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Many marine invertebrate taxa undergo part or all of development within egg

capsules. In most cases this type of development is considered derived from an ancestor

with free-swimming feeding larvae ("planktotrophic"). The implications of intracapsular

feeding for the ecology and evolution of larvae and juveniles are poorly understood. The

velum (the feeding and swimming organ ofplanktotrophic gastropod larvae) of three

Littorina species with encapsulated development was shown to be active in endocytotic

uptake of protein-rich capsular fluid. Encapsulated Littorina larvae lacked the

characteristic ciliation patterns ofcongeneric planktotrophs but retained a large velum in

early development. In a variety ofother gastropod taxa, in contrast, species with

nonplanktotrophic larvae had reduced velums. This suggests that among encapsulated

Littorina species, a large velum has been retained due to its novel function in the capsule

environment.

Larvae of many gastropod species with encapsulated development feed on

nondeveloping "nurse eggs," and hatching size varies within and among clutches due to
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differential nurse egg provisioning and consumption. Laboratory tests demonstrated that

maternal size and food ration did not affect offspring size ofNucella emarginata. Large

offspring size is assumed to be advantageous in most life-history models, but field tests of

this assumption are lacking in benthic marine systems. Hatching size ofNucella

emarginata was positively correlated with organic content, and large hatchlings grew

more and survived longer under laboratory conditions than small siblings.

A method was developed for marking and outplanting hatchling Nucella (0.9-2.0

rom) into the field, and hatching size strongly affected growth in the field but did not affect

short-term survivorship. Long-term (ca. 1 month) field outplants demonstrated that

hatching size could affect survivorship over longer intervals and that the effect of size

varied over small spatial scales. Large Nucella emarginata hatchlings exhibited higher

survivorship than small hatchlings in benign habitat, but not in more severe habitat. The

severe habitat varied between extreme and moderate temperatures over a scale of

centimeters while the benign habitat was cooler and less variable, suggesting that the

relationship between habitat quality and offspring size-dependent performance may vary

depending on the microstructure ofan organism's habitat. This dissertation includes

previously published materials.
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CHAPTER I

GENERAL INTRODUCTION

Many marine invertebrates have microscopic larval forms that must swim and

feed in the plankton in order to grow and attain metamorphic competence

("planktotrophic"); others have nonfeeding larvae with yolky eggs or entirely

encapsulated development ("lecithotrophic") (Thorson, 1946; Jablonski and Lutz, 1986;

Strathmann, 1985). For most taxa, planktotrophy is considered primitive and

lecithotrophy, derived. Because it is often accompanied by loss of feeding and

swimming characters, the evolutionary switch from planktotrophy to lecithotrophy is

thought to be irreversible (Strathmann, 1974, 1985; Hadfield and Iaea, 1989; Emlet,

1991).

Lecithotrophic species whose larvae can no longer obtain the nutrition necessary for

development and growth from the plankton must find other means of provisioning

offspring. Provisioning is accomplished either by production of large, yolk-rich eggs, or

by supplying encapsulated embryos with intracapsular, extraembryonic nutrition such as

albumen or nurse eggs. Extraembryonic nutrition, as a food source, is physically very

different from the algal food of planktotrophic larvae; therefore, ancestral feeding

characters may be altered or new features evolved for feeding on intracapsular food

sources. Specialized larval organs have evolved in some gastropods for absorption of

1
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albumen (Rivest 1992, Rivest and Strathmann 1995), and modifications in ciliation have

been interpreted as adaptations for feeding on nurse eggs (Hadfield, 1966; Lyons and

Spight, 1973; Rivest, 1981). Modifications to the ancestral, planktotrophic larval form

can therefore be attributed to either (1) loss of planktotrophic characters due to lack of

stabilizing selection (Strathmann 1985), or (2) specialization for feeding on intracapsular

nutrition. A third possibility is that planktotrophic feeding characters may be retained for

novel functions in the capsule environment. For many encapsulated species, however,

mechanisms of feeding and the relationship between morphology and feeding are not

well understood.

The presence of larval structures that may be specializations for the uptake and

consumption of extraembryonic nutrition strongly suggests that this nutrition in some

way benefits the organism, either at the larval or juvenile stage. Embryos of the intertidal

gastropod Nucella emarginata develop to metamorphosis in benthic egg capsules, and

embryos consume up to several hundred nurse eggs during development. Offspring

(hatchling) size ofnurse egg feeders such as N emarginata is strongly influenced by

number ofnurse eggs consumed during development (Rivest, 1983; Fioroni, 1988; Baur,

1992). Large hatchlings are therefore likely to represent a higher maternal investment

than small hatchlings, but offspring size and organic content are not necessarily

correlated in all taxa (McEdward and Carson, 1987; McEdward and Coulter, 1987;

McEdward and Chia, 1991).

Large size can confer performance advantages on gastropod hatchlings. In

laboratory experiments, large hatchlings grew faster (when fed (Rivest 1981)) and were
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less likely to be consumed by some predators (Spight, 1976; Rivest, 1981; Gosselin,

1994) than small hatchlings. Vulnerability to desiccation and heat decreased with

increasing shell length as snails aged and grew (Gosselin, 1994), suggesting that hatching

size may also influence desiccation and heat tolerance. Starvation, predation and

desiccation are only some of many stresses that hatchlings are likely to encounter in the

field, and environmental conditions vary greatly both temporally and locally. Therefore,

the importance of hatching size in the field cannot be a priori assumed, but must be

tested under a range of conditions in the field to understand its potential role in shaping

life history strategies.

In this dissertation, several experiments are described that explored the

relationships among offspring size, morphology, performance, and adult condition in two

gastropod genera with nonplanktotrophic larvae that consume intracapsular nutrition

during development. Chapter II describes the mechanism of albumen uptake of embryos

in the genus Lit/orina, and explores some of the consequences of extraembryonic

nutrition for the evolution of larval form in Littorina and other gastropods. Chapter III

first describes the relationship between hatchling size and organic content in Nucella

emarginata, then explores the relationship between maternal investment and offspring

performance in the field both over time and in contrasting environments.

Before the field experiments in Chapter III could be performed, a durable and

nontoxic marker was necessary for labeling gastropod hatchlings. Chapter IV describes

1) a technique that was developed to label Nucella emarginata hatchlings with Calcein,

and 2) experiments testing the utility of the Calcein mark for long-term labeling and as a
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marker for growth. Chapter V describes laboratory experiments that explored the effects

of maternal size and food ration on offspring size in a gastropod (Nucella emarginata)

which relies on nurse eggs for intracapsular nutrition. Nurse egg feeding is a

taxonomically widespread mechanism for offspring provisioning, but the impacts of

maternal effects on offspring size in nurse egg feeders is poorly understood.

Lastly, Chapter VI provides a brief summary and future directions for research,

and three appendices are attached. Appendix A describes the methods used for organic

content analysis in Chapter III, and a comparison of the results of two different methods

of organic content analysis. Appendix B describes a field experiment that was performed

to test the propensity ofNucella hatcWings to crawl off of experimental panels such as

those used in Chapter III. Appendix C is a photocopy of a published paper that describes

the development of Tegula funebralis, an abundant and ecologically important species

that has been the focus ofnumerous other ecological and evolutionary studies.
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CHAPTER II

INTRACAPSULAR FEEDING BY EMBRYOS OF THE

GASTROPOD GENUS L/ITORINA: IMPLICATIONS

FOR THE EVOLUTION OF LARVAL FORM

Introduction

Marine invertebrates exhibit a remarkable variety of reproductive and

developmental modes, both within and among taxa. This variation has been of great

interest because it provides a unique and comparative means of studying the integration

of development, life history and evolution. One of the best-known dichotomies in

invertebrate development is between species with larvae that must feed in the plankton in

order to grow and attain metamorphic competence (planktotrophic), and species with

nonfeeding larvae with yolky eggs or entirely encapsulated development

(nonplanktotrophic) (Thorson, 1946; Jablonski and Lutz, 1983; Strathmann, 1985).

Embryos ofmany nonplanktototrophic species develop and metamorphose in benthic egg

capsules (encapsulated development) (Thorson, 1946; Pechenik, 1979; Perron, 1981), and

both planktotrophic species and species with encapsulated development can occur within
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a single genus. Egg capsules are often complex and energetically costly to produce

(Pechenik, 1979, 1986), and may function to protect embryos from environmental

stresses and predation (Shuto, 1974; Spight, 1977; Pechenik, 1984; Hawkins and

Hutchinson, 1988; Rawlings, 1990, 1996) and retain offspring within suitable adult

habitat (Wells and Wells, 1962; Chapman, 1965).

In addition to their protective and retentive role, egg capsules may also contain

extraembryonic, nutrient-rich materials that provide an energy source for developing

embryos. The nature of these materials and their importance for embryonic nutrition vary

considerably among gastropods. Extraembryonic nutrition may take the form ofnurse

eggs (unfertilized eggs or abnormally developing embryos), nutritive yolk, albumen, or a

combination. Albumen, a common source ofextraembryonic nutrition among gastropods

(Fretter and Graham, 1962), is a viscous fluid that surrounds embryos in the egg capsule

and is frequently rich in proteins, carbohydrates and/or free amino acids (Horstmann,

1956; De Mahieu et aZ., 1974; Rivest, 1992; St6ckmann-Bosbach and Althoff, 1989;

Penchaszadeh and Rincon, 1996). Among gastropods, albumen is generally consumed

endocytotically via receptor-mediated pathways (Elbers and Bluemink, 1960; Fioroni,

1977; Rivest, 1981; Rivest, 1992; Rivest and Strathmann, 1995).

The importance ofalbumen as a nutrient reserve for developing embryos has been

demonstrated in pulmonate gastropods through a decline in nutrient content of the fluid

during development and by a correlated increase in lipid and protein content of the

embryo (Horstmann, 1956; Morrill, 1964; Raven, 1972; Taylor, 1973; Morrill et aZ.,



7

1976). Disappearance of albumen is correlated with considerable increases in embryo

size during the development of some opisthobranchs (Clark et al. 1979, Clark and Jensen

1981) and some prosobranchs (Rasmussen, 1951; Buckland-Nicks et al., 1973; Losse and

Greven, 1993). The nutritive importance of albumen probably varies considerably among

taxa, depending on egg size, volume of albumen, the nutritive content of albumen fluid,

and the presence or absence of additional sources of nutrition such as nurse eggs

(Pechenik et al., 1984; Miloslavich, 1996; Penchaszadeh and Rincon, 1996).

Encapsulated, nonplanktototrophic embryos ofmany taxa possess morphological

structures whose functional significance is only apparent in planktotrophic relatives or

ancestors. For example, many prosobranch and opisthobranch gastropods with

encapsulated development pass through a recognizable veliger stage that retains a

bilobed, ciliated velum (e.g., Fretter and Graham, 1962; Buckland-Nicks et al., 1973;

Strathmann, 1978; Hadfield and Iaea, 1989), the feeding and swimming organ of

planktotrophic gastropod larvae (see Strathmann and Leise, 1979). The presence of

planktotrophic larval feeding structures (such as the velum) in encapsulated embryos is

commonly accepted as evidence of descent from a planktotrophic ancestor, and is one of

numerous independent lines of evidence that support planktotrophy as the ancestral state

in caenogastropods (Haszprunar et al., 1995).

However embryos of many encapsulated species, while retaining gross veliger

morphology, exhibit some modifications to the ancestral planktotrophic form. One

commonly reported feature ofencapsulated gastropod embryos is a reduction in size of
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the velar lobes (e.g. Jagerston, 1972; Webber, 1977), although the size of the velum

varies considerably among encapsulated taxa (Hadfield and Iaea, 1989; this paper). The

patterns ofciliation on the velar lobes of nonplanktotrophic species with encapsulated

development often differ considerably from the velar ciliation of planktotrophs as well

(e.g. Lyons and Spight, 1973; Hadfield and Iaea, 1989). Reduction in the size of velar

lobes and alterations to ancestral ciliation patterns have been interpreted variously as the

loss of complex, ancestral planktotrophic morphology due to a lack of stabilizing

selection and as functional modifications that enhance performance in the intracapsular

environment (e.g. respiration and feeding on intracapsular nutrition (Fretter and Graham,

1962; Lyons and Spight, 1973; Hadfield and Iaea, 1989)).

In addition, many gastropods with encapsulated development have transitory,

embryonic structures that appear to be specializations for albumen uptake. These

structures include the cell surfaces of early cleavage stages and embryonic gut of some

pulmonates (Raven, 1972), the podocyst of some pulmonates (Cather and Tompa, 1979),

a transitory albumen digestive sac in the embryonic gut of some prosobranchs (portmann,

1955; Portmann and Sandmeier, 1965), the larval kidneys ofmany prosobranchs (Rivest,

1992), and the pedal cell complex of neritoidean gastropods (Rivest and Strathmann,

1995). Because these transitory, albumen-absorbing structures are absent in planktonic,

feeding larvae, it has been proposed that albumen-absorbing structures have evolved in

gastropods with encapsulated embryos to enhance capsular albumen uptake (Rivest and

Strathmann, 1995). It is likely that some of these structures serve other functions as well,
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such as enhancing intracapsular respiration (Cather and Tompa, 1972; Rivest and

Strathmann, 1995).

The mechanisms of consumption of intracapsular nutrition are poorly understood

in many taxa. For example, the encapsulated larvae of non-planktotrophic Littorina

species are surrounded by albuminous fluid in the egg capsule and grow considerably

during development (Buckland-Nicks et al., 1973), yet lack obvious albumen-absorbing

l

structures such as larval kidneys (Rivest, 1981). Furthermore, the extent to which

ancestral, planktotrophic morphology has been modified in larvae ofnonplanktotrophic,

intracapsular embryos cannot be addressed fully without making comparisons among

closely related taxa with contrasting developmental modes. Such comparisons are

unfortunately rare. The objectives of this study were to (1) determine the location and

mechanism ofalbumen uptake by embryos ofLittorina species with encapsulated

development, (2) determine whether congeneric planktotrophs share similar patterns of

albumen uptake, and to (3) compare the functional feeding morphology of encapsulated

Littorina and their planktotrophic congeners.

Study organisms

The gastropod genus Littorina, the periwinkle snails, contains 19 species found in

the high-shore zone throughout the northern Atlantic and Pacific oceans (Reid, 1989;

Reid et al., 1996). Two types of development are found in Littorina; species that have

pelagic egg capsules and planktotrophic larvae, and nonplanktotrophic species whose
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larvae are contained within benthic or brooded egg capsules until metamorphosis

("encapsulated") (see Reid, 1989 for review). Planktotrophic species hatch as post-

torsional, feeding veligers from planktonic egg capsules, and larvae are contained within

individual egg membranes until immediately prior to hatching from the egg capsule (fig.

lA). Embryos of encapsulated species develop to metamorphosis in benthic or brooded

egg capsules, in which embryos are surrounded by granular albumen that is consumed

during development (Buckland-Nicks et al., 1972) (fig. IB). Independent phylogenetic

evidence supports planktotrophy as the ancestral state (see Rumbak et al., 1994).

Intracapsular, extraembryonic albumen is thought to be ofnutritive importance to

developing Littorina embryos for several reasons. Albumen of one species, 1. saxatilis,

has been found to be protein-rich and dominated by a single protein ofmolecular weight

80,000 kDa, that disappears from the extraembryonic capsular space during development

(Losse and Greven, 1993). Several encapsulated Littorina species also grow considerably

during development (Buckland-Nicks et al., 1972; Moran, unpub. data), presumably due

to the consumption of capsular fluid. The mechanism of capsular albumen uptake has

previously been unknown (or assumed to occur via the gut (Buckland-Nicks et al.,

1972)); Littorina embryos have been reported to lack larval kidneys (Rivest, 1992), and

other structures have not been implicated in albumen uptake.
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Figure 1. (A) Planktonic egg capsule of Littorina scutulata, a species with
planktotrophic development, containing three prehatching veliger-stage larvae.
(B) Albumen-filled capsule ofLittorina saxatilis, a species that broods encapsulated
embryos until metamorphosis. Capsule was removed from the oviduct of a gravid

female. aI, albumen; c, capsule; e, embryo; en, egg envelope. Scale bar = 60 pm.
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Methods and Materials

Spawning and larval rearing

Seven Littorina species were used in these experiments, including four

planktotrophs (1. littorea (Linnaeus, 1758),1. keenae Rosewater, 1978,1. plena Gould,

1849,1. scutulata Gould, 1849) and three species with encapsulated development (1.

saxatilis (Olivi, 1792),1. sitkana Philippi, 1846,1. subrotundata (Carpenter, 1864))

(Table 1). Local species were maintained at the Oregon Institute of Marine Biology

(OIMB) in flowing seawater at ambient temperatures in flow-through containers. Non­

native species were kept at OIMB in 10 gallon aquaria in vigorously aerated sea water at

room temperature or at 12°C. All objects exposed to non-native species were washed

with a solution ofchlorine bleach to reduce risk of introducing exotic species into the

local environment. Egg capsules of planktotrophic species and species with benthic egg

masses were obtained by placing live, freshly-collected adult animals into mesh-walled

containers « Imm diameter mesh size), immersing containers in vigorously aerated sea

water, and checking containers regularly. Planktotrophs and nonplanktotrophs generally

produced egg capsules after 1 or 2 d and after 1 to 7 d, respectively. To obtain embryos

of the nonplanktotrophic brooder 1. saxatilis, adult animals were cracked with needle­

nose pliers and developing embryos were removed from the brood chamber.
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Table 1

Species, development and collection information for Littorina utilized in this study

Species, Authority Modea Collection Locality Habitat

Littorina littorea P Woods Hole, MA Rocky shoreline
(Linneaus, 1758) Mystic, CT

Littorina keenae P Monterey, CA Rocky shoreline
Rosewater, 1978

Littorina plena P Charleston, OR Rocky shoreline
Gould,1849

Littorina scutulata P Charleston, OR Protected estuary
Gould,1849 Monterey, CA Rocky shoreline

Littorina saxatilis NP Woods Hole, MA Rocky shoreline
(Olivi, 1792) Mystic, CT

Littorina sitkana NP Charleston, OR Estuarine marsh
Philippi, 1846 Friday Harbor, WA Rocky shoreline

Littorina NP Charleston, OR Estuarine marsh
subrotundata
(Carpenter, 1864)

ap = planktotrophic, NP = nonplanktotrophic

Larvae of planktotrophic species were reared at concentrations of ca. one larva/ml

in 0.45 pm filtered sea water changed every four d. Planktotrophic larvae were fed ad

libitum on a mixture of single-celled algae, Tahitian strain Isochrysis galbani and

Dunaliella tertiolecta. Egg masses of encapsulated Littorina species and embryos
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dissected out ofL. saxatilis were maintained in glass dishes of 0.45 Jlffi filtered sea water

at 12°C.

Use offluorescence microscopy to test for albumen uptake in Littorina

Embryos of the three Littorina species with encapsulated development (L.

saxatilis, L. sitkana, L. subrotundata) were removed from their egg capsules at

developmental stages from early cleavage to near hatching. Embryos visibly damaged

during removal were discarded. Because most planktotrophic embryos could not be

removed from the egg envelope without damage, three of four planktotrophs (L. littorea,

L. planaxis, L. plena) were only examined as fully-formed prehatching and hatched

veligers. Embryos of the fourth planktotroph (L. scutulata) were successfully removed

from the egg envelope on one occasion; therefore, L. scutulata were examined as pre­

shelled embryos as well as prehatching and hatched veligers. All embryos and larvae

were placed in solutions of bovine serum albumen labeled with fluoroscein

isothiocyanate (FITC-BSA, Sigma #A-9771). FITC-BSA was also made in the

laboratory from commercially available BSA and FITC (Sigma #F-7250) using the

methods of Rivest (1981). Both purchased and laboratory-made FITC-BSA were used

raw or dialyzed for 24 h against several changes of 0.45 Jlffi filtered sea water to remove

unbound FITC.

Embryos and larvae were placed in test solutions of 10-1000 J.lg/ml FITC-BSA in

filtered sea water at 12°C for periods ranging from fifteen minutes to 24 h, then rinsed in
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filtered sea water for periods ranging from 1 to 48 h. Control embryos received the same

treatment but were exposed to test solutions containing filtered sea water only, unlabelled

BSA, or unconjugated FITC. Examinations of experimental and control embryos and

larvae were made on an Olympus epifluorescence microscope fitted with an FITC filter

set (Omega Optics stock number XF23, excitation maximum 485 om, emission 535 om).

Preparation oflarvae for TEM

Mid-veliger stage embryos of the encapsulated species 1. sitkana

(nonplanktotrophic) were removed from their capsules, rinsed briefly in 0.45 J1fIl filtered

sea water, and prepared for transmission electron microscopy using the methods of Rivest

and Strathmann (1995) with minor modifications. Embryos were placed for 10 min in a

solution of 0.05% osmium tetroxide and 3% glutaraldehyde in 0.1 M (pH 7.35) phosphate

buffer, with the osmolarity raised to 990 mOsM with sucrose. Next, embryos were

placed in a solution of 3% glutaraldehyde in 0.1 M phosphate buffer with the osmolarity

raised to 990 mOsM with sucrose for one h, after which an equal volume ofEDTA was

added (to dissolve the shell) and embryos were fixed for another h. Embryos were

postfixed for one h at room temperature in 2% osmium tetroxide in 1.25% sodium

bicarbonate, then dehydrated in an ethanol series. Finally, embryos were exchanged in

propylene oxide, embedded in epoxy resin, and thin sections were cut on a Reichert

Ultracut E ultramicrotome. Sections were picked up on Butvar films on 200 J1fIl hex

grids, stained with uranyl acetate and lead citrate (Reynolds, 1963) and examined with a
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Philips CM 12 electron microscope operated at 80 kV. TEM electron micrograph images

were recorded on Kodak SO 163 film.

Prior to fixation, some embryos were exposed to a solution of 1 mg/ml ferritin

(Sigma catalogue #F4503) in filtered sea water for 12 h. Ferritin is commonly utilized as

a marker for receptor-mediated endocytosis (Rivest, 1981).

Measurement ofVelar Aspect Ratios

Freshly-laid egg capsules ofL. plena (planktotrophic) were transferred to filtered

sea water and reared at room temperature. When embryos had reached the veliger stage

(judged by the appearance ofa ciliated velum), one larva was haphazardly chosen from

each egg capsule. Brooded embryos ofL. saxatilis (nonplanktotrophic) were removed

from the brood chamber of the adult and several veliger-stage embryos were haphazardly

chosen from each female. Measurements ofvelar width and total larval length were

measured on each embryo (fig. 2). Measurements were made by tracing embryos with a

camera lucida attached to a compound microscope. Lengths were calculated using a

SummaSketch II digitizing pad and the software package SigmaScan for Windows

(Jandel Corporation). In order to compare similar stages of development among the two

species, only early veligers (lacking well-developed tentacles or propodia, similar in

degree of development of larval structures to prehatching L. plena) were measured.

To compare the relative size of the velum and to compensate for considerable size

differences between embryos of the two species, the "velar aspect ratio" (VAR) was
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compare VARs of other nonplanktotrophic and nonplanktotrophic prosobranch

s

v

en

Figure 2. Camera lucida drawing of a prehatching larva of Littorina plena, showing
measurements ofvelar width (left, apical view) and larval length (right, lateral view). en,
egg envelope; 0, operculum; s, shell; v, velum). Larval length bar = 110 f.!m.

calculated by dividing the width of the velum by the total length ofeach larva. VARs

were calculated for a total of 64 L. plena embryos and 60 L. saxatilis embryos. To

gastropods, an extensive search of the literature was performed to find drawings or

photographs ofprosobranch veligers from a variety of taxa. Images were chosen based

on two criteria, developmental stage and larval orientation. Because comparisons of

planktotrophic and encapsulated Littorina were made when both species were fully-

developed but young veligers (see above), planktotrophic species were used for this

analysis only if larvae were described as prehatching or newly hatched. For

nonplanktotrophic species, information regarding the age or developmental stage of
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encapsulated larvae was rarely available. However, in the instances in which multiple

developmental stages of a nonplanktotroph were depicted, the aspect ratio remained

relatively constant until near metamorphosis (Moran, unpub. data). Therefore, images of

nonplanktotrophic species were discarded only if embryos were described as mature or

near hatching. If multiple stages were available for analysis, the earliest veliger stage was

used. The orientation of the veliger was also important: images could be used only if

both the full width of the velum and the length of the larva were depicted. However,

because the orientation of larvae differed considerably among images, measurements of

larval length were necessarily somewhat subjective.

For each selected image the velar aspect ratio was measured with a SurnmaSketch

II digitizing pad and SigmaScan for Windows software as described for Littorina (above).

If an image contained a scale bar, the scale bar was used to calibrate measurements for

that image. If no scale was given, the aspect ratio was measured without units.

Statistical comparisons of the velar width/larval length ratio of planktotrophs and

nonplanktotrophs were performed in two ways. Ideally, statistical analyses would take

into account the degrees of phylogenetic relatedness among all taxa; to do otherwise may

artificially inflate the sample size and hence the degrees of freedom (Martins and Hansen,

1996). However, while there has been much recent interest in higher gastropod

phylogeny (e.g. Bieler, 1992; Ponder and Lindberg, 1996; Ponder and Lindberg, 1997;

Harasewych et al., in press), there is little consensus regarding relationships at or above

the family level (ponder and Lindberg, 1997). Therefore, for the purposes of this analysis
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species were grouped by family and the average VAR was calculated for each family. In

six families, VARs were available for both planktotrophic and nonplanktotrophic species

(the remaining families were represented by only planktotrophs or nonplanktotrophs,

although these families in most instances contained both types of development). To

determine whether velar size varied with developmental mode, VARs of planktotrophs

and nonplanktotrophs of these six families were compared with a paired Student's t-test.

Measurement ofCilia Length

FresWy-spawned egg capsules of three planktotrophs (1. keenae, 1. plena, 1.

scutulata) and egg masses of one nonplanktotroph (1. sitkana) were transferred to filtered

sea water and reared at 12°C. The three planktotrophs were initially examined every 2-3

h, and at approximately one d or greater intervals in later development until immediately

post-hatching when observations ended. The slower-developing nonplanktotrophs were

initially examined at daily intervals, and later at intervals ofseveral days. Cilia were

measured in one of two ways; if embryos were moving relatively slowly, the longest

prototrochal cilia were drawn using a camera lucida attached to a compound microscope

and images were digitized as described for the velar aspect ratios. If embryos were

moving too fast to draw cilia with the camera lucida, embryos were crushed under the

coverslip and the longest cilia were then drawn.
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Results

Fluorescence microscopy

Nonplanktotrophs

Experimental embryos- No experimental eggs or embryos exhibited FITC

fluorescence after exposure to FITC-BSA during early cleavage stages, gastrulation, or at

any stage prior to the trochophore. In all species with encapsulated development

(Littorina saxatilis, L. sitkana, L. subrotundata), FITC-BSA uptake was first seen at the

trochophore stage, when larvae had developed the characteristic encircling band of

ciliated cells (prototroch). At this stage, fluorescence was confined to the cells of the

prototroch (fig. 3A, 3B). Somewhat later in development, at the early veliger stage

(before the appearance of eyespots, foot, or the larval shell), FITC fluorescence was seen

only in the ciliated cells ofdeveloping velum, not in the cells of the head or visceral mass

(fig. 4A, 4B). When older embryos (with shell, foot, eyespots) were exposed to FITC­

BSA, velar fluorescence was still confined to the cells of the ciliated band and was not

evident in cells of the pretrochal region or the developing structures of the head

(tentacles, eyespots) (fig. 5A-D). When the ciliated cells of the velum were examined

under high magnification, it could be seen that FITC fluorescence was concentrated in

small « 2 f.1In) spheres within individual cells (fig. 6). Fluorescence was seen in these

ciliated cells of embryos exposed to FITC-BSA at all stages from trochophore up to
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hatching, when the velum was resorbed. Newly-hatched juveniles that had completely

resorbed their velums exhibited no fluorescence when exposed to FITC-BSA.

In addition to the ciliated cells of the velum, FITC-BSA fluorescence also

appeared in some other regions ofthe embryo. In older embryos with a well-developed

foot, the ciliated cells of the rejection band of the foot fluoresced in a manner

qualitatively similar to prototrochaVvelar fluorescence. Small, isolated points of

fluorescence, similar to the small spherical structures seen in prototrochaVvelar cells,

were occasionally found in other embryonic regions that did not ordinarily mark. In

mature veliger-stage embryos ofall nonplanktotrophs, two small areas ofFITC

fluorescence appeared just posterior to the ciliated band of the velum on either side of the

head (fig. 7) ("larval kidneys"). These areas exhibited some autofluorescence in control

embryos as well, although the degree of autofluorescence was highly variable among

embryos. In mature, fully-formed embryos, FITC fluorescence also appeared in regions

of the gut (fig. 8A, 8B). The above patterns ofFITC fluorescence were similar in all

Littorina species with encapsulated development examined in this study (e.g., compare

the fluorescence of the ciliated band of the velum in Littorina sitkana and L. saxatilis in

figs. 5B and 5D, respectively).

Controls- With two exceptions, no regions of embryos or larvae of any species

exhibited fluorescence in the characteristic blue-green color of the FITC label when

animals were exposed to filtered sea water only or to BSA in filtered sea water. The two

exceptions were the operculum, which displayed considerable autofluorescence in older
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embryos (e.g., fig. 8B), and the dim autofluorescence of the larval kidneys (described

above). Embryos exposed to unconjugated FITC displayed considerable FITC

fluorescence that appeared in multiple regions including the foot, shell gland, velum and

viscera. FITC fluorescence faded in most areas of these embryos when they were rinsed

in filtered sea water for> 24 h. FITC fluorescence appeared in the cytoplasm of labeled

cells as well as in vesicles, and FITC also adhered to the shell and operculum of mature

embryos and larvae. Similar patterns of fluorescence were seen in some embryos

exposed to high concentrations ofFITC-BSA that had not been dialyzed to remove

unconjugated FITC, but these patterns were never seen when FITC-BSA was dialyzed

prior to exposure.

Planktotrophs

In control embryos and larvae (exposed to filtered sea water only or BSA in sea

water) of Littorina, autofluorescence was seen only in the operculum (fig. 9B). Of four

planktotrophic species exposed to test solutions containing FITC-BSA, none showed

velar uptake of the labeled albumen at later developmental stages when larvae had

emerged from the egg envelope but had not hatched from the egg capsule. None of the

four species exhibited velar FITC-BSA as hatched, feeding larvae. Embryos of1.

scutulata, the only species whose larvae were successfully removed from the egg

envelope during early development, did not exhibit albumen uptake in the pre-shelled,

early veliger stage. Embryos of a second planktotroph, 1. plena, did not exhibit FITC-

BSA uptake at any stage when embryos in the egg envelope were soaked overnight in
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FITC-BSA solutions. Hatched larvae of all four planktotrophs exhibited fluorescence in

the gut after long (> 4 h) exposure to test solutions, but no fluorescence in the velar cells

(fig. 9A, B).

TEMlmaging

The surface of cells of the ciliated velar band contained numerous invaginations

displaying a marked fuzzy thickening on the cytoplasmic surface of the cell membrane

(fig. lOA). Numerous pinched-off vesicles were visible immediately inside the cell

surface (fig. lOB). Endocytotic vesicles ranged from 0.1 to 0.3 J.1Ill in diameter, and

smaller vesicles were seen immediately inside the cell surface while larger vesicles

tended to appear somewhat further inside (fig. lOB). The surface ofthese cells also

contained numerous microvilli and cilia displaying the typical 9 + 2 arrangement of

microtubules. Surface invaginations and vesicles were not seen on non-ciliated epidermal

cells.

The cytoplasm of the ciliated cells of the velum of embryos exposed to ferritin

contained numerous dark bodies filled with an electron-dense, ferritin-like material (fig.

10C). This material was entirely lacking from the ciliated velar cells of control embryos.

Velar Aspect Ratios

The velar aspect ratios (VARs) of early Littorina saxatilis (nonplanktotroph)

larvae were not significantly different from the velar aspect ratio of early 1. plena
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Figure 10. Transmission electron micrographs of a ciliated velar cell of a Littorina
sitkana embryo (nonplanktotroph) exposed to ferritin. (A) High-magnification view of
the surface of a cell from the ciliated band of the velum, showing endocytotic pits
forming at the cell surface. (B) Slightly lower magnification view, showing numerous
endocytotic vesicles immediately inside the cell surface. (C) Lower magnification TEM
oftwo cells of the velar ciliated band, showing large numbers ofvesicles filled with a
dark, electron-dense, ferritin-like substance. ci, cilium; ev, endocytotic vesicle; f,
structures containing ferritin-like electron-dense material; mt, mitochondrion; p,
endocytotic pits. Scale bars; A, 0.2,urn; B, 0.85,urn; C, 3 ,urn.
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(planktotroph) larvae (Student's two-sample t-test, p = 0.77) (fig. llA). In many cases

the average family VAR of planktotrophs from the literature were greater than

nonplanktotrophs, although there was considerable overlap (Table 2; fig. lIB). VARs of

planktotrophs were significantly greater than nonplanktotrophs when average VARs were

compared among planktotrophs and nonplanktotrophs from six families (fig. lIB; paired

Student's t-test, p = 0.02).

Cilia Length

Velar cilia of planktotrophic Littorina larvae grew considerably faster than cilia of the

nonplanktotrophic L. sitkana, and reached a much greater total length (fig. 12).

Observations of cilia length in additional nonplanktotrophic Littorina (L. saxatilis, L.

subrotundata) were consistent with this pattern as well. The velum ofnonplanktotrophic

Littorina bore simple rather than compound cilia and lacked a well-defined prototroch,

metatroch or food groove.

Discussion

Many embryonic structures have been associated with the endocytotic uptake of

capsular proteins by gastropods. These include the larval kidneys of numerous

prosobranch gastropods (Rivest, 1992), the "pedal cell complex" of neritoidean

gastropods (Rivest and Strathmann, 1995), the podocyst of some pulmonates (Cather and

Tompa, 1972), and ectodermal areas of early embryos of some pulmonates (Fioroni,
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Figure 11. (A) Mean velar aspect ratios of 64 early veliger-stage embryos of Littorina
plena (planktotroph, open bar) and 60 early veliger-stage Littorina saxatilis embryos
(nonplanktotroph, filled bar). Error bars are 95% confidence intervals. (B) Mean velar
aspect ratios ofplanktotrophs (open circles) and nonplanktotrophs (closed circles) from
21 gastropod families. Error bars are not shown because most families are represented by
single species (Table I). The six families to the right of the vertical dotted line are
represented by both planktotrophic and nonplanktotrophic species. The horizontal dotted
line represents the mean velar aspect ratio of all families combined.
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Table 2

List oftaxa utilized in comparisons ofvelar aspect ratios among planktotrophs and
nonplanktotrophs

Family Genus/Species Mode' VAR2 References

Buccinidae Engonrophosun~mcws NP 1.205 Miloslavich and Penchaszadeh, 1994
Neptunea antique NP 0.418 Pearse and Thorson, 1967

Calyptraeidae Ca/yptraea chinensis NP 1.074 Lebour, 1936
Ca/yptraea tlOChiformis NP 0.779 Cafiete and Ambler, 1992
Crepidu/a adunca NP 0.47 Moritz, 1939
Crepidu/a fomicata P 0.834 Fretter and Graham, 1962

Cerithiidae Gerithiopsis tubercu/aris P 0.924 Lebour, 1933b
Gerithiopsis barleei P 1.135 Lebour, 1933b
Triphora perversa P 1.144 Lebour, 1933b

Eulimldae Eulima distorta P 0.829 Thorson, 1946
Pelseneeria sty/ifera P 0.982 Thorson, 1946

Harpidae Morum onuscus NP 0.839 Hughes, 1990
Lacunldae Lacuna vlncta P 0.900 Lebour, 1937
Uttorinldae Bembicium vittatum NP 0.943 Blael< et aI., 1994
Muricldae Chicoreous ramosus NP 1.599 Soliman, 1991

Concholepas concholepas P 1.169 DiSalvo, 1988
Nucella lapillus NP 0.817 Fretter and Graham, 1962
Nucella lamellosa NP 0.880 Lyons and Spight, 1973
Nucella crassilabrum NP 0.625 Gallardo, 1979
Nucella canaliculata NP 0.780 Lyons and Spight, 1974
Nuceffa emarginata NP 0.861 Lyons and Spight, 1974
Trophon muricatus NP 1.102 Lebour, 1936

Nassariidae Bullia digitalis NP 0.720 da Silva and Brown, 1985
Nassarius incrassatus P 1.150 Lebour, 1931a
Nassarius reticulatus P 1.257 Lebour, 1931a

Naticidae Natica catena NP 0.574 Thorson, 1946
Natica (Lunatida) pallida NP 0.843 Thorson, 1946
Natica (Lunatida) nit/da P 0.822 Thorson, 1946

Olvulidae Simnia barbarensis P 0.973 Main, 1974
Pyramidellidae Boonea (Odostomia) impressa NP 0.825 VVhite et aI., 1985
Ranellldae Cabestana speng/eri P 0.987 Riedel, 1992
Rissoidae Cingula sem/costata NP 1.018 Lebour, 1934

Rissoit sarsii P 1.134 Lebour, 1934
Rissoa membranacea P 1.000 Lebour, 1934
Rissoa parva P 1.247 Lebour, 1934
Rissoa guerin/ P 1.202 Lebouc.....1934

Tomldae Tomus sUbcarinatus P 1.064 Lebour, 1936
Trlvlidae Trivia europa P 0.971 Lebour, 1931b
Trochldae CBff/ostoma granulatum NP 0.707 Ramon, 1990

Margarites helicinus NP 0.393 Holyoak, 1988
Tegula funebralis NP 0.566 Moran, 1997

TUritellidae Turritella communis P 1.022 Kennedy and Keegan, 1992
Turridae Haedropleura septangu/aris P 1.205 Lebour, 1936

Phi/bertia (Comarmondia) gracilis P 1.380 Lebour, 1933a
Vennetidae Dendropoma corrodens NP 0.612 Miloslavich and Penchaszadeh,1992

Vermetus sp. NP 0.875 Miloslavich and Penchaszadeh, 1992
Siphonarildae S/phonaria serrata NP 0.731 Chambers and McQuaid, 1994

S/phonaria concinna P 0.996 Chambers and McQuaid, 1994
Trlmusculidae Trimusculus conica NP 0.696 Haven, 1973

Ip = planktotrophic, NP= nonplanktotrophic

2Velar Aspect Ratio
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1977). In each case, the structures involved in protein uptake are found in encapsulated

larvae only; in planktotrophic species whose larvae are encapsulated only during early

development, structures such as the pedal cell complex and larval kidneys are resorbed

prior to or soon after hatching (Rivest, 1992; Rivest and Strathmann, 1995). Because of

their transitory nature, these structures are thought to represent morphological

specializations for intracapsular development (Rivest and Strathmann, 1995).

Nonplanktotrophic Littorina species utilize a variety ofmethods for feeding on

intracapsular albumen. Two areas of uptake, the larval kidneys and embryonic gut, have

been implicated previously in protein uptake in other gastropod species (see

Introduction). This study has established that nonplanktotrophic Littorina embryos also

utilize a third structure for protein uptake, the ciliated cells of the prototroch and velum

(hereafter termed "velar uptake"). The velum has not previously been implicated in

endocytotic intracapsular nutrition. Furthermore, velar protein uptake differs from

protein uptake via larval kidneys or other specialized structures; in Littorina the velum,

the ancestral planktotrophic larval feeding/swimming structure, has acquired a novel

feeding role in the intracapsular environment. To the best of my knowledge, this capacity

has not been reported in other gastropod taxa. A comprehensive survey of albumen

uptake by gastropod larvae from other taxa is necessary to determine whether

prototrochal and velar albumen uptake is unique to nonplanktotrophic members of the

genus Littorina.

Although I did not make quantitative estimates of protein uptake, several lines of
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evidence suggest that albumen is an important source of nutrition in nonplanktotrophic

Littorina. First, embryos grow considerably during development concurrent with the

disappearance of capsular albumen (Buckland-Nicks et al., 1973; Moran, unpub. data),

and albumen is the only likely extraembryonic food source in non-brooding species.

Second, the capsule fluid of all nonplanktotrophic species examined in this study exhibit

scWeiren lines when capsules are opened in sea water and electrophoretic evidence

indicates that capsular fluid contains various proteins that disappear during development

(Losse and Greven, 1993; Moran, unpub. data)). The ciliated cells of the prototroch and

velum are likely to be important sites of albumen uptake for the following reasons; 1) The

surface area of the velum is a large proportion of the surface area of the total embryo,

particularly during early development (e.g. fig. 4); and 2) uptake begins in these cells

very early in development (at the trochophore stage) considerably prior to the

development of the gut or the appearance of larval kidneys. Gut uptake may be of greater

importance later in development when the velum is being resorbed.

In a survey oflarval-kidney absorptive cells in gastropods, Rivest (1981, 1992)

reported that absorptive larval kidneys were absent in Littorina sitkana. In contrast to

Rivest's results, all nonplanktotrophic Littorina examined in this study possessed two

small structures on either side of the larval esophagus that appeared active in albumen

uptake. Similarly sized structures in the same location are reported from embryos of the

nonplanktotrophic 1. obtusata (Delsman, 1914; Fretter and Graham, 1967 fig. 202a (as 1.

littoralis)), and have been termed "nephrocysts" (Delsman, 1914) and "larval kidneys"
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(Fretter and Graham, 1967). These paired structures are in the same location as the

albumen-absorbing larval kidneys reported by Rivest (1992) in numerous other

prosobranch gastropods and may be homologous; larval kidneys have been proposed as a

synapomorphy of the caenogastropods (Ponder and Lindberg, 1997). The presence of

these absorptive structures may have been overlooked in 1. sitkana because larval

kidneys of Littorina are considerably smaller in relation to the size of the embryo than in

other taxa, in which larval kidneys can comprise 20% of the volume of the developing

embryo (Rivest, 1992). In addition, some control Littorina embryos exhibited

autofluorescence in these cells (considerably dimmer than the fluorescence of

experimental embryos) that may have further confounded previous studies. Due to their

small size and dim fluorescence after exposure to FITC-BSA (relative to the velum, and

to the larval kidneys of other species such as Nucella emarginata), the importance of

these structures to embryonic nutrition of nonplanktotrophic Littorina is likely to be

small.

TEM imaging in this study demonstrated that the ciliated cells of the prototroch

contain numerous endocytotic vesicles, strongly suggesting that albumen is taken up via

pinocytosis across the cell membrane. Endocytotic albumen uptake is further suggested

by the presence of large amounts of ferritin-like electron-dense material in the ciliated

velar cells of embryos that had been exposed to ferritin, and the absence of this material

from control embryos. Velar albumen uptake by Littorina is therefore likely to be

mechanistically analogous to albumen uptake by other embryonic structures in
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gastropods, including the larval kidneys (Rivest, 1981, 1992) and the pedal cell complex

(Rivest and Strathmann, 1995).

Larvae of many planktotrophic marine invertebrate taxa have the ability to take up

dissolved organic matter (DOM) from sea water. Among molluscs, this ability has been

demonstrated in bivalves (Manahan, 1983) and the gastropod Haliotis rufescens (Jaeckle

and Manahan, 1989). DOM uptake by marine larvae is accomplished via carrier­

mediated pathways (Wright and Manahan, 1989), and the primary site of DOM uptake in

veliger larvae appears to be the velum (Manahan and Crisp, 1983). Because uptake of

DOM is accomplished via carrier-mediated membrane transport, it is unlikely that this

process is homologous to receptor-mediated endocytotic protein uptake by the velum of

encapsulated Littorina species. The endocytotic ability of the velar cells may be newly

evolved in encapsulated Littorina, or may be homologous to an unknown pinocytotic

process in the velum of planktotrophic species.

The velum of nonplanktotrophic Littorina may take up other substances in

addition to proteins. Losse and Gerven (1993) noted considerable fluorescence in the gut,

hepatopancreas and velum of1. saxatilis embryos exposed to FITC-Iabeled dextrans.

The intracapsular albumen of some gastropods contains both proteins and additional

substances such as carbohydrates and free amino acids (e.g. Horstmann, 1956, for

Lymnaea stagnalis) that may be of nutritive importance, although their presence has not

been established in the capsular fluid of Littorina. The mechanism of uptake and the

importance of these additional substances to embryonic nutrition are presently not well
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understood.

Intracapsular albumen is not likely to be of energetic importance during the

development of planktotrophic Littorina for several reasons. First, early-stage embryos

of planktotrophs are contained within individual egg envelopes during most of

encapsulated development and would not be directly exposed to intracapsular albumen (if

present) until immediately prior to hatching. Embryos contained within the egg envelope

did not exhibit FITC fluorescence after overnight soaking in FITC-BSA solutions,

suggesting that either 1) the egg envelope is not permeable to proteins of> MW 88,000

kDa, or 2) if the envelope is permeable to proteins, early embryos do not take them up.

Second, while egg capsules of planktonic species contain a visible gel-like material

external to the egg envelopes of embryos, this material contains no

spectrophotometrically detectable protein (Moran, unpub. data) and does not create

schlieren lines when capsules are opened in sea water. Finally, mature and post-hatching

embryos and larvae of planktotrophic Littorina do not appear to utilize the velum or

larval kidneys for protein uptake, and for most of early development the gut (which takes

up albumen after hatching) is not fully formed.

Uptake by larval kidneys of many gastropod species and by the pedal complex of

neritid gastropods have been previously demonstrated using FITC-BSA, and in each case

TEM has confirmed protein uptake (Rivest, 1981, 1992; Rivest and Strathmann, 1995;

this study). These observations suggest that FITC-BSA is a good indicator of receptor­

mediated endocytosis. In this study, however, unconjugated FITC resulted in
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fluorescence of the larva, although in a manner visually different from FITC-BSA.

Because TEM confirmed that only areas that took up FITC-BSA were endocytotically

active, it seems likely that fluorescence in other areas was due to FITC labeling of larval

tissues rather than uptake ofunconjugated FITC. Therefore, interpretations ofFITC-BSA

labeling patterns should be made with caution if unconjugated FITC may be present as

well.

In marine systems, the evolutionary transition from planktotrophy to

nonplanktotrophy is often accompanied by modifications to ancestral planktotrophic

feeding characters (Strathmann, 1978). These modifications have been viewed as losses

of complex structures that occur concurrently with the loss of planktotrophic larval

feeding (Strathmann, 1978), and as novel features that enhance other aspects of

nonfeeding larval performance (e.g. swimming, Emlet, 1994). Encapsulation of embryos

is often associated with altered ciliary morphology in gastropods (Hadfield and Iaea,

1989). This study documents that nonplanktotrophic Littorina veligers have lost the

elaborate, ancestral planktotrophic ciliary patterns found in planktotrophic Littorina.

This loss may be due in part to lack of selection for swimming and particle capture.

Alternatively, short cilia may function better than long cilia in the confined and possibly

more viscous environment of the egg capsule; functions ofcilia in encapsulated Littorina

might include 1) rotating embryos to enhance oxygen diffusion through benthic,

gelatinous egg masses (Hunter and Vogel, 1986; but see Strathmann and Strathmann,

1995) or 2) stirring fluids to enhance feeding on intracapsular albumen.
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While numerous authors have remarked that encapsulated gastropod embryos

have reduced velar lobes (e.g. Jagerston, 1972; Webber, 1977), possibly because the

velum is no longer necessary for swimming and feeding (Jagerston, 1972), very few

studies have addressed this issue in a comparative or quantitative context. Results of a

literature search described in this study support the hypothesis that during early

development, gastropods with encapsulated development have smaller velar lobes than

confamilial planktotrophs. Despite this general pattern considerable variation is evident

in the degree of velar loss among nonplanktotrophs, ranging from species whose embryos

never develop a velum (e.g. Penchaszadeh and Rincon, 1996) to genera such as Littorina

in which planktotrophs and nonplanktotrophs have velums that are equivalent in size.

Retention of the velum may be ascribed to several causes, including developmental

constraints (although the reported lack ofa velum in some species (e.g. Penchaszadeh and

Rincon, 1996) argues that the presence of velar lobes may not be necessary for gastropod

morphogenesis) or a recent evolutionary loss ofplanktotrophy (this second hypothesis

has yet to be tested in a comparative, historical context).

A third possibility is that nonplanktotrophs that retain a large velum may do so

because the velum serves a novel function in the intracapsular environment. Such

suggested functions include feeding on nurse eggs (e.g. Fioroni and Sandmeier, 1964),

providing a respiratory surface (Fretter and Graham, 1962), or generating currents that

enhance oxygen transport through egg masses (Hunter and Vogel, 1986). I have

demonstrated that in Littorina the velum takes up intracapsular albumen; this function is



40

analogous to the velum's ancestral role in free-living, planktotrophic larvae. While the

velum of nonplanktotrophic Littorina may perform other functions as well, the large size

of the encapsulated Littorina velum may in part be due to its novel feeding function in the

egg capsule.

In summary, the velum (the ancestral planktotrophic feeding organ) of embryos of

nonplanktotrophic Littorina species is active in endocytotic albumen uptake throughout

development. Velar albumen uptake was not seen in planktotrophic Littorina species;

therefore, endocytotic velar albumen uptake may be newly evolved in nonplanktotrophic

Littorina species. The feeding morphology ofveliger-stage embryos of

nonplanktotrophic and planktotrophic Littorina differ in that nonplanktotrophic species

have shorter cilia and appear to lack an opposed-band pattern of prototrochal and

metatrochal cilia. However, the velar apparatus of planktotrophs and nonplanktotrophs is

comparable in size during early development. A survey of prosobranch gastropods

suggests a general trend towards reduction in the relative size of the velum in

nonplanktotrophic species. It is suggested that nonplanktotrophic Littorina may retain a

large velum in part due to its apparently novel absorptive function.
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CHAPTER III

HATCHING SIZE AND HATCHLING PERFORMANCE IN A MARINE SNAIL:

EFFECTS OF SPATIAL AND TEMPORAL VARIATION ON THE

BENEFITS OF LARGE HATCHING SIZE

INTRODUCTION

A fundamental principle of life-history theory is the presence of a trade-off

between the size and number of offspring a female produces (Lack, 1947; Vance, 1973;

Smith and Fretwell, 1974; Brockelman, 1975; Kaplan and Cooper, 1984; McGinley et a/.,

1987; Sinervo, 1990; Levitan, 1993). This trade-off is driven by energetic, physiological

and morphological constraints on the total reproductive output of an individual (Drent

and Daan, 1980; Godfray, 1987) that preclude increased offspring size without a

corresponding decrease in offspring number (Stearns 1992). The number and size of

offspring in a given clutch is thought to reflect optimizing action of natural selection

balancing advantages of high fecundity with advantages of producing higher-quality

offspring (Smith and Fretwell, 1974; Sinervo, 1990). A great deal of evidence supports
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the presence of trade-offs in offspring size and number within and among numerous taxa,

although exceptions are common (see Steams, 1992 for review).

Two important assumptions underlying the hypothesized trade-off between size

and number of offspring are that (1) fitness (survivorship) increases with offspring size

(Smith and Fretwell, 1974); and (2) offspring size and organic content are positively

correlated, in that larger offspring represent a greater maternal investment than smaller

offspring (McEdward and Carson, 1987). The first assumption, that fitness of individual

offspring increases with size, is widely held but not universally supported by empirical

evidence (reviewed by Steams, 1992; Williams, 1994). Some studies have found similar

survivorship (an important component of fitness) among large and small offspring (e.g.

Wicklund and Karlsson, 1984; Trabanino et al., 1989; Ruohomaki et al. 1993), and in

some instances small offspring exhibited higher survivorship (e.g. Cowan and Houde,

1990; Litvak and Leggett, 1990; Kaplan, 1992; Marafi6n and Grubb, 1993; Tejedo,

1993). Deviations from the expected effect of offspring size have been attributed to

spatial or temporal environmental variation in environmental quality (Capinera, 1979;

Yuma, 1986; Berven and Chadra, 1988; Lyimo et al., 1992), and it has been suggested

that the drawbacks of small size are lessened under benign environmental conditions

(Spight, 1976; Ferguson and Fox, 1984; Williams, 1994; Fox and Mousseau, 1996).

The second assumption, that larger offspring are more energetically expensive, is

not often directly tested but is violated within some taxa in which the relationship

between offspring size and organic content is weak or absent (McEdward and Carson,

1987; McEdward and Coulter, 1987; Niciu and McEdward, 1994). Therefore, offspring
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size cannot a priori be assumed to accurately reflect organic content or maternal

investment but must be tested within a given system (McEdward and Carson, 1987;

McGinley and Chamov, 1988). If large offspring do not represent higher levels of

maternal energy investment than small offspring in a given taxon, the life history of that

taxon cannot be predicted to evolve in a context of energetic, size-number trade-offs.

Because natural systems may violate one or both of the above assumptions,

interpretations of life history patterns that assume the presence of a size-number trade-off

may be incorrect in species or systems in which these assumptions have not been

adequately tested. An example of such a system is the rocky intertidal environment,

which because of its rich biota and well-defined environmental stress gradients has been

the focus ofmany seminal ecological studies. Marine benthic communities also exhibit a

tremendous variety of life-history modes both within and among taxa, and therefore are

particularly well suited to studies of life-history evolution (Thorson, 1946; Strathmann,

1985). Despite the large boay of research on the ecology of rocky intertidal systems

(reviewed partially by Rafaelli and Hawkins, 1996), little is known about the role of the

juvenile life-history stage in shaping population or community structure (Keesing and

Halford, 1992; Gosselin, 1994). In particular little is known about the potentially

important role of offspring size in benthic marine communities, possibly because (1) the

minute size ofjuveniles and the complexity of their natural habitat (Gosselin, 1994) make

field manipulations difficult; (2) complex intertidal environmental conditions are

difficult to emulate in the laboratory; and (3) substantial intra-population offspring size

variation is relatively unusual among intertidal organisms (Spight 1976a).
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In this study, I used the intertidal gastropod Nucella emarginata ('northern' form;

see Palmer et at., 1990) to perform laboratory and field tests of several assumptions of

life-history theory. I first determined that hatching size in N emarginata is predictive of

hatchling organic content. Next, I used laboratory studies to explore the effects of

hatching size on growth and survivorship in the laboratory, both under conditions of

starvation and with hatchlings fed ad libitum. I then carried out intertidal field outplants

of large and small hatchlings to test the effects of hatching size on hatchling growth and

survivorship. Finally, I performed outplants in neighboring environments that

experienced different heat/desiccation regimes to determine whether the effect of

hatching size on survivorship varied under measurably different, but environmentally

realistic thermal regimes. Results of these experiments suggest that while increased

maternal investment in N emarginata improves offspring performance under many

conditions, the relationships among offspring performance, maternal investment and

environment may not always meet the predictions of life history theory.

BIOLOGY OF NUCELLA EMARGINATA (NORTHERN)

The marine gastropod species Nucella emarginata (northern) is a common

intertidal snail that ranges from Alaska to HalfMoon Bay, California (Palmer, 1990).

The ecology and biology of this species is well studied. Both juveniles and adults feed

on barnacles and mussels and live in the mid- to high-intertidal (Morris et at., 1973).

Female Nucella emarginata in Oregon reproduce year-round (Seavy, 1977), laying
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multiple clutches of between 4 and 20 benthic egg capsules. Each capsule contains 6 ­

23 embryos, and offspring hatch as metamorphosed juveniles ("hatchlings") (Spight

1976a). During prehatching development, embryos feed on nurse eggs (nondeveloping

or unfertilized eggs), thereby growing from an egg size of 190 ~m to hatching shell

lengths of between 0.9 and 2.3 mm (Spight, 1976a; Palmer, 1990). Hatching size is

detenmned by the number of nurse eggs consumed during development, and the

maternally-determined ratio of nurse eggs to developing ova varies among capsules

within a clutch, among clutches, and among populations (Spight 1976a, Rivest 1983).

Mortality ofNucella hatchlings is thought to be very high. Estimates ofmortality

made from measurements of adult fecundity and size distributions ofjuveniles and adults

suggest that 90 - 99% ofN emarginata juveniles die in the first year after hatching

(Spight 1976b), and in a congeneric species (N lapillus) only 1 -2 % survive the first two

months of life (Feare, 1970). Sources of mortality in the field are largely unknown, but

field manipulations have established that microhabitat is very important; juvenile

mortality is close to 100% ifjuveniles are deprived of cover (Gosselin and Chia, 1995).

Several potentially important biotic and abiotic sources ofmortality include predation,

heat/desiccation stress, starvation, salinity and dislodgment by wave action (Underwood,

1979; Pechenik, 1982; Rivest, 1983; Etter, 1989; Gosselin and Chia, 1995), and these

pressures may exert considerable selective pressure on early life-history traits. However,

the relative importance of these factors to shaping the early life history ofN emarginata

is not known.
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The importance of hatching size to survival in this variable species is also poorly

understood. Larger N. emarginata hatchlings consume a wider range of prey sizes than

small hatchlings (Palmer, 1990), and some predators have been demonstrated to attack

smaller (younger) juveniles in the laboratory (Spight, 1976b; Gosselin, 1994). In another

intertidal gastropod, larger (older) juveniles are less susceptible to desiccation and

predation stress than smaller (younger) hatchlings (Rivest, 1983), but the relative effects

of size and age have not been separated.

METHODS

Experiment 1: Relationship ofhatching size to organic content and maternal investment

To determine the relationship between shell length (a simple and non-destructive

measurement) and organic content, "ripe" clutches were collected from three rocky

intertidal sites in Oregon at 43.34° N, 124.38° W (Gregory Point, Cape Arago (GP); Coos

Head, Charleston (CH); Boathouse Dock, Oregon Institute of Marine Biology (BHD».

All sites were within 5 km of each other. Ripe clutches were clutches in which all

hatchlings had undergone metamorphosis and the hatching plug had dissolved or begun

to dissolve, but juveniles had not yet left the egg capsule. Clutches were used only if no

or very few juveniles had left the egg capsule, both to ensure that all offspring were

represented and because partially-hatched clutches rarely contained enough hatchlings for

experimental procedures (see below). Three clutches from BHD and CH were examined

in their entirety, and 10 clutches from GP were subsampled. Each hatchling was
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measured for total shell length (apex of the shell to the tip of the siphonal canal) to the

nearest 10 Jlm under a Wild dissecting microscope, and then the total organic content of

each hatchling was measured using one of two methods.

The first method used to measure hatchlings' total organic content was the

potassium dichromate wet oxidation (PDWO) method ofParsons et al. (1984), as

modified by McEdward and Carson (1987) with some additional modifications

(Appendix A). The second method was ash-free dry-weight (AFDW), which was

measured by washing each hatchling 5X with distilled water to remove salts, placing

hatchlings in individual aluminum pans, and drying at 80°C to a constant weight (> 6

days). The dry weight of each hatchling and pan was recorded, and the pans and snails

were then ashed in a muffle furnace at 450°C for 8 hours. To obtain AFDW, the ashed

weight was subtracted from the dry weight for each snail and pan. On one occasion, a

clutch was randomly divided in half and analyzed with both ADFW and PDWO methods.

Because both methods gave equivalent estimates of total organic content (Moran, unpub.

data) and AFDW was less time-consuming than PDWO, the AFDW method was utilized

in most analyses. AFDW was perfonned on individual hatchlings from two groups: (1)

three entire clutches collected from the field, and (2) 20-24 randomly subsampled

hatchlings from each of 12 clutches used in an experimental outplant (see below).

To detennine the organic content of growing juveniles in the field, juveniles were

collected at Gregory Point, Cape Arago, on April 2 1997. This site was chosen because it

displayed consistently high numbers of ripe egg capsules ofNucella emarginata.

Juveniles were sought by eye, without disturbing the underlying substrata. Searches were
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conducted in patches containing numerous adults and egg capsules ofN emarginata. A

total of28 juveniles of between 1.7 and 7 mm shell length were collected and AFDW

was measured for each juvenile as described above.

Experiment 2: Size-dependent growth and survivorship under both starved
andfed conditions in the laboratory

To determine the effect of hatching size on survivorship under starved conditions,

two ripe clutches were collected from the field and hatchlings were kept in the laboratory

without food. Snails were gently removed from their capsules with dissecting scissors,

fine forceps and a Pasteur pipet. Sixty hatchlings from each clutch were randomly

chosen (to eliminate possible bias, hatchlings were suspended in filtered sea water,

poured into a dish, and the 60 hatchlings closest to a randomly chosen position in the

bowl were selected) from the total pool (n = 120, each clutch) and each snail was

measured for total shell length under a Wild dissecting microscope to the nearest 10 ~m.

Each hatchling was placed in an individual well of a 12-well tissue culture tray from

which the tops and bottoms of each well had been removed and replaced with 600 ~m

Nitex mesh. Tissue culture trays were then placed in a large (~20 L) tub of 0.45 J.lm

filtered sea water, and this tub was partially immersed (to the water line) in running sea

water at ambient sea temperature. Hatchlings were maintained without food and

monitored periodically.

Nucella emarginata undergo substantial changes in shell growth pattern and
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allometry at metamorphosis, as do many gastropods (Jablonski and Lutz, 1983). In N

emarginata, the delineation between the larval shell (protoconch) and the adult shell

(teloconch) is very clear (Fig. 1). Therefore, growth could be readily measured in one of

two ways; (1) as the amount of shell added since metamorphosis, measured from the

protoconch-teloconch boundary (PT boundary) to the new growing aperture at a

standardized point (the 2nd shell rib), or (2) as an increase in total shell length, by

measuring the length of the embryonic shell at the PT boundary and subtracting this

length from the total shell length of a growing juvenile (Fig. 1). Because initial increases

in shell length were very small, method (1) was most useful for very young or starved

juveniles. Method (2) was useful for older juveniles up to the point of completion of the

first body whorl (approx. 1-3 months, depending on initial size and rearing conditions),

at which point the adult shell had partially overgrown the PT boundary and it was only

possible to estimate hatching size as either Large or Small.

To test the effect ofhatching size on growth under starved conditions, hatchlings

from both clutches of hatchlings were maintained without food in the laboratory as

described above. After 2 weeks, each hatchling was measured for shell growth using

measurement method (1) (above). Both clutches were examined for growth after 2

weeks, and after 3 ~ months each snail in the second clutch was individually examined

and scored as alive or dead.
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Figure 1. Line drawing of a Nucella emarginata hatchling, showing different growth
morphologies of the protoconch (PC) and teloconch eTC) and the clear protoconch­
teloconch boundary (PT). Line (A) represents type 1 growth measurements from the PT
boundary to the new growing aperture of the shell along the 2nd shell rib. Line (B) shows
the measurement of hatchling length made from the PT boundary.

Marking and rearing ofhatchlingsfed ad libitum

To examine the effects of hatching size on fed N emarginata in the laboratory,

capsules from six ripe clutches collected at OP were opened with fine dissecting scissors

and hatchlings were gently washed out with a Pasteur pipet. The very smallest snails ( <



51

0.9 mm) were discarded because in some instances very small hatchlings exhibited

developmental abnormalities such as a poorly calcified shell or a poorly developed foot.

Hatchlings from each clutch were then rinsed through series of 4 graded Nitex screens

and 16 large and small snails from each clutch (from the largest and smallest mesh

screens, respectively) were randomly chosen and measured for greatest shell length.

Each group of 32 snails from each of the six clutches was then placed in a I-pint plastic

container whose sides and top had been replaced with 120 J.lm mesh (one clutch/box), and

snails were provided with field-collected rocks covered with small barnacles and mussels.

Snails were removed at approximately 30 d intervals and measured for growth,

then replaced in boxes with new barnacle- and mussel- covered rocks. Snails were

scored as dead if 1) snails were discolored (purple, green or black) and not moving, 2)

shells were empty, or 3) snails were missing from the recovered group. Empty shells

were by far the most common, and in no instance was it difficult to distinguish living and

dead snails. Hatching length of each snail was measured from the protoconch-teloconch

boundary and growth was measured by subtracting hatching length from new length

(method 2 as described above). When the first adult whorl had wrapped over the PT

boundary (at approximately 30 d, with considerable variation), hatching length was

estimated by measuring the exposed portion of the protoconch. This method did not

provide a fully accurate measurement of hatching length because a portion of the

protoconch was overgrown, but by measuring the exposed portion of the protoconch (>

75% exposed) hatching length of each snail could be clearly distinguished as large or

small.
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Experiment 3: Size-dependent growth and survivorship in thejield

To determine how hatching size affected juvenile performance in the field, large

and small hatchlings from several clutches were outplanted to the field and sampled over

time. A total of five outplants were performed at BHD, and similar techniques were used

in all five outplants. Because pilot studies using entire clutches suggested that the effects

of size might be subtle and therefore masked by the inclusion of intermediate-sized

hatchlings, for the purposes of this study I separated clutches into 4 size classes (as

above) and utilized snails from the largest and smallest size classes only. Hatchlings

were removed from their capsules and sorted into size classes as described above. From

those clutches, 15 large and 15 small snails were randomly chosen from the largest and

smallest screens, respectively, and marked with a solution ofCalcein in sea water for 12

hours (see Chapter IV for details on Calcein marking of snails). Calcein is a nontoxic

label that creates a permanent mark at the growing edge ofhatchlings' shells, and this

mark was used to 1) identify experimental animals and 2) measure the originallength-at­

marking for snails that have undergone considerable growth.

Each group of 30 marked hatchlings was then outplanted to the field on 13 x 13

cm AstroturfTM (Monsanto, Inc.) panels. These panels had been seasoned in the field for

ca. 5 months, such that each panel contained abundant cover of small and large barnacles,

mussels, algae and numerous other organisms that serve as food and cover for Nucella

hatchlings. Each panel was surrounded and held down by short segments of PVC pipe,

which were bolted to the substrate and coated with Tanglefoot™ (The Tanglefoot
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Company, Grand Rapids, MI) to prevent hatchlings from wandering off. Both laboratory

and field experiments demonstrated that Tanglefoot™ was an effective barrier to

hatchling movement (Appendix B). Tanglefoot™ barriers were refreshed every 2 din

the field or as necessary. Hatchlings were outplanted to the panels in the field by

transporting clutches in Eppendorf tubes filled with seawater and gently transferring

hatchlings to the panels with a Pasteur pipet. Hatchlings were then gently washed with

seawater until all hatchlings had attached to the panel.

Five separate sets of outplant experiments were performed at BHD. The first two

experiments, Outplants A and B, consisted of 5 clutches on 5 panels (one panel-clutch,

for five panel-clutches) outplanted to the field for 9 d on two separate occasions in the

fall of 1995. Because hatchlings' shell length increased relatively little in 9 days, growth

was measured by method (1) (shell added from PT boundary) in Outplants A and B. The

second two experimental outplants (Outplants C and D) also comprised five panel­

clutches, but hatchlings were outplanted for a total of 36 d in the spring (Outplant C) and

summer (Outplant D) of 1996 and sampled at 9 d intervals. The fifth outplant, Outplant

E, consisted of 12 panel-clutches sampled at 9 d intervals for a total of 54 d in the fall of

1996. Outplants C, D and E were terminated when total recovery was lower than 20% of

the original number outplanted. Growth in Outplants C, D and E was measured by

method (2) (new length - original length).

After each 9 d experimental interval, panels were sampled in the laboratory by

repeated washings with a high-pressure freshwater spray, followed by running the

washings through a 600 f..lm screen and immediately rinsing with sea water. Hatchlings
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were never visibly damaged by this procedure and were very active after being returned

to sea water. The total shell length of each hatchling was measured, and the hatching

length was measured from the Calcein mark (see Chapter IV). The original size class of

each individual (large or small) could be readily determined via the Calcein mark.

Growth ofeach individual snail was calculated by subtracting the original hatching

length, as measured from the Calcein mark, from the total shell length. "Recovery" was

calculated by subtracting the total number recovered at each sampling interval from the

original number in each group (15). Laboratory processing of panels was time-

consuming and panels and hatchlings were kept in the laboratory for one to three days

(depending on number ofpanels and oceanographic conditions, which sometimes

precluded fieldwork). While in the laboratory panels and hatchlings were kept moist and

at 4°C to limit growth and metabolism, with no visible negative effects on the hatchlings.

After processing, panels were then returned to their original position in the field and

hatchlings were replaced as described above. Only time in the field was factored into

calculations of hatchling survivorship and growth rate.

Throughout the field experiments, recovery rates were utilized as an estimator of

hatchling survivorship. The Tanglefoot ™ barriers placed around panels prevented

almost all crawl-away behavior on poorly-seasoned "corral" panels in the field

(Appendix B), and were likely an even more effective barrier on the well-seasoned panels

utilized in the experiments described here. Hatchlings did not crawl away from seasoned

panels in the laboratory even in the absence of Tanglefoot™ barriers (Moran, unpub.

data). Nucella juveniles do not exhibit the "ballooning" behavior that some gastropods



55

employ as a strategy for leaving undesirable microhabitat (Martel and Chia, 1991;

Gosselin and Chia, 1995), and therefore probably did not purposely leave panels via the

water column.

Recovery would not equal survivorship if hatchlings were washed off panels

through wave action and successfully reattached themselves elsewhere. However,

Nucella inhabit a relatively narrow band of the intertidal (Abbott and Haderlie, 1980).

Because Nucella juveniles deprived of appropriate microhabitat quickly succumb to

heat/desiccation stress (Gosselin and Chia, 1995) and because the lower intertidal under

and around Nucella habitat often contains numerous predators such as anemones and

hermit crabs (pers. obs.), a wave powerful enough to dislodge a Nucella hatchling would

carry the hatchling to an uncertain fate at best (Etter, 1989). Finally, a small number of

snails were not dislodged by the freshwater spray in the washing process; this was

evident because on two occasions hatchlings were recovered on a later sampling data that

were evidently missed in earlier sampling. Pilot studies determined that the washing

process generally resulted in very high total recovery, and that hatchling recovery was

independent of size. For all the above reasons actual survivorship was probably

somewhat higher than recovery rates seen in these experiments. However, there is no

evidence to suggest that either crawling, dislodgment/reattachment or limitations of the

panel-washing process would act on recovery in a size-dependent manner.
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Experiment 4: Size-dependent hatchling growth and survivorship
under contrastingfield conditions

To determine whether local habitat conditions affected size-dependent offspring

performance ofNucella, newly-collected hatchlings were outplanted to two sides of a

surge channel whose sides differed considerably in degree of sun exposure. Clutches

were collected at GP, and hatchlings were removed from their capsules and sorted into

size classes as described above. Fifteen randomly-chosen large and 15 small hatchlings

from a total of 14 clutches were then marked with Calcein for 12 hours (Chapter IV) and

measured for total shell length. The final experimental group consisted of 14 clutches,

each clutch containing 15 L and 15 S individuals. This experiment was conducted two

times in summer 1997.

The experimental outplant was performed in an intertidal surge channel at Coos

Head, Oregon, immediately inside the mouth of Coos Bay. This site experiences

considerable wave action in both winter and summer, and summer temperature and

salinity conditions are generally close to oceanic (OIMB dock daily records). The surge

channel was approximately 1.8 m wide, 2 m deep and 4 m long, and the two long,

parallel sides faced ENE and WSW, respectively. The open end of the surge channel

faced NNW and the SSE end backed on a ~20 m cliff. Both sides of the surge channel

were sandstone and the WSW side (facing ENE) had noticeably lower cover of barnacles,

algae and mussels than the ENE, although both sides had populations ofN emarginata

adults and egg capsules. Preliminary observations suggested that because of shading
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from the cliff to the SSE of the surge channel, the WSW side received considerably more

sun exposure than the ENE side.

Each of the 14 marked clutches was randomly assigned to one 13 x 13 cm

seasoned AstroturfTMpanel (similar to those described above), and hatcWings were

transferred to the panels with a Pasteur pipet and gently washed with sea water until all

hatcWings had attached to the panel. Panels had been previously seasoned in the field for

ca. 1 year, such that each panel contained a mature and diverse cover of barnacles,

mussels, algae, anemones, etc. among the AstroturfTMtufts. After all hatcWings had

attached, panels were randomly assigned to one of two groups of seven (Sun or Shade).

After the rock had been locally cleared of barnacles and mussels, the 7 ENE (Shade) and

7 WSW (Sun) panels were bolted to the sandstone at the same tidal height (approx. 2 M

above the 0 tide level) on opposite sides of the surge channel, directly across from each

other (approx. 1.8 M apart). Panels on each side were approximately 5 - 10 cm apart.

Each panel was then surrounded by Tanglefoot™ (see above) to keep hatchlings from

wandering off. Tanglefoot™ barriers were refreshed at 2-day intervals or as necessary.

To record temperature on each side of the surge channels during the experimental

outplant, two Optic StowAwayTM thermistors (Onset Inc.) were bolted to the substrate at

the same height as and between panels on each side of the surge channel, where they

recorded the ambient temperature at 5-minute intervals for the duration of the

experiment. To determine whether temperatures recorded by the thermistors were

equivalent to actual panel temperatures and whether temperature varied over the surface

of the panels, temperatures were taken at three positions on each panel using a VWR
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thermocouple temperature probe on four consecutive days during the 2nd experimental

outplant. The temperatures recorded with the probe were then compared to the Optic

StowAwayTM readings for the same time and date.

Experimental panels and hatcWings remained in the field for a total of27d and

were sampled at 3d, 9d, and 27d for the first 2-site outplant and at 9d and 27d for the

second. Panels were sampled in the laboratory and hatcWings were measured for growth

and survivorship as described in Experiment 3.

ANALYSES

All data used in analyses were first tested for fit to the assumptions of normal

distribution with a one-sample Kolmogorov-Smimov test with Lilliefors option (Systat,

1996) (paired tests and multiple-sample tests) and Cochran's test for homogeneity of

variance (Winer, 1971) (ANOVA). If data did not meet the assumptions of equal

variance and normal distribution, the appropriate nonparametric test was utilized and is

described below.

Organic Content-The relationship between hatcWing length and hatcWing organic

content was estimated with a linear, ordinary least-squares (OLS) regression of organic

content in p.g on shell length using the program SigmaPlot 3.0 for Windows (Jandel

Scientific). Because of the probable curvilinear relationship between length and organic

content, Y data (organic content) were log-transformed prior to analysis (Zar, 1984).

Although a reduced major axis (RMA) regression is generally more appropriate than OLS

regression for estimating the relationship between two sets ofmeasurements that contain
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error (McArdle, 1987), data for these experiments were analyzed with OLS because I was

interested in the predictive power of the relationship and I know ofno method for

calculating prediction intervals (see below) around an RMA regression. In addition,

given the high r values in this study (see Table 1) the difference between slopes

calculated by OLS and RMA regression analyses would in most cases be small (Seim and

Sather, 1983). To estimate the value of hatching length as a predictor of organic content,

95% prediction intervals were calculated around each regression using the formula from

Zar, 1984 (page 276), which calculates the 95% confidence intervals around a single

value of Y at a given X value. If the prediction intervals did not overlap for the entire

length of the regression, hatching size was considered to have predictive value for that

clutch (McEdward and Carson, 1987).

Laboratory experiments - To determine the effect of hatching size on growth

under starved conditions, a correlation analysis was performed of 2-week growth

(measured as the distance from the PT boundary to the new apertural edge along the 2nd

rib, as above) and initial hatching length of hatchlings from 2 clutches. To determine

size-dependent survivorship of starved snails, I first tested for an effect of tray. Because

there was no significant interaction between tray and survival (Pearson Chi-square =

1.808, p = 0.771), tray was discarded as a variable. The hatching length of hatchlings

that were alive at 3 Yz months were then compared to the hatching length of snails that did

not survive this interval of starvation with a 2-sample Student's t-test.

Growth of fed laboratory hatchlings was analyzed at d 65 with a two-way model

III ANOVA using initial size (L or S) as a fixed factor, box-clutch (1 - 6) as a random
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factor, and shell length at d 65 as the dependent variable. Shell length was used as the

dependent variable rather than total growth because fed laboratory-reared snails rapidly

overgrew the PT boundary, making accurate, nondestructive measurements ofhatching

length difficult. In addition, these snails grew so much during the experimental interval

that initial hatching length was a relatively low percentage of total length. The percent

survivorship of large and small fed hatchlings in each box was arcsin transformed to

normalize the distribution of percentage data (Zar, 1987) and compared among

clutch/boxes with a paired Student's t-test.

Field outplants - Percent recovery on the final day ofeach single-site field

outplant was arcsin transformed and compared among large and small hatchlings using a

paired Student's t-test, except for the 12-clutch, 54 d outplant: due to the low recovery at

d 54, recovery data for this experiment were compared on d 36 and growth was compared

on d 27. Growth oflarge and small hatchlings was compared using a two-factor, model

III ANOVA with initial hatching size (L or S) as a fixed factor, panel-clutch as a random

factor, and growth as the dependent variable.

In both two-site field experiments percent recovery of large and small hatchlings

was paired within plate and therefore nonreplicated within treatment, obviating the use of

ANOVA or similar analyses to test for a site-by-size interaction. Therefore, recovery of

large and small hatchlings was compared only within each of the two sites. On the Shade

side, recovery of large and small hatchlings was compared within panels using a paired

Student's t-test. On the Sun side, arcsin - transformed paired differences in recovery did

not meet the assumption of normal distribution, so recovery of the two groups were
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compared with a Wilcoxin's signed ranks test (Sokal and Rohlf, 1987). Because it is

difficult to compare results of data analyses performed with parametric and

nonparametric analyses, data for the Sun side were also analyzed with a paired Student's

t-test, which is quite robust to departures from normality particularly when tests are two­

tailed and sample sizes are equal (Zar, 1984; Underwood, 1997).

RESULTS

Experiment 1: Relationship ofhatching size to organic content and maternal investment

All three field-collected clutches from which all hatchlings were measured

exhibited a positive and significant relationship between organic content and shell length

(Fig. 2a - c; Table la-c). For each of the three clutches 95% prediction intervals for the

largest and smallest snails were nonoverlapping, indicating that a single snail in the

largest size class could be predicted, at the 95% confidence level, to have a higher

organic content than a single snail in the smallest size category for these clutches (Fig. 2a

- c). There was also a significant and positive relationship between organic content and

shell length when data from all three clutches were combined and analyzed with an OLS

regression (Table 1d), and 95% prediction intervals indicated that this relationship had

predictive value as well (Fig. 2d). Ten often subsampled clutches (subsampled from

siblings of snails used in the 12-clutch experimental outplant) also exhibited a significant

and positive correlation between organic content and shell length (Table 1, e-m).
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Figure 2. Log,o organic content plotted against shell length for individual hatchlings from
three field-collected ripe clutches (a, b, c) and for combined hatchlings from all three
clutches (d). Symbols in (d) are consistent with a, b and c, and regression equations are
shown in Table 1. Solid lines are least-squares regressions; dotted lines are 95%
prediction intervals around a single value ofy at a given x value (Zar, 1984). Note that in
each case, the 95% prediction intervals for the largest and smallest hatchlings are
nonoverlapping, indicating that shell length can be used to predict at the 95% confidence
level that individual large and small hatchlings differ in organic content.



1.0

2.5
I

a) or j2.0 1
b) I .

- •••• ••
0)

.... . •..... 9

::J

_. . ..
....• ...

-
_....... :...

.... 1.5c
Q)

1.01
.. '.... . -

c
0 y ..

I •

()
..'

.S:2
'!.' .

c
as
~ 2.5
0
0 I c)
~

0)
0 2.0

...J

1.5

1.00 1.15 1.30 1.45 1.60 1.00 1.15 1.30 1.45 1.60

Shell Length (mm)

0\
w



64

Table 1. Regression equations, squared r and n for the relationship between
organic content (flg) and shell length for three complete field-collected
clutches (A, B, C), these three clutches combined (D), hatcWings subsampled
from ten additional field-collected ripe clutches (E - N) and older juveniles
collected in the field.

Clutch Regression Equation r2 n

A log y = 1.43 x + 0.03 0.88*** 45

B log y = 2.44 x - 1.46 0.80*** 47
C log y = 1.31 x + 0.21 0.80*** 51
D (A + B + C) log y = 1.69 x - 0.39 0.68*** 143
E log y = 1.56 x - 0.11 0.82*** 24

F log y = 0.78 x + 0.83 0.41*** 24

G log y = 1.45 x - 0.07 0.57*** 24
H log y = 1.61 x - 0.08 0.86*** 23
I log y = 1.47 x - 0.01 0.66*** 22
J log y = 1.82 x - 0.42 0.86*** 24
K log y = 1.12 x + 0.37 0.69*** 24
L log y = 1.53 x - 0.18 0.88*** 24
M log y = 0.89 x + 0.63 0.76*** 22
N log y = 1.12 x + 0.43 0.84*** 24

Wild juveniles log y = 0.29x + 1.81 0.96*** 28

*** Indicates the correlation coefficient (r) is significant at the p < 0.001 level.

Very small field-collected, post-hatching juveniles were similar in organic content to

prehatchingjuveniles in the same size range. However larger (and older) juveniles of

greater than 2 mm shell length had relatively less organic content per unit shell than did

recently-metamorphosed hatcWings from ripe clutches, and the slope of the regression

line of organic content on shell length was significantly different from the slopes of
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calculated for hatchlings from ripe clutches (Fig. 3) (ANCOVA, F = 25.71, df= 169, p <

0.001).

Experiment 2: Size-dependent growth and survivorship under both starved
andfed conditions in the laboratory

Growth at 2 weeks was positively and significantly correlated with hatching

length for both clutches maintained in the laboratory without food (Clutch 1: r = 0.75, df

= 55, p < 0.001. Clutch 2: r = 0.67, df= 33, p < 0.001) (Fig. 4). The hatching size of

snails that survived to 3 Y2 months under starved conditions (total survivorship at 3

months = 48.3%) in the laboratory was significantly greater than the hatching size of

snails that did not survive to this age (Student's two-sample t-test, pooled variance t =

4.61, df= 58, p < 0.001). Of six clutches of snails kept in the laboratory and fed ad

libitum, survivorship of large snails was significantly greater than survivorship of small

snails on d 65 (Student's paired t-test, t = 3.26, p = 0.022). When the growth of the two

size classes was compared, snails from the initially large group were significantly larger

on d 65 than snails from the small group (Fig. 5, Table 2). There was also a significant

effect of box-clutch and a significant interaction between size class and box-clutch on d

65 (Table 2), indicating that (l) clutch-box significantly affected growth, and (2) the

effect of initial size on growth varied significantly among box-clutches.
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Figure 3. LOglO organic content plotted against shell length for individual, post-hatching
juvenile Nucella emarginata ofa range of sizes (1.5 - 7mm) collected in the field (open
circles; dashed line). For comparison, all data from individual hatchlings from 3 field­
collected ripe clutches are also plotted (closed symbols; solid line). Lines are least-. .
squares regressions.
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Figure 4. 2-week growth (measured as amount of shell added from the PT boundary to
the new, growing aperture) plotted against original hatchling length for two clutches of
starved, laboratory-reared N emarginata clutches. Squares = clutch 1 (n = 36), circles =
clutch 2 (n = 56).
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Figure 5. Size oflarge and small laboratory N. emarginata hatchlings fed ad libitum in
the laboratory over 65 days. Snails were measured at d 0, 15,34 and 65. Closed circles
represent the grand mean of large snails from 6 clutches, and open circles represent grand
means of small snails from the same 6 clutches. Error bars are 95% confidence intervals.
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Table 2. Model III ANOVA results for the effects of hatching size and box-clutch
affinity on size when laboratory-reared hatchlings were fed ad libitum.

Source df SS F P

Clutch 5 93.519 33.861 < 0.001

Size Class 1 42.180 29.120 0.003

Clutch x Size Class 5 7.242 2.622 0.029

Error 89 49.161

Experiment 3: Size-dependent survivorship and growth in the field

The effect ofhatching size on recovery varied among five experimental outplants. Large

and small hatchlings did not exhibit significantly different recovery in either of the two 9-

day outplants (Outplants A and B) (paired Student's t-test, A: t = 1.32, p = 0.26, B: t =

1.48, P = 0.21) (Fig. 6). In the first of two 36-day outplants (Outplant C), large

hatchlings exhibited significantly higher recovery than small hatchlings on the last day of

the experiment (paired Student's t-test, p =0.002) (Fig. 7a). In the second 36-d outplant

(Outplant D), recovery of large and small hatchlings did not differ significantly (paired

Student's t-test, p = 0.16) (Fig. 7b). In the 54-day outplant (Outplant E), large hatchlings

exhibited significantly higher recovery than small hatchlings on d 36 of the experiment

(paired Student's t-test, p < 0.0001) (Fig. 7c).

Hatching size positively and significantly affected growth in all experimental

outplants as tested on d 9 of experiments A and B, d 18 of outplants C and D and d 27 of
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Figure 6. Percent recovery of large (closed bars) and small (open bars) hatcWings over
two 9 d experimental outplants, each comprising 5 clutches. a = Outplant A; b =
Outplant B. Neither experiment found significant differences in recovery between large
and small hatcWings.
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Figure 7. Mean percent recovery of large (closed circles) and small (open circles)
hatchlings over time in three field outplants. a = Outplant C (5 clutches, spring 1996,36
days duration); b = Outplant D (5 clutches, summer 1996, 36 days duration); c =
Outplant E (12 clutches, fall 1996, 54 days duration). Error bars are standard errors.
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outplant E. The mean of panel-clutch mean size at each sampling day in experiments C,

D and E are shown in Fig. 8; results of model III ANOVAs (fixed factor = size, random

factor = panel-clutch) for each panel are presented together for convenience in Table 3.

Panel-clutch significantly affected growth in experiments D and E, and there was a

Table 3. Results of model III ANOVAs for large and small hatchlings' growth during
five experimental field outplants. P values were calculated independently for each
experiment.

Experiment Source df SS F P

Outplant A (9 days) Panel-Clutch 4 1.57a 0.854 0.496
Size 1 10.62a 7.967 0.048

PCXSC 4 5.33a 1.030 0.029

Error 68 30.41 a

Outplant B (9 days) Panel-Clutch 4 2.77a 1.159 0.337
Size 1 4.79a 7.787 0.049

PCXSC 4 2.46a 1.030 0.398

Error 66 40.61 a

Outplant C (on d 18) Panel-Clutch 4 0.826 1.098 0.366
Size Class 1 9.242 85.075 0.001
PCxSC 4 0.435 0.578 0.680
Error 59 11.094

Outplant D (on d 18) Panel-Clutch 4 0.866 14.436 0.000
Size Class 1 0.433 51.131 0.002
PCxSC 4 0.034 0.564 0.690
Error 41 0.615

Outplant E (on d 27) Panel-Clutch 11 0.965 1.906 0.047
Size Class 1 2.470 25.808 0.000
PCxSC 11 1.053 2.081 0.029
Error 98 4.509

a Actual values divided by 105 for convenience
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Figure 8. Grand mean of sizes oflarge (closed circles) and small (open circles) Nucella
emarginata hatchlings over time in three field outplants. a = Outplant C (5 clutches,
spring 1996, 36 days duration); b = Outplant D (5 clutches, summer 1996, 36 days
duration); c =Outplant E (12 clutches, fa111996, 54 days duration). Error bars are
standard errors.
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significant interaction between panel-clutch and size class in experiment E (indicating

that the effect of size class on growth varied among clutches in this experiment) (Table

3). Growth data in experiment E violated the assumption of homogeneity of variances

(Cochran C statistic = 0.1539, P = 0.019), and data transformations were not successful at

removing variance heterogeneity. The p value of the size effect was considerably lower

than that of the Cochran C statistic (0.019; Table 3) and is therefore the effect of size on

growth is robust (Underwood, 1981). However, because the pvalue' for the interaction

term in experiment E was > 0.019 (Table 3), this result may be subject to Type I error and

the significance of the interaction term should be viewed with caution.

Experiment 4: Size-dependent survivorship under contrastingfield conditions

Temperature data recorded by the Optic StowAwaysTM showed that the Sun side

(WSW) reached considerably higher temperatures than the Shade side (ENE) in both

experiments, and the greatest differences between sides occurred during AM low tides

(Fig. 9a, b). The mean of 3 temperatures recorded manually by the thermocouple were

generally very similar within and among panels (l degree or less variation), and were

generally very close to the Optic StowAwayTM values recorded at the same time. The

one exception was that within-panel temperature varied by as much as 6°C when panels
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Figure 9. Temperature as recorded during two outplants to an intertidal surge channel. a
= Experiment 1; b = Experiment 2. Each graph shows temperatures measured every five
minutes by a StowAway datalogger on the Sun (WSW) (dotted lines) and Shade (ENE)
(solid lines) sides. Tick marks on the X axis are situated at 12:00 noon on each day; note
that on the Sun side, the highest temperatures occurred during morning low tides.
Vertical dotted lines indicate breaks in the data when panels and dataloggers were
brought into the lab for sampling.
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were in the sun, and mean panel temperatures were generally 1-2 degrees cooler than

Optic StowAwayTM temperatures when temperatures were recorded in full sunlight.

In both 2-site outplants, overall per-panel recovery at d 27 (Exp. 1) and d 18 (Exp. 2) (the

final day of each experiment) was significantly higher on the Shade side than on the Sun

side (Exp. 1: Kruskal-Wallis test, Mann-Whitney U test statistic = 139.00, P = 0.004.

Exp.2: Student's two-sample t-test, t = 3.60, p = 0.01). Large hatchlings exhibited

significantly higher recovery than small hatchlings on the Shade side (Exp. 1: paired

Student's t-test, t = 3.77, P = 0.013. Exp. 2: t = 2.58, P = 0.042), but not on the Sun side

(Exp. 1: Wilcoxin's signed ranks test, p = 0.36, paired Student's t-test, t = 1.00, P = 0.36.

Exp. 2: paired Student's t-test, t = 0.94, P = 3.38) (Fig.1Oa, b).

DISCUSSION

Size and Organic Content

A primary assumption underlying many life-history models is that offspring size

reflects offspring organic content and maternal investment per offspring (McEdward and

Carson, 1987). In gastropods, shell length is a convenient, simple and non-destructive

measure of size. Shell length is tightly correlated with organic content in offspring of

Nucella emarginata, as demonstrated by significant and predictive relationships between

hatching length and organic content both within and among clutches (Fig. 2). The

strength of this relationship is much greater than that reported for egg volume and egg

organic content in several species of starfish (McEdward and Carson, 1987; McEdward
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Figure 10. Percent recovery oflarge (closed symbols) and small (open sYmbols) Nucella
emarginata hatcWings on two sides of an intertidal surge channel, for two separate
experiments. a = Experiment 1: b = Experiment 2. Hatchlings from the Sun side are
represented by triangles and dotted lines; hatcWings from the Shade side are represented
by circles and solid lines. Error bars are standard errors.
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and Coulter, 1987; r2 between 0.02 and 0.39) and a marine fish (Niciu and McEdward,

1994). Therefore, while offspring organic or energetic content clearly cannot be assumed

a priori to scale with offspring size in every taxon, the strength of the relationship

between these two variables in N. emarginata confirms that this species can be used as a

model system to test the effect of offspring size on offspring performance.

The variations in slopes of the regression line between organic content and shell

length among clutches (Table 1, Fig. 2) might be caused by several factors. First, the

scaling of organic content and shell length might differ among clutches if hatching size

were not entirely dependent on the number of nurse eggs consumed by a given hatchling.

However, because hatching size is very closely tied to nurse egg ration in N emarginata

and several other gastropod taxa (Rivest, 1983; Fioroni, 1988), this is an unlikely cause

of variation in slopes among clutches. A second possibility is that different slopes may

represent natural within-population variation in scaling of size and organic composition

among clutches. For example, ifnurse eggs varied in quality within some clutches, large

offspring might be more organically dense than small offspring if large embryos in these

clutches selectively consumed high-quality nurse eggs. While somewhat elaborate, this

possibility cannot be ruled out because very little information is available on either

variation in nurse egg quality or intracapsular feeding behavior in Nucella or other

gastropods.

A third explanation for interclutch variation in slopes between size and organic

content is that embryonic shell growth allometry may vary among clutches, thereby

altering the scaling of size (= shell length) and organic content without corresponding
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changes in organic density. There were noticeable differences in coiling allometry in

different clutches, in that snails in some clutches were qualitatively more rotund than

others (shell coiling allometry was not quantified). Qualitative differences were also

noticed within clutches (pers. obs.), and may have accounted for some of the unexplained

variance in the relationship between organic content and length within clutches. The

dramatic shift in scaling of organic content and length observed after hatching and

concurrent with the shift from embryonic to adult shell growth patterns (see Fig. 3) also

supports the hypothesis that interclutch variation in embryonic shell coiling allometry

may account for differences in the scaling of hatchling organic content and shell length,

rather than differences in organic density.

If offspring performance is affected by organic content rather than by size per se,

and the relationship between size and organic content varies between clutches or

populations, then results of experiments testing the relationship between offspring size

and performance may vary depending on the clutches or populations examined. It is

unlikely that the outcome of these experiments with Nucella was greatly affected because

a) shell length was a very good predictor of organic content in all clutches and b) size­

dependent performance was in all cases compared within clutch. However, the degree of

intrapopulation variation among clutches in this study suggests that (1) if the degree of

intra- or interclutch variation in scaling of size and organic content is very large, as seen

in several marine organisms (e.g. McEdward and Coulter, 1988; George, 1994;

McEdward and Niciu, 1994), and (2) if the population or clutch affInity of experimental
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offspring is not controlled, then tests of the relationship between offspring size and

performance should be interpreted with caution.

Growth and Survivorship ofLab-reared Hatchlings

Shell growth is an energy-requiring process (Geller, 1990; Palmer, 1992), and the

significant correlation between hatchling length and growth of starved, laboratory­

maintained snails suggests that snails that are large at hatching have greater nutrient

resources to apply towards growth than small hatchlings. Greater growth under starved

conditions might provide a survival advantage to large hatchlings because larger shells

provide greater predator resistance to certain predators (Spight, 1976; Rivest, 1983;

Gosselin, 1994).

Large hatching size conferred a survival advantage to Nucella emarginata

hatchlings under starved conditions, in conformity with patterns of size-dependent

starvation resistance in numerous other taxa (e.g. Tessier and Consolatti, 1989). Size­

dependent starvation resistance is expected, because of the inverse relationship between

mass and mass-specific metabolic rate (peters, 1983) and because large hatching size is

correlated with higher nutrient reserves. In the field, large hatching size might be

advantageous to N emarginata hatchlings if they were washed away from food-bearing

substrate by wave action, or if time ofhatching corresponded with periods of low prey

recruitment or local prey extinction. While approximately ~ of the hatchlings in this

experiment were capable of surviving 3 ~ months without food in the laboratory, under

field conditions starvation may act on shorter time scales by reducing hatchlings'



87

resistance to environmental stresses or by limiting hatchlings' ability to feed if food

becomes available.

Hatching size also strongly affected both growth and survivorship in the

laboratory when hatchlings were fed ad libitum. Because hatchlings were offered rocks

bearing a natural assemblage of prey items, which ranged from small and newly-settled to

fully-grown barnacles and mussels, differential growth rates of large and small hatchlings

may have been due to size-dependent feeding success. Palmer (1990) found no

relationship between the size of a hatchling and the size of prey it would attack;

however, attacks by small hatchlings on large prey items were often unsuccessful,

suggesting that hatching-size dependent differences in growth rates may be due to less

efficient feeding by small hatchlings. It is also possible that large hatchlings could

competitively exclude small hatchlings from food resources, but because hatchlings were

fed ad libitum and reports of interference competition are rare in gastropods, this scenario

is unlikely.

One consequence of small offspring size may be that smaller individuals spend

more time as juveniles before reaching sexual maturity (Stearns, 1992). Although N

emarginata hatchlings were not followed through to adulthood, small hatchlings grow

more slowly and are likely to reach reproductive size more slowly (or mature at a smaller

size). In the experiments performed in this study small hatchlings did not appear to

exhibit compensatory higher growth rates to catch up with larger siblings as has been

demonstrated in other taxa (Ruohomaki et ai. 1993), nor did small hatchlings appear to

exhibit lower relative growth rates (relative growth rate was not calculated because the
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relationship between shell length and mass of growing N emarginata was not known for

each clutch). Therefore, greater growth of large hatchlings may have been caused by a

corollary of size- (such as size-dependent attack success) rather than to differences in

quality between large and small hatchlings (such as developmental abnormalities or

compositional differences). Small hatchlings are likely slowed from reaching

reproductive maturity by approximately the amount of time required to grow to the initial

hatching size of larger siblings. In the laboratory, small hatchlings reached the initial

hatching size of large hatchlings in approximately 20 days, while this point was reached

much more slowly in the field. Because the juvenile period is probably more vulnerable

to environmental stresses than the adult stage (Vermeij, 1987), small hatching size might

have negative impacts on future survival and reproduction that would occur beyond the

time range of these field studies.

Large hatchlings exhibited higher survivorship than small hatchlings in the

laboratory, but the underlying cause ofthis difference is not clear. Hatchlings in

laboratory cages were not exposed to predation, desiccation, temperature or salinity

stresses, which may in part explain the overall higher survivorship in the laboratory

compared to the field. Intraclutch cannibalism was not a source ofmortality, because

empty shells of dead snails did not bear drill holes characteristic ofNucella predation.

One likely cause of mortality in the laboratory was anoxia (and/or the resultant buildup of

hydrogen sulfide), which was occasionally seen in localized areas of laboratory cages.

Other possible causes ofmortality in the laboratory include disease, parasites, or a

possible negative effect ofconstant submergence, any of which might have a size-
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dependent effect on mortality. Higher laboratory mortality of small hatchlings suggests

that small hatchlings may be more susceptible overall; however, because laboratory

sources of mortality are not known, it is unclear whether patterns of size-dependent

mortality in the laboratory are relevant to interpretations of field mortality patterns.

Survivorship and Growth in the Field

In field outplants ofNucella emarginata, hatching size influenced both hatchling

growth and survivorship. Large hatchlings exhibited higher growth and larger final size

than small hatchlings in all experimental outplants, probably because of greater feeding

efficiency oflarger hatchlings (see above). Overall growth differences between large and

small hatchlings suggest that under natural conditions small hatchlings are set back one

month or more relative to large hatchlings (Fig. 8), a considerable fraction of the 1-2 year

lifespan ofNucella emarginata in the field (Spight, 1975). Therefore, different growth

rates of large and small N emarginata offspring may have important consequences for

time to sexual maturity and may cause hatchlings from the same clutch to reach

reproductive maturity at different times (Tessier and Consolatti, 1989), which in turn may

increase survivorship of large hatchlings by reducing time spent in the smallest and

potentially more vulnerable size classes (Vermeij, 1978, 1987).

Field experiments also indicated that panel-clutch significantly affected growth in

two out of five experimental outplants (Outplants D and E), and there were also

significant panel-clutch x size interaction in two of five outplants (Outplants A and E)

(the significance of both effects in Outplant E should be viewed with caution, see
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Methods). Potential sources of variation in the panel-clutch factor and the interaction

term within experiments include effects of clutch identity, panel identity, or panel

location. Panel quality and location are an unlikely cause ofvariation because all panels

were seasoned equivalently and there were no obvious differences in biota, orientation or

exposure of panel sites. In addition, Outplants A and B used the same the same panels

and panel positions (but different clutches, and at different times) yet exhibited no

consistent differences in mortality or growth on particular panel/positions between the

two experiments. While panel identity, location and stochastic events cannot be ruled out

at present as sources ofvariation in growth on N emarginata hatcWings, clutch identity is

likely an important factor in determining both hatcWing growth and the relationship

between hatcWing size and growth. Interclutch differences in performance and size­

dependent performance in the field might be due to maternal effects, genetic differences,

and environmental differences during early development among clutches.

Single-site field outplants performed in this study strongly suggest that hatching

size influences survival ofN emarginata hatcWings, consistent with the relationship

between offspring size and survivorship found in many other taxa (Steams, 1992).

However, the advantage of large hatching size in Nucella also varied temporally. For

example, hatching size did not significantly affect recovery in two short (9 d)

experiments (Outplants A and B) and one long-term outplant (Outplant D), while a

significant effect ofhatching size was seen in two out of three longer-term experiments

performed at the same site (Outplants C and E) and in Shade treatments of both 2-site

outplants. This suggests that environmental factors that favor large hatching size, such as
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heat/desiccation stress, predation, or wave action, were not always present. The intertidal

environment exhibits a great deal of temporal variation in each of the above parameters

(Nybakken, 1996); consequently, variability in the effect of hatching size on growth and

recovery in these experiments may have been due in part to the variable nature of the

intertidal habitat.

Survivorship as an Index ofHabitat Severity

Small-scale spatial variation (centimetres to metres) variation in microhabitat

quality is well-documented in the rocky intertidal (Underwood and Chapman, 1996). In

replicated tests of size-dependent performance in two contrasting habitats in this study,

hatchling recovery was consistently different in two adjacent and contrasting habitats:

one habitat (Sun) exhibited significantly lower recovery rates than the other habitat

(Shade). These differences in recovery strongly suggest that the Sun side was a

quantitatively harsher environment for Nucella hatchlings than the Shade side during the

timeframe of these experiments. Heat/desiccation stress was probably the environmental

variable that varied the most between the two sides and may have caused differences in

recovery for a number of reasons. First, the two sides were very similar in many ways;

they were initially chosen because of their similarity in wave exposure, height, and angle

of orientation. Likewise, because panels on the two sides were in close proximity « 2 m

apart) and were physically connected, hatchlings on the two sides were probably exposed

to the same population of potential predators.
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Second, when temperature differences between the two sides were minimal, for

example in the first 3 d interval of the first 2-site outplant, differences in mortality

between the two sides were minimal as well. Third, of three long-term (> 9 d)

experimental outplants (Outplants C, D and E) carried out during spring, summer and

fall, recovery was lowest in the summer. This may be due to greater heat/desiccation in

the summer than fall or spring (however, temperatures were not measured near panels in

Outplants C, D or E). Other experiments indicate that heat/desiccation stress is one of the

most important parameters shaping community structure in the intertidal (Raffaelli and

Hawkins, 1996), and is probably one of the most important causes ofmortality for

Nucella hatchlings in many habitats (Spight, 1976; Etter, 1989; Gosselin, 1994).

Therefore, it is likely that measured differences in temperature, caused by differences in

sun exposure, were the cause of the quantitatively greater harshness of the Sun side and

the resultant differences in recovery of Nucella hatchlings over a small spatial scale.

Size-dependent Survivorship in Habitats that Vary in Severity

Habitats have been categorized based on the relationship between offspring size

and fitness as either offspring size-sensitive (aSS) or offspring size-insensitive (OSI)

(Begon, 1985; Begon et al., 1996). In ass habitats, size affects individual offspring

fitness because either a) the habitat contains sources of mortality to which small offspring

are particularly vulnerable, or b) competitive interactions among offspring favor large

size. In OSI habitats, in contrast, fitness of individual offspring is not related to size

because a) resources are superabundant and all offspring do well, b) some environmental
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factors favor small offspring size, or c) mortality is random with respect to offspring size

(Begon, 1985; Begon et aI., 1995). The return on different offspring size/number

maternal investment strategies will vary depending on the type of habitat (aSS or OS1),

which may affect many aspects of life-history evolution.

Several models of life-history evolution contain the assumption that "harsh"

environments will fit the ass habitat type, in that fitness of parents producing large

offspring will be higher under conditions of physiological or competitive stress (e.g.

Kaplan and Cooper, 1984) or larger offspring will do better in all environments, but this

difference will be more pronounced in severe environments (e.g. McGinley et aI., 1987;

Fig. 3C). Under more "benign" conditions, the effects ofoffspring size on performance

will not be as pronounced. Benign conditions at the time of an experiment have been

invoked to explain the absence of an experimentally-determined survival advantage of

large offspring in some experiments (Smith et ai, 1995; Fox and Mousseau, 1996).

Likewise, several studies testing the effects of offspring size under different resource

regimes have borne out the prediction that large offspring exhibit a performance

advantage under adverse conditions. For example, in the seed beetle Stator limbatus,

offspring from large eggs perform better on a poor-quality host plant but egg size does

not affect performance on a high-quality host (Fox and Mousseau, 1996). This

hypothesis is also supported by other studies comparing the effect of offspring size under

different regimes of resource availability (e.g. Ferguson and Fox, 1984; Tessier and

Consolatti, 1989; Hutchings, 1991), and it has been suggested that offspring size



94

variation has implications for offspring performance only under adverse conditions (Fox

and Mousseau, 1996).

Similar predictions have been made about the relationship between offspring size

and habitat type in intertidal gastropods. Spight (1976) predicted that selection should

favor large hatching size of Nucella under more severe environmental conditions,

because large hatchlings exhibit superior feeding abilities and lower susceptibility to

environmental stresses (predation, starvation and heat and desiccation). Etter (1989)

found that hatching size in N lapillus was greater on wave-protected shores than on

wave-exposed shores, and argued that this pattern was consistent with Spight's (1976)

hypothesis because hatchlings on wave-sheltered shores suffer greater levels of predation

(Menge, 1983) and greater physiological stresses (Etter, 1989) than hatchlings on

exposed shores.

In contrast to these predictions, of two habitats that varied in harshness Gudged by

differences in overall recovery) in this study, size positively and significantly affected

survivorship ofNucella hatchlings in superior habitat (Shade) in two separate outplant

experiments. In poorer habitat (Sun), however, while there was a trend towards higher

survivorship of large hatchlings, this difference was not significant in either experiment.

The majority of laboratory studies support the hypothesis that large hatching size

provides an advantage to intertidal gastropod hatchlings in resisting both predatory and

specific physiological stresses. Why, then, was the advantage of large hatching size

greater in the "benign" habitat than the "harsh" habitat in the experiments described in

this study?
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The results of experiments testing size-dependent mortality under contrasting

conditions may depend in part on the nature of environmental stress to which organisms

are exposed. In experiments described above, large offspring size conferred a

performance advantage when quality or quantity of resources was low; performance

differences under these conditions could well be attributed to the higher nutrient stores of

large juveniles buffering the effects of a poor-food habitat (Bagenal, 1969; Williams,

1994), or the competitive or functional superiority of large offspring in acquiring

resources (Salthe, 1979; Parker and Begon, 1986; Parker et oZ., 1989; Lyimo et oZ., 1992).

In contrast, to the best of my knowledge Nucella hatchlings on both Sun and Shade sides

experienced very similar habitat in terms of food quality and supply, but the two sides

differed in sun exposure and consequent levels of physiological (heat/desiccation) stress.

In the intertidal habitat and the juvenile period ofNucella hatchlings, factors in the

physical environment and resource-related factors may act on size-dependent

performance in very different ways.

The lack of a significant effect of hatching size on recovery on the Sun side,

which experienced overall higher mortality, may have been due to interactions between

physical factors and microhabitat structure. One striking difference between Shade and

Sun sides of the surge channel (in addition to overall differences in maximum daily

temperature) was due to differences in insolation. Surface temperatures within single

panels varied much more in sunlight than in shade, and Sun panels were in direct sunlight

far more often than Shade panels. As a result, Sun panels were a more spatially complex

temperature environment than Shade panels; within-panel temperature ranges on the
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Shade side were rarely greater than 1 - 1.5°C, and while spots on any given panel often

reached temperatures of 30°C on the Sun side (and frequently higher), at the same time

temperatures elsewhere on the panel could be > 6°C cooler.

Therefore, during periods of high temperature stress, each Sun-side panel

represented a complex array ofmicrohabitats that varied in degree of physiological

(heat/desiccation) stress on the order of centimetres. In this type of environment, survival

may depend more on location than size; in many microhabitats on a sun-exposed panel,

heat/desiccation stress may have been so severe as to be lethal to large and small

hatchlings alike. Nucella hatchlings are motile (Gosselin, 1994; pers. obs.) and probably

distributed themselves around each panel in search of food and protective microhabitat.

If survival depended largely on a hatchling dispersing to non-lethal microhabitat, and

microhabitat selection was random with respect to hatcWing size, then in such a

patchwork habitat would be OSI because survivorship would be largely random with

respect to size. The pattern of hatcWing recovery on the Sun side of the surge channel, a

nonsignificant trend towards higher recovery of large hatcWings, suggests that seasoned

panels on the Sun side may have simulated such a complex, patchwork habitat.

Significantly higher recovery of large hatchlings on Shade panels may have

occurred because panels on the Shade side rarely if ever resembled the haphazard

patchwork of severe and moderate localized temperature stress described above. The

Shade side was a quantitatively better habitat, and probably was equivalent to good

natural Nucella habitat. Average number of snails lost on the Shade side in the two

outplants was 2.6% (Outplant 1) and 3.7% (Outplant 2) per day, well within the 1.7-
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30% range ofNucella hatchling mortality found by Gosselin (1994) in different natural

microhabitats over a single low tide. Rates of mortality ( = nonrecovery) on the Sun side,

though higher (3.2 % and 4.8 % per day), were still easily within this range; therefore,

even the Sun side was probably not unnaturally severe. Even though the Shade side was

protected from severe heat stress, hatchlings were still exposed to a full range of natural

and potentially size-dependent sources of mortality including wave force, predation, and

even moderate levels ofheatJdesiccation stress. The "benign" habitat in this study may

have been offspring-size-sensitive (OSS) because, although the habitat was relatively

good, it was not benign in the sense that all hatcWings performed well regardless of size

(as in the fIrst OSI environment type described by Begon (1986); and Begon et al.

(1995).

Environments may be offspring-size-insensitive in several ways (see above;

Begon et al., 1995). Most models and research comparing the relationship between

offspring size and performance have involved the fIrst type of OSI environment, one in

which all offspring do well. From these models and research, some authors (e.g.

Williams, 1994; Ferguson and Fox, 1996) predict that large offspring size will be

advantageous in poor environments but less so in benign environments. Because

offspring size affects many other aspects of life history biology (Stearns, 1992), this

prediction has major implications for understanding how life histories evolve in different

environments.

The research described in this paper suggests that the relationship between

offspring size and offspring performance in different environments may not always



98

resemble an inverse relationship between habitat quality and optimal offspring size,

particularly for N emarginata and other organisms that inhabit complex juvenile

environments. The intertidal environment varies in a wide range of biotic and abiotic

stresses, many of which mayor may not favor large Nucella hatching size depending on

their duration and severity. Temporal and spatial variation over both small and large

scales is likely to be high (Underwood and Chapman, 1996), and it is possible that in

nature, Nucella hatcWings very rarely experience long-term conditions of the benign OSI

type in which offspring of all sizes perform well. Support for the hypothesis comes from

significant size-dependent hatchling mortality at two separate locations and in 2 of 3

long-term experimental outplants performed at different times of the year; one exception

was the long-term outplant performed in summer (Outplant D), in which recovery of

large and small hatcWings was not significantly different. However, overall recovery in

Outplant D was low relative to C and E, suggesting that summer panels did not represent

a benign-type OSI environment. In fact, the outcome of Outplant D may have been due

to stressful desiccation conditions similar to the Sun side of the 2-site outplants.

If an organisms' environment varies in one or only a few stresses that act in a

size-dependent manner (e.g. resource availability), certain benign habitat types may be

OSI when these stresses are absent and all offspring sizes perform well; this is the OSI

habitat type that has received the most attention. However, some habitats may be OSI

because mortality is random with respect to offspring size. In these experiments, the

harsher environment (Sun) was OSI because mortality, while high, was indiscriminate

with respect to offspring size. In contrast the more benign (Shade) side was ass,
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possibly because it experienced moderate and spatially homogeneous levels of stress that

acted in a size-dependent manner. Therefore, in environments such as the intertidal that

are spatially and temporally variable in a number of factors that may act and interact in

both size-dependent and size-independent manners, the relationship between offspring

size and performance is likely to be highly variable as well. Likewise, estimates of

overall habitat quality may not always be useful in predicting either the importance of

offspring size or optimal maternal investment strategies in a given habitat.

CONCLUSIONS

This study demonstrated that the organic content of Nucella emarginata

hatchlings scales closely with size, and that hatching size can therefore be used as a proxy

for maternal investment. The scaling coefficient varied between clutches, and therefore

within-clutch comparisons will be most powerful. Hatching size positively affected both

survivorship and growth under starved conditions and when hatchlings were fed ad

libitum in the laboratory. In the field, hatching size always has a positive effect on

growth, but not recovery; hatching size does not affect recovery in short (9 d) outplants

but does affect recovery in two out of three long (36 or 54 d) outplants. In replicated

experiments testing the relationship between hatching size and survivorship in two

environments that differed in degree ofheat and desiccation stress, size significantly and

positively affected recovery in the more benign habitat (Shade) but not in the harsh

environment (Sun). These data suggest that the advantage of large offspring size is not

always negatively correlated with environmental quality.
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CHAPTER IV

EFFECTIVENESS OF THE FLUORESCENT MARKER CALCEIN

AS A LABEL FOR JUVENILE NUCELLA EMARGINATA

(GASTROPODA: PROSOBRANCHIA)

Growth, mortality and selection during the juvenile life-history stage are thought

to playa major role in shaping the development, population structure, and life history

evolution of benthic marine taxa (Thorson, 1966; Denley and Underwood, 1979; Connell,

1985; Hurlbut, 1991; Keesing, 1994; Osman and Whitlatch, 1996; Gosselin and Quian,

1997), but the ecology ofjuveniles in benthic marine systems is poorly understood. A

method of marking juvenile animals is a prerequisite for many types of field experiments.

This study investigates the effectiveness oflow concentrations of Calcein (2,4-bis- [N,

N'-di (carbomethyl)-aminomethyl] fluorescein) in marking juvenile Nucella emarginata

(Deshayes) (prosobranchia: Gastropoda), the durability of the Calcein mark over time,

and the effects of marking on survivorship and growth in this species.

Comparatively few studies have measured mortality and growth ofjuvenile stages

in benthic marine systems, in part because such studies may be complicated by several

factors that affect studies of adults to a lesser degree. One such factor is size; the small

size of newly released or newly settled juveniles may hinder collection, identification and
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recovery. In addition, recovery may be difficult because tiny juveniles of motile species

may utilize cryptic microhabitats (Feare, 1970; Hernnkind and Butler, 1986; Gosselin and

Chia, 1995). Small size is also a complicating factor in marking juveniles for

experimental field outplants. Mechanical difficulties or toxicity of marking materials

limits the utility of many marking techniques used on adults (Southwood, 1978). For

example, numbered tags may be too large or cumbersome to attach to juvenile shells or

carapaces, and glues or paints may be toxic to small, thin-shelled animals (Palmer, 1990;

Gosselin, 1993). Labeling of individual animals with unique identifying marks

(Gosselin, 1993), while potentially a powerful tool, could be prohibitively time­

consuming in studies involving large numbers of animals. In addition, stains or marks

which enable investigators to recover marked animals may increase the animal's

susceptibility to visual predators (Levin, 1990).

The marker examined in this study, Calcein, is a fluorescent label that binds to

calcium and is incorporated into growing calcium carbonate structures. Calcein has been

used with considerable success to mark both adults and juveniles in many taxa including

fish (Monaghan, 1993; Brooks et al., 1994), mammals (Malouvier et al., 1993; Turner,

1994), and echinoderms (Stewart, 1996). Calcein has also been proposed as a good

marker for field studies of marine invertebrates because many such taxa contain calcium

carbonate structures which are marked effectively by Calcein; likewise, in many groups

Calcein provides a mark in the growing calcium carbonate structures that can be used

both for identification and measurement of some aspects of growth (Rowley and
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MacKinnon, 1995). However, some studies in vertebrates have found toxic effects even

at relatively low concentrations (Brooks et aI., 1994; Bumguardner and King, 1996), and

the effects of Calcein on growth have not been investigated for most invertebrates.

Therefore, before Calcein can be utilized to mark early life-history stages of a given

taxon, its toxicity, effectiveness as a marker, and its effect on growth must first be

investigated.

Nucella emarginata is an abundant, intertidal predatory gastropod that develops to

metamorphosis in benthic egg capsules. Both adult and juvenile N emarginata have

been the focus of considerable ecological and evolutionary research (e.g. Palmer, 1984,

1990; Palmer et. ai, 1990; Rawlings, 1990, 1994a, 1994b, 1996; Gosselin and Chia, 1994,

1995a, 1995b), but the biotic and abiotic factors affecting the early life history of this

species are not well understood. An effective marker for juvenile stages is a necessary

tool towards understanding the population dynamics and life histories ofN emarginata

and other marine benthic taxa.

Methods

Hatchling Collection

Snails used in this study were newly hatched juvenile Nucella emarginata ranging

in shell length from 0.9 to 2.0 mm. Ripe clutches of egg capsules were collected at the

boathouse dock, Oregon Institute of Marine Biology (ripe capsules were identified as at

or near the point ofhatching).i



103

Calcein Marking Technique

A concentrated stock solution containing 6.25 gIL Calcein in distilled water was

buffered to a pH 6 with sodium bicarbonate to enhance the solubility ofCalcein (after

Wilson et aI., 1987). This concentrate was added to filtered seawater to make a desired

volume of marking solution containing a total Calcein concentration of 100 ppm. Snails

were exposed to marking solutions for periods of 12 or 24 hours as described below.

Measurement of Marked Snails

Snails were examined for Calcein marks under a Wild M5A dissecting

microscope equipped with epi-illumination via a blue-light filter (A.o center wavelength

460nm, Corion Corporation catalog #XM-465) fitted on a fiberoptic light, and a yellow

sharp cut-offlongpass transmission filter (A.C ('t j max/2) 495nm, Edmund Scientific

catalog #A32,763) fitted over the microscope head. To minimize possible damage from

handling, heat, or desiccation, snails were handled with fine-tipped forceps and eyelash­

tipped wands and were immersed in sea water except during measurement. Measurement

required < 30 seconds per snail. These techniques very rarely resulted in visible damage

to any snail, and there were no observed differences in activity of snails before and after

measurements were made.

Snails were measured to the nearest 10 Jlm with a Wild M5A dissecting

microscope. Growth of starved, marked snails was measured as the quantity of shell
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added since marking, from the mark to the new growing aperture along the 2nd shell rib

(fig. 1, chapter 2). Because hatchlings utilized in this study had added very little

te10conch when the study was initiated, the Ca1cein mark was at the protoconch­

teloconch (PT) boundary in almost all snails. Therefore, growth of starved, unmarked

snails was measured from the PT boundary to the new growing aperture along the 2nd

shell rib and these measurements were considered equivalent to measurements from the

Calcein mark in marked snails.

The hatching length of older, fed, marked snails was calculated as the increase in

total shell length since marking (new length (at day 34) - marked shell length). Shell

length of marked snails was measured from the shell apex to the marked original siphonal

tip. Growth of unmarked snails was measured by subtracting protoconch length at the

protoconch-teloconch boundary (fig. 1, Chapter III) from shell length at day 34. Where

possible, measurements were performed blind (without knowing the marked/unmarked

status or original measured length of each hatchling).

Rearing of Starved Hatchlings

A ripe clutch was collected from the field (as above) and 46 hatchlings were

randomly chosen from the total pool and randomly divided into two groups of 23 that

were designated marked and unmarked. Hatchlings in the marked group were placed in a

solution of 100 ppm Calcein in filtered sea water for 24 hours, and hatchlings in the

unmarked group were placed in filtered sea water for the same period. Each snail was
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then placed in an individual well of a tissue culture tray, from which the tops and bottoms

had been removed and replaced with 600 J.!m Nitex mesh. Marked and unmarked snails

were placed in alternating wells to eliminate any potential effects of position in the tray

on growth or survivorship. Because previous experiments with starved hatchling N

emarginata indicated that hatchlings were very sensitive to flocculant from the flow­

through sea water system, tissue culture trays containing hatchlings were placed in a large

(- 5 gal.) tub of 0.45 J.!m filtered sea water. The tub was then covered and partially

immersed in flowing sea water (to the water line) to keep the filtered sea water at ambient

temperatures.

After 6 days, snails were removed from wells and examined under a dissecting

microscope equipped with blue epifluorescence and a yellow filter (as above). Snails

were scored as marked or unmarked based on the presence or absence of Calcein

fluorescence and measured for total length. Snails were also examined for activity and

flesh discoloration and scored as alive or dead. The 6-day growth ofeach marked snail

was calculated by measuring the distance from the Calcein mark to the new apertural

edge along the 2nd rib from the body whorl (fig. 1, Chapter III). Growth ofunmarked

snails was measured from the PT boundary. To evaluate the accuracy of the Calcein

mark as an indicator of original hatching length, an estimate of the original hatching

length of each snail was made by measuring from the shell apex to the original, marked,

siphonal end of the aperture (fig. 1, Chapter III). These estimates were then compared to

the hatching length of each snail as measured on day O.
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Rearing of Hatchlings Fed Ad Libitum

Hatchlings from each of six ripe clutches were washed through a series of4

graded meshes and immediately transferred to sea water. Approximately 20 large and 20

small snails (from the largest and smallest meshes) from each clutch were then randomly

divided into two groups for a total of four groups per clutch, and one group each of large

and small snails was randomly assigned to a marked treatment. Large and small marked

snails from each clutch were placed in a solution of 100 ppm Calcein in filtered sea water

for 12 hours, and unmarked snails from each clutch were placed in filtered sea water for

the same interval. After 12 hours, all snails were rinsed 8x with sea water and any dead

or inactive snails were removed (inactive/dead snails occurred in only one clutch and

were evenly distributed among marked and unmarked snails). Eight snails from each

group were then randomly chosen and a total of 32 snails from each clutch (8 large

marked, 8 large unmarked, 8 small marked, 8 small unmarked) were measured for

greatest shell length. Each set of 32 snails from each of the six clutches was then placed

in an individual box sided with 600 Jlm mesh (for a total of six boxes) and provided with

freshly-collected intertidal rocks covered with small barnacles and mussels.

Snails were removed after 34 days and measured for new size, hatching/marked

size and survivorship. Snails were scored as dead if 1) snails were discolored (purple,

green or black) and not moving, 2) shells were empty, or 3) snails were missing from the

recovered group. Empty shells were by far the most common, and in no instance was it
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difficult to distinguish living and dead snails. All recovered snails were examined with

fluorescence microscopy (as above) and scored as marked or unmarked based on the

presence or absence of a Calcein mark. Snails were scored as large or small based on

shell length at the PT boundary (unmarked snails) or at the Calcein mark (marked snails).

Survivorship of two groups, small marked vs. small unmarked snails and large

marked vs. large unmarked snails, were compared among clutches at d 34 with a paired

Student's t-test (two tests). To compare growth ofmarked and unmarked snails, size of

all snails at d 34 was compared using a three-factor, mixed-model ANaVA with initial

size (large or small), marked status (marked or unmarked) and box-clutch (1-6) factors

and size at d 34 as the dependent variable. Initial size and marked status were considered

fixed factors and box-clutch was a random variable.

Results

Calcein Mark

Immersion ofhatchlings in a 100 ppm solution ofCalcein in sea water for either

12 or 24 hours produced a mark at the growing aperture ofthe shell of hatchling Nucella

that was readily visible when snails were viewed with the filter set described above (fig.

1). This mark varied considerably in brightness among clutches and among individuals,

but was always present. The Calcein mark was still visible at the original aperture after

34 days of growth in the laboratory (fig. 2), and the mark persisted for at least 50 days in
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Figure 1. Photograph of a 9 day old Nucella emarginata juvenile, viewed under blue
light with a yellow longpass filter. The brightest area is the Calcein mark just past the
protoconch-teloconch boundary (PT), and the smooth protoconch (P) shows some areas
of labeling as well. The area of the te1oconch (T) that has grown since marking is entirely
unlabelled. Illumination seen in this area is light reflected from the Calcein mark. Scale
bar = 0.5 rom.
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Figure 2. Photograph of a 34 day old Nucella emarginata juvenile viewed on its side
with the aperture at 90· to the substratum. A bright Calcein mark (C) can be seen at the
protoconch-teloconch boundary (P = protoconch, T = teloconch). The teloconch is just
beginning to wrap around the Calcein-marked area of the original hatchling shell. Scale
bar = 1 mIn.
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the field (see Chapter III). In some older snails the Calcein mark became noticeably

fainter, though it was always readily distinguishable. Decreased brightness of the mark

appeared to result from the addition of new shell layers on top of the marked portion of

shell, or in some cases erosion of the protoconch.

Among starved snails, original hatching length and hatching length as measured

from the Calcein mark were significantly and tightly correlated (r = 0.98, n = 44, p <

0.001) (fig. 3) and original hatching length explained 95 % of the variance in estimated

hatching length. The mean difference between original and 6-day

measurements (absolute value) was 7.6 J.!m (0.6% of mean hatchling length) with a

standard deviation of 8.5 J.!m. The Calcein mark of snails fed ad libitum was still readily

visible after 34 days and could be utilized to measure initial marked length and growth.

However, at day 34 the teloconch of many snails was on the point of wrapping over the

marked area, after which snails would be identifiable as marked or unmarked but original

length could no longer be nondestructively measured.

Starved Hatchlings

There was very low mortality among starved snails over the 6 d experimental

interval; 22 out of 23 snails survived in each group. There was no significant difference

between growth of marked and unmarked snails at 6 d (one-factor ANOVA, F= 0.126, p

= 0.72), nor did the relationship between hatching size and growth differ significantly
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F = 0.234, p = 0.631) (fig. 4).

marked and large unmarked snails (paired Student's t-test, t =0.052, p = 0.961) or

between small marked and small unmarked snails (paired Student's t-test, t = -1.102, p =

Figure 4. Growth ofCalcein-marked (closed circles, solid lines) and control (open
circles, dotted line) Nucella emarginata hatcWings after 6 days of starvation in the
laboratory, plotted against original hatcWing length. Lines are least-squares regressions.
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0.358) from the six clutches. There was no overall significant effect ofmarking on size at

day 34, no significant interaction between marking and initial size, no significant

interaction between box-clutch and marking, and no significant 3-way interaction among

marking, initial size and box-clutch (Table 1).

Table 1. Results of three-factor, mixed-model ANOVA testing effects ofCalcein
marking on large and small N. emarginata hatchlings after 34 days fed ad libitum in the
laboratory. Size (large or small) and Mark (marked or unmarked) = fixed factors; box­
clutch =random factor.

Effect df MS F P

Box-Clutch 5 0.387 2.627 0.028
Size 1 17.341 44.514 0.001
Mark 1 0.001 0.007 0.936
B-C * S 5 0.390 2.644 0.027
B-C*M 5 0.141 0.956 0.448
S *M 1 0.070 1.698 0.249
B-C * S * M 5 0.041 0.279 0.923
Error 130 0.147

Discussion

The advantages of Calcein marking in N. emarginata are as follows. First,

. Calcein produces a mark that can be viewed under a dissecting scope using the

inexpensive filter sets described above. Second, because Calcein fluoresces under visible

(blue) wavelengths, animals can be examined without the tissue damage that occurs under
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UV light (Moran, unpub. data). Third, because the Calcein mark is only visible with

special filter sets, this marking technique does not increase the vulnerability of animals to

visual predators. Fourth, large numbers of animals can be marked rapidly, easily and

inexpensively, and the Calcein mark provides an accurate estimate of original (marked)

size and growth after time in the laboratory or field. Finally, Calcein does not inhibit

growth or cause mortality of Nucella emarginata hatchlings, nor does it differentially

affect small or large individuals.

Although Calcein at low concentrations is nontoxic to N emarginata juveniles,

caution should be used in applying this result to all taxa. Calcein has been reported to

have some toxic effects on fish when used at higher concentrations (toxic effects were

reported at 160 mg/l) (Bumguardner and King, 1996), and the relative sensitivity of

different taxa to Calcein has not been thoroughly examined. Therefore, prior to using

c

Calcein for the first time in a selected taxon, pilot experiments should be performed to

establish nontoxic concentrations and immersion times that result in an effective mark.

Likewise, a low number of N emarginata hatchlings « 1 in 50) failed to developed a

visible mark during immersion in the Calcein solution. If total number of experimental

animals is of importance, animals that have been immersed in Calcein solutions should be

examined individually before experiments are begun in order to ensure that each

individual is properly marked. The techniques in this study also cannot be used to

identify individuals; techniques such as those described in Gosselin (1993) would be

more applicable to experiments requiring recognition of individual animals.
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Results of this study demonstrate that Calcein provides a long-lasting, readily

detected fluorescent shell mark in Nucella emarginata hatchlings that can be used to both

identify experimental snails and to accurately measure marked length of hatchlings up to

the completion of the first teloconch whorl. Therefore, Calcein can be utilized as a

marker in laboratory or field studies using N emarginata (and potentially in other

molluscan taxa as well) to explore mortality, growth, and size-dependent effects. Such a

marker is a necessary and potentially valuable tool for understanding the early life-history

ecology of benthic marine invertebrates.

i Data from a later date in this same experiment are reported in Chapter III to describe the relationship
between hatchling size and growth and survivorship of fed laboratory hatchlings. Data were pooled
because there was no difference in survivorship between marked and unmarked snails, and in Chapter III
data were analyzed at a later date (d 60) when survivorship was considerably lower.
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CHAPTER V

EFFECTS OF MATERNAL SIZE AND FOOD RATION ON REPRODUCTIVE

OUTPUT AND OFFSPRING SIZE IN THE MARINE GASTROPOD

NUCELLA EMARGINATA

INTRODUCTION

Marine organisms exhibit a remarkable variety of life-history strategies both

within and among taxa (Thorson, 1946; Strathmann, 1985), and this variety provides a

unique, comparative means of studying the evolution of development, morphology and

life history. One important component of life history theory is offspring size. Offspring

size is correlated with and may be causally related to many other aspects of life history

including offspring number (reviewed in Stearns, 1992), length of larval period (Perron,

1981; Perron and Kohn, 1985; Strathmann, 1985; Sinervo and McEdward, 1988),

juvenile growth rate (Ferguson and Fox, 1984; Emlet and HoeghGuldberg, 1997; chapter

III, this thesis), and adult environment (Spight, 1976; Rivest, 1983; George et al., 1990),

size (Tanaka, 1995; George, 1996; Kaplan and King, 1997), and condition (Ebert, 1993;

Reznik et al., 1996). Despite the evident importance of offspring size to many aspects of

the life history of marine organisms, little is known about the specific physical,
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environmental and physiological factors that regulate offspring size in benthic marine

systems.

The offspring size of a single female may be affected by a number of factors,

including local environmental conditions, female size, nutritive condition, and genotype.

Environmental variation in offspring size has been reported in a number of species and

has been attributed to physiological effects ofgeographic clines in temperature (Hadfield,

1989), differing selective regimes (Spight, 1976; Etter, 1989), and phenotypic plasticity

(Ebert, 1993; Guisande et al., 1996; Foeger and Pegoraro, 1996). Female size is

positively correlated with offspring size in some taxa (Sargent et al., 1987; Landa, 1992;

Fox, 1993; Tanaka, 1995; George, 1996; Kaplan and King, 1997) but not others (Yusa,

1994; Iguchi and Yamaguchi, 1994; Bridges and Heppell, 1996; Odinetz Collart and

Rabelo, 1996; Corkum et al., 1997; Roosenburg and Dunham, 1997). The effect of

maternal size on offspring size can also vary among closely related taxa (Kirk, 1997).

Maternal nutritional conditions can also strongly affect offspring size, and in

some groups offspring size can change as a phenotypic response to food availability in

the environment. Females of some taxa produce large offspring in low-food

environments, presumably because high offspring nutrient reserves improve offspring

performance under low-food conditions (Ebert, 1993; Guisande et al., 1996; Reznik et

al., 1996). In contrast, in other groups offspring size may be negatively correlated with

maternal food ration (Foeger and Pegoraro, 1996; Reznik et al., 1996).
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Lastly, in some taxa offspring or maternal genotype regulates offspring size (Boag

and Grant, 1978; Ebert, 1993; Fox, 1994; Sinervo and Doughty, 1996). Because the

effects of environment, maternal size and maternal nutritive state are often very strong

and can vary greatly within and among taxa (Kaplan and King, 1997), the assumption that

offspring size is genetically based (and therefore subject to natural selection) may be

seriously flawed ifmaternal effects are ignored (Bernardo, 1996).

The gastropod Nucella emarginata is a predatory, intertidal whelk that ranges

from Alaska to central California (Palmer et al., 1990). Nucella emarginata has

nonplanktonic development, and embryos develop to metamorphosis inside of benthic

egg capsules. During development embryos consume nurse eggs (unfertilized or

nondeveloping eggs), and hatching size is determined by the ratio of nurse eggs to

embryos in a capsule (Spight, 1976). Females are reproductive throughout most of the

year (Seavy, 1977) and lay between 4 and 20 capsules per clutch. Each capsule contains

6-23 embryos, and hatchlings can vary in shell length from 0.9 to> 2 mm (Spight, 1976;

Moran, unpub. data). Hatching size varies among hatchlings from a single capsule,

among capsules in a single clutch, between clutches at a single site, and between

populations at different sites (Spight, 1976). Variability in offspring size in Nucella may

reflect local adaptive or phenotypic responses to contrasting environmental conditions,

such as varying levels of predation, sun or wave exposure (Spight, 1976; Etter, 1989;

Gosselin, 1994).
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In the present study, laboratory experiments were performed to test the hypothesis

that maternal size and nutritive state affect offspring (hatchling) size in Nucella

emarginata. N emarginata displays a high degree of offspring size variation and is

easily maintained in the laboratory, making it an excellent subject for testing the effects

of maternal size and condition on offspring size in the marine benthos. A large

component of hatchling size variation is due to variance in nurse egg provisioning and

consumption; very little is known about the maternal effects or genetic mechanisms that

regulate nurse egg ration and offspring size in N emarginata, or other taxa that consume

nurse eggs during development.

METHODS

Nucella emarginata adults were collected from the Boat House dock at the

Oregon Institute of Marine Biology in Charleston, OR in fall of 1995. Snails were sexed

in the laboratory and females were randomly assigned to two groups of 22 snails each,

high-food (HF) and low-food (LF). Calipers were used to measure snails across the

greatest length of the shell, from the tip of the siphonal notch to the shell apex. Female

snails were placed individually in I-pint plastic boxes on which 2 sides had been replaced

with window screening (1 mm mesh size) attached with hot glue. A single male was

placed in each box along with the female as a source of sperm, and a small piece of

intertidal rock was placed in each box to weigh boxes down, keeping them under water.
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The boxes were then submerged in flowing seawater in a flow-through sea table, with

boxes from the two groups (HF and LF) in alternating positions.

Each cage was cleaned and checked at approximately 50d intervals. Snails were

fed freshly collected, small « 2 cm shell length) Mytilus californianus and Mytilus

trossulus from the OIMB Boat House or a similar site. Snails were given a large supply

of mussels (30-50) when fed, such that snails only very rarely consumed all mussels

between cage cleanings. HF snails were fed at each cleaning interval, and LF snails were

fed at every other feeding interval. During intervals in which LF snails were not fed, all

mussels were removed from LF cages.

To compensate for potential effects of differences in maternal condition at the

time of collection, measurements of capsule production and hatchling size were not

initiated until adult snails had been on HF or LF rations for 8 months. After this period,

snail cages were examined at approximately 50 d intervals and the total number of

capsules in each cage was counted. Capsule counts made over long intervals were

possible because capsules did not dissolve over time, nor did snails consume or remove

them. Total per-snail capsule production during a given interval was calculated by

subtracting the number of capsules present in a box at the beginning of the interval from

the number present at the next sampling date, then dividing by the total number of days in

the interval. Capsule production was measured on 10 dates. To compare capsule

production and parental size, total per-day capsule production was calculated for the first

four sampling intervals and compared to initial measurements of parental size for each
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snail. Only the first four sampling intervals were utilized because snails grew very little

during this period, and to maximize the statistical power of the analysis (21/22 snails

survived to the fourth sampling interval in both groups).

ANALYSES

Prior to statistical comparisons, all data were tested for normality and

homogeneity of variances. Deviations from these parametric assumptions, where present,

are discussed below.

Capsule production

The relationship between adult size and mean number of capsules produced per

day for each snail was examined separately for HF and LF snails using a Pearson's

correlation matrix. Total capsule production ofHF and LF snails was compared using

both univariate and multivariate repeated-measures analysis ofvariance. Greenhouse­

Geiger and Huyhn-Feldt epsilons were calculated to adjust the univariate results for

violations ofthe compound symmetry assumption. Mauchly's sphericity test was utilized

to test for violations of the assumption of sphericity.

Hatchling size

The relationship between adult size and mean offspring size for each snail was

examined separately among HF and LF snails, using a correlation analysis. Because
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many capsules did not develop normally, there were insufficient data to examine all

within-snail hatchling sizes across dates. Therefore, hatchling measurements from all

sampling dates were pooled within snail (Parent), and hatching size of offspring ofHF

and LF snails were compared with a mixed-model nested ANOVA with parent as a

random factor and food as a fixed factor. This model also tested for the presence of a

parent*food interaction. To test whether parental food ration affected variance in

offspring size, variances around the mean hatchling size of each parent were compared

with a Student's t-test.

To test for the presence of consistent differences in hatchling size among parents,

comparisons were made among six females that produced hatchling broods on each of the

same 3 sampling dates. Hatchling sizes of these 6 females were compared using a

repeated measures ANOVA with parent (6 levels) as a random factor. Because hatchling

number varied among broods, hatchling number was equalized among dates for each

parent by using all data from the date with the smallest number of hatchlings, and

randomly subsampling an equal number ofhatchlings from the other two dates.

RESULTS

Capsule production

Mean per-day capsule production was not significantly correlated with maternal

size among either HF or LF snails (HF; r = 0.14, p > 0.50. LF; r = 0.26, p > 0.20) (fig. 1).
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Figure 1. Mean number of capsules produced per day by individual high-food (closed
circles, solid line) and low-food (open circles, dotted line) Nucella emarginata females.
Lines are least-squares regressions. High-food: y = -0.02x + 0.64. Low-food; y = O.Olx
-0.02.

HF parents produced more egg capsules than LF parents on all sampling dates, and

results of a repeated measures ANDVA comparing food ration and capsule production

rate indicated that these differences were highly significant (fig. 2, Table 1). The

distribution of within- date capsule production was non-normal on 6 out of 8 sampling

dates, due to varying levels of kurtosis (> 0 in 6 of 8 cases) and skew (> 0 in 8 of 8 cases).
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females were fed. Note the rise in capsule production that occurred after the second and
third feedings of low-food females.
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Table 1. Univariate and multivariate repeated-measures ANOVAs examining the effects
of parental food ration on capsule production of adult Nucella emarginata.

Univariate Analysis ofVariance (ANOVA)

~~~~~!!.~~l;>i~~1~

Source SS df MS F P
Date 1.386 1 1.386 14.150 0.001
Error 2.645 27 0.098

.WW~!!!.~~l;>i~~1~

Source SS df MS F P H-F
Date 2.276 7 0.325 7.893 0.000 0.000
Date x Food 0.732 7 0.105 2.583 0.016 0.025
Error 2.645 27 0.098

Huynh-Feldt Epsilon: 0.8065

p
0.000
0.058

F
10.706
2.388

21
21

Error df
7
7

df
0.219
0.557

Wilks' lambda
Test of: Date
Test of: Date x Food

Hypothesis

Multivariate Analysis ofVariance (MANOVA)

The F test is fairly robust to skew, and kurtosis of> 0 will increase the probability of

incorrectly accepting the null hypothesis (Type II error) but not incorrectly rejecting the

null hypotheses (Type I error) (Lindman, 1974). Because these results indicate that null
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hypothesis can be rejected, violations of the assumption of normality in these data

probably do not affect interpretation of the results.

Egg capsule production changed considerably over time for both the HF and LF

. snails, and was significantly affected by date (fig. 2, Table 1). Changes in egg capsule

production were most noticeable at the end of the experiment, when both HF and LF

capsule production fell sharply. LF capsule production appeared to be affected by

feeding date, with increases in capsule production occurring during intervals in which

snails were fed (fig. 2). Univariate results also suggested a significant date*food

interaction (Table 1), indicating that the effect of food treatment on capsule production

may vary across time.

Because capsule data violated the assumption of sphericity (Mauchly's sphericity

test, p < 0.001), date and date*food effects from the multivariate analysis (MANOVA),

which does not assume sphericity, are reported as well (Table 2). In the MANOVA

design, capsule production was significantly affected by date; however, the date*food

interaction was not significant (Table 1). Because results of the univariate and

multivariate tests vary in this respect, the interaction between date and food, if present, is

probably not strong.

Hatchling size

Mean hatchling size was not significantly correlated with maternal size in either

HF or LF snails (HF: r = 0.10, p> 0.50. LF: r = 0.04, P > 0.50) (fig. 3). Results of a
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Table 2. ANOVA table showing the effects of food ration on mean size of offspring
(hatchlings) ofNucella emarginata.

Source SS df MS Model III F P

Food 0.150 1 0.150 0.376 0.544
Parent 13.946 35 0.398 17.741 0.000
(Food)
Error 84.107 3745 0.022
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Figure 3. Mean hatching length of all offspring from individual high-food (closed circles,
solid line) and low-food (open circles, dotted line) Nucella emarginata females plotted
against maternal shell lengths. High food; y = -0.008x + 1.36. Low-food; y = - 0.002x
+ 1.1.
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nested ANOVA indicated that mean hatchling size was not significantly affected by

parental food ration (fig. 4; Table 2), and there was no difference between the variance in

hatchling size of HF and LF parents (Student's two-sample t-test, pooled variance t =

0.334, df= 36, p = 0.740). Mean hatchling size was significantly affected by parent (fig.

4; Table 2), indicating that parents produced hatchlings of significantly different sizes

when hatchlings from all broods were pooled. When 6 parents were considered

separately over 3 dates on which all 6 sets of parents produced hatchlings, a significant

effect of parent on mean hatchling size was found (Table 3, fig. 5). There was no

significant effect of date on size, and a significant parent*date interaction indicated that

hatchling sizes produced by single parents varied significantly among dates.

DISCUSSION

The size of female Nucella emarginata did not affect total capsule production or

offspring size in this study, in contrast to some other taxa in which maternal size can be

positively correlated with total reproductive output, offspring size, or both (see

Introduction). Brood or offspring size might be expected to increase with maternal body

size because a) larger females may be more able to acquire resources or have higher

nutrient reserves to apply to reproduction (Salthe, 1969), and b) limiting factors such as

ovary or brood chamber size may scale with female size (Leutinegger, 1979; Ebert,

1993). Larger females may also be able to care for greater numbers of offspring (Stearns,
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Table 3. Univariate and multivariate repeated-measures ANOVAs examining the effects
of date and parent on offspring size, of 6 female N emarginata that produced hatchlings
on each of 3 sampling dates.

Univariate Analysis a/Variance (ANOVA)

~~!~~~!!.~~J?i~_<;1~

Source SS df MS F P
Parent 0.619 5 0.124 7.773 < 0.001
Error 1.639 103 0.016

Wj.fu!!!_~.1l1;>j~<;1~

Source SS df MS F P H-F
Date 0.076 2 0.038 0.332 0.725 0.725
Date x Parent 1.139 10 0.114 6.654 < 0.001 < 0.001
Error 3.528 206 0.017

Huynh-Feldt Epsilon: 1.000

Multivariate Analysis a/Variance (MANOVA)

Hypothesis Wilks' lambda df Error df F P
Test of: Date 0.956 2 102 2.332 0.102
Test of: Date x Parent 0.611 10 204 5.703 < 0.001
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Figure 5. Mean offspring hatching size of 6 Nucella emarginata females that produced
hatchlings on each of 3 sampling dates. Each snail is represented by the same symbol on
each date. Open symbols = low-food females; closed'symbols = high-food females.
Dotted lines connect broods from each female. Error bars are standard errors. X axis is
days.

1992). However, this relationship is not present or always found in all groups (e.g.

Oberhauser, 1997). Among gastropods a positive correlation between female size and

fecundity has been observed in some species including Turbonilla sp. (Cumming, 1993)

and several muricids (Spight et al., 1974).

In the experiments described in this study, maternal size did not affect capsule

production and this may have occurred for a number of reasons, First, because the size
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range of females used in these experiments was limited, size-dependent differences in

reproductive output may not have been apparent. Second, egg capsule size was not

measured. Capsule size increases with female size in some marine gastropods (e.g.

Hadfield, 1989; T. Baker, unpublished student report), but not others (e.g. Bieler and

Hadfield, 1990; Miloslavich and Defresne, 1994); inN emarginata, Spight and Emlen

(1976) found that capsule size was positively correlated with maternal size in a

Washington population. If this were the case in the Oregon population used in this study,

then reproductive output may have increased with female size even if rate of capsule

production did not.

A third possible explanation is that snails used in this study were> 1.5 years old

and grew little during the experimental period, and may have passed the point at which

age or size is correlated with capsule production. This possibility is supported by a study

in which Spight and Emlen (1976) found that while large female N emarginata produce

more egg capsules than small females overall, fecundity dropped off sharply after snails

had reached a size of24-26 rom. Size of adult Nucella varies between populations (Etter,

1989) and it is possible that while snails used in this study were smaller (18 - 23 rom),

some may have reached or past the point at which fecundity scales positively with adult

size. Many factors, including the small range of female sizes, possible maternal size­

dependent differences in capsule size, maternal age, or a combination of factors including

random variation in the quality of laboratory conditions (food, microhabitat) may have
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obscured any underlying parental-size dependent differences in total reproductive output

in the experiments described in this study.

Reproductive output (capsule production) was strongly affected by food ration in

N emarginata, as has been found in numerous other taxa (see Introduction) and as has

been suggested by field correlations between N emarginata capsule frequency and food

availability (Spight and Emlen, 1976). In addition to the overall pattern of lower capsule

production, an apparent relationship between feeding times and reproductive output was

also evident among low-food Nucella females; LF females appeared to produce more egg

capsules during intervals in which snails were fed than during intervals of starvation (fig.

2). This suggests that females ofN emarginata, which are reproductive year-round, can

respond rapidly to increases in food resources by increasing reproductive output. This is

in contrast to reproductive patterns of the congeneric N lamellosa, which has one

reproductive event per year. In N lamellosa, food ration acts on reproductive output

through its cumulative effects on female size (and possibly condition) at time of

spawning (Spight and Emlen, 1976).

Total egg capsule production ofN emarginata also varied significantly with

sampling date. Although N emarginata are reproductive year-round (Seavy, 1977),

peaks in reproductive activity have been reported in late summer, spring and fall (Spight

and Emlen, 1976). In this study, laboratory spawning was lowest in the summer and

peaked in spring; however, because laboratory populations were followed for only one

year, this cannot be established as an intrinsic seasonal pattern. Other potential causes of
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variation in reproductive output include seasonal variation in the food value of field­

collected mussels, or seasonal variation in water temperature (which was not measured).

In addition, it is possible that declines in reproductive activity at the end of the

experiment may have been related to female age; in many taxa reproductive output

declines with age (Oberhauser, 1997), and this pattern has been suggested but not clearly

documented in N emarginata (Spight and Emlen, 1976).

Mean hatchling size ofN emarginata offspring was not correlated with maternal

size in these experiments. Because offspring size in marine gastropods is achieved

through a variety of mechanisms, the relationship between maternal and offspring size is

likely to vary depending on how offspring size is regulated. For example, in the nurse­

egg feeder Petaloconchus montereyensis, both capsule size and total number of

eggs/capsule are positively correlated with female size. Because each capsule contains

only one developing embryo and all other eggs are nurse eggs, embryos from larger

capsules consume more nurse eggs and hatch at a greater size than embryos from small

capsules; therefore, larger females produce larger offspring (Hadfield, 1989).

In contrast, while both capsule size and number of eggs per capsule may be

positively correlated with female size of N emarginata (Spight and Emlen, 1976), N

emarginata place multiple developing embryos in each capsule. At present, there is little

reason to believe that nurse egg/embryo ratio changes with capsule size (Spight, 1976).

Therefore, large N emarginata offspring may produce larger capsules, but if nurse

egg/embryo ratio does not change with capsule size, maternal size and offspring size are
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unlikely to be correlated (as shown in this study). This suggests that among species

whose larvae feed on nurse eggs during development, the strength ofmaternal effects

(e.g. size) may vary considerably depending on how a given species allocates embryos

and nurse eggs among capsules.

The experiments described in this study also did not find a significant

relationship between parental food supply and mean offspring size. The effect of parental

food ration on offspring size can be highly variable both within and among closely­

related taxa (see Introduction); low food rations can cause offspring to be smaller or

larger than offspring ofhigh-food parents, or may have no effect on offspring size. In the

first instance, the production of large offspring in the face of low-food conditions is often

considered an adaptive response, because large offspring may be more tolerant of low­

food conditions (Hutchinson, 1951; Jamieson and Burns, 1988; Ebert, 1993). In N

emarginata, large hatchling size provides increased starvation resistance (chapter 2, this

thesis). However, because egg capsules do not hatch for several months in the field

(Spight, 1975), and because the intertidal environment is highly variable, hatchlings that

emerge from the capsule are likely to experience different conditions than the mother at

time of laying. Therefore, unless females could "predict" environmental quality 2 - 3

months after time of laying, phenotypic shifts in offspring size in response to food

conditions would likely be ineffective.

The significant effect of parent on offspring size demonstrated that female N

emarginata in this experiment produced hatchlings of different mean sizes. Because of



136

the highly significant degree of variance heterogeneity in hatchling size data (Cochran's

C = 0.051, n> 3000, p < 0.0001), the significance of the parent effect on offspring size

must be viewed with caution. However, results of a repeated measures ANOVA

comparing the hatchling sizes of 6 parents across 3 dates found both significant effects of

parent and parent*date. These data suggest that some females do produce consistently

different brood sizes from other females; however, there was also significant offspring

size variation among sequential clutches of single females over the 3 dates examined.

Results of the experiments performed in this study indicate that female Nucella

emarginata respond to low food availability by reducing reproductive effort but not by

changing offspring size, and female size does not appear to affect offspring size in this

species. These results suggest that differences in hatchling size among populations ofN

emarginata (e.g. Spight, 1976) and other Nucella (e.g. N canaliculata, Rivest, 1981; N

lapillus, Etter, 1989) are not likely to be related to differences in food resources or adult

size among sites. Rather, these data support the suggestions by several authors that

hatchling size differences may in fact represent either phenotypic responses to varying

environmental conditions or underlying genetic differences between populations (Spight,

1976; Rivest, 1981; Gosselin, 1994; Etter, 1989). Because there were significant

differences in hatchling size among females in this experiment even though females were

maintained for long (> 1 yr.) periods in apparently identical circumstances, it seems

unlikely that interfemale variation is entirely regulated by phenotypic responses to

environmental factors. This raises the possibility that genotype plays a role in regulating
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hatchling size; however, studies specifically addressing the heritability of offspring size

are needed to fully separate the effects of environment and genotype.
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CHAPTER VI

GENERAL SUMMARY

The research described in this dissertation explored the relationships among

offspring size, offspring performance, larval morphology, and adult condition in two

gastropod genera with nonplanktotrophic larvae that rely on intracapsular nutrition during

development. Chapter II described a novel feeding mechanism in intracapsular Littorina

larvae, the direct uptake of capsular albumen across the cells of the velum. This research

also compared relative velar sizes among numerous other gastropod taxa with feeding or

nonfeeding development, and suggested that this novel mechanism may have led to the

retention of some aspects ofancestral planktotrophic feeding morphology. This in turn

suggests that the evolution of larval form in nonplanktotrophic species may not result in

alterations to gross larval morphology if, as in Littorina, ancestral characters are coopted

to serve novel functions in the capsule environment.

Very few studies have addressed this question in other taxa; the cooption of

planktotrophic characters for novel functions in nonplanktotrophic species may be

widespread. Intracapsular nutrition is found in many invertebrate groups including the

gastropods, and many groups share similar forms of intracapsular nutrition (e.g. nurse
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eggs). If larval morphology of encapsulated species is shaped by the physical

requirements of feeding on intracapsular nutrition, then taxonomically distant groups

whose encapsulated larvae share the same type of intracapsular nutrition may show

convergent feeding morphologies. Other characters such as capsule shape or ancestral

larval form may constrain convergence in some comparisons. The functional

morphology of feeding on extraembryonic, intracapsular nutrition such as nurse eggs, and

the degree to which type of intracapsular nutrition is correlated with similar feeding

morphologies among taxa, is poorly understood and may be a productive area for future

research.

Because many taxa with encapsulated development have modified larval

morphology that may be adaptations to the functional requirements of feeding on

intracapsular nutrition, it seems likely that intracapsular nutrition serves an important

function in promoting larval or juvenile performance. Chapter III explored the

relationship between hatching size (a corollary of number of nurse eggs consumed) and

hatchling performance in Nucella emarginata, and Chapter IV described a technique for

marking Nucella hatchlings for field experiments. This research demonstrated that

maternal investment, or the number of nurse eggs consumed by a larva during

development, can have strong effects on post-hatching performance. However, size­

dependent performance varied temporally and spatially and variability may be related to

habitat quality. Therefore, at the single site examined in this research, directional

selection for large or small hatching size may not occur at the level of female or

---------------------------------~.-
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population. Studies exploring the effects of hatching size on hatchling performance in

strongly contrasting environments, such as areas of very different wave exposure, may in

the future shed light on the interactions among habitat, offspring size and selection that

act at the population level in marine intertidal systems.

Chapter V found that two potentially important maternal effects, maternal size and

food ration, had no detectable effect on offspring size ofN emarginata females from a

single population. This suggests a possible genetic basis for observed offspring size

differences between females. However, this genetic effect may not be strong; extensive

variation in offspring sizes among both single and sequential clutches from single

females suggests that even if nurse egg to embryo ratio is genetically determined, the

uneven distribution of nurse eggs among capsules and unequal acquisition of nurse eggs

by embryos may mask underlying differences among females. This variation is another

factor that may dampen any effects of directional selection for offspring size in a given

habitat. Therefore, comparing females from contrasting environments (such as different

wave exposures, as above) might determine whether interfemale or interpopulation

differences in offspring size are detectable. Likewise, breeding experiments testing the

heritability of hatching size (a character must be heritable to evolve in response to

selection) should be conducted between populations from' contrasting environments, if

these environments show population-level differences in nurse egg/embryo ratio and

offspring size.
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APPENDIX A

METHODS FOR POTASSIUM DICHROMATE WET OXIDAnON METHOD

OF ORGANIC CONTENT ANALYSIS AND COMPARISON WITH

ASH-FREE DRY WEIGHT

Potassium dichromate wet oxidation method

Hatchlings were first measured for total shell length to the nearest 10 f.lm with a

Wild 5A dissecting microscope. Each snail was placed in an individual Eppendorftube,

rinsed lOx with distilled water to remove salts, and lyophilized for 48 hours. Each

hatchling was then placed in an individually-labeled 10 m1 Pyrex tube (all tubes were

cleaned at 450·C for 6 hours in a muffle furnace to remove trace organics) and run

through the procedure below. Glucose standards of 50, 100, 200 and 300 f.lg were mixed

up in 70% phosporic acid and run simultaneously.

Procedures

1. To each tube, add 250 f.ll 70% phosporic acid

2. Heat tubes at 110°C in block heater or oven for 15 minutes

3. Add 500 f.ll 0.484% potassium dichromate in concentrated sulfuric acid to

each tube

4. Vortex thoroughly

5. Heat at 110°C for 10 minutes, allow to cool ca. 10 minutes
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6. Add 850 fl1 distilled water

7. Vortex thoroughly

8. Read absorbance at 440 run

Comparison ofPDWO andAFDW

A single ripe clutch was collected in the field at Gregory Point, Cape Arago (ripe

clutches contain entirely metamorphosed juveniles and capsules whose plugs are

dissolved or beginning to dissolve) and randomly divided into two groups of 44

hatchlings each. The two groups were randomly designated as "AFDW" or "PDWO"

and analyzed for organic content. AFDW hatchlings were measured for total shell

length, rinsed 10 x with distilled water to remove salts, dried at 60·C to a constant weight

(ca. 5 days), weighed in small aluminum pans (pans had been previously ashed at 450·C

for 6 hours to remove trace organics) on a Mettler ME30 microbalance accurate to 11lg,

ashed at 450·C for 6 hours, then reweighed. Hatchling AFDW was calculated by

subtracting ashed weight of pan + snail from the previously measured dry weight of the

same pan + snail. Organic content of the PDWO snails was measured with PDWO

methods described above.

To test whether PDWO and AFDW gave similar measurements oftotal organic

content, the weight of each snail (flg) in both groups was regressed on shell length (mm)

and plotted (fig. 1). Because these two lines were not significantly different (ANCOVA,

slope: F = 1.103, p = 0.297. intercept, F = 0.145, P = 0.145), AFDW and PDWO results

were combined for analyses in Chapter III.
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Figure 1. Weight in Jlg plotted against shell length in mm for hatchlings from a single
Nuce/la emarginata clutch, measured with either the ash-free dry weight method (closed
squares, solid line) or the potassium dichromate wet oxidation method (open squares,
dotted line).
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APPENDIXB

USE OF CORRAL PANELS TO TEST FOR CRAWL-AWAY

BEHAVIOR IN EXPERIMENTALLY OUTPLANTED

NUCELLA EMARGINATA HATCHLINGS

In August 1996, field tests were performed to test the propensity ofNuce/la

emarginata hatchlings to crawl offAstroturf™ panels surrounded by Tanglefoot™, such

as those described in Chapter m. Although hatchlings would not cross intact

Tanglefoot™ barriers in the laboratory, field barriers ofTanglefoot™ could only be

replaced once a day at the most. Corral panel tests were performed because Tanglefoot™

becomes encrusted with sand and other intertidal detritus over time, and I suspected that

hatchlings might be able/willing to cross compromised Tanglefoot™ barriers in the field.

Six 13 x 13 cm AstroturfTM panels were cut and surrounded by four slotted pieces

ofPVC pipe (as described in Chapter ITI) to serve as the Inner panels. Six larger (26 x 26

cm) AstroturfTM panels were cut and surrounded by 16 slotted pieces ofPVC pipe (one

per side) to serve as the Outer panels (fig. 1). 16 short pieces were utilized as borders for

the Outer panels rather than 4 longer PVC lengths to allow panels to flex and be flush to

the uneven substrate. All AstroturfTM tufts were shaved from a central, 13 x 13 cm square

in the outer panels, and the" inner 13 x 13 cm panels were placed in these shaved
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areas (fig. 1). Holes were then drilled through each piece of PVC pipe and each ofthe six

sets of panels (a set = one "corral" panel) were bolted to flat intertidal rocky areas that

had been locally cleared of barnacles and mussels. Duct or electrical tape was used to

seal the junctions between PVC pipe segments. Corral panels were allowed to season in

the field for one month prior to experimental outplants. During this time, numerous small

barnacles settled on and among the AstroturffM tufts on each panel.

Ten ripe clutches of N emarginata hatcWings were collected from the field,

hatcWings were removed from their capsules, pooled, and passed through a series of 4

graded meshes. All hatcWings from the largest and smallest screens were marked for 12

hours with Calcein (methods in chapter 3), and hatchlings from the large and small

groups were randomly chosen to form 6 groups of 15 large and 6 groups of 15 small

hatchlings. One set of large and small hatcWings (30 snails total) was randomly assigned

to each of the 6 corral panels.

HatcWings were gently transferred to the inner panels (in the field, on a low tide)

with a Pasteur pipet and washed with seawater until each hatcWing had attached. Both

inner and outer PVC borders were coated with a thin layer of Tanglefoot™. Panels were

left in the field for a total of9 days, and Tanglefoot™ barriers were refreshed at days 4

and 7. After 9 days in the field, corral panels were brought into the laboratory, separated

into inner and outer panels, and the inner and outer panels were sampled separately with a

high-pressure freshwater spray (as described in Chapter III). All recovered hatcWings

were then examined for a Calcein mark (as described in Chapter IV) and remeasured.
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Of a total of 180 hatchlings outplanted onto the inner panels, 35 were recovered

(19.4%). Recovery data is summarized in Table 1. The relatively low overall recovery

was probably due in part to the fact that corral panels were seasoned for only one month

in the field and contained less structurally complex habitat than panels used in

experiments described in Chapter III. Therefore, hatchlings on the corral panels may

have been particularly vulnerable to desiccation or wave stress. Of the 35 recovered

marked snails, 34 were on inner panels and one was on an outer panel.

These data suggest that very little (2.9%, or less than I in 30 over the course of a

nine-day outplant) of the hatchling nonrecovery described in Chapter III is attributable to

hatchlings' crawling off experimental panels. Estimates of crawling-off rates from corral

panels are likely to be high relative to crawling-off rates in experimental field outplants

(Chapter III), because Tanglefoot™ barriers were refreshed every 2 days in experimental

field outplants but were refreshed only twice in 9 days during corral experiments.

Hatchling recovery rates might also be an artifact of snail wandering behavior if

small hatchlings, which exhibited overall lower recovery in experimental outplants, were

more likely to wander off panels. However, because the only hatchling recovered from

an outside panel in corral experiments was from the large size class, there is no reason to

believe that small hatchlings crawl away from panels at higher rates than large hatchlings.

For the reasons listed above, corral panel experiments support the hypothesis that

recovery rates on AstroturfTM panels utilized in Chapter III were little affected by snail

crawl-away behavior, and that crawl-away behavior, if present, is not a likely cause of

lower recovery of small Nucella emarginata hatchlings in these experiments.



Table 1. Recovery of Calcein-marked N emarginata hatchlings from inner and outer
corrals panels.

Number recovered (from 15 original)

Inside Outside

_~ane!._.__~~g=-e__S_m_al_I__._._~arge __ .__.__~~~ll _
one 1 2 0 0
two 5 1 1 0

three 4 2 0 0
four 4 0 0 0
five 2 3 0 0
six 8 2 0 0

Total 24 10 1 0
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Figure 1. AstroturfTM panels used in corral experiments. During outplants, PVC pipe
was coated with Tanglefoot™ and joints between pipe segments were sealed with
electrical or duct tape.
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APPENDIXC

CHAPTER II PHOTGRAPlllC PLATES

Legends

Figure 3. (A) Excapsulated trochophore larva ofLittorina saxatilis, viewed obliquely
from the apical end under transmitted light (dark field). Arrow indicates position of
prototroch (cilia are not visible). (B) Same embryo viewed with epifluorescence
microscopy and FITC filter set. Only the prototroch (arrow) is fluorescent, indicating
localized uptake ofFITC-labeled albumen by the cells ofthe prototroch. Scale bar = 70 J1.
m.

Figure 4. (A) Excapsulated early veliger-stage embryo ofLit/orina samtilis
(nonplanktotroph) viewed from the side under transmitted light (bright field). (B) Same
embryo viewed with epifluorescence microscopy and FITC filter set. Only the prototroch
is fluorescent; no fluorescence appears in the pretrochal region or visceral mass. In,

visceral mass; pr, pretrochal region; v, velum (v is positioned on ciliated band). Scale bar
(on fig. 3) = 70 J1.ffi.

Figure 5. (A) Velum ofexcapsulated, mature embryo ofL. samtilis (viscera and foot
have been removed), viewed under transmitted light (bright field). (B) Same partial
embryo, viewed with epifluorescence microscopy and an FITC filter set. The ciliated velar
cells are brightly fluorescent while the pretrochal region exhibits no fluorescence. The
fluorescent area in the center ofthe velum is continuous with the ciliated band ofvelar
cells and is probably an extension ofthis band. (C) Excapsulated, mature veliger-stage
embryo of Littorina sitkana, viewed head-on under transmitted light and epi-illumination.
(D) Same embryo, viewed with epifluorescence microsCQPY and FITC filter set. Ciliated
velar cells are brightly fluorescent, and some fluorescence can be seen (out of focus) in the
ciliated rejection band ofthe foot. No fluorescence is seen in the pretrochal region or
mantle. E, eyespot; In, visceral mass; rna, mantle; pr, pretrochal region; v, velum (v is
positioned on ciliated band). Scale bars; A - B (on fig. 3A) = 70 p.m, C-D (on fig. 5C) =
50 J1.ffi.
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Figure 6. High-magnification view ofvelum ofmature Littorina saxatilis embryo viewed
under epifluorescence microscopy (FITC filter set). Fluorescence appears in the ciliated
band ofvelar cells but not the pretrochal region. Fluorescence is concentrated in small «
2 mm) vacuoles within the prototrochal cells. pr, pretrochal region; v, velum (positioned
on ciliated band). Scale bar = 20 J.IfI1.

Figure 7. Veliger-stage embryo ofLittorina saxatilis, exposed to FITC-BSA and viewed
laterally under fluorescent light with FITC filter set. The orientation ofthis embryo is
similar to that ofthe embryo in figure 3. Immediately anterior to the ciliated band is one
oftwo symmetrically-positioned fluorescent regions (larval kidneys) that were apparent in
mature veliger-stage embryos. k, larval kidney; v, velum (positioned on ciliated band).
Scale bar = 75 J.IfI1.

Figure 8. (A) Mature veliger-stage embryo ofLittorina saxatilis, close to hatching,
viewed under transmitted light. (B) Same embryo, viewed under fluorescent light with
FITC filter set. Fluorescence can be seen in the ciliated cells ofthe velum, the
autofluorescent operculum, and in a short region ofthe gut. The dim illumination ofthe
foot is due to light reflected from the operculum. f, foot; g, gut; 0, operculum; s, shell;
u, umbilicus; v, velum. Scale bar = 150 J.IfI1.

Figure 9. (A) Ne\f1y hatched veliger ofLittorina plena, viewed under transmitted light.
(B) Same larva viewed under fluorescent light with FITC filter set, showing strong FITC
fluorescence in the gut. The operculum is autofluorescent, and the foot is dimly
illuminated by light reflected from the operculum. Note the complete absence of
fluorescence in the velum. f, foot; g, gut; 0, operculum; pc, prototrochal cilia; s, shell;
v, velum. Scale bar =25 J.IfI1.
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