The Trinity Church congregation in Boston has been growing since H.H. Richardson completed the first phase of construction in 1877. About every 20 years the church undergoes another construction phase, ranging from simple preservation to the expansion of the existing buildings. Due to the relatively small urban site, any new expansion had to be directed downward, underneath the existing church. Goody Clancy, the hired architect by the congregation to head the project, realized they were adding one more layer to this continually developing, living church. In their addition, Goody Clancy worked to preserve the elements of Richardson's design which continued to function well, restore that which needed to be, and alter existing plans to accommodate for the expanding congregation. The Undercroft, or foundation of the church, had originally been designed as 4500 wooden pylons. New mechanical systems and a expanding program required excavation, and therefore this structural system was further reinforced to counteract the removal of selected pilings. The Undercroft has become a space capable of occupancy containing a meeting area, new book shop and new restrooms. This space is divided by a new glass art piece commissioned by the congregation, continuing the motif Richardson utilized in the Sanctuary, the telling of stories. Major characterizing elements designed by Richardson, such as sculptures and details, were preserved, or restored, according to the standards of the Secretay of Interiors. Details and materials, such as wood where people touch and interact with their environment, are mimicked in the Undercroft. The architect worked to leave as much as possible of the worship space unaltered, but the addition of an elevator and two stair connections, for accessibility, required some minor alterations. In this process Goody Clancy worked to blend in new material to existing, while clearly differentiating between the two.
Six new geothermal wells installed for heating and cooling, utilizing digital controls for further energy efficiency

Variable Frequency Drives implemented with HVAC system, paired with CO2 sensors

Operable windows for manual ventilation control

Daylight sensors combined with energy saving light fixtures

100% of stormwater on site is retained, and rain-sensors implemented to use to ensure structural integrity of wood piling support system beneath church before redistribution to natural groundwater table

Water saving fixtures help reduce potable water use on the interior

Use of recycled content local and regional materials, and re-use of salvaged materials

Low VOC compliant paint, carpet, adhesives and composite wood

Sources:

Krust, Stefan. Senior Associate, Goody Clancy. Email and phone conversations. April, 2009.


O’Gorman, James F. The Makers Of Trinity Church in the City of Boston. University of Massachusetts Press, Amherst & Boston. 2004. 113


The Restoration of Trinity Church. Trinity Boston Foundation. Tuesday, September 13, 2005.