
Mapping Divide-and-Conquer
Algorithms to

Parallel Architectures

V. Lo, S. V. Rajopadhye,
S. Gupta,

D. Keldsen,
M. Mohamed,

J. Telle
CIS-TR-89-19

January 19, 1990

Abstract

In this paper, we identify the binomial tree as an ideal computation
structure for parallel divide-and-conquer algorithms. We show its supe­
riority to the classic full binary tree structure with respect to speedup
and efficiency. We also present elegant and efficient algorithms for map­
ping the binomial tree to two interconnection networks commonly used in
multicomputers, namely the hypercube and the two-dimensional mesh.
Our mappings are optimal with respect to both average dilation and
link contention. We discuss the practical implications of these results for
message-passing architectures using store-and-forward routing vs. those
using wormhole routing.

Department of Computer and Information Science
University of Oregon

Mapping Divide-and-Conquer Algorithms
to Parallel Architectures*

V. Lo, S. V. Rajopadhye,
S. Gupta,

D. Keldsen,
M. Mohamed,

J. Telle
Dept. of Computer Science

University of Oregon
Eugene, OR 97403-1202

lo@cs.uoregon.edu

October 20, 1989

Abstract

In this paper, we identify the binomial tree as an ideal computation structure for parallel
divide-and-conquer algorithms. \Ve show its superiority to the classic full binary tree structure
with respect to speedup and efficiency. We also present elegant and efficient algorithms for
mapping the binomial tree to two interconnection networks commonly used in multicomputers,
namely the hypercube and the two-dim~nsional mesh. Our mappings are optimal with respect to
both average dilation and link contention. We discuss the practical implications of these results
for message-passing architectures using store-and-forward routing vs. those using wormhole
routing.

•This research was supported by a grant from the Oregon Advanced Computing Institute (OACIS). OACIS is a
consortium of academic, industrial, and government agencies in the state of Oregon.

1 Introduction

The problem of mapping parallel algorithms to parallel architectures involves the assignment of
tasks in the parallel computation to processors and the routing of messages through the underlying
communication network. This problem has been found to be NP-hard for a variety of models of
parallel computations and for a spectrum of optimality criteria, including minimization of total
interprocessor communication, minimization of response time, and several load balancing metrics.
As a result, research in the area of mapping algorithms has focused on the design of subopti­
mal heuristics and the development of efficient optimal solutions for restricted types of parallel
computations.

In this paper, we identify the binomial tree as an ideal computation structure for parallel divide­
and-conquer algorithms. We show its superiority to the classic full binary tree structure with respect
to speedup and efficiency. We also present elegant and efficient algorithms for mapping the binomial
tree to two interconnection networks commonly used in multicomputers, namely the hypercube and
the two-dimensional mesh.

This work is part of a larger research project called OREGAMI [LRG+] whose purpose is the
design of software tools for mapping parallel algorithms to parallel architectures. OREGAMI in­
cludes a description language for specifying the static and dynamic communication characteristics
of regular parallel computations, a library of mapping algorithms for regular and arbitrary compu­
tations to a spectrum of interconnection networks, and an interactive graphics tool for visualization
and evaluation of mappings. The mappings described in this paper form part of the OREGAMI
library of mapping algorithms.

1.1 Our Model of Parallel Algorithms and Parallel Architectures

We view a parallel algorithm to be a network of communicating sequential processes; these processes
are persistent throughout the lifetime of the computation, are large grained, and are executed on one
processor of a multicomputer throughout the computation. Thus, we model a parallel computation
as a graph Ge = (Ve, Ee) where the nodes Ve represent tasks and an edge between nodes A and
B represents a communication (possibly bi-directional) between A and B. Note that this is the
static task graph model proposed by Stone [Sto77] and Bokhari [Bok87] and not the precedence­
constrained (DAG) model. Many computation graphs have discernable structures or patterns -
computation graphs in the shape of rings, chordal-rings, trees etc. can be found in the literature.

The parallel architectures that we consider are message-passing multicomputers. Multicomput­
ers are a network of processors, each having a local memory and I/0 facilities for sending and
receiving messages to and from other processors in the network; each processor has access only to
its local memory and there is no global memory. The topology of the interconnection network may

2

be arbitrary, but usually is some well-known topology such as a mesh, hypercube, cube-connected­
cycles etc. . Examples of commercially available multicomputers are the iPSC-2 and NCUBE
hypercubes and Transputer networks from Inmos and Cogent. We also model the multicomputer
architecture as a graph GA = (VA, EA), where the nodes VA represent processors and the edges EA
correspond to the processor-to-processor connections of the underlying interconnection network.

1.2 The Mapping Problem

Mapping involves two decisions: how the tasks of the computation graph will be allocated to the
processors of the multicomputer and how the communication edges will be laid out along the links
of the processors. In this paper, we assume that the number of available processors is greater than
or equal to the number of tasks so that each task can be assigned to a unique processor. (When
this is not the case, the graph can be contracted so that a node of the contracted graph represents
a number of nodes of the original graph. Techniques for contraction can be found in the literature
([FF82], [BS87], (Lo88], [LRG+] and will not be described here). Clearly, the mapping chosen will
affect the overall execution time of the program and thus the speedup attainable by the parallel
algorithm. A "good" mapping should achieve load balancing among the processors and should
minimize the overhead of interprocessor communication.

More formally, a mapping is specified by two functions map-node and map-edge, which can be
described as follows

map-node: Ve-+ VA
map-edge: Ee-+ PathsA

under the constraint that

where

map-edge(< a, b >E Ee) is a path from map-node(a) to map-node(b) in GA

computation graph Ge=< Ve,Ee >,
architecture graph GA=< VA,EA >,
PathsA is the set of all possible paths in GA

In Section 2 of this paper we describe the conventional computation graph for divide-and­
conquer algorithms, the complete binary tree, and identify a more suitable computation graph,
the binomial tree. In section 3 we describe mappings of this graph onto the hypercube and the

3

2-climensional mesh. In section 4 we evaluate our mappings with respect to average dilation and
link contention, and we discuss the practical implications of these results for message-passing ar­
chitectures using store-and-forward routing vs. those using wormhole routing. Section 5 contains
conclusions and areas of ongoing and future work.

2 Tree Structures for Parallel Divide-and-Conquer Algorithms

2.1 Conventional Divide-and-Conquer

The computation graph associated with many parallel divide-and-conquer algorithms is the com­
plete binary tree. This is true when the algorithm is designed as follows:

Step 1 Give the root of the binary tree the problem to be solved

Step 2 Let the root divide the problem into two sub-problems and pass them on to its two children
to solve

Step 3 Continue Step 2 recursively until the problem has been broken up sufficiently to exploit a
desired degree of parallelism or to easily-solved based cases

Step 4 Let the leaves of the binary tree solve the subproblems they hold and pass on the results
to their parents

Step 5 Let the parents (which are the interior nodes) combine the results received from their
children and pass on this result to their parents

Step 6 Continue Step 5 recursively till the values reach the root

The example shown in Figure 1 illustrates this process.

Example: Mergesort the list (4 7 5 6 2 10 20 27 1 3 32 8 9 15 12 67) using a complete binary
tree as the computation graph.

Although this implementation of a parallel divide-and-conquer algorithm is intuitive, it is naive
and inefficient. The inefficiencies are both in terms of the number of processors used and processor
utilization. (Because we assume one process per processor, the two words are used interchangeably.)

• If the input is of size n and the leaf computation in step 4 involves the trivial sorting of
2-element lists, then the total number of nodes in the binary tree must be n - 1. As we shall
see, this is many more processors than necessary.

4

(4,7) (5,6) (2,10) (20,27) (1,3) (32,8) (9,15) (12,67)

Figure 1: Divide-and-Conquer Using a Binary Tree

• The processor utilization in the binary tree is poor since the interior nodes are idle while the
leaves do the computation - the interior nodes only take part in the dividing and merging
of data.

In the following section we will describe a computation graph that is free from both the above
dis ad vantages.

2.2 Binomial Trees for Divide-and-Conquer

The binomial tree is a combinatorial structure defined inductively as shown in Figure 2 [Knu 73].

A canonical labeling of the binomial tree is to label the tree in post-order starting at zero and
using the binary representation of integers. Some of the properties of the binomial tree (Bp) that
are relevant to this paper are

• Bp has 2P nodes

• Bp has 2P - 1 edges

• the depth (max. no. of edges from the root to a leaf) of Bp is p

• only the root Bp of has p children, and only one of its children has p - l children

We propose the binomial tree as a better alternative to the complete binary tree as the compu­
tation graph for divide-and-conquer algorithms. To understand how this can be done, consider the

5

Bo

•

Figure 2: Binomial Tree and Its Canonical Labelling

following changes to Steps 2, 3, 4 and 5 of the six steps described in Section 2.

Step 2 Let the root divide the problem into two sub-problems and pass on one of them to a child
that has not received any work yet, and keep the other half to itself

Step 3 Let every node perform Step 2 recursively until the problem has been broken up sufficiently
to exploit the desired degree of parallelism

Step 4 Every node does the computation assigned to it

Step 5 The results are passed up the tree and merged in the reverse of the order in which the
sub-problems were passed down the tree

Steps 1 and 6 are as before. The previous mergesort example is used to illustrate this process, as
shown in Figure 3.

We must now convince ourselves that the procedure described above, indeed results in a binomial
tree in the general case. In the above procedure we start with a single node and each application
of Step 2 adds a new (leaf) child to every node of the existing tree. Since we start with a single
node, which is the binomial tree Bo, we now have to prove the following

Remark 1: If a leaf node is appended to every node in a binomial tree Bn, the resulting
graph is the binomial tree Bn+l with the root of Bn as the root of Bn+l, V n E N.

Proof: We will use an inductive proof. As our base case we take the binomial tree Bo
and add a leaf to every node. Let the graph thus produced be A.

6

(4 7 5 6 2 10 20 27)

(4 7 5 6 2 10 20 2~1 3 32 8 9 15 12 67) ~
~ 3 32 8 9 15 12 67)

(20 27)

l (4 7 5 6)

(2 10 20 27)

(1 3 32 8)

Figure 3: Mergesort Using the Binomial Tree

7

It is clear that A is the binomial tree B1 and thus our assertion holds for the base case.
Let us now suppose that the assertion holds for all binomial trees of degree ~ m - 1,
where m EN. We now have to prove the assertion for the binomial tree Bm .

By the definition of a binomial tree, Bm consists of two binomial trees Bm-1 connected
root to root. Let the roots of the subtree be a and b. Let us now add a leaf to every
node of Bm. By our inductive assumption, this will cause the two trees Bm-1 to become
binomial trees Bm, with roots a and b. Also, since no edges were removed from the
original tree, the nodes a and b are still connected. Thus the new graph consists of two
binomial trees Bm connected root to root and hence must be a binomial tree Bm+l.
Thus the assertion holds for binomial trees of degree m. □

It is quite clear that the "keep half, give away half" approach that is followed by each process (in
contrast to giving away both halves) results in each process doing the same amount of computation
(sorting in case of the example). Of course, the leaves do not take part in the conquer (merge) part,
but that was the case even for the binary tree. Thus it is obvious intuitively that the binomial tree
is a more efficient computation graph. More precisely,

• If the input is of size n and we wish the leaf computation in step 4 to be the trivial sorting of
2-element lists, then the number of nodes (processes) in the binomial tree must be n/2. This
is about half the size of the corresponding complete binary tree which is of size n - 1.

• In the binomial tree, once a process receives work to do, it never idles until it is completely
finished. The pattern of busy and idle times for the conventional divide-and-conquer vs. that
for the binomial tree divide-and-conquer are shown in the Gantt charts in Figure 4.

From the above observations, we make the following claims about the use of the binomial tree
for divide-and-conquer parallel algorithms. Let Start A denote the time an algorithm A starts
execution and let FinishA denote the time an algorithm A finishes execution. The completion
time of algorithm A is defined as CA = Finish A - Start A. Also let dnc-binary and dnc-binomial
represent parallel divide-and-conquer algorithms structured as the full binary tree and the binomial
tree, respectively.

Result 1: Completion time Cdnc-binomial ~ Cdnc-binary•

Proof: We give here an informal visual proof using the Gantt chart representation
of the execution sequence of the two divide-and-conquer algorithms shown in Figure
4. The Gantt charts simply lays out the sequence of events along the time line. The
completion time of the algorithm is the time at which the last process completes ex­
ecution and is marked on the charts. As can be seen by comparing the two charts,
the binomial tree version of the parallel divide-and-conquer algorithm is faster because
it only sends(receives) data to(from) one child(parent) after each divide(merge) stage

8

1 S2 S3 R2 M
2 S4 SS R4 RS M S1
3 S6 S7 R6 R7 M S1
4 SS S9 RS R9 M S2
5 S10 S11 R10 R11 M S2
6 S12 S13 R12 R13 M S3
7 S14 S15 R14 R15 M S3
8 C S4
9 C S4
1 0 C SS
1 1 C S5
1 2 C S6
1 3 C S6
1 4 C S7
1 5 C S7

2 0~3
4~ 'us · 6~ 'u7

l\l\1\6\
8 9 10 11 12 13 14 15

0 S1 S2 S4 C R4 M R2 M RO M
1 RO S3 S5 C R5 M R3 M so
2 RO S6 C R6 M so
3 R3 S7 C R7 M S1
4 RO C so
5 R1 C S1
6 R2 C S2
7 R3 C S3

Figure 4: Gantt Charts for Divide and Conquer Algorithms

9

in the computation. We have assumed that when a parent node send portions of the
computation to each of its two children in the full binary tree, the two sends must be
serialized. This is true of current message-passing technologies and does not affect the
correctness of the proof. If parallel multicast is possible, the completion times are at
best equal. D

Result 2: The efficiency Ednc-binomial c 2(n:l) * Ednc-binary•

Proof: Let A - sequential be the fastest serial algorithm for an algorithm A, and let
A - parallel be a parallel implementation of algorithm A .
Recall that speedup s A = C A-•eguenttal and that

CA-parallel

ffi . E SA
e ciency A = no. of processors used inA-parallel •

From Result 1, we can see that

S . . _ Cdnc-aeguenttal > Cdnc-•eguenttal S
dnc-binomial - Cdnc-btnomtal _ Cdnc-binary = dnc-binary

Since

E Sdnc-btnomtal d E Sdnc-binary
dnc-binomial = n/2 an dnc-binary = n-1 ,

Ednc-binomial * (n/2) C Ednc-binary * (n - 1)

and we have the desired result. D

3 Mapping Algorithms

Below, we present algorithms for mapping the binomial tree onto the hypercube and the 2-
dimensional mesh. We assume that the number of processors is equal to the number of processes
and thus that we assign exactly one process to each processor. A point to note is that this require­
ment is not difficult to meet for divide-and-conquer algorithms since we can divide a problem only
as far as we want to, and thus can restrict the size of the computation graph to match the size of
the target architecture.

3.1 Mapping onto a Hypercube

The first mapping, Mapping H, maps Bm to a hypercube of degree m . In the previous section we
showed how to obtain Bm by attaching a leaf node to every node of Bm-I • We will now show that
growing a binomial tree in this manner provides a mapping onto the hypecube. Let us start with
the binomial tree of one node Bo and label it O in binary. As we grow B0 to B1 , B 1 to B2 and so
on, we will use the following labeling scheme:

10

00

000 100

Figure 5: Mapping the Binomial Tree to the Hypercube

bt-label: If a is a node in Bm-1 with label amam-1 ... ao and bis the leaf attached to a
while growing Bm-1 to Bm, then in Bm, a has the label amam-1 ... aol while b has the
label amam-1 ... ao0

Obviously this scheme results in a labeling of Bm such that any two adjacent nodes have labels
that differ in one bit. Also recall that Bm has 2m nodes. The canonical labeling scheme for the
hypercube is similar:

he-label: Nodes in the m-dimensional hypercube are labeled with the binary numbers
from 0 to 2m. Two nodes are adjacent if their labels differ in exactly one bit position.

Thus, our mapping consists of placing node a of Bm onto processor p of the hypercube iff a and
p have the same label. Every edge of the binomial tree is mapped along the corresponding edge of
the hypercube. Figure 5 illustrates the mapping for an 8-node binomial tree to the 3 - cube

Mapping H:

map - node(a) = p iff bt - label(a) = he - label(p)

and

map-edge(< a,b >) =< P1,P2 > iff map-node(a) = p1 and map-node(b) = p2

We note in passing that the above labeling scheme results in a labeling that is identical to the
canonical binomial tree labeling described earlier. Also, this mapping shows that the binomial tree

11

Bm can be a spanning tree of an m-cube. This mapping can be found in [Athas & Seitz] although
it is not presented as a mapping, but as part of a program code.

3.2 Mapping onto a 2-dimensional Square Mesh

The second mapping algorithm, Mapping M, maps B2m to a 2m x 2m mesh. The mapping algorithm
is recursive and is intuitively described as "flip" B2(m-l) mapping right and then flip the result
down to achieve the B2m mapping". A more precise description follows . See Figure 6.

• The base case is the (trivial) mapping of Bo onto a 1 X 1 mesh

• The mapping of B2m for m ~ 0 is obtained in two-steps. First, the mapping of B2(m-l) to the
2m-l x 2m-l mesh is reflected about a vertical axis to the right of the mesh, thus placing them
in opposite halves of the 2m-l x 2m mesh. The roots are then connected along the shortest
(straight-line) path, achieving an intermediate mapping of B2m-l to a 2m-l x 2m mesh.
Next, the procedure is repeated by reflecting the intermediate mapping about a horizontal
axis below the intermediate mesh, yielding the desired B2m mapping. The original B2(m-l)

mapping thus remains in the upper left-hand corner of the mesh, the root of the intermediate
mapping is in the upper right-hand corner and the root of B2m is in the lower right-hand
corner.

Algorithm Mis describe more precisely below: Let the nodes in the computation graph Ge be
labeled according to the canonical labeling scheme for the binomial tree. Nodes in the square mesh
are labeled (x, y) where x is the row number and y is the column number, assuming the node in
the upper lefthand corner is labeled (1, 1).

Mapping M:

where

• For Ge= Bo and GA= 1 x 1 mesh, map- nodeB0 (0) = (1, 1)

• For Ge= Bm and GA= hm X Wm mesh,

map - nodeBm(a) = map - nodeBm-i (a') if a= Oa'

map- nodeBm(a) = (x, Wm-1 - y + 1) if a= la'and mis odd

= (hm-1 - x + 1,y) if a= la' and mis even

12

m=O int. . ._.

m=2

m=l

:J
int.

:JC

m=3

Figure 6: Mapping the Binomial Tree to the Mesh

13

Also, for all edges < a, b >E Ve, if

map-nodeBm(a) = (xl,yl), and

map-nodeBm (b) = (x2, y2), and

xl ~ x2,yl ~ y2

then

map-edgeBm (< a, b >) = {(x2, y2), (x2, y2 + 1), (x2, y2 + 2),

... , (xl, yl - 1), (xl, yl)} if xl=x2

= {(x2, y2), (x2 + 1, y2), (x2 + 2, y2),

... (xl-1,yl),(xl,yl)} ifyl=y2

4 Evaluation of Our Mapping Algorithms

In this section, we evaluate our mappings with respect to the cost of inter-processor communication
(IPC). The overhead of IPC can be minimized by mapping processes that communicate as close
to each other as possible and by avoiding contention on the links of the interconnection network.
Our discussion addresses both mathematical metrics and the practical performance implications
for message-passing technologies such as store-and-forward and wormhole routing.

4.1 Definition of Communication Metrics

Below we define and discuss the metrics.

Dilation: Dilation of an edge < a, b > E Ee is defined as
the number of edges in the path P where map-edge(< a, b >) = P}.

Ideally the dilation of every edge in Ve should be 1, but this is impossible to achieve in most cases.
Two metrics that are commonly used to evaluate mappings in terms of IPC cost are maximum
dilation* and average dilation.

•some researchers call this simply the dilation of the mapping

14

Maximum Dilation: Maximum Dilation of a mapping of Ge to GA is defined by
max{ d:d=dilation of < a, b >, < a, b >E Ee}}

This metric is limited since it does not measure a mapping by the dilation of all edges but by only
the worst one. A more realistic metric is average dilation.

Average Dilation: Average Dilation of a mapping of Ge to GA is defined by
I:eeEc dilation of e/l(Ecl)

When a mapping has exactly one process per processor, the average dilation is at best 1.

A mathematical definition for contention would be cumbersome for our discussion, so we use
the intuitive definition below.

Link Contention: Link contention occurs when two or more messages must be trans­
mitted on the same link simultaneously.

4.2 Evaluating the Hypercube Mapping

Result 3: The maximum dilation and the average dilation for Mapping H is 1 and
therefore optimal with respect to average dilation.

Result 4: Mapping H has no contention and is therefore optimal with respect to
contention.

Proofs: The mapping onto the hypercube described in Section 4.1 maps every edge of
the binomial tree onto a distinct edge of the hypercube. Thus the dilation of every edge
is 1 and thus the average dilation is also 1 and there is no contention. D

4.3 Evaluating the Mesh Mapping

Result 5: The maximum dilation for Mapping M which maps B 2m onto the 2m x 2m
mesh is given by

Max(m) = (2m - 1)/3 if mis even

= (2m + 1)/3 if mis odd

15

M aXm-1 ,e,
:/'-...

I/

>L
Maxm

Figure 7: Mapping of B2m to a 2m X 2m mesh

16

Proof: From Figure 7 it is evident that the maximum dilation of the mapping of B2m

onto an h2m X W2m mesh is given by

Max(m) = (2m-1 -1)-lvlax(m-l)+l

= 2m-l - Max(m - 1)

The result is obtained by solving the recurrence equation (2) See Appendix A. D

Result 6: Avg(m) ~ 1.2

(1)

(2)

Proof: From Figure 7, it is also obvious that the total dilation of the mapping (which
we will denote by Tot(m)) is given by

Tot(m) = 4Tot(m - 1) + 3Max(m) (3)

Solving the recurrence equaton (3) (see Appendix B) we get

Thus the average dilation is given by

which can be shown to asymptotically approach 1.2. D

Result 7: Mapping M has zero contention and is therefore optimal with respect to
contention.

Proof: The proof is by induction on the size of the binomial tree.

• The base cases are the cases O ~ k ~ 2. In these binomial trees Mapping M assigns
each edge of B2k to a distinct link in the 2k x 2k square mesh and therefore has zero
contention.

• Assume that our induction hypothesis holds for binomial trees of size B 2k, 0 ~ k ~
(m - 1). We must prove that there is no contention in Mapping M for B2m to the
2m x 2m square mesh. By the construction procedure for Mapping M, the mapping of
B2m consists of mapping four binomial trees BJ(m-l) through B~(m-l) to disjoint quad­
rants in the 2m x 2m mesh and connecting the roots of these four smaller trees along
the shortest paths between them. Referring to the Gantt charts in Figure 4, we can see
that the first message in the divide-and-conquer algorithm involves a single send from
the root of B2m (also the root of B~(m-l)) to the_ root of B~(m-l)' Because there is no

17

other message-passing incurred at the same time, there is no contention involved. The
second message in the divide-and-conquer algorithm involves simultaneous communica­
tion from B}(m-l) to B~(m-l) and from B~(m-l) to Bi(m-l)" However, it can be seen
from Figure 6, that these messages are routed on disjoint paths in the mesh and also
incur no contention. By definition of the binomial tree divide-and-conquer algorithm,
all subsequent communication occurs within B}(m-l) through Bi(m-l) until messages
are passed up the tree. A similar argument holds for the merge stage message-passing.
By induction, there is no contention within these subtrees. Since these four subtrees are
mapped to separate quadrants of the mesh, there is no contention among the subtrees.
D

Conjecture 8: Mapping M is optimal with respect to average dilation. The proof is
currently under development.

4.4 Evaluating the Mapping with respect to Real Communication Perfor­
mance

Whenever there is network dilation, message transit times become dependent on the routing algo­
rithm as well as the channel bandwidth. There are two main methods of routing messages in a
network: store-and-forward and wormhole. In store-and-forward routing, the message is copied (in
its entirety) to each node (one at a time) along the path from source to destination. Wormhole
routing is a pipelining technique where a portion of the message is sent one hop, then that portion
is sent a further hop while another portion is sent where the first portion was, etc., until the whole
message reaches the destination. With store-and-forward routing, transit time is proportional to
the number of hops, whereas with wormhole routing, number of hops really doesn't matter (so
long as the messages are big enough to allow for pipelining). The drawback to a wormhole routing
scheme is that it requires the use of all the links along the entire path from source to destination
to be free during the message transfer,* whereas store-and-forward routing only requires the use of
one link at a time. In general, network dilation becomes an important factor when using store-and­
forward routing, while contention is important for wormhole routing.

Our mapping minimizes average dilation (making it good for store-and-forward networks) while
still having no contention (making it ideal for wormhole routing). The only drawback to our map­
ping is that in traditional divide-and-conquer algorithms, large amounts of data must be transferred
during the first few phases. In our mapping, this corresponds to sending the most data over the
links with the largest dilation (in the mesh). In this case, minimal average dilation (which our
mapping provides) may not correspond to minimal execution time in a network that uses store­
and-forward routing. However, for variants of divide-and-conquer where a constant amount of

• A slight modification to wormhole routing doesn 't suffer from this problem.

18

information is passed at every step, or for networks with wormhole routing, our mapping gives
superior performance.

5 Conclusions and Ongoing and Future Work

Since divide-and-conquer is a widely used paradigm, implementing it efficiently is important. Our
contributions are listed below with a table summarizing our results:

• identification of the binomial tree as the ideal computation graph for divide-and-conquer.

Comparison of Tree Structures
for Divide and Conquer Algorithms
binomial tree full binary tree

no. of nodes n/2 n-1
efficiency ~ 2e e

• optimal mappings for the binomial tree to the hypercube and to the mesh.

Summary of Mapping Performance
Mapping H Mapping M

avg. dilation 1 (optimal) ~ 1.2 (optimal??)
contention none (optimal) none (optimal)
store-and-forward excellent good
wormhole excellent excellent

Our continuing work in this area focuses on other forms of divide-and-conquer algorithms:
ones whose structure can be represented· as an n-ary tree; dynamically evolving and potentially
unbalanced trees; and non-tree structured divide-and-conquer algorithms. In addition, we would
like to find efficient mappings of the binomial tree to other networks such as the deBruijn network
and the butterfly. Finally, we are currently developing mapping algorithms for the common situation
in which the communication volume on each edge in Ge is not necessarily uniform but some function
of the depth of the sender node in the binomial tree.

19

Appendix

A Solving the Recurrence Equation for Max(m)

Max(m) = 2m-l - Max(m - 1)

= 2m-l - 2m-2 + ... - (-l)i2m-i + (-l)iMax(m- i)

= 2m-l - 2m-2 + ... - (-1r-121 + (-1r-1 Max(l)

= (2m-1 _ 2m-2) + (2m-3 _ 2m-4) ... _ (-lr-121) + (-lr-120

Case 1. m is even

Max(m) = (2m-l - 2m-2) + ... + (2 - 1)

= (2m - 1)/3

Case 2. mis odd

Max(m) = (2m-l - 2m-2) + ... + (4 - 2) + 1

= 2({2m-l - 1)/3) + 1

= (2m + 1)/3

B Solving the Recurrence Equation for Tot(m)

Tot(m) = 4Tot(m-1) + 3Max(m)

Case 1: mis even

Tot(m) = 4Tot(m - 1) + 2m - 1

= 4[4Tot(m - 2) + 2m-l + 1] + 2m - 1

= 16Tot(m - 2) + 3(2m + 1)

Case 2: m is odd

Tot(m) = 4Tot(m - 1) + 2m + 1

20

= 4[4Tot(m - 2) + 2m-l - 1] + 2m + 1

= 16Tot(m - 2) + 3(2m - 1)

So, V n EN,

Tot(2n) = 16Tot(2n - 2) + 3(22
n + 1)

Tot(2n + 1) = 16Tot(2n - 1) + 3(22n+l - 1)

Tot(2n - 1) = 16Tot(2n - 3) + 3(22n-l - 1)

Thus we have from (4) and (5)

Tot(2n + 1) + Tot(2n) = l6Tot(2n - 1) + l6Tot(2n - 2) + 9 • 22n

If m = 2n+l (i.e., m odd),

Tot(m) + Tot(m - 1) - l6Tot(m - 2) - 16Tot(m - 3) = 9 • 2m-t

We also have from (4) and (6)

Tot(2n) + Tot(2n - 1) = l6Tot(2n - 2) + l6Tot(2n - 3) + 9 • 22n-l

If m = 2n (i.e., m even),

Tot(m) + Tot(m - 1) - 16Tot(m - 2) - l6Tot(m - 3) = 9. 2m-t

Thus, from (7) and (8), V m EN

Tot(m) + Tot(m - 1) - 16Tot(m - 2) - l6Tot(m - 3) = 9 • 2m-t = (4.5)2m

Thus the characteristic equation is

a4 + a3
- 16a2

- 16a = 0

Solving (7), the characterictic roots are +4, -4, and -1.

So,

21

(4)

(5)

(6)

(7)

(8)

(9)

The Particular Solution

The Particular Solution has the form P2m. Substituting in (8), we have

P2m + P2m-l - l6P2m-2 - l6P2m-3 (4.5)2m, or

8P + 4P - 32P - l6P = 36, or
p -l

Thus the Particular Solution is -2m.

Combining the Particular Solution with (10) we have

So, using the values of Tot(l}, Tot(2} and Tot(3} we have

4A1 - 4A2 - A3 - 2 = 3

l6A1 + l6A2 + A3 - 4 = 15

64A1 - 64A2 - A3 - 8 = 69

Solving (11), (12), and (13) we get

Thus Tot(m) = (1.2)22m - (-1ro.2- 2m .

22

(10)

(11)
(12)

(13)

References

[Bok87] S. H. Bokhari. Assignment Problems in Parallel and Distributed Computing. Kluwer
Academic Publishers, 1987.

[BS87] F. Berman and L. Snyder. On mapping parallel algorithms into parallel architectures.
Journal of Parallel and Distributed Computing, 4(5):439-458, October 1987.

[FF82] J. P. Fishburn and R. A. Finkel. Quotient networks. IEEE Transactions on Computers,
C-31(4):288-295, April 1982.

[Knu73] D. L. Knuth. The Fundamental Algorithms. Addison-Wesley, 1973.

[Lo88) V. M. Lo. Algorithms for static task assignment and symmetric contraction in distributed
computing systems. In Proceedings of the 1988 International Conference on Parallel Pro­
cessing, pages 239-244, August 1988.

[LRG+] V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. Moataz, and J. Telle. Oregami:
Software tools for mapping parallel algorithms to parallel architectures. submitted to
ACM PPOPP 1990.

[Sto77] H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Transactions on Software Engineering, SE-3(1):85-93, January 1977.

23

