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1 Introduction

Expectations play a central role in modern macroeconomics. Economic
agents are assumed to be dynamic optimizers whose current economic de-
cisions are the first stage of a dynamic plan. Thus households must be con-
cerned with expected future incomes, employment, inflation, and taxes, as
well as the expected trajectory of the stock market and the housing market.
Firms must forecast the level of future product demand, wage costs, produc-
tivity levels, and foreign exchange rates. Monetary and fiscal policy-makers
must forecast inflation and aggregate economic activity and consider both
the direct impact of their policies and the indirect effect of policy rules on
private-sector expectations.
Macroeconomic models can be summarized as a reduced-form multivari-

ate dynamic system
yt = F (yt−1, yet+1, wt), (1)

where yt is a vector of endogenous variables and wt is a vector of stochastic
exogenous variables. Typically, wt is assumed to follow a stationary stochas-
tic process such as a finite-dimensional vector autoregression. Crucially, yt
depends not only on the state of the system, captured by the exogenous vari-
ables and lagged endogenous variables, wt and yt−1, but also on expectations
of future endogenous variables, yet+1. The precise information set available to
economic agents for forming expectations will depend on the specific model.
and in some cases yt will depend also on “forecasts” of contemporaneous
variables.
Since the work of Muth (1961), Lucas (1972), and Sargent (1973), the

benchmark model of expectation formation in macroeconomics has been ra-
tional expectations (RE). This posits, for both private agents and policy-
makers, that expectations are equal to the true statistical conditional ex-
pectations of the unknown random variables. RE is clearly a very strong
assumption, since it implicitly assumes knowledge of the correct form of the
model, knowledge of all parameters, and knowledge that other agents are
rational, as well as the knowledge that other agents know that other agents
are rational, etc.
The “learning theory” approach in macroeconomics argues that although

RE is the natural benchmark, it is implausibly strong. We need a more re-
alistic model of rationality, which may, however, be consistent with agents
eventually learning to have RE. A natural criterion for a model of rational-
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ity is the “cognitive consistency principle,” that economic agents should be
assumed to be about as smart as (good) economists. This still leaves open
various possibilities, since we could choose to model households and firms like
economic theorists or, alternatively, model them like econometricians.1 The
adaptive or econometric learning approach, which will here be our principal
focus, takes the latter viewpoint, arguing that economists, when they fore-
cast future economic aggregates, usually do so using time-series econometric
techniques. This seems particularly natural since neither private agents nor
economists at central banks know the true model. Instead economists for-
mulate and estimate models. These models are re-estimated and possibly
reformulated as new data become available. Economists themselves engage
in processes of learning about the economy.2

The econometric learning approach to expectation formation leads to
several distinct roles for learning in macroeconomics. Closest to the RE
view, econometric learning can be viewed as a stability test for RE equilibria
(REE): under what circumstances will least squares (LS) or closely related
econometric learning schemes converge asymptotically to RE? The stabil-
ity analysis can also be used as a selection device when there are multiple
REE. This is of particular interest when the REE include “sunspot equilib-
ria” or cycles that can be viewed as self-fulfilling prophecies. Can economic
agents using econometric forecasting rules, updated over time in accordance
with LS, converge over time to non-fundamental solutions like sunspot equi-
libria? These questions can be examined using the expectational stability
(E-stability) tool. According to the E-stability principle the local stability
of an REE under LS-type learning rules can be determined from using a
differential equation that is often straightforward to compute.
The econometric learning approach also generates additional insights for

macroeconomic theory and economic policy. For example, the reality that
econometricians sometimes use misspecified models suggests that we should
consider agents using misspecified econometric forecasting models. There is
then the possibility of convergence to “restricted perceptions equilibria” in
which the agents are doing the best they can, given their misspecified mod-
els. Another consideration is that, even if agents converge asymptotically to

1The “eductive” approach models agents like economic theorists with common knowl-
edge of the economic structure and of the rationality of other agents. See Guesnerie (2005)
for the theory and applications.

2For recent survey articles and overviews see Evans and Honkapohja (1999), Marimon
(1997) and Sargent (2008).
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an REE, the economy will deviate from this equilibrium during the learning
transition. Furthermore, if agents use “constant-gain” (“discounted”) LS,
which weights more recent data more heavily, then convergence will be to
a stochastic process near the REE, rather than to the REE itself. In some
cases this can have major implications in applications or for economic pol-
icy. Additional learning dynamics arise when one allows for heterogeneous
expectations, due to agents using either different learning rules or differing
forecasting models.
In this paper we first survey the main tools of macroeconomic learning

theory, in Section 2, and then consider a range of applications in Section 3.
The applications examined in detail include monetary policy, business cycles,
and asset prices. The section on learning and monetary policy describes the
implications for optimal policy if agents use constant-gain learning, recent
empirical work on inflation dynamics, and results on the stability of alterna-
tive interest-rate rules in New Keynesian models, including both Taylor-type
rules and rules aiming to implement optimal policy. In examining busi-
ness cycles under learning, we first consider stability of the REE under LS
learning, in the standard RBC model, and then examine stability of sunspot
equilibria in RBC-type models with distortions. We then turn to stability of
sunspot equilibria in New Keynesian and in cash-in-advance models. Next,
we summarize the implications of learning in models that analyze excep-
tional phenomena, namely hyperinflation and liquidity traps. A final section
reviews some applications to asset pricing, specifically to stock-price returns
and to exchange rates.

2 Theory and Techniques

2.1 Least-Squares Learning and E-stability

We develop the basic ideas of econometric learning using a simple linear
model

pt = μ+ αE∗t−1pt + δ0wt−1 + ηt. (2)

Here pt is a scalar endogenous variables, wt−1 is a vector of exogenous observ-
able variables and ηt is an unobservable random shock. The key assumption
is that the expectations of economic agents, E∗t−1pt, are not necessarily ratio-
nal since the agents do not know all the structural parameters. Expectations
are instead formed as forecasts from an estimated model and observations
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wt−1. The parameters of the forecasting model are estimated using past data
and updated over time. For simplicity, all agents are assumed to have the
same expectations. (We discuss heterogenous expectations below.)
As a benchmark we note that for model (2) the unique REE is

pt = ā+ b̄0wt−1 + ηt, ā = (1− α)−1μ, b̄ = (1− α)−1δ,

as is easily verified by applying the method of undetermined coefficients with
the functional form pt = a+b0wt−1+ηt. Two well-known economic examples
lead to reduced-form model (2).
Example 1: (Lucas aggregate supply model). A simple version of the

“Lucas islands” model, presented in Lucas (1973), consists of the aggregate
supply function

qt = q̄ + π(pt − pet) + ζt,

where π > 0, and the aggregate demand function

mt + vt = pt + qt,

where vt is a velocity shock. We assume that velocity depends in part on
exogenous observables wt−1 so that

vt = μ+ γ0wt−1 + ξt,

and that money supply follows the policy rule

mt = m̄+ ut + ρ0wt−1.

Thus, mt responds to past shocks to velocity. Here ut, ξt and ζt are white
noise shocks. The reduced form of the model is of the form (2) with 0 < α =
π(1 + π)−1 < 1 and ηt = (1 + π)−1(ut + ξt − ζt).
Example 2: (Muth market model) Demand and supply functions are

dt = mI −mppt + v1t,

st = rI + rpE
∗
t−1pt + r0wwt−1 + v2t.

Assume that wt is white noise with Ewt = 0, Ewtw
0
t = Ω. With market clear-

ing dt = st, we obtain (2) as the reduced form with ηt = (v1t − v2t)/mp, μ =
(mI−rI)/mp, δ = −m−1

p rw and α = −rp/mp. Note that α < 0 for rp,mp > 0.
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2.1.1 Econometric Learning

We now develop the formal details of econometric learning. There two key
building blocks to learning. First, agents’ beliefs are described by means of a
forecasting model. Agents are assumed to use a perceived law of motion
(PLM)

pt = a+ b0wt−1 + ηt,

where true values of a and b are not known. Note that this PLM has the
same functional form as the unique REE. This is a natural benchmark, but
in some cases it is important to allow for possible misspecification of the
PLM with respect to the REE of interest. Agents may either over- or under-
parameterize their PLM relative to the REE. We will discuss situations of
misspecification later.
Second, we need to describe how agents obtain estimates for the para-

meters in the PLM. It is postulated that agents use the most popular esti-
mation method, least squares. Thus, agents estimate a and b by recursive
least squares (RLS) from past data {pi, wi}t−1i=0 and they forecast using the
estimated model:

E∗t−1pt = at−1 + b0t−1wt−1.

Here at−1 and b
0
t−1 denote the estimated parameter values from using data

up to period t− 1.
Given the forecasts, the economy attains a temporary equilibrium in pe-

riod t. Alternatively, defining φ0t = (at, b
0
t) and z0i = (1, w

0
i), the actual law

of motion (ALM)

pt = (μ+ αat−1) + (δ + αbt−1)0wt−1 + ηt
≡ T (φt−1)zt−1 + ηt

describes the temporary equilibrium relations between the variables.
Formally, RLS estimation is given by equations

φt = φt−1 + t−1R−1t zt−1(pt − φ0t−1zt−1) (3)

Rt = Rt−1 + t−1(zt−1z0t−1 −Rt−1). (4)

Making the shift St−1 = Rt and defining Eztz0t =M , RLS formally becomes
a stochastic recursive algorithm (SRA), as was first shown by Marcet
and Sargent (1989). There are general methods for analyzing the dynam-
ics of SRAs, which we outline in Section 2.2. In particular, conditions for

6



convergence of SRA are given by local stability conditions of an associated
ordinary differential equation (ODE). For the RLS algorithm the ODE takes
the form

dφ/dτ = S−1M(T (φ)− φ), (5)

dS/dτ = M − S. (6)

Finally, we remark that some papers in the literature employ the stochas-
tic gradient (also known as “least mean squares”) algorithm in place of LS.
In the current setting, the gradient algorithm and its associated ODE take
the form

φt = φt−1 + t−1zt−1(pt − φ0t−1zt−1),

dφ/dτ = M(T (φ)− φ).

Generalized stochastic gradient (GSG) algorithms are well-motivated when
agents allow for parameter drift or model uncertainty. See Evans, Honkapo-
hja, and Williams (2008) for a discussion of GSG algorithms and references
to the literature.

2.1.2 Expectational Stability (E-stability)

Inspecting the differential equations (5)-(6), it is seen that limτ→∞ S = M
in the second equation. Thus, the local stability of the fixed point for the
whole ODE is determined by local stability under the “small” ODE

dφ/dτ = T (φ)− φ. (7)

Note that the unique REE for model (2) is the fixed point of the system (7).
We say that a fixed point φ̄ = T (φ̄) is expectationally stable (E-stable)
if it is locally stable under the small ODE (7), as defined in Evans (1989) and
Evans and Honkapohja (1992). In economic terms, the small ODE is just
partial adjustment in virtual time τ . The relationship between RLS learning
and E-stability is highlighted by the following result:

Proposition. The economy converges to the REE under RLS learning
if and only if the REE is E-stable. The latter occurs iff α < 1.

For further details of the outlined steps and a proof of the result for the
model (2), see Chapter 2 of Evans and Honkapohja (2001).
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The result that E-stability of REE gives the conditions for (local) con-
vergence of RLS and related learning schemes is quite general and it holds
for a wide variety of models, as discussed in Evans and Honkapohja (2001).

2.2 Stochastic Approximation Techniques

Demonstrations of convergence of RLS learning, and additional approxima-
tion results, are available using stochastic approximation techniques.

2.2.1 Decreasing-Gain Algorithms

A general form of SRA is given by

θt = θt−1 + γtQ(t, θt−1,Xt), (8)

where θt is a vector of parameter estimates, Xt is the state vector, and γt is a
deterministic sequence of “gains.” The function Q expresses the way in which
the estimate θt−1 is revised in line with the last period’s observations. In our
simple model (2) with RLS learning, θt−1 will include all components of φt−1
and Rt, Xt will include the effects of wt−1 and ηt, and γt = t−1. Although,
in our example, Xt follows an exogenous process, this is not at all essential.
In particular, Xt can be permitted to follow a vector autoregression (VAR )
with parameters that may depend on θt−1.
The stochastic approximation approach associates an ODE with the SRA,

dθ

dτ
= h(θ(τ)), (9)

where h(θ) is obtained as

h(θ) = lim
t→∞

EQ(t, θ, X̄t(θ)), (10)

provided this limit exists. Here X̄t(θ) is the stochastic process forXt obtained
by holding θt−1 at the fixed value θt−1 = θ (thus X̄t(θ) = Xt if Xt does not
depend on θt−1), and E denotes the expectation of Q(t, θ, X̄t(θ)), for θ fixed,
taken over the invariant distribution of the stochastic process X̄t.
For the RLS algorithm (3)-(4), with notation Rt = St−1, the associated

ODE is

hφ(φ) = lim
t→∞

E[S−1zt−1z0t−1(T (φ)− φ)] = S−1M(T (φ)− φ)

hS(S) = lim
t→∞

E
t

t+ 1
(ztz

0
t − S) =M − S,
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which verifies the claim (5)-(6).
The stochastic approximation results show that the behavior of the SRA

is well approximated by the behavior of the associated ODE for large t.
In particular, possible limit points of the SRA correspond to locally stable
equilibria of the ODE:

Under suitable assumptions, if θ̄ is a locally stable equilibrium point of
the ODE then θ̄ is a possible point of convergence of the SRA. If θ̄ is not a
locally stable equilibrium point of the ODE then θ̄ is not a possible point of
convergence of the SRA, i.e. θt → θ̄ with probability 0.

The precise theorems are complex in detail. First, there are various ways to
formalize the positive convergence result (when θ̄ is a locally stable equilib-
rium point). In certain cases, when there is a unique solution and under the
SRA the ODE is globally stable, θt → θ̄ with probability 1 from any starting
point. When there are multiple equilibria, such a strong result will not be
possible. If one artificially constrains θt to an appropriate neighborhood of a
locally stable equilibrium θ̄ (using a so-called “projection facility”), one can
still obtain convergence with probability 1. Other versions of local stability
results are also available.
Second, a careful statement is required of the technical assumptions under

which the convergence conditions obtain. There are three broad classes of
assumptions: (i) regularity assumptions on Q, (ii) conditions on the rate at
which γt → 0, (iii) assumptions on the properties of the stochastic process
followed by Xt.
For details of assumptions and precise statements, see Part II of Evans

and Honkapohja (2001).

2.2.2 Constant-Gain LS Mean Dynamics and Escape Dynamics

Under constant gain we replace γt in (8) by a constant 0 < γ < 1. For
example in RLS equations for φt and Rt given above, t−1 would be replaced
by a small constant γ. We rewrite the SRA as

θγt = θγt−1 + γQ(θγt−1, Xt),

where for convenience we have dropped any explicit time dependence in Q
and where we have indexed θt by γ so that we can consider the implications
for the stochastic process for small gains γ > 0. The SRA and suitable
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regularity conditions are assumed to hold for all θt−1 within an open set D,
and we are given an initial condition θ0 = a ∈ D. Several types of results are
available in this setting. See, in particular, Ch. 7 of Evans and Honkapohja
(2001), Cho, Williams, and Sargent (2002), and Williams (2004b).
One can, first of all, obtain the mean dynamics of θγt for the limiting

case of small gains, i.e. for γ > 0 sufficiently small. Defining h(θ) as in
(10), we consider the solution to the associated ODE (9). Let θ̃(τ , a) denote
the solution to (9) for initial condition θ0 = a ∈ D. We often refer to τ as
“notional time.” Consider a fixed notional time T > 0 and a fixed compact set
D̄ ⊂ D. Assume that θ̃(τ , a) ∈ D̄ for all 0 ≤ τ ≤ T . The main result is that
the solution θ̃(τ , a) approximates the mean dynamics of θt over 0 ≤ τ ≤ T .
Define

θγ(τ) = θγt for tγ ≤ τ ≤ (t+ 1)γ.
Thus θγ(τ) is a continuous-time interpolation of the realization θγt of the SRA.
It can be shown that as γ → 0 the normalized random variables Uγ(τ) =
γ−1/2(θγ(τ)− θ̃(τ , a)) over 0 ≤ τ ≤ T converge weakly to the solution U(τ)
of the stochastic differential equation

dU(τ) = Dθh(θ̃(τ , a))U(τ)dτ +R1/2(θ̃(τ , a))dW (τ),

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener
process and R(θ) can be computed from Q(θ, X̄t(θ)). The solution is de-
scribed in Evans and Honkapohja (2001), Chapter 7.4. In particular, the so-
lution satisfies E(U(τ)) = 0. It follows that for 0 ≤ τ ≤ T the mean dynam-
ics of the SRA for γ > 0 small can be approximated using E(θγ(τ)) ≈ θ̃(τ , a).
Specifically, the mean dynamics of the SRA satisfy

Eθγt ≈ θ̃(γt, a)

for 0 ≤ t ≤ T /γ. The solution to the stochastic differential equation in dU(τ)
can also be used to approximate V ar(θγt ) for small γ, and this approximation
often takes a simple form as γt becomes large.
The other class of results that are available for constant-gain algorithms

are “escape dynamics” based on large deviation theory. Although as γ → 0
the solution to the above stochastic differential equation provides a good
approximation to the distribution of θγt , with positive probability there will
be large deviations from the mean dynamics, and over long stretches of time
these unusual escape dynamics may be of considerable practical interest, as
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argued in Sargent (1999), Cho, Williams, and Sargent (2002) and Williams
(2004b). Using large deviation tools it is possible to compute the direction of
the paths that are most likely to leave a specified neighborhood of the mean
dynamics and thus provide useful information on these escape dynamics.

2.3 The Planning Horizon

In the Lucas/Muth model and in overlapping generations models with two-
period lifetimes, agents in the current period make forecasts for the values
of aggregate variables in the next period. However, many modern macroeco-
nomic models are set in a representative-agent framework with infinitely-lived
agents who solve infinite-horizon dynamic optimization problems. Typically,
under RE the reduced-form equations for these models can be stated in the
form (1). This reduction relies on the use of the Euler equations to describe
the first-order conditions.
Under learning there are alternative approaches in infinite-horizon set-

tings. In Evans and Honkapohja (2001), Chapter 10, the learning frame-
work was kept close to the RE reduced-form set-up, a procedure that can
be justified if agents make decisions based directly on their Euler equations.
This approach has been used, for example, in Bullard and Mitra (2002)
and Evans and Honkapohja (2003c). An alternative approach, followed by
Preston (2005), assumes that households use estimated models to forecast
aggregate quantities infinitely far into the future to solve for their current
decisions. We now illustrate the two approaches using a simple endowment
economy.3

A representative consumer makes consumption-saving decisions using the
intertemporal utility function

E∗t

∞X
s=t

βs−tU(Cs). (11)

Each period the household has a random endowment of Yt and there is a
market in safe one-period loans with gross rate of return Rt, assumed known
at t. Initial wealth for each agent is zero. Output Ys follows an exogenous
process given by

log Ys = μ+ ρ log Ys−1 + vs,

3The passage is based largely on Honkapohja, Mitra, and Evans (2002), and we also
draw on Evans, Honkapohja, and Mitra (2007).
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where |ρ| < 1 and vs is white noise. Expectations are not necessarily rational,
which is indicated by ˆ in the expectations operator. The household has an
intertemporal budget constraint

Ct +
∞X

s=t+1

Rt+1,sCs = Yt +
∞X

s=t+1

Rt+1,sYs, (12)

where Rt+1,s = (Rt+1 . . . Rs)
−1.

Maximizing (11) subject to (12) yields the Euler equation as a necessary
first-order condition (FOC),

U 0(Ct) = βRtE
∗
tU

0(Ct+1). (13)

In equilibrium Ct = Yt, as output is assumed to be perishable. In the “Euler-
equation learning” approach, (13) is treated as a behavioral equation, de-
termining for each agent their temporary equilibrium demand for Ct as a
function of Rt and the forecast E∗tU

0(Ct+1) of their t+ 1 marginal utility of
consumption. Imposing the market clearing condition Ct = Yt, and using
the representative agent setting, (13) determines the temporary equilibrium
interest rate according to

R−1t = β(E∗tU
0(Ct+1))/U

0(Yt).

Log-linearizing the Yt process and (13) around the non-stochastic steady
state yields

yt = ρyt−1 + vt, (14)

where yt = log(Yt/Ȳ ), and the consumer’s demand schedule

ct = E∗t ct+1 − σrt. (15)

Here ct = log(Ct/C̄), rt is the net return, based on the approximation rt ≈
log(Rt/R̄) and σ = − U 0(C̄)

U 00(C̄)C̄ is the coefficient of intertemporal substitution.
(Bars over the variables denote the non-stochastic steady state). In the
temporary equilibrium ct = yt and rt = σ−1(E∗t ct+1 − yt).
REE of the linearized model is given by

rt = −(1− ρ)σ−1yt

and for rational forecasts we have

Etct+1 = ρyt. (16)
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To formulate “Euler equation” (EE) learning, based on (15), suppose that
agents have a PLM forecast function nesting the REE:

E∗t ct+1 = m+ nyt, (17)

with coefficient estimates (mt, nt) obtained using a regression of cs on ys−1
using data s = 1, . . . , t− 1. As usual, (mt, nt) are updated over time.
The question is whether (mt, nt) → (0, ρ) over time. This can easily be

verified using E-stability arguments. Given the PLM (17), in the temporary
equilibrium rt = −σ−1[yt(1 − n) − m]. However the ALM forecasts are
Etct+1 = ρyt, so that the T-map is T (m,n) = (0, ρ). Clearly the E-stability
differential equation

d(m,n)

dτ
= T (m,n)− (m,n),

is stable, and hence there is convergence of LS learning to RE in this model.
Under EE learning, agents choose their consumption demand using the

Euler equation between today’s and tomorrow’s consumption. To implement
this FOC requires a forecast of agent’s own Ct+1. This forecast is made,
assuming that the agent’s future consumption is related (as it is in the REE)
to the key state variable, yt. (In an RBC model the state would include
capital and technology). Thinking one step ahead, in this way, appears to
us to be a plausible and natural form of bounded rationality. Furthermore,
although this formulation does not explicitly impose the intertemporal bud-
get constraint, it can be verified that along the learning path both (12) and
the transversality condition are also satisfied.
An alternative approach postulates that consumption demand each pe-

riod is based on forecasts over an infinite horizon. We call this approach,
presented for the New Keynesian model in Preston (2005), infinite-horizon
(IH) learning, and we describe it for the current context. Log-linearizing the
intertemporal budget constraint (12) yields

ct +
∞X

s=t+1

βs−tE∗t cs = yt +
∞X

s=t+1

βs−tE∗t ys, (18)

where we have used C̄ = Ȳ . Iterating the linearized Euler equation (15)
backwards for s ≥ t+1 gives E∗t cs = ct+σ

Ps−1
j=t E

∗
t rj. Substituting this into
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(18) and solving for ct leads to the behavioral equation

ct = (1− β)yt − σβrt +
∞X

s=t+1

βs−t[(1− β)E∗t ys − σβE∗t rs]. (19)

Here we have assumed that both yt and rt are known at t.
Suppose that agents do not know the RE relationship between yt and rt,

but have the PLM
rt = d+ fyt,

where at time t the coefficients are estimated to be dt, ft. To determine
whether there is convergence to the REE, we again turn to E-stability. Using
E∗t rs = d + fys and E∗t ys = ρs−tyt in (19), and imposing market clearing
ct = yt we obtain

yt = −σβrt +
1− β − σβ2ρf

1− βρ
yt −

σβ2d

1− β
.

Solving for rt, the T-mapping is

d→− βd

1− β
and f → −σ−11− ρ+ βσρf

1− βρ
.

The fixed point of T is the REE d = 0 and f = −(1 − ρ)σ−1, and the
E-stability ODE is clearly stable.
Although for this particular model, learning stability holds for both EE

and IH learning, in more general models it is possible for stability to depend
on the planning horizon of the agents. For an analysis of these issues in a
general framework, see Evans and McGough (2008).

2.4 Multiple Equilibria and Learning

Thus far, we have considered linear or linearized models. One attractive
feature of linear models is that for them the class of possible REE can be
described explicitly. For some models, such as model (2), a unique stationary
solution exists. The economy or model is then said to be determinate. If
there are multiple non-explosive solutions, the model is said to be indeter-
minate.
Consider the simple forward-looking linear model

xt = μ+ αE∗t xt+1 + vt, (20)
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where xt is a scalar endogenous variable and the random shock vt is iid
with mean zero. The model (20) is determinate if |α| < 1 and indetermi-
nate if |α| > 1. The fundamental REE is xt = (1 − α)−1μ + vt. Writing
xt+1 = Etxt+1 + ηt+1, where under RE Etηt+1 = 0 , substituting into (20),
and rearranging we get

xt+1 = −α−1μ+ α−1xt − α−1vt + ηt+1.

Thus for any stationary ηt+1 this defines a stationary stochastic process for
xt+1 when |α| > 1.
Next, consider the nonlinear forward-looking model

xt = E∗t F (xt+1), (21)

where for simplicity the random shock has been omitted (for extensions to
models with intrinsic random shocks see, e.g., Part IV of Evans and Honkapo-
hja (2001)). Samuelson’s overlapping generations model is a well-known ex-
ample of the nonlinear model.4 An important difference between linear and
nonlinear models is that it is usually not possible to describe all REE for
the nonlinear model. Potential equilibria include steady states, deterministic
cycles and sunspot solutions.
A steady state x̄ is defined by the equation x̄ = F (x̄) while a determin-

istic k-period cycle (x̂1, ..., x̂K) is defined by the equations x̂k−1 = F (x̂k) for
k = 2, ...,K and x̂K = F (x̂1). A stationary sunspot equilibrium (SSE) is
a stochastic REE in which agents’ expectations depend on an extraneous
random variable that has no fundamental significance for the economy. A
widely-discussed case of SSEs takes the form of a finite Markov chain. Con-
sider a finite Markov chain st that can take values (1, ...,K) with transition
probabilities πij, where πij = Pr[st+1 = j |st = i] . A k−tuple (x∗1, ..., x∗K) is
an SSE with transition probabilities πij if

xt = x∗i if st = i where x∗i =
XK

s=1
πisF (x

∗
s) for all i = 1, ..., K.

Figures 1 and 2 illustrate these different types of REE in the nonlinear model
(21).

4See e.g. Chapter 9 of Ljungqvist and Sargent (2003) for an overview of the overlapping
generations model.
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FIGURES 1 AND 2 ABOUT HERE

Global and local determinacy and indeterminacy for the nonlinear model
are discussed, e.g., in Chiappori and Guesnerie (1991). We use model (21)
to discuss learning as a selection criterion when there are multiple REE.
Evans and Honkapohja (1995) develop E-stability conditions for steady

states and cycles and show that the relationship between convergence of LS
learning and E-stability continues to hold for models of type (21).5 For
sunspot equilibria the first result about convergence of learning to SSE was
obtained by Woodford (1990) in the context of a specific model. SSEs near
deterministic equilibria are of special interest in many contexts. Local stabil-
ity results for models of type (21) were developed by Evans and Honkapohja
(1994) and Evans and Honkapohja (2003b). They showed that
1) E-stable SSEs exist near a pair of distinct steady states iff both steady
states are E-stable,
2) E-stable SSEs exist near an E-stable deterministic cycle, and
3) E-stable SSEs exist near a single steady state iff F 0(x̄) < −1.
These results help to select among REE when multiple equilibria exist. By
narrowing consideration to “reasonable” equilibria, learning is a useful selec-
tion criterion, even if it does not necessarily select a unique solution.
A variety of selection results also exist for linear models, e.g., see Evans

and Honkapohja (1992) and Part III of Evans and Honkapohja (2001). For
the basic forward-looking model (20) it is easy to check that the E-stability
condition is α < 1. It follows that determinacy is sufficient but not necessary
for E-stability of the fundamental solution. This result has been significantly
generalized by McCallum (2007). However, it should be noted that the result
depends on the timing of information, see Bullard and Eusepi (2008).

2.5 Further Issues

We close this section with a brief general discussion of heterogeneous expec-
tations and dynamic predictor selection.

5Convergence of learning to steady states and cycles was initially considered for finite-
memory learning rules by several researchers, see Grandmont (1998) for a review. These
rules do not converge fully to REE in stochastic models.
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2.5.1 Heterogeneous Expectations

The preceding discussion has assumed homogeneous expectations for ana-
lytical convenience. In practice, heterogeneous expectations can be a major
concern. In some models the presence of heterogeneous expectations does not
have major effects on stability conditions, as first suggested by Evans and
Honkapohja (1996) and substantially generalized by Giannitsarou (2003).
However, Honkapohja and Mitra (2006) showed that interaction of structural
and expectational heterogeneity can make the conditions for convergence of
learning significantly more stringent than those obtained under homogeneous
expectations.
Consider a forward-looking model with S classes of agents:

yt = α+
SX
i=1

AiE
∗
t yt+1 +Bwt,

wt = Fwt−1 + vt.

where yt is a scalar endogenous variable and wt is follows a stationary AR(1).
F is taken to be known (if not, it could be estimated). Mw = limt→∞Ew2t >
0. The fundamental or minimal state variable (MSV) solution is

yt = a+ bwt,

where a and b can be solved (usually uniquely) from equations

a = α+AMa and b = AMbF +B,

where AM =
SX
i=1

Ai.

Define the state variables z0t = (1, wt) and the matrix of parameters ϕ0i,t =
(ai,t, bi,t), i = 1, ..., S. Agents are assumed to have PLMs

yt = ai,t + bi,twt = ϕ0i,tzt, i = 1, ..., S.

The resulting ALM is

yt = [α+
SX
i=1

Aiai,t, (
SX
i=1

Aibi,t)F +B]

∙
1
wt

¸
= T (ϕ01,t, ..., ϕ

0
S,t)zt.
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We consider mixed RLS/SG learning when initial conditions of the
different types of agents are different and different agents may use differ-
ent learning rules. The learning rules may have different gain parameters.
Specifically, it is assumed that types i = 1, ..., S0 agents use RLS and types
j = S0 + 1, ..., S agents use SG learning rules. For agents i = 1, ..., S0 the
algorithm is given by

ϕi,t = ϕi,t−1 + γi,tR
−1
i,t zt−1(yt−1 − ϕ0i,t−1zt−1)

0,
Ri,t = Ri,t−1 + γi,t(zt−1z

0
t−1 −Ri,t−1),

while for agents i = S0 + 1, ..., S it is given by

ϕi,t = ϕi,t−1 + γi,tzt−1(yt−1 − ϕ0i,t−1zt−1)
0.

The gain sequences γi,t are assumed to satisfy limt→∞E(γi,t/γt) = δi > 0,
where the decreasing and positive sequence γt satisfies
(i) γ̂i,t ≤ Kiγt for some constant Ki > 0,
(ii)

P∞
t=1 γt =∞,

P∞
t=1 γ

2
t <∞ and lim sup(1/γt+1 − 1/γt) <∞.

Also
(iii) δi 6= δj, i.e. mean gains of the agents can differ asymptotically.
Generalizations to random gains are possible, see Honkapohja and Mitra
(2006).
It can be shown that in the case of mixed RLS/SG learning, stability is

determined by

dϕi/dτ = δi(T (ϕ
0
1, ..., ϕ

0
S)
0 − ϕi), i = 1, ..., S0

dϕi/dτ = δiMz(T (ϕ
0
1, ..., ϕ

0
S)
0 − ϕi), i = S0 + 1, ..., S,

and the generalized E-stability condition is stricter than usual E-stability
or SG-stability. The new feature is that, in general, speeds of learning, as
indicated by parameters δi, affect convergence. However, for the univariate
case n = k = 1 we have the following result. Assume that the aggregate
economy is E-stable and the parametersAi have the same sign. If the different
agents use either RLS or SG learning rules, the economy converges to the
MSV REE for all {δi}Si=1 and Mz.

2.5.2 Dynamic Predictor Selection

Another natural way to introduce heterogeneity is assume that different
agents have different types of forecasting models, with the model choices
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at each point in time determined endogenously. Brock and Hommes (1997)
postulate that agents have a finite set of predictors or expectation functions
for predicting price. Each predictor has a fitness measure associated with it,
based on past performance, as well as a cost of using that predictor. The
proportion of agents who select a predictor depends on its fitness, i.e., an
estimate of the profits net of costs.
Brock and Hommes (1997) study the resulting “adaptively rational ex-

pectations dynamics” for the standard “cobweb” model with two predictors:
rational and naive forecasts. The model is nonstochastic, so that RE is equiv-
alent to perfect foresight. Demand is assumed to be linear D(pt) = A−Bpt.
Firms have a quadratic cost function c(q) = q2/2b and thus the supply curve
S(pet) = bpet . There are two predictors available, the perfect foresight predic-
tor pet = pt, which costs C ≥ 0, and the naive predictor pet = pt−1, which is
free. Letting n1t and n2t denote the proportion of agents using the perfect
foresight and naive predictors, respectively, market equilibrium at t is given
by

D(pt) = n1,t−1S(pt) + n2,t−1S(pt−1).

The main fitness studied measure examined is net realized profit in the
last period. Since profits are πt = ptS(p

e
t)− c(S(pet)) we have realized time t

profits given by

π1t =
b

2
p2t − C and π2t =

b

2
pt−1(2pt − pt−1)

The proportion of agents using the jth predictor is given by the “multinomial
logit” ratios

n1,t = exp(βπ1,t)/(exp(βπ1,t) + exp(βπ2,t)) and n2,t = 1− n1,t.

The parameter β measures the intensity with which agents choose predictors
with higher “fitness.” For β = +∞ all agents choose the predictor with
highest previous period net profit.
These equations fully define the “adaptively rational equilibrium dynam-

ics.” This system has a unique steady state. Brock and Hommes (1997) focus
on the case b/B > 1, in which the model is locally unstable under naive ex-
pectations. If C > 0, the dynamics depend crucially on β. Above a critical
value β1 the steady state is an unstable saddlepoint. Stable two-cycle and
higher-order cycles, the coexistence of low periodic attractors, and chaotic
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attractors appear as β increases. Brock and Hommes call the resulting com-
plicated dynamical phenomena a “rational route to randomness”.
The economic mechanisms generating the complex dynamics are straight-

forward. When agents use the cheapest predictor (here static expectations)
the steady state is unstable, whereas the costly sophisticated predictor is
stabilizing. Near the steady state, it pays to use the cheap predictor, but
this pushes the economy away from the steady state. For a high enough
intensity of choice β this tension leads to local instability and complex global
dynamics.
The dynamic selector framework is extended by Branch and Evans (2006)

and Branch and Evans (2007) to incorporate stochastic features and econo-
metric learning. Based on the assumption that agent employ parsimonious
models, Branch and Evans study the implications of agents choosing between
equally costly misspecified models. Consider a stochastic cobweb model,
driven by two exogenous shocks, with agents choosing between two models,
each of which omits one of the variables. For this set-up a misspecification
equilibrium (ME) has the following elements: (i) the coefficients of each fore-
casting model are given by the true linear projections, (ii) fitness of a forecast
rule is measured by the mean equilibrium profits of an agent using that rule,
and (iii) the proportions of agents using the different rules are in accordance
with the multinomial logit ratios described above. Branch and Evans (2006)
show that, under weak assumptions, a ME exists. In the two-predictor case
with exogenous variables the ME is unique. However, in contrast to the REE,
there are cases of “intrinsic heterogeneity,” in which both predictors are used,
even with β = +∞. Branch and Evans (2006) also examine the stability of
this ME under real-time learning and dynamic predictor selection.
Branch and Evans (2007) use the same framework to examine a Lucas-

type monetary model in which there is positive expectational feedback. The
new phenomenon is that this model can have two ME, in which agents coor-
dinate on either of the two models. The stochastic process for inflation and
output can then exhibit regime-switching or parameter drift, in line with
much macroeconometric evidence.
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3 Economic Applications

3.1 Monetary Policy

Analysis of monetary policy rules from the learning viewpoint has recently
become a very popular research topic.6 We now discuss some key aspects of
this rapidly growing literature.

3.1.1 New Classical Model with Constant Gain

Orphanides and Williams (2005b) (OW) use a simple two-equation macro
model to show that constant-gain learning by private agents has major im-
plications for economic policy. Their model is based on a New Classical
expectations-augmented Phillips curve with inertia:

πt+1 = φπet+1 + (1− φ)πt + αyt+1 + et+1, (22)

where πt+1 is the rate of inflation between period t and period t+ 1, πet+1 is
the rate of inflation over this period expected at time t, yt+1 is the level of
the output gap in t+ 1, and et+1 is a white noise inflation shock. (1− φ)πt
represents intrinsic inflation persistence. We assume 0 < φ < 1.
The other equation is an aggregate demand relation that embodies a

lagged policy effect,
yt+1 = xt + ut+1.

xt is set by monetary policy at t and ut+1 is white noise. Through monetary
policy it is assumed that policy-makers are able one period ahead to control
aggregate output up to the unpredictable random disturbance ut+1.
Policy-makers have a target inflation rate π∗ and care about the deviation

of πt from π∗. Their instrument is xt and they are assumed to follow a rule
of the form

xt = −θ(πt − π∗). (23)

The policy-makers aim to choose θ optimally given their loss function

L = (1− ω)Ey2t + ωE(πt − π∗)2,

with 0 ≤ ω ≤ 1 parameterizing the relative weight on inflation vs. output
stabilization. Under RE, the optimal choice takes the form θP = θP (ω, (1−

6For surveys see Evans and Honkapohja (2003a), Bullard (2006), and Evans and
Honkapohja (2007).
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φ)/α), where θP is increasing in its arguments, and inflation follows an AR(1)
process. Under LS learning, private agents estimate the PLM

πt = c0 + c1πt−1 + vt

by a LS-type regression, and at time t forecast πet+1 = c0,t+ c1,tπt. The REE
can be shown to be E-stable, so under decreasing gain, LS learning would
converge to the REE.
With constant-gain LS (which OW call “perpetual learning”), estimates

c0,t, c1,t no longer fully converge to the REE, but instead to a stochastic
process. If the gain parameter κ > 0 is very small, then estimators will be
close to the REE values for most of the time with high probability, and output
and inflation will be near their REE paths. Nonetheless, small plausible
values like κ = 0.05 can lead to very different outcomes in the calibrations
OW consider. Using simulations OW find that (i) the standard deviations
of c0,t and c1,t are large even though forecast performance remains good, (ii)
there is a substantial increase in the persistence of inflation, compared to
the REE, as measured by the AR(1) coefficient for πt, and (iii) the policy
trade-off between standard deviations σπ and σy shifts out substantially and
sometimes in a non-monotonic way.
Under perpetual learning by private agents, if policy-makers keep to the

same class of rules then they should choose a different θ than under RE. One
key finding is that the “naive” policy choice θ = θP , can be strictly ineffi-
cient when agents are learning. In general, policy should be more hawkish,
i.e. under learning the monetary authorities should pick θ > θP .7 Finally,
following a sequence of unanticipated inflation shocks, inflation “doves” can
do very poorly, with expectations deviating substantially from RE. The in-
tuition for these results is that a more hawkish policy helps to keep inflation
expectations πet+1 “in line,” i.e. closer to RE values.

3.1.2 The Rise and Fall of Inflation

Several recent papers have argued that the learning approach plays a cen-
tral role in the historical explanation of the rise and fall of US inflation
over the 1960-1990 period. Sargent (1999) and Cho, Williams, and Sargent
(2002) emphasize the role of policy-maker learning. They argue that if mon-
etary policymakers attempt to implement optimal policy while estimating

7Similar results emerge in the more general setting in Orphanides and Williams (2007).
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and updating the coefficients of a misspecified Phillips curve, there will be
both periods of inefficiently high inflation and occasional escapes to low in-
flation. Sargent, Williams, and Zha (2006) estimate a version of this model.
They find that shocks in the 1970s led the monetary authority to perceive a
trade-off between inflation and unemployment, leading to high inflation, and
subsequent changed beliefs about this trade-off account for the conquest of
US inflation during the Volker period.
Primiceri (2006) makes a related argument, emphasizing both (i) policy-

maker learning about both the Phillips curve parameters and the aggregate
demand relationship, and (ii) uncertainty about the unobserved natural rate
of unemployment, Un

t . The great inflation of 1970s initially resulted from a
combination of underestimates of both Un

t and the persistence of inflation.
This also led policymakers to underestimate the impact of unemployment
on inflation until estimates of the perceived trade-off between inflation and
unemployment changed during the Volker period.
Other empirical accounts of the period that emphasize learning include

Bullard and Eusepi (2005), which examines the implications of policymaker
learning about the growth rate of potential output, Orphanides and Williams
(2005a), which underscores both private-agent learning and policymaker mis-
estimates of the natural rate of unemployment, and Cogley and Sargent
(2005), which develops a historical account of inflation policy emphasizing
Bayesian model averaging and learning by policymakers uncertain about the
true economic model.

3.1.3 New Keynesian Models and Policy Rules

The New Keynesian (NK) model is currently the most widely-used vehicle
for studying monetary policy. The NK model is a dynamic stochastic gen-
eral equilibrium model with a representative consumer, and price rigidity
modelled using monopolistic competition with constraints on price setting.8

We directly employ the log-linearized version of the NK model. The
aggregate demand and supply curves summarize private-sector behavior. The
simplest version of the NK model takes the form

xt = −ϕ(it − E∗t πt+1) +E∗t xt+1 + gt, (24)

πt = λxt + βE∗t πt+1 + ut. (25)

8See Clarida, Gali, and Gertler (1999) for a survey article and the books Woodford
(2003), Walsh (2003), and Galí (2008).
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where xt denotes the output gap, πt is the rate of inflation, it is the nominal
rate of interest, and gt and ut are exogenous AR(1) stationary shocks. The
notation E∗t (.) allows for non-rational expectations. The aggregate demand
or IS curve is obtained by log-linearizing the consumer’s Euler equation and
employing the goods market-clearing condition, so that the equation is ex-
pressed in terms of the output gap. The aggregate supply or AS (or NK
Phillips) curve is derived as a linearization of the firms’ optimality condition
under the price setting constraint.
The model is completed by specifying an interest-rate rule for monetary

policy, e.g., of the contemporaneous or forward-looking Taylor-type form
proposed by Taylor (1993):

it = χππt + χxxt, or

it = χπE
∗
t πt+1 + χxE

∗
t xt+1.

The form of the policy rules affects the determinacy and learnability proper-
ties of the NK model. Multiplicity of equilibria or expectational instability
of equilibrium under learning means that there can be undesirable fluctua-
tions in the economy. To avoid this possibility, good policy should focus on
interest-rate rules that deliver stability under learning and determinacy.
For Taylor rules Bullard and Mitra (2002) showed:

(1) The standard Taylor rule it = χππt + χxxt yields both E-stability and
determinacy iff the inequality

λ(χπ − 1) + (1− β)χx > 0

holds.
(2) The forward-looking rule it = χπE

∗
t πt+1 + χxE

∗
t xt+1 delivers E-stability

and determinacy of equilibrium when χπ > 1 and χx ≥ 0 is sufficiently small.
Taylor rules do not usually describe optimal policy in the NK model.

Optimal monetary policy under learning has been considered by Evans and
Honkapohja (2003c) under discretion and Evans and Honkapohja (2006) un-
der commitment (using the “timeless perspective” described in Woodford
(2003)). The FOC for the timeless-perspective optimum (often called the
targeting rule) is

λπt = α(xt − xt−1), (26)

where α is the relative weight on output variance in the loss function.
There are different ways for attempting to implement optimal monetary

policy. One natural formulation is to solve (25)-(26) for the optimal REE for
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xt, πt and to insert this solution into (24) to obtain a fundamentals-based rule
of the form ii = ψxxt−1+ψggt+ψuut. (There are also “hybrid rules” in which
it responds to deviations from the targeting rule.) Another implementation
solves (24)-(25)-(26), given expectations, for an “expectations-based” rule of
the form ii = δLxt−1+ δπE

∗
t πt+1+ δxE

∗
t xt+1+ δggt+ δuut, where RE has not

been imposed on private-sector expectations. We have:

Proposition. Optimal rules based only on fundamentals lead to E-
instability and (often) to indeterminacy. Optimal expectations-based rules
deliver both E-stability and determinacy.

This proposition is based on the formulation (24)-(25), which presumes
that agents aim to satisfy their subjective Euler conditions, as discussed in
Section 2.3. Preston (2005) and Preston (2006) analyze modifications to
the preceding analysis when it is assumed that agents instead have infinite
planning horizons.
Our discussion in this section is just the beginning of what is already

a large and growing literature. Further aspects of policy design in the NK
model include lack of observability of expectations and other variables, im-
perfect knowledge of structural parameters for optimal policy rules, impli-
cations of constant-gain learning, and extensions of the NK model to open
economies and supply-side channels of monetary policy transmission. See
Evans and Honkapohja (2007) for a discussion of these and other topics,
with references.

3.2 Business Cycles

3.2.1 The Basic RBC Model

Real Business Cycle (RBC) models have been widely discussed since the
1980s, see e.g. Cooley (1995). The basic RBC model describes an infinite-
horizon, representative-agent economy with flexible prices and perfect com-
petition. In such economies the competitive equilibrium is Pareto efficient,
so that computing the equilibrium can be done by solving the corresponding
planning problem.
The social planner maximizes

∞X
t=0

E0B
t(log(Ct)− Lt)
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subject to the constraints

Ct +Kt+1 ≤ StK
α
t (γ

tLt)
1−α + (1− d)Kt,

St = Sρ
t−1Vt,

K0 = K̄0, S0 = S̄0.

Ct and Kt denote consumption and capital, respectively. St is a productivity
shock and Vt is an iid innovation with mean one. The log of St thus follows
an AR(1) process and ρ captures the persistence of the technology shocks.
This planning problem does not have an explicit solution but dynam-

ics of the economy can be described using a linearization around a non-
stochastic steady state. (See Section 10.4 of Evans and Honkapohja (2001)
for formal details.) Defining detrended variables K̃t =

Kt

γt
, C̃t =

Ct
γt
etc., the

first-order optimality conditions are transformed to equations with asymptot-
ically stationary variables and a unique steady state. Log-linearizing around
the steady state, defining the variables kt = log(K̃t/K̄), ct = log(C̃t/C̄),
st = logSt and ϑt = log Vt, and introducing vector notation y0t = (ct, kt, st),
the model has the standard form

yt = AEtyt+1 +Byt−1 + Cϑt. (27)

It is well-known that the basic RBC model is determinate (saddle-point
stable) and the unique solution has V AR(1) form

yt = a+ byt−1 + cϑt, (28)

with particular values ā, b̄, c̄. To check E-stability of this solution one treats
(28) with general values for a, b, c as the PLM. The ALM can then be com-
puted in a standard way. It is possible to develop general E-stability condi-
tions for models of the form (27) and check their validity numerically. For the
Farmer (1999) parameter values, the RE solution is E-stable. The analysis
of RLS learning can be done in a standard way, provided the dimension of
shocks is increased to avoid an exact linear relationship between contempo-
raneous consumption, capital and the technology shock.

3.2.2 Applications and Extensions of the RBC Model

Williams (2004a) explores further features of the RBCmodel dynamics under
learning. Using simulations he shows that the dynamics under RE and learn-
ing are not very different unless agents need to estimate structural aspects
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as well as the reduced form PLM parameters. Huang, Liu, and Zha (2008)
focus on the role of misspecified beliefs and suggest that these can substan-
tially amplify the fluctuations due to technology shocks in the standard RBC
model.9

Other papers on learning and business cycle dynamics include Van Nieuwer-
burgh and Veldkamp (2006) and Eusepi and Preston (2008). The former for-
mulates a model of Bayesian learning about productivity and suggests that
the resulting model can explain the sharp downturns that are an empirical
characteristic of business cycles. The latter paper introduces the notion of
infinite-horizon decision rules (discussed in Section 2.3 above) to RBC mod-
els and argues that variants of the model under learning can resolve some of
the empirical difficulties of RE models with business cycles.
Giannitsarou (2006) extends the basic RBC model to include government

spending financed by capital and labour taxes. Her objective is to compare
the transitional dynamics of the model under RE and under RLS learning
when an unanticipated reduction in the capital tax displaces the steady state
equilibrium. Under RE there is the usual saddle-path adjustment: consump-
tion jumps instantaneously and the economy monotonically converges to the
new steady state. In contrast, the nature of dynamics under learning depends
on the nature of technology shocks near the time of tax change. With neg-
ative shocks the adjustment shows a delayed response in economic activity,
though eventually the dynamics approximate the saddle-path dynamics. In
contrast, under positive technology shocks the learning and RE adjustment
paths are nearly identical. This is an important finding as tax reductions are
often carried out in bad times.

3.2.3 Sunspot Fluctuations

When the RBC model is generalized to include externalities, monopolistic
competition or other distortions, it is possible for the steady state to be
indeterminate, i.e. to possess multiple solutions, including a dependence on
sunspots, in a neighborhood of the steady state. Examples are the models
of Farmer and Guo (1994), Benhabib and Farmer (1996) and Schmitt-Grohe
and Uribe (1997). This line of research suggests SSEs as a possible model of
the business cycle.

9Williams (2004a) also considers misspecification in an extended RBC model with com-
plementarities and shows that there can large fluctuations taking the form of “escape
dynamics.”
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Are these SSEs stable under learning? This issue was initially studied
in Chapter 10.5 of Evans and Honkapohja (2001), where it was found that
the SSE in the Farmer-Guo calibrated model was not stable under learning.
Stability of SSEs in these models was examined further in Evans and Mc-
Gough (2005a) and Duffy and Xiao (2007). In general, stability of SSEs can
depend both on their parametric representations and the precise information
set available to agents. However, for this class of models both Evans and
McGough (2005a) and Duffy and Xiao (2007) obtain predominately negative
results. Duffy and Xiao further argue that empirically plausible adjustment
dynamics rule out stable sunspots in this class of models. Evans and Mc-
Gough do find some cases of stable sunspots in the case of “common factor”
representations of SSEs, when the information sets of private agents include
contemporaneous aggregate endogenous variables. Stable SSEs of this type
arise only in small parameter regions and are sensitive to the information
set, but they do arise for some plausible calibrations of the Schmitt-Grohe
and Uribe (1997) model. On balance, the existing results provide a challenge
to future researchers to design versions of RBC-type models that exhibit
robustly stable SSEs.
Turning to other models, we have already seen that stable SSEs (i.e. sta-

ble under learning) have been shown to exist by Woodford (1990) in a mon-
etary overlapping generations model. Stable SSEs have also been obtained
by Howitt and McAfee (1992) in a model with search externalities and by
Evans, Honkapohja, and Romer (1998) in an endogenous growth model. We
briefly discuss some positive results for the standard NK model, introduced
in Section 3.1.3, and for a cash-in-advance (CA) model.
It is well-known that in NK models indeterminacy and existence of SSEs

arise for some policy parameters χπ, χx. Stability of SSEs under learning is
examined in Honkapohja and Mitra (2004) and Evans and McGough (2005b).
Writing the model in bivariate form

yt =ME∗t yt+1 + Pvt where y0t = (xt, πt) and v0t = (gt, ut)

indeterminacy arises when at least one eigenvalue of M is outside the unit
circle. When the model is indeterminate, SSEs can be represented in different
ways. VAR representations take the form

yt = a+ byt−1 + cvt + dvt−1 + fεt

where Etεt+1 = 0, and noisy Markov SSEs can be represented as

yt = ast + bvt,
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where st a finite-state Markov process. The stability of SSEs under learning
can in some cases depend on the representation, which can be interpreted as
the econometric forecasting model.
In many cases with indeterminacy, SSEs in the NK model are not stable

under learning. For example, if it = χππt + χxxt with 0 < χπ < 1 there
is indeterminacy and SSEs exist, but they are never stable under learning.
However, there do exist cases of stable SSEs (in some representations) for
the forward-looking rule it = χπE

∗
t πt+1 + χxE

∗
t xt+1, with χx > 0 sufficiently

large and χπ not too small. This was demonstrated for noisy finite-state
Markov SSEs in Honkapohja and Mitra (2004). The result was generalized
by Evans and McGough (2005b), who show that the noisy Markov SSEs
are special cases of “Common Factor” representations in which the sunspot
takes an AR(1) form. That is, st can be replaced by a sunspot ζt = λζt−1 +
εt where εt is an exogenous martingale difference sequence and λ satisfies
a “resonant frequency” condition. (For finite-state Markov processes the
resonant frequency corresponds to specific transition probabilities).
Stable SSEs can also arise in representative-agent CA models when the

government deficit is at least partially financed by seigniorage. Evans, Honkapo-
hja, and Marimon (2007) consider a standard representative-agent model
with cash goods, credit goods and variable labor supply. There is no capital,
but agents can hold assets in the form of money or bonds, and there is a CA
constraint for purchases of cash goods. Government spending gt is assumed
to be an exogenous iid process, and in the simplest version of the model gt
is entirely financed by seigniorage.
There are two regimes depending on the magnitude of the elasticity of

intertemporal substitution (ITS). When ITS is high, there are two steady
states, with differing inflation rates. This is a CA version of the hyperinfla-
tion model, which is discussed in the next section. When ITS is low there is
a single steady state, and with sufficiently low ITS the steady state is inde-
terminate. Evans, Honkapohja, and Marimon (2007) show that in this case
there are finite-state Markov sunspot equilibria that are stable under learn-
ing. These stable SSEs exhibit random variations over time in inflation and
output in response to the extraneous sunspot variable. Evans, Honkapohja,
and Marimon (2007) also examine the impact of changes in fiscal policy: a
sufficient reduction in the mean of gt, or a sufficient increase in taxes will in
many cases eliminate the SSEs.
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3.3 Hyperinflations and Liquidity Traps

3.3.1 Hyperinflations

Marcet and Nicolini (2003) aim to provide a unified theory to explain the
empirical regularities of Latin American hyperinflations experienced by many
countries in the 1980s using the seigniorage model of inflation. The model is
based on the linear money demand equation

Md
t /Pt = φ− φγ(P e

t+1/Pt) if 1− γ(P e
t+1/Pt) > 0 and 0 otherwise,

which can be obtained from an overlapping-generations endowment econ-
omy with log utility. This equation is combined with exogenous government
purchases dt > 0 that are entirely financed by seigniorage:

Mt =Mt−1 + dtPt.

Rewriting this as Mt/Pt = (Mt−1/Pt−1)(Pt−1/Pt) + d, setting Md
t = Mt and

assuming dt = d we get

Pt

Pt−1
= T̂ (βt, βt−1; d) ≡

1− γβt−1
1− γβt − d/φ

where

βt = P e
t+1/Pt and βt−1 = P e

t /Pt−1.

Under perfect foresight, there are two steady states, βL < βH , provided
d ≥ 0 is not too large. There is also a continuum of perfect foresight paths
converging to βH . Some early theorists suggested that these paths might
provide an explanation for actual hyperinflation episodes. The learning ap-
proach provides a different perspective.
Consider now the situation under adaptive learning. Suppose the PLM

is that the inflation process is perceived to be a steady state, i.e. Pt+1/Pt =
β + ηt, where ηt is perceived white noise. For this PLM expectations are³
Pt+1
Pt

´e
= β, all t, and the corresponding ALM is

Pt

Pt−1
= T̂ (β, β; d) ≡ T (β; d).

The map T (β; d) corresponds in Figure 3 to the part of h(β, d) that lies below
the value βU . Under steady-state learning, agents estimate β based on past
average inflation, i.e.

βt = βt−1 + t−1(Pt−1/Pt−2 − βt−1). (29)
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This is a recursive algorithm for the average inflation rate, which is equivalent
to LS regression on a constant.10

Stability under this learning rule is governed by the E-stability differential
equation

dβ/dτ = T (β; d)− β.

Since 0 < T 0(βL) < 1 and T 0(βH) > 1, βL is E-stable, and therefore locally
stable under learning, while βH is not. This can be seen from Figure 3.
Marcet and Nicolini (MN) extend the preceding model to an open econ-

omy setting. They assume price flexibility with purchasing power parity
(PPP), so that P f

t et = Pt, where P
f
t is the exogenous foreign price of goods.

A cash-in-advance constraint for local currency generates the money demand
as in the basic model. dt is assumed to be iid. There are two exchange rate
regimes. In the floating regime the economy behaves just like the closed
economy model, with PPP determining the price of foreign currency. In
the exchange rate rule (ERR) regime, the government buys or sells foreign
exchange as needed to guarantee Pt

Pt−1
= β̄ ≡ βL. The government imposes

ERR if the inflation rate would otherwise exceed βU(> βH), a maximum
acceptable level.
MN argue that under RE the model cannot properly explain the main

stylized facts of hyperinflation, and that a learning formulation is more suc-
cessful. They use a variation of learning rule (29) in which t is replaced by

αt, where αt = αt−1+1 if
¯̄̄³

Pt−1
Pt−2
− βt−1

´
/βt−1

¯̄̄
falls below some bound, and

otherwise αt = ᾱ, i.e. a constant gain is used. The qualitative features of
the model are approximated by the system Pt

Pt−1
= h(βt−1, dt) where

h(β, d) =

½
T (β; d) if 0 < T (β; d) < βU

β̄ otherwise
.

Figure 3 describes the dynamics of system.

FIGURE 3 ABOUT HERE

There is a stable region, consisting of values of β below the “unstable”
high inflation steady state βH , and an unstable region that lies above it. This

10One can consider more general classes of PLMs. Adam, Evans, and Honkapohja (2006)
study the circumstances in which autoregressive PLMs can converge to hyperinflation
paths.
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gives rise to very natural recurring hyperinflation dynamics: Starting from
βL, occasionally a sequence of random shocks may push βt into the unstable
region, at which point the gain is revised upward to 1/ᾱ and inflation follows
an explosive path until it is stabilized by ERR. Then the process begins
again.
The model with learning has useful policy implications. ERR is valuable

as a way of ending hyperinflations if the economy enters the explosive regime.
However, a higher E(dt) makes average inflation higher and the frequency of
hyperinflations greater. This indicates the importance of the orthodox policy
of reducing deficits as a way of minimizing the likelihood of hyperinflation
paths.

3.3.2 Liquidity Traps and Deflationary Spirals

Deflation and liquidity traps have at times been a concern. As we have seen,
in contemporaneous Taylor rules, interest-rates should respond to the infla-
tion rate more than one-for-one in order to ensure determinacy and stability
under learning near the target inflation rate. However, as emphasized by
Benhabib, Schmitt-Grohe, and Uribe (2001), if one considers the interest-
rate rule globally, the requirement that net nominal interest rates must be
nonnegative implies that the rule must be nonlinear and also, for any contin-
uous rule, the existence of a second steady state at a lower (possibly negative)
inflation rate. This is illustrated in Figure 4, which shows the interest-rate
policy R = 1+ f(π) as a function of π (a dependence on aggregate output is
omitted for simplicity). The straight line in the figure is the Fisher equation
R = π/β, which is obtained from the usual Euler equation for consumption
in a steady state.

FIGURE 4 ABOUT HERE

HereR stands for the interest rate factor (the net interest rate isR−1) and
πt = Pt/Pt−1 for the inflation factor (π−1 is the net inflation rate). In Figure
4, π∗ denotes the intended steady state, at which the “Taylor principle” of a
more than one-for-one response is satisfied, and πL is the unintended steady
state. πL may correspond to either a very low positive or a negative net
inflation rate, i.e. deflation. The zero lower bound corresponds to R = 1.
Benhabib, Schmitt-Grohe, and Uribe (2001) show that under RE, there is
a continuum of “liquidity trap” paths that converge on πL. The pure RE
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analysis thus suggests a serious risk of the economy following these “liquidity
trap” paths.
What happens under learning? Evans and Honkapohja (2005) analyzed a

flexible-price perfect competition model. We showed that deflationary paths
are possible, but that the real risk, under learning, were paths in which
inflation slipped below πL and then continued to fall further. For this flexible-
price model we showed that this could be avoided by a switch to an aggressive
money supply rule at low inflation rates.
Evans, Guse, and Honkapohja (2008) reconsider the issues in an NK

model with sticky prices due to adjustment costs and deviations of output
from flexible-price levels. Monetary policy follows a global Taylor-rule as
above. Fiscal policy is standard: exogenous government purchases gt and
Ricardian tax policy that depends on real debt level. The model equations
are nonlinear, and the nonlinearity in its analysis under learning is retained.
The key equations are

αγ

ν
(πt − 1)πt = β

αγ

ν

¡
πet+1 − 1

¢
πet+1

+(ct + gt)
(1+ε)/α − α

µ
1− 1

ν

¶
(ct + gt)c

−σ1
t

ct = cet+1(π
e
t+1/βRt)

σ1,

The first equation is the nonlinear NK Phillips curve and the second equation
is the IS curve. There are also money and debt evolution equations.
There are two stochastic steady states at πL and πH . If the random

shocks are iid then “steady-state” learning is appropriate for both ce and πe,
i.e.

πet+1 = πet + φt(πt−1 − πet)

cet+1 = cet + φt(ct−1 − cet),

where φt is the gain sequence. The intended steady state π
∗ is locally sta-

ble under learning, while the unintended steady state πL is unstable. The
key observation is that πL is a saddlepoint, which implies the existence of
deflationary spirals under learning. In particular, after a sufficiently pes-
simistic expectational shock , ce, πe will follow paths leading to deflation and
stagnation. This is illustrated in Figure 5, giving the E-stability dynamics.

FIGURE 5 ABOUT HERE
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For the intuition, suppose that we are initially near the πL steady state
and consider a small drop in πe. With fixed R this would lead through
the IS curve to lower c and thus, through the Phillips curve, to lower π.
Because only small reductions in R are possible given the global Taylor rule,
the reduction in c and π cannot be offset. The falls in realized c and π
lead, under learning, to reductions in ce and πe, and this sets in motion the
deflationary spiral.
Thus, large adverse shocks to expectations or structural changes can set

in motion unstable downward paths. Can policy be altered to avoid de-
flationary spiral? Evans, Guse, and Honkapohja (2008) show that it can.
The recommended policy is to set a minimum inflation threshold π̃, where
πL < π̃ < π∗. The authorities would follow normal monetary and fiscal
policy provided this delivers πt > π̃. However, if πt threatens to fall below
π̃, then aggressive policies would be implemented to ensure that πt = π̃:
interest rates would be reduced, if necessary to near the zero lower bound
R = 1, and if this is not sufficient, then government purchases gt would be
increased as required. It can be shown that these policies can indeed ensure
πt ≥ π̃ always under learning and lead to global stability of the intended
steady state at π∗. Perhaps surprisingly, it is essential to have an inflation
threshold. Using instead an output threshold to trigger aggressive polices
will not always avoid deflationary spirals.

3.4 Asset Prices

Asset pricing is another area of recent focus in the learning literature. The
potential for adaptive learning to generate new phenomena for asset prices
was already apparent in the early work of Timmermann (1993) and Timmer-
mann (1996). Consider the standard risk-neutral asset-pricing framework

pt = βE∗t (pt+1 + dt+1), (30)

where pt is the real price of equalities, dt+1 is the real dividend paid at the
end of period t+1, and 0 < β ≡ (1+r)−1 < 1 is the discount factor, assumed
constant. Assume also that dt is an exogenous stochastic process, e.g.

ln(dt) = μ+ ln(dt−1) + εt, (31)

where εt
iid∼ N(0, σ2) and μ+σ2/2 < ln(1+r). Under RE the “fundamentals”

solution is
pt =

1 + g

r − g
dt, where 1 + g = exp(μ+ σ2/2). (32)
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Iterating (30) forward, one obtains the present value formula

pt =
X∞

j=1
βjE∗t dt+j , (33)

and imposing RE yields (32).
There are a number of empirical puzzles in asset-pricing based on this

model, including excess volatility of stock prices and predictability of stock
returns. A potentially simple and appealing explanation is that traders do
not have a priori knowledge of the parameters of the (pt, dt) process. The
equilibrium price-process under learning is generated, as usual, assuming that
the parameter estimates are updated over time as new data become available.
There are two natural ways to model stock prices under learning, de-

pending on whether we want to treat (33) or (30) as the key equation
that determines pt, given expectations. If traders are “fundamentalists”
then price will be set in accordance with (33), based on forecasts E∗t dt+j =
dt exp(jμ̂t + jσ̂2t/2),where μ̂t and σ̂2t are the time t estimates of μ and σ2.
This leads to

pt =
exp(μ̂t + σ̂2t/2)

1 + r − exp(μ̂t + σ̂2t/2)
dt.

This approach is investigated by Timmermann (1993) and Timmermann
(1996) under the name “present-value learning.”
An alternative approach is to assume that pt is determined by the ex-

pected rate of return over the coming period in accordance with (30). Traders
would then then also estimate a model for pt, e.g. pt = a+ λdt−1+ ηt. Using
estimates at, λt, μ̂t and σ̂2t traders form forecasts E∗t dt+1 and E∗t pt+1, with
pt determined by (30). This “self-referential learning” approach was also
studied in Timmermann (1996).
For concreteness, consider the present-value learning approach. For the

dividend process (31), “steady-state” learning rules suffice, i.e.

μ̂t =
n− 1
n

μ̂t−1 +
1

n
(ln(dt)− ln(dt−1))

σ̂2t =
n− 1
n2

[nσ̂t−1 + (μ̂t−1 − (ln(dt)− ln(dt−1))2],

where n is the sample size. Because the dividend process is exogenous, stan-
dard asymptotic statistical results apply, so that μ̂t → μ and σ̂2t → σ2 as
n → ∞. Thus, the price process converges asymptotically to RE. However,
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during the learning transition there will be substantial excess volatility for a
substantial period of time.
Calibrating the model using US annual dividend data from Standard and

Poors, and using an initial prior in each simulation based on a sample size of
10, Timmermann (1993) finds that for sample sizes of around 40, the extent of
gross violations of the Shiller-type volatility bounds is in the 30 to 50% range.
This effect drops away rapidly as the sample size increases. This suggests
that using learning to explain excess volatility requires occasional structural
shifts in the dividend process, leading agents to reduce their effective sample
size. On the other hand, the “predictability anomaly” — that excess returns
are predictable by the lagged dividend yield — arises even with large sample
sizes.
More recent work on learning and stock prices has extended the frame-

work in several directions. Brock and Hommes (1998) introduce heteroge-
neous expectations using the dynamic predictor selection methodology dis-
cussed earlier. Branch and Evans (2008) and Adam, Marcet, and Nicolini
(2008) both focus on self-referential learning.
Adam, Marcet, and Nicolini (2008) use the consumption-based version

of model (30). Forecasts are given by E∗t pt+1 = btpt, where bt is updated
according to

bt = bt−1 + (t+K)−1(pt−1/pt−2 − bt−1),

for K ≥ 0 given, modified by a projection facility that bounds estimates of
bt to ensure positive, finite prices. The dividend process is assumed known,
with forecasts set at the true conditional expectation. The learning transition
exhibits mean reversion of returns, excess volatility, and persistence of price-
dividend ratios. A calibrated version of the model is shown to match many
aspects of US data.
Branch and Evans (2008) examine learning within a mean-variance linear

model. Agents choose between a risk-free asset that pays fixed rate of return
R = β−1 > 1 and a risky stock. The supply of the stock is exogenous
and random. Demand depends positively on expected excess returns but
negatively risk, as measured by expected conditional variance of returns.
Equating supply and demand for the risky asset leads to

pt = βE∗t (pt+1 + dt+1)− βaσ2t zst

where zst is asset supply, a ≥ 0 is the absolute risk-aversion parameter and
σ2t is the time t estimate of the conditional variance. The dividend process
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is assumed exogenous and known and forecasts E∗t dt+1 are set at the true
conditional expectation. E∗t pt+1 is generated from estimates of the price
process

pt = kt + ctpt−1 + εt.

There is a fundamentals REE with fixed parameters (k̄, c̄, σ̄2) and this
REE is stable under LS learning. Interesting dynamics arise if agents instead
estimate the parameters (kt, ct, σ2t ) using constant-gain LS learning. There
are occasional “escapes” to non-fundamental random-walk behavior of asset
prices, in which agents’ estimates are close to (kt, ct) = (0, 1). In this regime,
there is bubble-like behavior in pt. However, subsequent revisions in the
estimates of risk eventually lead to crashes back to fundamentals values.
Thus, learning about both returns and risk can lead to recurrent bubbles
and crashes.
Exchange rate dynamics also exhibit a number of puzzles that learning

models may help to resolve.
Chakraborty and Evans (2008) focus on the forward-premium puzzle.

Letting st be the log of the price of foreign currency and Ft the log of the
forward rate at t for foreign currency at t+ 1, under RE and risk neutrality
we have α = 0 and β = 1 in the forward-premium regression

st+1 − st = α+ β(Ft − st) + ut+1.

However, in practice estimates of b are substantially less than one and often
negative.
Using the benchmark monetary exchange rate model, Chakraborty and

Evans (2008) argue that this anomaly can be explained by learning. The
reduced form is

st = θE∗t st+1 + vt,

where fundamentals vt are modeled as vt = ρvt−1 + εt.The REE is st =
bvt−1 + cεt, where b = b̄ = (1− ρθ)−1ρ. Agents estimate the parameter b by
constant-gain LS and make forecasts E∗t st+1 = btvt, where bt is their time t
estimate of b. For small gains bt converges to a stochastic process distributed
with high probability in a small neighborhood of b̄. Surprisingly, this implies
a strong downward bias in the forward-premium regression for the realistic
case of ρ near 1. In particular, plim(β̂)→ 0 as ρ→ 1, and for realistic sample
sizes the median value of β̂ is negative, in line with the data.
Another, potentially complementary, approach to exchange-rate modeling

is based on dynamic predictor selection, see De Grauwe and Grimaldi (2006).
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Further applications of learning to exchange rates include Kasa (2004), Kim
(2008), Mark (2007), and Markiewicz (2008).

4 Concluding Remarks

The adaptive learning approach to macroeconomics treats economic agents
— firms, households and policymakers — like econometricians when modeling
how they make forecasts. Macroeconomic models under learning, in which
estimated forecast rules are updated in accordance LS or other statistical
rules, can be analyzed using stochastic approximation techniques, and E-
stability provides a key tool for analyzing the dynamics under LS learning.
Applications of learning in macroeconomics have expanded rapidly in recent
years, and the learning approach has provided novel insights to central issues
of monetary policy, business cycles, and asset pricing.
There are a number of current research areas that, for reasons of space,

our review has not covered, but which are likely to become more prominent.
Empirical work on forecasts, based on survey data, experiments, and indirect
measures from asset markets, will help to assess the alternative models of
learning and expectations formation. For recent papers, see Branch (2004),
Adam (2007) and Pfajfar and Santoro (2007). In addition to the empirical
topics covered in our review, there are applications of learning to several other
areas. One new example is DSGE models, see Milani (2007) and Slobodyan
and Wouters (2007). Alternatives to econometric approaches to learning
include those based on genetic algorithm learning and evolutionary dynamics,
e.g., see Arifovic (2000) and Georges and Wallace (2007).
There are also a number of unresolved conceptual questions that merit

further investigation. One set of issues revolves around heterogeneous ex-
pectations, model selection and Bayesian model averaging. Heterogeneity in
forecasting and multiple models are clearly evident in reality, but this con-
trasts with Bayesian approaches that suggest eventual convergence to a single
model. Another major area concerns the use of structural information and
forward-looking reasoning in forecasting by private agents. The econometric
approach to learning currently emphasizes forecasting using reduced-form
models, but in many cases it would be natural for agents to incorporate
structural knowledge in their forecasting.
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Figure 1: 2-cycle and steady state
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Figure 2: SSE and multiple steady states
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Figure 3: Inflation as a function of expected inflation
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Figure 4: Multiple steady states with global Taylor rule
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Figure 5: Expectation dynamics under normal policy


