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The abundance and distribution of phytoplankton were

compared over a two year period at a coastal station off the

central Oregon coast to determine probable successional

patterns. Abundance and distribution of phytoplankton were

compared over a one year period in the lower, middle, and

upper regions of the Coos Bay estuary to assess species

composition. Spring and fall blooms were evident in both

study years and the increase in biomass associated with

these blooms were due to the the addition of larger cells to

a base level of cells. Bloom patterns in coastal and

estuarine sites varied between phytoplankton categories and

between sites. This variation is probable due to

differences in environmental conditions. Phycoerythrin­

containing cyanobacteria and minute chlorophyll-dominant

eukaryotes were an important component at all sites.

Cryptomanads were more prevalent at estuarine sites.
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CHAPTER I

INTRODUCTION

Background Information

Community succession of plants and animals has been

described as a regular and predictable process.

Investigators have proposed general patterns of seasonal

succession in fresh water lakes, coastal areas, and the open

ocean (Pearsall 1932; Colebrook et ale 1965; Stewart et ale

1986; Boney 1989). Components thought to trigger and

regulate phytoplankton succession include both allogenic and

autogenic factors. Allogenic successions are driven by

changes in external geophysico-chemical forces (i.e.,

temperature, salinity and light). Autogenic successions are

a result of biological processes in the absence of changing

abiotic influences (i.e., nutrient regeneration, competition

and predation) (Smayda 1980; Begon et ale 1990). This study

will investigate the influence of the allogenic factors,

water temperature and salinity, on phytoplankton succession

in a coastal marine habitat over a two year period. A second

phase of this study will compare species composition

patterns and abundance of phytoplankton communities in the
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tidally influenced estuary of South Slough, Charleston,

Oregon.

Seasonal Patterns

Annual abundance and successional patterns of

phytoplankton in aquatic environments are well described and

it is known that these patterns vary regionally. Boney

(1989) described five geographically related annual patterns

of abundance from the Arctic seas to the Antarctic seas

(Fig. 1). Each area shows unique seasonal amplitudes of

phytoplankton production. These range from one major peak

in the Arctic to a somewhat constant but low abundance

throughout the year in tropical seas. Colebrook and

Robinson (1965) have described distinct seasonal patterns of

phytoplankton biomass that vary with distance from shore

(Fig. 2). Cornmon patterns have been observed in many aquatic

habitats, e.g. small celled diatoms, capable of rapid cell

division and requiring high nutrient levels, are known to

start the seasonal progression. Following the small diatoms

are slower growing medium size diatoms. Finally, motile

species of several algal classes such as dinoflagellates

(Smayda 1980; Boney 1989) proliferate.
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The Atlantic vs the Pacific

Our understanding of ocean ecology has been dominated

by studies conducted in the Atlantic Ocean. More recent

investigations have shown that the ecology of the Atlantic

and Pacific Oceans are distinct. The Pacific is larger,

colder and less saline than the Atlantic (Parsons and Lalli

1988). Additionally, the subarctic North Pacific is a

nutrient replete area (for "major nutrients such as Si, P,

and N) but does not experience a major seasonal spring

phytoplankton bloom as does the North Atlantic (Miller et

ale 1991).

Parsons and Lalli (1988) have nicely summarized some of

the major differences between North Pacific and the North

Atlantic. In brief, these include differences in:

* Factors that limit the seasonal cycle of
phytoplankton. The North Pacific (NP) is limited
by low temperatures and zooplankton grazing while
the North Atlantic (NA) is limited by depth of the
mixed layer and by nutrient exhaustion.

* The size and annual generation in copepod
populations. The subarctic NP is dominated by
large-sized copepods having a single generation
per year while the NA copepod population is
dominated by smaller species having several
generations per year.

* Trophic structures and efficiency. The NP
is dominated by a highly efficient food chain
involving nano-phytoplankton ~ micro-zooplankton
~ macro-copepods, while the NA is dominated by a
less efficient microphytoplankton ~ macro-copepod
community.
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FIGURE 1: Seasonal amplitudes of phytoplankton production.
(a)Arctic seas. (b) North temperate seas. (c) Tropical seas.
(d) Antarctic seas - northern region. (e) Antarctic seas ­
southern region. Modified from Boney p. 52.

FIGURE 2: Seasonal patterns in chlorophyll abundance.
Modified from Colebrook and Robinson (1965) and Mann &
Lazier, p. 158.



5* Species assemblages among the plankton.
The NP is dominated by a flagellate-micro­
zooplankton food chain in contrast to the diatom­
macroozooplankton food chain in the NA.

The North Pacific is described as a balanced ecosystem where

phytoplankton stocks are kept in check by increased grazing

capacity by micro- and macrozooplankton in the spring and

summer.

Size Structure

The importance of ultraplankton has become evident in

the past 20 years. Ultraplankton, as described by Shapiro

et ale (1985), are plankters < 5 ~m in diameter (and are

able to pass through a 3 ~ Nuclepore filter). The

subarctic Pacific phytoplankton assemblage is dominated by

small cells. Investigators have found that 80% of the

biomass is made up of ultraplankton (Booth 1988; Parsons and

Lalli 1988). Total cell numbers for small cells range up to

105 c'l'l in the North Pacific but are approximately an

order of magnitude lower in the Atlantic (Parsons & Lalli

1988). However, diatoms are reported to be one to two

orders of magnitude greater in the Atlantic (Parsons & Lalli

1988) .

Fractionation of phytoplankton into different size

groups has been used extensively to determine seasonal

changes in their distribution. Studies show that

photosynthetic prokaryotic and eukaryotic picoplankton do
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contribute a significant proportion of the total carbon

production in lakes and oceans. Picoplankton as defined by

Sieburth et al. (1978), are cells 0.2 - 2.0 ~m in diameter.

The prokaryotic phytoplankton would be included under this

terminology, whereas the larger eukaryotic phytoplankton (as

much as 5 or 6 ~ in diameter), would fall in the

nanoplankton category (Shapiro and Guillard 1985).

Therefore, investigators have found the term ~ultraplankton"

more appropriate because it includes both the chroococcoid

cyanobacteria and phototrophic eucaryotic cells (Shapiro and

Guillard 1985).

Synechococcus sp., a phycoerythrin-rich photosynthethic

cyanoba~teria about 1 pm in diameter, have been observed in

high)6oncentrations (10 5 - 108 c·l"l) throughout the world's
/

/

oceans and coastal waters (Johnson and Sieburth 1979;

Waterbury et al. 1979; Glover et al. 1985; Murphy and Haugen

1985). Cell concentrations tend to be-highest in surface

water and near the coasts and lowest in the central

oligotrophic ocean (Murphy and Haugen 1985; Olson 1990).

Murphy and Haugen (1985) in a study carried out in the North

Atlantic found that cyanobacterial abundance decreased with

increasing latitude and decreasing temperature and distance

from shore.

As with cyanobacteria, the existence of very small (0.5

- 5 pm) chlorophyll dominant eukaryotic cells has likewise

been reported from many areas of the world. However, little

is known about their distribution or taxonomy. These small
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eukaryotes are, in general, numerically less abundant than

cyanobacteria in surface waters (Murphy and Haugen 1985).
~..

However, they tend to equal or outnumber cyanobacteria

around the thermocline (near the bottom of the euphotic

zone) and their numbers remain constant while cyanobacteria

decrease with increasing north latitude in the Atlantic

(Murphy and Haugen 1985).

Characteristic of temperate zones is the formation of a

spring phytoplankton bloom. As described by Gran (1931 and

1935) and Sverdrup (1953), one mechanism thought to underlie

this seasonal bloom is shallowing of the mixed layer to less

than the critical depth (the depth at which photosynthesis

is balanced with respiration). Winter storms cause

turbulent mixing of the entire water column bringing

nutrients to the surface. As spring approaches solar

radiation increases causing surface warming and formation of

a shallower mixed water layer. With stratification

phytoplankton are held in the euphotic zone where they

multiply rapidly.

Large phytoplankton do exist in the Pacific but do not

produce blooms comparable to those in the oceanic North

Atlantic (Clemons and Miller 1984). Summer assemblages of

large cells consist primarily of a centric diatom Corethron

criophilum which can range in diameter from 29 to 47 pm and

can be as long as 177 pm (Clemons and Miller 1984). Autumn-

winter large cell assemblages are dominated by a centric

diatom which can reach a length up to 3.6 mm, Thalassiothrix
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longissima Cleve. (Clemons and Miller 1984). Overall

though, smaller, nanoplankton-sized cells dominate.

Estuaries

Simplistically, estuaries are defined as transitional

ecosystems located at the interface of terrestrial and

marine environments (Nybakken 1988). Salinity and
r--

temperature gradients are primary features which vary

seasonal, with topography, and with the tides. Therefore,

estuaries experience dynamic temporal and spatial

variability which can create a stressful environment for

organisms (Cloern 1995).

Like coastal upwelling zones, estuaries are areas of

high biological productivity. However, their physical

environment is distinct from lakes and the open ocean

(Cloern 1991). Physical characteristics (e.g. riverine

freshwater inflow and tidal stirring) deliver varying

amounts of sediments and nutrients. These influence the

physical/chemical structure of the water column (e.g.

increasing turbidity and decreasing dissolved oxygen content

of bottom waters) and thereby influence the biological

community of estuaries. Phytoplankton population changes are

influenced seasonally by variability of river flow and daily

by the tides (Cloern 1991). Nybakken describes a

successional pattern for estuaries in temperate zones. Low

phytoplankton populations are characteristic in the late
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fall and winter due to reduced light and high turbidity.

This is followed by a later winter diatom bloom which

terminates in the spring thought to be due to depletion of

~t~o~en~,sources. Populations remain low in the summer due

to low nutrients and grazing.

Seasonal Variation in Temperature and Salinity

Oregon's coastal waters are affected by local seasonal

processes that modify surface water properties such as

temperature and salinity (Pattullo et ale 1965; Reed et ale

1973; Huyer 1977). During the winter season (December-

February), coastal water is influenced by rainfall, runoff,

cooling and wind stress, the latter being predominantly from

the south. The influx of fresh water from rainfall and

runoff dilutes coastal water and thus lowers salinity.

The major processes affecting the summer months (June-

Augu~t) are heating and upwelling. The Columbia River plume

and wind stress which is predominantly from the north also

impacts coastal water in summer months. Upwelled water can

normally be characterized as cold, dense and nutrient

replete. Oregon experiences four or five strong upwelling

events during summer months which give rise to bursts of

productivity (Barber and Smith 1981; Mann and Lazier 1991).

Although upwelling exerts the most influence during summer

months, it can and does occur at other times of the year

when the winds are blowing from the north.
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Primary Questions and Hypotheses

Temporal Study

The first part of this study focused on phytoplankton

successional patterns using abundance in different size

classes to quantify the relative success of those size

classes. I will compare seasonal patterns of phytoplankton

succession in both study years (93-94 and 94-95). To

describe the typical pattern in this area I addressed the

following questions: (1) Do variations in chlorophyll size

structures occur seasonally and, if so, are these variations

due to the addition of large cells to a base level of small

cells? (2) Do phycoerythrin containing cyanobacteria and

~mall « 3 pm) chlorophyll-dominant eukaryotic phytoplankton

tend to occur at the same time? (3) Are cryptophytes a

important component of the flora in coastal and estuarine

environments? (4) Do phytoplankton composition/dominance

pattern changes occur at the same time as changes in

temperature or salinity?

Spatial Study

The second part of this study will compare three

different environments to assess the variation in size

fraction, composition and abundance of protistan components

in the lower, middle, and upper regions of the Coos Bay
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estuary. My primary question is: Do the Boat House

(upper Slough), mid-Slough and lower-Slough represent a

si~~le environment? Specifically, does the presence of

certairl taxa (e.g., Cryptophyta) at a single region predict

their presence throughout the estuary?

I propose the following hypotheses:

1. The abundance and dominance pattern of

phytoplankton changes seasonally at all three regions with

increasing overall abundance at all sites in the spring and

summer months due to the addition of larger cells to a

constant component of small ones.

2. Specific taxa (eg., cryptomonads and

dinoflagellates) vary seasonally and vary between sites.
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CHAPTER II

MATERIALS AND METHODS

Description of Study Site

This study was conducted in the South Slough of Coos

Bay, Oregon, USA between September 1993 and October 1995 at

the dock of the Oregon Institute of Marine Biology,

University of Oregon which is located at the entrance to the

bay and, between September 1994 and October 1995, at three

sites, OIMB's dock and two areas within the South Slough of

the Coos Bay (Fig. 3). The South Slough is a National

Estuarine Research Reserve (NERR).

Temporal Study Site

Temporal sampling was conducted September 93 - October

95 at OIMB's dock (Fig. 3). This location was chosen due to

its close proximity to the mouth of Coos Bay. The water

column is expected to be well mixed coastal water at high

tide.
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Spatial Study Sites

The spatial study was conducted September 94 - October

95. The three sites for the spatial study include the boat

house dock and two estuarine sites located within the South

Slough (Fig. 3). The two estuarine sites are the South

Slough Pilings and Hinch Road Bridge. The South Slough

Pilings site is part of the North Creek watershed and is

immediately north of the South Slough NERR Interpretive

Center. North Creek flows down a deep ravine to Rhodes

Marsh, a formerly diked marsh which is now reverting to

saltmarsh due to natural erosion of the dikes. The Pilings

site is known to have a salinity gradient from 32 0/00 in

the summer to brackish salinities of about 20 0/00 in the

winter.

The third site, Hinch Road Bridge, is part of the

Winchester Creek tidelands. It is located at the southern

end of NERR. The salinity gradient is much greater compared

to the Pilings. Previous studies have found that the

salinit ranges from undiluted seawater in the summer with

about 32 0/00 to totally fr~ water in the winter months.

Sampling Techniques

Temporal Sampling

From September 1993 through September 1994, water
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samples were collected weekly from OlMB's dock. Sampling

was conducted one hour before high tide to ensure a marine

sample. An aliquot of sample was fixed with EM grade

glutaraldehyde to a 0.5% final concentration. After one

hour of fixation in the dark at 40C, the sample was filtered

sequentially through a 3.0 pm, 1.0 pm, and 0.2 pm

polycarbonate filter. The filters were mounted on glass

slides with a drop of immersion oil on top of the filter and

a cover slip over that. The slides were then frozen in a

light resistant slide box until examination (usually within

one week of sampling but no longer than six months after

sampling). Slides were examined under blue light using an

epifluorescence Leitz Laborlux S standard microscope

equipped with a 100-W Mercury light source. The 0.2 and 1.0

pm filters were enumerated into phycoerythrin-dominant

photosynthetic cyanobacteria and chlorophyll-dominant

eukaryotes. The 3.0 pm filter was enumerated using the same

categories plus phycoerythrin-containing cryptophytes.

Categories were based on the color of fluorescence:

cyanobacterial cells of the genus Synechococcus fluoresced

yellow, photoautotrophic eukaryotes fluoresced red and

cryptophytes fluoresced orange.

Beginning in October 1994, samples were collected and

fixed using the methods stated above but in addition to

fixation the samples were stained with a nuclear stain,

4',6-diamidino-2-phenylindole (OAPl). OAPl was used in

order to locate heterotrophic organisms and to better
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differentiate dinoflagellates based on their distinctive

nucleus. A 1 mg/ml stock solution of DAPI was thawed

immediately before usage (Porter and Feig 1980). Samples

were then incubated at a final concentration of .01 pg/ml of

DAPI at 40C in the dark for ten minutes prior to filtration.

Samples were filtered sequentially as stated above; however,

an 8.0 ~ filter was added to the series to better separate

large organisms. Slides were examined under UV light for

analysis of DAPI stained cells. The size classes were

enumerated as above except that the 3 and 8 ~ filter sizes

were further enumerated for centric and pennate diatoms,

autotrophic and heterotrophic dinoflagellates, and other

unidentified heterotrophs.

Temperature and salinity were recorded at the time

water samples were collected. A mercury thermometer with

0.2 0C gradations was placed in a rinsed bucket filled with

sea water. The thermometer was read while the bulb was

still immersed and after the mercury had stabilized at a

fixed temperature. Density was measured using a hydrometer.

A cylinder was filled with sea water from a bucket. The

hydrometer was inserted in the cylinder and allowed to

stabilize prior to taking a reading. The temperature and

density reading were used to determine salinity. Wind speed

and direction information were obtained from the u.S. Coast

Guard's local station. Daily precipitation information was

obtained from the weather service at North Bend Municipal

airport.
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Temperature and salinity have been measured almost

daily at the Boat House for a number of years. Therefore,

in order to look for temperature and salinity patterns I

incorporated the station's data with my own. I divided the

data into typical seasons (Fall constituting sePtember,~
October and November; Winter -December, January and

February; Spring - March, April and May; and Summer - June,

July and August) to show seasonal information e.g. seasonal

averages and ranges (Fig. 11-14).

Spatial Sampling

Water samples were collected from the three

environments described above one hour before high high tide

twice monthly. Water was collected at a depth of 1 meter

using a 2-liter Niskin bottle. The samples were fixed in

the field with glutaraldehyde and stored on ice in the dark

until returning to the lab. The samples were then stained

with DAPI, filter-fractionated, and examined by

epifluorescence microscopy as above.

Water temperature and salinity were measured using a

field thermometer and a field refractometer. While not as

precise as a hydrometer, the refractometer was easier to

transport and use in the field and was precise enough to

document the wide range of salinities in the slough.
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Cell Enumeration

Cells were enumerated using one of two comparable

computations for calculating cells per milliliter. First,

either 20 fields of view or up to a total of 200 cells of

cells was low a strip area count was used with the 0.2 ~

field of view analysis was calculated by counting cells in

the most dominant organism using the lowest magnification

Second, when density of

and 1.0 ~ filters. A strip consisted of one to five 1/2 mm

(smallest objective) possible.

~

I
I

I
I

transects using oil immersion 50X objective until at least

200 cells had been counted. Prior work has shown that when

cells are randomly distributed on a filter, counting at

least 20 fields of view or 200 cells provide statistically

significant counts (Uehlinger 1964; Shapiro 1985; Booth

1987). Therefore, replicate counts were deemed not

necessary. Due to the known patchiness of phytoplankton

distribution, difference among water masses and the degree

of mixing at the three study sites abundance counts are a

snap shot in time of the organisms in that particular place

at that particular time. Since replicate counts were not

made any measure of variability can not be made.

Enumerations were converted to cells per ml using the

following conversion:

Fields of view:
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(total number of cells in a field)*(objective

magnification factor)/(# of fields of view)*(total

volume filter) = cells ml- 1 .

Transects:

(total filter area)*(total number of cells

counted)/(area of a transect)*(# of transects) * (total

volume filtered) = cells ml-1 .

Organisms were combined in the following manner:

Synechococcus counted on all filters were combined into one

total, chlorophyll-dominant eukaryotes counted on the .2 and

1 ~m filters were combined into one total and are

represented as chlorophyll-dominant eukaryotes < 3 ~m, all

cryptomonads were combined, and chlorophyll-dominant

eukaryotes counted on the 3 and 8 ~m filter were combined

and represented as chlorophyll-dominant eukaryotes > 3 ~m.

Analysis

Study year 1 was compared to study year 2 using graphic

analysis of cell abundances. Year 1 included 9/27/93

through 9/26/94 and year 2 included 10/3/94 through

10/24/95. Coefficients of variance were determined by

dividing the standard deviation by the means of each group

of organisms. In all analyses, a "bloom" was determined to

be an increase above the mean abundance that was at least a

doubling over the previous observation.
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Biovolume

In order to determine if an increase in cell abundance

is due to the addition of large cells to a base level of

small cells biomass, cell carbon or cell volume can be

calculated. Cell volume (biovolume) is based on cell

dimensions and can be calculated for each species by

applying cell dimensions to formulae for solid geometric

shapes most closely matching the shape of the cells (Kovala

and Larrance 1966; Wetzel and Likens 1991). Even though

cell dimensions were not measured as a part of this study, a

rough estimate of biovolume can be calculated by assigning

equivalent spherical diameters to cells passing through

different size filters. For example, cells passing through

the 3~m filter were assumed to have a spherical diameter of

3=l~m =l~m. Cells passing through an 8 ~m filter and

collected on a 3 ~m filter were assumed to have a spherical

diameter of =5 ~m =100 ~m3 Cells collected on an 8 ~m

filter were assumed to have a spherical diameter of =10~m ~

103~m3. Biovolume was 'estimated using the formula for a

sphere V = (n/6)*o3 (where 0 refers diameter of the cell).

Since some of the samples for year 1 were lost, only data

for year 2 was used to estimate biovolume contributions of

different size fractions of phytoplankton.
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CHAPTER III

RESULTS

Temporal Study

Cyanobacteria (Synechococcus sp.)

Year 1 (93-94)

Two major blooms occurred in Year 1 of the study, the

first in fall 1993 with cell abundance reaching over 4 X 10 4

cells per milliliter(c·ml-1 ) (Fig. 4) . The second bloom

began in late summer 1994 and ended in early fall 1994 with

cell numbers reaching 1 X 105 c·ml-1 . A smaller bloom

occured in spring 1994 with cell abundance reaching 2 X 10 4

c·ml-1 . In all, cell abundance varied from 3.7 X 10-1 to 1 X

105 c·ml-1 . Cell numbers were lowest during the winter.

Samples from spring 1994 through mid summer 1994 were lost

due to an electrical failure. Between early winter 1993 and

spring 1994 the average monthly cell abundance was 1 X 10 3

c· ml- 1 .
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Year 2 (94-95)

Three major blooms occurred in Year 2 of this

study (Fig. 4). The blooms occurred in fall 1994, spring

1995 and early fall 1995 with cell abundances of 2.5 X 10 4

t·ml- 1 . Maximum cell abundance occurred on fall 1994 while

the minimum occurred on mid summer 1995.

Similarities:

The two years are similar in that they both had

increases in cell abundance in the fall and spring. The

coefficient of variance for year 1 (9/27/93 to 9/26/94) and

year 2 (10/3/94 to 10/24/95) was 1.19 and 1.12 respectively.

Decreases occurred through winter in both years.

Differences:

Year 1 experienced much higher cell abundance than Year

2. Mean cell abundance and maximum cell number for year 1

was 1.7 X 10 4 c·ml-1 and 9.9 X 104 c·ml-1 respectively.

Mean cell abundance and maximum cell number for year 2 was 6

X 10 3 c·ml- 1 and 2.7 X 10 4 c·ml-1 respectively.
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Chlorophyll-dominant Eukaryotes < 3 ~

Year 1 (93-94)

Major blooms occurred in fall 1993 and late summer 1994

with cell abundances at 1.2 X 10 4 and 1.5 X 10 4 c'ml-1

respectively (Fig. 5). These small eukaryotes increased and

decreased rapidly showing short-lived blooms with rapid

declines. Each bloom was successively smaller (1.2 X 10 4 ,

8.9 X 103 , 7.3 X 10 3 and 4.4 X 10 3 respectively). Mid-

winter 1994 through spring 1994 a period of low cell

abundance occurred with a decrease in cell number of one to

two orders of magnitude. Late winter 1994 experienced the

lowest cell abundance with 10 1 c·ml-1 . Samples for the

spring and summer 1994 were lost.

Beginning in mid-summer 1994 cell abundance increased

in successively larger blooms with rapid declines between

blooms.

Year 2 (94-95)

The abundance of chlorophyll dominant eukaryotes « 3

~) fluctuated irregularly throughout Year 2 (Fig. 5).

Sporadic blooms occurred in fall 1994 and spring, summer and

fall 1995 with cell abundances of 1.3 X 10 4 , 1.4 X 10
4

, 1.3

X 10 4 and 1.8 X 10 4 c'ml-1 respectively. Also between the
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major blooms there were six minor blooms indicating rapid

increases and decreases in abundance over a short period of

time. The maximum number of cells appeared in early fall

with 1.7 X 10 4 c·ml-1 . The minimum number of cells occurred

mid-summer with 3.1 X 102 c·ml-1 .

Similarities:

In both sampling years cell abundances increased and

decreased rapidly - showing several major blooms followed by

rapid declines. The biggest blooms occurred repeatedly in

September of each year.

Differences:

The mean number of cells was greater in year 2 of

3 -1 3 -1sampling (4 X 10 c·ml as compared to 2.4 X 10 c·ml in

year 1). Year 1 was more variable (CV of 1.12) than year 2

(CV of 0.92). This was the reverse of prokaryotes where

abundance was greater in year 1. The mean number of

cells was larger in year 2.
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Cryptomonads

Year 1 (93-94)

During year 1 two major blooms occurred; fall 1993 (6.3

X 102 c'ml-1 ) and summer 1994 (9 X 102 c'ml-1 ) (this was

also the maximum number of cells occurring this sampling

year) (Fig. 6). A third smaller bloom occurred in early

. 2-1
fall 1994 with a cell abundance of 4.5 X 10 c'ml . The

minimum number of cells occurred in summer 1994 with 1.5 X

10 1 c·ml-1 . Between the two major blooms the maximum number

of cells was 1.9 X 102 c·ml-1 .

Year 2 (94-95)

One major bloom occurred in fall 1994 with cells

reaching 1 X 10 3 c'ml-1 (Fig. 6). Eliminating the one major

bloom, the average number of cells were 1.2 X 102 and range

was 2.8 X 102 and 9 c·ml-1 .

Similarities:

In both sampling years Cryptomonads showed a major

increase in cell abundance in the fall. Mid-winter through

3 -1spring cell abundance were under 1.5 X 10 c'ml showing a

fairly constant and steady abundance. Samples from spring
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1994 through summer 1994 were lost. Mean abundances in

2 2-1Year 1 and Year 2 were 1.6 X 10 and 1.4 X 10 c'ml

respectively.

Differences:

During the first year of sampling, Cryptomonads had

much higher abundance in late summer and early fall (1994)

with cell abundances reaching over 3.5 X 102 c'ml-1 in late

summer. The fall blooms seen in Year 1 did not reoccur in

Year 2. Year 1 was more variable (CV of 1.12) than year 2

(CV of 1.09).

Chlorophyll-dominant Eukaryotes > 3 ~

Year 1 (93-94)

The first year of sampling showed several minor blooms

and two major blooms (Fig. 7). The minor blooms occurred in

fall 1993 and spring 1994 with cell abundances of 4 X 10 3

c'ml-1 and 4 X 10 3 c'ml-1 in both years. In mid-summer 1994

the first major bloom occurred with 7 X 10 3 c'ml-1 followed

by a bloom in late-summer 1994 with 9.2 X 10 3 c'ml-1 (which

was the maximum cell abundance for that sampling year). The

minimum number of cells occurred in fall 1993 with 2 X 102

c·ml-1 .



·S6/11
-£6/6 mrl £ < Sa40AJB~na 4uBu~illoP-l1AqdoJOlqJ :L 3BD8I3

Cells/ml

N
oo

o 0

~ (J)
o 0o 0
o 0

.....
CJ:) 0
o 0
o 0
o 0

..... .....
N ~
o 0
o 0
o 0

..... .....
(J) CJ:)
o 0o 0
o 0

. 9/18/93 I 1_ I i I I I I I I

1/16/94

11/17/93

3/17/94

ILl I I 1 I I I I I
()

5/16/94 +
I I I I I I I I I

::r-0
II

..,
0

"C

7/15/94 + I I I I I I I I I ::r
~-
C

en - 0
l» 9/13/94 2.3

'Eo ::J
D)

;5' ::J
(Q -c 11/12/94 m
l» c:- ':7:'CD

D)

1/11/95 +JI I I I I I I I I I -<0-(I)til
v

3/12/95 +':_1 I I I I I I I I w
c:
3

I -fIJI I I I I I I I I
5/11/95

7110/95

9/8/95

11n/95

I
Dt:



31
Year 2 (94-95)

Two high readings occurred in spring 1995 and early-

3 3-1summer 1995 with 7 X 10 and 7.1 X 10 c'ml respectively

(Fig. 7). The second major bloom occurred in mid-summer

1995 with 8.9 X 10 3 c'ml-1 (this was the maximum number of

cells that occurred during this sampling period) .

Minimum cell abundance occurred in fall 1994 with 1.9 X

102 c·ml-1 .

Similarities:

Between fall and spring of both sampling years cell

abundance did not go above 2 X 10 3 c·ml-1 . Despite missing

samples in the first sampling year, increases in abundance

obviously occurred in summer. Mean cell abundances for both

years were about the same with 1.9 X 103 and 1.8 x 103c'ml-
1

respectively.

Differences:

The spring bloom of year 1 did not reoccur in year 2.

The summer bloom of year 1 lasted until fall while the

summer bloom of year 2 ended in the beginning of Aug.,

however, cell numbers did remain above winter abundances.
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Year 1 was more variable than year 2 (CV of 1.05 and 0.91

respectively) .

Biovolume

Biovolume calculations weight the contributions of

phytoplankton on the basis of size (Fig. 8). This rough

calculation permitted comparisons that indicated that

biovolume increases are due to the addition of larger cells

to a base level of small cells.

Temperature and Salinity

The temperature range during the two-year study period

o 0was 8.9 C to 16.1 C with the lowest temperature occurring

Fall 93 and highest temperature occurring Fall 95 (Fig. 9).

temperatures occur in fall and winter. Additionally,

salinities ranged from 22.5 0/00 Winter 95 to 34.6 0/00

Summer of 95 (Fig. 10). I have compared the daily station

data with my weekly data. In both data sets maximum water

temperatures occur in fall and in summer while minimum

highest salinities occur in summer and fall while lowest

salinities occur in winter and spring. Seasonal temperature

and salinity graphs show distinct seasonal patterns and

between year variations (Fig. 11-14). Fall and summer

salinities cluster above 32 0/00 while winter and spring
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salinites cluster below 32 0/00. Water temperature shows

a large range in summer and fall and clusters below 12 0c in

winter and spring.

Yearly rainfall for 1993 and 1994 was 63.12 and 60.55

inches respectively. Rainfall for 1995 was 89.73 inches

(Fig. 15).
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fall 95 from Oregon Institute of Marine Biology data.
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FIGURE 12: Temperature vs salinity, winter 93/94 and winter
94/95, from OIMB data.
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Spatial Study

Site 1, Boat House

Synechococcus

Between fall 1994 and fall 1995 three blooms of

Synechococcus occurred in the spring, summer and fall with

·4 4 and 2.5 104 -cell abundances of 2.2 X 10 , 1.1 X 10 , X c·ml

1 respectively (Fig. 16) . The lowest abundance of cells
. 2 -1

occurred in fall 1995 with 6.6 X 10 c·ml .

Small Chlorophyll-Dominant Eukaryotes.

Phototrophic eukaryotes < 3 pm experienced three blooms

occuring at the same times as Synechococcus blooms with cell

4 4 4-1abundances of 1.3 X 10 , 1.4 X 10 and 1.8 X 10 c·ml

respectively. The lowest abundance of cells occurred in mid

summer with 1.1 X 103 c·ml-1 (Fig.1?).

Cryptomonads

On four occasions, cell numbers exceeded 2 X 102

-1c·ml (Fig. 18). These occurred without regard to season.

The lowest abundance of cryptomonads occurred in winter with

101 c·ml-1 .
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Centric and Pennate Diatoms

Centric diatoms began blooming mid-spring reaching a

3 -1peak abundance of 5.9 X 10 c·ml in late spring/summer

(Fig. 20). Two smaller blooms occurred in mid-summer (9.9 X

102 c·ml-1 ) and in late summer (8.3 X 102 c·ml-1 ). The

lowest cell abundance occurred in mid-winter with < 10 c·ml

1 (Fig. 19).

Pennate diatoms bloomed in the spring, summer and fall.

Peak abundances occurred in the summer (8 X 102 c·ml-1 ).

Lowest cell abundance occurred in early spring (2 x 102

c ·ml- 1 )

Phototrophic Dinoflagellates and Heterotrophic
Dinoflagellates

Phototrophic dinoflagellates experienced eight blooms

during the study year. The largest bloom occurred in mid­

summer (4.8 X 101 c·ml-1 ) (Fig. 21). On five sampling

dates no phototrophic dinoflagellates were seen in the

sample. This occurred in all seasons except spring but

occurred most frequently in mid- to late-fall.

Heterotrophic dinoflagellates bloomed on six occasions

during the sampling period (Fig. 22). The largest bloom

1 -1
occurred early-fall with cells reaching 4 X 10 c'ml .



Salinity and Temperature

Site 2, South Slough Pilings

Synechococcus bloomed on seven occasions during the

44

Heterotrophs also experienced multiple blooms - the

The highest temperature and salinity occurred in

Other Chlorophyll-Dominant Phototrophs (> 3gm) and
Heterotrophs

the summer (Fig. 25 & 26). The lowest temperature and

Chlorophyll dominant phototrophs experienced mUltiple

blooms the largest of which occurred late-spring (7 X 10 3

c'ml- 1 ) (Fig. 23). The lowest abundance of cells occurred

2 -1in late fall with cell numbers dropping to 1.9 X 10 c'ml .

abundances occurred in early-spring with numbers declining

to 6.6 X 10 1 c·ml-1 .

largest of which occurred in early-summer with cell numbers

3 -1reaching 2.9 x 10 c'ml (Fig. 24). The lowest cell

Synechococcus

year except for summer. The highest abundance of cells

occurred in mid-fall (2 X 10 4 c·ml- 1 ). The lowest abundance

study year (Fig. 16). The blooms occurred throughout the

salinity occurred in the winter.
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of cells occurred in early-summer (2.2 x 10 c'ml ). The

highest cell abundance during the summer was 6 X 10 2 c·ml- 1 .

Small Chlorophyll Dominant Eukaryotes

Small chlorophyll dominant eukaryotes bloomed on six

occasions throughout-out the spring, summer and fall (Fig.

17). The highest abundance of cells occurred in late-spring

(1.4 X 105 c'ml-1 ). In early fall cell abundance reached

3.4 X 104 c·ml-1 . The lowest abundance of cells occurred in

the winter and early-spring dropping to 7 X 102 c·ml-1 .

Cryptomonads

Cryptomonads began blooming in the early-spring and

experienced three blooms between early-spring and mid-fall

(Fig. 18). Peak abundance of cells occurred early-summer

3 -1(1.0 X 10 c·ml ).

The lowest abundance of cells occurred in mid-winter

1 -1(7.4 X 10 c'ml ). The average number of cells for this

2 -1study year was 4.2 X 10 c·ml .

Centric and Pennate Diatoms

Centric diatoms showed three distinct blooms during the

study year (Fig. 19). These occurred in early-spring,

1 2early-summer, and late-fall (7.5 X 10 , 1.1 X 10 , and 1.5



2 -1X 10 c'ml respectively). The average number of cells

was 3.1 X 10 1 c·ml- 1 . No centrics were observed in the

sample mid- to late-winter or early- to mid-fall.

Pennate diatoms experienced a major bloom starting in

46

early-spring and ending in late-spring with maximum cell

abundance reaching 2.1 X 103 c'ml-1 in mid-spring (Fig. 20).

Pennates experienced six minor blooms throughout out the

study year. Cell abundance reached its lowest mid-fall 1994

(3.2 X 101 c.ml- 1 ). The average cell abundance for the year

was 3.1 X 102 c·ml-1 .

Phototrophic and Heterotrophic Dinoflagellates

Phototrophic dinoflagellates had several distinct

blooms through-out the study period (Fig. 21). The largest

1 -1bloom occurred early-spring (8.1 X 10 c·ml ). The yearly

11 b d 2 0 X 101 c·ml-1. H t t h"average ce a un ance was . e ero rop lC

dinoflagellates also experienced several blooms through out

the year with cell maximum reaching 4.1 X 101 c·ml-1 in

late-summer (Fig. 22). The average number of heterotrophic

-1dinoflagellates during the year was 6 c·ml .

Other Phototrophs and Other Heterotrophs

Chlorophyll dominant phototrophs (> 3 pm) experienced

multiple blooms throughout out the study year (Fig. 23).

The two largest blooms occurred in late-spring and late-



3 3-1summer (7.1 X 10 and 8.4 X 10 c'ml respectively).

Cell abundances were low in the late-fall and early-winter

when cells declined to 2.5 X 102 c'ml-1.

Heterotrophs also experienced mUltiple blooms through

out the study year (Fig. 24). The two largest occurred in

3 3-1late-spring and late-summer (7.3 X 10 and 7 X 10 c'ml

respectively). Cell abundances were low in the late-fall

and early-winter when cells declined to 2 X 102 c'ml-1 .

Temperature and Salinity

The highest water temperature and salinity occurred in

the summer (Fig. 25 & 26). The lowest water temperature

occurred in late-fall and the lowest salinity Occurred in

mid-winter.

Site 3, Hinch Bridge Road

Synechococcus

There were five blooms of Synechococcus during the

study year (Fig. 16). These blooms occurred in fall and

4 -1winter with maximum abundance reaching 1.1 X 10 coml in

the fall of 19940 Minimum cell abundance occurred in the

winter 1995 « 10 c'ml-1 ) 0

47
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Small Chlorophyll Dominant Eukaryotes

Small chlorophyll dominant eukaryotes bloomed on seven

occasions (Fig. 17). These blooms occurred during fall

1994, winter 1995, and summer and fall 1995. Maximum

abundance occurred late-summer/early-fall 1995 with cell

numbers reaching 4.6 X 104 c·ml-1 . Minimum cell abundance

occurred in winter and early-spring (1.9 X 101 c·ml-1 ).

Cryptomonads

There were seven blooms occurring in all seasons (Fig.

18). The major blooms occurred in early-winter, late­

spring/summer, and fall with cell numbers reaching 1.5 X 10 3

-1c·ml in early summer. Minimum cell abundance occurred

mid-winter and lasted until late-spring.

Centric and Pennate Diatoms

Centric diatoms experienced one major bloom in mid­

summer with cells reaching 7.5 X 102 c·ml-1 and two minor

blooms in early-winter and late-spring (Fig. 19). There was

low cell abundance throughout fall, winter and spring.

Pennate diatoms experienced six blooms the largest

occurring in early-summer with cell numbers reaching 9.5 X

102 c·ml-1 (Fig. 20). Lowest cell abundance occurred in

mid-winter.
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into the other categories) experienced one major bloom

(Fig. 21). Cell numbers declined to zero in all seasons.

Heterotrophic dinoflagellates four bloom periods with

Minimum cell abundance occurred in

-1c'ml ).

3 -110 c . ml (Fig. 24).

mid-spring (5.3 X 101

Heterotrophs (> 3 pm) (heterotrophic

dinoflagellates, ciliates and other heterotrophs not falling

occurring in late-summer with cell abundances reaching 2 X

Chlorophyll-dominant phototrophs (> 3 pm) includes

throughout the study year. The largest bloom occurred in

late-summer/early-fall with cell maximums reaching 1.4 X 104

c·rnl-1 . Minimum cell abundance occurred in mid-winter (1.5

X 101 c·ml-1 ).

other categories (Fig. 23). There were seven blooms

phototrophic organism not recognizable as falling into the

Other Phototrophs and Other Heterotrophs

centrics, pennates, phototrophic dinoflagellates and other

the largest occurring in late-summer (Fig. 22). Cells

2 -1reached a maximum of 1.1 X 10 c·ml . Cells numbers showed

many declines throughout all seasons.

Phototrophic and Heterotrophic Dinoflagellates

Phototrophic dinoflagellates experienced seven blooms

the largest occurring in early-summer (1.6 X 102 c·ml-1 )
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Temperature and Salinity

The highest water temperature and salinity occurred in

the summer and early-fall (Fig. 25 & 26). The lowest water

temperature occurred in late-fall. The lowest salinities

occurred in late-fall, winter and spring.

Comparison of the Three Sites

Synechococcus abundance was highest at the coastal site

(Boat House) and decreased in the middle (South Slough

Pilings) and lower regions (Hinch Road Bridge) of Coos Bay

estuary. The blooms occurred at approximately the same

time. Synechococcus was more variablB in the lower regions

of the estuary with a coefficient of variance (CV) of 2.22

as compared to the coastal site with a CV of 1.09.

Synecho~~ccus Mean SD CV Minimum Maximum
c·ml

Boat House 5,588 6,113 1.09 664 25,242
S.S. Pilings 2,958 3,957 1.34 215 19,509
Hinch Bridge 1,049 2,332 2.22 9 10,553

Chlorophyll-dominant eukaryotes < 3 pm abundance

were highest (mean and maximum) in the middle- and lower-

regions of the estuary. In addition, they were more

variable at these sites as compared to the coastal site.

Lowest abundance occurred at the coastal site. Abundance

patterns were similar between sites.
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Chlorophyll-

dominant
Eukaryotes_

1
Mean 80 CV Minimum Maximum

< 3 pm c·ml

Boat House 4,572 4,135 0.9 1,124 17,579

8.8. Pilings 13,073 26,428 2.02 360 136,717

Hinch Bridge 6,731 10,801 1.6 11 45,027

Cryptomonads abundance (mean and maximum) increased in

the mid- and lower-regions of the estuary. The lowest

abundance occurred at the coastal site which is the inverse

of Synechococcus. The mid- and lower-regions of the estuary

tended to be more variable with larger fluctuations in

abundance. The coastal site had the lowest mean and maximum

abundance and was less variable.

Cryptom~yads Mean 80 CV Minimum Maximum
c·ml

Boat House 122 67 0.55 44 283
8.8. Pilings 416 239 0.58 74 997
Hinch Bridge 494 460 0.93 0 1,471

Centric diatom abundance was highest at the coastal

site and lowest at the mid-estuary site. The coastal site

and the lower regions of the estuary were more variable than

the mid-estuary. Blooms occurred earliest at the coastal

site.

Centric Mean 80 CV Minimum Maximum
Oiato~\

c·ml
Boat House 498 1,169 2.33 4 5,890
8.8. Pilings 31 40 1.29 0 148
Hinch Bridge 70 184 2.62 0 752
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Pennate diatoms reached their maximum abundance in

the mid-region of the estuary. This site was more variable

with earlier blooms than the other two sites. The bloom

occurred approximately four weeks prior to the smaller

blooms at the other two sites. The coastal site was the

last to experience the pennate bloom and also had the lowest

mean and maximum abundance.

The pennate genus Pseudo-nitschia was enumerated

separately as an example of seasonal variability in one

genus. Pseudo-nitschia was of particular interest due to

the fact that several species produce domic acid. Four

separate peaks of Pseudo-nitschia occurred between late-

spring and early-fall 1995 at the Boat House (Fig. 27).

These four peaks may represent successional blooms of

different species of Pseudo-nitschia spp. Abundance of

Pseudo-nitschia spp. at the two estuarine sites were

insignificant, indicating a preference for high salinity and

a coastal distribution of species in this genus.

Pennate Mean SD CV Minimum Maximum
Diatoms

Boat House 196 195 0.99 19 836
SS Pilings 306 515 1.69 32 2,059
Hinch Bridge 271 317 1.17 0 960

The largest abundance of phototrophic dinoflagellates

occurred in the lower-regions of the estuary and decreased

in the mid- and upper-regions. The dino bloom began earlier

in the lower areas of the estuary. Abundance patterns
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appear to be more variable in the lower regions of Sou

Slough and more constant at the coastal site.

Phototrophic Mean SO CV Minimum Ma
Dinoflagellate

-1c·ml
Boat House 12 13 1.1 0
S S Pilings 20 20 0.99 0
Hinch Bridge 37 48 1.3 0

Heterotrophic dinoflagellates reached their maxim

abundance in the lower-estuary. However, their mean

abundance was highest at the coastal site. Abundance

patterns appear to be more variable in the lower regio

South Slough and less variable at the coastal site.
I

Heterotrophic Mean SO CV Minimum Ma
Dinoflagellate
Boat House 14 13 0.95 0
S S Pilings 6 10 1.66 0
Hinch Bridge 8 21 2.81 0

There were close to twice as many other phototro

< the lower-estuary as compared to the mid-region. Agai

mid- and lower-regions of the estuare were more variab
,
3 than the coastal site. Lowest abundance occurred at t
;

coastal site.

,;

Phototrophs Mean SO CV Minimum Ma
Boat House 949 562 0.59 94 2
S S Pilings 2,023 1,869 1.12 203 7
Hinch Bridge 2,663 3,582 1. 57 15 13

Other heterotrophic protists were most abundant i

mid- region of the estuary. Their abundance at the co



54

and lower-estuary site was more variable than in the mid-

region of South Slough.

Other Mean SO CV Minimum Maximum
Heterotrophs

Boat House 537 590 1.1 55 2,910
S S Pilings 1,848 386 0.89 245 8,419
Hinch Bridge 407 458 1.15 53 2,001

Water temperature was more variable in the mid- and

lower-regions of the estuary. The largest temperature

fluctuations occurred in the lower-estuary.

Temperature Mean SO CV Minimum Maximum
Boat House 12.2 1.4 0.11 9.1 15.5
S S Pilings 13.9 3.6 0.26 8.3 20.6
Hinch Bridge 13.1 4.1 0.31 6.5 20.1

Salinity was also more variable in the mid- and lower-

regions of the estuary and the largest salinity fluctuations

occurred in the lower areas of the estuary. Since salinity

was always measured at high tide it appears less variable

than what might be seen if measured at low tide.

Salinity Mean SO cv Minimum Maximum
Boat House 31. 4 1. 65 0.05 28.0 35.0
S S Pilings 25.5 6.05 0.25 8.0 34.0
Hinch 9.9 10.04 1. 02 0.0 26.0
Bridge



h:J
H
(j) (c omr1

) (c o mr1
) (c omr1

)
C
:::0 ~""Nt\)N .... .... N N N .... .... N N N

.001\)0)0.00 • 00 I\) en 0 • 00 • 00 I\) 0) 0 • 00
trl 0000000 o 0 000 0 0 o 0 0 0 000

08888888
o 0 000 0 0 o 0 0 0 0 0 0o 0 0 0 0 0 0 0 000 0 0 000..... 10/19/94 i/ . 10/19/94 10/19/94

en
1113/94 11/3/94 11/3/94

11/18/94 / 11/18/94 11/18/94
en

12/2/94 12/2/94"'< 12/2194
:J
CD 12/18/94 } 12/18/94 12/18/94
()
::r 1/1/95 1/1/95 1/1/95
0

1/16/95 1/16/95() 1/16/95
0

1/30/95 1/30/95 1/30/95()
()

2/15/95 2/15/95c:: 2/15/95
Cil ) en 3/1/95

en
3/1/95 !R3/1/95 i i

llJ
3/16/95 3/16/95 .. 3/16/95 en

rt .. en it ::i
~

0 .. <Den 3/31/95 ::l 3/31/95 ~ 3/31/95
1-'- 0 g. 0 0 tD 2-III III

4/15/95 en ~ 4/15/95
0

rt CD 4/15/95 tD CD 0' a
CD ::I. e:: ::I: 04/28/95 Q. 4/28/95 lQ 4/28/95en lQ ::T 0 0III e::

-0 en 05/15/95 ::0 5/15/95 5/15/95 III..... 0 50 0III lQ

5/29/95 Q. 5/29/95 en 5/29/95 0
N

6/12/95 6/12/95 6/12/95
t:::en

llJ
6/25/95 6/25/95 6/25/95

::J 7/12/9! 7/12/95 7/12/95Q.
7/25/95 7/25/95 7/25/95w
8110/95 8/10/95 8/10/95

8/28/95 8/28/95 8/28/95

9/9/95 ) 9/9/95 9/9/95

9/23/95 9/23/95 9/23/95

10/9/95 10/9/95 10/9/95

10/24/95

.

10/24/95 10/24/95
In
In



~ • t 1 t"tnrNevtTt 'iiE1T"rolJ' Pi '"Si["" .CfL.. ~ o·@I,or. Ii'¥ un ...... ·I.·1."' $ ntTr ex .'I-jljl8Jll'iTlf l$itt.'W( lltilili,,*,~1i,~~f#ibl'~~~TlfPM"JttO fai.Olin; Olll.,.

~hj

H
(coml-1) (comr') (comr')G)

NC N .... cnC» ......... N .... cnC» N .... cnC».. :;0 0000 '" 0000 ~~~ 0000 '0'
t':I OOOO ... N .... cn OOOO ... N .... cn OOOO ... N .... cnOOOOlDlDlDlD

08888~~~~ OOOOlDlDlDlDIII OOOOOUlUlUlUl OOOOOUlUlUlUl
::s ~ 10/19/94 / 10/19/94 I 10/19/94 m
0--.1 11/3/94.. 1113/94 11/3/94 •
W 11/18/94 11/18/94 11/18/94

() 1212194 12/2/94 12/2/94::r
I-' 12118/94 12/18/94 12/18/940
11 111/95 1/1/95 1/1/95

()
0 ::r
'0 1/16/95 1/16/95 1/16/95 0::r ..,
'< 1/30/95 1/30/95 1/30/95 0
~ "'0
~ 2/15/95 2/15/95 2/15/95 ::r
I 'S.0- en en

3/1195 :=: 3/1195 ;: 3/1/95 T0 lD
0:3 .. en

~.
3116/95 .. 3/16/95 3/16/95 ;: 0en 3::s 3/31195 :J:

3131/95
0

3131/95 ..so S-III 0 g. 0 ::T 0 Ol :;j::s DO DO
~

0Ii 4/15/95 Ol Ii 4/15/95 en 4/15/95 !!l. IIIrt ::I,

\.---~
0'

:J: :;j4/28/95 Q, 4/28/95 c 4/28/95lQ lQ 0 .....
CD lD ::T C m"-,,- IIIC :tJ >- "tl

5/15/95 lD
;;><;" 5/15/95 0 5/15/95 ...-;..- S' CDO . , ;...-

"III 5/29/95 Q,
5/29/95 I..-~'- lQ

5/29/95III III11 t\'< 6112195 6112/95 6/12/95 -<0
J

0rt 6/25/95 6125/95 6/25/95 .....
CD CD
en 7/12/95 7/12/95 7/12/95

en

"/\ 7125195 ) 7125/95 7/25/95
W

W 8/10/95 8/10/95 8/10/95 "t:
3

:3 8/28/95 8/28/95 8/28/95

III 9/9195 9/9/95 9/9/95 '
rt 9/23/95 9/23/95 9~~5 (i
en
~,

10/9/95 10/9/95 10/9/95 •
rt 10124/95 10/24/95 10/24/95CD
en

11l
en



I"rJ
H (c'mr1

) (c'mr1
) (c'mr1

)G)
C ..... .... .... .... ..... ..... ..... ...... ...................
~

N..,.a>OOON..,.a> N..,.a>OOON..,.a> N..,.a>OOON..,.a>
0888g8888

00000000 00000000
[Ij 000000000 000000000

10119194 10119194
/

, 10119194
f-'
a:> 1113194 1113194 \J 1113194..

11118194 11118194
/

11118194

() 1212194 12/2194 12/2/94
H
'< 12/18194 12/18/94 12/18/94
'0

111/95 111195 ( 1/1/95rt
0

1/16/95S 1/16195 1/16/95
0
::=' 1/30/95 1130195 1130195
nJ ()0- 2/15195 2115195 2/15195
Ul

CIl CIl ~311195 311195 ff 311195;;:

'"nJ CD
CIl"'O

rt 3116195 3116195 .. 3116195 -' -..
CIl iii 0

Ul 3131195 :x: 3131/95 0 3/31195 .. 35' '" S-f-'. c g. C ::T C CD

rt Dl 4115195 Dl 4115/95 ) CIl ~ 4/15/95 0 0
CD

iii CD iii 0' !2. ::J
4/28/95

::2. 4/28195 c 4/28195 :x:
Ul c. Q)lQ lQ 0

CD ) ::T C a.
5/15195 5115/95 ;:g 5115195 '"f-' ;0 CD en. 0

<K
5'Dl

5/29195 c. 5129195 lQ 5129195'"N
6/12195 6112/95 6112195...

nJ 6125195 6125195 . . ,') 6125195

::='
7112/95 7/12195 71121950-

w 7/25195 7/25/95 7125195

8/10195 8110/95 8110195

8128195 8/28195 8128195

919195 919195 919195

9/23195 9123/95 9123195

10/9/95 1019195 1019195

10/24195 10124195 10124195

(Jl

-.J



IT]
H

GJ (c'mr') (c'mr') (c'mr')q
::u I .... "'W.UlOl ..... "'W.UlOl .... "'W.UlOl
...... UlUlUlUlUlUlUlUl UlUlUlUlUlUlUlUl 000000
L. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000000 00000000 0000000
....., 10/19/94 10/19/94 10/19/94

"" 1113/94 11/3/94 11/3/94

11/18/94 11/18/94 11/18/94
o
CD 12/2/94 12/2/94 12/2/94
~

rt 12/18/94 12/18/94 12/18/94
ti 1/1/95
~. 1/1/95 1/1/95

1/16/95
0. 1/16/95 1/16/95

• 1130/95
~ 1/30/95 1/30/95
rt 2/15/95

g 3/1/95 S!l 2/15/95 ~ 2/15/95 Oro·
~ ~ ~

Ul 3/16/95 3/1/95.. 3/1/95 S!l ::J
.. en ;- ~

~ 3131/95 ;!; 3/16/95 g 3/16/95 .. 0
C ~ C ~ C m

Ul !!l. 4/15/95 9-!!l. 3131/95 en!!l. 3/31/95 g 0
~ m ~ 0 ~ -

~ 4/28/95 ,g: 4/15/95 .a 4/15/95 & Q)
~ :T cr-+

~ 5/15/95 ~ 4/28/95 ;g 4/28/95 ~ 0
AI ~ 3

....., 5/29/95 a. 5/15/95 <g 5/15/95. 00
6/12/95 5/29/95 5/29/95

N 6/25/95
• 6/12/95 6/12/95

OJ 7/12/95 6/25/95 6/25/95
~ 7/25/95

0. 8/10/95 ~. 7/12/95 7/12/95
w. 7/25/95 7/25/95

8/28/95 •
9/9/95 • 8/10/95 8/10/95

W2Y95 ~ I aa~5 ~ I aa~5
10/9/95 9/9/95 9/9/95

10/24/95 9/23/95 9/23/95
tJ1
co





WI"rJ
H

(c·mr1
) ....GJ (c'mr1

) .... .... .... (c·mr1
)C .... ..... N (l) .... 00 N (l)

:::0 0 0 0 0 0 0 0 0 0 0
10/19/94 10/19/94 .... ....

l:':J .... 00 N (l)
0 0 0 0 0

N 11/3/94 11/3/94 10/19/94
.......

11/3/9411/18/94 11/18/94

12/2/94 12/2/94 11/18/94
:J::l 12/2/94C 12/18194 12/18/94
rt

12/18/940 1/1/95 1/1/95
rt

1/1/95Ii 1/16/95 1/16/95
0

1/16/95"0 1130/95 1130/95
::r' 1/30/95 »......
() 2/15195 2/15/95 C

2/15/95 .....
0- 3/1/95 en 3/1/95 en 0
...... ;: if 3/1/95 .....

3/16/95 3/16/95
...,

::l ..
3/16/95 0

0 .. en "'CHI 3/31/95 ;;!;; 3/31/95 en s=0 :::rI-' :J 0 ~
3/31195 ..0 9-01 III 4115/95

~
4/15/95 0 tll 0

10 lD tll en III 4/15/95 0

CD 4/28/95 :J. 4/28/95 0" c;- !2. 00- c:
I-' lQ lQ 4/28/95 ::r::ID :J" 0 :::sI-' 5/15195 ;U 5/15/95 "tl c:
01 0 5/15/95 en 0III S· ID
rt 5129/95 0- 5/29/95 lQ ::!:l
CD 5129/95 Olen 6/12/95 : 6/12/95

6/12/95 (Q

01 6125195 6/25/95
6/25/95

CD
rt

7/12/95 7/12/95 Ol
en 7/12/95 .....
...... 7125/95 7/25/95 CD
rt 7/25195 en
CD 8/10195en

....... 8128195 01;(.0"':10 8128/95
9/9/95 9/9/95 9/9/95

N
9123195 9/23/95. 9/23/95

01 1019/95 10/9195 10/9195
::l
0- 10124/95 10/24/95 10/24/95

0'\
0



WITJ
H
G) (c·mr1

) (c'mr1
) (c'mr1

)
C
:;d .... .... .... .... .... ....

N • m 00 0 N N • m 00 0 N N • m 00 0 N
trI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1~1_1)
10/19/94 I 7. I 10/19/94

N
N 11/3/94 11/3/94..

11/18/94 11/18/94

::r: 12/2/94 12/2/94
CD
rt 12/18194 12/18/94
CD IIi 1/1195 1/1/95 1/1/95
0 CD
rt 1/16/95

~
1/16/95 1/16/95 r-+

Ii CD
0 1/30/95 1/30/95 1/30/95 ..,
'0 0
:T 2/15195 2/15/95 2/15/95 r-+..,
f-'- 0
0 3/1/95 en 3/1/95 en 3/1/95 "'0if ii
0. 3/16/95 I) 3/16/95 3/16195 en :::r

--f-'- ..
en s= 0

~ 3/31195 ;!:; 3/31/95 0 3/31/95 ..
0

0
:::J 0 S- O OJ 0t-i) 4/15/95 9- 4/15/95 :T 4/15/95D> D> en ik 0

I--' li' OJ li' 0' a ::J
III 4/28195 :::l. 4/28/95 c:: 4/28/95 :I: 0Q.

\.Q CQ
CQ 0

(\) :T c:: :::!1CD 5/15/95 5/15/95 ~ 5/15/95 III

I--'
:tJ. (\) w0 s·

I--' D> 5/29/95 CO5/29/95 Q. CQ 5/29/95
III )

III CD
rt 6/12/95 6/12/95 6/12/95
CD W
(IJ 6/25/95 6/25/95 6/25/95 r-+

CD
III 7/12195\ 7/12/95 7/12/95 en
rt

7/25/95 1_,_.:-- 7/25/95 7/25/95
(IJ

f-'- 8/10195 1 1 1 r-::> 8/10/95 8/10195
rt
CD 8/28/95 ;...- 8/28/95 ' ........ 8/28/95(IJ V V~

919/95 9/9/95 9/9/95
I-'

9/23/95 9/23/95 9/23/95

N 10/9/95 10/9/95 10/9/95

OJ
10/24/95 10/24195 10/24/95

~
0'1
I-'

0.



r-r:l
H

(c'mr1
) (c'mr1

) (c'mr1
)Gl

c:: ................... ..... ............. ..... ...............:A:l N .... I»OOON .... I» N .... I» 00 0 N .... I» N .... I»OOON .... I»
trl gggggggg 00000000 gggggggg00000000

000000000 000000000 000000000
N 10/19/94 ) 10/19/94 10/19/94
W

1113194 11/3194 11/3/94

11/18/94 11/18/94 11/18/94

0 1212/94 1212/94 12/2/94
rt

12/18194 12/18/94 12/18/94::T
CD 111195 } 1/1/95 1/1/951'1

nJ 1/16/95 1/16195 1/16/95
C 1130/95 l\ 1/30/95 ( 1/30/95rt
0 2/15/95 2/15/95 2/15195rt
1'1 3/1/95 CIJ 3/1/95

~
~

3/1/95 00 1/ ;= CD
"0 CIJ .-+

3/16/95 3/16/95 ..
3/16195 ::J'"::T .. ifCIJ CD(J)

3/31/95 ;l; 3/31/95 0
3/31/95 ..

:::l 50 ..,
0

~
0 0 OJnJ fk 4/15/95 fk 4/15/95

! f
CIJ III

4/15/95
0 »rt OJ CD a

:::l. 0' C4128195 0. 4/28/95 K> c: 4128/95 J:

I)
lC lC 0 .-+(J) CD :::T c: 01-'- ;g In

5/15195 ::0 5/15/95 5/15/95 CD .-+rt 0 tV S' ..,
III

CD 5/29/95 0. 5/29/95 lC
5/29/95 0In

(J)

~
"0

6/12/95 6/12/95 6/12/95 ::J'",......
(J). 6125195 6/25/95 6125195

N 7/12/95 7/12/95
11

7/12/95

7125195 7/25/95 7/25/95
nJ
::s 8/10195 8/10/95 8/10/95
0- !"-..

!"--!--.. t'--r>w 8128195 : r-j-.. 8/28/95 8/28/95
919195 : : L- 9/9195 Y 9/9/95

9123195 j..-
~;....-

9/23/95 V 9/23/95

10/9195 / 10/9/95 10/9/95
/i10/24/95 10/24/95 10/24/95

0'\
N



tTl
H
G)

(c'mr1
) (c·mr') (c'mr1

)
C
::0 N oil- en CD N

"""
en co N """ en CO

[t:J 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N 10/19/94 10/19/94 10/19/94
,t>.

11/3/94 11/3/9411/3/94

11/18/94 11/18/94 11/18/94

0 12/2/94 12/2/94 12/2/94
rt

12/18/94 12/18/94 12/18/94::r
CD

1/1/95 1/1/95 111/95ti

::r 1/16/95 1/16/95 1/16/95
CD 1/30/95 ) 1/30/95 1/30/95rt
CD

2/15/95 2/15/95 2/15/95 0ti
0 en en -rt 3/1/95

~
3/1/95 1;' 3/1/95 ::J"

CDti 3/16/95 3/16/95 ,. 3/16/95 en ..,
0 " f:'0 ::r: en :::c3/31/95 3/31/95 0 3/31/95::r S'

~
.. CD

CIl 0 ~ 0 0 III -~ 4/15/95 II> 4/15/95 II> 4/15/95 0 CD
III CD en CD ~0 ..,

OJ ::J. 04/28/95 Q. 4/28/95 c: 4/28/95 ::r:
rt lC lC 0 -~ :3' c: ..,

5/15/95 ::0 5/15/95 "U til 05/15/95 ~CIl 0 "'C
~. II> S'

::J"5/29/95 Q. 5/29/95 lC 5/29/95rt til en
CD 6/12/95 6/12195 6/12/95CIl

6/25/95 6/25/95 6/25/95
~

7/12/95 7/12/95

lL
7/12/95

N 7/25/95 I 7/25/95 7/25/95

OJ
8/10/95 "- 8/10/95 8/10/95

::s 8/28/95 8/28/950- 8/28/95

LV 9/9195 9/9/95 9/9/95

9/23/95 9/23/95 9/23/95

10/9/95 10/9/95 10/9/95

10/24/95 10/24/95 10/24/95

(j)

w



tTJ
H
G)

(°/00)C (°/00) (°/00)
::0
tr:I ~ -to N (,,) W -a. -a. N W W -a. -to N W W

10;19/94
o a> NO>.... 0 a> o a> No>.... 0 Ol o a> NO>.... 0 a>

N 10/19/94 10/19/94
(J1

11/3/94 J 11/3/94 ) 11/3/94
V :.-

11/18194 V 11/18/94 11/18/94
1-3 12/2/94 12/2/94 12/2/94 ! ICD

.a 12/18/94 12/18/94 12/18/94
CD

1/1/95 1/1/95 1/1/95Ii yV'III
1/16/95 1/16/95 1/16/951 lrt

S .~c . .

Ii 1130195 1/30/95 1130/95
CD

2/15/95 2/15/95 {/ 2/15/95
0-

3/1195 3/1/95 3/1/95III en enrt V ;: iIII 3116195 3/16/95 3/16/95.. en en.. s:HI 3/31195 3/31/95 en 3/31/95 Q)
Ii :I: 0 ..

0 :i" 0

<h
~ 00 4/15/95 9- 4/15/95 4/15/95 OJ ::J~

1>1 1>1 0S OJ S- en S- !!!. ;:::;.:4/28/95 4/28/95 0" 4/28/95:::l. e: :I: '<(Jl c- eo 0eo
1-'" 5/15195 CD 5/15/95

::r
5/15/95

e:
II>

rt ;0 ;g CD
0 s·CD 5/29/95 1>1 5/29/95 5/29/95c- eo(Jl II>

6/12/95 6/12/95 6/12/95......
~ 6/25/95 r--....., 6/25/95

"''\
6/25/95

N 7/12/95 i'-.. 7/12/95 7/12/95
~

7/25/95 7/25/95 7/25/95
III
::1 8/10/95 8/10/95 8/10/95
0-

w 8/28195 8/28/95 8/28/95
9/9/95 9/9/95 9/9/95

9/23/95 9/23/95 9/23/95

10/9/95
/

10/9/95 10/9/95

10/24/95
. 10/24/95 10/24/95

0)
,t>.



hl
(DC) (DC)H (DC)

G)
C -,O .......... -I. .... NN .......................... 1\)'" ............................ NN

::0
.... mco 0 N .... mCOON .... mCOON .... mCOON .... mCOON .... mCOON

t'1
10/19/94

./
10/19/94 10/19/94

N
11/3/94

(
11/3/94 .) 11/3/94

en 11/18/94 11/18/94 < 11/18/94

12/2/94 '\ 12/2/94 12/2/94

(f)
12/18/94 12/18/94 12/18/94OJ /I-' 1/1/95 1/1/95 1/1/95.....

'\::l 1/16195 1/16/95 1/16/95.....
\rt

J<: 1130/95

/'
1/30/95

(
1/30/95

0- 2/15195 2/15/95 2/15/95
OJ

3/1/95 D 3/1/95 \ 3/1/95 -trt (J) (J)
OJ ;= ii CD3/16/95 3/16/95 3/16/95
H1 \ .. ~ 3.,

J; 3131195 3/31/95 (J) 3/31/95 CD "'C:J: 0
0 ::i" ~

..
CDS 0 4/15/95 9- Iii' 4/15/95 I 0 4/15/95 CD

D> \
D> 0 .,

CD CD (J) CD 2!. s:u4/28/95 :;0 4/28/95 0 4/28/95[J)

\
0 c:: :J: r-+..... D>

i\
<C 0 CQ. ::r c::

rt 5/15/95 CD 5/15/95 ;g 5/15/95 III .,
CD :::I. CD

CD

l
Q.

~
:i"[J) 5/29/95 <C 5/29/95 <C 5/29/95

CD III

....... 6/12/95 6/12/95 6/12/95. \. 0-6/25/95 .

"
6/25/95 6/25/95

N
7/12/95 7/12/95

H
7/12/95

OJ 7/25/95 7/25/95 7/25/95
::l
0- 8/10/95 8/10/95 8/10/95

w
8/28/95 8/28/95 8/28/95

9/9/95 9/9/95 9/9/95

9/23/95 9/23/95 9/23/95

1019/95 10/9/95 10/9/95

10/24/95 10/24/95 10/24/95

0'\
U1



ods ~TqQS~Tu-opnasd :LZ 3B08I3

Cells/rnl
~ -a. ~ ~ ~ N

N • m m 0 N • m m 0
000 0 0 000 000

~

!.....
Cit
S­
Q;'

~

.. ~

10/3/94. I I I I I I I I I t

10/19/94 r ~

11/3/94 .

11/14/94

11/21/94

1212194

12112194

1,2126/94

1/9/95

1/23/95

216/95

2120/95

3/1/95

3/13/95

ffl· 3/20/95

.g 3/31/95

~o 4/10/95

i' 4/24/95...
CJ 5/8/95 r '

5/15/95 ! •
5/22195

6/5/95

6/19/95

7/4/95

7/17/95

7/31/95

8/10/95

8J21195$J.
9/4/95 : ! !

9118J95~:
10/2195

10/16/95

99



----- - --.---.------------.,..-----~-- it

-esnOH ~E08 S.8WIO ~E e~uepunqE 4do~~o~e~eH :SZ e~nD1a

Cells/rnt
.- .- N N W

0'1 0 0'1 0 0'1 0
0 0 0 0 0 0

0 0 0 0 0 0 0

10/3/94

10119/94

11/3/94

11/14/94

11/21/94

t
12/2/94

12/12/94

:r:: 12/26/94
a

lroro51~(I)

a
1/23/95 I ,-a

"0
':7 2/6/95o'
0 2/20/95:i"
0

3/1/95::!l
Q)
lC
~ en 3/13/95 :::t
iii" Q) CD- :3 3/20/95 -(I) CDen '2. a

f
3' 3/31/95 -lC ac 4/10/95
I» "C
S' 4/24/95

=r
(I)

0 5/8/95-:::r
(I)

5/22195..,
:r::
(I) 6/5/95-(I)a 6/19/95-a
"0 7/4/95:::ren

7/17/95

7/31/95

8/14/95

8/28/95

9/9/95

9/23/95

l~~:::t >
L9



68

CHAPTER IV

DISCUSSION

Seasonal trends of phytoplankton abundance were similar

to seasonal patterns found in northern temperate waters with

blooms occurring in the spring and fall and low abundance in

both summer and winter months (Gran 1931 and 1935; Sverdrup

1953; Colebrook and Robinson 1965; Margalef 1968). In this

study, the fall bloom (cell abundance) was of equal or

greater magnitude than the spring bloom in both study years.

Therefore, it seems reasonable to assume that even though

the general 2-peak patterns found in this study were similar

to those found elsewhere, the processes regulating primary

production in the South Slough may be different particularly

for the fall bloom.

Solar radiation (photoperiod and total incident

photosynthetically available radiation) and nutrients are of

primary importance in determining the daily phytoplankton

division rate. Therefore, low winter abundances are

expected to have been due to a decline in day length (8.2

hours winter solstice vs. 16.1 hours at summer solstice)

even though nutrients may be high (Perry et al. 1989).

Additional contributing factors to low winter abundances may
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be lower water temperature and salinity and increased

turbidity from winter storms.

Unlike winter, low cell abundance in the summer is not

necessarily an indication of low primary production. Since

light is not a limiting factor in summer months, other

factors such as limited nutrients or increased grazing

pressure may be regulating phytoplankton abundance.

Upwelling is a major process adding nutrients to coastal

waters mainly in summer months. Distinct upwelling

signatures (cold and saline water) were not seen in either

study year. However, these signatures may have been masked

by other processes such as heating and evaporation in the

summer. On the other hand, the period 1993-1994 is

considered an El Nino Southern Oscillation (ENSO) warm phase

and therefore it is possible that no significant upwelling

occurred . Since nutrient information was not a part of this

study, limited nutrients cannot be totally ruled out.

Heterotrophs were not enumerated during year 1. Data for

year 2 indicates that heterotrophs did increase in abundance

through the summer and therefore predation by heterotrophs

may have contributed at least in part to low autotrophic

cell numbers.

Not all autotrophic organisms decreased during the

summer months. Large chlorophyll-dominant eukaryotes

increased in abundance throughout the summer of the second

study year (samples for summer 1994 were not available so a

comparison of the two summers cannot be made) and remained
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above winter abundance levels. It is possible that these

large chlorophyll-dominant eukaryotes were not evident in

the 1st year due to the ENSO-warm phase. Large diatoms are

a major component of this assemblage and these large diatoms

require high nutrients (especially Si and N) for growth.

In addition, cryptomonads experienced a short bloom in mid­

summer. Synechococcus and chlorophyll-dominant eukaryotes <

3~ experience seasonal blooms during the fall. However,

chlorophyll-dominant eukaryotes < 3~ maintained their

abundance throughout the second spring and summer while

Synechococcus declined after the spring bloom.

The fall blooms of pico- and nanoplankton (e.g.,

Synechococcus, cryptomonads and small chlorophyll dominant

eukaryotes) may be an indication of a change in community

structure from one dominated by larger phytoplankton (i.e.,

diatoms) to one dominated by picoplankton and flagellates.

This change in community structure may be due to a decline

in heterotrophs. Heterotrophic dinoflagellates and other

heterotrophs sharply decline at about the same time that

pico- and nanoplankton abundance increases indicating a

possible release from grazing pressure (Fig. 28). Small

flagellates, due to their surface:volume ratio and ability

for locomotion, may be better suited for environments with

lower nutrients. Additionally, lower light levels, depleted

nutrients, decreased sinking rates or other factors may

contribute to fall dominance of pico- and nanoplankton.

Prior research has indicated that picoplankton are adapted
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to photosynthesis at low light levels (Platt et al.,

1983). Specifically, in laboratory experiments and in the

water column Synechococcus grew best at low light levels

(Morris and Glover 1981; Glover et ale 1985). Both

Synechococcus and eukaryotic picoplankton are abundant in

oligotrophic water where nutrient concentrations are low

(Murphy and Haugen 1985). Other studies have shown that

picoplankton biomass is relatively greater at times of

nutrient limitation in temperate, subtropical and tropical

waters. Picoplankton are able to absorb nutrients at very

low concentrations due to their small size and large

surface-to-volume ratio giving them a competitive edge over

larger organisms (Vaccaro et ale 1977; Albright et ale

1980) .

The increase in biomass seen in the spring is usually

due to longer day length, turbulent mixing which brings

nutrients to surface waters, and stratification which holds

the phytoplankton in the euphotic zone. Shapiro et ale

(1988), found that the increase in biomass in a coastal

ecosystem was due to the addition of large cells (usually

diatom dominated) to a base level of small cells.

Picoplankton numbers don't change that much - but relative

to the big cells, they become important in oligotrophic

waters. This study found that all size classes of

phytoplankton experience blooms at certain times of the

year. Biomass and carbon were not calculated and therefore

it is impossible to determine exact biomass contribution
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levels of different size classes of organisms. However,

an extrapolation can be made using established biovolume

formulas and assuming equivalent spherical diameters of

cells. This calculation indicates that an increase of

125,000 small 1 m cells (e.g., Synechococcus sp.) is

equivalent to an increase of one 50 m microplankton (e.g.,

Coscinodiscus sp.) when biomass is considered. In support

of prior work (Murphy and Haugen, 1985), extrapolating to

biovolume analyses suggests that spring blooms are due to

the addition of large cells to a base level of small cells.

However, the coefficient of variance showed that

picoplankton were more variable than large chlorophyll­

dominant eukaryotes (CV's of 1.3 and .97 respectively).

An anomalous trend observed in both years of the study

involves the bloom pattern of cryptomonads. In January 1994

and January 1995, when all other organisms were at their

lowest abundance, cryptomonads experienced distinct blooms.

At those times both salinity and water temperature were low

(Figures 9 and 10). Cryptomonads may be adapted to these

low light, low salinity, fluctuating conditions and low

temperature conditions but do not compete successfully with

other large chlorophyll-dominant organisms of spring and

summer.

Phytoplankton abundance patterns varied between year 1

and year 2. Year 1 was more variable than year 2 across all

categories. This may simply be due to lost samples in the

summer of the first study year; therefore CV's were based on
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fewer observations in year 1. In order to determine the

significance of differences, a much larger data set,

covering many years, would be required. Here, differences

are noted in order to suggest possible trends and to point

the way for future research when a larger data set is

compiled. Statistical analysis was not done due to the

small data set and lost samples in study year 1.

Seasonal changes of phytoplankton abundance patterns do

occur in the upper, middle and lower-regions of Coos Bay

estuary. These areas experience low abundance through the

winter months and seasonal blooms, mainly in the spring and

fall, for most organisms. However, the waxing and waning

pattern of each category of organism changes with location

except for Synechococcus and small chlorophyll dominant

eukaryotes. Their peaks and troughs differ somewhat but the

timing was more similar than the other categories of

organisms.

The coastal (Boat House) and mid-estuarine (South

Slough Pilings) sites tended to be more similar in abundance

patterns (coefficient of variance) for Synechococcus,

cryptomonads, autotrophic dinoflagelles, heterotrophic

dinoflagellates, other autotrophs, other heterotrophs, and

temperature and salinity. Hinch Bridge Road tended to be

the most variable site for these categories having the

highest coefficient of variance. However, for small

chlorophyll-dominant eukaryotes and pennate diatoms, the
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Boat House and Hinch Bridge Road were more similar and the

mid-estuarine site (South Slough Pilings) was more variable.

The mean abundance of Synechococcus and other

heterotrophs decreased with increasing distance from the

coastal site. Cryptomonads, autotrophic dinoflagellates,

and other autotrophs increased in mean abundance with

increasing distance from the Boat House.

Water temperature and salinity tended to be the most

variable in the upper-regions of the estuary and the least

variable at the coastal site. The variability in water

temperature and salinity may be influencing the composition

pattern of phytoplankton between sites. Organisms more

tolerant of large changes in temperature and salinity may do

better in the lower-regions of the estuary. However, my

study indicates that all categories of organisms tend to be

the least variable in the upper regions (Boat House and

South Slough) of the estuary and most variable in the lower

regions (South Slough and Hinch Bridge Road).

Cryptomonads and other autotrophs were the only two

categories of organisms whose coefficient of variance, mean,

and standard deviation increased with increasing distance

from the Boat House. Cryptomonads maintain a stable

presence in coastal areas but may not be able to thrive

because of competition from other organisms. Whereas, in

areas where there is a wide temperature and salinity range

such as in the mid- and lower-regions of Coos Bay estuary,

cryptomonads may be able to out-compete other organisms due
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to their tolerance of fluctuations in temperature and

salinity.

"Other autotrophs" like cryptomonads may also be more

tolerant of fluctuations in temperature and salinity. On

the other hand, their increase in mean abundance, standard

deviation, and coefficient of variance may be and indication

of a change in dominance from marine flora to freshwater

flora. In order to determine this - taxonomic work would

need to be done.

Diatoms had similar abundance patterns at all

locations (lower abundance in the winter and increasing in

the spring, summer and fall). However, centric diatoms were

more prevalent in coastal areas whereas pennates dominate in

the mid- and lower-areas of the estuary. The pennates in

the mid- and lower-regions of the estuary may have been

benthic organisms that had been re-suspended and mixed in

the water column rather than pelagic diatoms.

In conclusion:

1. The abundance and dominance pattern of

phytoplankton changed seasonally at all three locations.

Increases in cell abundance occurred across all categories

of organisms. But increases in biomass were due primarily

to the addition of larger cells to a base level of small

cells - as has been observed elsewhere.

2. The mean abundance of phycoerythrin containing

cyanobacteria was greater than the mean abundance of small

chlorophyll-dominant eukaryotes at all locations.
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3. Cryptomonad abundance varied between sites; they

were more abundant in estuarine than coastal environments at

any given time.

4. Phytoplankton assemblages varied within the

different temperature and salinity regimes. Assemblages

tended to be least variable at sites with the lowest

variation in temperature and salinity.

Benefits of Research

It is my intention that this study will be used as

base line information for a long range study of the seasonal

abundance and species composition of phytoplankton in this

locality. There is a paucity of information available

pertaining to phytoplankton dynamics in Oregon's coastal

areas. However, the ecological importance of this highly

productive coastal areas has been widely recognized by many

scientists as well as commercial and recreational

industries. High rates of primary production have been

linked with increased fish catches and increased fish and

invertebrate larval survival. In addition, current studies

suggest that primary production data can be used to estimate

pelagic fish production in healthy marine ecosystems

(Parsons and Chen 1994) .

Lately there has been a lot of concern regarding the

effects of El Nino Southern Oscillation (ENSO) and other

periodic events. These events cause global changes in
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climate and may lead to fundamentally different habitat

and ecosystem changes. ENSO events are associated with

reductions in fish production caused by a decrease in

primary productivity in the eastern equatorial Pacific

(Barber and Chavez 1983). In the North Pacific subtropical

gyre ENSO events are associated with a decrease in upper­

ocean mixing and changes in ocean circulation. These

changes resulted in an increase in primary production,

particularly of Trichodesminium spp. (a nitrogen-fixing

organism), leading to a shift from a nitrogen-limited system

to a phosphorus-limited system (Karl et al. 1995). The

biological and physical changes associated with ENSO affect

the entire food web. In order to understand fully the long

term effects of anomalous events we must first have a grasp

on the distribution and abundance patterns of the primary

producers. Long term investigations are needed to quantify

"normal" seasonal patterns of phytoplankton succession and

abundance. This information is pertinent to food chain

considerations. Until then we will not be able to draw

logical conclusions regarding the effects of periodicity

events on primary production.
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Sampling Date Synechococcus Chlorophyll- Cryptomonads
dominant

(c/ml) Eukaryotes < (c/ml)
3 m (c/ml)

9/27/93 3533 3905 94
10/4/93 10839 3047 61

10/11/93 12895 12279 626
10/18/93 41355 3711 117
10/25/93 40540 1347 121
11/1/93 15097 8893 134
11/8/93 11711 1390 126

11/15/93 10155 4072 134
11/22/93 5351 4964 111
11/29/93 6684 7282 111
12/6/93 10413 859 123

12/14/93 3882 217 39
12/20/93 4210 1138 63
12/27/93

1/3/94 9349 2500 49
1/10/94 8008 2395 59
1/17/94 5250 4372 88
1/24/94 10451 1202 194
1/31/94 6176 159 97
2/7/94 4589 18 129

2/14/94 14068 106 108
2/21/94
2/28/94 11448 92 188
3/14/94 4249 308 80
3/21/94 3632 46 107
3/28/94 18852 35 106

4/4/94 10579 282 67
4/11/94 5635 176 92
4/18/94 16407 100 124
4/25/94 19805 370 95
5/2/94 8183 97 62
5/9/94 10959 1157 59

5/16/94
5/23/94
5/30/94

6/6/94 62 77
6/13/94
6/20/94
6/27/94
7/4/94

7/11/94
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Sampling Date Synechococcus Chlorophyll- Cryptomonads

dominant
(c/ml) Eukaryotes < (c/ml)

3 m (c/ml)
7/18/94 37 1339
7/25/94 4875 55

8/1/94 996 4010 18
8/8/94 3339 507 89

8/15/94 19002' 6844 540
8/22/94 37901 5133 900
8/29/94 67220 14795 222
9/5/94 67272 4494 455

9/12/94 98858 3959 80
9/19/94 47337 11473 89
9/26/94 27268 9804 167
10/3/94 11130 567 565

10/10/94 26794 11272 1009
10/19/94 21669 13057 162
10/24/94 23528 9342 248

11/3/94 11815 6852 85
11/7/94 4069 2313 68

11/14/94 4760 3250 75
11/18/94 5163 2844 235
11/21/94 2088 1197 51
11/28/94 4029 2131 224

12/2/94 4776 2918 108
12/5/94 4817 5176 49

12/12/94 6421 4012 106
12/18/94 3769 4709 85
12/26/94

1/1/95 2417 3434 103
1/9/95 2369 2133 63

1/16/95 4583 1486 44
1/23/95 2916 2927 251
1/30/95 3867 2151 225
2/6/95

2/15/95 2661 2419 74
2/20/95 10396 4210 100
2/27/95 13786 4801 196
3/1/95 9690 5244 170
3/6/95 25647 5460 284

3/13/95 22974 2480 111
3/16/95 2031 55
3/20/95 2650 118
3/27/95 3370 1256 55
3/31/95 3028 2447 118
4/3/95 798 15

4/10/95 4182 1514 56
4/15/95 6537 3582 86
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Sampling Date Synechococcus Chlorophyll- Cryptomonads

dominant
(c/ml) Eukaryotes < (c/ml)

3 m (c/ml)
4/24/95 3468 5909 41
4/28/95 3871 14249 76
5/8/95 3972 2077 23

5/15/95 1697 1293 53
5/22/95 1297 5239 52
5/29/95 823 1331 127

6/5/95 1055 545 62
6/12/95 8642 4192 94
6/19/95 7381 916 87
6/25/95 1346 1570 46
7/4/95 1015 1579 80

7/12/95 1251 1124 230
7/17/95 364 309 114
7/25/95 1597 2280 74
7/31/95 118 4099 102

8/7/95 388 582 9
8/14/95 1932 4611 80
8/21/95 1452 716 236
8/28/95 1590 3988 283

9/4/95 16065 12630 236
9/9/95 3243 5516 116

9/18/95 1805 3799 48
9/23/95 25242 17579 198
10/2/95
10/9/95 2812 5370 160

10/16/95 1433 1274 21
10/24/95 1698 2807 52
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Sampling Date Chlorophyll- Temperature Salinity

dominant
Eukaryotes > (OC) (0/00)
3 m (c/ml)

9/27/93 2348 10.8 33.0
10/4/93 596 10.7 32.8

10/11/93 4011 11.3 32.4
10/18/93 224 13.7 32.0
10/25/93 1013 12.4 32.2
11/1/93 1238 11.2 32.8
11/8/93 1493 10.9 33.1

11/15/93 1210 8.9 32.7
11/22/93 847 9.0 32.8
11/29/93 1412 9.4 32.7

12/6/93 6.97 10.2 31. 5
12/14/93 388 10.6 31. 5
12/20/93 569 9.3 28.6
12/27/93

1/3/94 1240 11.5 32.0
1/10/94 1240 10.6 31.8
1/17/94 1226 10.9 29.9
1/24/94 1462 10.9 31.5
1/31/94 842 10.7 31.7

2/7/94 988 9.9 31. 9
2/14/94 1484 10.6 32.3
2/21/94
2/28/94 1497 11.2 30.2
3/7/94 1018 10.0 30.1

3/14/94 4035 11. 6 32.1
3/21/94 1057 10.4 32.8
3/28/94 1226 11. 4 32.1
4/4/94 1096 9.9 32.5

4/11/94 687 11. 6 32.5
4/18/94 1717 11. 9 30.9
4/25/94 1359 11.8 31. 5
5/2/94 2869 11.3 31. 9
5/9/94 13.5 32.4

5/16/94 13.0 31. 6
5/23/94 12.4 31. 5
5/30/94 11. 9 33.0

6/6/94 659 13.2 30.7
6/13/94 14.2 31. 6
6/20/94 13.5 31.4
6/27/94 16.8
7/4/94 10.6 31.8

7/11/94 10.0 34.0
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Sampling Date Chlorophyll- Temperature Salinity

dominant
Eukaryotes > (OC) (0/00)
3 m (c/ml)

7/18/94
7/25/94

8/1/94 7007 11.7 33.0
8/8/94 1318 14.6 32.6

8/15/94 7045 15.6 32.5
8/22/94 9186 16.2
8/29/94 4986 12.6 32.9

9/5/94 1832 13.9 32.7
9/12/94 788 15.1
9/19/94 872 12.6 32.8
9/26/94 514 10.6 33.6
10/3/94 583 11.1 33.5

10/10/94 2520 11.0 33.3
10/19/94 903 11.8 31.0
10/24/94 2368 12.3 33.3

11/3/94 435 12.9 30.2
11/7/94 1047 12.3 32.7

11/14/94 1071 10.9 32.0
11/18/94 191 11. 0 30.0
11/21/94 907 9.8 31.1
11/28/94 1686 9.7 32.4

12/2/94 192 9.1 31. 6
12/5/94 289 9.7 32.0

12/12/94 586 9.1 31. 6
12/18/94 753 10.7 30.3
12/26/94

1/1/95 643
1/9/95 960 14.5 27.9

1/16/95 716
1/23/95 846 11.1 22.5
1/30/95 750 12.0 31. 0
2/6/95

2/15/95 1706 10.0 32.0
2/20/95 1300 11. 4 29.5
2/27/95 1259 11.1 31.7
3/1/95 864 11.7 31. 0
3/6/95 979 11. 3 31. 3

3/13/95 447 11.2 31.5
3/16/95 750 12.2 30.0
3/20/95 1636 11. 9 31.2
3/27/95 628 11. 0 29.3
3/31/95 1618 12.8 31. 0

4/3/95 351 12.8 32.1
4/10/95 1784 11. 0 30.4
4/15/95 948 12.8 30.0
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Sampling Date Chlorophyll- Temperature Salinity

dominant
Eukaryotes > (OC) (0/00)
3 m (c/ml)

4/24/95 2194 11.8 28.5
4/28/95 2592 13.0 30.0
5/8/95 2660 10.9 32.2

5/15/95 1965 12.3 31.5
5/22/95 1480 12.2 32.2
5/29/95 6952 12.0 33.0

6/5/95 7066 11. 5 32.8
6/12/95 2602 14.0 32.5
6/19/95 1502 13.4 31.5
6/25/95 1818 13.1 33.0
7/4/95 4171 12.0 32.3

7/12/95 2509 15.3 34.2
7/17/95 8865 11. 9 33.7
7/25/95 2696 14.7 34.6
7/31/95 2557 14.1 33.5

8/7/95 2077 11. 3 33.4
8/14/95 1494 12.3 33.3
8/21/95 1968 12.2 33.8
8/28/95 2673 14.1 31.5

9/4/95 1363 16.1 31.0
9/9/95 1363 13.0 32.5

9/18/95 2645 12.0 32.5
9/23/95 2061 13.1 32.0
10/2/95
10/9/95 2719 12.9 31. 0

10/16/95 814 14.9 31.0
10/24/95 717 11. 2 30.5



APPENDIX B
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Synechococcus
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Sampling Date Boat House Pilings Hineh Road
(e/ml) (e/ml) (e/ml)

10/19/94 21669 19509 10553
11/3/94 11815 8840 6386

11/18/94 5163 3265 423
12/2/94 4776 3986 198

12/18/94 3769 3076 1433
1/1/95 2417 1962 736

1/16/95 4583 914 9
1/30/95 3867 3922 1191
2/15/95 2661 2085 499
3/1/95 9690 6810 2160

3/16/95 10922 4498 63
3/31/95 3028 1986 55
4/15/95 6455 2770 129
4/28/95 3880 1391 48
5/15/95 1697 2382 19
5/29/95 823 742 32
6/12/95 8642 215 20
6/25/95 1346 366 10
7/12/95 1252 511 18
7/25/95 1597 602 52
8/10/95 664 459 91
8/28/95 1590 419 18

9/9/95 3243 2804 1532
9/23/95 25242 630 450
10/9/95 2812 1301 577

10/24/95 1698 1458 570



Chlorophyll-dominant Eukaryotes < 3 ~m

Sampling Date Boat House Pilings Hinch Road
(c/ml) (c/ml) (c/ml)

10/19/94 13057 15452 14724
11/3/94 6852 9032 7476

11/18/94 2844 3712 273
12/2/94 2918 1588 273

12/18/94 4709 3361 485
1/1/95 3435 3513 1026

1/16/95 1486 360 19
1/30/95 2151 2096 720
2/15/95 2419 2188 803
3/1/95 5244 2105 2401

3/16/95 2031 702 129
3/31/95 4078 3665 19
4/15/95 3582 1302 55
4/28/95 14249 10488 12
5/15/95 1293 136717 133
5/29/95 1332 3122 622
6/12/95 4192 10004 6199
6/25/95 1570 12920 3845
7/12/95 1124 5393 3466
7/25/95 2281 10081 9611
8/10/95 4420 4866 4838
8/28/95 3988 23427 25376

9/9/95 3862 34306 46027
9/23/95 17579 11965 24386
10/9/95 5370 17913 7122

10/24/95 2807 9624 14963
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Cryptomonads
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Sampling Date Boat House Pilings Hineh Road
(e/ml) (e/ml) (e/ml)

10/19/94 162 351 489
11/3/94 85 215 505

11/18/94 235 447 395
12/2/94 111 143 247

12/18/94 85 262 875
1/1/95 103 129 329

1/16/95 44 74 0
1/30/95 225 174 157
2/15/95 74 177 89
3/1/95 170 159 144

3/16/95 55 384 0
3/31/95 118 366 81
4/15/95 86 656 0
4/28/95 86 578 0
5/15/95 53 698 37
5/29/95 127 244 332
6/12/95 95 657 1471
6/25/95 46 997 130
7/12/95 230 691 1451
7/25/95 74 612 918
8/10/95 98 438 864
8/28/95 283 821 522

9/9/95 117 515 873
9/23/95 198 421 1085
10/9/95 160 332 1117

10/24/95 52 277 739



Centric Diatoms
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Sampling Date Boat House Pilings Hinch Road
(e/ml) (e/ml) (c/ml)

10/19/94 296 3 2
11/3/94 197 75 9

11/18/94 31 4 5
12/2/94 27 2 1

12/18/94 19 22 37
1/1/95 4 22 0

1/16/95 4 0 0
1/30/95 22 0 5
2/15/95 41 0 15
3/1/95 107 7 0

3/16/95 4 4 0
3/31/95 44 111 0
4/15/95 55 28 0
4/28/95 268 27 0
5/15/95 977 75 25
5/29/95 5890 63 0
6/12/95 1357 34 7
6/25/95 365 148 0
7/12/95 650 88 536
7/25/95 988 6 752
8/10/95 211 17 331
8/28/95 832 51 40

9/9/95 86 11 570
9/23/95 353 0 0
10/9/95 91 0 0

10/24/95 36 0 0



Pennate Diatoms
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Sampling Date Boat House Pilings Hineh Road
(e/ml) (e/ml) (e/ml)

10/19/94 112 32 41
11/3/94 121 160 119

11/18/94 51 122 21
12/2/94 49 86 31

12/18/94 107 163 22
1/1/95 33 59 67

1/16/95 22 81 0
1/30/95 26 170 65
2/15/95 103 85 41
3/1/95 19 103 55

3/16/95 41 218 41
3/31/95 63 1994 33
4/15/95 123 2059 194
4/28/95 393 419 289
5/15/95 277 350 757
5/29/95 352 190 712
6/12/95 60 142 835
6/25/95 160 185 960
7/12/95 194 125 741
7/25/95 536 178 372
8/10/95 836 115 838
8/28/95 319 82 297
9/9/95 322 280 222

9/23/95 87 140 165
10/9/95 410 73 64

10/24/95 287 332 63



Autotrophic Dinoflagellates
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Sampling Date Boat House Pilings Hinch Road
(c/ml) (c/ml) (c/ml)

10/19/94 0 3 2
11/3/94 0 0 28

11/18/94 12 11 10
12/2/94 22 32 60

12/18/94 4 30 133
1/1/95 11 7 140

1/16/95 0 4 0
1/30/95 30 26 74
2/15/95 7 37 22
3/1/95 15 37 89

3/16/95 4 63 4
3/31/95 15 81 0
4/15/95 6 28 0
4/28/95 8 35 0
5/15/95 8 10 6
5/29/95 19 13 0
6/12/95 9 19 159
6/25/95 0 19 0
7/12/95 49 13 86
7/25/95 9 6 43
8/10/95 6 0 40
8/28/95 6 41 6

9/9/95 6 6 6
9/23/95 46 11 41
10/9/95 11 0 0

10/24/95 0 0 17



Heterotrophic Dinoflagellates
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Sampling Date Boat House Pilings Hinch Road
(c/ml) (c/ml) (c/ml)

10/19/94 39 20 6
11/3/94 18 6 9

11/18/94 7 0 3
12/2/94 22 3 0

12/18/94 4 22 0
1/1/95 . 0 4 0

1/16/95 0 11 0
1/30/95 7 4 14
2/15/95 26 0 0
3/1/95 11 7 0

3/16/95 7 4 4
3/31/95 11 0 0
4/15/95 6 0 0
4/28/95 14 0 0
5/15/95 15 0 0
5/29/95 28 0 0
6/12/95 0 4 12
6/25/95 29 0 0
7/12/95 34 16 9
7/25/95 37 9 11
8/10/95 6 0 108
8/28/95 6 41 21

9/9/95 0 0 0
9/23/95 0 0 0
10/9/95 40 0 0

10/24/95 0 0 0



Other Autotrophs
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Sampling Date Boat House Pilings Hinch Road
(c/ml) (c/ml) (c/ml)

10/19/94 495 239 1263
11/3/94 118 360 1192

11/18/94 97 539 302
12/2/94 94 175 245

12/18/94 624 185 521
1/1/95 595 569 813

1/16/95 691 118 15
1/30/95 672 1053 406
2/15/95 1555 776 1234
3/1/95 724 2493 2223

3/16/95 702 1429 26
3/31/95 1496 606 26
4/15/95 763 2336 92
4/28/95 1923 815 38
5/15/95 703 6885 662
5/29/95 692 1016 518
6/12/95 1176 1926 5052
6/25/95 1294 2724 1629
7/12/95 1626 446 3629
7/25/95 1163 1440 1530
8/10/95 831 1010 1959
8/28/95 1516 6812 13565

9/9/95 951 5145 13557
9/23/95 1575 1429 3793
10/9/95 2206 1910 3596

10/24/95 394 896 1519



Other Heterotrophs

Sampling Date Boat House Pilings Hineh Road
(e/ml) (e/ml) (e/ml)

10/19/94 128 137 251
11/3/94 168 104 353

11/18/94 854 222 207
12/2/94 167 148 115

12/18/94 451 225 188
1/1/95 185 126 74

1/16/95 1097 259 126
1/30/95 307 344 337
2/15/95 624 137 81
3/1/95 55 443 59

3/16/95 314 137 266
3/31/95 126 70 55
4/15/95 160 286 286
4/28/95 177 280 53
5/15/95 125 269 111
5/29/95 322 535 125
6/12/95 2910 970 284
6/25/95 405 600 82
7/12/95 1302 459 539
7/25/95 739 642 943
8/10/95 636 382 638
8/28/95 1106 1765 1980

9/9/95 348 1235 1412
9/23/95 542 673 671
10/9/95 416 477 783

10/24/95 294 388 367
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Temperature

Sampling Date Boat House Pilings Hinch Road
10/19/94 11. 8 12.6 11. 9

11/3/94 12.9 11.2 9.7
11/18/94 11. 0 8.3 6.5
12/2/94 9.1 9.8 9.2

12/18/94 10.7 10.2 9.9
1/1/95 12.4 9.8 8.0

1/16/95 10.4 9.8 9.8
1/30/95 12.0 12.0 12.5
2/15/95 10.0 8.8 8.0
3/1/95 11.7 11.2 11. 0

3/16/95 12.0 12.2 10.1
3/31/95 12.8 13.6 10.2
4/15/95 12.8 12.9 9.9
4/28/95 13.0 13.9 12.0
5/15/95 12.3 14.8 14.0
5/29/95 12.0 17.0 15.0
6/12/95 14.0 17.0 15.1
6/25/95 13.1 19.9 18.0
7/12/95 15.3 20.6 20.1
7/25/95 14.7 19.5 18.8
8/10/95 12.0 17.4 19.3
8/28/95 14.1 18.0 19.8

9/9/95 13.0 18.2 19.0
9/23/95 13.1 15.5 16.0
10/9/95 12.9 14.1 14.0

10/24/95 11.2 12.5 12.0
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Salinity

Sampling Date Boat House Pilings Hinch Road
10/19/94 31. 0 30.3 25.3
11/3/94 30.2 18.3 20.7

11/18/94 30.0 21.8 0.0
12/2/94 31. 6 22.1 0.0

12/18/94 30.3 22.5 0.0
1/1/95 29.2 24.3 0.8

1/16/95 28.0 8.0 0.0
1/30/95 31.0 22.0 9.0
2/15/95 32.0 30.0 5~0

3/1/95 31.0 22.0 11.0
3/16/95 30.0 20.0 0.0
3/31/95 31.0 21.0 0.0
4/15/95 30.0 15.5 0.0
4/28/95 30.0 22.5 2.0
5/15/95 31.5 22.0 1.5
5/29/95 33.0 25.0 4.0
6/12/95 32.5 26.5 5.0
6/25/95 33.0 25.0 4.0
7/12/95 34.2 32.6 18.7
7/25/95 34.6 33.0 15.4
8/10/95 35.0 34.0 16.1
8/28/95 31.5 31.8 24.8

9/9/95 32.5 30.5 26.0
9/23/95 32.0 31.0 25.0
10/9/95 31.0 30.5 24.8

10/24/95 30.5 30.5 18.0
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