speedup and efficiency. We also present elegant and efficient algorithms for mapping the binomial 
tree to two interconnection networks commonly used in multicomputers, namely the hypercube and 
the two-dimensional mesh. 

This work is part of a larger research project called OREGAMI [LRG+] whose purpose is the 
design of software tools for mapping parallel algorithms to parallel architectures. OREGAMI in­
cludes a description language for specifying the static and dynamic communication characteristics 
of regular parallel computations, a library of mapping algorithms for regular and arbitrary compu­
tations to a spectrum of interconnection networks, and an interactive graphics tool for visualization 
and evaluation of mappings. The mappings described in this paper form part of the OREGAMI 
library of mapping algorithms. 

1.1 Our Model of Parallel Algorithms and Parallel Architectures 

We view a parallel algorithm to be a network of communicating sequential processes; these processes 
are persistent throughout the lifetime of the computation, are large grained, and are executed on one 
processor of a multicomputer throughout the computation. Thus, we model a parallel computation 
as a graph Ge = (Ve, Ee) where the nodes Ve represent tasks and an edge between nodes A and 
B represents a communication (possibly bi-directional) between A and B. Note that this is the 
static task graph model proposed by Stone [Sto77] and Bokhari [Bok87] and not the precedence­
constrained (DAG) model. Many computation graphs have discernable structures or patterns -
computation graphs in the shape of rings, chordal-rings, trees etc. can be found in the literature. 

The parallel architectures that we consider are message-passing multicomputers. Multicomput­
ers are a network of processors, each having a local memory and I/0 facilities for sending and 
receiving messages to and from other processors in the network; each processor has access only to 
its local memory and there is no global memory. The topology of the interconnection network may 
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be arbitrary, but usually is some well-known topology such as a mesh, hypercube, cube-connected­
cycles etc. . Examples of commercially available multicomputers are the iPSC-2 and NCUBE 
hypercubes and Transputer networks from Inmos and Cogent. We also model the multicomputer 
architecture as a graph GA = (VA, EA), where the nodes VA represent processors and the edges EA 
correspond to the processor-to-processor connections of the underlying interconnection network. 

1.2 The Mapping Problem 

Mapping involves two decisions: how the tasks of the computation graph will be allocated to the 
processors of the multicomputer and how the communication edges will be laid out along the links 
of the processors. In this paper, we assume that the number of available processors is greater than 
or equal to the number of tasks so that each task can be assigned to a unique processor. (When 
this is not the case, the graph can be contracted so that a node of the contracted graph represents 
a number of nodes of the original graph. Techniques for contraction can be found in the literature 
([FF82], [BS87], (Lo88], [LRG+] and will not be described here). Clearly, the mapping chosen will 
affect the overall execution time of the program and thus the speedup attainable by the parallel 
algorithm. A "good" mapping should achieve load balancing among the processors and should 
minimize the overhead of interprocessor communication. 

More formally, a mapping is specified by two functions map-node and map-edge, which can be 
described as follows 

map-node: Ve-+ VA 
map-edge: Ee-+ PathsA 

under the constraint that 

where 

map-edge(< a, b >E Ee) is a path from map-node(a) to map-node(b) in GA 

computation graph Ge=< Ve,Ee >, 
architecture graph GA=< VA,EA >, 
PathsA is the set of all possible paths in GA 

In Section 2 of this paper we describe the conventional computation graph for divide-and­
conquer algorithms, the complete binary tree, and identify a more suitable computation graph, 
the binomial tree. In section 3 we describe mappings of this graph onto the hypercube and the 
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2-climensional mesh. In section 4 we evaluate our mappings with respect to average dilation and 
link contention, and we discuss the practical implications of these results for message-passing ar­
chitectures using store-and-forward routing vs. those using wormhole routing. Section 5 contains 
conclusions and areas of ongoing and future work. 

2 Tree Structures for Parallel Divide-and-Conquer Algorithms 

2.1 Conventional Divide-and-Conquer 

The computation graph associated with many parallel divide-and-conquer algorithms is the com­
plete binary tree. This is true when the algorithm is designed as follows: 

Step 1 Give the root of the binary tree the problem to be solved 

Step 2 Let the root divide the problem into two sub-problems and pass them on to its two children 
to solve 

Step 3 Continue Step 2 recursively until the problem has been broken up sufficiently to exploit a 
desired degree of parallelism or to easily-solved based cases 

Step 4 Let the leaves of the binary tree solve the subproblems they hold and pass on the results 
to their parents 

Step 5 Let the parents ( which are the interior nodes) combine the results received from their 
children and pass on this result to their parents 

Step 6 Continue Step 5 recursively till the values reach the root 

The example shown in Figure 1 illustrates this process. 

Example: Mergesort the list ( 4 7 5 6 2 10 20 27 1 3 32 8 9 15 12 67 ) using a complete binary 
tree as the computation graph. 

Although this implementation of a parallel divide-and-conquer algorithm is intuitive, it is naive 
and inefficient. The inefficiencies are both in terms of the number of processors used and processor 
utilization. (Because we assume one process per processor, the two words are used interchangeably.) 

• If the input is of size n and the leaf computation in step 4 involves the trivial sorting of 
2-element lists, then the total number of nodes in the binary tree must be n - 1. As we shall 
see, this is many more processors than necessary. 
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( 4,7) (5,6) (2,10) (20,27) (1,3) (32,8) (9,15) (12,67) 

Figure 1: Divide-and-Conquer Using a Binary Tree 

• The processor utilization in the binary tree is poor since the interior nodes are idle while the 
leaves do the computation - the interior nodes only take part in the dividing and merging 
of data. 

In the following section we will describe a computation graph that is free from both the above 
dis ad vantages. 

2.2 Binomial Trees for Divide-and-Conquer 

The binomial tree is a combinatorial structure defined inductively as shown in Figure 2 [Knu 73]. 

A canonical labeling of the binomial tree is to label the tree in post-order starting at zero and 
using the binary representation of integers. Some of the properties of the binomial tree ( Bp) that 
are relevant to this paper are 

• Bp has 2P nodes 

• Bp has 2P - 1 edges 

• the depth (max. no. of edges from the root to a leaf) of Bp is p 

• only the root Bp of has p children, and only one of its children has p - l children 

We propose the binomial tree as a better alternative to the complete binary tree as the compu­
tation graph for divide-and-conquer algorithms. To understand how this can be done, consider the 
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Bo 

• 

Figure 2: Binomial Tree and Its Canonical Labelling 

following changes to Steps 2, 3, 4 and 5 of the six steps described in Section 2. 

Step 2 Let the root divide the problem into two sub-problems and pass on one of them to a child 
that has not received any work yet, and keep the other half to itself 

Step 3 Let every node perform Step 2 recursively until the problem has been broken up sufficiently 
to exploit the desired degree of parallelism 

Step 4 Every node does the computation assigned to it 

Step 5 The results are passed up the tree and merged in the reverse of the order in which the 
sub-problems were passed down the tree 

Steps 1 and 6 are as before. The previous mergesort example is used to illustrate this process, as 
shown in Figure 3. 

We must now convince ourselves that the procedure described above, indeed results in a binomial 
tree in the general case. In the above procedure we start with a single node and each application 
of Step 2 adds a new (leaf) child to every node of the existing tree. Since we start with a single 
node, which is the binomial tree Bo, we now have to prove the following 

Remark 1: If a leaf node is appended to every node in a binomial tree Bn, the resulting 
graph is the binomial tree Bn+l with the root of Bn as the root of Bn+l, V n E N. 

Proof: We will use an inductive proof. As our base case we take the binomial tree Bo 
and add a leaf to every node. Let the graph thus produced be A. 
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( 4 7 5 6 2 10 20 27) 

( 4 7 5 6 2 10 20 2~1 3 32 8 9 15 12 67) ~ 
~ 3 32 8 9 15 12 67) 

(20 27) 

l (4 7 5 6) 

(2 10 20 27) 

(1 3 32 8) 

Figure 3: Mergesort Using the Binomial Tree 

7 



It is clear that A is the binomial tree B1 and thus our assertion holds for the base case. 
Let us now suppose that the assertion holds for all binomial trees of degree ~ m - 1, 
where m EN. We now have to prove the assertion for the binomial tree Bm . 

By the definition of a binomial tree, Bm consists of two binomial trees Bm-1 connected 
root to root. Let the roots of the subtree be a and b. Let us now add a leaf to every 
node of Bm. By our inductive assumption, this will cause the two trees Bm-1 to become 
binomial trees Bm, with roots a and b. Also, since no edges were removed from the 
original tree, the nodes a and b are still connected. Thus the new graph consists of two 
binomial trees Bm connected root to root and hence must be a binomial tree Bm+l. 
Thus the assertion holds for binomial trees of degree m. □ 

It is quite clear that the "keep half, give away half" approach that is followed by each process (in 
contrast to giving away both halves) results in each process doing the same amount of computation 
(sorting in case of the example). Of course, the leaves do not take part in the conquer (merge) part, 
but that was the case even for the binary tree. Thus it is obvious intuitively that the binomial tree 
is a more efficient computation graph. More precisely, 

• If the input is of size n and we wish the leaf computation in step 4 to be the trivial sorting of 
2-element lists, then the number of nodes (processes) in the binomial tree must be n/2. This 
is about half the size of the corresponding complete binary tree which is of size n - 1. 

• In the binomial tree, once a process receives work to do, it never idles until it is completely 
finished. The pattern of busy and idle times for the conventional divide-and-conquer vs. that 
for the binomial tree divide-and-conquer are shown in the Gantt charts in Figure 4. 

From the above observations, we make the following claims about the use of the binomial tree 
for divide-and-conquer parallel algorithms. Let Start A denote the time an algorithm A starts 
execution and let FinishA denote the time an algorithm A finishes execution. The completion 
time of algorithm A is defined as CA = Finish A - Start A. Also let dnc-binary and dnc-binomial 
represent parallel divide-and-conquer algorithms structured as the full binary tree and the binomial 
tree, respectively. 

Result 1: Completion time Cdnc-binomial ~ Cdnc-binary• 

Proof: We give here an informal visual proof using the Gantt chart representation 
of the execution sequence of the two divide-and-conquer algorithms shown in Figure 
4. The Gantt charts simply lays out the sequence of events along the time line. The 
completion time of the algorithm is the time at which the last process completes ex­
ecution and is marked on the charts. As can be seen by comparing the two charts, 
the binomial tree version of the parallel divide-and-conquer algorithm is faster because 
it only sends( receives) data to( from) one child(parent) after each divide( merge) stage 
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1 S2 S3 R2 M 
2 S4 SS R4 RS M S1 
3 S6 S7 R6 R7 M S1 
4 SS S9 RS R9 M S2 
5 S10 S11 R10 R11 M S2 
6 S12 S13 R12 R13 M S3 
7 S14 S15 R14 R15 M S3 
8 C S4 
9 C S4 
1 0 C SS 
1 1 C S5 
1 2 C S6 
1 3 C S6 
1 4 C S7 
1 5 C S7 

2 0~3 
4~ 'us · 6~ 'u7 

l\l\1\6\ 
8 9 10 11 12 13 14 15 

0 S1 S2 S4 C R4 M R2 M RO M 
1 RO S3 S5 C R5 M R3 M so 
2 RO S6 C R6 M so 
3 R3 S7 C R7 M S1 
4 RO C so 
5 R1 C S1 
6 R2 C S2 
7 R3 C S3 

Figure 4: Gantt Charts for Divide and Conquer Algorithms 
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in the computation. We have assumed that when a parent node send portions of the 
computation to each of its two children in the full binary tree, the two sends must be 
serialized. This is true of current message-passing technologies and does not affect the 
correctness of the proof. If parallel multicast is possible, the completion times are at 
best equal. D 

Result 2: The efficiency Ednc-binomial c 2(n:l) * Ednc-binary• 

Proof: Let A - sequential be the fastest serial algorithm for an algorithm A, and let 
A - parallel be a parallel implementation of algorithm A . 
Recall that speedup s A = C A-•eguenttal and that 

CA-parallel 

ffi . E SA 
e ciency A = no. of processors used inA-parallel • 

From Result 1, we can see that 

S . . _ Cdnc-aeguenttal > Cdnc-•eguenttal S 
dnc-binomial - Cdnc-btnomtal _ Cdnc-binary = dnc-binary 

Since 

E Sdnc-btnomtal d E Sdnc-binary 
dnc-binomial = n/2 an dnc-binary = n-1 , 

Ednc-binomial * ( n/2) C Ednc-binary * ( n - 1) 

and we have the desired result. D 

3 Mapping Algorithms 

Below, we present algorithms for mapping the binomial tree onto the hypercube and the 2-
dimensional mesh. We assume that the number of processors is equal to the number of processes 
and thus that we assign exactly one process to each processor. A point to note is that this require­
ment is not difficult to meet for divide-and-conquer algorithms since we can divide a problem only 
as far as we want to, and thus can restrict the size of the computation graph to match the size of 
the target architecture. 

3.1 Mapping onto a Hypercube 

The first mapping, Mapping H, maps Bm to a hypercube of degree m . In the previous section we 
showed how to obtain Bm by attaching a leaf node to every node of Bm-I • We will now show that 
growing a binomial tree in this manner provides a mapping onto the hypecube. Let us start with 
the binomial tree of one node Bo and label it O in binary. As we grow B0 to B1 , B 1 to B2 and so 
on, we will use the following labeling scheme: 
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00 

000 100 

Figure 5: Mapping the Binomial Tree to the Hypercube 

bt-label: If a is a node in Bm-1 with label amam-1 ... ao and bis the leaf attached to a 
while growing Bm-1 to Bm, then in Bm, a has the label amam-1 ... aol while b has the 
label amam-1 ... ao0 

Obviously this scheme results in a labeling of Bm such that any two adjacent nodes have labels 
that differ in one bit. Also recall that Bm has 2m nodes. The canonical labeling scheme for the 
hypercube is similar: 

he-label: Nodes in the m-dimensional hypercube are labeled with the binary numbers 
from 0 to 2m. Two nodes are adjacent if their labels differ in exactly one bit position. 

Thus, our mapping consists of placing node a of Bm onto processor p of the hypercube iff a and 
p have the same label. Every edge of the binomial tree is mapped along the corresponding edge of 
the hypercube. Figure 5 illustrates the mapping for an 8-node binomial tree to the 3 - cube 

Mapping H: 

map - node(a) = p iff bt - label(a) = he - label(p) 

and 

map-edge(< a,b >) =< P1,P2 > iff map-node(a) = p1 and map-node(b) = p2 

We note in passing that the above labeling scheme results in a labeling that is identical to the 
canonical binomial tree labeling described earlier. Also, this mapping shows that the binomial tree 
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Bm can be a spanning tree of an m-cube. This mapping can be found in [Athas & Seitz] although 
it is not presented as a mapping, but as part of a program code. 

3.2 Mapping onto a 2-dimensional Square Mesh 

The second mapping algorithm, Mapping M, maps B2m to a 2m x 2m mesh. The mapping algorithm 
is recursive and is intuitively described as "flip" B2(m-l) mapping right and then flip the result 
down to achieve the B2m mapping". A more precise description follows . See Figure 6. 

• The base case is the (trivial) mapping of Bo onto a 1 X 1 mesh 

• The mapping of B2m for m ~ 0 is obtained in two-steps. First, the mapping of B2(m-l) to the 
2m-l x 2m-l mesh is reflected about a vertical axis to the right of the mesh, thus placing them 
in opposite halves of the 2m-l x 2m mesh. The roots are then connected along the shortest 
(straight-line) path, achieving an intermediate mapping of B2m-l to a 2m-l x 2m mesh. 
Next, the procedure is repeated by reflecting the intermediate mapping about a horizontal 
axis below the intermediate mesh, yielding the desired B2m mapping. The original B2(m-l) 

mapping thus remains in the upper left-hand corner of the mesh, the root of the intermediate 
mapping is in the upper right-hand corner and the root of B2m is in the lower right-hand 
corner. 

Algorithm Mis describe more precisely below: Let the nodes in the computation graph Ge be 
labeled according to the canonical labeling scheme for the binomial tree. Nodes in the square mesh 
are labeled (x, y) where x is the row number and y is the column number, assuming the node in 
the upper lefthand corner is labeled (1, 1 ). 

Mapping M: 

where 

• For Ge= Bo and GA= 1 x 1 mesh, map- nodeB0 (0) = (1, 1) 

• For Ge= Bm and GA= hm X Wm mesh, 

map - nodeBm(a) = map - nodeBm-i (a') if a= Oa' 

map- nodeBm(a) = (x, Wm-1 - y + 1) if a= la'and mis odd 

= (hm-1 - x + 1,y) if a= la' and mis even 
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m=l 
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int. 
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m=3 

Figure 6: Mapping the Binomial Tree to the Mesh 
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Also, for all edges < a, b >E Ve, if 

map-nodeBm(a) = (xl,yl), and 

map-nodeBm (b) = ( x2, y2), and 

xl ~ x2,yl ~ y2 

then 

map-edgeBm ( < a, b >) = {( x2, y2), ( x2, y2 + 1 ), ( x2, y2 + 2), 

... , (xl, yl - 1), (xl, yl)} if xl=x2 

= {(x2, y2), (x2 + 1, y2), (x2 + 2, y2), 

... (xl-1,yl),(xl,yl)} ifyl=y2 

4 Evaluation of Our Mapping Algorithms 

In this section, we evaluate our mappings with respect to the cost of inter-processor communication 
(IPC). The overhead of IPC can be minimized by mapping processes that communicate as close 
to each other as possible and by avoiding contention on the links of the interconnection network. 
Our discussion addresses both mathematical metrics and the practical performance implications 
for message-passing technologies such as store-and-forward and wormhole routing. 

4.1 Definition of Communication Metrics 

Below we define and discuss the metrics. 

Dilation: Dilation of an edge < a, b > E Ee is defined as 
the number of edges in the path P where map-edge(< a, b >) = P}. 

Ideally the dilation of every edge in Ve should be 1, but this is impossible to achieve in most cases. 
Two metrics that are commonly used to evaluate mappings in terms of IPC cost are maximum 
dilation* and average dilation. 

•some researchers call this simply the dilation of the mapping 
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Maximum Dilation: Maximum Dilation of a mapping of Ge to GA is defined by 
max{ d:d=dilation of < a, b >, < a, b >E Ee}} 

This metric is limited since it does not measure a mapping by the dilation of all edges but by only 
the worst one. A more realistic metric is average dilation. 

Average Dilation: Average Dilation of a mapping of Ge to GA is defined by 
I:eeEc dilation of e/l(Ecl) 

When a mapping has exactly one process per processor, the average dilation is at best 1. 

A mathematical definition for contention would be cumbersome for our discussion, so we use 
the intuitive definition below. 

Link Contention: Link contention occurs when two or more messages must be trans­
mitted on the same link simultaneously. 

4.2 Evaluating the Hypercube Mapping 

Result 3: The maximum dilation and the average dilation for Mapping H is 1 and 
therefore optimal with respect to average dilation. 

Result 4: Mapping H has no contention and is therefore optimal with respect to 
contention. 

Proofs: The mapping onto the hypercube described in Section 4.1 maps every edge of 
the binomial tree onto a distinct edge of the hypercube. Thus the dilation of every edge 
is 1 and thus the average dilation is also 1 and there is no contention. D 

4.3 Evaluating the Mesh Mapping 

Result 5: The maximum dilation for Mapping M which maps B 2m onto the 2m x 2m 
mesh is given by 

Max(m) = (2m - 1)/3 if mis even 

= (2m + 1)/3 if mis odd 
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Figure 7: Mapping of B2m to a 2m X 2m mesh 
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Proof: From Figure 7 it is evident that the maximum dilation of the mapping of B2m 

onto an h2m X W2m mesh is given by 

Max(m) = (2m-1 -1)-lvlax(m-l)+l 

= 2m-l - Max(m - 1) 

The result is obtained by solving the recurrence equation (2) See Appendix A. D 

Result 6: Avg(m) ~ 1.2 

(1) 

(2) 

Proof: From Figure 7, it is also obvious that the total dilation of the mapping (which 
we will denote by Tot(m)) is given by 

Tot(m) = 4Tot(m - 1) + 3Max(m) (3) 

Solving the recurrence equaton (3) (see Appendix B) we get 

Thus the average dilation is given by 

which can be shown to asymptotically approach 1.2. D 

Result 7: Mapping M has zero contention and is therefore optimal with respect to 
contention. 

Proof: The proof is by induction on the size of the binomial tree. 

• The base cases are the cases O ~ k ~ 2. In these binomial trees Mapping M assigns 
each edge of B2k to a distinct link in the 2k x 2k square mesh and therefore has zero 
contention. 

• Assume that our induction hypothesis holds for binomial trees of size B 2k, 0 ~ k ~ 
(m - 1). We must prove that there is no contention in Mapping M for B2m to the 
2m x 2m square mesh. By the construction procedure for Mapping M, the mapping of 
B2m consists of mapping four binomial trees BJ(m-l) through B~(m-l) to disjoint quad­
rants in the 2m x 2m mesh and connecting the roots of these four smaller trees along 
the shortest paths between them. Referring to the Gantt charts in Figure 4, we can see 
that the first message in the divide-and-conquer algorithm involves a single send from 
the root of B2m (also the root of B~(m-l)) to the_ root of B~(m-l)' Because there is no 
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other message-passing incurred at the same time, there is no contention involved. The 
second message in the divide-and-conquer algorithm involves simultaneous communica­
tion from B}(m-l) to B~(m-l) and from B~(m-l) to Bi(m-l)" However, it can be seen 
from Figure 6, that these messages are routed on disjoint paths in the mesh and also 
incur no contention. By definition of the binomial tree divide-and-conquer algorithm, 
all subsequent communication occurs within B}(m-l) through Bi(m-l) until messages 
are passed up the tree. A similar argument holds for the merge stage message-passing. 
By induction, there is no contention within these subtrees. Since these four subtrees are 
mapped to separate quadrants of the mesh, there is no contention among the subtrees. 
D 

Conjecture 8: Mapping M is optimal with respect to average dilation. The proof is 
currently under development. 

4.4 Evaluating the Mapping with respect to Real Communication Perfor­
mance 

Whenever there is network dilation, message transit times become dependent on the routing algo­
rithm as well as the channel bandwidth. There are two main methods of routing messages in a 
network: store-and-forward and wormhole. In store-and-forward routing, the message is copied (in 
its entirety) to each node ( one at a time) along the path from source to destination. Wormhole 
routing is a pipelining technique where a portion of the message is sent one hop, then that portion 
is sent a further hop while another portion is sent where the first portion was, etc., until the whole 
message reaches the destination. With store-and-forward routing, transit time is proportional to 
the number of hops, whereas with wormhole routing, number of hops really doesn't matter (so 
long as the messages are big enough to allow for pipelining). The drawback to a wormhole routing 
scheme is that it requires the use of all the links along the entire path from source to destination 
to be free during the message transfer,* whereas store-and-forward routing only requires the use of 
one link at a time. In general, network dilation becomes an important factor when using store-and­
forward routing, while contention is important for wormhole routing. 

Our mapping minimizes average dilation (making it good for store-and-forward networks) while 
still having no contention (making it ideal for wormhole routing). The only drawback to our map­
ping is that in traditional divide-and-conquer algorithms, large amounts of data must be transferred 
during the first few phases. In our mapping, this corresponds to sending the most data over the 
links with the largest dilation (in the mesh). In this case, minimal average dilation (which our 
mapping provides) may not correspond to minimal execution time in a network that uses store­
and-forward routing. However, for variants of divide-and-conquer where a constant amount of 

• A slight modification to wormhole routing doesn 't suffer from this problem. 
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information is passed at every step, or for networks with wormhole routing, our mapping gives 
superior performance. 

5 Conclusions and Ongoing and Future Work 

Since divide-and-conquer is a widely used paradigm, implementing it efficiently is important. Our 
contributions are listed below with a table summarizing our results: 

• identification of the binomial tree as the ideal computation graph for divide-and-conquer. 

Comparison of Tree Structures 
for Divide and Conquer Algorithms 
binomial tree full binary tree 

no. of nodes n/2 n-1 
efficiency ~ 2e e 

• optimal mappings for the binomial tree to the hypercube and to the mesh. 

Summary of Mapping Performance 
Mapping H Mapping M 

avg. dilation 1 (optimal) ~ 1.2 (optimal??) 
contention none ( optimal) none ( optimal) 
store-and-forward excellent good 
wormhole excellent excellent 

Our continuing work in this area focuses on other forms of divide-and-conquer algorithms: 
ones whose structure can be represented· as an n-ary tree; dynamically evolving and potentially 
unbalanced trees; and non-tree structured divide-and-conquer algorithms. In addition, we would 
like to find efficient mappings of the binomial tree to other networks such as the deBruijn network 
and the butterfly. Finally, we are currently developing mapping algorithms for the common situation 
in which the communication volume on each edge in Ge is not necessarily uniform but some function 
of the depth of the sender node in the binomial tree. 
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Appendix 

A Solving the Recurrence Equation for Max(m) 

Max(m) = 2m-l - Max(m - 1) 

= 2m-l - 2m-2 + ... - (-l)i2m-i + (-l)iMax(m- i) 

= 2m-l - 2m-2 + ... - (-1r-121 + (-1r-1 Max(l) 

= (2m-1 _ 2m-2) + (2m-3 _ 2m-4) ... _ (-lr-121) + (-lr-120 

Case 1. m is even 

Max(m) = (2m-l - 2m-2) + ... + (2 - 1) 

= (2m - 1)/3 

Case 2. mis odd 

Max(m) = (2m-l - 2m-2) + ... + (4 - 2) + 1 

= 2({2m-l - 1)/3) + 1 

= (2m + 1)/3 

B Solving the Recurrence Equation for Tot(m) 

Tot(m) = 4Tot(m-1) + 3Max(m) 

Case 1: mis even 

Tot(m) = 4Tot(m - 1) + 2m - 1 

= 4[4Tot(m - 2) + 2m-l + 1] + 2m - 1 

= 16Tot(m - 2) + 3(2m + 1) 

Case 2: m is odd 

Tot(m) = 4Tot(m - 1) + 2m + 1 
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= 4[4Tot(m - 2) + 2m-l - 1] + 2m + 1 

= 16Tot(m - 2) + 3(2m - 1) 

So, V n EN, 

Tot(2n) = 16Tot(2n - 2) + 3(22
n + 1) 

Tot(2n + 1) = 16Tot(2n - 1) + 3(22n+l - 1) 

Tot(2n - 1) = 16Tot(2n - 3) + 3(22n-l - 1) 

Thus we have from ( 4) and (5) 

Tot(2n + 1) + Tot(2n) = l6Tot(2n - 1) + l6Tot(2n - 2) + 9 • 22n 

If m = 2n+l (i.e., m odd), 

Tot(m) + Tot(m - 1) - l6Tot(m - 2) - 16Tot(m - 3) = 9 • 2m-t 

We also have from (4) and (6) 

Tot(2n) + Tot(2n - 1) = l6Tot(2n - 2) + l6Tot(2n - 3) + 9 • 22n-l 

If m = 2n (i.e., m even), 

Tot(m) + Tot(m - 1) - 16Tot(m - 2) - l6Tot(m - 3) = 9. 2m-t 

Thus, from (7) and (8), V m EN 

Tot(m) + Tot(m - 1) - 16Tot(m - 2) - l6Tot(m - 3) = 9 • 2m-t = (4.5)2m 

Thus the characteristic equation is 

a4 + a3 
- 16a2 

- 16a = 0 

Solving (7), the characterictic roots are +4, -4, and -1. 

So, 
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The Particular Solution 

The Particular Solution has the form P2m. Substituting in (8), we have 

P2m + P2m-l - l6P2m-2 - l6P2m-3 ( 4.5)2m, or 

8P + 4P - 32P - l6P = 36, or 
p -l 

Thus the Particular Solution is -2m. 

Combining the Particular Solution with (10) we have 

So, using the values of Tot(l}, Tot(2} and Tot(3} we have 

4A1 - 4A2 - A3 - 2 = 3 

l6A1 + l6A2 + A3 - 4 = 15 

64A1 - 64A2 - A3 - 8 = 69 

Solving (11), (12), and (13) we get 

Thus Tot(m) = (1.2)22m - (-1ro.2- 2m . 
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